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PARABOLIC BEHAVIOR OF A HYPERBOLIC DELAY EQUATION∗

THOMAS LAURENT† , BRIAN RIDER‡ , AND MICHAEL REED†

Abstract. It is shown that the fundamental solution of a hyperbolic partial differential equation
with time delay has a natural probabilistic structure, i.e., is approximately Gaussian, as t → ∞. The
proof uses ideas from the DeMoivre proof of the central limit theorem. It follows that solutions
of the hyperbolic equation look approximately like solutions of a diffusion equation with constant
convection as t → ∞.
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1. Introduction. It has long been known that time delays have a smoothing
effect on ordinary differential equations. For example, Kolmanovskii and Myshkis [8]
state that, “This property of ‘solution smoothing’ . . . together with some other prop-
erties make retarded differential equations resemble parabolic differential equations.
However, the reasons for this resemblance are not entirely clear.” In this paper, we
provide an analytical foundation for these ideas by studying the initial value problem
for the linear hyperbolic equation

∂

∂t
u(t, x) + c

∂

∂x
u(t, x) = −Au(t, x) + Bu(t− τ, x),(1)

u(t, x) = f(t, x) for − τ ≤ t ≤ 0,(2)

where A and B are positive constants and τ is the time delay.
In section 2, we introduce the “fundamental solution,”

K(t, x) =
n∑

k=0

γk(t)δct−ckτ (x) for nτ ≤ t < (n + 1)τ,(3)

where n = 0, 1, 2, . . . , and we define K(t, x) ≡ 0 for tε[−τ, 0). The coefficients γk(t)
are defined recursively: γ0(t) satisfies γ′

0(t) = −Aγ0(t) with γ0(0) = 1 and

γ′
k(t) = −Aγk(t) + Bγk−1(t− τ) with γk(kτ) = 0.(4)

Using standard functional analytic methods, we prove that K(t) ≡ K(t, ·) is a contin-
uous D′(R)-valued function on [0,∞) that is differentiable except at τ . We prove that
if f(t) is any continuous D′(R)-valued initial data on [−τ, 0], then there is a unique
D′(R)-valued solution of (1) given by

u(t) = K(t) ∗ f(0) + B

∫ 0

−τ

K(t− θ − τ) ∗ f(θ)dθ for t > 0.(5)
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If one integrates (1) with respect to x (assuming that u(t, x) → 0 as |x| → ∞), one
obtains a solution of the retarded differential equation (RDE)

y′(t) = −Ay(t) + By(t− τ) for t > 0.(6)

We shall denote the fundamental solution of (6) by Y (t), i.e., Y (t) is the solution with
initial data equal to 1 at t = 0 and equal to 0 at earlier times. The general solution
of (6) is given by a formula similar to (5), where Y (t) replaces K(t) and convolution
is replaced by multiplication [7].

In section 3, the main section of the paper, we analyze the asymptotic behavior
as t → ∞ of the fundamental solution K(t). The characteristic function of (6) is
h(λ) = λ+A−Be−λτ . The root of h with largest real part, λ0, is real and we define
p = 1/h′(λ0) and α = τc2(1 − p)p2. We prove that K(t), after normalization, looks
asymptotically like a Gaussian with standard deviation σ =

√
αt translating at speed

cp. The proof depends on the combinatorics of the functions γk(t) and follows many
of the ideas of the DeMoivre proof of the central limit theorem.

In section 4, we assume that f is a continuous function on [−τ, 0] with values
in L1(R). Using an appropriate seminorm, we show that asymptotically the solution
u(t) of (1) looks likes a weighted average of solutions of the transport heat equation,

∂

∂t
v(t, x) + cp

∂

∂x
v(t, x) =

α

2

∂2

∂x2
v(t, x),(7)

on the space scale cτ .
We note that (1) has a natural interpretation in population dynamics. u(t, x)

is the population density in space at time t. Members of the population move to
the right at speed c, die at rate A, and produce eggs at a rate B. The eggs are
stationary, but after a time τ become moving members of the population. In this
language, Y (t) plays the role of the total population at time t. Hyperbolic equations
with time delays occur frequently in ecology and cell biology [3], [9], [11], where u(t, x)
is the density of the population at different maturities x. Often these equations are
nonlinear, boundary value problems with inhomogeneous velocities, so it is not clear
whether the probabilistic methods of this study can be extended to those cases.

2. Existence, uniqueness, and representation. We denote by D(R) the
usual space of test functions of compact support and by D′(R) the space of dis-
tributions. By convergence of a sequence μn → μ in D′(R), we always mean weak
convergence, i.e., 〈μn, ψ〉 → 〈μ, ψ〉 for all ψεD(R). For each fixed t, the sum defining
K(t) is finite, so it is clear that K(t)εD′(R) and the support of K(t) is contained in
the interval [0, ct]. Since we are interested in the properties of K as a function of t,
we begin by summarizing briefly the basic definitions and properties of D′(R)-valued
functions that we use repeatedly.

A D′(R)-valued function, f , is said to be continuous at to if 〈f(t), ψ〉 is continuous
at to for all ψεD(R).

Proposition 2.1. If f is continuous at to, then
(a) if tn → to, then f(tn) → f(to) in D′(R).
(b) ∂xf is continuous at to.
(c) if f(t) has support in [0, ct] for each t and vεD′(R), then f(t)∗v is continuous

at to.
Proof. (a) simply reformulates the definition. Since 〈∂xf(t), ψ〉 = 〈f(t),−∂xψ〉,

(b) is immediate. To prove (c), suppose tn → to. Since there is a ball B that
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contains the supports of all the distributions f(tn) and since f(tn) → f(to) in D′(R)
by assumption, we conclude that f(tn) ∗ v → f(to) ∗ v using the bicontinuity of
convolution on D′(R) ×D′(R) [5, p. 105], [6, p. 71].

A D′(R)-valued function, f , is said to be differentiable at to if 〈 f(tn)−f(to)
tn−to

, ψ〉
converges for all ψεD(R) as tn → to.

Proposition 2.2. If f is differentiable at to, then

(a) there exists f ′(to) in D′(R) such that f(tn)−f(to)
tn−to

→ f ′(to) in D′.
(b) ∂xf is differentiable at to and (∂xf)′(to) = ∂xf

′(to).
(c) if f(t) has support in [0, ct] for each t and vεD′(R), then f(t)∗v is differentiable

at to and (f(t) ∗ v)′ = f ′(t) ∗ v.
Proof. (a) A weakly convergent sequence in D′(R) has a limit in D′(R) [10, p. 15].

Since 〈
∂x

f(tn) − f(to)

tn − to
, ψ

〉
= −

〈
f(tn) − f(to)

tn − to
, ∂xψ

〉
,

(b) follows by taking limits. To prove (c), one writes the difference quotient and takes
limits using the bicontinuity of convolution as above.

A D′(R)-valued function, f , is said to be Riemann integrable on [a, b] if 〈f(t), ψ〉
is Riemann integrable on [a, b] for all ψεD(R).

Proposition 2.3. If f is Riemann integrable on [a, b], then

(a) there exists an element of D′(R), denoted
∫ b

a
f(t) dt, such that〈∫ b

a

f(t) dt, ψ

〉
=

∫ b

a

〈f(t), ψ〉 dt for all ψ εD(R).

(b) ∂x
∫ b

a
f(t) dt =

∫ b

a
∂xf(t) dt.

Proof. Let Pn be a sequence of partitions whose mesh size goes to zero as n → ∞.
Since 〈

∑
tiεPn

f(ti)(ti − ti−1), ψ〉 converges for each ψ,
∑

tiεPn
f(ti)(ti − ti−1) has a

limit in D′(R). (b) follows, as above, by the adjoint relation for ∂x.
The following lemma summarizes the smoothness properties of K(t).
Lemma 2.4. Let K(t) be defined by (3) and (4).
(a) K(t) is continuous on [0,∞).
(b) K(t) is differentiable on (0,∞)\{τ} and

K ′(t) = −c∂xK(t) − AK(t) + BK(t− τ) for tε(0,∞)\{τ}.(8)

Proof. Each δct−ckτ is a continuously differentiable D′(R)-valued function of t and
the coefficients γk(t) are C∞ functions of t since they are the solutions of ordinary
differential equations with C∞ source terms. Thus, K(t) is continuously differentiable
on each open interval of the form (nτ, (n+1)τ) and we need only check the points nτ
where the definition, (3), changes. Since γn(nτ) = 0, for n ≥ 1, K(t) is continuous
on [0,∞). Similarly, (4) shows that γ′

n(nτ) = 0 for n ≥ 2, which implies that K(t) is
differentiable at nτ for n ≥ 2.

If tε(0, τ), then for all ψεD(R), we know that 〈K(t), ψ〉 = γ0(t)ψ(ct). Thus,

d

dt
〈K(t), ψ〉 = −Aγ0(t)ψ(ct) + cγ0(t)ψ

′(ct)

= −A〈K(t), ψ〉 − c〈∂xK(t), ψ〉.

Since K(t− τ) = 0, (8) holds.
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Let tε(nτ, (n + 1)τ) for n ≥ 1. Then,

d

dt
〈K(t), ψ〉 =

d

dt

n∑
k=0

γk(t)ψ(ct− ckτ)

= −Aγ0(t)ψ(ct) + cγ0(t)ψ
′(ct)

+

n∑
k=1

(−Aγk(t) + Bγk−1(t− τ))ψ(ct− ckτ) + cγk(t)ψ
′(ct− ckτ)

= −c〈∂xK(t), ψ〉 − A〈K(t), ψ〉 + B〈K(t− τ), ψ〉.

The calculation for t = (n+1)τ is the same because γn+1((n+1)τ) = γ′
n+1((n+1)τ) =

0. Thus, (8) holds on (nτ, (n + 1)τ ] for all n ≥ 1.
Lemma 2.5. Let f(t) be a continuous D′(R)-valued function on [−τ, 0]. Then,

the function t �−→
∫ 0

−τ
K(t−θ−τ)∗f(θ) dθ is well defined and differentiable on (0,∞)

and

for t ≥ τ,
d

dt

∫ 0

−τ

K(t− θ − τ) ∗ f(θ) dθ =

∫ 0

−τ

K ′(t− θ − τ) ∗ f(θ) dθ,(9)

for tε(0, τ),
d

dt

∫ 0

−τ

K(t− θ − τ) ∗ f(θ) dθ = f(t− τ)(10)

+

∫ 0

−τ

K ′(t− θ − τ) ∗ f(θ) dθ.

Proof. For n = −1, 0, 1, 2, . . . , define the following regions of the t− θ plane:

Rn = {(t, θ) | nτ ≤ t− θ − τ < (n + 1)τ and − τ ≤ θ ≤ 0}.

Since K(t) is a C∞ function of t in the open intervals (nτ, (n + 1)τ), K(t − θ − τ)
is C∞ except on the boundaries of the regions Rn indicated by the dashed lines in
Figure 1.

We suppose ψεD and let Ta be the translation operator Taψ(x) = ψ(x− a). For
(t, θ) in

⋃∞
−1 Rn, we define

z(t, θ) ≡ 〈K(t− θ − τ) ∗ f(θ), ψ〉

and note that z ≡ 0 on R−1 since K(t) = 0 for t < 0. On R0, we have

z(t, θ) = 〈γ0(t− θ − τ)δc(t−θ−τ) ∗ f(θ), ψ〉
= γ0(t− θ − τ)〈f(θ), T−c(t−θ−τ)ψ〉.

Note that if an → a, then Tanψ → Taψ in D, so by the continuity of f and the
bicontinuity of 〈·, ·〉 on D′ ×D, we conclude that z is continuous on R0. Since this is

true for all ψεD, Proposition 2.3 assures us that for 0 < t < τ the integral
∫ 0

−τ
K(t−

θ − τ) ∗ f(θ) dθ makes sense in D′.
Let Ro

0 denote the interior of R0. If (t, θ)εRo
0, then 0 < t − θ − τ < τ , so

z is differentiable. Using the general fact [10, p. 105] that d
dy 〈μ(x), ψ(x + y)〉 =

〈μ(x), ψ′(x + y)〉, we find

∂

∂t
z(t, θ) = γ′

0(t− θ − τ)〈f(θ), T−c(t−θ−τ)ψ〉

+ cγ0(t− θ − τ)〈f(θ), T−c(t−θ−τ)ψ
′〉.
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Fig. 1. The regions Rn.

This formula shows that ∂
∂tz(t, θ) is continuous on Ro

0 and can be extended continu-

ously to the boundary of Ro
0. Thus, ∂

∂tz(t, θ) is bounded in Ro
0 and the usual proof

(using the mean value theorem and the dominated convergence theorem) shows that

d

dt

∫ 0

−τ

z(t, θ) dθ =
d

dt

∫ t−τ

−τ

z(t, θ) dθ = z(t, t− τ) +

∫ t−τ

−τ

∂

∂t
z(t, θ) dθ for 0 < t < τ.

Since this is true for all ψεD, Proposition 2.3 guarantees that (11) holds in D′.

Formula (9) is proven similarly. The proof relies on the fact that z is continuous
and ∂

∂tz(t, θ) is bounded on
⋃∞

0 Ro
n.

Theorem 2.6. Let f : [−τ, 0] → D′ be continuous and define

u(t) =

{
K(t) ∗ f(0) + B

∫ 0

−τ
K(t− θ − τ) ∗ f(θ) dθ if t > 0,

f(t) if −τ ≤ t ≤ 0.
(11)

Then, u(t) is the unique D′-valued function that is continuous on [−τ,∞), is differ-
entiable on (0,∞), satisfies u(t) = f(t) for −τ ≤ t ≤ 0, and

u′(t) = −c∂xu(t) − Au(t) + Bu(t− τ) for t > 0.(12)

Proof. Using the technical details from Propositions 2.1–2.3 and Lemma 2.5, the
existence part of the proof is straightforward. For t ≥ τ ,

u′(t) = K ′(t) ∗ f(0) + B

∫ 0

−τ

K ′(t− θ − τ) ∗ f(θ) dθ

= {−c∂xK(t) −Ak(t) + BK(t− τ)} ∗ f(0)

+ B

∫ 0

−τ

{−c∂xK(t− θ − τ) −AK(t− θ − τ) + BK(t− θ − 2τ)} ∗ f(θ) dθ

= −c∂xu(t) − Au(t) + Bu(t− τ),
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and for 0 < t < τ ,

u′(t) = K ′(t) ∗ f(0) + Bf(t− τ) + B

∫ t−τ

−τ

K ′(t− θ − τ) ∗ f(θ) dθ

= {−c∂xK(t) −AK(t)} ∗ f(0) + Bu(t− τ)

+ B

∫ t−τ

−τ

{−c∂xK(t− θ − τ) −AK(t− θ − τ)} ∗ f(θ) dθ

= −c∂xu(t) − Au(t) + Bu(t− τ).

To prove uniqueness, we need only show that u(t) ≡ 0 if u(t) is a differentiable D′-
valued function on (0,∞) that satisfies (12) and u(t) = 0 for −τ ≤ t ≤ 0 . Let ψεD
and consider the function 〈u(t), Tctψ〉. By writing down the difference question and
taking the limit (using the bicontinuity of 〈·, ·〉 on D′ × D), one easily sees by using
(12) that 〈u(t), Tctψ〉 is differentiable on (0, τ ] and

d

dt
〈u(t), Tctψ〉 = 〈u′(t) + c∂xu(t), Tctψ〉(13)

= 〈−Au(t) + Bu(t− τ), Tctψ〉(14)

= −A〈u(t), Tctψ〉.(15)

Thus, for any h > 0, we have 〈u(t), Tctψ〉 = e−A(t−h)〈u(h), Tchψ〉. Taking the limit as
h → 0 and using the continuity of u we conclude that 〈u(t), Tctψ〉 = 0 for 0 ≤ t ≤ τ .
Since this is true for all ψ, we have that u(t) = 0 in D′ for 0 ≤ t ≤ τ . By iterating
this argument, we find that u(t) = 0 for all t > 0.

We remark that if the initial data, f , is a C1 function on the strip R × [−τ, 0],
the distribution solution is C1 for t > 0 and satisfies the differential equation in the
classical sense. Similarly, if f is a continuous function of t with values in L1(R) on
[−τ, 0], then the solution u(t) will be in L1(R) for all t > 0. These theorems can easily
be proven by rewriting the differential equation as an integral equation and using the
contraction mapping principle. Finally, consider the special case where f(θ) = 0 for
θ < 0 and f(0) is a nonnegative L1 function. Then u(t, ·) is the convolution of a
nonnegative function with a finite linear combination of delta functions with positive
coefficients, and so u(t, ·) is nonnegative. Thus, integration in x shows that

||u(t, ·)||1 = Y (t)||f(0)||1,

where Y (t) is the fundamental solution of (6).

3. The asymptotic behavior of K. The fundamental solution K(t), which
we denote now by Kt, is for each t a finite sum of point masses with weights γk(t). Kt

may be normalized to produce a proper probability measure, Πt = Kt/Kt(R), where
Kt(R) =

∑n
k=0 γk(t) for nτ ≤ t < (n + 1)τ. Note that Kt(R) = Y (t). The first form

of our asymptotic result is stated in the language of convergence in distribution.
Theorem 3.1. Let h(λ) be the characteristic polynomial of (6) and λ0 be the root

with the largest real part. Define p = 1/h′(λ0), q = 1 − p, and α = c2τp2q. Then,

lim
t→∞

Πt

[
cpt +

√
αt a, cpt +

√
αt b

]
=

∫ b

a

e−x2/2

√
2π

dx

for any fixed −∞ ≤ a < b ≤ ∞.
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From a dynamical perspective, Theorem 3.1 says that, normalized to have unit
mass, the fundamental solution of the equation with delay τ and speed c resembles
Gt(x) = e−(x−cpt)2/2αt/

√
2παt in the sense of measures. Theorem 3.1 follows easily

from a stronger result of local limit type, Theorem 3.2 below.
Consider the special sequence of times tn = nτ , n → ∞. For such tn,

Ktn ≡
∑
k∈Z

bn(k)δkcτ ,

where the bn(k) have the following form obtained by explicitly solving the equations
(4):

bn(k) =

{
kn−k

(n−k)!ξ
−k(Bτ)n for 1 ≤ k ≤ n,

0 otherwise,

where ξ = BτeAτ . We let Sn be the total mass of Ktn , i.e.,

Sn =

n∑
k=1

bn(k) = Y (tn).(16)

In these terms, Πtn can be written

Πtn =
∑
k∈Z

bn(k)

Sn
δkcτ .(17)

The following local theorem is the main result of this section. By local we mean
that we have uniform control of the individual masses bn(·).

Theorem 3.2. Let πn(R) be the lattice { k√
n
} for k ranging over the integers,

and let [pn] denote the integer part of pn. Then

sup
x∈πn(R)

∣∣∣∣∣√n
bn([pn] + x

√
n)

Sn
− 1√

2πp2q
e
− x2

2p2q

∣∣∣∣∣ = O

(√
log n

n

)
(18)

as n → ∞.
As already mentioned, the proof of Theorem 3.2 is similar in spirit to the classical

Demoivre–Laplace calculation leading to the (local) central limit theorem for the
binomial distribution (see, for example, [4, Chap. VII, sec. 3]). Note that the error
on the right-hand side of (18) compares favorably with known estimates concerning
Gaussian convergence of general lattice distributions (see [1, Chap. 5]).

We break the proof of Theorem 3.2 into several steps. First, we characterize p in
a different way. Then, in Lemma 3.4 we describe the shape of the distribution bn(·)
and show that the mass peaks at a sequence {mn} that is within a fixed constant of
{np}, the asymptotic mean. Lemma 3.5 contains the main asymptotic estimate; we
renormalize by the mass at the maximum and define

fn(x) ≡ bn(mn + x
√
n)

bn(mn)
.(19)

The heart of the proof is a set of estimates on the sequence {fn(x)}. Finally, using
the asymptotic estimate, we prove Theorem 3.2 and sketch the proof of Theorem 3.1.
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Lemma 3.3. For

ψ(x) ≡ 1 − x

x
e

1−x
x and ξ ≡ BτeAτ ,

p is the unique solution of ξ = ψ(x) lying in (0, 1).
Proof. Previously, p was defined as 1/h′(λ0), where h(λ) = λ + A − Be−λτ and

λ0 is the unique positive root of h. It follows that (1− p)/p = h′(λ0)− 1 in which the
right-hand side may be expressed as either τ(λ0 + A) or Bτe−λ0τ . Thus,

1 − p

p
= Bτe−λ0τ = BτeAτe−τ(λ0+A) = ξe−(1−p)/p,

as desired. For the uniqueness, observe that ψ(x) < 0 for x < 0 and x > 1 and is
strictly decreasing on [0, 1] from +∞ at x = 0 to 0 at x = 1.

Lemma 3.4. For each n, the sequence {bn(k)} attains its maximum at a single
index, mn, and is increasing (decreasing) to the left (right) of that point, respectively.
Furthermore, there exists a constant D such that |mn − np| ≤ D.

Proof. Define the following approximates to ψ:

ψn(x) ≡
(

1 − x

x + 1/n

)(
1 +

1

nx

)n(1−x)

.

It may be verified that each ψn lies under ψ and that limn→∞ ψn = ψ holds pointwise.
Moreover, the ψn have the same shape as ψ in that they decrease strictly from +∞ to
0 as x ranges from 0 to 1. As such, there is a unique pn ∈ (0, 1) satisfying ξ = ψn(pn).

For k = 1, 2, . . . , n− 1,

bn(k + 1)

bn(k)
=

1

ξ

(
1 +

1

k

)n−k (
n− k

k + 1

)
=

1

ξ
ψn

(
k

n

)
,

and so, bn(k) is increasing on k ≤ npn and then decreasing on k ≥ npn. If we let
mn = [pnn], the smallest integer ≥ pnn, it is left to prove that p− pn = O(1/n).

First note that the properties of ψn and ψ imply that pn < p and limn→∞ pn = p.
The first follows from ψ(p) = ξ = ψn(pn) < ψ(pn) along with the strict decrease of ψ;
the second follows from the first and the convergence ψn → ψ. Now, set qn = 1− pn.
Since ξ = ψn(pn),

− log ξ + nqn log

(
1 +

1

npn

)
+ log

(
qn

pn + 1/n

)
= 0,

and using the fact that pn ≥ p/2 for all large enough n, an expansion yields

− log ξ +
qn
pn

+ log

(
qn
pn

)
= O

(
1

n

)
.(20)

Adding log ξ = logψ(p) = log(q/p) + (q/p) to (20) gives

p− pn
ppn

+ log

(
qn
q

p

pn

)
= O

(
1

n

)
.

The fact that p > pn (and so q < qn) implies that each term on the left-hand side is
strictly positive. Finally, ppn = O(1), showing that p − pn = O( 1

n ), and the proof is
complete.
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Lemma 3.5. There exists a constant C such that

sup
x∈πn(R)

∣∣∣fn(x) − e
− x2

2p2q

∣∣∣ ≤ C
1√
n
.(21)

Proof. From the definition of bn(k),

bn(mn +
√
nx) =

(mn +
√
nx)n−mn−

√
nx

(n−mn −
√
nx)!

ξ−(mn+
√
nx)(Bτ)n

for x ∈ πn([ 1−mn√
n

, n−mn√
n

]). In this range, after dividing by bn(mn) and taking the

case x > 0 we have

(22)

fn(x) =

(
1 +

√
nx

mn

)n−mn (n−mn)!

(n−mn −
√
nx)!

1

[ξ(mn +
√
nx)]

√
nx

=

[(
1 +

√
nx

mn

)n−mn

e−
√
nx q

p

]⎡⎣ ∏
0≤k≤

√
nx−1

n−mn − k

nq

⎤
⎦[ np

(mn +
√
nx)

]√nx

≡ un(x) × vn(x) × wn(x).

The second line follows after multiplying through by e−
√
nx q

p (ξ p
q )

√
nx = 1 and some

algebra. If x < 0 is desired, vn(x) should be replaced by
∏

1≤k≤
√
n|x|(

nq
n−mn+k ).

However, the asymptotic considerations are similar for either x > 0 or x < 0; we
assume x > 0 for the rest of the proof. We note that fn(x) = 0 for x outside the
interval [1−mn√

n
, n−mn√

n
], so we define un, vn, and wn to be zero there too.

We first estimate the quantities

|un(x) − e
− qx2

2p2 |, |vn(x) − e−
x2

2q |, and |wn(x) − e−
x2

p |

on the interval 0 ≤ x ≤ M
√

log n for suitable M . This interval is convenient for the
tail estimates below. Using the elementary inequalities a− a2 ≤ log(1 + a) ≤ a + a2

for |a| ≤ 1/2, on the range 0 ≤ x ≤ p
4n

1
2 we have that

logwn(x) ≤ −
√
nx log

(
1 +

x√
np

− D

n

)

≤ −
√
nx

(
x√
np

− D

n

)
+ 2

√
nx

((
x√
np

)2

+

(
D

n

)2
)

≤ −x2

p
+ 2

(
Dx√
n

+
x3

√
np2

)

and,

logwn(x) ≥ −x2

p
− 2

(
Dx√
n

+
x3

√
np2

)
,

for all large n. It follows that there exist constants c1, c2, c3, so that

|wn(x) − e−x2/p| ≤ |e−x2/p(e
c1√
n

(1+x3) − 1)| ≤ c2√
n

(1 + |x|3)e−x2/p ≤ c3√
n

(23)
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for all x in [0, n
1
6 ]. Of course, for n large [0,M

√
log n] is contained in both [0, p

4n
1
2 ]

and [0, n
1
6 ].

For vn(x),

log vn(x) ≤
∑

0≤k≤
√
nx−1

log

(
1 − k −D

nq

)
(24)

≤
∑

0≤k≤
√
nx−1

(
−k

nq
+

2k2

n2q2

)
+ 2

Dx√
n
≤ −x2

2q
+

2√
n

(
1 + Dx +

x3

q2

)
,

with a lower bound of the form

log vn(x) ≥ −x2

2q
− 2√

n

(
1 + Dx +

x3

q2

)
.(25)

For un(x), one expands to third order to find

−qx2

2p2
− q√

np
(2Dx + x2 + 8x3) ≤ log un(x) ≤ −qx2

2p2
+

q√
np

(2Dx + x2 + 8x3).(26)

Given the inequalities (24), (25), and (26), an argument similar to that for wn(x)

shows that both |vn(x) − e−x2/2q| and |un(x) − e−qx2/2p2 | are O(1/
√
n) for

x ∈ [0,M
√

log n]. It follows that the difference between fn(x) and e−x2/2p2q =

e−x2/pe−x2/2qe−qx2/2p2

is also of order 1/
√
n for those values of x.

Finally, we prove a global estimate

fn(x) ≤ c4e
−c5x

2 ≡ f∗(x) for xεR,(27)

which will give us control over the tail region x ≥ M
√

log n. As above, we give the
proof only for x > 0. First,

log un(x) = (n−mn) log

(
1 +

√
nx

mn

)
−

√
nqx

p
≤
(√

nx

mn

)(
np−mn

p

)
≤ 2D

p2
,

and the product defining vn(x) has only a finite number of terms greater than one
independent of n. Thus, |unvn| is bounded by a fixed constant for all n and x. To
handle wn, first notice that if n is large enough and x ≥ 2q

√
n, then

n−mn√
n

≤ q
√
n +

D√
n

≤ x,

so wn(x) = 0 by definition. Also, for n large enough and any x > 1, we know that
x√
np

− D
n > 0, so there exists a constant, c6, such that

log

(
1 +

x√
np

− D

n

)
≥ c6

(
x√
np

− D

n

)
for 1 ≤ x ≤ 2q

√
n.

It follows that

wn(x) ≤ e−c6x
2/pe2c6D

2q for x ≥ 1 and large n.(28)

By adjusting the multiplicative constant, this Gaussian bound extends to all of x > 0.
The bound (27) follows from boundedness of unvn and (28).
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To obtain the tail estimate, we choose M so that M2 min {c5, 1
2p2q} ≥ 1

2 , which

implies that both fn(x) and e−x2/2p2q will be of order 1/
√
n on x > M

√
log n. This

concludes the proof.

Proof of Theorem 3.2. We denote f(x) = e−x2/2p2q and define

f̃n(x) ≡ bn([np] +
√
nx)

bn(mn)
.

Since f̃n(x) = fn(x− 1√
n
(mn − [np])), Lemma 3.5 and the triangle inequality imply

∣∣∣f̃n(x) − f(x)
∣∣∣ ≤ C

1√
n

+ sup
|δ|≤D/

√
n

∣∣∣f(x) − f(x + δ)
∣∣∣ ≤ C1

1√
n
.(29)

Then,

√
2πp2q − Sn√

nbn(mn)
=

∫ ∞

−∞
f(x)dx−

∞∑
k=−∞

1√
n
fn

(
k√
n

)

=

[∫ ∞

−∞
f(x)dx−

∞∑
k=−∞

1√
n
f

(
k√
n

)]
+

1√
n

[ ∞∑
k=−∞

(
f

(
k√
n

)
− fn

(
k√
n

))]
.

Here the first term on the right-hand side is controlled by the error in the Riemann
sum, which is (1/

√
n)
∫∞
−∞ |f ′|. For the second term, recall that we know that |fn(·)−

f(·)| ≤ C/
√
n and the bound (27) both hold. Therefore,

∞∑
k=−∞

(
f

(
k√
n

)
− fn

(
k√
n

))
≤

∑
|k|≤

√

nn

[
C√
n

]
+

∑
|k|≥

√

nn

(c4e
−c5k

2/n + e−k2/2np2q)

≤ 2C
√
�n + c6

√
n

�n
e−c5
n ,

and taking as �n as an appropriate multiple of logn shows that

∣∣∣ Sn√
nbn(mn)

−
√

2πp2q
∣∣∣ ≤ C2

√
log n

n
.(30)

Putting together (29) and (30) completes the proof.

Finally, we conclude this section with the following proof.

Proof of Theorem 3.1. First consider t → ∞ along the special sequence tn = nτ .
For any a < b, define

In(a, b) =
[
cp(nτ) +

√
α(nτ) a, cp(nτ) +

√
α(nτ) b

]

= cτ
[
np +

√
p2qn a, np +

√
p2qn b

]
.

Noting that the individual masses of Πtn are positioned at a distance of cτ from each
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other, we see that

lim
n→∞

Πtn

[
In(a, b)

]
= lim

n→∞

∑
√

p2qna≤k−np≤
√

p2qnb

(
bn(k)

Sn

)

= lim
n→∞

1√
n

∑
x∈πn[

√
p2qa,

√
p2qb]

(√
n
bn([np] +

√
nx)

Sn

)

=

∫ √
p2qb

−
√

p2qa

e−x2/2p2q dx√
2πp2q

by the dominated convergence theorem. The pointwise convergence of the integrand
is the statement of Theorem 3.2, and the domination is (27). This proves the result for
the special sequence tn = nτ . The general statement as t → ∞ follows by interpolation
and the triangle inequality.

4. Comparison to the transport heat equation. In Theorem 3.1 we showed
that normalized Πt = Kt/Y (t) looks more and more like

Gt(dx) =
e−(x−cpt)2/2αt

√
2παt

dx

in the sense of probability measures as t → ∞. This suggests that solutions of the
hyperbolic equation with time delay (1) may look like solutions of the transport heat
equation (7) for t large. We will prove two theorems that express this idea. For the
first, Theorem 4.2, we shall consider the special case in which the initial data, f ,
is zero except at t = 0 and f(0)εL1(R). General initial conditions are considered in
Theorem 4.3.

For fεL1(R), define U(t) and V (t) by

U(t)f ≡ Kt ∗ f and V (t)f ≡ Gt ∗ f.

U(t) is a strongly continuous family of bounded operators and V (t) is a strongly
continuous semigroup on L1(R) for t ≥ 0; U(t)f satisfies (1) and V (t)f satisfies (7).
Furthermore, ||U(t)f ||1 ≤ Y (t)||f ||1 and ||V (t)f ||1 ≤ ||f ||1, with equality in both
cases if f is nonnegative. We shall see that U(t)/Y (t) and V (t) are “comparable” for
large t on the space scale cτ .

Since Kt/Y (t) is, for each t, a finite sum of point measures spaced at intervals
of length cτ , and Gt is smooth, we need a method of comparison that integrates
over intervals of length cτ . Let M(R) denote the finite Borel measures on R, and for
μεM(R) define

||μ||1,cτ ≡ sup
−cτ≤a≤0

∑
kεZ

|μ([a + kcτ, a + (k + 1)cτ))|.

Of course, any fεL1(R) corresponds to a finite Borel measure, and in that case

||f ||1,cτ ≡ sup
−cτ≤a≤0

∑
kεZ

∣∣∣∣∣
∫ a+(k+1)cτ

a+kcτ

f(x) dx

∣∣∣∣∣ .
We begin by collecting the properties of || · ||1,cτ .
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Proposition 4.1.

(a) || · ||1,cτ . is a seminorm on M(R) that satisfies ||μ||1,cτ ≤ ||μ||M(R).

(b) If μεM(R) and fεL1(R), then ||μ ∗ f ||1,cτ ≤ ||μ||1,cτ ||f ||1.
(c) If g(t) is a continuous function on [a, b] with values in L1(R), then

∥∥∥∥∥
∫ b

a

g(t) dt

∥∥∥∥∥
1,cτ

≤
∫ b

a

||g(t)||1,cτ dt.

Proof. The straightforward proof of (a) is omitted. Since g is a continuous
function, (c) is proven by using the sublinearity of the seminorm in the standard
proof for Riemann integrals. To prove (b),

||μ ∗ f ||1,cτ = sup
−cτ≤a≤0

∑
kεZ

|(μ ∗ f)([a + kcτ, a + (k + 1)cτ))|

= sup
−cτ≤a≤0

∑
kεZ

|
∫

R

μ([a + kcτ, a + (k + 1)cτ) − y)f(y) dy|

≤
∫

R

{
sup

−cτ≤a≤0

∑
kεZ

|μ([a + kcτ, a + (k + 1)cτ) − y)|
}

|f(y)| dy

= ||μ||1,cτ ||f ||1,

where we have used (μ ∗ f)(A) =
∫

R
μ(A− y)f(y)dy to obtain the second line (see [2,

p. 266]).

Theorem 4.2. Suppose fεL1(R). Then, there exists a constant C such that for
t large,

||U(t)f/Y (t) − V (t)f ||1,cτ ≤ C
log t√

t
||f ||1.(31)

Proof. According to Proposition 4.1(b),

||U(t)f/Y (t) − V (t)f ||1,cτ = ||(Kt/Y (t)) ∗ f − Gt ∗ f ||1,cτ
≤ ||(Kt/Y (t)) − Gt||1,cτ ||f ||1,

so we need only prove

||Kt/Y (t) − Gt||1,cτ ≤ C
log t√

t
(32)

for large t. As in section 3, we give the details for the special sequence tn =
nτ ; the proof for general t follows from the triangle inequality. We set g(x) =

e−x2/2p2q/
√

2πp2q and

gn(x) =
√
n
bn([np] +

√
nx)

Sn
.

First, we rewrite the left-hand side of (32) so that we can use the machinery and
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results of section 3:

||Ktn/Y (tn) −Gtn ||1,cτ

= sup
a∈(−cτ,0]

∑
k∈Z

∣∣∣∣∣bn(k)

Sn
− 1√

2παnτ

∫ a+(k+1)cτ

a+kcτ

e−(x−cpnτ)2/2αnτ dx

∣∣∣∣∣
= sup

a′∈(−1,0]

∑
k∈Z

∣∣∣∣∣bn(k)

Sn
− 1√

n

∫ a′+(k+1)

a′+k

g
(z − np√

n

)
dz

∣∣∣∣∣
= sup

a′′∈(− 1√
n
,0]

∑
k∈Z

∣∣∣∣∣ 1√
n
gn

(
k√
n

)
−
∫ a′′+ k+1√

n

a′′+ k√
n

g

(
y +

[np] − np√
n

)
dy

∣∣∣∣∣
≤ 1√

n

∑
k∈Z

∣∣∣∣gn
(

k√
n

)
− g

(
k√
n

)∣∣∣∣
+
∑
k∈Z

∫ k+1√
n

k√
n

⎛
⎝ sup

a′′∈(− 1√
n
,0]

∣∣∣∣g
(

k√
n

)
− g

(
y + a′′ +

[np] − np√
n

)∣∣∣∣
⎞
⎠ dy

≡ An + Bn.

To estimate An, recall from Theorem 3.2 that |gn( k√
n
) − g( k√

n
)| ≤ C1(log n

n )
1
2

independently of k. Also the bound (27) for fn translates to gn(x) ≤ c7e
−c5x

2

since√
nbn(mn)/Sn approaches a limit (see the proof of Theorem 3.2). It follows that

An ≤ 1√
n

∑
|k|≤M

√
n logn

C1

√
log n

n
+

1√
n

∑
|k|≥M

√
n logn

(
c6e

−c5k
2/n +g

(
k√
n

))
=O

(
log n√

n

)

by the choice of M . The estimate for Bn follows the same strategy. The function g is
globally Lipschitz, and so

sup
|c|≤ 2√

n

∣∣∣∣g
(

k√
n

)
− g

(
k√
n

+ c

)∣∣∣∣ ≤ C2
1√
n
,

for all k. Using this for |k| ≤ M
√
n log n and the decay of g for larger k, we find

Bn ≤
∑

|k|≤M
√

n logn

1√
n
· C2√

n
+

∑
|k|≥M

√
n logn

1√
n
· 2g

(
k − 2√

n

)
= O

(√
log n

n

)
.

This proves (32) and thus completes the proof of (31).
We now consider the case in which f , the initial data for (1), is a continuous

L1(R)-valued function of t for −τ ≤ t ≤ 0. Define

u(t) = U(t)f(0) + B

∫ 0

−τ

U(t− θ − τ)f(θ) dθ

v(t) = Y (t)V (t)f(0) + B

∫ 0

−τ

Y (t− θ − τ)V (t− θ − τ)f(θ) dθ

y(t) = Y (t)||f(0)||1 + B

∫ 0

−τ

Y (t− θ − τ)||f(θ)||1 dθ;
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u(t) is, of course, the solution of (1) with initial condition (2). Notice that v(t) is not
a solution of (7) but is a weighted average of solutions to (7); it will be clear from
the proof why this weighted average is natural. y(t) is the solution of (6) with initial
data equal to ||f(t)||1 for −τ ≤ t ≤ 0.

Theorem 4.3. Suppose that f is a continuous L1(R)-valued function of t for
−τ ≤ t ≤ 0, and let u(t), v(t), and y(t) be defined as above. Then, there is a constant
C1 so that for t large enough,

||u(t) − v(t)||1,cτ ≤ C1
log t√

t
y(t).(33)

Proof. We subtract v(t) from u(t) and apply the seminorm || · ||1,cτ . Using
Proposition 4.1(c) and estimate (32), we find

||u(t) − v(t)||1,cτ ≤ Y (t)C
log t√

t
||f(0)||1

+ B

∫ 0

−τ

Y (t− θ − τ)C
log (t− θ − τ)√

t− θ − τ
||f(θ)||1 dθ

≤ C1
log t√

t

{
Y (t)||f(0)||1 + B

∫ 0

−τ

Y (t− θ − τ)||f(θ)||1 dθ
}

for large t, which proves (33).
Note that if f(t) is a nonnegative function for all tε[−τ, 0], then y(t) = ||u(t)||1 =

||v(t)||1, so (33) estimates the relative error.
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VARIATIONAL PROPERTIES OF UNBOUNDED ORDER
PARAMETERS∗

BO LI†

Abstract. Order parameters in physical and biological systems can sometimes become un-
bounded as the size of an underlying system increases. It is proposed that such a quantity be
modeled as a minimizer of the energy functional

Iε(u) = −
∫ [

ε2

2
|∇u|2 − 1

2
log(1 + |u|2)

]
dx,

where u is constrained by a side condition, and ε > 0 is a parameter that is inversely proportional
to the linear size of the system. It is shown that a minimizer of Iε exists; the minimum value of
Iε scales as log ε; and both the L2 and H1 norms of any minimizer of Iε are of the order O(1/ε),
indicating the unboundedness of the order parameter. It is also shown that the renormalized energy
functionals

Jε(v) = Iε
(v
ε

)
− log ε

Γ-converge to the functional

J(v) = −
∫ (

1

2
|∇v|2 − log |v|

)
dx.

Minimizers of this Γ-limit for scalar order parameters with the Dirichlet boundary condition are well
characterized.

Key words. order parameters, variational models, energy asymptotics, renormalized energy,
Γ-convergence

AMS subject classifications. 49J45, 49S05, 74G65

DOI. 10.1137/040621314

1. Introduction. Order parameters in physical and biological systems, such as
population, concentration, volume fractions, magnetization vectors, directors of liquid
crystals, the slope of surface height profile of thin films, etc., are mathematically
scalar or vector-valued functions, or gradients of functions. An order parameter can
sometimes grow unbounded as the size of an underlying system increases. An example
of such an unbounded order parameter is the slope of surface of an epitaxially growing
thin film in some experimental situations [5, 12, 20].

We propose to model unbounded order parameters as possible minimizers or low
energy configurations of the effective free energy functional

Î(û) = −
∫

Ω̂

[
α

2
|∇û|2 − β

2
log

(
1 + |û|2

)]
dx̂,(1.1)

where Ω̂ ⊂ R
n for some integer n ≥ 1 is a bounded domain, α > 0 and β > 0 are

two material constants, and the functions û : Ω̂ → R
m with some integer m ≥ 1

are constrained by a boundary condition or some other side conditions. Here and

∗Received by the editors December 22, 2004; accepted for publication (in revised form) August
31, 2005; published electronically March 31, 2006. This work was partially supported by the NSF
through grant DMS-0451466.

http://www.siam.org/journals/sima/38-1/62131.html
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below, we denote −
∫
E

= 1
|E|

∫
E

for a Lebesgue measurable set E ⊆ R
n with a finite

and nonzero Lebesgue measure |E|. For any a = (a1, . . . , am) ∈ R
m, we denote |a| =√∑m

i=1 a
2
i . For a differentiable function u = (u1, . . . , um) : D → R

m with D ⊂ R
n

an open set, we define ∇u : D → R
m×n to be the m× n-matrix-valued function with

∂xjui(x) the (i, j)-entry of ∇u(x) and denote |∇u(x)| =
√∑m

i=1

∑n
j=1 |∂xjui(x)|2 for

x = (x1, . . . , xn) ∈ D.

In the special case with û = ∇ĥ for some scalar function ĥ defined on a two-
dimensional domain, the functional (1.1) happens to be the Liapunov functional of
the evolution equation

∂ĥ

∂t
= −αΔ2ĥ− β∇ ·

(
∇ĥ

1 + |∇ĥ|2

)
,(1.2)

i.e., this equation is the gradient-flow induced by the functional (1.1). Equation (1.2)
was first proposed phenomenologically in [12] to model the surface height profile

ĥ, measured in a comoving frame, in epitaxial growth of thin films with a strong
asymmetry of the adatom (adsorbed atom) attachment and detachment from lower
and upper terraces to atomic step edges due to the existence of an energy barrier
[4, 17, 18]. Numerical and analytical studies based on such a model have shown

that the slope of the surface, |∇ĥ|, which is the order parameter in this case, grows
unbounded, agreeing with experiments [10, 11, 12, 13, 15, 16, 21].

It is interesting to compare the energy functional (1.1) with a usual Ginzburg–
Landau-type energy functional that has the term (|û|2 − 1)2 or alike, instead of the
negative logarithmic term in (1.1). Important examples of the latter include the
Ginzburg–Landau energy for superconductors [3, 9] and the Cahn–Hilliard energy for
phase separation [2]; both have been much studied. It is obvious that an order param-
eter modeled by a Ginzburg–Landau-type energy functional stays always bounded. If
|û| � 1, then by the Taylor expansion,

− log(1 + |û|2) = −|û|2 +
1

2
|û|4 + O(|û|6) =

1

2
(|û|2 − 1)2 − 1

2
+ O(|û|6).

Thus, both types of energy functionals have approximately the same energy landscape
for admissible functions with very small magnitude. As a consequence, the zero
function as a critical point is unstable in both types of models.

Intuitively, if the energy Î(û) of an admissible function û : Ω̂ → R
m is very small,

then the magnitude |û| of the function must be very large in some norm. But, the
boundary condition (or other side conditions) and the presence of the gradient term
in the energy Î(û) prevent |û| from being too large. These competing mechanisms
determine the magnitude of such a low energy function to be finite but to grow
unbounded as the system size increases. Our primary goals of this work are to quantify
such unboundedness and to characterize the asymptotic behavior of energy functionals
for systems of large size.

We shall not, however, directly work with the functional Î defined in (1.1). Rather,
we shall first rescale the energy functional. The idea is clear for the special case that
Ω̂ = (0, L̂)n, a cube in R

n of linear size L̂ > 0: letting u(x) = û(x̂) with x = L̂−1x̂,
one obtains that Iε(u) = βÎ(û), where

Iε(u) = −
∫

Ω

[
ε2

2
|∇u|2 − 1

2
log(1 + |u|2)

]
dx,(1.3)
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ε =
√
α/βL̂−1, and Ω is the unit cube of R

n. Now, for a general bounded domain Ω̂,

one can fix some point x̂0 ∈ Ω̂ and apply the change of variable x̂ → x = L̂−1(x̂− x̂0)

with L̂ being the diameter of Ω̂. One again obtains an equivalent variational problem
with the energy functional given by (1.3), in which ε is inversely proportional to L̂

and Ω ⊂ R
n is a fixed bounded domain whose diameter is independent of L̂.

Depending on how an underlying physical and biological system is modeled math-
ematically, the set of admissible functions, to be denoted by H(Ω,Rm), for the energy
functional Iε can be defined differently. In this work, we assume that Ω ⊂ R

n in the
definition of Iε is a bounded domain with a Lipschitz-continuous boundary ∂Ω, and
define

H(Ω,Rm) = H1
0 (Ω,Rm),(1.4)

or

H(Ω,Rm) =

{
u ∈ H1(Ω,Rm) : −

∫
Ω

u dx = 0

}
,(1.5)

where H1(Ω,Rm) and H1
0 (Ω,Rm) are the spaces of vector-valued functions whose

components are in the usual Sobolev spaces of scalar functions H1(Ω) and H1
0 (Ω),

respectively [1, 8]. In both cases, H(Ω,Rm) is a closed subspace of the Hilbert
space H1(Ω,Rm) that is equipped with the norm ‖u‖ =

√
‖u‖2 + ‖∇u‖2 for all

u ∈ H1(Ω,Rm), where ‖ · ‖ denotes the L2(Ω)-norm.
Our major results are as follows:
(1) For each ε > 0, there exists a minimizer of Iε : H(Ω,Rm) → R. Moreover, the

minimum energy scales as log ε, and both the L2 and H1 norms of any minimizer of
Iε : H(Ω,Rm) → R are of the order O(1/ε), cf. Theorem 2.1;

(2) The renormalized energy functionals Jε : H(Ω,Rm) → R, defined by

Jε(v) = Iε

(v
ε

)
− log ε ∀v ∈ H(Ω,Rm),(1.6)

Γ-converge to the energy functional J : H(Ω,Rm) → R ∪ {∞} defined by

J(v) = −
∫

Ω

(
1

2
|∇v| − log |v|

)
dx, v ∈ H(Ω,Rm),(1.7)

cf. Theorem 3.2. Moreover, if vε ∈ H(Ω,Rm) for ε > 0 is a minimizer of Jε :
H(Ω,Rm) → R ∪ {∞}, then there exists a subsequence of {vε}ε>0 that converges
strongly in H(Ω,Rm) to a minimizer of J : H(Ω,Rm) → R ∪ {∞}, cf. Theorem 3.3;

(3) In the case of the scalar Dirichlet boundary-value problem, there exists a
unique v+ ∈ H1

0 (Ω) such that v+ is smooth and positive in Ω, and that v+ and −v+

are the only minimizers of J : H1
0 (Ω) → R ∪ {∞}, cf. Theorem 4.1.

The results in (1) and (2) hold also true if the set of admissible functions is
{u ∈ H1

0 (Ω,Rm) : −
∫
Ω
u dx = 0 }, or if Ω is an open cube in R

n with its faces parallel
to the coordinate planes and the corresponding set of admissible functions is {u ∈
H1

per(Ω,Rm) : −
∫
Ω
u dx = 0 }, where H1

per(Ω,Rm) is the closure in H1(Ω,Rm) of the

set of all C∞, Ω-periodical functions from R
n to R

m.
The heuristics behind the first part of our results is well illustrated in our previous

work [13] through the calculation of trial functions with low energy using an ad hoc
ansatz and the calculation of critical points of the energy functional using matched
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asymptotics, with both calculations being done in a one-dimensional setting. Our
results in (1) generalize those in [13] for more complicated domains and include the
optimal lower bound as well as the precise asymptotics of the minimum energy.

Our results do not directly apply to continuum models, such as the Liapunov
functional of the equation (1.2), of the epitaxial growth with a significant attachment-
detachment asymmetry of adatoms. This is because the set of admissible functions
û of the functional (1.1) is larger than the set of gradient vector fields. However,
the approach developed in this work can be applied to the study of such continuum
models and to obtain similar results. In particular, the large-system-size Γ-limit of
the rescaled Liapunov functionals—the functional (1.3) with u replaced by ∇h for the
surface height function h that models a finite energy barrier—is precisely Villain’s
model for an infinite energy barrier [21].

Potentially, the positive solution to the scalar Dirichlet boundary-value problem
for the limiting functional can be a good alternative to the distance function in the
reinitialization process of the widely used level-set numerical method [14, 19]. We will
address these issues of application in separate works.

In section 2, we present and prove the results for the energy functionals Iε :
H(Ω,Rm) → R. In section 3, we prove the Γ-convergence of the renormalized energies
Jε : H(Ω,Rm) → R to the functional J : H(Ω,R) → R∪{∞}. Finally, in section 4, we
characterize solutions to the scalar Dirichlet problem of infimizing the limiting energy
defined in (1.7).

2. Energy asymptotics and bounds of energy minimizers. We consider
the energy functionals Iε : H(Ω,Rm) → R, defined in (1.3) for a general domain Ω,
only for ε ∈ (0, 1], though many of our results hold true also for any ε > 0. For

convenience, we denote |||u||| =
√

−
∫
Ω
|u(x)|2dx = (1/

√
|Ω|)‖u‖ for all u ∈ L2(Ω).

The following is our main result in this section:
Theorem 2.1. Let Ω ⊂ R

n be a bounded domain with a Lipschitz-continuous
boundary ∂Ω. Let H(Ω,Rm) be defined as in (1.4) or (1.5).

(1) For each ε ∈ (0, 1], there exists uε ∈ H(Ω,Rm) such that

Iε(uε) = min
u∈H(Ω,Rm)

Iε(u).(2.1)

(2) Let με = minu∈H(Ω,Rm) Iε(u). There exist constants C1 and C2 that depend
only on Ω such that

C1 + log ε ≤ με ≤ C2 + log ε ∀ε ∈ (0, 1].(2.2)

Moreover, με − log ε increases as ε ∈ (0, 1] decreases, ν := sup0<ε≤1(με − log ε) is
finite, and

lim
ε→0+

(με − log ε) = ν.(2.3)

(3) There exist constants Cj > 0 (j = 3, 4, 5, 6) and ε0 ∈ (0, 1], all depending only
on Ω, such that for any minimizer uε ∈ H(Ω,Rm) of Iε : H(Ω,Rm) → R and for all
ε ∈ (0, ε0],

C3

ε
≤ |||uε||| ≤

C4

ε
,(2.4)

C5

ε
≤ |||∇uε||| ≤

C6

ε
.(2.5)
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Fig. 2.2.1.

To prove this theorem, we need some preparations. We recall for any compact
set S ⊂ R

n that the distance function dist (·, S) : R
n → R, defined by

dist (x, S) = inf
y∈S

|x− y| = min
y∈S

|x− y| ∀x ∈ R
n,

is a Lipschitz-continuous function:

|dist (x, S) − dist (y, S)| ≤ |x− y| ∀x, y ∈ R
n.(2.6)

Moreover, it is differentiable almost everywhere in R
n, and

|∇dist (x, S)| = 1 a.e. x ∈ R
n,(2.7)

cf. the proof of Lemma 3.2.34 in [7].
Lemma 2.1. If Ω ∈ R

n is a bounded domain with a Lipschitz-continuous boundary
∂Ω, then there exist constants s0 > 0 and C0 > 0, both depending only on Ω, such
that

|{x ∈ Ω : dist (x, ∂Ω) ≤ s}| ≤ C0s ∀s ∈ (0, s0].

Proof. Since ∂Ω is Lipschitz-continuous, there exist finitely many Lipschitz-
continuous functions φ(i) : Q(i) → R (i = 1, . . . ,m for some integer m ≥ 1) in

local Cartesian coordinates with each Q(i) = Πn−1
j=1 [−α

(i)
j , α

(i)
j ] for some α

(i)
j > 0

(1 ≤ i ≤ m and 1 ≤ j ≤ n − 1) a cube in R
n−1, that satisfy the following properties

(cf. Figure 2.2.1):

(1) For each i with 1 ≤ i ≤ m, the local Cartesian coordinates ξ(i) = (ξ
(i)
1 , · · · , ξ(i)

n )
are obtained by rotating and translating the original Cartesian coordinates x =
(x1, . . . , xn);

(2) There exist αn > 0 and βn > 0 such that for each cube G(i) := Q(i) ×
[−αn, αn] ⊂ R

n (1 ≤ i ≤ m),

Γ(i) := G(i) ∩ ∂Ω =
{(

ξ̂(i), ξ(i)
n

)
∈ R

n : ξ̂(i) ∈ Q(i), ξ(i)
n = φ(i)

(
ξ̂(i)

)}
,
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where ξ̂(i) =
(
ξ
(i)
1 , . . . , ξ

(i)
n−1

)
, and

U
(i)
+ :=

{(
ξ̂(i),ξ(i)

n

)
∈ R

n : ξ̂(i) ∈ Q(i), φ(i)
(
ξ̂(i)

)
< ξ(i)

n < φ(i)
(
ξ̂(i)

)
+βn

}
⊂ G(i) ∩ Ω

c
,

U
(i)
− :=

{(
ξ̂(i),ξ(i)

n

)
∈ R

n : ξ̂(i) ∈ Q(i), φ(i)
(
ξ̂(i)

)
− βn < ξ(i)

n < φ(i)
(
ξ̂(i)

)}
⊂ G(i) ∩ Ω;

(3) The union ∪m
i=1G

(i) covers a neighborhood of the compact set ∂Ω, and ∂Ω =
∪m
i=1Γi.

Now, since the distance function dist(·, ∂Ω) : Ω → R is Lipschitz-continuous and
vanishes only on the boundary ∂Ω which is compact, by properties (2) and (3), there
exists a constant s1 = s1(Ω) > 0 such that

{x ∈ Ω : dist (x, ∂Ω) ≤ s1} ⊆
m⋃
i=1

U
(i)
− .

By this and property (3), there exist cubes P (i) in R
n−1 with P (i) ⊆ Q(i) (1 ≤ i ≤ m)

and a constant s0 = s0(Ω) with 0 < s0 ≤ s1 that satisfy the following properties:
(4) For each i (1 ≤ i ≤ m),

{x ∈ Ω : dist (x, ∂Ω) ≤ s0} ⊆
m⋃
i=1

V (i),

where

V (i) =
{(

ξ̂(i), ξ(i)
n

)
∈ R

n : ξ̂(i) ∈ P̂ (i), φ(i)
(
ξ̂(i)

)
− βn < ξ(i)

n < φ(i)
(
ξ̂(i)

)}
⊆ U

(i)
− ;

(5) Let x ∈ Ω and x′ ∈ ∂Ω be such that dist (x, ∂Ω) = |x − x′| ≤ s0. If x ∈ V (i)

for some i (1 ≤ i ≤ m), then x′ ∈ Γi = G(i) ∩ ∂Ω.
Fix s ∈ R with 0 < s ≤ s0. Let x ∈ Ω be such that dist (x, ∂Ω) ≤ s. By property

(4), we have x ∈ V (i) for some i with 1 ≤ i ≤ m, cf. Figure 2.1. Let ξ(i) = (ξ̂(i), ξ
(i)
n )

be the local coordinates of x in which ξ̂(i) ∈ P (i) ⊆ Q(i). Let the point y ∈ R
n

have the local coordinates (ξ̂(i), φ(i)(ξ̂(i))). Then, by property (2), y ∈ Γ(i) ⊂ ∂Ω, cf.
Figure 2.1. Let z ∈ ∂Ω be such that dist (x, ∂Ω) = |x − z| ≤ s, cf. Figure 2.1. By

property (5), z ∈ Γ(i) = G(i) ∩ ∂Ω. Thus, there exists (η̂(i), η
(i)
n ) ∈ Γ(i) = G(i) ∩ ∂Ω

such that η̂(i) ∈ Q(i), (η̂(i), η
(i)
n ) = (η̂(i), φ(i)(η̂(i))) are the local coordinates of z, and

dist (x, ∂Ω) = |x− z| =
∣∣∣(ξ̂(i), ξ(i)

n

)
−
(
η̂(i), φ(i)

(
η̂(i)

))∣∣∣ ≤ s.(2.8)

This implies that ∣∣∣ξ̂(i) − η̂(i)
∣∣∣ ≤ s.(2.9)

Denoting by Li > 0 the Lipschitz constant of the Lipschitz-continuous function φ(i) :
Q(i) → R, we have by (2.8) and (2.9) that∣∣∣φ(i)

(
ξ̂(i)

)
− ξ(i)

n

∣∣∣ = |x− y|

≤ |x− z| + |y − z|

≤ s +
∣∣∣ξ̂(i) − η̂(i)

∣∣∣ +
∣∣∣φ(i)

(
ξ̂(i)

)
− φ(i)

(
η̂(i)

)∣∣∣
≤ s + s + Li

∣∣∣ξ̂(i) − η̂(i)
∣∣∣ ≤ (2 + Li)s.
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The arbitrariness of x now implies that

{x ∈ Ω : dist (x, ∂Ω) ≤ s}

⊆
m⋃
i=1

{(
ξ̂(i), ξ(i)

n

)
: ξ̂(i) ∈ Q̂(i), φ(i)(ξ̂(i)) − (2 + Li)s ≤ ξ(i)

n ≤ φ(i)
(
ξ̂(i)

)}
.

Consequently, we have

|{x ∈ Ω : dist (x, ∂Ω) ≤ s}|

≤
m∑
i=1

∫
Q̂(i)

[
φ(i)

(
ξ̂(i)

)
−
(
φ(i)

(
ξ̂(i)

)
− (2 + Li)s

)]
dξ̂(i)

≤ C0s,

where C0 =
∑m

i=1(2 + Li)|Q(i)| > 0, depending only on Ω, and |Q(i)| is the (n − 1)-
dimensional volume of Q(i) (1 ≤ i ≤ m).

Lemma 2.2. Given a bounded domain Ω ⊂ R
n that has a Lipschitz-continuous

boundary ∂Ω, there exists a Lipschitz-continuous function f : Ω → R such that

f = 0 on ∂Ω,

∫
Ω

f dx = 0, and −∞ <

∫
Ω

log |f | dx < ∞.

Proof. Let x0 ∈ Ω and ρ > 0 be such that the ball B := B(x0, ρ) = {x ∈ R
n :

|x − x0| < ρ} is completely contained in Ω, i.e., B ⊂ Ω. For any x ∈ Ω, let d(x) be
the distance from x to the compact set ∂Ω ∪ ∂B and define f : Ω → R by

f(x) =

{
d(x) if x ∈ Ω \B,
−γd(x) if x ∈ B,

(2.10)

where γ =
∫
Ω\B d(x) dx/

∫
B
d(x) dx > 0. Clearly, f : Ω → R is continuous, f = 0 on

∂Ω, and
∫
Ω
f(x) dx = 0.

We show now that f : Ω → R is Lipschitz-continuous. Fix x, y ∈ Ω. If both x
and y are in B or both x and y are in Ω \B, then we have by (2.6) and (2.10) that

|f(x) − f(y)| ≤ max(1, γ)|x− y| ≤ (1 + γ)|x− y|.(2.11)

Assume now x ∈ B but y ∈ Ω \ B. Choose δ ∈ R so that 0 < δ < 1, the ball
B1 := B(x0, ρ + δ) ⊂ Ω, and

0 < 2δ < dist (∂Ω, B) := inf
x′∈∂Ω,y′∈B

|x′ − y′|.(2.12)

If y ∈ Ω \B1, then |x− y| ≥ δ. Hence,

|f(x) − f(y)| ≤
2 maxz∈Ω |f(z)|

δ
|x− y|.(2.13)

If y ∈ B1 \B, then

d(y) = dist (y, ∂B) ≤ |x− y|.

Also,

d(x) = dist (x, ∂B) ≤ |x− y|.
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Thus,

|f(x) − f(y)| = γd(x) + d(y) ≤ (1 + γ)|x− y|.(2.14)

Setting

L = max

(
1 + γ,

2 maxz∈Ω |f(z)|
δ

)
> 0,

we obtain from (2.11), (2.13), and (2.14) that

|f(x) − f(y)| ≤ L|x− y|.

Since x, y ∈ Ω are arbitrary, the function f : Ω → R is Lipschitz-continuous.

We show finally that −∞ <
∫
Ω

log |f | dx < ∞. Since |f | is bounded from above

on Ω, ∫
Ω

log |f | dx =

∫
{x∈Ω:|f(x)|<1}

log |f | dx +

∫
{x∈Ω:|f(x)|≥1}

log |f | dx

≤
∫
{x∈Ω:|f(x)|≥1}

log |f | dx < ∞.

So, we need only to show that∫
Ω

log |f | dx =

∫
B1

log |f | dx +

∫
Ω\B1

log |f | dx > −∞,(2.15)

where B1 = B(x0, ρ+ δ) ⊂ Ω is the same ball used before and δ > 0 is given in (2.12).

Using (2.10) and (2.12), the polar coordinates, and a change of variables, we
obtain∫

B1

log |f | dx =

∫
B

log(γd(x)) dx +

∫
B1\B

log d(x) dx

= |B| log γ +

∫
B

log |ρ− |x− x0| | dx +

∫
B1\B

log |ρ− |x− x0| | dx

= |B| log γ + Sn

∫ ρ

0

rn−1 log |ρ− r| dr + Sn

∫ ρ+δ

ρ

rn−1 log |ρ− r| dr

> −∞,(2.16)

where Sn is the surface area of the unit ball in R
n.

Observe that for x ∈ Ω \ B1 with d(x) < δ, we have by (2.12) that in fact
d(x) = dist (x, ∂Ω). Thus, by Lemma 2.1, there exists an integer N ≥ 1 and a constant
C0 > 0 such that |ωj | ≤ C0δ2

−j (j = N, . . . ), where

ωj := {x ∈ Ω \B1 : 2−(j+1)δ < d(x) ≤ 2−jδ}
⊂ {x ∈ Ω : dist (x, ∂Ω) ≤ 2−jδ}, j = 0, . . . .

Setting Eδ = {x ∈ Ω \B1 : d(x) > δ}, we see that Ω \B1 is the union of the pairwise
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disjoint sets Eδ and ωj (j = 0, . . . ). Therefore, by the fact that 0 < δ < 1, we obtain

∫
Ω\B1

log |f | dx =

∫
Eδ

log d(x) dx +

∞∑
j=0

∫
ωj

log d(x) dx

≥ |Ω \B1| log δ +

N∑
j=0

|ωj | log
(
2−(j+1)δ

)
+

∞∑
j=N+1

|ωj | log
(
2−(j+1)δ

)

≥ |Ω \B1| log δ + |Ω \B1| log
(
2−(N+1)δ

)

+ C0δ

∞∑
j=N+1

2−j log
(
2−(j+1)δ

)

= |Ω \B1| log
(
2−(N+1)δ2

)
+ C0δ

∞∑
j=N+1

2−j [log δ − (j + 1) log 2]

> −∞.(2.17)

Finally, (2.15) follows from (2.16) and (2.17).
We are now ready to prove our main result in this section.

Proof of Theorem 2.1.
(1) Fix ε ∈ (0, 1]. Recall the Poincaré inequality [1, 6, 8]

‖u‖ ≤ C0‖∇u‖ ∀u ∈ H(Ω,Rm),(2.18)

where C0 > 0 is a constant depending only on Ω. Since (1/s) log(1+s) → 0 as s → ∞,
there exists Rε = Rε(Ω) > 0 such that

log(1 + s) ≤ ε2s

2C2
0

∀s ≥ Rε.(2.19)

By (2.19) and (2.18), we have

Iε(u) =
ε2

2
−
∫

Ω

|∇u|2dx− 1

2|Ω|

∫
{x∈Ω:|u|2≤Rε}

log(1 + |u|2) dx

− 1

2|Ω|

∫
{x∈Ω:|u|2>Rε}

log(1 + |u|2) dx

≥ ε2

2
−
∫

Ω

|∇u|2dx− 1

2|Ω|

∫
{x∈Ω:|u|2≤Rε}

log(1 + Rε) dx

− ε2

4C2
0 |Ω|

∫
{x∈Ω:|u|2>Rε}

|u|2dx

≥ ε2

2
−
∫

Ω

|∇u|2dx− 1

2
log(1 + Rε) −

ε2

4C2
0

−
∫

Ω

|u|2dx

≥ ε2

4
−
∫

Ω

|∇u|2dx− 1

2
log(1 + Rε) ∀u ∈ H(Ω,Rm).(2.20)

Set με = infu∈H(Ω,Rm) Iε(u). By (2.20), με > −∞. Let {uj}∞j=1 be an infimizing
sequence of Iε : H(Ω,Rm) → R. It follows from (2.20) and (2.18) that {uj}∞j=1

is bounded in H(Ω,Rm). Thus, up to a subsequence, uj ⇀ uε in H1(Ω,Rm) and
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uj → uε in L2(Ω,Rm) as j → ∞ for some uε ∈ H1(Ω,Rm), where the symbol
⇀ and → denote the weak and strong convergence, respectively. We have in fact
uε ∈ H(Ω,Rm), since H(Ω,Rm) is a closed subspace, hence a weakly closed subset, of
H1(Ω,Rm).

For each j ≥ 1, |∇uj |2 + |∇uε|2 ≥ 2∇uj ·∇uε in Ω, where the matrix dot-product
is defined by A ·B =

∑m
i=1

∑n
j=1 AijBij for all A = (Aij), B = (Bij) ∈ R

m×n. Thus,

by the weak convergence uj ⇀ uε in H1(Ω,Rm), we have

lim inf
j→∞

−
∫

Ω

|∇uj |2dx ≥ lim inf
j→∞

[
2−
∫

Ω

∇uj · ∇uε dx−−
∫

Ω

|∇uε|2dx
]

= −
∫

Ω

|∇uε|2dx.

(2.21)

By the fact that log(1 + s) ≤ s for all s ≥ 0 and the Cauchy–Schwarz inequality, we
imply from the strong convergence uj → uε in L2(Ω,Rm) that∣∣∣∣−

∫
Ω

[
log(1 + |uj |2) − log(1 + |uε|2)

]
dx

∣∣∣∣ =

∣∣∣∣−
∫

Ω

log

(
1 +

|uj |2 − |uε|2
1 + |uε|2

)
dx

∣∣∣∣
≤ −
∫

Ω

log

(
1 +

∣∣∣∣ |uj |2 − |uε|2
1 + |uε|2

∣∣∣∣
)
dx ≤ −

∫
Ω

∣∣∣∣ |uj |2 − |uε|2
1 + |uε|2

∣∣∣∣ dx
≤ (|||uj ||| + |||uε|||)|||uj − uε||| → 0 as j → ∞.(2.22)

This and (2.21) thus imply that

με = lim inf
j→∞

Iε(uj) ≥ −
∫

Ω

[
ε2

2
|∇uε|2 −

1

2
log(1 + |uε|2)

]
dx = Iε(uε) ≥ με,

leading to (2.1).
(2) Let uε ∈ H(Ω,Rm) be a minimizer of Iε : H(Ω,Rm) → R. The first variation

of Iε at uε then vanishes:

δIε(uε)(v) = −
∫

Ω

(
ε2∇uε · ∇v − uεv

1 + u2
ε

)
dx = 0 ∀v ∈ H(Ω,Rm).

Choosing v = uε, we obtain that

−
∫

Ω

|∇uε|2 ≤ 1

ε2
.(2.23)

This and the Poincaré inequality (2.18) imply that

−
∫

Ω

|uε|2 ≤ C2
0

ε2
.(2.24)

Since the function − log(·) is convex, Jensen’s inequality and (2.24) then imply that

με = Iε(uε) ≥ −1

2
−
∫

Ω

log(1 + |uε|2) dx ≥ −1

2
log(1 + |||uε|||2)

≥ −1

2
log

(
1 +

C2
0

ε2

)
= −1

2
log

(
ε2 + C2

0

)
+ log ε ≥ C1 + log ε,(2.25)

where C1 = −(1/2) log(1 + C2
0 ).
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Let f : Ω → R be the Lipschitz-continuous function constructed in Lemma 2.2.
Let e1 = (1, 0, . . . , 0) ∈ R

m be the unit vector along the x1-axis. Define ûε = (f/ε)e1.
Clearly, ûε ∈ H(Ω,Rm). Moreover,

με ≤ Iε(ûε) = −
∫

Ω

[
1

2
|∇f |2 − 1

2
log

(
1 +

|f |2
ε2

)]
dx ≤ C2 + log ε,(2.26)

where

C2 := −
∫

Ω

(
1

2
|∇f |2 − log |f |

)
dx

is finite by Lemma 2.2. Now, (2.2) follows from (2.25) and (2.26).
Recall for each ε ∈ (0, 1] that the renormalized energy functional, defined in (1.6),

is

Jε(v) = Iε

(v
ε

)
− log ε

= −
∫

Ω

[
1

2
|∇v|2 − 1

2
log

(
ε2 + |v|2

)]
dx ∀v ∈ H(Ω,Rm),(2.27)

in which the variable v is scaled from the variable v/ε of the energy Iε. It follows
from (1) that for each ε ∈ (0, 1] there exists a minimizer of Jε : H(Ω,Rm) → R and
the minimum value of Jε over H(Ω,Rm) is

νε := min
v∈H(Ω,Rm)

Jε(v) = με − log ε.(2.28)

Consequently, by (2.2), {νε}0<ε≤1 is bounded. Moreover, for each fixed v ∈ H(Ω,Rm),
we have by (2.27) that Jε(v) increases as ε ∈ (0, 1] decreases. Therefore, νε increases
as ε ∈ (0, 1] decreases. This and the boundedness of {νε}0<ε≤1 imply that ν ∈ R as
defined in (2) of Theorem 2.1 is finite and that (2.3) holds true.

(3) Let again uε ∈ H(Ω,Rm) be a minimizer of Iε : H(Ω,Rm) → R. By (2.24)
and (2.23), the upper bound in (2.4) and that in (2.5) hold true with C4 = C0 and
C6 = 1, respectively, for all ε ∈ (0, 1]. By (2.2) and Jensen’s inequality, we obtain

C2 + log ε ≥ με = Iε(uε) ≥ −1

2
−
∫

Ω

log
(
1 + |uε|2

)
dx ≥ −1

2
log

(
1 + |||uε|||2

)
,

leading to the lower bound in (2.4) for all ε ∈ (0, e−C2/
√

2] with C3 = e−C2/
√

2 > 0.
It, together with the Poincaré inequality (2.18), also implies the lower bound in (2.5)
for ε in the same range with C5 = C0C3 > 0. Finally, letting ε0 = min(1, e−C2/

√
2) ∈

(0, 1], we obtain all the desired inequalities in (2.4) and (2.5) for all ε ∈ (0, ε0].
Remark 2.1. In the case that Ω = Πn

i=1(ai, bi) with −∞ < ai < bi < ∞
(i = 1, . . . , n) and the set of admissible functions is {u ∈ H1

per(Ω,Rm) : −
∫
Ω
u dx = 0 },

the upper bound (2.26) can be obtained by replacing f by sin(2πx1/(b1 − a1)).

3. Renormalized energies and their Γ-limit. We consider in this section the
convergence of the renormalized energy functionals Jε : H(Ω,Rm) → R, defined in
(2.27), to the energy functional J : H(Ω,Rm) → R ∪ {−∞,∞}, defined in (1.7).

Theorem 3.1. Let Ω ⊂ R
n and H(Ω,Rm) be the same as in Theorem 2.1. We

have

−∞ < inf
v∈H(Ω,Rm)

J(v) < ∞.(3.1)
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Moreover, there exists v ∈ H(Ω,Rm) such that

J(v) = inf
w∈H(Ω,Rm)

J(w).(3.2)

Theorem 3.2. Let Ω ⊂ R
n and H(Ω,Rm) be the same as in Theorem 2.1. Let

{εj}∞j=1 be a decreasing sequence in (0, 1] such that limj→∞ εj = 0. Then, the sequence
of functionals Jεj : H(Ω,Rm) → R (j = 1, . . . ) Γ-converge with respect to the weak
topology of H(Ω,Rm) to the functional J : H(Ω,Rm) → R ∪ {∞}, i.e., the following
hold true:

(1) If vj ⇀ v in H(Ω,Rm), then

lim inf
j→∞

Jεj (vj) ≥ J(v);(3.3)

(2) For any w ∈ H(Ω,Rm), there exist wj ∈ H(Ω,Rm) (j = 1, . . . ) such that
wj ⇀ w in H(Ω,Rm) and

lim
j→∞

Jεj (wj) = J(w).

Theorem 3.3. Let Ω ⊂ R
n and H(Ω,Rm) be the same as in Theorem 2.1. Let

{εj}∞j=1 be a decreasing sequence in (0, 1] such that limj→∞ εj = 0. For each integer
j ≥ 1, let vj ∈ H(Ω,Rm) be a minimizer of Jεj : H(Ω,Rm) → R. Then, there
is a subsequence {vji}∞i=1 of {vj}∞j=1 and v ∈ H(Ω,Rm) that satisfy the following
properties:

(1) As i → ∞, vji → v (strong convergence) in H(Ω,Rm);
(2) J(v) = min

w∈H(Ω,Rm)
J(w);

(3) lim
i→∞

min
w∈H(Ω,Rm)

Jεji (w) = min
w∈H(Ω,Rm)

J(w).

Corollary 3.1. Let Ω ⊂ R
n and H(Ω,Rm) be the same as in Theorem 2.1.

(1) Let {εj}∞j=1 be a decreasing sequence in (0, 1] such that limj→∞ εj = 0. For
each integer j ≥ 1, let uj ∈ H(Ω,Rm) be a minimizer of Iεj : H(Ω,Rm) → R. Then,
there is a subsequence {εjiuji}∞i=1 of {εjuj}∞j=1 and v ∈ H(Ω,Rm) that satisfy the
following properties: (i) As i → ∞, εjiuji → v (strong convergence) in H(Ω,Rm);
and (ii) J(v) = min

w∈H(Ω,Rm)
J(w).

(2) We have

lim
ε→0+

(
min

u∈H(Ω,Rm)
Iε(u) − log ε

)
= sup

0<ε≤1

(
min

u∈H(Ω,Rm)
Iε(u) − log ε

)
= min

w∈H(Ω,Rm)
J(w).

We need several lemmas to prove our results.

Lemma 3.1. Let E ⊂ R
n be Lebesgue measurable with 0 < |E| < ∞. Suppose

gj → g in L1(E) and
{∫

E
log |gj | dx

}∞
j=1

is bounded. Then, log |g| ∈ L1(E) and

lim inf
j→∞

(
−
∫
E

log |gj | dx
)

≥ −
∫
E

log |g| dx.(3.4)
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Proof. By the fact that log s ≤ (1/e)s for all s > 0, we have for each integer j ≥ 1
that ∫

E

| log |gj | | dx =

∫
{x∈E:|gj(x)|≥1}

log |gj | dx−
∫
{x∈E:|gj(x)|<1}

log |gj | dx

= 2

∫
{x∈E:|gj(x)|≥1}

log |gj | dx−
∫
E

log |gj | dx

≤ 2

e

∫
E

|gj | dx−
∫
E

log |gj | dx.(3.5)

Since both {
∫
E
|gj | dx}∞j=1 and {

∫
E

log |gj | dx}∞j=1 are bounded, we thus have

sup
j≥1

∫
E

| log |gj | | dx < ∞.(3.6)

Since gj → g in L1(E), there exists a subsequence {gji}∞i=1 of {gj}∞j=1 such that
gji(x) → g(x) as i → ∞ for a.e. x ∈ E. Consequently, by Fatou’s Lemma and (3.6),

0 ≤
∫
E

| log |g| | dx =

∫
E

lim inf
i→∞

| log |gji | | dx ≤ lim inf
i→∞

∫
E

| log |gji | | dx < ∞.(3.7)

This implies that log |g| ∈ L1(E), and, in particular, |{x ∈ E : g(x) = 0}| = 0.
For any σ ∈ (0, 1), we denote Sσ = {x ∈ E : 0 < |g(x)| ≤ σ} and mσ = |Sσ|.

Since | log |g| | ≥ | log σ| on Sσ for any σ ∈ (0, 1), we have by (3.7) that

mσ =

∫
Sσ

dx ≤
∫
Sσ

| log |g| |
| log σ| dx ≤ 1

| log σ|

∫
E

| log |g| | dx → 0 as σ → 0+.(3.8)

Thus, by (3.7), (3.8), and the absolute continuity of Lebesgue integrals, we obtain∣∣∣∣
∫
Sσ

log |g| dx
∣∣∣∣ ≤

∫
Sσ

| log |g| | dx → 0 as σ → 0+.(3.9)

Now, for each integer j ≥ 1, we have by the fact that − log(·) is convex and
Jensen’s inequality that

−
∫
Sσ

log |gj | dx = −mσ−
∫
Sσ

log |gj | dx ≥ −mσ log

(
−
∫
Sσ

|gj | dx
)

≥ mσ logmσ −mσ log

(
max
i≥1

‖gi‖L1(E)

)
,(3.10)

in which maxi≥1 ‖gi‖L1(E) > 0, since gi → g in L1(E) as i → ∞ and ‖g‖L1(E) �= 0.
Thus, by (3.10) and (3.8),

lim inf
j→∞

(
−
∫
Sσ

log |gj | dx
)

≥ mσ logmσ −mσ log

(
max
i≥1

‖gi‖L1(E)

)
→ 0 as σ → 0+.(3.11)

Let δ > 0. By (3.9) and (3.11), there exits σ0 ∈ (0, 1) such that

lim inf
j→∞

(
−
∫
Sσ0

log |gj | dx
)

≥ −
∫
Sσ0

log |g| dx− δ.(3.12)



UNBOUNDED ORDER PARAMETERS 29

Denoting T0 = {x ∈ E : |g(x)| > σ0}, we have by the fact that log(1 + s) ≤ s for any
s ≥ 0 that ∣∣∣∣

∫
T0

log |gj | dx−
∫
T0

log |g| dx
∣∣∣∣ ≤

∫
T0

∣∣∣∣log
|gj |
|g|

∣∣∣∣ dx
≤

∫
T0

log

(
1 +

∣∣∣∣ |gj | − |g|
|g|

∣∣∣∣
)
dx ≤

∫
T0

|gj − g|
σ0

dx

≤ 1

σ0
‖gj − g‖L1(E) → 0 as j → ∞.(3.13)

It follows from (3.12) and (3.13) that

lim inf
j→∞

(
−
∫
E

log |gj | dx
)

≥ −
∫
E

log |g| dx− δ,

which implies (3.4) by the arbitrariness of δ > 0.
Lemma 3.2. Let E ⊂ R

n be Lebesgue measurable with 0 < |E| < ∞ and h ∈
L1(E). Let {εj}∞j=1 be a decreasing sequence in (0, 1] such that εj → 0 as j → ∞.
Then,

lim
j→∞

∫
E

log
√

ε2
j + |h|2 dx =

∫
E

log |h| dx.(3.14)

Proof. Suppose first that
∫
E

log |h| dx = −∞. Set

ζj =

∫
E

log
√
ε2
j + |h|2 dx j = 1, . . . .

Then, {ζj}∞j=1 is a decreasing sequence. Thus, either limj→∞ ζj = −∞, leading to
(3.14) in this case; or limj→∞ ζj exists and is finite. Suppose the latter were true.
Then, {ζj}∞j=1 would be bounded from below. By the fact that log s ≤ (1/e)s for any
s > 0, we have for any j ≥ 1 that

ζj ≤
∫
E

log
√

1 + |h|2 dx ≤ 1

e

∫
E

√
1 + |h|2 dx ≤ 1

e

∫
E

(1 + |h|) dx < ∞.(3.15)

Thus, the sequence {ζj}∞j=1 is also bounded from above. In addition,
√

ε2
j + |h|2 → |h|

in L1(E) as j → ∞. Therefore, by Lemma 3.1,
∫
E

log |h| dx would be finite, leading
to a contradiction in this case.

Suppose now that
∫
E

log |h| dx > −∞. Replacing gj by h in (3.5), we obtain that

log |h| ∈ L1(E). By (3.15), log
√

1 + |h|2 ∈ L1(E). Since for each j ≥ 1,

log |h| ≤ log
√
ε2
j + |h|2 ≤ log

√
1 + |h|2 a.e. E,

we thus obtain (3.14) in this case by Lebesgue’s Dominated Convergence Theo-
rem.

Proof of Theorem 3.1. Let τ = infv∈H(Ω,Rm) J(v). Let f : Ω → R be the Lipschitz-

continuous function constructed in Lemma 2.2. Define v̂ : Ω → R
m by v̂ = fe1, where

e1 = (1, 0, . . . , 0) ∈ R
m. Then, v̂ ∈ H(Ω,Rm) and J(v̂) < ∞. Thus, τ < ∞.
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Since (1/s) log s → 0 as s → ∞, there exists R = R(Ω) > 1 such that

log s ≤ s

2C2
0

∀s ≥ R,(3.16)

where C0 > 0 is the constant in the Poincaré inequality (2.18). Consequently, by
(3.16) and the Poincaré inequality (2.18),

J(v) ≥ 1

2
−
∫

Ω

|∇v|2dx− 1

|Ω|

∫
{x∈Ω:|v|≥1}

log |v| dx

=
1

2
−
∫

Ω

|∇v|2dx− 1

2|Ω|

∫
{x∈Ω:1≤|v|2≤R}

log
(
|v|2

)
dx

− 1

2|Ω|

∫
{x∈Ω:|v|2>R}

log
(
|v|2

)
dx

≥ 1

2
−
∫

Ω

|∇v|2dx− 1

2|Ω|

∫
{x∈Ω:1≤|v|2≤R}

logRdx− 1

4|Ω|C2
0

∫
{x∈Ω:|v|2>R}

|v|2dx

≥ 1

2
−
∫

Ω

|∇v|2dx− 1

4C2
0

−
∫

Ω

|v|2dx− 1

2
logR

≥ 1

4
−
∫

Ω

|∇v|2dx− 1

2
logR ∀v ∈ H(Ω,Rm).

(3.17)

This implies that τ > −∞. Hence, (3.1) is proved.
Let {vj}∞j=1 be an infimizing sequence of J : H(Ω,Rm) → R∪{∞}. It follows from

(3.17) and (2.18) that {vj}∞j=1 is bounded in H(Ω,Rm). Thus, up to a subsequence,

vj ⇀ v in H1(Ω,Rm) and vj → v in L2(Ω,Rm) as j → ∞ for some v ∈ H1(Ω,Rm).
We have v ∈ H(Ω,Rm), since H(Ω,Rm) is weakly closed in H1(Ω,Rm).

As in the proof of Theorem 2.1, cf. (2.21), we have

lim inf
j→∞

−
∫

Ω

|∇vj |2dx ≥ −
∫

Ω

|∇v|2dx.(3.18)

Since {J(vj)}∞j=1 and {‖vj‖}∞j=1 are both bounded, the sequence

{∫
Ω

log |vj | dx
}∞

j=1

=

{∫
Ω

1

2
|∇vj |2dx− |Ω|J(vj)

}∞

j=1

is bounded. Thus, by Lemma 3.1, log |v| ∈ L1(Ω) and

lim inf
j→∞

(
−−
∫

Ω

log |vj | dx
)

≥ −−
∫

Ω

log |v| dx.(3.19)

Now, (3.2) follows from (3.18), (3.19), and the fact that {vj}∞j=1 is an infimizing
sequence of J : H(Ω,Rm) → R ∪ {∞}.

Remark 3.1. In the case that Ω = Πn
i=1(ai, bi) with −∞ < ai < bi < ∞

(i = 1, . . . , n) and the set of admissible functions is {u ∈ H1
per(Ω,Rm) : −

∫
Ω
u dx = 0 },

we can still prove that τ < ∞ by the same argument with f replaced by sin(2πx1/(b1−
a1)).
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Proof of Theorem 3.2.
(1) Suppose vj ⇀ v in H(Ω,Rm). We may assume that lim infj→∞ Jεj (vj) < ∞,

otherwise (3.3) holds true trivially.
Notice that for each integer j ≥ 1,

Jεj (vj) ≥ −
∫

Ω

[
1

2
|vj |2 −

1

2
log

(
1 + |vj |2

)]
dx = I1(vj).(3.20)

Thus, by (2.20) with ε = 1, the sequence {Jεj (vj)}∞j=1 is bounded from below. Let

{vji}∞i=1 be a subsequence of {vj}∞j=1 such that vji → v in L2(Ω,Rm) as i → ∞ and

lim inf
j→∞

Jεj (vj) = lim
i→∞

Jεji (vji) < ∞.(3.21)

Then, the sequence
{
Jεji (vji)

}∞
i=1

is bounded, from both above and below. Hence,{∫
Ω

log
√

ε2
ji

+ |vji |2 dx
}∞

i=1

=

{∫
Ω

1

2
|∇vji |2dx− |Ω|Jεji (vji)

}∞

i=1

is bounded. Moreover,
√

ε2
ji

+ |vji |2 → |v| in L2(Ω) as i → ∞, since

∣∣∣√ε2
ji

+ |vji |2 − |v|
∣∣∣2 = ε2

ji + |vji |2 + |v|2 − 2|v|
√
ε2
ji

+ |vji |2 ≤ ε2
ji + |vji − v|2 ∀i ≥ 1.

Consequently, it follows from Lemma 3.1 that log |v| ∈ L1(Ω) and

lim inf
i→∞

(
−−
∫

Ω

log
√
ε2
ji

+ |vji |2dx
)

≥ −−
∫

Ω

log |v| dx.(3.22)

As before, we also have

lim inf
j→∞

−
∫

Ω

|∇vj |2dx ≥ −
∫

Ω

|∇v|2dx,(3.23)

cf. (2.21) and (3.18). Now, (3.3) follows from (3.21)–(3.23).
(2) Let w ∈ H(Ω,Rm) and wj = w for all integers j ≥ 1. The assertion of this

part follows from Lemma 3.2.
Proof of Theorem 3.3. For each integer j ≥ 1, εjvj is a minimizer of Iεj :

H(Ω,Rm) → R. Thus, by (3) of Theorem 2.1, {vj}∞j=1 is bounded in H(Ω,Rm).
Hence, it has a subsequence {vji}∞i=1 such that vji ⇀ v in H(Ω,Rm), vji → v in
L2(Ω,Rm), and vji(x) → v(x) for a.e. x ∈ Ω as i → ∞ for some v ∈ H(Ω,Rm).

Since vji is a minimizer of Jεji : H(Ω,Rm) → R, we have for any w′ ∈ H(Ω,Rm)
that

Jεji (w′) ≥ Jεji (vji) = min
w∈H(Ω,Rm)

Jεji (w) ∀i ≥ 1.

Consequently, we have by Lemma 3.2 and (1) of Theorem 3.2 that

J (w′) = lim
i→∞

Jεji (w′) ≥ lim sup
i→∞

Jεji (vji) ≥ lim inf
i→∞

Jεji (vji) ≥ J(v).(3.24)

This proves (2). Setting w′ = v in (3.24), we obtain that

lim
i→∞

min
w∈H(Ω,Rm)

Jεji (w) = lim
i→∞

Jεji (vji) = J(v) = min
w∈H(Ω,Rm)

J(v),(3.25)
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proving (3).
Notice that the sequence{∫

Ω

log
√

ε2
ji

+ |vji |2 dx
}∞

i=1

=

{∫
Ω

1

2
|∇vji |2dx− |Ω|Jεji (vji)

}∞

i=1

is bounded. Moreover,
√

ε2
ji

+ |vji |2 → |v| in L2(Ω) as i → ∞. Consequently, we have

by Lemma 3.1 that log |v| ∈ L1(Ω) and

lim inf
i→∞

(
−
∫

Ω

log
√

ε2
ji

+ |vji |2 dx
)

≥ −
∫

Ω

log |v| dx.(3.26)

Since vji ⇀ v in H(Ω,Rm) as i → ∞, we also have (cf. (2.21))

lim inf
i→∞

−
∫

Ω

|∇vji |2dx ≥ −
∫

Ω

|∇v|2dx.(3.27)

Now, it follows from (3.25)–(3.27) that

0 = lim
i→∞

Jεji (vji) − J(v)

≥
[
lim inf
i→∞

−
∫

Ω

1

2
|∇vji |2dx−−

∫
Ω

1

2
|∇v|2dx

]

+

[
lim inf
i→∞

(
−−
∫

Ω

log
√
ε2
ji

+ |vji |2 dx
)
−
(
−−
∫

Ω

log |v| dx
)]

≥ 0,

which, together with (3.26) and (3.27), implies that

lim inf
i→∞

−
∫

Ω

|∇vji |2dx = −
∫

Ω

|∇v|2dx.

Thus,

lim inf
i→∞

∫
Ω

|∇vji −∇v|2dx = lim inf
i→∞

∫
Ω

(
|∇vji |2 + |∇v|2 − 2∇vji · ∇v

)
dx = 0.

This and the Poincaré inequality (2.18) imply the strong convergence of a subsequence
of {vji}∞i=1 to v in H(Ω,Rm). Thus (1) is proved.

Proof of Corollary 3.1. Notice for any integer j ≥ 1 that uj is a minimizer of Iεj :
H(Ω,Rm) → R if and only if that vj := εjuj is a minimizer of Jεj : H(Ω,Rm) → R.
Thus, (1) follows from (1) and (2) of Theorem 3.3; (3) follows from (2) of Theorem 2.1
and (3) of Theorem 3.3.

4. The scalar Dirichlet boundary-value problem. If the order parame-
ter is a scalar function that satisfies the homogeneous Dirichlet boundary condi-
tion, then the solution of the corresponding limiting variational problem of infimizing
J : H1

0 (Ω) → R ∪ {∞} can be well characterized. In what follows, we denote

H+(Ω) =
{
v ∈ H1

0 (Ω) : v(x) ≥ 0 a.e.x ∈ Ω
}
.

As usual, we also denote by C∞
c (Ω) the set of all C∞(Ω)-functions that are compactly

supported in Ω.
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Theorem 4.1. Let Ω ⊂ R
n be a bounded domain with a Lipschitz-continuous

boundary ∂Ω. Then, there exists v+ ∈ H+(Ω) that satisfies the following properties:
(1) The function v+ is the unique minimizer of J : H+(Ω) → R∪{∞}. Moreover,

v+ ∈ C∞(Ω), v+ > 0 in Ω,

Δv+ +
1

v+
= 0 in Ω,(4.1)

and

−
∫

Ω

|∇v+|2dx = 1;(4.2)

(2) The two functions v+ and v− := −v+ are the unique minimizers of J :
H1

0 (Ω) → R ∪ {∞}.
To prove this theorem, we need the following result.
Lemma 4.1. Let Ω ⊂ R

n be the same as in Theorem 4.1. Let ε ∈ (0, 1]. There
exists vε+ ∈ H+(Ω) such that

Jε(vε+) = min
w∈H+(Ω)

Jε(w) = min
w∈H1

0 (Ω)
Jε(w).(4.3)

Moreover, Δvε+ ≤ 0 in Ω in the sense of distributions, i.e.,∫
Ω

∇vε+ · ∇ϕdx ≥ 0 ∀ϕ ∈ C∞
c (Ω) with ϕ ≥ 0 in Ω,(4.4)

and

−
∫

Ω

|∇vε+|2dx = −
∫

Ω

v2
ε+

ε2 + v2
ε+

dx.(4.5)

Proof. Setting ξε = infw∈H+(Ω) Jε(w), we have by Theorem 2.1 that

−∞ < min
w∈H1

0 (Ω)
Iε(w) − log ε = min

w∈H1
0 (Ω)

Jε(w) ≤ ξε ≤ Jε(0) = − log ε < ∞.

Let {wj}∞j=1 ⊂ H+(Ω) be an infimizing sequence of Jε : H+(Ω) → R. Since

Jε(wj) ≥ −
∫

Ω

[
1

2
|∇wj |2 −

1

2
log

(
1 + |wj |2

)]
dx = I1(wj) ∀j ≥ 1,

we see from (2.20) with R
m = R and ε = 1, and the Poincaré inequality, that the

sequence {wj}∞j=1 is bounded in H1(Ω). Thus, it has a subsequence {wji}∞i=1 such

that wji ⇀ vε+ in H1(Ω) and wji → vε+ in L2(Ω) as i → ∞ for some vε+ ∈ H1(Ω).
We have in fact v+ ∈ H+(Ω), since H+(Ω) is convex and strongly closed, and hence
weakly closed, in H1(Ω). Noting that ε > 0 is fixed, by the same argument in the
proof of Theorem 2.1, cf. (2.21) and (2.22), we obtain that Jε(vε+) = ξε.

For any w ∈ H1
0 (Ω), we have |w| ∈ H+(Ω) and Jε(|w|) = Jε(w), cf. Lemmas 7.6

and 7.7 in [8]. Thus,

min
w∈H1

0 (Ω)
Jε(w) ≤ ξε = Jε(vε+) ≤ Jε(|w|) = Jε(w) ∀w ∈ H1

0 (Ω).

This leads to (4.3).
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Since vε+ is a minimizer of Jε : H1
0 (Ω) → R, the first variation of Jε at vε+

vanishes, i.e.,

δJ(vε+)(ϕ) =

∫
Ω

(
∇vε+ · ∇ϕ− vε+ϕ

ε2 + v2
ε+

)
dx = 0 ∀ϕ ∈ H1

0 (Ω).(4.6)

This, together with the fact that vε+ ≥ 0 a.e. Ω and that C∞
c (Ω) ⊂ H1

0 (Ω), implies
(4.4). Finally, setting ϕ = vε+ in (4.6), we obtain (4.5).

Proof of Theorem 4.1.
(1) By Lemma 4.1, there exists vj ∈ H+(Ω) for each integer j ≥ 1 such that

J1/j(vj) = min
w∈H+(Ω)

J1/j(w) = min
w∈H1

0 (Ω)
J1/j(w),(4.7)

Δvj ≤ 0 in Ω(4.8)

in the sense of distributions, cf. (4.4), and

−
∫

Ω

|∇vj |2dx = −
∫

Ω

v2
j

j−2 + v2
j

dx.(4.9)

By (4.7) and Theorem 3.3, there exists a subsequence {vji}∞i=1 of {vj}∞j=1 such that

vji → v+ (strong convergence) in H1(Ω) and vji(x) → v+(x) a.e. x ∈ Ω as i → ∞
for some v+ ∈ H1

0 (Ω) that is a minimizer of J : H1
0 (Ω) → R ∪ {∞}. Since H+(Ω) is

weakly closed in H1(Ω), v+ ∈ H+(Ω). Moreover, since H+(Ω) ⊂ H1
0 (Ω), v+ is also

a minimizer of J : H+(Ω) → R ∪ {∞}. The fact that v+ is the unique minimizer of
J : H+(Ω) → R ∪ {∞} follows from the strict convexity of J : H+(Ω) → R ∪ {∞}.

Let η+ = ess infΩ v+. Since v+ ∈ H+(Ω), v+ ≥ 0 a.e. Ω. Thus, η+ ≥ 0. If η+ > 0,
then there exists φj ∈ C∞(Ω) for each integer j ≥ 1 such that minΩ φj ≥ η+/2
(j = 1, . . . ) and φj → v+ in H1(Ω) as j → ∞. The trace of v+, which is the
limit of {φj}∞j=1 in L2(∂Ω), would then be positive a.e. ∂Ω. This contradicts the

fact that v+ ∈ H1
0 (Ω). Thus, ess infΩ v+ = 0. Since v+ ≥ 0 is a minimizer of

J : H+(Ω) → R ∪ {∞}, log v+ ∈ L1(Ω). Thus, we also have that v+(x) > 0 a.e.
x ∈ Ω. In particular, v+ is not a constant in Ω. Since vji → v+ in H1(Ω) as i → ∞,
we obtain by (4.8) that Δv+ ≥ 0 in Ω in the sense of distributions. Applying the
Strong Maximum Principle to L = Δ and u = v+ in Theorem 8.19 in [8], we see that
ess infB v+ > 0 for any ball B ⊂⊂ Ω. (Here and below, the notation ω ⊂⊂ Ω means
ω ⊂ Ω.) For any open set Ω′ ⊂ R

n with Ω′ ⊂⊂ Ω, we can cover Ω′ by finitely many
balls Bi ⊂⊂ Ω, where i = 1, . . . , N for some integer N ≥ 1, so that ess infBi

v+ > 0
for all i (1 ≤ i ≤ N). Thus, δ′ := ess infΩ′ v+ > 0, and hence 1/v+ ∈ L∞(Ω′).

Let ϕ ∈ C∞
c (Ω) with suppϕ ⊂ Ω′ and consider q(δ) := J(v+ + δϕ) for δ ∈ R. If

|δ| supΩ′ |ϕ| < δ′, then v+ + δϕ > 0 a.e. in Ω′, and

q(δ) = −
∫

Ω

[
1

2
|∇v+ + δϕ|2 − log |v+ + δϕ|

]
dx

= −
∫

Ω

1

2
|∇v+ + δϕ|2dx− 1

|Ω|

∫
Ω\Ω′

log v+ dx− 1

|Ω|

∫
Ω′

log(v+ + δϕ)dx.

Since v+ is a minimizer of J : H1
0 (Ω) → R ∪ {∞}, q(δ) is minimized at δ = 0. Thus,

q′(0) = 0. This leads to

Δv+ +
1

v+
= 0 in Ω′(4.10)
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in the sense of distributions.
Let Ω′′ ⊂ R

n be an open set such that Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Denoting Hk(D) =
W k,2(D) the usual Sobolev space for an open set D ⊂ R

n and an integer k ≥ 1 [1, 8],
we claim:

(∗) For any integer k ≥ 1, there exists an open set Ωk ⊂ R
n such that Ω′′ ⊂⊂

Ωk ⊂⊂ Ω′ and v+ ∈ Hk+1(Ωk).
Let f := 1/v+ ∈ L∞(Ω′). By (4.10), v+ ∈ H1(Ω′) is a weak solution of Δv+ = f

in Ω′, i.e., ∫
Ω′

∇v+ · ∇ϕdx =

∫
Ω′

fϕ dx ∀ϕ ∈ C∞
c (Ω′).(4.11)

By the regularity theory of elliptic boundary-value problems, cf. Theorem 8.8 in [8],
we have v+ ∈ H2(Ω1) for any open set Ω1 ⊂ R

n such that Ω′′ ⊂⊂ Ω1 ⊂⊂ Ω′. Thus,
the statement (∗) is true for k = 1.

Suppose the statement (∗) is also true for a general k ≥ 1. Then, ∂kf ∈ H1(Ωk)
for any partial derivative ∂k of order k. Replacing ϕ in (4.11) by ∂kψ for any ψ ∈
C∞

c (Ωk), one easily verifies that∫
Ωk

∇∂kv+ · ∇ψ dx =

∫
Ωk

∂kfψ dx ∀ψ ∈ C∞
c (Ωk),

i.e., ∂kv+ ∈ H1(Ωk) satisfies Δ∂kv+ = ∂kf in Ωk in the sense of distributions.
Therefore, by the same regularity result, there exists an open set Ωk+1 ⊂ R

n with
Ω′′ ⊂⊂ Ωk+1 ⊂⊂ Ωk ⊂⊂ Ω′ such that ∂kv+ ∈ H2(Ωk+1). By suitably enlarging Ωk+1

if necessary, we see that v+ ∈ Hk+2(Ωk+1). Hence, the statement (∗) is true for k+1.
Thus, it is true for any integer k ≥ 1.

By the statement (∗), v+ ∈ C∞(Ω′′). It then follows from the arbitrariness of
Ω′′ and Ω′ that v+ ∈ C∞(Ω), and that v+ > 0 in Ω, since ess supΩ′v+ > 0 for any
Ω′ ⊂⊂ Ω. Moreover, (4.1) follows from (4.10) and the arbitrariness of Ω′ ⊂⊂ Ω. Using
the fact that vji → v+ in H1(Ω) and that vji(x) → v+(x) > 0 a.e. Ω, and applying
Lebesgue’s Dominated Convergence Theorem, we obtain (4.2) from (4.9).

(2) Clearly, both v+ and v− are minimizers of J : H1
0 (Ω) → R ∪ {∞}, cf. the

proof of Lemma 4.1. Assume now ṽ ∈ H1
0 (Ω) is a minimizer of J : H1

0 (Ω) → R∪{∞}.
Then, |ṽ| ∈ H+(Ω) is a minimizer of J : H+(Ω) → R ∪ {∞}. By (1), we must have
that |ṽ| = v+ a.e. Ω. Thus, |ṽ| ∈ C∞(Ω) and ṽ > 0 in Ω. Consequently, we have for
any ball B ⊂⊂ Ω that ṽ(x) > 0 for all x ∈ B or ṽ(x) < 0 for all x ∈ B. Therefore,
for any domain ω ⊂⊂ Ω, ṽ(x) has the same sign for each x ∈ ω̄. This implies that
ṽ(x) = v+(x) for all x ∈ Ω or ṽ(x) = v−(x) for all x ∈ Ω.

Acknowledgments. The author thanks the referees for helpful comments.
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EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPACT
PROBLEMS WITHOUT VISCOSITY∗

JEONGHO AHN† AND DAVID E. STEWART‡

Abstract. In this paper we consider dynamic frictionless impact problems of elastic materials
formulated in abstract settings. The contact conditions for the impact problem are Signorini-type
complementarity conditions. Using time discretization and Galerkin approximation, we investigate
the convergence of numerical fully discrete trajectories to a solution of the continuous-time problem.
In this way we establish the existence of solutions for a class of impact problems, some of which
have been previously studied, while others have not. Most of the impact problems to which this
theory can be applied are “thick” obstacle problems, although it can also be applied to a number
of boundary or “thin” obstacle problems. The crucial assumption for the theory is that the cone
of possible contact forces satisfies a strong pointedness condition, which can usually be related to a
Sobolev embedding condition.

Key words. impact problems, dynamic obstacle problems, complementarity conditions, strongly
pointed cones
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1. Introduction. In this work, we show existence of solutions for a class of
dynamic impact problems which are treated from an abstract point of view. The
concrete impact problems that we discuss and that are in this class are mostly “thick”
obstacle problems; the solutions are functions of time t > 0 and x ∈ Ω ⊂ R

d for some
d where Ω is an open domain, and the obstacle (or constraints) are applied over a
subset Ω1 ⊂ Ω1 ⊂ Ω. However, it is applicable to a small number of boundary contact
problems. Unfortunately these do not include the wave equation with a boundary
“thin” obstacle for which existence has been shown [14] or conservation of energy
where Ω is a half-space [19]; the still-open case of a nonviscous elastic body with
boundary contact requires further techniques beyond those described here.

In most papers on contact mechanics, the problem is cast as a variational in-
equality in terms of the main variable, the solution u(t). This is the approach used
in [9, 10, 16, 19], for example. As a result, the contact forces N(t) are removed from
the formulation, and their behavior remains somewhat difficult to elucidate. In this
paper, we keep the contact forces as part of a complementarity formulation. In some
ways this makes our approach more complicated as we now need to obtain suitable
bounds on the normal contact forces. However, it means that more is known about
the contact forces.

There is another aspect where this paper differs from most others on existence
of solutions in contact mechanics: we are dealing with nonviscous elasticity. Thus,
without contact, energy is conserved. The introduction of visco-elasticity is useful
for improving the regularity of the solution; however, it makes the contact forces less
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regular [3, 22, 23]. The question of the regularity of the contact forces is important as it
is closely related to the question of proving energy balances. Only if the contact forces
are sufficiently regular do we expect to prove that the contact forces do no work [30].
In rigid-body dynamics the contact forces are general measures and contain Dirac-δ
functions; rigid-body dynamics also requires an additional parameter, the coefficient
of restitution, to determine the consequences of a single impact, and to determine if
energy is (possibly) conserved.

For example, consider the simple scalar problem utt = f(t) + N(t) with f an
integrable function, 0 ≤ u(t) ⊥ N(t) ≥ 0 for all t. Here 0 ≤ a ⊥ b ≥ 0 called
complementarity condition implies that a, b ≥ 0 component-wise and aTb = 0,
where we denote vectors and matrices by bold characters. Thus 0 ≤ a ⊥ b ≥ 0
means that for all indexes i, either ai = 0 and bi ≥ 0, or ai ≥ 0 and bi = 0. If
ai > 0, then bi = 0, and conversely if bi > 0, then ai = 0. In our case u(t) and
N(t) are scalars, so for all t if there is positive separation (u(t) > 0), there is no
contact force (N(t) = 0); conversely, if there is a contact force (N(t) > 0), then there
is no separation (u(t) = 0). Note that u(t) cannot be negative (as u(t) < 0 would
violate the no-penetration condition) while N(t) cannot be negative (as N(t) < 0
would imply adhesion). This can be interpreted in a weak sense by requiring that u

and N are nonnegative and that
∫ T

0
u(t)N(t) dt = 0.

Suppose that u(t∗) = 0. Then near t = t∗ we can set N(t) = N0(t) +N∗ δ(t− t∗)
where N0 is a measure without atom at t∗ and δ is the Dirac-δ function. This means
that ut(t

+
∗ ) = ut(t

−
∗ ) + N∗. Any value of N∗ that exceeds −ut(t

−
∗ ) ≥ 0 is permissible

as then ut(t
+
∗ ) > 0 and u(t) > 0 for t in some interval (t∗, t∗ + ε). For conservation

of energy or an energy balance, we need ut(t
+
∗ )2 = ut(t

−
∗ )2; only one value of N∗ will

conserve energy, and yet all values of N∗ ≥ −ut(t
−
∗ ) lead to solutions of the contact

conditions 0 ≤ u(t) ⊥ N(t) ≥ 0. On the other hand, if N(t) = N0(t), an integrable
function, then ut is a continuous function. Thus, if u(t∗) = 0 in this case, ut(t∗) = 0
as well, and so

∫
B
ut(t)N(t) dt = 0 for any Borel set B, and so the contact forces do

no work.
A related question is whether there should be a coefficient of restitution, as there is

in rigid-body dynamics with impact. For example, the most commonly used coefficient
of restitution is the Newton, or kinematic, coefficient of restitution, which is simply
the negative of the ratio of the postimpact normal velocity to the preimpact normal
velocity: −ut(t

+
∗ )/ut(t

−
∗ ).

Unlike the finite-dimensional case, the presence of unbounded operators means
that the velocities do not necessarily have bounded variation, and care must be taken
in dealing with the limits ut(t

+
∗ ) and ut(t

−
∗ ) in appropriate function spaces. However,

it can be done in certain situations, such as a vibrating string (subject to the one-
dimensional wave equation) which can contact a rigid obstacle along a portion of its
length. The wave equation with an obstacle was first constructed by Amerio and
Prouse [4] and was perfectly studied by Schatzman [26]. She was able to show the
existence of solutions for a concave obstacle which conserve energy. An essential part
of this was proving that ut(t

+, x) = −ut(t
−, x) at almost every point of contact; that

is, the kinematic coefficient of restitution is 1. However, the approach taken in [26]
seems difficult to generalize to other contact problems.

For the sake of concreteness, we will discuss a one-dimensional vibrating string
which satisfies the wave equation, fixed at endpoints x = 0 and x = l, and where
contact can occur with a fixed obstacle over most of the length of the string. (Contact
near the fixed endpoints will be assumed not to occur.)
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We begin with the equations of motion for a body without contact:

utt = −Au + f,

u(0) = u0,

ut(0) = v0,

where (·)t denotes differentiation with respect to t, A : V → V ′ is an elliptic self-adjoint
operator, V a Hilbert space, and f a constant vector in a suitable space. The results of
this paper can be extended to nonconstant f ; the main technical complication being
obtaining suitable energy bounds for the time discretization. Incorporating contact
conditions requires an obstacle represented by ϕ which is applied to some space W
of restricted functions, a closed convex cone K ⊂ W , and a restriction or “trace”
operator β : V → W which is used to identify when the solution u is “above” the
obstacle: βu − ϕ ∈ K. In static (frictionless) contact problems, the normal contact
force appears as a kind of Lagrange multiplier N ∈ K∗ ⊂ W ′, where K∗ is the dual
cone given by

K∗ = {z | 〈z, w〉 ≥ 0 for all w ∈ K}.

In our dynamic contact problems, we have “N(t) ∈ K∗ for all t”, which must be
suitably interpreted as N may be a W ′-valued measure. This is transfered to V ′ via
the adjoint of the restriction operator β∗ : W ′ → V ′.

There should be a right inverse of the restriction operator (being an extension
operator) γ : W → V so that βγ : W → W is the identity map. Note that this means
that γ∗β∗ is the identity map on W ′. This means that β is surjective and β∗ is
injective.

In the case of a vibrating string, A = −∂2/∂x2 which is defined on H1
0 (0, l);

the constraint on the string is that u(t, x) − ϕ(x) ≥ 0 for all x ∈ (δ, l − δ) for a
suitable δ > 0 to avoid contact near the fixed endpoints. Take W = H1(δ, l− δ). Our
restriction operator β : V → W is simply given by βu = u|(δ,l−δ). The set K is then
{w ∈ H1

0 (δ, l−δ) | w(x) ≥ 0 for all x ∈ (δ, l−δ)}, and K∗ is the set of all nonnegative
distributions in H−1(δ, l − δ) (and are therefore measures on [0, l] [13]). Provided
ϕ(0), ϕ(l) < 0, the energy boundedness of solutions ensures that there is a δ > 0,
where u(t, x)−ϕ(x) > 0 for all t and x 
∈ (δ, l− δ). This problem was investigated by
Schatzman [26] for ϕ concave.

It may seem unnecessary to have separate V and W spaces in this case; we could
set V = W and let K be a cone of functions on (0, l). However, the extension
of the results to show convergence of space and time discretizations assumes that
K∗ is the closure of K in the dual space. This does not hold if V = W as then
K = {w ∈ H1(0, l) | w(x) ≥ 0 for all x ∈ [δ, l − δ]} but K∗ = {z ∈ H−1(0, l) | z(x) ≥
0 for x ∈ [δ, l − δ], z(x) = 0 for x ∈ [0, δ) ∪ (l − δ, l]}.

With contact the equations of motion become

utt = −Au + β∗N(t) + f,

K � βu(t) − ϕ ⊥ N(t) ∈ K∗ for all t ∈ [0, T ],(1.1)

where (1.1) is called complementarity condition and it will be explained in Remark 3.1.
The impact problems have been studied in different physical situations using

different approaches. In this paper, we consider the impact problems in a more general
point of view which includes these problems studied in [26] and [1], and also the
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Timoshenko beam (first described in [32, 33]) with Signorini contact conditions along
the beam. A recent discussion of the Timoshenko beam with impact can be found
in [20]. In section 4, we describe these and other impact problems in more detail.
The abstract setting is described in section 3. The time discretization is given in
section 5.1, and convergence of the discrete-time trajectories to a solution of our
problem is proved in section 5.2 and also convergence of fully discrete trajectories is
shown in section 5.3.

2. Preliminaries and functional spaces. The spaces we work are parts of a
pair of Gelfand triples (see, for example, [35, section 17.1] for an extensive discussion
of Gelfand triples):

V ⊂ H = H ′ ⊂ V ′

W ⊂ Z = Z ′ ⊂ W ′,

where all spaces are separable Hilbert spaces, and all inclusions are dense and compact.
The pivot spaces H and Z are typically L2 spaces (although over different sets) while
V and W are typically Sobolev spaces. Note that for a dual pair of spaces X and X ′

we use 〈·, ·〉X′×X or 〈·, ·〉 to denote the duality pairing between X and X ′; the latter
form will be used where it is clear what the dual spaces are. Also inner product (·, ·)H
is used instead of (·, ·)H×H . Note that the duality pairing in a Gelfand triple must
be consistent with the inner product, i.e., for any x ∈ H and y ∈ V , 〈x, y〉V ′×V =
(x, y)H×V = (x, y)H . Thus the duality pairing 〈·, y〉V ′×V is the continuous extension
of the linear function (·, y)H×V or (·, y)H over the largest possible subspace of V ′.
See [35, section 17] for the details.

For the example of a vibrating string, the pivot spaces are H = L2(0, l) and
Z = L2(δ, l − δ); the duality pairing over H and V with V ′ is given by

〈f, g〉 =

∫ l

0

f(x) g(x) dx.

In order to state our existence results, we need scales of interpolation spaces Vθ

and Wθ. While this can be done using either real or complex interpolation theories,
we note that for Hilbert spaces these are equivalent to the following constructions.
See, for example, Taylor [31, pp. 276–278] for complex interpolation, or Bramble and
Zhang [7, Appendix B], Triebel [34, section 1.18.10], or Kuttler [15, section 22.6,
exercises], for real interpolation theories. The real interpolation methods should use
exponent 2 as appropriate for Hilbert spaces. Since A : V → V ′ is elliptic self-adjoint,

the norm on V is equivalent to ‖u‖A := 〈Au, u〉1/2V ′×V .
For W we can use the natural map J : W → W ′ given by J(w) = (·, w)W ′×W

which is also elliptic and self-adjoint.
The spaces Vθ and Wθ are given by

Vθ =
{
u ∈ H |

〈
Aθu, u

〉
< +∞

}
, and

Wθ =
{
w ∈ Z |

〈
Jθw, w

〉
< +∞

}
which are inner product spaces with the inner products (x, y)Vθ

=
〈
Aθx, y

〉
and

(w, z)Wθ
=

〈
Jθw, z

〉
. Note that we will use (·, ·)θ for the inner product when it is

clear which of the Vθ or Wθ spaces is being considered; similarly, we will use ‖ · ‖θ for
the norm in either Vθ or Wθ when the choice is clear.
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Note that both Vθ and Wθ are well defined for any real number θ, and that V = V1,
H = V0, and V ′ = V−1; and the corresponding properties hold for the Wθ spaces.
Note that Vθ+ε embeds compactly in Vθ whenever ε > 0. Furthermore, (Vθ)

′ = V−θ

and (Wθ)
′ = W−θ. Also continuous linear operators F : X0 → Y0 and F : X1 → Y1

can be extended to the continuous linear operators on the interpolation spaces, that
is, F : Xθ → Yθ, 0 ≤ θ ≤ 1.

For the vibrating string problem, Vθ = {u ∈ Hθ(0, l) | u(0) = u(l) = 0} for
θ > 1/2 and Hθ(0, l) otherwise. The reason for the difference is that the trace
operators u �→ u(0) and u �→ u(l) fail to exist for θ ≤ 1/2. Also, Wθ = Hθ(δ, l − δ).

In order to obtain bounds on the contact forces, we make an assumption about
the nature of the cones K and K∗.

Definition 2.1. A dual cone K∗ is said to be strongly pointed if there exist
κ ∈ K and η > 0 such that for any ζ ∈ K∗,

〈ζ, κ〉W ′×W ≥ η ‖ζ‖W ′ .

This terminology is first used in [29]; this property is equivalent to requiring that K
has nonempty interior. Assuming that K∗ is strongly pointed is not quite enough.
In addition we need a “gap” in the scale of interpolation spaces: there should be a
θ < 1, κ ∈ K and η > 0 such that

〈ζ, κ〉W−θ×Wθ
≥ η‖ζ‖−θ for any ζ ∈ K∗.(2.1)

Finally we need an additional property of the restriction operator β: there is an
α < 1, where β : Vα → Z is a continuous map of Hilbert spaces.

In the case of the vibrating string problem, we can show that both of these
conditions hold. Firstly, we can choose κ(x) = x(l−x) which is positive and bounded
away from zero on [δ, l − δ]. This means that

〈ζ, κ〉 =

∫
[δ,l−δ]

ζ(x)κ(x) dx

≥ δ(l − δ)

∫
[δ,l−δ]

ζ(x) dx

= δ(l − δ) ‖ζ‖M[δ,l−δ].

By the Sobolev embedding theorem (see [24, Thm. 6.91, p. 215] or [31, Prop. 3.3,
p. 282]) C[δ, l − δ] ⊃ Hθ(δ, l − δ) = Wθ as Banach spaces for θ > 1/2. Thus by
duality, M[δ, l − δ] ⊂ H−θ(δ, l − δ) = W−θ as Banach spaces, so there is a positive
constant Cθ for θ > 1/2, where ‖ζ‖H−θ(δ,l−δ) ≤ Cθ ‖ζ‖M[δ,l−δ]. Thus the strong
pointedness assumption (2.1) holds for the vibrating string problem.

We assume that the initial displacement u0 ∈ V = V1 and the initial velocity
v0 ∈ H = V0.

We introduce the following notation: if X and Y are Banach spaces, the set of
all bounded linear operators from X to Y is denoted by L(X,Y ), and, especially,
L(X,X) is written as L(X).

3. Impact problem formulated in abstract setting. We seek a solution
u : [0, T ] → V satisfying the following conditions:

utt(t) = −Au(t) + β∗N(t) + f, in the sense of distributions,(3.1)

W ⊃ K � β u(t) − ϕ ⊥ N(t) ∈ K∗ ⊂ W ′ for all t ∈ [0, T ],(3.2)

u(0) = u0,(3.3)

ut(0) = v0.(3.4)
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Note that f does not depend on time t. The assumptions we will use throughout this
paper are as follows:

(A1) We have the following Gelfand triples V ⊂ H = H ′ ⊂ V ′ and W ⊂ Z =
Z ′ ⊂ W ′ with all spaces separable Hilbert spaces and all inclusions dense and
compact.

(A2) The linear operator A : V → V ′ is elliptic and self-adjoint.
(A3) There is a linear operator β : V → W that is continuous and surjective, with

a bounded right-inverse γ : W → V , where βγ = idW .
(A4) The set K ⊂ W is a closed convex cone, with dual cone K∗ ⊂ W ′.
(A5) ϕ ∈ W , u0 ∈ V and v0 ∈ H.
(A6) There is η > 0, θ < 1 and κ ∈ K, where 〈ζ, κ〉 ≥ η‖ζ‖−θ for all ζ ∈ K∗.
(A7) There is an α < 1 where β : Vα → Z.

Note that (A6) is equivalent to requiring that the interior of K is nonempty in Vθ.
Our main result is the following theorem.
Theorem 3.1. Under assumptions (A1)–(A7), for any T > 0 there is a solution

(u,N) to (3.1–3.4) where u lies in L∞(0, T ;V ) ∩W 1,∞(0, T ;H) and where N lies in
M(0, T ;W ′), the space of Borel measures on [0, T ] with bounded variation and values
in W ′.

Remark 3.1.

(a) Note that (3.1) is interpreted in the sense of distributions in V ′, “N(t) ∈ K∗”
is interpreted in the sense that N is a W ′-valued measure with N(B) ∈ K∗ for any
Borel set B, and “βu− ϕ ⊥ N” is interpreted in the sense that

∫
B
〈βu− ϕ, N〉 = 0

for any Borel set B ⊆ [0, T ].
(b) Note that since βu(t) − ϕ ∈ K for all t and N is a K∗-valued measure,

〈βu− ϕ, N〉 ≥ 0 in the sense of measures. Thus if
∫
[0,T ]

〈βu− ϕ, N〉 = 0, then∫
B
〈βu− ϕ, N〉 = 0 for any Borel set B ⊆ [0, T ].
(c) The condition “N(t) ∈ K∗” for a measure N is equivalent to that used in [21]

and [29].

4. Examples of dynamic frictionless impact problems. In this section, we
list examples of concrete impact problems to which this abstract formulation can be
applied. In section 1 we have seen the vibrating string problem with contact along
the length of the string.

The Euler–Bernoulli beam equation with contact along the length of the beam
can also be handled in this way. Another equation to which this approach can be
applied is the Timoshenko beam with contact occurring along the length of the beam.
Higher-dimensional systems require higher-order differential equations. For example,
the biharmonic equation can be used for two- or three-dimensional systems with
contact either on a subdomain of positive measure, or on the boundary.

The most difficult assumption to satisfy is (A6): there is a κ ∈ K, where 〈ζ, κ〉 ≥
η ‖ζ‖W−θ

for all ζ ∈ K∗. In thick obstacle problems, W = Hm(Ω1), where Ω1 ⊂ Ω1 ⊂
Ω ⊂ R

d. If m > d/2, then we have the Sobolev embedding Hm(Ω1) ⊂ C(Ω1) and we
can choose κ(x) = 1 for all x ∈ Ω1. Then by duality, H−m(Ω1) ⊃ M(Ω1), the space
of Borel measures on Ω1. Provided K is a cone of nonnegative functions, K∗ is the
corresponding set of nonnegative measures. The norm on the space of measures is
essentially the same as the L1 norm, which is equal to the integral over Ω1, which is
〈κ, ζ〉. In boundary thin obstacle problems, W = Hm(ΓC), where ΓC ⊂ ∂Ω ⊂ R

d−1,
so our condition becomes m > (d− 1)/2.

For the case of the wave equation or equations of elasticity on a domain Ω ⊂ R
d

for d ≥ 2 the condition (A6) does not hold. The reasons are as described in the above
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paragraph: we take m = 1 as we must take V to be a subspace of H1(Ω) satisfying
the essential homogeneous boundary conditions, and so the Sobolev embedding and
the strong pointedness condition fail.

Now we introduce those problems in detail.

4.1. The wave equation in one dimension. The vibrating string problem
has the formulation:

utt = uxx + β∗N(t, x) in (0, T ] × (0, l),

0 ≤ βu(t, x) − ϕ(x) ⊥ N(t, x) ≥ 0 in (0, T ] × (0, l),

u(t, 0) = u(t, l) = 0 in (0, T ],

where l is the length of a string and ϕ(x) is an obstacle. Schatzman showed the exis-
tence of solutions for ϕ concave down; furthermore, she showed that the solutions she
constructed conserved energy. However, this was done using the method of character-
istics. An essential part of this work was showing that for the solutions constructed,
ut(t

+, x) = −ut(t
−, x) for almost everywhere of (t, x), where u(t, x) = 0. Thus it

behaves as if it has a kinematic coefficient of restitution set equal to 1 for perfectly
elastic impacts. However, there is no coefficient of restitution in the equations of
motion. This problem has already been discussed in the introduction, and the precise
characterization of the spaces V , W , etc., and the operators involved, can be found
there.

The contact problem with the wave equation in one dimension and contact only
at an endpoint is an old problem, and was discussed by Routh nearly a century and a
half ago [25]. A more recent analysis can be found in [28]; a variation of this idea with
a general point obstacle can be found in [27]. This can also be (essentially) treated
in this framework, although the operator A is not coercive: it has one zero eigenvalue
and all others are positive. Firstly, we take V = H1(0, l) and W = R. Thus Z =
Wθ = W−θ = R for all θ. We take K = R+ to K∗ = R+ and assumption (A6) holds.
Assumption (A7) holds as the restriction operator βu = u(0) is a bounded linear
operator β : Vα = Hα(0, l) → Z = R for α > 1/2 by the usual Sobolev embedding
theorems. Note that in this problem the operator β∗ : R → H−1(0, l) is the operator
β∗(N) = N δ where δ is the “Dirac-δ function” of the theory of distributions [12].
Such a term in the right-hand side of the wave equation

utt = uxx + N(t) δ(x) for x ∈ (0, l)

requires less delicate treatment. If we integrate the above equation against a function
ω ∈ H1(0, l), we see that

d2

dt2
〈u, ω〉 =

∫ l

0

uxx ω(x) dx + N(t)ω(0)

= uxω(x)|x=l
x=0 −

∫ l

0

ux ωx dx + N(t)ω(0).

Taking the end x = l to be free, that is, to have the natural boundary condition
ux(t, l) = 0, we see that the appropriate boundary condition at x = 0 is ux(t, 0) =
N(t). This is consistent with traction boundary conditions for a force N(t) applied at
the endpoint x = 0. The regularity of the solutions of these “point contact” problems
is considerably better than for the problems with distributed contact.
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4.2. Euler–Bernoulli beam equations. The problem of a Euler–Bernoulli
beam that can contact a rigid frictionless obstacle along its length has been studied
in [2, 1], both theoretically and numerically. If we assume that the beam is clamped
at x = 0 but free at x = l, we get the system

utt = −uxxxx + β∗N(t, x) in (0, T ] × (0, l),

0 ≤ N(t, x) ⊥ βu(t, x) − ϕ(x) ≥ 0 in (0, T ] × (0, l),

u(t, 0) = ux(t, 0) = 0 on (0, T ],

uxx(t, l) = uxxx(t, l) in (0, T ].

As you can see, we have essential and natural boundary conditions. Notice that
Euler–Bernoulli beam equation has a fourth-order differential operator. We assume
that −ϕ(0) > 0 as for the vibrating string problem. This ensures that contact is kept
away from the essential boundary x = 0.

More specifically, A = ∂4/∂x4 while V = H2
cf (0, l) (the first subscript “c” in-

dicates clamped boundary conditions as x = 0 and the second subscript “f” means
free) and W = H2(δ, l). Also H = L2(0, l) and Z = L2(δ, l). As for the vibrating
string example, we assume that β : H → Z. One of the interesting results from
the numerical study was that energy was close to being conserved even though the
numerical formulation was designed to mimic inelastic impacts. It is possible to set
up initial conditions for this problem which would result in dissipation of energy, but
the numerical simulations seem to indicate that energy may be conserved for “most”
initial conditions.

Boundary contact problems with Euler–Bernoulli beams have been investigated in
other works, such as [5, 17], although the beam is typically assumed to be visco-elastic;
that is, the equations of motion have the form

utt = −auxxxx − b uxxxxt + f(t, x).

The inclusion of viscosity makes the solution u more regular (at least in space) but
tends to make the normal contact force less regular. (See, for example, the results
of Petrov and Schatzman [22, 23] and Ahn and Stewart [3] for a visco-elastic wave
equation

utt = uxx + b uxxt

with contact at the endpoint x = 0.) While visco-elastic problems are not treated
in this paper, the corresponding nonviscous problem with boundary contact can be
dealt with in this framework.

4.3. Timoshenko beam formulation. The Timoshenko beam equations are
more realistic than the Euler–Bernoulli beam equation, as is well known in engineering
[32, 33]. Imposing frictionless Signorini’s contact conditions along the length of the
bar, we establish the following system:

ρAψtt = EMψxx + DAG(wx − ψ) in (0, l) × [0, T ],

ρAwtt = DAG(wxx − ψx) + N(t, x) in (0, l) × [0, T ],

0 ≤ N(t, x) ⊥ βu(t, x) − ϕ(x) ≥ 0 in (0, l) × [0, T ],

w(t, 0) = ψ(t, 0) = 0 on (0, T ],

wx(t, l) − ψ(t, l) = 0 on (0, T ].
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In this case u(t, x) = [ψ(t, x), w(t, x)]T ∈ R
2 and V = H1(0, l; R2). Our restriction

operator β : H1(0, l; R2) → H1(δ, l) is given by βu(t, x) = w(t, x); note that W =
H1(δ, l). The pivot spaces are H = L2(0, l; R2) and Z = L2(δ, l). The cone K = {w ∈
H1(δ, l) | w(x) ≥ 0 for all x ∈ (δ, l)}. The quantity ψ is the angular rotation of the
beam, while w is the vertical displacement. The physical constants involved in this
equation are: ρ is the density of beam, A is the area of cross section of the beam, E
is Young’s modulus, M is the second moment of area, G is the modulus of elasticity
of shear, and D is introduced to account for the geometric dependent distribution of
shear stress.

This system behaves very similarly to the wave equation in impact, although the
Euler–Bernoulli beam system can be obtained as a limit of this system as certain
combinations of ρ, A, E , M , G and D go to infinity. Note that the approach of
Schatzman for the vibrating string problem would be considerably complicated in
this context by having two sets of characteristics to follow.

4.4. Thin plates in impact. The equations of motion for thin elastic plates
are fourth-order equations of which the simplest uses the biharmonic operator. Incor-
porating frictionless contact forces over a subdomain Ω1 ⊂ Ω1 ⊂ Ω ⊂ R

d, again so as
to avoid contact close to the essential boundary, we have the thick obstacle problem
for a clamped boundary:

utt = −Δ2u + β∗N(t,x) in (0, T ] × Ω,

0 ≤ βu(t,x) − ϕ(x) ⊥ N(t,x) ≥ 0 on (0, T ] × Ω,

u(t,x),
∂u

∂n
(t,x) = 0 on (0, T ] × ∂Ω.

Specifically, V = H2
0 (Ω) and H = L2(Ω), while W = H2(Ω1) and Z = L2(Ω1), and

the measure of Ω1 is strictly positive. This can be treated in our system provided
d ≤ 3. The main reason for this restriction is assumption (A6). As before, we note
that this is connected to the Sobolev embedding Wθ = H2θ(Ω1) ⊂ C(Ω1) for 2θ > d/2.
We can pick 1 > θ > d/4 provided d ≤ 3. Then we can proceed as in the previous
examples and show that W−θ ⊃ M(Ω1), and we can take κ(x) = 1 for all x ∈ Ω1 for
the purposes of (A6).

A boundary thin obstacle problem based on the biharmonic operator can be
treated by the approach here for d ≤ 3. Let ∂Ω = ΓD ∪ ΓC with clamped (Dirichlet)
boundary conditions applied on ΓD and the contact conditions applied on ΓC . To
avoid the problems of contact close to the essential boundary ΓD we assume that
−ϕ is bounded above a positive constant on ΓD. The boundary conditions that are
applied are then

u(t,x),
∂u

∂n
(t,x) = 0 for t > 0 and x ∈ ΓD,

Δu(t,x) = 0 for t > 0 and x ∈ ΓC ,

∂

∂n
Δu(t,x) = N(t,x) for t > 0 and x ∈ ΓC ,

0 ≤ βu(t,x) − ϕ(x) ⊥ N(t,x) ≥ 0 for t > 0 and x ∈ ΓC .

We take V = {u ∈ H2(Ω) | u|ΓD = (∂u/∂n)|ΓD = 0} and H = L2(Ω). The
restriction operator β : V → W is the trace operator H2(Ω) → H3/2(ΓC). Since the
dimension of ΓC is d− 1, we have a Sobolev embedding H3/2(ΓC) ⊂ C(ΓC) provided
(d − 1)/2 < 3/2; that is, provided d ≤ 3. This means that for assumption (A6) we
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can take κ(x) = 1 for all x ∈ ΓC provided −ϕ(x) > 0 for all x ∈ ∂Ω\ΓC . This also
guarantees that there is no contact within a certain small distance of ΓD = ∂Ω\ΓC .

A problem of this kind was treated numerically in [8]. The authors are not aware
of any theoretical treatment of impact problems for plates of either the “thick” or
“boundary thin” kinds.

5. Convergence of numerical formulation.

5.1. Time-discrete approximation. Using time discretization, we set up a
numerical formulation. Our numerical scheme is to employ the midpoint rule for
elasticity and the implicit Euler method for contact condition. In order to do so, we
first partition time interval [0, T ]:

0 = t0 < t1 < · · · < tk−1 < tk < tk+1 < · · · < tP = T,

where ht = tk+1 − tk for k ≥ 0 is the time step size. We will assume for analytical
convenience that T is a multiple of ht; that is, ht = T/P for some positive integer P .
Then we denote by uk a numerical solution of displacement u(tk), by vk a numerical
solution of velocity v(tk) and by Nk a numerical solution of contact force N(tk),
respectively, at each discretized time tk = k · ht. Now we establish the numerical
formulation:

vk+1 − vk

ht
= −

(
Auk+1 + Auk

2

)
+ β∗Nk + f(5.1)

uk+1 − uk

ht
=

vk+1 + vk

2
(5.2)

K � βuk+1 − ϕ ⊥ Nk ∈ K∗,(5.3)

where the complementarity condition (5.3) implies
〈
Nk, βuk+1 − ϕ

〉
W−θ×Wθ

= 0.

Also we can write the numerical solution quantities as

uk =

∞∑
j=1

〈
uk, φj

〉
φj ,

vk =

∞∑
j=1

(
vk, φj

)
φj ,

β∗Nk =

∞∑
j=1

〈
β∗Nk, φj

〉
φj ,

where φj forms an H-orthonormal basis and is an eigenfunction of an elliptic self-
adjoint operator A. Now we define energy functional of the impact problems as

E[u, v] =
1

2

(
〈Au, u〉V ′×V + (v, v)H

)
− 〈f, u〉V ′×V .

1
2 〈Au, u〉 is the elastic energy, 1

2 (v, v)H is the kinetic energy, and −〈f, u〉 is the
potential energy due to the external forces. In the case where A = −Δ with Dirichlet
or Neumann boundary conditions, 〈Au, u〉 =

∫
Ω
|∇u|2dx.

Using (5.1) and (5.2), uk+1 and vk+1 can be expressed in terms of uk and vk in
the following way:

[
uk+1

vk+1

]
=

(
I + h2

tA/4
)−1

([
I − h2

tA/4 ht

−htA I − h2
tA/4

] [
uk

vk

]
+

[
h2
t/2
ht

]
(β∗Nk + f)

)
.

(5.4)
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5.2. Convergence theory in the semidiscrete case. We first show that we
can solve the above complementarity problem.

Lemma 5.1. Provided uk ∈ V and vk ∈ H, then there is a unique solution
(uk+1, vk+1, Nk) to (5.1–5.3) with uk+1 ∈ V , vk+1 ∈ H and Nk ∈ W ′.

Proof. Employing (5.4), the solution to (5.1–5.3) can be found by reducing it to
the complementarity problem

K � (βuk − ϕ) + ht β(I + h2
tA/4)−1

[
−ht

2
Auk + vk +

ht

2
(β∗Nk + f)

]
⊥ Nk ∈ K∗.

This complementarity problem is equivalent to the variational inequality: find Nk ∈
K∗ such that for all N ∈ K∗,〈

(βuk − ϕ) + ht β(I + h2
tA/4)−1

[
−ht

2
Auk + vk +

ht

2
(β∗Nk + f)

]
, Nk −N

〉
≤ 0.

Since the operator β(I + h2
tA/4)−1β∗ : W ′ → W is elliptic and self-adjoint, we can

apply the Lions–Stampacchia theorem [6, Thm. 3.1, pp. 24–29] to show that there
is a unique Nk ∈ W ′ satisfying these conditions. Noting that β∗Nk ∈ V ′ and (I +
h2
tA/4)−1 : V ′ → V by (5.4), we see that uk+1 ∈ V and vk+1 ∈ H.

In the discrete-time case, we will see in the next lemma that our numerical scheme
ensures that energy does not increase.

Lemma 5.2. Suppose that numerical solutions satisfy (5.1), (5.2) and (5.3). Then
energy does not increase.

Proof. We claim that E[uk+1, vk+1] ≤ E[uk, vk]. Using (5.1) and (5.2), by the
extension of (·, ·)H on V ′ × V for ht > 0 we have(
vk+1 − vk

ht
,
vk+1 + vk

2

)
H

=

〈
−
(
Auk+1 + Auk

2

)
+ β∗Nk + f,

uk+1 − uk

ht

〉
V ′×V

.

Thus we obtain

1

2ht

((
vk+1, vk+1

)
H
−
(
vk, vk

)
H

)
= − 1

2ht

(〈
Auk+1, uk+1

〉
V ′×V

−
〈
Auk, uk

〉
V ′×V

)
+

1

ht

(〈
β∗Nk + f, uk+1

〉
V ′×V

−
〈
β∗Nk + f, uk

〉
V ′×V

)
= − 1

2ht

(〈
Auk+1, uk+1

〉
V ′×V

−
〈
Auk, uk

〉
V ′×V

)
+

1

ht

(〈
Nk, βuk+1

〉
W ′×W

−
〈
N l, βuk

〉
W ′×W

)
+

1

ht

(〈
f, uk+1

〉
V ′×V

−
〈
f, uk

〉
V ′×V

)
= − 1

2ht

(〈
Auk+1 − 2f, uk+1

〉
V ′×V

−
〈
Auk − 2f, uk

〉
V ′×V

)
+

1

ht

(〈
Nk, βuk+1 − ϕ

〉
W ′×W

−
〈
Nk, βuk − ϕ

〉
W ′×W

)
.

Since
〈
Nk, βuk+1 − ϕ

〉
W ′×W

= 0 and
〈
Nk, βuk − ϕ

〉
W ′×W

≥ 0 from the contact
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condition (5.3),

E[uk+1, vk+1] =
1

2

(〈
Auk+1 − 2f, uk+1

〉
V ′×V

+
(
vk+1, vk+1

)
H

)
≤ 1

2

(〈
Auk − 2f, uk

〉
V ′×V

+
(
vk, vk

)
H

)
= E[uk, vk],

as required.
Since we assumed that u0 ∈ V and v0 ∈ H, the initial energy is finite, i.e.,

E0 := E(u0, v0) < ∞. In the next Lemma, we shall see that approximate solutions
at each time tk are uniformly bounded. Notice that C represents a quantity that is
independent of h and k, but the value of C will be different in each occurrence.

Lemma 5.3. For all k ≥ 0,

‖uk‖V ≤ 2 ‖f‖V ′ +
√

2E0,(5.5)

‖vk‖H ≤ 2 ‖f‖V ′ +4
√

2E0 ‖f‖2
V ′ +

√
E0,(5.6)

where E0 = E[u0, v0] is the initial energy.
Proof. From the Lemma 5.2, E[uk, vk] ≤ E[u0, v0] < ∞ for each k > 0. Then we

have

E0 = E[u0, v0] ≥ E[uk, vk]

=
1

2

(〈
uk, A uk − 2f

〉
+
(
vk, vk

))

=
1

2

〈 ∞∑
j=1

uk
jφj ,

∞∑
j=1

λju
k
jφj

〉
+

1

2

⎛
⎝ ∞∑

j=1

vkj φj ,

∞∑
j=1

vkj φj

⎞
⎠−

〈
uk, f

〉

≥ 1

2

⎛
⎝ ∞∑

j=1

λj

(
uk
j

)2
+

∞∑
j=1

(
vkj

)2⎞⎠− ‖uk‖V ‖f‖V ′

=
1

2

(∥∥uk
∥∥2

V
+
∥∥vk∥∥2

H

)
− ‖uk‖V ‖f‖V ′ ,

where uk
j =

〈
uk, φj

〉
and vkj = (vk, φj). Thus after some computations with quadratic

equations, we see (5.5) and (5.6) which are independent of k or ht > 0.
Let the numerical trajectories uht

(t) be linear continuous interpolant of uht
(tk) =

uk and uht
(tk+1) = uk+1 for t ∈ [tk, tk+1]. For the velocity, let vht

(t) be a constant

interpolant and vht(t) = vk+1 for t ∈ (tk, tk+1). Then uht(t) = uk+ 1
2

∫ t

tk
[vht(τ−ht)+

vht(τ)] dτ for all t ∈ (tk, tk+1). In order to approach contact force N ∈ M(0, T ;W ′),
we first set up a step function N(t) = Nk for t ∈ [tk, tk+1) on W ′. This implies that
contact force N is constant on W ′ for only time t ∈ [tk, tk+1). Thus it is easy to see
that the approximate contact force Nht can be defined as

Nht = ht

T/ht−1∑
k=0

δ(t− (k + 1)ht)N
k.(5.7)

So from Lemma 5.3, uht ∈ L∞(0, T ;V1) and vht ∈ L∞(0, T ;H). Note that V1 is
compactly embedded in Vθ for any θ < 1.

We now wish to bound the norm of the contact forces Nht in M(0, T ;W−θ) using
the strong pointedness assumption (A6). However, we will find it convenient to work
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with
〈
Nk, β(I + h2

tA/4)−1γ κ
〉
, instead of

〈
Nk, κ

〉
, so we need an approximation

result for κ.
Lemma 5.4. Suppose that w ∈ W . Then,

β
(
I + h2

tA/4
)−1

γw → w in W as ht ↓ 0.

Proof. Since w ∈ W ,
(
I + h2

tA/4
)−1

γw ∈ V . Let y = γw. Putting y =
∑

j yjφj ,
we have ∥∥∥(I + h2

tA/4
)−1

y − y
∥∥∥2

V
=

∥∥∥A1/2
((

I + h2
tA/4

)−1
y − y

)∥∥∥2

H

=

∞∑
j=1

(
h2
tλj/4

1 + h2
tλj/4

)2

λjy
2
j .

Since y ∈ V , for any δ > 0, there is an n > 0, independent of ht > 0 such that∑
j>n λjy

2
j < δ. Now for such n, we have

n∑
j=1

(
h2
tλj/4

1 + h2
tλj/4

)2

λjy
2
j → 0 as ht ↓ 0.(5.8)

On the other hand,

∞∑
j>n

(
h2
tλj/4

1 + h2
tλj/4

)2

λjy
2
j ≤

∞∑
j>n

λjy
2
j < δ.(5.9)

Therefore from (5.8) and (5.9),∥∥∥(I + h2
tA/4

)−1
y − y

∥∥∥
V
→ 0 as ht ↓ 0.

Thus as ht ↓ 0,∥∥∥β (
I + h2

tA/4
)−1

γw − w
∥∥∥
W

=
∥∥∥β (

I + h2
tA/4

)−1
γw − βγw

∥∥∥
W

=
∥∥∥β ((

I + h2
tA/4

)−1
y − y

)∥∥∥
W

≤ ‖β‖L(V,W )

∥∥∥(I + h2
tA/4

)−1
y − y

∥∥∥
V
→ 0,

as required.
The above approximation result can now be used to bound the norm of Nh as a

W−θ-valued measure.
Lemma 5.5. Suppose that (A6) holds with κ ∈ intK ⊂ W . Then there is a

constant C (independent of h) where∫
[0,T ]

‖Nht(t)‖W−θ
dt ≤ C for all sufficiently small ht > 0.

Proof. Recall the matrix form (5.4). By extension of
(
vk+1 − vk, γκ

)
H×V

in

V ′ × V ,(
vk+1 − vk, γκ

)
H×V

=
〈 (

I + h2
tA/4

)−1 (−htAuk +
(
I − h2

tA/4
)
vk

−
(
I + h2

tA/4
)
vk + ht(β

∗Nk + f)
)
, γκ

〉
V ′×V

=

〈(
I + h2

tA/4
)−1

(
−htAuk − h2

t

2
Avk + ht(β

∗Nk + f)

)
, γκ

〉
V ′×V

.
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Thus we have

ht

〈(
I + h2

tA/4
)−1

β∗Nk, γκ
〉
V ′×V

=
(
vk+1 − vk, γκ

)
H

+ ht

〈(
I + h2

tA/4
)−1

Auk, γκ
〉
V ′×V

+
h2
t

2

〈(
I + h2

tA/4
)−1

Avk, γκ
〉
V ′×V

− ht

〈(
I + h2

tA/4
)−1

f, γκ
〉
V ′×V

.(5.10)

Also it follows that

ht

〈(
I + h2

tA/4
)−1

β∗Nk, γκ
〉
V ′×V

= ht

〈
β∗Nk,

(
I + h2

tA/4
)−1

γκ
〉
V ′×V

= ht

〈
Nk, β

(
I + h2

tA/4
)−1

γκ
〉
W ′×W

.(5.11)

Consider the second term of the right-hand side on (5.10). Since for ht > 0
∥∥(I +

h2
tA/4)−1

∥∥
L(H)

= supλj∈σ(A)(1 + h2
tλj/4)−1 ≤ 1, we have

∣∣∣∣〈(I + h2
tA/4

)−1
Auk, γκ

〉
V ′×V

∣∣∣∣ =
∣∣∣((I + h2

tA/4
)−1

A1/2uk, A1/2γκ
)
H

∣∣∣
≤

∥∥∥(I + h2
tA/4

)−1
A1/2uk

∥∥∥
H

∥∥∥A1/2γκ
∥∥∥
H

≤
∥∥∥(I + h2

tA/4
)−1

∥∥∥
L(H)

∥∥∥A1/2uk
∥∥∥
H

∥∥∥A1/2γκ
∥∥∥
H

≤
∥∥uk

∥∥
V
‖γκ‖V .(5.12)

Consider the third term of the right-hand side of (5.10). Since∥∥(I+h2
tA/4)−1htA

1/2/2
∥∥
L(H)

= sup
λj∈σ(A)

(htλ
1/2
j /2)(1+h2

tλj/4)−1 ≤ 1 for any ht > 0,

we obtain

ht

∣∣∣∣〈(I + h2
tA/4

)−1
Avk, γκ

〉
V ′×V

∣∣∣∣
= ht

∣∣∣((I + h2
tA/4

)−1
A1/2vk, A1/2γκ

)
H

∣∣∣
≤

∥∥∥(I + h2
tA/4

)−1
htA

1/2vk
∥∥∥
H

∥∥∥A1/2γκ
∥∥∥
H

≤ 2
∥∥∥(I + h2

tA/4
)−1

htA
1/2/2

∥∥∥
L(H)

∥∥vk∥∥
H

∥∥∥A1/2γκ
∥∥∥
H

≤ 2
∥∥vk∥∥

H
‖γκ‖V .(5.13)

Consider the fourth term of the right-hand side of (5.10). Then we have

ht

∣∣∣∣〈(I + h2
tA/4

)−1
f, γκ

〉
V ′×V

∣∣∣∣ = ht

∣∣∣((I + h2
tA/4

)−1
A−1/2f, A1/2γκ

)
H

∣∣∣
≤ ht

∥∥∥(I + h2
tA/4

)−1
∥∥∥
L(H)

∥∥∥A−1/2f
∥∥∥
H

∥∥∥A1/2γκ
∥∥∥
H

≤ ht ‖f‖V ′ ‖γκ‖V .
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By Lemma 5.4, β(I + h2
tA/4)−1γ κ ∈ intK for sufficiently small ht > 0. Thus if

‖κ− β(I + h2
tA/4)−1γκ‖W ≤ η/2 for sufficiently small ht > 0, then for all ζ ∈ K∗,

〈ζ, κ〉W ′×W −
〈
ζ, β(I + h2

tA/4)−1γκ
〉
W ′×W

=
〈
ζ, κ− β(I + h2

tA/4)−1γκ
〉
W ′×W

≤ ‖ζ‖W ′

∥∥κ− β(I + h2
tA/4)−1γκ

∥∥
W

≤ η

2
‖ζ‖W ′ .

Since 〈ζ, κ〉 ≥ η ‖ζ‖W−θ
, we have

η ‖ζ‖W−θ
−
〈
ζ, β(I + h2

tA/4)−1γκ
〉
W ′×W

≤ 〈ζ, κ〉W ′×W −
〈
ζ, β(I + h2

tA/4)−1γκ
〉
W ′×W

≤ η

2
‖ζ‖W−θ

.

Therefore we obtain〈
ζ, β(I + h2

tA/4)−1γκ
〉
W ′×W

≥ η

2
‖ζ‖W−θ

for all ζ ∈ K∗.(5.14)

Now by (5.10) and (5.11), taking ζ as Nk, we obtain

ht

T/ht−1∑
k=0

〈
Nk, β

(
I + h2

tA/4
)−1

γκ
〉
W ′×W

=

T/ht−1∑
k=0

(
vk+1 − vk, γκ

)
H×V

+ ht

T/ht−1∑
k=0

〈(
I + h2

tA/4
)−1

Auk, γκ
〉
V ′×V

+
h2
t

2

T/ht−1∑
k=0

〈(
I + h2

tA/4
)−1

Avk, γκ
〉
V ′×V

+ ht

〈(
I + h2

tA/4
)−1

f, γκ
〉
V ′×V

.

Thus using Lemma 5.3, by (5.12), (5.13), and (5.14)

ηht

2

T/ht−1∑
k=0

∥∥Nk
∥∥
W−θ

≤ ht

T/ht−1∑
k=0

〈
Nk, β

(
I + h2

tA/4
)−1

γκ
〉
W ′×W

≤ ‖γκ‖H
(∥∥∥vT/ht

∥∥∥
H

+
∥∥v0

∥∥
H

)
+ ht ‖γκ‖V

⎛
⎝T/ht−1∑

k=0

(∥∥uk
∥∥
V

+
∥∥vk∥∥

H

)⎞⎠
+ T ‖f‖V ′ ‖γκ‖V

≤ ‖γκ‖H
(∥∥∥vT/ht

∥∥∥
H

+
∥∥v0

∥∥
H

)
+ T ‖γκ‖V max

0≤k≤T/ht−1

(∥∥uk
∥∥
V

+
∥∥vk∥∥

H

)
+ T ‖f‖V ′ ‖γκ‖V

≤ C

(
‖f‖V ′ +

√
E0 +4

√
E0 ‖f‖2

V ′

)
,(5.15)

where C does not depend on ht. Note that E0 is the initial energy. Since

T/ht−1∑
k=0

∥∥Nk
∥∥
W−θ

= h−1
t

∫
[0,T ]

‖Nht(t)‖W−θ
dt,
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so∫
[0,T ]

‖Nht(t)‖W−θ
dt ≤ 2C

η

(
‖f‖V ′ +

√
E0 +4

√
E0 ‖f‖2

V ′

)
for sufficiently small ht > 0,

as required.
For any σ ∈ R we define the space of Hölder continuous functions with exponent

0 < p ≤ 1 in Cp(0, T ;Vσ) with norm

‖u‖Cp(0,T ;Vσ) = ‖u‖C(0,T ;Vσ) + sup
t�=s

‖u(t) − u(s)‖Vσ

|t− s|p .

In the next Lemma, we will see that interpolant uht is uniformly Hölder continuous
from [0, T ] to Vσ, 0 ≤ σ < 1. In order to do so, we need the following inequality: for
u ∈ V we have

‖u‖Vσ
≤ Cσ ‖u‖1−σ

H ‖u‖σV ,(5.16)

where 0 < σ < 1. This inequality is presented in Kuttler [15, section 22.6, equation
(62)], Triebel [34, Thm. 1.3.3(g)], and Bramble & Xu [7, Appendix A, Thms. A.1 and
A.2]. Also, if σ = 0 or σ = 1, clearly (5.16) is satisfied.

Lemma 5.6. The discrete-time solutions uht are uniformly Hölder continuous
from [0, T ] → Vσ with exponent p = 1 − σ, where 0 ≤ σ < 1.

Proof. We claim that for s, t ∈ [0, T ], ‖uht
(s) − uht

(t)‖Vσ
≤ C |s− t|p . Using the

interpolation space bounds (5.16),

‖uht(s) − uht
(t)‖Vσ

≤ ‖uht
(s) − uht

(t)‖1−σ
H ‖uht

(s) − uht
(t)‖σV

≤ Cσ

∥∥∥∥
∫ t

s

vht(τ) dτ

∥∥∥∥
1−σ

H

‖uht(s) − uht(t)‖
σ
V

≤ Cσ

(∫ t

s

‖vht(τ)‖H dτ

)1−σ

(‖uht(s)‖V + ‖uht(t)‖V )
σ
.

Then by the energy bounds, we obtain

‖uht
(s) − uht

(t)‖Vσ

≤ Cσ

(
‖f‖V ′ +

√
2E0

)σ
(

2 ‖f‖V ′ +4
√

2E0 ‖f‖2
V ′ +

√
E0

)(1−σ)

|s− t|1−σ

≤ Cσ |s− t|p ,

where Cσ is a constant independent of ht, s and t.
Thus we can see that the interpolant uht is uniformly bounded in Cp(0, T ;Vσ).

Now we need compactness to show that uht converges strongly in C([0, T ];Vσ), as
ht ↓ 0. The continuous linear interpolant uht : [0, T ] → V is bounded in Vσ with
σ < 1, so uht(t) is in a compact subset of Vσ for all t ∈ [0, T ] and ht > 0, and
uht

: [0, T ] → Vσ is an equicontinuous family. By the Arzela–Ascoli Theorem [18,
p. 57], Cp(0, T ;Vσ) is compactly embedded in C(0, T ;Vσ) for any σ < 1.

Thus uht has a subsequence which converges strongly in C(0, T ;Vσ). Denoting
this subsequence by uht , we restrict our attention to this subsequence.

In the next Lemma, we will see that solutions obtained by our numerical trajec-
tories satisfy differential equations in the sense of measure.



IMPACT PROBLEMS WITHOUT VISCOSITY 53

Lemma 5.7. The limits (u, v,N) obtained from the numerical trajectories
(uht , vht , Nht) satisfy du/dt = v in L∞(0, T ;H), and the equation of motion (3.1)
holds in M(0, T − ε;V ′), the space of V ′-valued measures on [0, T − ε], for any ε > 0,
where v(0) = v0.

Proof. First, we claim that duht/dt(t) = (vht(t−h)+ vht(t))/2 for all t 
= tk with
uht

absolutely continuous. From (5.2) and the fact that uht
is the piecewise linear

interpolant of uh(tk) = uk for all k, we have

duht

dt
(t) =

vk+1 + vk

2
for all t ∈ (tk, tk+1).

Because vht
is piecewise constant, duht/dt(t) = (vht(t − ht) + vht(t))/2 for t ∈

(tk, tk+1). Thus for any 0 ≤ s < t ≤ T ,

uht(t) − uht(s) =

∫ t

s

1

2
(vht(τ − ht) + vht(τ)) dτ.

As uht → u in C(0, T ;Vσ) ⊂ C(0, T ;H), and vht ⇀∗ v in L∞(0, T ;H), taking limits
in any convergent subsequence gives

u(t) − u(s) =

∫ t

s

v(τ) dτ,

and so du/dt(t) = v(t) for almost all t.
We claim that for all ξ ∈ Lip(0, T ;V ) (the space of Lipschitz functions [0, T ] → V )

with ξ(T ) = 0, (u, v,N) obtained from the numerical trajectory (uht , vht , Nht) satisfies∫
[0,T ]

〈
dv

dt
(t), ξ(t)

〉
V ′×V

dt =

∫
[0,T ]

〈−Au(t) + β∗N(t) + f, ξ(t)〉V ′×V dt(5.17)

interpreted in the sense of distributions. Note that a Lipschitz function ξ : [0, T ] → V
is differentiable almost everywhere with a derivative in L∞(0, T ;V ) as V has the
Radon–Nikodym property [11]. Note that on [0, T ],

dvht

dt
(t) =

T/ht−1∑
k=0

(
vk+1 − vk

)
δ (t− tk)

in the sense of distributions. Then using (5.1), we have, noting that T is a multiple
of ht: ∫

[0,T ]

〈
dvht

dt
(t), ξ(t)

〉
V ′×V

dt

=

T/ht−1∑
k=0

〈
vk+1 − vk, ξ(tk)

〉

= ht

T/ht−1∑
k=0

〈
−A

(
uk+1 + uk

2

)
+ β∗Nk + f, ξ(tk)

〉

= ht

T/ht−1∑
k=0

〈
−A

(
uk+1 + uk

2

)
, ξ(tk)

〉
+ ht

T/ht∑
k=0

〈
β∗Nk + f, ξ(tk)

〉
.(5.18)
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Consider the first sum in (5.18). Since uht
is a piecewise linear interpolant, we obtain

ht

T/ht−1∑
k=0

〈
−A

(
uk+1 + uk

2

)
, ξ(tk)

〉

=

T/ht−1∑
k=0

∫ tk+1

tk

〈−Auht , ξ(tk)〉 dt

=

T/ht−1∑
k=0

∫ tk+1

tk

〈−Auht(t), ξ(t) − ξ(t) + ξ(tk)〉 dt

= −
T/ht−1∑
k=0

∫ tk+1

tk

〈Auht
(t), ξ(t)〉 dt +

T/ht−1∑
k=0

∫ tk+1

tk

〈Auht
(t), ξ(t) − ξ(tk)〉 dt

= −
∫

[0,T ]

〈Auht(t), ξ(t)〉 dt +

∫
[0,T ]

〈Auht(t), ξ(t) − ξ(ht �t/ht�)〉 dt.

(5.19)

Consider the second sum in (5.18). Then by the similar argument to above,

ht

T/ht−1∑
k=0

〈
β∗Nk + f, ξ(tk)

〉

=

T/ht−1∑
k=0

∫ tk+1

tk

〈β∗Nht(t) + f, ξ(tk)〉 dt

=

T/ht−1∑
k=0

∫ tk+1

tk

〈β∗Nht(t) + f, ξ(t)〉 dt +

T/ht−1∑
k=0

∫ tk+1

tk

〈β∗Nh(t) + f, ξ(tk) − ξ(t)〉 dt

=

∫
[0,T ]

〈β∗Nht
(t) + f, ξ(t)〉 dt +

∫
[0,T ]

〈β∗Nht
(t) + f, ξ(ht �t/ht�) − ξ(t)〉 dt.

(5.20)

Let Cξ be the Lipschitz constant of ξ. Then∣∣∣∣∣
∫

[0,T ]

〈β∗Nht(t) + f, ξ(ht �t/ht�) − ξ(t)〉 dt
∣∣∣∣∣

≤
∫

[0,T ]

‖β∗Nht
(t) + f‖V ′ ‖ξ(ht �t/ht�) − ξ(t)‖V dt

≤ Cξ ht

∫
[0,T ]

(‖β∗Nht(t)‖V ′ + ‖f‖V ′) dt ≤ C ht

for some C not depending on ht. It follows that∫
[0,T ]

〈β∗Nht(t) + f, ξ(ht �t/ht�) − ξ(t)〉 dt → 0 as ht ↓ 0.

Similarly, using the fact that Auht is uniformly bounded in L∞(0, T ;V ′),∫
[0,T ]

〈Auht(t), ξ(ht �t/ht� − ξ(t)〉 dt → 0 as ht ↓ 0.
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Extend ξ to ξ : R → V by setting ξ(t) = ξ(0) for t < 0 and ξ(t) = ξ(T ) = 0 for
t > T . Now, using integration by parts,∫

[0,T ]

〈
dvht

dt
(t), ξ(t)

〉
dt =

〈
vht

(T+), ξ(T+)
〉
−
〈
vht

(0−), ξ(0−)
〉

−
∫ T

0

〈
vht(t),

dξ

dt
(t)

〉
dt.

But vht(0) = v0, the initial velocity, and ξ(T+) = ξ(T ) = 0, so∫
[0,T ]

〈
dvht

dt
(t), ξ(t)

〉
dt = −

〈
v0, ξ(0)

〉
−
∫

[0,T ]

〈
vht(t),

dξ

dt
(t)

〉
dt.(5.21)

Since vht ⇀
∗ v in L∞(0, T ;H), the right-hand side of (5.21) converges to

−
〈
v0, ξ(0)

〉
−
∫

[0,T ]

〈
v(t),

dξ

dt
(t)

〉
dt.

Using integration by parts again, we see that this limit is just∫
[0,T ]

〈
dv

dt
(t), ξ(t)

〉
dt.

Now taking the weak* limits β∗Nht
⇀∗ β∗N in M(0, T ;V ′) and Auht

⇀∗ Au in
L∞(0, T ;V ′), we get∫

[0,T ]

〈
dv

dt
(t), ξ(t)

〉
dt =

∫
[0,T ]

〈−Au(t) + β∗N(t) + f, ξ(t)〉 dt,

for all ξ ∈ Lip(0, T ;V ), ξ(T ) = 0. Since any function ξ̃ ∈ Lip(0, T − ε;V ) can be
extended to a function ξ ∈ Lip(0, T ;V ) with ξ(T ) = 0,

dv

dt
= −Au + β∗N + f on [0, T − ε],

v(0) = v0,

in the sense of distributions for any ε > 0, as desired.
In the next Lemma, we will see that the limit of the numerical trajectories, as

ht ↓ 0, satisfies the complementarity condition in the weak sense.
Lemma 5.8. Setting σ = (1 − θ)α + θ with θ < 1 and α < 1 satisfying (A6) and

(A7), we have

0 ≤
∫

[0,T ]

〈Nht(t), βuht(t) − ϕ〉W−θ×Wθ
dt ≤ Cθ,σh

1−σ
t

∫
[0,T ]

‖Nht(t)‖W−θ
dt.

Proof. Let qht(t) = uht(t) − uk+1 for tk ≤ t ≤ tk+1. Then by complementarity
condition, for tk ≤ t ≤ tk+1 we have

〈Nht(t), βuht(t) − ϕ〉W−θ×Wθ
=

〈
Nht(t), βqht(t) + βuk+1 − ϕ

〉
W−θ×Wθ

= 〈Nht
(t), βqht

(t)〉W−θ×Wθ
.
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Since
∥∥Nk

∥∥
W−θ

= ‖Nht
(t)‖W−θ

for tk ≤ t < tk+1, we obtain

∫ tk+1

tk

〈Nht(t), βqht(t)〉W−θ×Wθ
dt =

∫ tk+1

tk

〈
Nk, βqht(t)

〉
W−θ×Wθ

dt

≤ Cθ

∫ tk+1

tk

‖qht
(t)‖Vθ

∥∥Nk
∥∥
W−θ

dt

= Cθ

∥∥Nk
∥∥
W−θ

∫ tk+1

tk

‖qht(t)‖Vθ
dt.

Using trapezoidal rule for the integral of linear interpolant uht and Lemma 5.6, we
have ∫ tk+1

tk

〈Nht(t), βqht(t)〉W−θ×Wθ
dt ≤ Cθ

2

∥∥Nk
∥∥
W−θ

∥∥uk+1 − uk
∥∥
Vσ

· ht

≤ Cθ,σ

∥∥Nk
∥∥
W−θ

h1−σ
t ht.

Thus∫
[0,T ]

〈Nht(t), βuht(t) − ϕ〉W−θ×Wθ
dt =

T/ht−1∑
k=0

∫ tk+1

tk

〈Nht(t), βqht(t)〉W−θ×Wθ
dt

≤ Cθ,σ

T/ht−1∑
k=0

∥∥Nk
∥∥
W−θ

h1−σ
t ht

= Cθ,σh
1−σ
t

∫
[0,T ]

‖Nht
(t)‖W−θ

dt,

as required.
Lemma 5.9. Suppose that dual cone K∗ is strongly pointed and θ < 1 and σ < 1.

Then uht strongly converges to solution u in C(0, T ;Vσ) and Nht weakly∗ converges
to solution N in the measure space M(0, T ;W−θ), as ht ↓ 0, and the limits satisfy
complementarity condition in the weak sense.

Proof. Let σ = (1 − θ)α + θ < 1 where α < 1 and θ < 1 from (A6) and (A7).
By the Arzela–Ascoli Theorem there is a strongly convergent subsequence uht

to u
in C(0, T ;Vσ). An elementary calculation and the interpolation theory of operators
show that β : Vσ → Wθ is a bounded linear operator. On the other hand, there is a
subsequence in which Nht converges weakly∗ to N in M(0, T ;W−θ) by the Alouglu’s
Theorem [24, Thm. 6.62, p. 203]. Then by Lemma 5.8, as ht ↓ 0, we have

0 ≤
∫

[0,T ]

〈Nht(t), βuht(t) − ϕ〉W−θ×Wθ
dt ≤ Cθ,σh

1−σ
t

∫
[0,T ]

‖Nht(t)‖W−θ
dt → 0.

Since K is a closed convex cone in W , for any ζ ∈ K∗ and 0 ≤ s < t ≤ T , 0 ≤∫ t

s
〈ζ, βuht

− ϕ〉 dτ →
∫ t

s
〈ζ, βu− ϕ〉 dτ , and so βu(t) − ϕ ∈ K for almost all t.

Similarly, Nht ⇀
∗ N ∈ K∗. Thus,∫

[0,T ]

〈Nht
(t), βuht

(t) − ϕ〉W−θ×Wθ
dt →

∫
[0,T ]

〈N(t), βu(t) − ϕ〉W−θ×Wθ
dt.

As the integral on the left is O(h1−σ
t ) as ht ↓ 0,

∫
[0,T ]

〈N(t), βu(t) − ϕ〉 dt = 0. This

implies that the limits of the discrete-time trajectories satisfy the complementarity
condition in the weak sense. The proof is complete.
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5.3. Convergence theory in the fully discrete case. Let {ψi | i = 1, . . . ,Nhx
}

be a basis for a subspace V hx ⊂ V ; this is the basis that is used for space discretization:

u(tk, x) ≈
∑Nhx

j=1 uk
jψj(x) on each time tk.

Then let {Φi | Φi = βψi for i = 1, . . . ,Nhx} be a basis for a finite dimensional
space Whx

θ ⊂ Wθ, and Khx ⊂ K be the cone generated by {βψi | 1 ≤ i ≤ Nhx
} such

that Khx ⊂ Whx

θ .
In order to show the full convergence of our numerical trajectories, we need the

following conditions:
(B1) The dual cone K∗ is a closure of K in W−θ.
(B2) For every w ∈ K, minz∈Khx ‖w − z‖W → 0 as n → 0.
(B3) There is a constant C > 0, where ‖ψi‖W−θ

≤ C for all i, independent of
hx > 0.

(B4) There is a constant C1, C2 > 0, where
∥∥M−1

∥∥ ≤ C1 and ‖M‖ ≤ C2, inde-
pendent of hx > 0.

(B5) There is a constant η1, where mini κi/maxi κi ≥ η1 > 0 with κhx :=
∑Nhx

j=1 κj×
βψj ∈ Wθ ∩Khx , independent of hx > 0.

(B6) There is a constant η2 where ‖κ‖∞ ≥ η2 > 0, independent of hx > 0 (κ =
(κ1, κ2, . . . , κNhx

)).
Note that (B1) is a self-duality condition. Also note that we can suppose (B4), by
the condition number of M, cond(M) =

∥∥M−1
∥∥ ‖M‖ ≤ C and scalar-invariance.

The condition (B2) implies that we can approximate w by z ∈ Khx . We write the
approximate solution Nk

hx
∈ Khx each time step tk as

Nk
hx

=

Nhx∑
j=1

Nk
j βψj ,

where Nk = (Nk
1 , N

k
2 , · · · , Nk

Nhx
)T . In the same fashion, we write approximate solu-

tion (uk
hx
, vkhx

) ∈ V hx
σ (⊂ Vσ) ×Hhx(⊂ H) each time step tk as

uk
hx

=

Nhx∑
j=1

uk
jψj and vkhx

=

Nhx∑
j=1

vkj ψj ,

where uk = (uk
1 , u

k
2 , . . . , u

k
Nhx

)T , vk = (vk1 , v
k
2 , . . . , v

k
Nhx

)T . Then we notice that

approximate solutions uht,hx ∈ C(0, T ;Vσ) and vht,hx ∈ L∞(0, T ;H) in the fully
discrete case.

From (5.3) the approximate solutions satisfy the complementarity condition:

0 ≤ gk+1 ⊥ Nk ≥ 0,(5.22)

where βuk+1 − ϕ =
∑Nhx

j=1

(
uk+1
j − ϕj

)
βψj and gk =

(
gk1 , g

k
2 , · · · , gkn

)T
with gkj =

uk
j − ϕj . Then employing the fully discrete version, we have the norm of Nht,hx as a

W−θ-valued measure given by

∫
[0,T ]

‖Nht,hx
‖W−θ

dt = ht

T/ht−1∑
k=0

∥∥∥∥∥∥
Nhx∑
j=1

Nk
j βψj

∥∥∥∥∥∥
W−θ

≤ ht

T/ht−1∑
k=0

Nhx∑
j=1

∣∣Nk
j

∣∣ ‖βψj‖W−θ
.(5.23)
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The mass matrix M is given by mji = (βψj , βψi)Z . Also we assume that M is a
positive definite. Attributed to the basis functions and mass matrix, now we modify
the complementarity condition (5.22) into the alternative complementarity condition
that is necessary to consider full convergence:

0 ≤ gk+1 ⊥ MNk ≥ 0.(5.24)

Lemma 5.10. Suppose that K∗ is strongly pointed; (B1–B6) hold. Then we have

∫
[0,T ]

‖Nht,hx
‖W−θ

dt ≤ C for sufficiently small ht, hx > 0,

where θ ≤ 1 and C does not depend on ht and hx.
Proof. By Lemma 5.4, β(I + h2

tA/4)−1γω → ω on W for any ω ∈ W . Then we

approximate κ by κhx
:=

∑Nhx
j=1 κjβψj ∈ Wθ ∩ Khx , where κj > 0 for any j ≥ 1,

since K is a convex cone. Recalling that (A6) is equivalent to κ ∈ intK in Wθ,
it follows that κhx → κ as hx ↓ 0 and β(I + h2

tA/4)−1γκ → κ as ht ↓ 0. Thus
we choose sufficiently small hx > 0 and ht > 0, such that ‖κhx

− κ‖Wθ
≤ η/4 and

‖β(I+h2
tA/4)−1γκ−κ‖Wθ

≤ η/4. Now employing the estimate (5.15), for sufficiently
small ht > 0 and hx > 0 we obtain

C ≥ ht

T/ht−1∑
k=0

〈
Nk

hx
, β

(
I + h2

tA/4
)−1

γκ
〉
W ′×W

≥ ht

T/ht−1∑
k=0

〈
Nk

hx
, β

(
I + h2

tA/4
)−1

γκ− κ + κ− κhx
+ κhx

〉
W ′×W

= ht

T/ht−1∑
k=0

〈
Nk

hx
, κhx

〉
W ′×W

− ht

T/ht−1∑
k=0

〈
Nk

hx
, κhx − κ

〉
W ′×W

− ht

T/ht−1∑
k=0

〈
Nk

hx
, κ− β

(
I + h2

tA/4
)−1

γκ
〉
W ′×W

≥ ht

T/ht−1∑
k=0

(〈
Nk

hx
, κhx

〉
W ′×W

− η

2

∥∥Nk
hx

∥∥
W−θ

)
.(5.25)

Then using (5.15) again, from (5.25)

ht

T/ht−1∑
k=0

〈
Nk

hx
, κhx

〉
W ′×W

≤ ηht

2

T/ht−1∑
k=0

∥∥Nk
hx

∥∥
W−θ

+ C ≤ C.
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Thus we have

C ≥ ht

T/ht−1∑
k=0

〈
Nk

hx
, κhx

〉
W ′×W

= ht

T/ht−1∑
k=0

(
Nk

hx
, κhx

)
Z

= ht

T/ht−1∑
k=0

⎛
⎝Nhx∑

j=1

Nk
j βψj ,

Nhx∑
i=1

κiβψi

⎞
⎠

Z

= ht

T/ht−1∑
k=0

Nhx∑
i=0

κi · (MNk)i

≥ ht

T/ht−1∑
k=0

Nhx∑
i=0

min
1≤i≤Nhx

κi · (MNk)i.

So it follows from condition (B5) that

ht

T/ht−1∑
k=0

∥∥MNk
∥∥

1
≤ C

η1 ‖κ‖∞
.(5.26)

Therefore using (5.23) and (5.26),

∫
[0,T ]

‖Nht,hx‖W−θ
dt = ht

T/ht−1∑
k=0

∥∥∥∥∥∥
Nhx∑
j=1

Nk
j βψj

∥∥∥∥∥∥
W−θ

≤ ht

T/ht−1∑
k=0

Nhx∑
j=1

∣∣Nk
j

∣∣ ‖ψj‖W−θ

= Cht

T/ht−1∑
k=0

∥∥Nk
∥∥

1

= Cht

T/ht−1∑
k=0

∥∥M−1MNk
∥∥

1

≤ Cht

T/ht−1∑
k=0

∥∥M−1
∥∥

1

∥∥MNk
∥∥

1

≤ Cht

T/ht−1∑
k=0

∥∥MNk
∥∥

1

≤ C

η1 · η2
= C,

where C does not depend on ht and hx. The proof is complete.
As we mentioned in the semidiscrete case, in the next Lemmas we will restrict

our attention to subsequences which are convergent to a solution. We note that we
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require contact condition MNk ≥ 0 in (5.24) rather than Nk ≥ 0 in (5.22), in order
to show full convergence.

Lemma 5.11. If MNk ≥ 0 and subsequence Nht,hx weakly∗ converges N in the
measure space M(0, T ;W−θ), then N ∈ K∗.

Proof. Let any ξ be in C1(0, T ;Wθ). Since Nht,hx ⇀∗ N as W−θ-valued measure,
we have

∫
[0,T ]

〈Nht,hx
, ξ〉W−θ×Wθ

dt →
∫

[0,T ]

〈N, ξ〉W−θ×Wθ
dt.

Let ξhx
(t) =

∑Nhx
i=1 ξi(t)ψi ∈ Wθ ∩Khx be the projection of ξ onto Khx with ξi(t) > 0

for all t and i. Since the convex projection is a nonexpansive mapping, ξhx is uniformly
bounded; ξhx is also Lipschitz with the same Lipschitz constant as ξ. Then from (B2)
ξhx → ξ ∈ K with all t. By the standard arguments, ‖ξhx − ξ‖L∞(0,T ;Wθ) → 0 as
hx ↓ 0. Therefore as ht ↓ 0 and hx ↓ 0 in suitable subsequence,

∫
[0,T ]

〈Nht,hx
, ξhx

〉W−θ×Wθ
dt →

∫
[0,T ]

〈N, ξ〉W−θ×Wθ
dt.(5.27)

Since MNk ≥ 0 and ξi(t) > 0, it follows that

∫
[0,T ]

〈Nht,hx
, ξhx

〉W−θ×Wθ
dt

=

∫
[0,T ]

⎛
⎝ht

T/ht−1∑
k=0

δ(t− (k + 1)ht)

Nhx∑
j=1

Nk
j βψj ,

Nhx∑
i=1

ξi(t)βψi

⎞
⎠
Z

dt

= ht

T/ht−1∑
k=0

⎛
⎝Nhx∑

j=1

Nk
j βψj ,

Nhx∑
i=1

ξi(tk)βψi

⎞
⎠
Z

= h

T/ht−1∑
k=0

Nhx∑
i=1

ξi(tk)(MNk)i ≥ 0.

Thus by (5.27), we have

0 ≤
∫

[0,T ]

〈Nht,hx
, ξhx

〉W−θ×Wθ
dt →

∫
[0,T ]

〈N, ξ〉W−θ×Wθ
dt.

Thus
∫
[0,T ]

〈N, ξ〉 dt ≥ 0. This implies that N ∈ K∗ in the W ′-valued measure.

We note that duht,hx/dt(t) = (vht,hx(t) − vht,hx(t− ht)) /2 with vht,hx(t) = v0

for −ht ≤ t < 0 from numerical formulation (5.2). Before we see the next Lemma, we
notice that uht,hx ⇀∗ u in L∞(0, T ;Vσ) with σ ≤ 1 and vht,hx ⇀∗ v in L∞(0, T ;H),

since L∞(0, T ;Vσ) �
(
L1(0, T ;Vσ)

)∗
and L∞(0, T ;H) �

(
L1(0, T ;H)

)∗
.

Lemma 5.12. Suppose that dual cone K∗ is strongly pointed and σ < 1 and
θ < 1. Then the solution (u, N) obtained from numerical trajectories (uht,hx

, Nht,hx
)

satisfies the complementarity condition (5.24) in the weak sense.
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Proof. By the energy bounds in Lemma 5.3 and the similar argument to Lemma 5.6,
we have

‖uht,hx(s) − uht,hx(t)‖Vσ
≤ ‖uht,hx(s) − uht,hx(t)‖1−σ

H ‖uht,hx(s) − uht,hx(t)‖σV
≤ Cσ ‖(vht,hx

(t) − vht,hx
(t− ht))‖1−σ

H

×
(
‖uht,hx(s)‖V + ‖uht,hx(t)‖V

)σ
≤ Cσ |s− t|p ,

where p = 1 − σ and σ < 1. By the Arzela–Ascoli Theorem, there is a subsequence
uht,hx → u in C(0, T ;Vσ), as ht, hx ↓ 0. Since β : Vσ → Wθ (see Lemma 5.9) is a
bounded linear operator, by (5.24) we obtain∫

[0,T ]

〈Nht,hx , βuht,hx − ϕhx〉W−θ×Wθ
dt

=

∫
[0,T ]

⎛
⎝ht

T/ht−1∑
k=0

δ(t− (k + 1)ht)

Nhx∑
j=1

Nk
j βψj ,

Nhx∑
i=1

gk+1
i βψi

⎞
⎠
Z

dt

= ht

T/ht−1∑
k=0

⎛
⎝Nhx∑

j=1

Nk
j βψj ,

Nhx∑
i=1

gk+1
i βψi

⎞
⎠
Z

= ht

T/ht−1∑
k=0

(gk+1)TMNk = 0.

Since Nht,hx ⇀∗ N ∈ K∗ and βuht,hx −ϕhx → βu−ϕ ∈ K as measure with ht, hx ↓ 0
from Lemma 5.11, taking the limit in the subsequence, it follows that

0 =

∫
[0,T ]

〈Nht,hx
, βuht,hx

− ϕhx
〉W−θ×Wθ

dt →
∫

[0,T ]

〈N, βu− ϕ〉W−θ×Wθ
dt.

The proof is complete.

6. Conclusions. We have been able to show the existence of solutions for a
general class of impact problems of the form

utt = −Au + β∗N(t) + f,

u(0) = u0,

ut(0) = v0,

K � βu(t) − ϕ ⊥ N(t) ∈ K∗ for all t ∈ [0, T ],

with the last condition interpreted in a weak sense: N is a measure on [0, T ] with
values in K∗ (

∫
B
N ∈ K∗ for any Borel set B), βu(t) − ϕ ∈ K for all t, and∫

[0,T ]

〈βu(t) − ϕ, N(t)〉 dt = 0,

with the integrand identified as a measure.
The most important assumption that was made was (A6) which is a strong point-

edness assumption. The usual way in which we guarantee this is by requiring that
W is a Sobolev space Hm(Ω1) with Ω1 a d-dimensional manifold or open set in R

d,
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where m > d/2 in order to get an embedding Hm−ε(Ω1) ⊂ C(Ω1) for some ε > 0.
This means that either m is large or d is small. Thus dynamic obstacle problems
for the wave equation or the equations of elasticity in two or three dimensions (or
more) cannot be treated by these methods. The incorporation of viscosity to create a
visco-elastic system of equations can be used to get greater regularity in the solution
u and the velocity ut = v [16]. However, it is not clear what happens to the normal
contact force in such cases.

The solutions whose existence is shown are quite weak, and we cannot in general
expect to prove either uniqueness or conservation of energy from such a weak solution.
However, further work should improve on the regularity of the solutions (perhaps
with, perhaps without, visco-elasticity) and we hope to apply the results in [30] to
get conservation of energy, or at least an energy balance in which no energy losses or
gains are attributed to contact forces. This is a matter for future research.
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BLOW-UP AND GLOBAL ASYMPTOTICS OF THE LIMIT
UNSTABLE CAHN–HILLIARD EQUATION∗

J. D. EVANS† , V. A. GALAKTIONOV† , AND J. F. WILLIAMS‡

Abstract. We study the asymptotic behavior of classes of global and blow-up solutions of a
semilinear parabolic equation of the “limit” Cahn–Hilliard type

ut = −Δ(Δu + |u|p−1u) in RN × R+, p > 1,

with bounded integrable initial data. We show that in some {p,N}-parameter ranges it admits
a countable set of blow-up similarity patterns. The most interesting set of blow-up solutions is
constructed at the first critical exponent p = p0 = 1+ 2

N
, where the first simplest profile is shown to

be stable. Unlike the blow-up case, we show that, for p = p0, the set of global decaying source-type
similarity solutions is continuous and determine the stable mass-branch. We prove that there exists
a countable spectrum of critical exponents {p = pl = 1 + 2

N+l
, l = 0, 1, 2, . . . } creating bifurcation

branches, which play a key role in general description of solutions globally decaying as t → ∞.
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1. Introduction.

1.1. The model and discussion. In this paper we study the blow-up and the
long-time asymptotic behavior of solutions of the fourth-order semilinear parabolic
equation

(1.1) ut = −Δ(Δu + up) in RN × R+, p > 1, where up := |u|p−1u.

We consider the Cauchy problem for (1.1) with initial data

(1.2) u(x, 0) = u0(x) in RN , u0 ∈ L1(RN ) ∩ L∞(RN ),

assuming in most cases that u0(x) decays exponentially as x → ∞.
Equation (1.1) is a model connected with various applications. For instance, it

arises as the limit case of the phenomenological, “unstable” Cahn–Hilliard equation
for N = 1, 2 and p = 3, see the references in [32] and [12],

ut = −(γuxx − u3 + γ1u)xx − γ2u.

It is also a reduced model from solidification theory with N = 1 or 2 and p = 2 [31, 3].
Equations of this form arise in the theory of thermo-capillary flows in thin layers of
viscous fluids with free boundaries, with an anomalous dependence of the surface
tension coefficient on temperature [14, 1]. Equation (1.1) also occurs as the limit
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case as γ → 0+ of the Cahn–Hilliard equation with a standard double-well potential
function of the form

(1.3)
ut = ∇ · (∇ (F (u) − Δu)) , where

F (u) = |u|p−1u− γ|u|pu, with γ > 0,

so the constant stationary state satisfies |U0| = 1
γ → ∞. As usual in the similarity

analysis, the present blow-up results can be applied for nonlinearities in (1.3) for
sufficiently small γ > 0, i.e., for |U0| � 1, exhibiting intermediate asymptotics in the
sense of Zel’dovich and Barenblatt [2].

Another important class of fourth-order models related to (1.1) admitting both
blow-up and decaying solutions comes from the theory of thin films and general long-
wave unstable equations (see [3] and also [36]), where a typical quasi-linear equation
takes the form

(1.4) ut = −(unuxxx + umux)x.

Equations of this form are known to admit nonnegative solutions constructed by
special parabolic approximations of the nonlinear coefficients; see [4] and the references
therein. Then m = n + 2 corresponds to the critical self-similar “conservative” case
to be treated here for n = 0. Notice that the Cauchy problem for the uniformly
parabolic equation (1.1) cannot admit compactly supported solutions and this changes
some essential properties of evolution. On the other hand, one can state the same
free-boundary conditions for (1.1) as for (1.4) hence admitting finite interfaces.

From the mathematical point of view, in the case of the Cauchy problem studied
in the present paper, writing (1.1) in the form

(1.5) Put = Δu + up,

with the positive operator P = (−Δ)−1 on the right-hand side, defines a pseudo-
parabolic second-order equation. Many aspects of such equations are well understood
with both existence and uniqueness of local and global classical solutions and the
blow-up of solutions known from the 1970’s; see the first results on blow-up in [28]
and the references in the surveys [15, 27].

We are mainly interested in the study of blow-up behavior of the solutions to (1.1),
(1.2). In this sense (1.1) is a special model, for which (1.5) clearly indicates that,
at least formally, we can expect some similarities of blow-up singularity formation
phenomena to the classical semilinear heat equation from combustion theory (the
solid-fuel model)

(1.6) ut = Δu + up in RN × R+ (p > 1).

There is a huge mathematical literature, developed in the last twenty years, devoted
to the study of blow-up solutions of (1.6), where in some ranges of the parameters
p and N a complete description of all possible patterns has been achieved; see the
references in [34, Chap. 4] and survey [15]. On the other hand, the unstable nonlinear
operator in (1.1) gives the classical porous medium equation but posed backwards in
time ut = −Δup. It is not well posed and leads to blow-up of u or its derivatives in
arbitrarily small times; see the concavity techniques in [29].
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In standard form, (1.1) (rather than (1.5)) is a fourth-order semilinear parabolic
equation. It is well known that any kind of detailed asymptotic analysis for higher-
order equations is much more difficult in comparison with the second-order counter-
parts in view of the lack of the Maximum Principle, comparison, order-preserving
semigroups and potential properties of the operators involved, etc. In this sense,
we are going to show that (1.1) can be treated as an “intermediate” model between
second- and fourth-order parabolic equations, where some questions of blow-up and
global asymptotics, at least partially, can be studied by reasonably standard mathe-
matical methods. Note that a completely rigorous analysis of blow-up asymptotics,
comparable to that for second-order problems, is not yet available for higher-order
semilinear equations such as

(1.7) ut = −(−Δ)mu + up, m ≥ 2,

see [6], nor for the generalized Frank–Kamenetskii equation

ut = −Δ2u + eu

with similar blow-up properties, nor for the model equation from the Semenov–
Rayleigh–Benard problem with the leading operator of the form

ut = −uxxxx + β[(ux)3]x + eu, β ≥ 0,

see [16]. The mathematical difficulties in understanding the ODE and PDE patterns
increase dramatically with the order of differential operators in the equations.

1.2. The main conclusions and plan of the paper. The primary goal is
to present some general principles of formation of stable generic blow-up and global
asymptotics for the limit Cahn–Hilliard equation (1.1). To this end, we construct
various sets of self-similar solutions of (1.1) in different ranges of the parameters p and
N . We establish that, in the most interesting conservative critical case p = p0 = 1+ 2

N ,
(i) (1.1) admits a countable discrete set of blow-up similarity solutions, and
(ii) there exists an unbounded continuous family of global similarity solutions

decaying as t → ∞.
We also show which of the similarity solutions are stable in a proper rescaled

sense and hence describe the behavior of a wide class of more general solutions. We
study the stability of the main branches of similarity solutions and discuss the sets of
similarity profiles for arbitrary p > 1.

In the remainder of this section we discuss some basic auxiliary properties of (1.1).
In section 2 we introduce the blow-up and global similarity solutions and perform a
local asymptotic analysis of the corresponding ODEs. The spectral properties of the
key non-self-adjoint linearized operators are described in section 3. In section 4 we
present an existence analysis of blow-up similarity solutions and show that the minimal
profile is an attractor for a wide set of initial data. A countable set of solutions in the
critical case p = p0 = 1+ 2

N is then constructed via a singular perturbation expansion.
The non-conservative case is briefly discussed in section 5, where more general p values
are considered. In section 6 we study classes of global solutions of (1.1) decaying as
t → ∞ and prove that, unlike the blow-up case, the family of similarity solutions at
p = p0 is continuous and we determine the stable branch. We also detect a sequence
of critical exponents

(1.8) pl = 1 +
2

N + l
, l = 0, 1, 2, . . . ,
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corresponding to a transition phenomenon between the two main classes of asymptotic
patterns for the PDE (1.1). Under certain assumptions, we prove that, at each p = pl,
a bifurcation of similarity solutions occurs, and show that, actually, for p 	= p0,
p1, the set of exponentially decaying similarity profiles is expected to be countable.
Concerning possible non-self-similar asymptotic behavior, we show that at the same
critical exponents p = pl unusual center manifold patterns occur for the limit stable
Cahn–Hilliard equation

(1.9) ut = −Δ(Δu− up),

where the operator on the right-hand side is monotone and coercive in H−1(RN ), so
that the Cauchy problem has a unique classical solution decaying in time, at least,
for p < N+2

N−2 ; see [17, sect. 2].

1.3. Some preliminary results. We begin with some well-known related prop-
erties.

(a) A potential operator and gradient system. Equation (1.1) is uniformly parabolic
with all spatial differential operators appearing in divergence form. It admits a unique,
classical, local in time solution and the standard parabolic theory applies, [13]. The
operator on the right-hand side of (1.1), −Δ(Δu+ up), is potential in H−1(RN ) (see
[25]) and the dynamical system admits the Lyapunov function

(1.10) E[u](t) =
1

2
‖∇u(t)‖2

2 −
1

p + 1
‖u(t)‖p+1

p+1, u(t) ∈ X = H2(RN ) ∩ Lp+1(RN ),

which is monotone decreasing with time on uniformly bounded orbits in X, d
dtE[u] =

−‖ut‖2
H−1 ≤ 0. The PDE defines a smooth gradient system in H−1(RN ). By the

gradient system theory [19], the ω-limit set of any uniformly bounded orbit,

ω(u0) =
{
f ∈ C(RN ) : ∃ {tk} → ∞ such that u(·, tk) → f uniformly

}
,

is known to consist of classical stationary solutions: −Δ(Δf + fp) = 0 in RN for
any f ∈ ω(u0). If the set of stationary solutions consists of isolated equilibria, the
asymptotic behavior does not essentially differ from the classical second-order theory
and any bounded orbit approaches a stationary profile as t → ∞. However, one can see
from (1.5) that, for this problem with p < pS = (N+2)/(N−2)+ (which is the critical
Sobolev exponent for the elliptic operator in (1.5)), the only admissible stationary
solution is trivial, f = 0, so that the large-time behavior cannot be stabilization to a
nonzero equilibrium. Instead, there can be blow-up or convergence to f = 0 with a
rate as yet to be determined.

(b) The fundamental solution and local existence. We first need the fundamental
solution of the linear fourth-order parabolic equation

(1.11) ut = −Δ2u in RN × R+

having the similarity form

(1.12) b(x, t) = t−N/4F (y), y = x/t1/4,

where the rescaled kernel F is the unique radial solution of the elliptic equation

(1.13) BF ≡ −Δ2F +
1

4
y · ∇F +

N

4
F = 0 in RN , with

∫
F = 1.
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The kernel F = F (|y|) has exponential decay, oscillates as |y| → ∞ and satisfies the
following estimate [11, p. 47]: for some positive constants D and d,

(1.14) |F (y)| < D e−d|y|4/3

in RN .

A sharp estimate d < 3/25/2 is obtained from the exponential asymptotics of solutions
to the ODE (1.13) as |y| → ∞, such as those described in section 2.

Local existence of the unique classical solution of the Cauchy problem (1.1), (1.2)
follows from the equivalent integral equation

(1.15) u(·, t) = M(u) ≡ b(·, t) ∗ u0 −
∫ t

0

Δb(·, t− s) ∗ up(s)ds, t > 0,

where M is a contraction in the metric space of continuous functions in RN×[0, δ], δ >
0 small, with the sup-norm. Using (1.12), one can see from (1.15) that any uniformly
bounded solution u(x, t) admits a local-in-time classical extension. Therefore, as is
usual in classical parabolic theory, if blow-up of any form occurs it must do so in the
L∞-norm.

Finite-time blow-up. Despite the gradient structure, from known results on blow-
up for such pseudoparabolic equations (1.5) [28], it follows that classical solutions
whose initial data satisfy the energy inequality

(1.16) E(u0) =
1

2
‖∇u0‖2

2 −
1

p + 1
‖u0‖p+1

p+1 < 0

cannot be extended beyond a finite blow-up time T < ∞. The problem of blow-up
has been extensively studied in recent years for various higher-order quasi-linear and
semilinear parabolic models, where many interesting results have been obtained; see
also [32, 31, 3, 4, 5, 36] and the references therein.

2. Similarity variables for global and blow-up asymptotics. Equation
(1.1) is invariant under the group of scaling transformations

t �→ λt, x �→ λ1/4x, u �→ λ−1/2(p−1)u, λ > 0.

This symmetry suggests the introduction of the following rescaled variables:
(2.1)
u(x, t) = [σ(T − t)]−1/2(p−1)θ(y, τ), y = x/[σ(T − t)]1/4, τ = −σ ln[σ(T − t)],

where σ takes the two values ±1: σ = 1 corresponds to blow-up at the unknown
blow-up time t = T , and σ = −1 to infinite time decay as t → ∞ with a reference
time T (generically, we will take T = 0 in this case). Without loss of generality, we
suppose that the solution u(x, t) blowing up at the finite time t = T in the L∞-norm,
i.e.,

(2.2) sup
x

|u(x, t)| → ∞ as t → T−,

is such that the corresponding blow-up set B(u0) contains the origin,

0 ∈ B(u0) = {x ∈ RN : ∃ {xn} → x, {tn} → T− such that u(xn, tn) → ∞}.

The rescaled solution θ(y, τ) defined as in (2.1) satisfies the semilinear equation

(2.3) θτ = A(θ) ≡ −Δ(Δθ + θp) − σ

4
y · ∇θ − σ

2(p− 1)
θ,

and we are interested in the possible asymptotic dynamics of solutions for τ � 1.
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An exact similarity solution of (1.1)

(2.4) uS(x, t) = [σ(T − t)]−1/2(p−1)f(y)

gives an independent of τ stationary solution f(y) of (2.3) leading to a fourth-order
elliptic equation for the similarity profile f ,

(2.5) A(f) = 0 in RN .

It is worth mentioning that classical variational approaches do not apply to (2.5)
because A is not a potential operator.

We restrict our attention to the case of one-dimensional or radial geometry, where
(2.5) is a fourth-order ODE, and in most cases we impose symmetry conditions at the
origin y = 0 and a suitable decay condition (possibly exponential) at infinity:

(2.6) f ′(0) = 0, f ′′′(0) = 0, and f(y) → 0 as y → ∞.

Existence of nonradial solutions to (2.5) is an interesting open problem.

2.1. Conservative similarity solutions and the first critical exponent.
Under appropriate decay conditions at infinity (say, exponential), (1.1) is conservative:

(2.7)
d

dt

∫
RN

u dx = −
∫
RN

Δ(Δu + up) dx = 0.

Given an exact similarity solution (2.4), and assuming that f ∈ L1(RN ), we have
that

(2.8)

∫
RN

uS(x, t) dx = [σ(T − t)]−1/2(p−1)+N/4

∫
RN

f(y) dy,

which satisfies (2.7) for nonzero mass,
∫
f 	= 0, only if p = p0, where

(2.9) p0 = 1 +
2

N

is the critical exponent in the problem. It is interesting that p0 coincides with the
Fujita exponent for the semilinear heat equation (1.6). In fact, it is the first critical
exponent and in section 6 we show that there exists a countable sequence of further
critical exponents (1.8) corresponding to special cases of globally decaying solutions.

It follows from (2.9) that in the one-dimensional case, N = 1, the crucial critical
case corresponds to p = p0 = 3, where nonzero similarity masses can be preserved
(section 4). However, we will consider other cases as well; see section 5. Moreover,
from (2.8) we have

(2.10) for any p 	= p0, f ∈ L1 =⇒
∫

f = 0,

i.e., any L1-similarity profile f has zero mass. Of course the same follows from the
radial ODE (2.5) by integrating over RN .
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2.2. Local asymptotic properties of self-similar solutions. Here we de-
scribe the possible asymptotics of small solutions to (2.5) satisfying f(y) → 0 as
y → ∞, see (2.6). Consider the linearization of (2.5) about f = 0,

(2.11) −f ′′′′ − 2(N − 1)

y
f ′′′ − μ

y2
f ′′ +

μ

y3
f ′ − σ

4
yf ′ − σ

2(p− 1)
f = 0,

where μ = (N − 1)(N − 3). To determine the balance between the leading terms f ′′′′

and σ
4 yf

′, we set z = yα with α = 4
3 reducing the ODE to

(2.12) −f ′′′′ − a1f
′ − a2z

−1f + D(z)f = 0.

Here a1 = σ/4α3, a2 = σ/2(p− 1)α4 and D(z)f =
∑3

j=1γjz
j−4f (j) is a linear opera-

tor with bounded coefficients as z → ∞, where the first coefficient of the derivative f ′

is of order O(z−3). By the perturbation theory of linear ODEs (see Chapters III–V in
[9]), we have that the leading terms of exponentially decaying solutions are described
by the operator in (2.12) with constant coefficients,

(2.13) −f ′′′′ − a1f
′ = 0.

Setting f = epz, p 	= 0, gives the characteristic equation p4 + a1p = 0, when

(2.14) p3 = −a1 = −σ/4α3 ≡ ρ3
0(−σ), where ρ0 > 0.

There exist three roots of the form

(2.15) pk = ρ0e
iπ(4k+σ+1)/6, k = 0, 1, 2,

where the number of roots with negative real part is two for σ = −1 and only one for
σ = +1. Thus, as y → ∞, there exists

a two-dimensional stable bundle for the global case σ = −1, and(2.16)

a one-dimensional stable bundle for the blow-up case σ = 1.(2.17)

This difference in the dimensionality of the stable manifold about f = 0 at y = ∞ is
what distinguishes the continuous spectrum of solutions for the global case from the
discrete set of blow-up solutions.

On the other hand, (2.12) also admits solutions with algebraic decay (rather than
exponential) as z → ∞ described by the first-order operator

−a1f
′ − a2z

−1f = 0 =⇒ f(z) = Az−2/α(p−1), A 	= 0.

Existence of solutions with such decay for the perturbed equation (2.12) is established
by a standard expansion analysis by calculating solutions via a Kummer-type series
converging uniformly for z � 1. For the linearized equation (2.11), the leading order
behavior is algebraic,

(2.18) f(y) = A|y|−2/(p−1)(1 + o(1)) as |y| → ∞, f ∈ L1 iff p < p0,

with arbitrary constant A 	= 0. For blow-up similarity solutions (2.4), the limit-time
profile is then bounded for any x 	= 0 and has the form

uS(x, T−) = A|x|−2/(p−1), x 	= 0.

Clearly, for p ≥ p0, this is not an admissible solution for the conservative case given
finite initial mass, and thus in the critical case p = p0 we must have A = 0 and
exclusively exponential decay of any similarity profiles.
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3. The spectral properties of the rescaled linear operators. The structure
of the rescaled equation (2.3) suggests the study of the spectral properties of the
linearized operator with σ = −1 (global solutions), which is conveniently represented
in a form associated with the operator in (1.13),

(3.1) A′(0) = −Δ2 +
1

4
y · ∇ +

1

2(p− 1)
I ≡ B + c∗I, c∗ =

N

4(p− 1)
(p0 − p).

The spectral properties of B and the corresponding adjoint operator B∗ occurring for
σ = 1 will play an important role in the further asymptotic analysis of the nonlinear
PDE. The operators are defined in weighted L2-spaces with the weight functions
induced by the exponential estimate of the rescaled kernel (1.14).

3.1. The point spectrum of the non-self-adjoint operator B. Note that
B is not symmetric and does not admit a self-adjoint extension. We consider B in
the weighted space L2

ρ = L2
ρ(R

N ) with the exponentially growing weight function

(3.2) ρ(y) = ea|y|
α

> 0 in RN , where α =
4

3
,

and a ∈ (0, 2d) (d is as in (1.14)) is a sufficiently small constant. We ascribe to B the
domain H4

ρ being a weighted Hilbert space with the norm

‖v‖2 =

∫
ρ(y)

4∑
k=0

|Dkv(y)|2 dy,

induced by the corresponding inner product. From [10] we have the following result.
Lemma 3.1. B : H4

ρ → L2
ρ is a bounded linear operator with the real spectrum

(3.3) σ(B) =

{
λl = − l

4
, l = 0, 1, 2, . . .

}
.

The eigenvalues λl have finite multiplicity with eigenfunctions

(3.4) ψβ(y) =
(−1)|β|√

β!
DβF (y), with any |β| = l,

where F is the rescaled kernel in (1.12), and the set of eigenfunctions Φ = {ψβ , |β| =
0, 1, 2, . . . } is complete in L2

ρ.
Lemma 3.1 gives the center and stable subspaces of B, Ec = Span{ψ0 = F} and

Es = Span{ψβ , |β| > 0}.
3.2. The polynomial eigenfunctions of the adjoint operator B∗. Consider

the operator adjoint to B,

(3.5) B∗ = −Δ2 − 1

4
y · ∇,

which is related to A′(0) in (2.3) for σ = 1 (the blow-up case). We consider B∗ in
L2
ρ∗ with the exponentially decaying weight function ρ∗(y) = 1/ρ(y) ≡ e−a|y|α > 0.

Lemma 3.2. B∗ : H4
ρ∗ → L2

ρ∗ is a bounded linear operator with the same spec-
trum, (3.3). The eigenfunctions ψ∗

β(y) with |β| = l are lth order polynomials

(3.6) ψ∗
β(y) =

1√
β!

⎡
⎣yβ +

�|β|/4�∑
j=1

1

j!
(−Δ)2jyβ

⎤
⎦ ,

and the set {ψ∗
β} is complete in L2

ρ∗ .
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With this definition of the adjoint eigenfunctions, the orthonormality condition

(3.7) 〈ψβ , ψ
∗
γ〉 = δβ,γ

holds, where 〈·, ·〉 denotes the standard (dual) L2 inner product.

4. Blow-up similarity profiles for p = 3 in one dimension. The dynamics
simplify for the conservative case p = p0 = 1 + 2

N as (2.5) can be integrated once.
The particular critical case

(4.1) p = p0 = 3 with N = 1

is of key importance in our analysis and highlights the typical techniques required to
describe a countable set of self-similar blow-up patterns. Throughout this section we
assume that (4.1) holds.

4.1. Preliminaries. In the case (4.1), the ODE (2.5) with σ = 1 for the simi-
larity profile can be integrated once to give

(4.2) f ′′′ +
1

4
yf + (f3)′ = 0 for y > 0, f ′(0) = 0,

where we have set the constant of integration to zero on the right-hand side. This
removes the algebraically decaying mode (2.18), f(y) = Ay−1(1 + o(1)), by looking
for L1-solutions satisfying the conservation of mass condition (2.7). It follows from
(2.17) that we are left with a one-parameter family of exponentially decaying functions
satisfying

(4.3) f(y) = Cy−1/3e−βy4/3

(1 + o(1)) as y → +∞, C ≥ 0, β = 3/44/3,

where the extra algebraic factor y−1/3 is detected by a standard refined asymptotic
WKBJ expansion according to the ODE theory, [9]. This asymptotic expansion fully
corresponds to the linear part of the operator in (4.2) and does not depend on the
cubic nonlinear term. In order to construct a solution to (4.2) we will use a shooting
type argument starting from y = ∞. Thus, all admissible similarity profiles f(y) have
the asymptotic behavior (4.3) and also should satisfy the symmetry condition at the
origin.

Let us now study the behavior of solutions on the manifold (4.3) parameterized by
C. Denoting f(y;C) as the function which satisfies (4.2) with decay from the bundle
(4.3), the goal is to find the set of C such that

(4.4) S(C) ≡ f ′(0;C) = 0.

Because the function S(C) in (4.4) is analytic in C (see below), (4.4) has at most
a countable set of roots, which can accumulate at C = ∞ only and this actually
happens. We begin with the global existence for the family {f(y;C)}.

Lemma 4.1. For any C > 0, the solution f(y;C) to (4.2), (4.3) is well defined
for all y ∈ R.

Proof. This follows from the local properties of the operator in (4.2) which are
close to those for the second-order case f ′′ + f3 = 0. Obviously, it does not admit
blow-up of solutions at finite y. Integrating (4.2), f ′′ = −f3 − 1

4

∫
fy dy, multiplying
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by f ′ and integrating again over a sufficiently small interval near any fixed point y0

yields

(4.5)

1

2
f ′2(y) = −1

4
f4(y) − 1

4

∫ y

y0

f ′(z)

∫ v

y0

f(v)v dvdz + const

≤ 1

4

∫ y

y0

|f ′(z)|
∫ v

y0

|f(v)v|dvdz + const,

where, by Lagrange’s formula of finite increments, |f(v)| ≤ |f(y0)|+(supv|f ′(v)|)|v−
y0|, the right-hand side is not more than quadratic in f ′. Therefore, f(y) cannot
blow-up at a finite point y∗ along a sequence since (4.5) guarantees that f ′(y∗) is
finite. Obviously, this analysis applies for all p > 1.

4.2. Existence of the first monotone blow-up similarity pattern. The
proof that there exists a first, minimal C = C1 > 0 such that (4.4) holds involves
three steps. First, we show that in the limit as C → 0+ solutions f(y;C) are strictly
monotone decreasing on [0,∞) and, second, that in the other limit C → +∞ all
solutions cannot be monotone. Then, by a standard continuity argument, we have
that there must exist an intermediate C = C1 > 0 corresponding to an admissible
monotone solution.

Proposition 4.2. For all 0 < C � 1, solutions f(y;C) are strictly monotone
decreasing in y ≥ 0 and f ′(0;C) < 0.

Proof. Rescaling by setting f = Cg, we have

(4.6) g′′′ +
1

4
yg + C2(g3)′ = 0 in R+.

In view of the behavior at infinity (4.3), by standard results on continuous dependence
for ODEs [9], it follows that, as C → 0+,

(4.7) f(y;C) = C(φ0(y) + o(1)) uniformly in R+,

where φ0 solves the linear ODE φ′′′ + 1
4 φ

′y = 0 and satisfies (4.3) with C = 1.
All the derivatives of f converge similarly. Let us now show that φ0(y) is strictly
monotone decreasing. Assume that yi is the first (from y = ∞) local maximum point
of φ0, φ

′
0(yi) = 0 and φ′

0(y) < 0 on (yi,∞). Integrating over (yi,∞), we obtain the
contradiction, φ′′

0(yi) =
∫∞
yi

sφ0(s) ds > 0, thus observing an elementary feature of
the Maximum Principle for such third-order equations.

Proposition 4.3. There exists a C∗ > 0 such that f(y;C∗) has a local maximum
point at some y∗ ≥ 0 and f(y;C∗) > 0 on [y∗,∞).

Proof. Assume for contradiction that f(y;C) is strictly monotone decreasing in
R+ for all C > 0, and then f(0;C) > 0. One can see from the rescaled ODE (4.6) that
the solutions f(y;C) cannot be bounded for y ∈ R+ uniformly in C > 0. Therefore,
there exists a sequence {Ck} → ∞ such that ak = f(0;Ck) → ∞. Performing the
scaling

(4.8) f(y) = akgk(z), y = z/ak,

we arrive at a perturbed ODE for the sequence {gk(z)},

(4.9) g′′′k + (g3
k)

′ = − 1

4a4
k

zgk for z > 0, gk(0) = 1,
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where 0 < gk(z) ≤ 1 and gk(z) is monotone decreasing in z. Since {gk} is a uniformly
bounded sequence of solutions of the asymptotically perturbed ODE (4.9) with regular
coefficients, by the Ascoli–Arzelá theorem and standard ODE estimates [9], we have
that along a subsequence, gk → ḡ uniformly on compact subsets in z, where ḡ, 0 ≤
ḡ ≤ 1, must be a monotone decreasing solution of the unperturbed ODE

(4.10) (ḡ′′ + ḡ3)′ = 0, ḡ(0) = 1.

Since all such solutions of (4.10) are oscillatory, which is easily checked by integrat-
ing twice, this leads to a contradiction. Therefore, there exists a sufficiently large
C∗ > 0 such that f(y;C∗) is not strictly monotone in R+ and has a local maximum
point.

Theorem 4.4. There exists a constant C1 ∈ (0, C∗] such that (4.4) holds for
C = C1 and f1(y) = f(y;C1) is a strictly monotone decreasing symmetric positive
similarity profile.

Proof. Introducing the set

W1 = {μ > 0 : f(y;C) is strictly monotone decreasing in R+ for all C ∈ (0, μ)},

we have that W1 	= ∅ by Proposition 4.2 and W1 is bounded above by Proposition
4.3. Hence, there exists

(4.11) C1 = sup W1 ≤ C∗,

where, by construction, f1(y) = f(y;C1) is monotone decreasing for y ≥ 0. By the
definition of supremum in (4.11), one can see that f ′

1(y) must vanish at the origin,
i.e., (4.4) holds.

We now briefly describe a countable set of the similarity profiles satisfying (4.2)
and (4.3) with some C > C1. This construction is similar to that for the second-
order ODEs from blow-up reaction-diffusion theory; see [34, pp. 190–195] and related
references therein. Similar to Proposition 4.3 we show that as C increases, the function
f(y;C) becomes more and more oscillatory for y > 0. Indeed, performing the scaling
(4.8) and passing to the limit C = Ck → ∞, we obtain a bounded solution ḡ satisfying
(4.10) admitting oscillatory solutions only. Hence, f(y;C) can have an arbitrarily
large number of oscillations for y > 0 with C � 1. As in the proof of Theorem 4.4,
for any k = 2, 3, . . . , we define the sets

Wk = {μ > Ck−1 : f(y;C) has at most k local extrema for y ≥ 0∀C ∈ [Ck−1, μ)}.

Then, once Ck−1 is known, starting with k = 2, we have that Wk 	= ∅ and by the
oscillatory behavior for C � 1, Wk is bounded from above. Hence, we define

(4.12) Ck = sup Wk > Ck−1, k = 2, 3, . . . ,

and by construction, fk(y) = f(y;Ck) satisfies the symmetry condition at the origin
(otherwise, it is not the supremum in (4.12)).

Such a construction, while giving an infinite sequence of similarity profiles, does
not describe the important properties of the functions fk(y), such as positivity (or
at least “positivity dominance”) and the actual distribution of local extrema and
inflection points of the profiles. This will be done by a more delicate and partially
formal asymptotic matching procedure.
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4.3. Asymptotic construction of a countable set of similarity profiles.
Here we will use the method of matched asymptotics expansions to describe the
solution structure of the similarity profiles {fk(y)} for large k, i.e., in the limit Ck →
∞. We will show that the similarity profiles will be composed of three regions. The
two primary regions are an outer region localized near the origin, where the mass of
the solution is concentrated with oscillations around a parabolic profile (see (4.20)
below), and a far-field region, in which the solution is described by the asymptotic
bundle (4.3). Joining these two regions is a narrow transition or inner region. The
details containing the scalings and corresponding matching are given below. Because
the characteristics of the family are determined by the far-field behavior, we will begin
by considering refined asymptotics as y → ∞.

The far-field behavior. To determine the asymptotic behavior as y → ∞ in greater
detail, we produce an asymptotic description of solutions from the exponential bundle
(4.3). Specifically, the solution is given by the formal power series

(4.13) f(y;C) =

∞∑
n=0

C2n+1φn(y),

where φ0 is given in (4.7) and the rest of the terms are obtained from the relation

(4.14) B∗φn ≡ φ′′′
n +

1

4
yφn = −

∑
1≤i,j,k≤n

i+j+k=n+1

(φiφjφk)
′, n = 2, 3, . . . ,

with the condition φn(y) = o(φ0(y)) as y → ∞. Using the expansion (4.3), it can be
shown by direct calculation that for y � 1,

(4.15) φn(y) =
[
γn + o(y−1)

]
y−(4n+1)/3e−(2n+1)βy4/3

,

with suitable constants |γn| ≤ 1. Moreover, the right-hand side of (4.15) with a
sufficiently large constant γn gives uniform estimates of φn in R+, which establishes
the uniform convergence of (4.13) on subsets {y ≥ y0} with y0 � 1. By the Weierstrass
theorem, the solution f(y;C) in (4.13) obtained as a uniformly converging series of
analytic functions is analytic in C for y ≥ y0. Therefore, on extension to y ∈ [0, y0),
as a solution of an ODE with analytic coefficients and analytic dependence on C
in the Dirichlet boundary condition at y = y0, it is analytic in C for any y ≥ 0
(cf. typical analyticity results in the classical ODE theory, [9, section 8, Chapter I]).
Hence, (4.4) is an analytic function having isolated zeros only and we arrive at the
following conclusion.

Proposition 4.5. The problem (4.2), (4.3) has at most a countable set of solu-
tions.

The discrete nature of the function S(C) will be made evident by close examina-
tion of the inner and transition regions.

A singular perturbation problem. We begin by looking for possible solutions lo-
calized in a neighborhood of the origin y = 0. We rescale the ODE (4.2) as (cf.
(4.8))

(4.16) f(y) = ag(z), y = az, where a = f(0;C),

with a an as yet unspecified function of C to be determined for the similarity pro-
files fk(y). Under the assumption that a(C) → ∞ as C → ∞, possibly along a
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Outer region 

Fast−scale oscillations 

Inner
 region 

Far−field behaviour 

ε1/3

g(z)

 

ε1/3 z 

Fig. 1. Sketch of the regions for construction of asymptotic profiles of (4.17).

subsequence, we define

ε = a−4 � 1 for C � 1.

Under the rescaling (4.16), (4.2) leads to a singularly perturbed ODE

(4.17) εg′′′ +
1

4
zg + (g3)′ = 0.

We need to describe a two-parameter family of solutions of (4.17) defined in a suitable
neighborhood of the origin z = 0, which can be matched with the exponential bundle
(4.3). In order to describe such a family, we use the method of matched asymptotic
expansions and supplement the ODE (4.17) with two standard conditions

(4.18) g(0) = 1, g′(0) = 0.

In addition, we have

(4.19) g′′(0) = bε−m(1 + o(1)),

where the constant b and parameter m are as yet unspecified. The third condition
(4.19) is introduced for convenience only and we show in what follows that both b and
m are determined later by the matching procedure. However, their inclusion here is
to emphasize that in the outer region, a faster scale is necessary in order to resolve
the additional oscillatory structure as described in the proof of Proposition 4.3 by the
perturbed problem (4.9).

We will show that the solution to (4.17) has a three layer structure, schematically
illustrated in Figure 1, comprising

(i) an outer region 0 ≤ z <
√

12 in which g = O(1),
(ii) an inner region z =

√
12 + O(ε1/3) in which g = O(ε1/6), and finally
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(iii) a third region z >
√

12, where g is exponentially small (and belongs to the
exponential bundle described in section 2).

The outer region. Let g0(z) be the solution of the unperturbed problem (4.17),
namely,

(4.20)
1

4
zg0 + (g3

0)′ = 0 with g0(0) = 1 =⇒ g0(z) =

√
1 − 1

12
z2.

Close to z = 0, we perform the linearization

(4.21) g(z) = g0(z) + G(Z),

with the fast variable Z = z/ε1/2. Then G satisfies the equation

(4.22) G′′′ + (3g2
0G)′ +

1

4
εZG + (3g0G

2 + G3)′ + ε3/2g′′′0 = 0,

where g2
0(Z) = 1− ε

12 Z
2. It follows that on compact subsets 0 ≤ Z ≤ c, the principal

part of (4.22) has constant coefficients,

(4.23) G′′′ + 3G′ + N1 = 0, G(0) = G′(0) = 0,

where N1 = O(εG + G2 + ε2) on bounded smooth solutions. Therefore, by standard
perturbation ODE theory [9], recalling the third condition in (4.18), the solution
satisfies the following expansion as ε → 0 uniformly on subsets Z ∈ [0, c]:

(4.24) G(Z) = θ
(
1 − cos

(√
3Z

))
+ o(θ),

where θ = 1
3 bε

1−m. This rigorously determines the asymptotic behavior in the region

{z = O(ε1/2)}. For matching reasons, we need to extend the expansion (4.24) to
larger subsets. This is done by introducing the new independent variable

(4.25) t = t(Z) ≡
∫ Z

0

(
1 − ε

u2

12

)1/2

du =
1

ε1/2

(
z

2

(
1 − z2

12

)1/2

+
√

3 sin−1

(
z

2
√

3

))
,

and setting G(Z) = P (t)/g0(Z). This gives, similar to (4.23), an equation with
constant coefficients in the principal part

(4.26) P ′′′ + 3P ′ + N2 = 0, P (0) = P ′(0) = 0,

where the perturbation N2, in addition to the same small terms as above from (4.23),
now contains differential operators with coefficients depending on the derivatives of
g0 = g0(z(t)) satisfying

dg0

dt
=

g′0
t′

= O(ε1/2),
d2g0

dt2
= O(ε),

d3g0

dt3
= O(ε3/2)

uniformly on compact subsets in z ∈ [0, c] for any c <
√

12. Therefore, upon returning
to the original variables {z, g}, the outer expansion takes the form

(4.27) g(z) = g0(z) + θ
1

g0(z)

(
1 − cos

√
3t
)

+ . . . ≡ g0 + θg1 + . . . , θ =
1

3
bε1−m.
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Fig. 2. Convergence as ε → 0 of numerical solutions of (4.17) to g1(z, t) given in (4.27);
ε ∈ [7.51 · 10−4, 1.08 · 10−1].

Note that we cannot guarantee that this expansion is valid uniformly on subsets
z ∈ [0, c] since though the principal part in (4.26) is exactly the same as in (4.23),
equation (4.26) is then considered on expanding subsets in t ∈ [0, cε−1/2] becoming
unbounded as ε → 0. It is worth remarking that the crucial fast scale variable (4.25)
is determined by the requirement that (4.26) has constant coefficients, which fixes it
to the order considered here. For first-order matching, it suffices to prescribe only
the rate of deviation O(g−1

0 ) of g(z) from the unperturbed profile g0(z) as correctly
described by the second term in (4.27). Figure 2 shows the accuracy of expansion
(4.27), where we have already fixed m = 2

3 (to be determined later) so that θ ∼ ε1/3.
Plotted is the first-order term g1 from (4.27) with the full numerical solution for g
scaled in the form (g − g0)/ε

1/3.
The inner region. The outer expansion (4.27) does not reflect the far-field behav-

ior (4.3). Thus, in order to specify the behavior for z ≈
√

12, we introduce the inner
variables z̄ and R(z̄) by

z =
√

12 + ε1/3z̄, g = ε1/6R, where R solves(4.28)

R′′′ +
1

4

(√
12 + ε1/3z̄

)
R +

(
R3

)′
= 0.(4.29)

The unperturbed equation

(4.30) R′′′
0 +

1

2

√
3R0 +

(
R3

0

)′
= 0

admits a one-parameter family of suitable exponentially decaying solutions

(4.31) R0(z̄) � A0e
−31/6z̄/21/3

as z̄ → +∞,
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for some constant A0, and a three-parameter family of slowly growing solutions as
z̄ → −∞. Solutions from the bundle (4.31) satisfy

(4.32) R0(z̄) �
(
− z̄

31/2

)1/2

+
ā1

(−z̄)1/2

[
1 − ā2 cos

(
c(−z̄)3/2

)
− ā3 sin

(
c(−z̄)3/2

)]
,

where c = 2/33/4 and ā1, ā2, ā3 are suitable constants. This expansion is determined
in the standard way by setting R0 = R̃0 + R̃1, where R̃0 = (−z̄)1/2/31/4 under the
assumption that |R̃1| � |R̃0|. Then the leading linear equation for R̃1 is

(4.33) R̃′′′
1 +

√
3

2
R̃1 −

1√
3

(
z̄R̃1

)′
= 0,

which has an exact solution in terms of the Airy functions Ai and Bi,

(4.34) R̃1 = c1Ai2(z̄) + c2Ai(z̄)Bi(z̄) + c3Bi2(z̄), c1, c2, c3 ∈ R.

This fact is important for the reliable numerical integration of (4.30).
Matching. To determine the sequence {Ck, k � 1} and the corresponding val-

ues f(0;Ck) = a(Ck), we now match the inner and outer solutions. Expanding the
components of the outer solution (4.27) near the transition point z =

√
12, we have

g0 � ε1/6
(
− z̄

31/2

)1/2 (
1 + ε1/3 z̄

8 · 31/2

)
,(4.35)

g1 � ε−1/6 b

3

(
−31/2

z̄

)1/2
[
1 − cos

√
3t0

ε1/2
cos

[
c(−z̄)3/2

]
− sin

√
3t0

ε1/2
sin

[
c(−z̄)3/2

]]
,

(4.36)

where t0 =
∫√

12

0

√
1 − v2/12 dv =

√
3

2 π. Comparing the outer expansion (4.27), using

(4.35) and (4.36) with the inner expansion g = ε1/6R0 + . . . , where R0 is given by
(4.32), yields the matching condition 1−m− 1

6 = 1
6 , if full balance is to be obtained,

i.e.,

(4.37) m =
2

3
,

together with the coefficients

(4.38) ā1 = 3−3/4b, ā2 = cos
31/2t0
ε1/2

and ā3 = sin
31/2t0
ε1/2

(
t0 = 3

√
π/2

)
.

It follows that (4.37) and the first equality in (4.38) are established rigorously since
we have used the “envelope” characteristic in expansion (4.27) without specifying the
highly oscillatory component. In particular, (4.38) demands

(4.39) ā2
2 + ā2

3 = 1.

To determine these values, we observe that (4.30) is translation invariant, as is the
asymptotic behavior for z̄ → ∞, but not (to leading order) as z̄ → −∞. To see this,
we consider the solution to (4.30) as a shooting problem in the single parameter A0.

However,

R0(z̄; Â0) = R0(z̄ − z̄0;A0), where Â0 = A0e
31/62−1/3z̄0 .
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Fig. 3. Comparison of numerical and asymptotic (4.27) solutions of the ODE (4.17). The
numerical profile g(z) exhibits the exponential decay for y ≈ 4.

Clearly this translation does not change the ODE although it will affect the coefficients
in the far-field behavior (4.32). Denoting the new coefficients by âi, i = 1, 2, 3, we
have to leading order that

â1 = ā1 + z̄0/2 · 31/4, â2 = ā2, â3 = ā3,

i.e., the translation only affects the coefficient ā1 in (4.32). Thus,

(4.40) Â0 = A0e
35/1222/3(â1−ā1).

We now seek A0 such that the form (4.32) satisfies the constraint (4.39). From the
translation argument we have that ā1 is monotone decreasing in A0, and it follows from
(4.33), (4.32) that there are precisely two possible solutions which are the negatives
of each other, i.e., ā1 and −ā1. Taking â1 = −ā1, (4.40) gives

(4.41) Â0 = A0e
−25/335/12ā1 .

Numerical computation gives

A0 ≈ 0.448 . . . , ā1 = 0.341 . . .

and from (4.41) we deduce the other set of values

A0 ≈ 0.081 . . . , ā1 = −0.341 . . . .

Finally, (4.38) may be used to determine the two values of b. Using the value
ā1 ≈ 0.341 . . . in the asymptotic expression (4.27) gives very good agreement to full
numerical solutions near z = 0, as seen in Figure 3. In particular, the amplitude of
the fast-scale oscillation is excellent.
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The third region. It follows from (4.3) and (4.16) that

(4.42) g(z) � Cε1/3z−1/3e−βz4/3/ε1/3

is the appropriate behavior satisfying (4.17) for z >
√

12. Writing (4.42) in terms of
the inner variable z̄ from (4.28) gives the leading order expression

g(z) � Cε1/312−1/6e−β122/3/ε1/3

e−31/6z̄/21/3

after using ε1/3z̄ = O(1). Comparing to the inner behavior (4.31) and using (4.28)
gives the matching condition

(4.43) A0 � C12−1/6ε1/6e−β122/3/ε1/3

.

Since both values of A0 are of order O(1), then

ε ∼ 35

24

1

(lnC)3
+

36

25

ln lnC

(lnC)4
+

36

24

ln(3−2/32A0)

(lnC)4
as C → ∞.

Recall that all the estimates obtained without using the highly oscillatory tails in the
singular layer given by (4.27) are rigorous and asymptotically sharp. The fact that
there are two values of A0 and thus two relationships between C and ε corresponds
to the two families of solutions, those with g′′(0) > 0 or g′′(0) < 0. Most importantly,
given that asymptotically ā2 = cos(3π/2ε1/2) and ā3 = sin(3π/2ε1/2) in (4.38) are
unique (up to a change in sign in both coefficients), we have that

(4.44) 3π/2ε1/2 = kπ ± φπ(1 + o(1)),

for an unknown phase shift φ (this is a formal conclusion). Using this in the definition
of ε = a−4 gives

ak =
√

2k/3(1 + o(1)) as k → ∞.

Also, from (4.43) this fixes the corresponding values of the expansion coefficients
C = Ck in (4.3) in the outer region

Ck ∼ k1/3e3k2/3/22/3

for k � 1.

Using the computed values of the coefficients and expansions, we present a comparison
of the numerical and asymptotic solutions in Figure 3. The slow phase-shift can be
corrected by further terms in the expansion but, even to this order, we have captured
the correct number of fast-scale oscillations. With ε = 0.00083 . . . , using only the
Z variable instead of the t(Z) variable given in (4.25) over-predicts the number of
oscillations seen in Figure 3 by about one half.

4.4. Numerical methods.
Solution of the full ODEs. In (4.4) we introduced the shooting function S whose

zeroes correspond to admissible blow-up profiles. By numerically integrating the ODE
(4.2) with the far-field behavior (4.3), we have been able to approximate this function,
as seen in Figure 4. An asymptotic form of the function S(C) for C � 1 can be
constructed by a similar matching argument by putting an extra term b̃ sin(

√
3t)/g0(z)

into (4.27) (b̃ = 0 iff S(C) = 0). This leads to a harder multi-parameter matching
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Fig. 4. Numerical approximation to S(C) in (4.4).

procedure and will not be considered any further. Labeling, as above, the solutions
to (4.2) corresponding to the nth zero of S(C) as fn, we find that fn(y) has precisely
n maxima on R. In Figure 5 we present the first profile f1 given in Theorem 4.4,
which has the simplest bell-shaped form. It is evolutionary stable for a broad range of
initial data (see the next section). For visual clarity we separately present the profiles
{f1+4n} and {f2+4n} for n = 0, . . . , 15.

The shooting function was approximated numerically for 0 < C ≤ 1012 by solving
the ODE (4.2) subject to the Dirichlet condition f(L) = Cφ0(L) with L such that
f(L) = 10−10. The zeros of S(C) then were used as initial guesses for a boundary
value solver where now (4.2) was solved on y ∈ (0, 150) subject to f ′(0) = 0, f(150) =
0, f ′(150) = 0. The right-hand conditions are satisfied by exponentially decaying
solutions within error tolerance.

Numerical solution in the inner region. Because of the fast oscillation in (4.32)
and the slow convergence to this profile (the next terms are O(1/z̄)), the accurate
numerical computation of the coefficients (4.43) is not straightforward; in many ways
it is the most difficult numerical ODE problem in this paper. In fact, it is known that
for second-order equations of the type

y′′(t) + g(t)y(t) = 0, with g(t) → ∞ as t → ∞

(of which the Airy functions are particular solutions), standard Runge–Kutta or linear
multistep methods are not only poorly suited, but are incapable of producing reliable
solutions in double precision arithmetic for large t [23]. As such, the values were
computed using a modified magnus method employing Filon quadratures [22, 24].

Numerical solution of the PDE. The possibility of finite-time blow-up suggests
that adaptive strategies in both time and space are required for reliable numerical
solution to (1.1). The geometric features of this problem are also key, both the scale
invariance and the preservation of mass. As such we use a scale-invariant moving-mesh
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Fig. 5. Various numerical solutions to (4.2).

strategy which dynamically clusters the grid points where a solution indicator, in this
case |u|3, is large [20, 7, 21, 33, 8]. Additionally, we rescale dynamically in time and
compute the physical time as part of the solution procedure [8]. This strategy does
not assume any particular solution structure, but instead follows the scaling structure
of the full PDE. This allows the computational grid points to move along level sets
of any (emerging) similarity variable. We have also used a conservative collocation
discretization [20, 33] which preserves the mass of the solution even into blow-up while
on a moving grid.

This code is fully implicit in time and designed to solve general problems of the
form f(t, x, u, ux, uxx, uxxx) = d

dxg(t, x, u, ux, uxx, uxxx) and has been used for exam-
ining many higher-order equations [6, 16, 33]. The spatial adaptive strategy has been
shown to be reliable on problems for which static regridding codes have failed. For
details of the code we refer to [33], while the adaptive strategy is described in [21, 7, 8].

4.5. Exponential asymptotic stability of the first blow-up pattern with
profile f1: Numerical evidence. Theorem 4.4 together with the above matching
analysis for k � 1 imply that there is a discrete family of solutions to the similarity
ODE (4.2), and hence a discrete set of admissible masses for the final time profiles

(4.45) Mk =

∫
fk(y) dy, k = 1, 2, . . . .

We now justify that the first blow-up pattern with profile f1 is the only stable one.
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Returning to the rescaled PDE (2.3), which for N = 1 and p = 3 takes the form

(4.46) θτ = A(θ) ≡ −θyyyy −
1

4
(θy)y − (θ3)yy,

with initial data θ0, we study the asymptotic behavior of the global orbit {θ(·, τ)}.
First we establish the following natural (but not straightforward) property of its ω-
limit set ω(θ0).

Proposition 4.6. With the definition (2.1) of the rescaled solution,

(4.47) 0 	∈ ω(θ0).

Proof. We have from (4.46) that A′(0) = B∗ − 1
4 I with the known spectral and

other properties described in section 3.2. By Lemma 3.1, σ(A′(0)) = {−k+1
4 , k ≥ 0}.

The principle of linearized stability [30, Chapt. 9] implies that any sufficiently small
solution θ(y, τ) decays as τ → ∞ exponentially fast and that, for some constant
C0 > 0,

|θ(y, τ)| ≤ C0e
−τ/4 uniformly in R.

Then one can see from scaling (2.1) with p = 3 that |u(x, t)| ≤ C0 for all t ≈ T−, i.e.,
u does not blow-up at t = T contradicting the choice of blow-up time T .

The linear part of the operator A, B∗ − 1
4 I, is not self-adjoint and we do not

expect that A is a potential operator nor that (4.46) is a gradient system. Therefore,
the stability properties of the first similarity profile f1 are studied via the spectrum
of the linearized operator

(4.48) A′(f1) = B∗ − 1

4
I − 3

d2

d2y
(f2

1 I),

which is posed in a functional setting similar to that for B∗ introduced in section 3.
Proposition 4.7. A′(f1) : H4

ρ → L2
ρ is a bounded linear operator with the

discrete spectrum σ(A′(f1)) = {μl}.
Proof. We recall that by Theorem 4.4, f1(y) has exponential decay as y → ∞

so that (4.48) is a lower-order perturbation with smooth, bounded and exponentially
decaying coefficients of the operator (3.1) and hence A′(f1) is a bounded operator by
Lemma 3.2; see [18]. In view of the known spectrum of B∗ having compact resolvent
(B∗ − λI)−1 in L2

ρ [10], and by taking (A′(f1) − cI)−1 with a large constant c, we
have that the additional terms in (4.48) form a compact perturbation of the integral
operator. Hence, the spectrum of A′(f1) is discrete.

Note that the two first real positive eigenvalues of A′(f1) are easily calculated
explicitly:

(4.49) μ0 = 1, φ0 = (yf1(y))
′ and μ1 =

1

4
, φ1 = f ′

1(y),

corresponding to the invariance of the original PDE (1.1) under the group of trans-
lations in t and x, respectively. As is usual in blow-up problems, since the blow-up
scaling (2.1) does not admit such translations (the time T and the blow-up point
x = 0 are fixed), these unstable modes are not available for the rescaled PDE (4.46).

A meaningful estimate of the real part of the remainder of the eigenvalues {μl, l ≥
2} ⊂ C of A′(f1) is nontrivial. Instead, we present a numerical calculation, from
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Fig. 6. Evolution of solutions to (1.1). (a) Convergence to f1 in rescaled coordinates. (b) Mo-

tion of the mass for initial mass
∫

u0 <
∫

f1. (c) Instability of f5. (d) Motion of the mass for initial

mass
∫

u0 =
∫

f5 >
∫

f1. The rescaled coordinates are determined through the transformation (2.1)
with T being taken from the numerical approximation.

directly simulating the PDE, in Figure 6(a), where we rescale the PDE solutions
according to the blow-up scaling (4.4) with σ = 1 and carefully computed blow-up
time T . We have chosen symmetric monotone decreasing initial data having a smaller
mass than the similarity solution,∫

u0 < M1 =

∫
f1.

Figure 6(b) shows the time-evolution of the mass distribution (
∫ y

0
θ(s, τ) ds) of this

solution concentrated on intervals [0, y] for τ � 1, so that the total mass is achieved
for y = ∞ (for y � 1 in numerical experiments), establishing convergence to M1

(our numerical scheme was designed to preserve mass for problems of this form). In
order to gain an extra positive mass to converge to f1 uniformly on compact subsets,
the rescaled solution forms two small negative humps, which disappear at y → ±∞
as τ → ∞; see further comments below. By considering this distribution of mass
one can see firstly that the numerical scheme preserves the total mass and also how
the rescaled solution converges to the first similarity profile on compact sets of the
rescaled spatial coordinate y.
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From a variety of numerical experiments, we conjecture that the next eigenvalue
of the linearized operator (4.48) satisfies

(4.50) Reμ2 = −0.51 . . . .

This eigenvalue ensures the exponential stability of the first blow-up profile f1. We
are not aware of a proof of the inequality Reμ2 < 0 for operator (4.48), and, as is
often happens in the operator and stability theory, we initially rely on rather delicate
numerical results. This calculation is based on carefully measuring the rate of the
L∞-convergence in the rescaled coordinates over compact subsets in the similarity
variable y. This is of crucial importance, since measurement over all of x shows
another (wrong) estimate Reμ2 � − 1

4 instead. This is understood analogously to
Proposition 4.6. Indeed, solutions with mass different from the final time profile
cannot, because of conservation, lose that mass, but, similarly, it cannot contribute
to the final-time profile in the rescaled coordinates. This extra mass (positive or
negative) is damped to zero in the rescaled coordinates as described in Proposition
4.6 and hence with exponential rate e−τ/4. However, this is not a property of the
linearized operator about the first similarity profile and such an incorrect estimate
follows from the scaling (2.1), where 1

2(p−1) = 1
4 for p = 3. This discrepancy is

indicated in Figure 7. This type of estimate can of course be made by numerical
approximation of the similarity ODE and numerical evaluation of the spectrum of
the numerical linearization about such solutions. However, this gives no information
about more general convergence behavior.
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Numerical simulation of the full PDE with stationary profiles other than f1 shows
them to be exponentially unstable and the linearized operator

(4.51) A′(fk) = B∗ − 1

4
I − 3

d2

dy2
(f2

kI)

has eigenvalues with positive real parts. Ordering the sequence of eigenvalues {μl}
such that their real parts are nonincreasing means that

(4.52) Reμ2 > 0 for all k ≥ 2.

This has been checked numerically in a number of PDE experiments with k = 2, 3, 4
and 5. For instance, Figures 6(c) and 6(d) displays the unstable evolution for the
initial function u0(x) given by the rescaled profile θ0 � f5(y) (with the addition
of a small positive perturbation) with the larger mass

∫
θ0 =

∫
f5 >

∫
f1. Then

to compensate such a positive mass-defect, two positive humps appear and move
fast to infinity in the rescaled coordinates showing convergence to f1 on compact
subsets of the similarity variable y. This and similar other numerical experiments
with very precise approximation clearly suggest that the similarity profiles f2−f5 are
exponentially unstable.

5. General p’s. The case of general p is more complicated than for the conser-
vative case as without conservation the ODE (2.5) remains truly fourth order.

5.1. Moment conservative case p = 2. One seeming exception to this is the
second critical exponent p1 = 2, for which one can also derive a third-order ODE.
These are the solutions that conserve the first moment. For simplicity, we consider
only N = 1. Multiplying by x in the PDE (1.1) and integrating by parts, we have

0 = −
∫
R

(uxx + up)xx dx =
d

dt

∫
R

uxdx =
d

dt

[
(T − t)−1/2(p−1)+1/2

∫
R

θ(y, t)y dy

]
.

Thus, p = 2 defines the exponent, for which the first moment of solutions is conserved.
Generically, in RN this leads to the second critical exponent p1 = 1 + 2

N+1 in the
sequence (1.8) and similar to (2.10), we conclude that

(5.1) for any p 	= p1, yf ∈ L1 =⇒
∫

yf = 0.

Multiplying the ODE (2.5) in R with y and integrating once, we have

(5.2) f ′′′y − f ′′ +
1

4
y2f + (f2)′y − f2 = −f ′′(0) − f2(0) ≡ 1

4
A,

where the constant A ∈ R determines the rate of algebraic decay at infinity. Recall
that from (2.18) with p = 2 the asymptotic algebraic behavior is

(5.3) f(y) = Ay−2(1 + o(1)) as y → ∞.

Unlike the critical case p = 3 (cf. (4.2)), regardless of the fact that (5.2) is a third-order
ODE, we need to keep two symmetry conditions at the origin

(5.4) f ′(0) = f ′′′(0) = 0.
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Fig. 8. (a) Examples from the family of algebraically decaying solutions of (5.2) with f ′′(0) < 0.
(b) Examples from the family of algebraically decaying solutions of (5.2) with f ′′(0) > 0. (All
solutions are shown with f rescaled with (−A)−1/2.)

For the case A = 0, (5.2) may be rewritten as

f ′′ + (f2)′ +
1

4
yF = 0, F =

∫ y

0

f(s) ds.

Then the far-field behavior is purely exponential with a one-dimensional (1D) bundle
there given in (2.17). This 1D bundle is not enough to “shoot” two boundary condi-
tions (5.4), and we have got reliable numerical and analytical evidence that there is
no exponentially decaying solution for p = 2.

For A 	= 0, solutions can again be constructed by continuation in A, but now the
condition of zero mass must be enforced creating, once again, a fourth-order system.
For all A 	= 0, we solve the ODE (5.2), (5.3) imposing the condition

∫
R
f = 0 by setting

f(y) = F ′(y), where F is odd, F (0) = 0 and F (y) → 0 as y → ∞, finding A such that
f ′(0;A) = 0. In Figure 8 we present example solutions with algebraic decay. These
solutions are presented with f rescaled with (−A)−1/2. The main difference from the
case p = 3 is that now the shooting from y = ∞ is two-dimensional including the
parameter A in (2.18) and an additional C ∈ R from the corresponding exponential
bundle (2.17). This 2D asymptotic bundle is sufficient to match with two symmetry
conditions (5.4) and to generate a countable set of similarity profiles {fk} shown in
Figure 8. This 2D matching problem is more difficult than the 1D one for p = 3 and
already exhibits typical “multidimensional” features of higher-order ODEs.

The details of a matched asymptotic construction are given in the appendix,
which are now more involved than the p = 3 case. Figure 8 illustrates that the inner
solutions have oscillations whose amplitudes are not asymptotically small (cf. (4.27)).
However, we expect that an existence result similar to that in Theorem 4.4 as well
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as the multiplicity analysis that follows can still be performed but become essentially
more delicate.

5.2. On arbitrary p > 1. Finally, by direct simulation of the full PDE (1.1)
with various values of p 	= 3, we conjecture that stable similarity profiles satisfying
the ODE (2.5) govern the blow-up dynamics for all p, not just in the conservative
case; see Figure 9. For instance, for p = 2 solutions converge exponentially fast in
τ on compact subsets of y to the first fundamental algebraically decaying solution
in Figure 8(a). Recall that, for all p 	= 3, precisely two symmetry conditions (5.4)
should be taken into account, so we always deal with a 2D shooting by using a 2D
algebraic-exponential bundle as y → ∞ defined by a combination of (4.3) and (2.18),

f(y) = Ay−2/(p−1) + · · · + Cy−1/3e−βy4/3

+ · · · as y → +∞,

where A and C are arbitrary shooting parameters. Then the set of similarity profiles
is always discrete and the first stable profile is isolated. Moreover, for such p’s,
a kind of singular perturbation technique similar to that in section 4 can be applied
detecting, as a typical feature, countable sets of blow-up similarity profiles. A detailed
similarity analysis for p 	= 3 and in the “singular” case p < 1 (with finite propagation
and solutions of changing sign) will be presented in a forthcoming paper.

6. Global similarity and approximate similarity patterns. We now turn
our attention to the better mathematically tractable case of global solutions. Taking
σ = −1 and T = 0 in (2.1) yields the rescaling of global-in-time solutions. We study
the asymptotic behavior as τ → +∞ of solutions satisfying the parabolic PDE

(6.1) θτ = A(θ) ≡ −Δ(Δθ + θp) +
1

4
y · ∇θ +

1

2(p− 1)
θ.

6.1. Similarity patterns for the one-dimensional equation with p = 3.
As in the case of blow-up in section 4, we begin with the analysis of global self-similar
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solutions

uS(x, t) = t−1/4f(y), y = x/t1/4,

where f satisfies the ODE obtained from (2.5), (2.3) by integration

(6.2) f ′′′ − 1

4
yf + (f3)′ = 0, for y > 0, f ′(0) = 0.

We are looking for profiles f with exponential decay at infinity so that these are L1-
solutions satisfying the conservation law (2.7). Recall that, unlike the blow-up case
(4.2), the ODE (6.2) admits a two-dimensional exponential bundle as y → ∞; see
(2.16). This essentially simplifies the existence analysis and implies a continuous set
of similarity profiles.

Theorem 6.1. The ODE problem (6.2) has an unbounded continuous family of
exponentially decaying solutions.

Proof. Step 1: monotonicity of solutions as y → ∞. By a standard local analysis,
one can check that, in addition to the two-dimensional exponential bundle of solutions
mentioned in (2.16) and those with the algebraic decay (2.18), (6.2) has a three-
dimensional bundle of asymptotically monotone growing solutions as y → ∞

(6.3) f(y) =
y√
12

+
1

y

(
C1 cos

(
y3/2

3

)
+ C2 sin

(
y3/2

3

)
+ C3

)
+ · · · ,

where C1, C2, C3 are arbitrary parameters.
Step 2: the shooting argument. For a fixed constant a ≥ 0, denote by f(y;C) the

solution of (6.2) with the conditions

f(0) = a, f ′′(0) = C.

As in section 4, one can show that f(y;C) is globally defined. Using the stability of
the three-dimensional bundle (6.3) concentrated around the stable explicit solution

(6.4) f∗(y) =
y√
12

→ ∞, y → ∞,

we have that there exists a sufficiently large C1 > 0 such that f(y;C) belongs to the
bundle in (6.3) for all C ≥ C1. On the other hand, via symmetry by reflection, for all
−C � 1, f(y) approaches as y → ∞ the bundle around the explicit profile −f∗(y).
Introducing the set

W = {μ < C1 : f(y;C) belongs to (6.3) for all C ∈ (μ,C1)},

we have that there exists a finite C = inf W , and by construction, C = C(a) pro-
vides us with a profile f(y;C(a)) which belongs to the exponential bundle (2.16) as
y → ∞.

Note that this implies that there exists a solution with all f(0) = a ∈ R. In
Figure 10 we present the bifurcation diagram with respect to mass of this continuous
family of similarity profiles. As we already know, there exists another case p = 2,
N = 1, where the fourth-order ODE (2.5) reduces to a simpler third-order one. The
existence results here are quite similar and the family of solutions is also continuous.
However, continuous families for p = p0 and p = p1 (quite special conservative cases
associated with (1.1) in divergence form) are exceptional and these are not the generic
situation for arbitrary p; see section 6.3, where discrete sets will be detected (cf. the
VSSs in [17]).
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Fig. 10. Mass bifurcation diagram.

6.2. The minimal mass-branch is evolutionary stable. It follows from Fig-
ure 10 that, for any fixed initial mass m0 =

∫
u0 	= 0, there exists a finite, or empty

if

|
∫
u0| > m∗ = 0.9271 . . . ,

set of similarity solutions with the given mass. Moreover, for m0 = 0, besides f(y) ≡ 0,
a countable family of such solutions is expected to exist that is clearly shown in Figure
10 as intersection points with the horizontal axes.

The crucial problem for such a case of multiple solutions is the stability of those
solutions in the PDE sense. Let us show that the minimal branch in Figure 10
corresponding to the limit

(6.5) f → 0 as m0 → 0

is stable at least for all small masses m0 > 0 (or m0 < 0 replacing f �→ −f).
As a typical example, we perform such computations for the N -dimensional case
bearing in mind that the first critical exponent is now p = p0 = 1 + 2

N . Consider the
corresponding elliptic equation

(6.6) A(f) ≡ −Δ2f +
1

4
y · ∇f +

N

4
f − Δfp = 0,

∫
f = m0 > 0.

First, as an example, we establish a local result on the existence of such similarity
patterns in general dimension. For N = 2 such a local existence was earlier established
in [1] by a different technique.

Proposition 6.2. Let p = p0. For any sufficiently small m0 > 0, (6.6) admits a
solution satisfying

(6.7) f = m0F + O(mp
0) (with F is as in (1.13)).
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Proof. Setting f = m0v and introducing operator C = B − I with the strictly
negative point spectrum, σ(C) = {λl = −1 − l

4}, we consider the equivalent integral
equation

(6.8) v = D(v) ≡ −C−1v + |m0|p−1C−1Δvp,

with condition
∫
v = 1. Since B has compact resolvent in L2

ρ(R
N ) [10], we have

that after a suitable smooth truncation of the nonlinearity vp for |v| � 1 (see further
comments below), D is a compact Hammerstein operator [25]. Since D′(0) = C−1

has the simple eigenvalue λ0 = 1, bifurcation occurs at m0 = 0 and by the Lyapunov–
Schmidt method [25], the solution can be represented in the form v = F + w, where
w ∈ L⊥{F}. On substitution into (6.8) we obtain that w = O(|m0|p−1) ∈ L2

ρ is small
for |m0| � 1. Hence, w is small in H2m

ρ and by the known asymptotic properties of the
ODE under consideration, w is small uniformly. This means that the truncation of the
unbounded nonlinearity vp does not affect the solution bifurcating at m0 = 0. Finally,
we obtain the representation (6.7) in H2m

ρ and uniformly in RN . See more details in
[17, sect. 6].

To study the stability of the minimal branch, we consider the linearized operator

(6.9) A′(f)Y = BY − pΔ(|f |p−1Y ) ≡ BY − |m0|2/NpΔ(|F |p−1Y ) + · · · .

For small m0, A
′(f) is a perturbation of B with the known spectrum as given in (3.3).

In 1D and in the radial geometry all the eigenvalues are simple and we will denote
the eigenfunctions by ψl instead of ψβ with l = |β|. Similarly to Proposition 4.7, we
have that A′(f) has a discrete spectrum which is a perturbation of that of B [18].
Recall that, from the orthogonality condition (3.7), ψ0 = F is the only eigenfunction
of B with nonzero mass; see (1.13). Thus, requiring that the mass of profiles be
preserved, we have to take into account perturbations of eigenvalues corresponding to
perturbed eigenfunctions from L⊥{F}, i.e., of eigenvalues of B for l = 1, 2, . . . (l = 0
not included). By direct calculation from (6.9), one can estimate this point spectrum
given, to leading order, by

σ(A′(f)) =

{
− l

4
+ |m0|2/Np

〈
Δ(|F |p−1ψl, ψ

∗
l

〉
+ · · · , l = 1, 2, . . .

}
.

This guarantees that, for all small |m0|, the real parts of the eigenvalues are bounded
away from zero from above and that this branch is exponentially stable. Note that
this expansion is not valid near the subsequent zeros of mass (other than 0) seen
in Figure 10, as the L∞-norm of such solutions is not zero for m0 = 0 and hence
expansion (6.7) does not hold. Therefore, other continuous monotone increasing or
decreasing sub-branches are not stable.

Hence, for almost all initial data with |
∫
u0| ≤ m∗, there exists the stable branch

of similarity solutions that can attract the solution as t → ∞. If |
∫
u0| > m∗, then,

as is seen from Figure 10, self-similar asymptotic behavior is not available and the
solution is expected to blow-up in finite time.

6.3. The p-bifurcation diagram and asymptotic behavior. To describe
the global bifurcation diagram of similarity profiles, we first determine the spectrum
of critical exponents as bifurcation points. Writing the elliptic equation (2.5) in the
form

(6.10) Bf + c∗f = Δfp in RN , f(y) → 0 exponentially fast as y → ∞,

with c∗ = N(p0 − p)/4(p− 1), we obtain the following result.
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Proposition 6.3. Let, for an integer l ≥ 0, the eigenvalue λl = − l
4 of the

operator (3.1) be of odd multiplicity. Then the critical exponent pl given in (1.8) is a
bifurcation point for the problem (6.10).

Proof. After performing, as above, a smooth truncation of the nonlinearity fp, the
proof follows analogously to that of Proposition 6.2 (cf. Proposition 6.1 in [17]). By
using the explicit representation of the resolvent of B [10], this differential equation
reduces to an integral one with compact Hammerstein operators to which the classical
bifurcation techniques apply [25].

Using standard bifurcation theory, we briefly describe the results calculated di-
rectly from the differential equation. By Lemma 3.1, the linear operator in (6.10) has
the spectrum σ(B+c∗I) = {c∗− l

4 , l ≥ 0}. Therefore, any p = pl for which c∗− l
4 = 0

gives the critical exponents (1.8), determines a bifurcation point for problem (6.10)
provided that λl = − l

4 is of odd multiplicity (e.g., this is always true for N = 1 or
in the radial geometry where the eigenvalues are always simple). In order to describe
the local behavior of the bifurcation branches at p ≈ pl, we fix an l and set

p = pl + ε, with pl = 1 +
2

N + l
.

Since c∗ = l
4 − μlε + O(ε2), with μl = 1

8 (N + l)2, (6.10) takes the form

(6.11)

(
B +

l

4
I

)
f − μlεf + O(ε2) = Δfp.

Using the Lyapunov–Schmidt method ([25, Chap. 8]) by setting f = Cψl + w, where
w ∈ L⊥{ψl}, one can find the algebraic equation for C. Solving this, one finds that
near the bifurcation point the solution takes the form

f = [νl(p− pl)]
1/(p−1)ψl + · · · as p → p+

l , where νl = −(N + l)2/8κl and(6.12)

κl = 〈Δψpl

l , ψ∗
l 〉 = 〈ψpl

l ,Δψ∗
l 〉 < 0.(6.13)

The expansion (6.12) is posed under the crucial assumption that (6.13) holds. The
strict inequality (6.13) has been checked numerically for various l ≥ 2. It is worth
mentioning that an analytical proof of (6.13) is not straightforward even in the sim-
plest case l = 2, N = 1, where ψ2 = F ′′(y)/

√
2, (ψ∗

2)′′ ≡
√

2 and p2 = 5
3 , though

the positivity dominance of the rescaled kernel F in the sense that
∫
F = 1 directly

suggests that κ2 < 0.
Notice however, that

κ0 = κ1 = 0 for all N ≥ 1,

as ψ∗
0 = 1 and ψ∗

1(y) is linear in y. Thus, the corresponding branches leave these
bifurcation points vertically, suggesting a continuous family of solutions for these
critical exponents described above. For p = 3, this has been proved in Proposition
6.2. For p = 2, this follows from the ODE integrated once after multiplying by y (cf.
(5.2) with A = 0),

(6.14) f ′′′y − f ′′ − 1

4
y2f + (f2)′y − f2 = 0.

Therefore, we need a single condition of odd symmetry at the origin f(0) = 0 since
the second one f ′′(0) = 0 follows from the ODE (6.14).
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Fig. 11. Bifurcation diagram of (6.10) for N = 1 with respect to p with even symmetry condi-
tions at y = 0. There is a continuous branch of solutions from p = 3 and 2 but only a discrete set
of solutions for all p �= 3, 2. Another vertical branch of solutions bifurcates from p = 2 but with odd
symmetry about y = 0.

In Figure 11 we see that the remaining branches bifurcate with increasing p which
is guaranteed by (6.13). Then, bearing in mind the countability of bifurcation points
(1.8), Figure 11 clearly suggests that for any p > 1, p 	= p0, p1, there exists a countable
set of solutions to (6.10). For noncoercive smooth potential operators, this is a typical
result from Lusternik–Schnirel’man theory (see the classical formulation in [25, p. 381]
and [26, 35] on variational methods in weighted Sobolev spaces like L2

ρ for problems

in RN ), though problem (6.10) is not variational. The countability of solutions is not
necessarily associated with the existence of a variational formulation.

It follows from (2.4) that, for p 	= p0, any solution of (6.10) must have zero
mass, see (2.10). The similarity profiles on all the bifurcation branches in Figure 11
satisfy (2.10). Lastly, recall from Figure 10 that there is a discrete set of μk such
that f(0) = μk and

∫
fμk

= 0. Clearly, in Figure 11 this countable set of points
corresponds to intersections of the bifurcation branches with the vertical one {p = 3}.
To investigate problem (6.10) numerically, we have solved the fourth-order system

f ′′′ =
1

4
fy + c∗F − |f |p−1f ′, F ′ = f,

coupled with the boundary conditions

f ′(0) = 0, F (0) = 0, lim
y→∞

f(y) = 0, lim
y→∞

F (y) = 0,

as a continuation problem in p < 3 and p > 3 starting from those already known
profiles at the intersection points with {p = 3}.

Figure 11 shows branching of solutions of (6.10), i.e., similarity profiles with
exponential decay at infinity. Concerning possible solutions with the algebraic decay
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(2.18), one can see that such functions satisfy f ∈ L1(RN ) for p < p0 so that the
blow-up rate (2.4) implies the zero mass condition (2.10). We expect that there exists
a continuous family of such solutions with certain domain of attraction which do not
play any role for exponentially decaying initial data.

On stability of the p2-branch for p ∈ (p2, p0). Let us show that the first nonvertical
branch, from p = p2, is stable for p ≈ p+

2 . This is done by estimating the real parts
of the eigenvalues of the linearized operator given in (6.10), which for l = 2 has the
form

(6.15) A′(f) = B +
1

2
I − εC + o(ε), C = μ2I + p2ν2Δ(|ψ2|p2−1I),

where we substitute the expansion of f given by (6.12) with l = 2. By {λ̄l = λ̄l(ε)},
ε = p− p2 > 0, we denote the discrete spectrum of A′(f).

For N = 1, due to the conservation of mass (for any p ≤ p0 = 3) and of the first
moment (for any p ≤ p1 = 2), the first modes with positive unperturbed eigenvalues
of B + 1

2 I (ε = 0), λ̄0(0) = 1
2 and λ̄1(0) = 1

4 are not taken into account and we
need to check the perturbed third eigenvalue λ̄2(ε). The same holds for N > 1 in the
radial setting deleting all eigenvalues corresponding to nonsymmetric eigenfunctions
and hence λ̄1. Since this unperturbed eigenvalue vanishes, λ̄2(0) = 0, by perturbation
theory [18], the eigenvalue expansion takes the form λ̄2(ε) = ερ + o(ε) with the
eigenfunction given by ψ̄2(ε) = ψ2 + εϕ + o(ε). Substituting these approximations
into the eigenvalue equation, we find

A′(f)ψ̄2(ε) = λ̄2(ε)ψ̄2(ε),

and using (6.15), we obtain from the equation at O(ε) that the expansion coefficients
ρ and ϕ satisfy (

B +
1

2
I

)
ϕ = ρψ2 + Cψ2.

Hence, by the orthogonality condition,

ρ = −〈Cψ2, ψ
∗
2〉 = −μ2 −

1

8
p2(N + 2) = −1

8
(N + 2)(N + 3),

and, for small ε = p− p2 > 0,

(6.16) λ̄2(ε) = −1

4
(p− p2)(N + 2)(N + 3) + o(p2 − p), i.e., Reλ2(ε) < 0.

This means the exponential asymptotic stability of the similarity patterns on the p2-
bifurcation branch for all p − p2 > 0 sufficiently small. We expect that the whole
branch remains stable for all p ∈ (p2, p0). Note that for p = p0 it is not stable as
Figure 10 suggests since this solution has ‖f‖∞ ≈ 1.6 and the stable solutions have
smaller L∞-norm.

Stability of the fundamental solution for p > p0. It follows from (6.10) that c∗ < 0
for p > p0 so that 0 becomes stable in the rescaled PDE (6.1). Therefore, we apply
to (1.1) the scaling corresponding to the fundamental solution (1.12),

(6.17) u(x, t) = (1 + t)−N/4g(y, τ), y = x/(1 + t)1/4, τ = ln(1 + t) ≥ 0,

to get an exponentially perturbed equation

(6.18) gτ = Bg − eγτΔgp,
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where γ = 1
4 N(p0 − p) < 0, if p > p0. Recall that by Lemma 3.1, B has a one-

dimensional center subspace with the eigenfunction F ; see (1.13). Therefore, we
arrive at a typical result in the supercritical range p > p0: for all sufficiently small
initial data with m0 =

∫
u0 	= 0, the solution of (1.1) is global and has the same

asymptotic behavior as the fundamental solution (1.12) with identical mass,

u(x, t) = m0t
−N/4

[
F

(
x/t1/4

)
+ o(1)

]
as t → ∞.

See rigorous analysis in [10] for (1.7) in the range p > p0 = 1 + 2m
N , which can be

applied to the PDE (6.18).

6.4. Transitional non-self-similar patterns at critical exponents for the
limit stable Cahn–Hilliard equation. Our analysis shows that at the bifurcation
points (1.8) there occurs a transition from the linearized patterns corresponding to the
stable manifold of A with the linearization (3.1) to the essentially nonlinear similarity
patterns described in Figure 11. This is quite a general phenomenon in nonlinear
parabolic equations observed in various higher-order models, [6, 10, 16, 17].

It remains to determine what happens at the critical values p = pl for the original
PDE (1.1). Here one can expect some nontrivial center manifold patterns in the
rescaled (6.1). It turns out that this center manifold behavior is unstable (possibly,
with blow-up) for (1.1) but leads to nonsimilarity patterns for the stable (1.9). The
construction of global self-similar solutions (2.4), σ = −1, is quite the same as that
already considered in section 6.3 but instead of (6.10) we arrive at the equation

(6.19) Bf + c∗f = −Δfp.

Therefore, in the bifurcation analysis similar to Proposition 6.3 we obtain expansions
(6.12), where νl = (N + l)2/8κl < 0, i.e., the branches bifurcate at p = p−l concentrat-
ing at p = 1+, and hence p is expected to decrease along them (no rigorous proof of
nonlocal properties of branches is still available). A similar p-diagram occurs for very
singular similarity solutions for the semilinear parabolic equations with absorption
[17].

It is important to understand how such bifurcations can affect the evolution orbits
of the original PDE (1.9). Consider the corresponding rescaled (6.1), which at p = pl
takes the form

(6.20) θτ =

(
B +

l

4
I

)
θ + Δθp for τ � 1.

We fix l ≥ 1 so that, by orthogonality, ψl has zero mass. By (3.3), B + l
4I has a

nontrivial kernel, and therefore, by the general invariant manifold theory (see, e.g.,
[30]), it is natural to verify the center manifold behavior. This is expressed by looking
for solutions in the form

(6.21) θ(τ) = al(τ)ψl + w(τ), with w(τ) ∈ L⊥{ψl},

where the center manifold dominance in the asymptotic behavior means that w(τ) =
o(al(τ)) as τ → ∞. Substituting this expansion into (6.20) and multiplying by the
adjoint eigenfunction ψ∗

l in L2(RN ) yields ȧl = κla
p
l + o(apl ), where κl is as given in

(6.13). Since κl < 0, integrating this asymptotic ODE gives

(6.22) al(τ) = [(p− 1)|κl|τ ]−1/(p−1)(1 + o(1)).
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In the original {x, t, u}-variables, this defines the following asymptotic patterns for
the PDE (1.1) at p = pl, l ≥ 2 as t → ∞:

u(x, t) = Cl(t ln t)−(N+l)/2
[
ψl

(
y/t1/4

)
+ o(1)

]
, where Cl = [2|κl|/(N+l)]−(N+l)/2.

Obviously, using (3.1) as the linearization in the rescaled (6.1), one can see that, in
the supercritical range p > pl, there exist stable manifold patterns with the behavior

(6.23) θ(y, τ) = Ce−(N+l)(p−pl)τ/4(p−1)[ψl(y) + o(1)] as τ → ∞ (C 	= 0)

(cf. (6.21), (6.22) for p = pl). The patterns (6.21), (6.22) are transitional ones at
p = pl describing the exchange between the linearized stable manifold ones (6.23)
and the nonlinear similarity patterns studied above. This transition phenomenon is
similar to that detected in [17] for the very singular similarity solutions of the non-
conservative higher-order parabolic equations ut = −(−Δ)mu− up.

These transition phenomena are very difficult to detect numerically as it is only
a slow logarithmic correction of an asymptotic algebraic decay rate. Moreover, it
occurs only at a discrete set of nonlinearities corresponding to critical exponents
{pl}. Regardless, understanding such phenomena is crucial for the description of
evolutionary completeness of patterns for this problem.

7. Summary and final conclusions. This paper has considered both blow-
up and global solutions to the fourth-order semilinear parabolic equation (1.1). We
have termed such an equation the limit unstable Cahn–Hilliard equation since it can
arise as a limiting case of the more familiar and standard Cahn–Hilliard equation
with a double-well potential function (1.3). Our attention has focused on describing
the eventual patterns of similarity solutions to this equation. In the case of blow-up,
these occur as the finite blow-up time is approached, while for the global solutions
these occur as a large-time behavior. As such, in section 2 we presented the similarity
scalings and derived the governing ODE equations for both the blow-up and global
cases together with the critical value of the exponent p = p0 = 1 + 2

N if mass is to
be conserved. Since we are interested in solutions with noncompact support (notice
that a free-boundary formulation for (1.1) can give finite interfaces but we do not
consider such problems concentrating on the canonical Cauchy problem in RN ×R+),
we described in section 2.2 the possible far-field behaviors. In section 3, further
preliminary results are given concerning the spectral theory of the linearized operator,
which is used in the stability analysis of blow-up profiles in section 4 and plays a key
role in bifurcation analysis of global similarity patterns considered in section 6.

In section 4 we provided a detailed analysis of the possible blow-up similarity
profiles for the conservative case p = p0 = 1 + 2

N in one space dimension N = 1, i.e.,
p = p0 = 3. We conveniently parameterized the possible profiles using the free con-
stant C that appears in the far-field behavior (4.3), and in section 4.2 gave existence
results that C in fact takes an ordered countable set of values {Ck} with Ck > Ck−1.
A striking feature of the corresponding similarity profiles {fk} is that they posses a
number of local maxima that can be related to the “index” of fk, which increases
as k increases (this can be formally associated with the Morse index or the Sturm’s
number of zeros of a related “eigenfunction”). In section 4.3, the method of matched
asymptotic expansions was used to describe the structure of this family of profiles
in the limit when Ck becomes large. A novel two-scale outer expansion was used to
the capture the oscillatory behavior associated with the local maxima of the profiles
satisfying a singular perturbed ODE. Importantly the asymptotics derived an explicit
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expression for the values of Ck with k large. When appropriate we compared the
asymptotic solution with the corresponding full numerical solution of the ODE prob-
lem to confirm its accuracy, and also in section 4.5 was described a numerical scheme
for solution of the original PDE (1.1) in order to confirm convergence to our stable
similarity profiles from arbitrary generic initial data. As such in section 4.5, numerical
evidence was provided for the exponential stability of the first blow-up pattern f1.

In section 5 we briefly considered blow-up in cases p 	= p0. We noted the second
critical exponent p = p1 = 1+ 2

N+1 , in which the first moment of solutions is conserved.
In this case analytical and numerical progress can be made and we again noted that,
similar to the critical case p = p0, we can classify the family of blow-up similarity
solutions as a countable set. Matched asymptotic expansions were again used to
determine the solution structure for the limiting members of this set, which is relegated
to the appendix.

In section 6 we turned our attention to global (source-type) similarity solutions.
Unlike the blow-up patterns, our main conclusion is that (1.1) admits a continuous set
of similarity patterns, which can be parameterized by the mass. We proved existence
and exponential stability of solutions on the minimal branch by using the classical
bifurcation theory for non-self-adjoint operators, and derive a countable sequence of
bifurcation exponents {pl}, which lead to a finite number of similarity profiles for
noncritical p’s.

Appendix. A countable set of blow-up patterns for p = 2, N = 1.
In this appendix we carry out formal asymptotic computations for the ODE (5.2),
which are similar to those presented in section 4. While we again have an integrable
fourth-order ODE, the calculation is now more involved. The limit A → −∞ may
be considered by recasting (5.2) with (5.3) as a singular perturbation problem in a
manner similar to that developed in section 4.3 for p = 3. Introducing the small
parameter ε > 0 by

A = −ε−1/2,

the rescaling y = ε−1/4ȳ gives the following problem for f(ȳ):

(A.1) ε

(
f ′′

ȳ

)′
+ ε1/2

(
f2

ȳ

)′
+

1

4
f = − 1

4ȳ2
, with

(A.2) f ′(0) = 0, f ′′(0) +
f2(0)

ε1/2
=

1

4ε
, and

(A.3) f = − 1

ȳ2
(1 + o(1)) as ȳ → +∞.

Here ′ denotes d
dȳ . In the limit ε → 0+, we obtain a four-layer structure illustrated

schematically in Figure 12. We have an outer region ȳ = O(1), in which f takes the
far-field behavior (A.3), and an inner region ȳ = O(ε1/8), in which f = O(ε−1/4). This
inner region is partitioned into two distinct regions, an inner 1, where ȳ > ε1/8â, and
an inner 2, where ȳ < ε1/8â. The partition is through an inner inner region located
at ȳ = ε1/8â, which is of width O(ε3/8). The constant â will be shown below to be
close to the location of the first singularity of a Painlevé transcendent-type equation.

The outer region ȳ = O(1). At leading order (A.1) gives

(A.4) f = − 1

ȳ2
,
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Fig. 12. Schematic illustration of the asymptotic regions for the singular perturbation problem
(A.1)–(A.3) expressed on the y variable scale.

which obviously satisfies (A.3) but not (A.2). This gives rise to the consideration
of the following inner region, in which terms involving the first derivatives of f are
retrieved.

The inner 1 region ȳ > ε1/8â. Introducing the scalings

(A.5) ȳ = ε1/8ŷ, f = ε−1/4f̂ , so (A.1) becomes

(A.6) ε1/2

(
f̂ ′′

ŷ

)′

+

(
f̂2

ŷ

)′

+
1

4
f̂ = − 1

4ŷ2
,

where ′ now denotes d
dŷ . Posing f̂ ∼ f̂0 gives the leading order problem

(A.7)

(
f̂2
0

ŷ

)′

+
1

4
f̂0 = − 1

4ŷ2
, with the matching condition

(A.8) f̂0 ∼ − 1

ŷ2
as ŷ → +∞.

We next consider a region located at ŷ = â so that

(A.9) f̂0 ∼ f̂0(â) as ŷ → â+.

The inner inner region ȳ = ε1/8â + O(ε3/8). Introducing the new variables

(A.10) ŷ = â + ε1/4Ŷ , f̂ = F̂ ,
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we have from (A.6) that

(A.11)

(
F̂ ′′

(â + ε1/4Ŷ )

)′

+

(
F̂ 2

(â + ε1/4Ŷ )

)′

+
ε1/4

4

(
F̂ +

1

(â + ε1/4Ŷ )2

)
= 0,

where ′ is now d
dŶ

. Posing F̂ ∼ F̂0 gives, at leading order,

(A.12) F̂ ′′
0 + F̂ 2

0 =
(
f̂0(â)

)2

,

after matching to (A.9). This gives the constant solution F̂0 = f̂0(â) at leading order
within this region.

The inner 2 region ȳ < ε1/8â. We now consider the scalings,

(A.13) ȳ = ε1/8ŷ, f = ε−1/4F,

where F = F (ŷ, Y ) is also taken to be a function of the fast scale ŷ = ε1/4Y . Defining
the multiple-scales operator L by L = ∂

∂Y + ε1/4 ∂
∂ŷ , (A.1) becomes

(A.14) L
(

1

ŷ
L2F

)
+ L

(
F 2

ŷ

)
+

1

4

(
F +

1

ŷ2

)
= 0.

Posing F ∼ F0 + ε1/4F1, we have, at leading order,

(A.15)
∂2F0

∂Y 2
+ F 2

0 = A0(ŷ),

for some function A0(ŷ) and at the next order,

(A.16)
∂

∂Y

(
∂2F1

∂Y 2
+ 2F0F1

)
− 2

∂F 2
0

∂ŷ
+

ŷ

4
F0 + 3ŷ1/3 ∂

∂ŷ

(
A0

ŷ1/3

)
+

1

4ŷ
= 0.

The secular terms involving Y in (A.16) are removed if 3ŷ1/3 d
dŷ

(
A0

ŷ1/3

)
= − 1

4ŷ , which

gives A0(ŷ) = 1
4 −B0ŷ

1/3 for some constant B0 (assumed positive). Thus F0 satisfies

(A.17) F ′′
0 + F 2

0 =
1

4
−B0ε

1/12Y 1/3,

where ′ = d
dY and is subject to (A.2), which at leading order in the current variables

becomes

(A.18) F ′
0(0) = 0, F ′′

0 (0) + F 2
0 (0) =

1

4
.

The second condition in (A.18) is satisfied by F0 as seen from (A.17). The equation
(A.17) is noted to have movable singularities that are second-order poles. Denoting
the first (i.e., smallest) positive pole location by â0, we have the local behavior,

(A.19) F0 ∼ − 6ε1/2

(â0 − ŷ)2
as ŷ → â−0 .

Matching F0 with F̂0 from the inner region requires F0(â) = f̂0(â), where â < â0.
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It is worth remarking that the leading order solution f̂s(ŷ) in this inner 2 region
on the slow scale ŷ satisfies (A.7). As ŷ → 0+, the only bounded positive solution

satisfying f̂ ′
s(0) = 0 has the behavior,

f̂s ∼
1

2
− 1

8
ŷ2 as ŷ → 0+.

For the solution satisfying this behavior, we have that f̂s = 0 at ŷ ≈ 1.6 with f̂ ′
s

unbounded which gives a first approximation for â. We now have from the numerical
solution of (A.7) and (A.8) the estimate f̂0(â) ≈ −0.2 for â = 1.6. Further, imposing
this condition on the two-scale approximation (A.17) suggests taking B0 ≈ 1/4â1/3.

Full numerical solution of (5.2) gives the values y ≈ 1.5ε−1/8, f ≈ −0.21ε−1/4 for
the location and value of the minimum of f when ε = 6.6×10−9. This is in very good
agreement with the values â = 1.6, f̂0(â) = −0.2 from the above asymptotics.

There are two sets of solutions to (A.17) satisfying (A.18), which are distinguished
by the their values for F (0). Full numerical solution of (5.2) gives the estimates
F0(0) ≈ 0.5 ± 0.167.
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GLOBAL CONTINUATION IN SECOND-GRADIENT
NONLINEAR ELASTICITY∗

ANITA MARENO† AND TIMOTHY J. HEALEY‡

Abstract. We consider three-dimensional elastic bodies characterized by a general class of
stored-energy functions dependent upon the first and second gradients of the deformation. We
assume that the dependence on the higher-order term ensures strong ellipticity. With only modest
assumptions on the lower-order term, we use the Leray–Schauder degree to prove the existence of
global solution continua to the Dirichlet problem. With additional, physically reasonable restrictions
on the stored-energy function, we then demonstrate that our global solution branch is unbounded.
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1. Introduction. In this work we consider the analysis of models for three-
dimensional elastic bodies characterized by a general class of stored-energy functions
dependent upon the first and second gradients of the deformation. We are motivated in
part by the common use of second-gradient models to overcome the lack of regularity in
nonlinear elasticity. Since the classical works of van der Waals [25], [29] and Cahn and
Hilliard [6], the addition of small “interfacial energy” in multiwell problems associated
with phase transitions is well known; see, e.g., [5], [22], [26], and references therein.
Even problems within the setting of classical nonlinear elasticity (strongly elliptic)
provide ample motivation for the use of higher-gradient models. For example, the
potential failure of the complementing condition at the (smooth) boundary is a real
impediment to existence [9], [11], [13].

We also mention the works [10] and [19]. Within the confines of one-dimensional,
multiwell elasticity, these papers treat the existence of global solution branches. In
particular, generalized solutions in the limit of vanishing interfacial energy are rig-
orously obtained. While this last difficult step is presently out of reach for three-
dimensional problems, we establish a first important step in that process here, viz.,
the existence of unbounded solution branches for a general class of second-gradient
models.

The outline of the paper is as follows: In section 2 we formulate the Dirichlet
problem for a very general class of “forced” second-gradient models. We assume that
the higher-order term of the stored energy function yields uniform strong ellipticity
with only modest assumptions on the lower-order term. In section 3 we provide a
global-continuation analysis via the Leray–Schauder degree, akin to that in [8] for
classical first-gradient problems. The results are quite general, characterized by the
usual two “Rabinowitz alternatives” [23] accompanied by the possibility of a bounded
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solution branch that “terminates” due to the loss of local injectivity of solutions.
Section 4 is the heart of the paper. We assume that the stored-energy function
depends upon an interfacial-energetic term, quadratic in the second gradient of the
deformation; we adopt the physically reasonable hypotheses from [12] for the lower-
order term. Employing a recent uniqueness result [20, 21] for second-gradient systems
and generalizing arguments from [12], we eliminate two of the “alternatives” from the
general result of section 3, yielding the existence of an unbounded branch of classical
injective solutions.

Notation. Throughout this work, the inner product and tensor product of a,b ∈
R

3 are denoted as usual by a ·b and a⊗b, respectively. For second-order tensors we
define the inner product by A:B = tr

(
ATB

)
= AijBij (in Cartesian components),

where tr denotes the trace and T denotes the transpose. Similarly, for third-order
tensors G and H we define the inner product by G

.
: H = GijkHijk. For the most

part, the third-order tensors encountered in this work are symmetric in their last two
indices. Accordingly we define V = {G : Gijk = Gikj}. For G ∈ V with components
Gijk, we define GT to be the third-order tensor with components Gjik.

For Banach spaces X and Y, we let L(X,Y ) denote the space of bounded linear
transformations from X to Y. (We let L(X,X) ≡ L(X).) Then we define GL

(
R

3
)

=

{A ∈ L(X) : A is bijective}, GL+
(
R

3
)

=
{
A ∈ GL

(
R

3
)

: det A > 0} , and SO(3) ={
A ∈ GL+

(
R

3
)

: AT = A−1
}

.
For the value of T ∈ L(X,Y ) at x ∈ X, we write T [x]. For a second-order tensor

A ∈ L(R3), we write Ax instead of A[x]. For fourth-order tensors C, C[A] denotes
the value of C ∈ L(L(R3)) at A ∈ L(R3). Similarly, for sixth-order tensors B, we
write B[H] for the value of B at a third-order tensor H.

2. Problem formulation. We assume once and for all that an origin and an
orthonormal basis have been chosen in three-dimensional Euclidean space, which we
identify with the space R

3. In this work, the reference configuration is chosen to coin-
cide with a natural or stress-free configuration. The region occupied in the reference
configuration is the closure Ω̄ of a domain Ω of R

3, and we call Ω̄ itself the elastic
body. We further assume that ∂Ω is locally of class C5.

Deformations of the body are defined by mappings f : Ω̄ �→ R
3 such that

f ∈ C2(Ω̄,R3) and ∇f(x) ∈ GL+(R3). For a given deformation, we define the dis-
placement field by u(x) = f(x) − x and the deformation gradient by F = ∇f (x) =
I + ∇u(x) ∈ GL+(R3). The second gradient of f is denoted by ∇2f (x) = ∇F (x),
which is a third-order tensor field.

We assume that the body is subjected to a live body force b (λ,x,u,∇u) in Ω
and a prescribed displacement d (λ,x) on ∂Ω, where λ ∈ R is a loading parameter.
We assume that at least one of these two fields is not identically zero and that

b (0,x,u,∇u) = d (0,x) ≡ 0.(1)

The elastic body is presumed homogeneous and its material response is described
by a stored energy function W : V ×GL+(R3) → R, denoted W (G,F), such that the
total internal potential energy is given by

E(f) =

∫
Ω

W (∇2f ,∇f) dV.(2)

The stored energy W is required to satisfy the principle of material objectivity:

W (QG,QF) = W (G,F) for all Q ∈ SO(3),G ∈ V, F ∈ GL+
(
R

3
)
.(3)
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By a natural reference configuration we mean

∂W (0, I)

∂G
= 0 and

∂W (0, I)

∂F
≡ 0.(4)

Furthermore, we make the following smoothness assumptions:

W ∈ C4(V ×GL+
(
R

3
)
,R),

b ∈ C3(R × Ω̄ × R
3 × L(R3),R3),

d ∈ C5(R × Ω̄,R3).(5)

We impose the geometric boundary conditions

u = d and
∂u

∂n
=

∂d

∂n
on ∂Ω.(6)

For our fourth-order problem (cf. (8) below), the conditions in (6) correspond
to ideal “hard” loading. The displacement condition (6)1 is common in the classical
first-gradient theory, while (6)2 represents the limiting case where the loading device
also controls the normal derivative of the applied displacement. In plate theory, the
conditions in (6) correspond to clamped edges [14].

To obtain the equilibrium equations, we calculate the first variation of E(f) (cf.
(2)) and equate it to the virtual work of the body force field b (λ,x,u,∇u) acting
through an admissible variation. After integrating by parts, we find the strong form
of the equilibrium equations:

−∇ ·
(
∇ · ∂W (G,F)

∂G
− ∂W (G,F)

∂F

)
+ b = 0 in Ω.(7)

Expanding (7) we obtain

−A(∇2u, I + ∇u)[∇4u] + B(∇2u, I + ∇u)[∇3u] + C(∇2u, I + ∇u)[∇2u]

+g(∇3u,∇2u,∇u) + b (λ,x,u,∇u) = 0 in Ω,(8)

where (in components)

(A(G,F)[∇4u])i =
∂2W (G,F)

∂Gijk∂Glmn

∂4ul

∂xj∂xk∂xm∂xn
,

(B(G,F)[∇3u])i =
∂2W (G,F)

∂Fij∂Gklm

∂3uk

∂xj∂xl∂xm
− ∂2W (G,F)

∂Flm∂Gijk

∂3ul

∂xj∂xk∂xm
,

(C(G,F)[∇2u])i =
∂2W (G,F)

∂Fij∂Fkl

∂2uk

∂xj∂xl
,(9)

and g(·) is a vector-valued function of “higher order” in its first two arguments, viz.,

g(U,V,W)/(|U| + |V|) → 0 as |U| + |V| → 0 for all W.(10)
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In particular, g(·) makes no contribution to the linearization of (8) about u = 0.
Thus, its precise form is not important for our purposes here. Throughout this work
we assume that the uniform strong ellipticity condition holds, i.e., that there exist
positive constants c1 and c2 such that

c1 | a |2| b |4≤ a ⊗ b ⊗ b
.
: A(G,F) [a ⊗ b ⊗ b] ≤ c2 | a |2| b |4(11)

for all a,b ∈ R
3 − {0} and (G,F) ∈ V × GL+

(
R

3
)
. In addition, at the reference

state, (G,F) = (0, I) , we make the following reasonable assumptions on the coefficient
tensors B,C appearing in (8):

B(0, I) = 0,(12)

a ⊗ b : C(0, I)[a ⊗ b] > 0(13)

for all a,b ∈ R
3 − {0}.

Observe that (12) is weaker than assuming ∂2W (0,I)
∂F∂G = 0. The latter yields the

physically reasonable condition that the quadratic-order coupling between G and F
in W (G,F) vanishes. Of course (13) is simply the strong ellipticity condition for the
classical linear elasticity tensor C(0, I).

3. Existence of solution branches. For simplicity of presentation, we treat
the case d ≡ 0; cf. (6). The more general case is handled similarly after an appro-
priate change of variables; see, e.g., [8]. For α ∈ (0, 1), let Cm,α(Ω,R3) denote the
usual Hölder space of m-times (Hölder) continuously differentiable functions, with
norm ‖·‖m,α . The following Banach spaces play an important role in our forthcoming
analysis:

Z =

{
u ∈ C4,α(Ω̄,R3) : u =

∂u

∂n
= 0 on ∂Ω

}
; ‖u‖Z ≡ ‖u‖4,α,

X =

{
u ∈ C3,α(Ω̄,R3) : u =

∂u

∂n
= 0 on ∂Ω

}
; ‖u‖X ≡ ‖u‖3,α,

Y = C0,α(Ω̄,R3); ‖u‖Y ≡ ‖u‖0,α.(14)

Since det∇f > 0 (pointwise) for a deformation f : Ω̄ → R
3, any solution of our

problem (7), (6) should belong to the open subset

U = {u ∈ X : det(I + ∇u) > 0 in Ω̄}.(15)

In view of (1) and (4), we observe that (λ,u) = (0,0) is a solution (7), (6). Define O
to be the maximal connected set in U containing u = 0, i.e.,

O = comp{0} in U .(16)

For every u ∈ O, we define a linear operator L(u) : Z → Y via

L(u) [h] ≡ −A(∇2u, I + ∇u)
[
∇4h

]
+ B(∇2u, I + ∇u)[∇3h]
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+C(∇2u, I + ∇u)[∇2h] for all h ∈ Z.(17)

In view of (11), L(u) defines a uniformly elliptic operator for any u ∈ O. Ac-
cordingly we have the following spectral estimate.

Proposition 3.1. There are positive constants ε, c1, c2, independent of μ,h, λ,u,
such that

‖h‖Z ≤ c1 |μ|
α
4 ‖ (L(u) − μI) [h] ‖Y(18)

for all h ∈ Z, and for all μ ∈ C such that |arg(μ)| ≤ π
2 + ε and |μ| ≥ c2. The mapping

I : Z → Y is the identity map and α ∈ (0, 1) is the Hölder exponent inherent in Z
and Y .

Proof. The original Lp version of this result is due to Agmon [1]. For convenience
we provide a detailed proof in the appendix for our (Hölder-space) setting (see also
[30], [16]).

By Proposition 3.1, for each u ∈ O, the linear operator L(u) − aoI : Z → Y is
injective for some sufficiently large real number ao > c2. Bijectivity of L(u) − aoI
then follows from the Fredholm (of index zero) property. (For example, this last
step is readily facilitated via a one-parameter homotopy of our operator with the
vector-valued biharmonic operator, −Δ2h, subject to the same homogeneous bound-
ary conditions; cf. (6) with d ≡ 0.) Next, for any u ∈ O, we consider the linear,
uniformly elliptic boundary value problem

(L(u) − aoI) [h] ≡ −g(∇3u,∇2u,∇u) − b(λ,x,u,∇u) − aou,

h =
∂h

∂n
= 0 on ∂Ω,(19)

which has a unique solution, denoted h = G(λ,u), where G : R ×O → X. By virtue
of (5), the Schauder estimate [2] for (19), and the compact embedding Z → X, we
see that G is compact and continuous (completely continuous).

Moreover, any solution (λ,u) ∈ R× O of (7), (6) (with d ≡ 0) satisfies

u −G(λ,u) = 0,(20)

and conversely. Let M ⊂ O be open and bounded. Since G is completely continuous,
the Leray–Schauder degree of the mapping u �−→ G(λ,u) on M, denoted deg(I −
G(λ, ·),M,0), is well defined. Before stating the main result of this section, we need
the following proposition.

Proposition 3.2. The mapping u �−→ G(0,u) is Frèchet differentiable at u = 0,
with derivative denoted by DuG(0,0) ≡ T. The compact linear operator T : X → X
is defined via the solution h = T [f ] of the linear, constant-coefficient elliptic system

(L(0) − aoI) [h] ≡ −A(0, I)
[
∇4h

]
+ C(0, I)

[
∇2h

]
− aoh = −aof in Ω,

h =
∂h

∂n
= 0 on ∂Ω

for all f ∈ Y. Moreover, for ε > 0 sufficiently small, we have

deg(I −G(0, ·), Bε(0),0) = ±1,(21)
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where Bε(0) = {u ∈ X : ‖u‖ < ε}.
Proof. For differentiability, it suffices to show that G(0,u)−T [u] is o(‖u‖X) near

u = 0. We argue by contradiction, similar to the argument given in [8] (see also [24]).
Namely, if the claim is not true, then there exist a positive constant α and a sequence
uj → 0 in Bε(0) ⊂ X such that

‖G(0,uj) − T [uj ]‖ > α ‖uj‖X for j sufficiently large.(22)

Let vj ≡ G(0,uj)/ ‖uj‖X and wj ≡ T [uj ]/ ‖uj‖X , which satisfy

L(uj) [vj ] − aovj = − (g(∇3uj ,∇2uj ,∇uj) + aouj)/ ‖uj‖X in Ω,

and

L(0) [wj ] − aowj = − aouj/ ‖uj‖X in Ω,

respectively, subject to

vj = wj =
∂vj

∂n
=

∂wj

∂n
= 0 on ∂Ω.

Clearly uj/ ‖uj‖X is uniformly bounded in X, and likewise, by virtue of the Schauder
estimates, the sequences vj and wj are uniformly bounded in Z. By compact embed-
ding, we conclude that each sequence has a convergent subsequence (not relabeled):
uj/ ‖uj‖X → φ in C3(Ω̄,R3), vj → v and wj → w in C4(Ω̄,R3). Moreover, from (8),
(9), (12), and (13), we find that v and w each satisfy the boundary value problem

L(0) [h] − aoh = −aoφ in Ω,

h =
∂h

∂n
= 0 on ∂Ω.(23)

By uniqueness, we conclude that v ≡ w. Hence,

‖vj − wj‖X = ‖G(0,uj) − T [uj ]‖ / ‖uj‖X → 0 as j → ∞,

which contradicts (22).
Next, we consider the injectivity of the mapping I − T ∈ L(X) :

(I − T )[h] = 0 ⇔ T [h] = h,

the second equation of which is equivalent to (by the definition of T ; cf. also (12))

−A(0, I)
[
∇4h

]
+ C(0, I)

[
∇2h

]
= 0 in Ω,

h =
∂h

∂n
= 0 on ∂Ω.(24)

Using (11) and (13), it is not hard to show (via the Fourier transform; cf. [28]) that the
linear, constant-coefficient, strongly elliptic system (24) has the unique solution h ≡ 0;
i.e., I − T is injective and thus bijective by the Riesz–Schauder theory. Accordingly,
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u = 0 is an isolated solution of (20) at λ = 0. By the linearization principle and the
index formula [15], we conclude (for ε > 0 sufficiently small)

deg(I −G(0, ·), Bε(0),0) = deg(I − T,Bε(0),0) = ±1.

We also need the following characterization of the open set O in order to state
our basic existence result: Define

Oδ ≡ {u ∈ O : det(I + ∇u) > δ in Ω̄}.(25)

Observe that

Oδ ⊂ O for each δ > 0, and O = ∪δ>0Oδ.(26)

Theorem 3.3. Let Σ ⊂ R×O denote the connected component of solution pairs
(λ,u) of (17) containing the solution point (0,0). Then at least one of the following
holds:

(A1) Σ is unbounded in R ×X;

(A2) Σ − {(0,0)} is connected;

(A3) Σ �⊂ R ×Oδ for each δ > 0.

Proof. The proof is a straightforward generalization of a well-known argument;
cf. [23]. For each fixed δ > 0, we suppose that Σ is not characterized by any of the
properties (A1)–(A3). We then obtain a contradiction from (21) and the homotopy
invariance of the degree of I −G. We refer the reader to [17] for the details.

Remark 3.4. If property (A2) holds, then there are nontrivial solutions to problem
(20) with null loading λ = 0. Property (A3) indicates a breakdown of local injectivity
along a solution branch., viz., there is a sequence of solution points (λj ,uj) ⊂ Σ such
that

inf
x∈Ω̄

det(I + ∇uj(x)) ↘ 0 as j → ∞.(27a)

In particular, we note that Theorem 3.3 leaves open the possibility that (27a)
holds without (A1) or (A2) being true. In this case the bounded branch could “termi-
nate” at a point (λ∗,u∗) where (λj ,uj) → (λ∗,u∗) in C3(Ω̄,R3) by compact imbed-
ding and

inf
x∈Ω̄

det(I + ∇u∗(x)) = 0,(27b)

which would seem to contradict (34).

Before ending this section we make an important observation: By construction,
for every (λ,u) ∈ Σ, the corresponding deformation f(x) = x + u(x) satisfies det(I +
∇u) > 0 on Ω̄. Moreover, f(x) = x + d(λ,x) on ∂Ω. We now quote a well-known
result ensuring that the deformation is injective.

Corollary 3.5. Suppose that for each λ, the mapping

x → x + d(λ,x) is injective on Ω̄.(28)

Then for every (λ,u) ∈ Σ, the deformation f(x) = x + u(x) is injective on Ω̄.

Proof. For a proof, see [4, Theorem 5.5-2].
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4. Existence of unbounded branches. In this section we make additional,
physically reasonable assumptions on the stored energy function W sufficient to elim-
inate properties (A2) and (A3) of Theorem 3.3 on bounded solution branches, leading
to the existence of unbounded solution branches to our problem. Specifically we
henceforth assume that W has the form

W (F,G) = Ŵ (F) + εh (F,G) = Ŵ (F) +
ε

2
G

.
: A(F)[G],(29)

where G ∈ V, A(F) is a sixth-order-tensor-valued function on GL+(R3), and ε > 0.
We assume throughout that the second-gradient term is positive semidefinite, viz.,

h(F,G) ≥ 0 for all F ∈ GL+(R3),G ∈ V.(30)

The specific quadratic form of the higher-gradient term in (29) is motivated, e.g., by
the works of Triantafyllidis and Bardenhagen [27] and Hilgers and Pipkin [14], where
ε is a small parameter representing a lattice length scale in the former and plate
thickness in the latter. In this work ε plays no role. Nonetheless, we carry it along
throughout as a reminder that (29) is useful in applications when ε is “small.”

We now specialize our boundary value problem (6), (7) to (29) with null loading,
i.e., λ = 0 (cf. (1)):

∇ ·
[
−ε∇ · ∂h

∂G
+

(
∂Ŵ

∂F
+ ε

∂h

∂F

)]
= 0 in Ω,

u = 0 on ∂Ω,

∂u

∂n
= 0 on ∂Ω.(31)

In view of (4), observe that u ≡ 0 is a solution of (31). With two additional, physically
reasonable hypotheses, it turns out that u ≡ 0 is the only classical solution, i.e., the
only solution in C4(Ω,R3) ∩ C1(Ω̄,R3). The following is a special case of the main
result in [21].

Proposition 4.1. Given (29) and (30), assume that

Ŵ (I) < Ŵ (F) for all F ∈ GL+(R3) − SO(3);(32)

i.e., Ŵ (I) is the global minimum of Ŵ (·). Furthermore, suppose that

Ω is a star-shaped domain.(33)

Then u ≡ 0 is the only classical solution of (31).
Remark. Condition (32) ensures that Ŵ (·) is quasi-convex at F = I.
An immediate consequence of Proposition 4.1 is that the solution branch Σ −

{(0,0)} has two disjoint components Σ+ ⊂ (0,∞) × X and Σ− ⊂ (−∞, 0) × X,
separated by the hyperplane {0} ×X, which, in turn, implies the disjoint union

Σ = Σ+ ∪ Σ− ∪ {(0,0)}.

Corollary 4.2. Assume the hypotheses of Theorem 3.3 and Proposition 4.1.
Then the solution branch Σ is characterized by alternatives (A1) and/or (A3) of The-
orem 3.3.
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Now we show with certain constitutive hypotheses that the branch Σ is un-
bounded. Here we list all of the assumptions sufficient to ensure the unboundedness
of the branch.

Suppose that for some Ψ : GL+(R3) → R and Γ : (0,∞) → R, Ŵ admits the
decomposition

Ŵ = Ψ(F) + Γ(detF)

for all F ∈ GL+(R3),

where Γ(detF) → ∞ as detF ↘ 0.(34)

In addition, let

Γ ∈ C3(0,∞), Ψ ∈ C3(GL+(R3),R) ∩ C2(U,R),

where U = {F ∈ (GL+(R3)) : ||F|| < ∞}.(35)

We further assume that

Γ′(d) < 0 for 0 < d < do, for some constant do > 0.(36)

We find it convenient to define the following quantities:

Φ(d) = Γ(d) − dΓ
′
(d) for all d > 0,(37)

P = W I − FT

[
∂W

∂F
− ε∇ · ∂h

∂G

]
− εGT ∂h

∂G
,(38)

P̃(F) = Ŵ I − FT dŴ

dF
,(39)

P̂(F) = FT dΨ(F)

dF
− Ψ(F)I for all F ∈ GL+(R3).(40)

Lemma 4.3. If (λ,u) ∈ Σ, with J(x) = detF(x) for x ∈ Ω̄, then

∇(Φ ◦ J) = ∇ · P̂(F) + FTb(λ,x,u,∇u) + εFT

[
−∇ ·

(
∇ · ∂h

∂G

)
+ ∇ · ∂h

∂F

]
on Ω̄.

(41)

Proof. Using (7), (29), and (38), we see that

∇ · P = ∇ ·W I −∇ ·
[
FT

(
∂W

∂F
− ε∇ · ∂h

∂G

)]
− ε∇ ·

[
GT ∂h

∂G

]

= FT

(
ε∇ ·

(
∇ · ∂h

∂G

)
−∇ · ∂W

∂F

)
= FTb.

By virtue of (39), this leads to

∇ · P = ∇ · P̃ − εFT

[
∇ · ∂h

∂F
−∇ ·

(
∇ · ∂h

∂G

)]
= FTb.
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Observing that

dΓ

dF
= Γ

′
(J)JF−T ,

we see using (34), (37), and (40) that P̃ = −P̂(F) + Φ(J)I. Thus,

∇ ·
[
−P̂(F) + Φ(J)I

]
− εFT

[
∇ · ∂h

∂F
−∇ ·

(
∇ · ∂h

∂G

)]
= FTb

and we obtain (41).
Remark 4.4. Note that (38) is a second-gradient version of the elastic energy-

momentum tensor. Also, (39) is the usual energy-momentum tensor for Ŵ deduced
by Eshelby [7].

With these physically reasonable hypotheses in hand, we now show that Σ corre-
sponds to an unbounded branch of solution pairs to problem (6), (8).

Theorem 4.5. Let the hypotheses of Theorem 3.3, Corollary 3.5, Proposition
4.1, and Lemma 4.3 hold. In addition assume the constitutive hypotheses (34)–(36).
Then Σ is a branch of globally injective solution pairs of (6), (8) that is unbounded in
R × C4(Ω̄,R3) .

Proof. We generalize the proof in [12] in the context of our higher-gradient prob-
lem. Assume for the sake of contradiction that Σ is bounded in R×C4(Ω̄,R3). Then
(A3) holds. Let {(λj ,uj)} ⊂ Σ. By the Schauder estimates for (19), {(λj ,uj)} is
uniformly bounded in Z (cf. (14)) and hence converges in R ×C1(Ω̄,R3) by compact
imbedding. We now write fj = xj +uj, Fj = I+∇uj ,Gj = ∇Fj , Jj = detFj on Ω̄.
Using the triangle inequality and the conclusion of Lemma 4.3, we get

‖∇(Φ ◦ Jj)
∥∥∥∥∞ ≤ ‖dP(Fj)

dF
∇2uj

∥∥∥∥
∞

+ ‖F�
j b(λj ,x,∇uj ,uj)‖∞

+ ε

∥∥∥∥F�
j

(
∇ · ∂h(Fj ,Gj)

∂F
−∇ · ∇ · ∂h(Fj ,Gj)

∂G

)∥∥∥∥
∞

,(42)

where ‖ ·‖∞ denotes the supremum norm over Ω̄. By assumptions (35) and (37)–(40),
the limit of the right-hand side of (42) is finite as j → ∞. On the other hand, the
left-hand side of (42) becomes unbounded as j → ∞. To see this note that (27b) holds
with‖Jj‖∞ bounded away from zero as j → ∞. (This follows from Corollary 3.5 since
V ol(fj(Ω̄)) = V ol(Ω̄) for all j. On the other hand, if Jj → 0 pointwise on Ω̄, then
V ol(fj(Ω̄)) =

∫
Ω
JjdV → 0 which is a contradiction.) Consequently there are distinct

points x0 and x∗ ∈ Ω̄ such that Φ(Jj(xo)) remains bounded while Φ(Jj(x∗)) → ∞
as j → ∞. If we integrate ∇(Φ ◦ Jj) along any path in Ω̄ joining xo and x∗, we see
from (34)–(40) that the left side of (42) grows without bound as j → ∞. This is a
contradiction, and we see that (A3) is possible only when Σ is unbounded.

5. Concluding remarks. In practice (29) is often specialized further so that
the sixth-order tensor-valued function A(F) is constant (i.e., independent of F). In
this case, it is not hard to show that the construction in section 3 is valid for X
as defined in (14) but with the C1,α(Ω̄,R3) topology. In particular, this leads to a
strengthened version of Theorem 4.5.

Although Theorem 4.5 guarantees the existence of solutions “in the large” (“far”
from the reference configuration), the absence of a priori bounds precludes global
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existence of solutions. More specifically, the unbounded solution branch Σ ⊂ R × O
may “blow up” in X for a finite value of the loading parameter λ ∈ R. For the same
reason it seems quite difficult to carry out the “singular limit of Σ” as ε ↘ 0, as in
[10], [19] in a one-dimensional setting.

Appendix. Spectral estimates.
Proposition A.1. For each u ∈ O there exist positive constants ε, c1, c2,

independent of μ,h, λ,u, such that

‖h‖Z ≤ c1 | μ |α4 ‖ (A(u) − μI) [h] ‖Y(43)

for all h ∈ Z, for all μ ∈ C such that |arg(μ)| ≤ π
2 + ε and |μ| ≥ c2. The mapping

I : Z → Y is the identity map and α ∈ (0, 1) is the Hölder exponent inherent in Z
and Y .

Proof. We follow the approach of Agmon [1] in the Lp setting. First we set
A(u) ≡ A, introduce a new variable t, and set Dt = ∂

∂t . Consider the operator

L = A− eiθD4
t .(44)

For |θ| ≤ π
2 + ε, L is an elliptic operator of order 4 in the closure of the cylindrical

domain Γ = {(x, t) : x ∈ Ω̄, t ∈ R}, where ε depends on the constants in the defini-
tion of uniform ellipticity, and the complementing condition is satisfied for Dirichlet
boundary conditions. Now we define

v(x, t) = ζ(t)eiνth(x), ν ∈ R, and ν > 0,

and define Γr = Ω̄× [−r, r] ⊂ R
4 , or the part of Γ in | t |< r, where ζ(t) is some fixed

C∞ function such that

ζ(t) =

{
0 for | t |≥ 2,
1 for | t |≤ 1.

(45)

Applying the a priori estimate from Theorem 9.3 in [2] to v, we obtain

‖v‖4,α;Γ2 ≤ c (‖Lv‖0,α;Γ2 + ‖v‖0,α;Γ2)(46)

for a constant c > 0.
Using (44),

Lv = ζ(t)eiνt
(
A− ν4eiνtI

)
h(x) + ei(θ+νt)

[
3∑

k=0

(
4

k

)
D4−k

t ζ(t)ikνk

]
h(x).(47)

Since v(x, t) = eiνth(x) for | t |≤ 1 we obtain from (46)

‖eiνth(x)‖4,α;Γ1
≤ ‖v‖4,α;Γ2

(48)

≤ c‖ζ(t)eiνt
(
A− ν4eiνtI

)
h(x)‖0,α;Γ2

(49)

+ c

∥∥∥∥∥ei(θ+νt)

[
3∑

k=0

(
4

k

)
D4−k

t ζ(t)ikνk

]
h(x)

∥∥∥∥∥
0,α;Γ2

(50)

+ c‖ζ(t)eiνth(x)‖0,α;Γ2 .(51)
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Since eiνt is Hölder continuous, the inequality

‖ζ(t)eiνth(x) ||0,α;Γ2
≤ c3ν

α‖h ||0,α;Y(52)

follows if we take ν sufficiently large.
Similarly,∥∥∥∥∥ei(θ+νt)

[
3∑

k=0

(
4

k

)
D4−k

t ζ(t)ikνk

]
h(x)

∥∥∥∥∥
0,α;Γ2

≤ c4

3∑
k=0

να+k‖h‖0,α;Y(53)

and

‖ζ(t)eiνt(A− ν4eiθI)h‖0,α;Γ2 ≤ c3ν
α‖(A− ν4eiθI)h‖0,α;Y .(54)

On the other hand,

‖eiνt‖4,α;Γ1 ≥ ‖h‖4 + c5

(
3∑

k=0

(
4

k

)
νk

[
eiνtD4−k

x h(x)
]
0,α;Γ2

)
(55)

≥ c6

(
‖h‖0,α,Z +

4∑
k=1

νk‖h ||4−k,α,Z

)
(56)

= c6

4∑
k=0

νk‖h‖4−k,α;Z .(57)

Therefore, using equations (48)−(51), (53), (54), and (55)−(57), we get

4∑
k=0

νk‖h‖4−k,α;Z ≤ c1ν
α

[
‖(A− ν4eiθI)h‖0,α;Y +

3∑
k=0

νk‖h‖0,α;Y

]
.(58)

For ν sufficiently large, we may disregard the last term on the right-hand side,
since it is dominated by the terms on the left-hand side. If we set μ = ν4eiθ, then

4∑
k=0

|μ|
k−4
4 ‖h‖k,α;Z ≤ c1|μ|

α
4 ‖(A− μI)h‖0,α;Y

and (43) follows.
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Abstract. Monotone traveling waves have been shown to exist for a broad class of nonlocal
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1. Introduction. Perhaps the most familiar mathematical model for the evolu-
tion of phase boundaries in material science is the second order Allen–Cahn equation:

ut = Duxx + f(u),(1.1)

where D > 0, f is a bistable function, i.e., f has exactly three roots, say, u = ±1 and
u = a ∈ (−1, 1) with f ′(±1) < 0 < f ′(a). It is well known that (1.1) has a traveling
wave solution connecting u = 1 and u = −1, a solution of the form u(x, t) = φ(x− ct)
for some constant c, and smooth function φ satisfying φ(±∞) = ±1. It is also known
that the wave profile φ is monotone, it is unique up to translation, and it is expo-
nentially asymptotically stable (see, e.g., [17]). This stability is in the sense that a
perturbation leads to a solution converging to a translate of the wave. That result
may be proved in various ways, one of which is by transforming (1.1) according to a
frame moving with speed c and showing that the operator obtained by linearizing at φ
has spectrum in the left half-plane, bounded away from the imaginary axis except for
an algebraically simple eigenvalue at zero. The stability then follows from the spec-
tral information by using abstract semigroup theory and invariant manifold/foliation
results (see, e.g., [7] or [8] and [9]).

In many biological and physical settings, diffusion is not the only mechanism
by which the state at one location affects the state at other locations, and it is ap-
propriate to include in the mathematical model certain nonlocal interaction terms.
Furthermore, there may be several types of long-range interactions acting at differing
length scales. Thus, the reaction-diffusion equation (1.1) is replaced by a more general
scalar evolution equation of the form

ut −Duxx − F (u, J1 ∗ s1(u), . . . , Jn ∗ sn(u)) = 0(1.2)

for all x ∈ R and t ∈ R
+. Here D ≥ 0 is a constant, J ∗ v(x, t) =

∫
R
J(x − y)

v(y, t)dy is spatial convolution, the kernels Ji are of class C1(R) and nonnegative,
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and si are smooth functions, i = 1, 2, . . . , n. It is further assumed that f̄(u) ≡
F (u, s1(u), . . . , sn(u)) is a smooth bistable function.

Besides the Allen–Cahn equation given above, (1.2) includes its nonlocal version,
which has been the subject of several recent studies (e.g., [1], [2], [3], [4], [5], [6], [18]),

ut − λ(J ∗ u− u) − f(u) = 0.(1.3)

Here f(u) is a bistable function, λ > 0, J(x) ≥ 0, and
∫

R
J = 1.

Other physical or biological models are included in (1.2). Some identified by Chen
[12] and others may be of particular interest:

• continuum limit of an interacting particle system with Glauber dynamics and
Kac potential (see [15]),

ut = tanh(βJ ∗ u + h) − u,

where β > 1 is the reciprocal of absolute temperature and h is an external
field;

• excitatory neural model (see [16]),

ut = −u + J ∗ S(u),

where S ∈ C1(R) satisfies S′(·) > 0 in [0, 1], S(0) = 0, S′(0) < 1, S(1) = 1,
and S′(1) < 1;

• thalamic model (see [13]),

ut = −βu + α(1 − u)Hε(J ∗ S(u) − θ),

where α and β are positive constants, Hε is a smooth approximation of the
Heaviside function, S′ > 0, and θ ∈ (S(0), S(1)) is a parameter.

Existence, uniqueness, and stability of a monotone traveling wave connecting the
stable homogeneous states for the nonlocal Allen–Cahn equation (1.3) were established
in [6] and for the general equation (1.2) in [12] (see also [11] for the nonautonomous
almost periodic case). In those works comparison methods were used to show stability.
However, the spectral theory for the operator obtained by linearizing (1.2) at the
traveling wave, needed for perturbation results or more precise rates of convergence,
is lacking. The purpose of this note is to address this issue.

Suppose u(x, t) = φ(x − c0t) is a traveling wave solution of (1.2) satisfying
φ(±∞) = ±1. Let ξ = x− c0t. Then (φ, c0) satisfies

Dφ′′ + c0φ
′ + F (φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ)) = 0 and φ(±∞) = ±1(1.4)

for all ξ ∈ R.
Let L = L(φ, c0) be the linearized operator about the traveling wave φ, defined

by

Lψ = Dψ′′ + c0ψ
′ + Fu(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))ψ

+

n∑
i=1

Fpi(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ)) · Ji ∗ (siu(φ)ψ)(1.5)

on D(L) to be specified in section 2. We prove that the spectrum of L consists of 0,
the principle eigenvalue due to the translation invariance of the traveling waves, and
the rest of it is located in the left half-plane bounded away from the imaginary axis.
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As indicated above, an immediate consequence of this result is the exponential
stability of traveling wave solutions. The conclusion derived from the spectral result
contained in this paper when combined with the abstract theorems of [7], [8], and [9]
gives more than exponential asymptotic stability, up to translation, of the traveling
wave. In fact, one may conclude that the dynamics in a tubular neighborhood of the
one-dimensional manifold formed by translates of the wave in the infinite dimensional
phase space is foliated with codimension-one invariant stable manifolds. The leaves
are transverse to the one-dimensional manifold and the dynamics is that of exponential
decay to the base point, which is a suitable translate of the wave.

Even more can be said. Since the spectrum perturbs continuously, for interaction
kernels J̃i near Ji but not necessarily positive, the same result holds. This is im-
mediate from the theorems in [10] whereby the one-dimensional manifold persists as
an invariant manifold, which will consist of stationary states if the J̃i are translation
invariant but may have slow dynamics otherwise, with a neighborhood foliated with
an invariant family of codimension-one stable manifolds with base point on the one-
dimensional manifold. Comparison methods used in [12] are not applicable directly
to obtain similar information when the interaction kernels are perturbed in this way.

2. Assumptions and main result. For f , Ji, and s, the following assumptions
are made in [12]:

(A1) Ji(·) ∈ C1(R) and satisfies Ji(·) ≥ 0,
∫

R
Ji(y)dy = 1, and

∫
R
|J ′

i(y)|dy < ∞,
for i = 1, 2, . . . , n. Furthermore, suppJ1

⋂
(0,∞) �= ∅ �= suppJ1

⋂
(−∞, 0).

(A2) F (u, p) = F (u, p1, . . . , pn) and s1(u), . . . , sn(u) are smooth functions satisfy-
ing Fpi(u, p) ≥ 0, siu(u) ≥ 0, for all (u, p) ∈ [−1 − δ0, 1 + δ0] ×

∏n
i=1[s

i(−1 −
δ0), s

i(1 + δ0)], and i = 1, 2, . . . , n, where δ0 is a positive constant. Further-
more, we assume f̄(·) = F (·, s1(·), . . . , sn(·)) is bistable, i.e., it has exactly
three zeros ±1 and an intermediate point q; and there exists an interval
[α1, α2] ⊂ (−1, 1) containing q such that f̄ ′(u) ≥ 0 for u ∈ [α1, α2] and
f̄ ′(u) < 0 for u /∈ [α1, α2].

(A3) Either (i) D > 0, or (ii) Fu(u, p) < 0 and Fp1(u, p)s
1
u(u) > 0 on [−1− δ0, 1 +

δ0] ×
∏n

i=1[s
i(−1 − δ0), s

i(1 + δ0)] for some i ∈ {1, 2, . . . , n}.
The following theorem is proved in [12] (see also [11]).

Theorem 2.1. Assume that (A1)–(A3) hold. Then
(a) (1.2) admits a traveling wave solution (φ, c0) satisfying φ(±∞) = ±1,
(b) φ is strictly increasing and of class C1,
(c) the traveling wave solution of (1.2) is unique modulo spatial translation,
(d) the traveling wave and its translates are an asymptotically stable family with

asymptotic phase.
Let (φ, c0) be a traveling wave solution obtained in Theorem 2.1. We are going

to study the spectrum of the linearized operator L about the traveling wave solution
(φ, c0) satisfying (1.4).

Let

X0 =

{
u ∈ C(R) : lim

|x|→∞
u(x) = 0

}

and L be the linearized operator about the traveling wave (φ, c0) as defined in (1.5)
with domain D(L), where D(L) = {u ∈ X0 : u′, u′′ ∈ X0} if D > 0; D(L) = {u ∈
X0 : u′ ∈ X0} if D = 0 and c0 �= 0; and D(L) = X0 if D = 0 and c0 = 0.

Let us define a normal point for an operator L on a Banach space to be any
complex number which is in the resolvent set ρ(L) or is an isolated eigenvalue of L of
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finite multiplicity. The complement of the set of normal points is called the essential
spectrum of L and is denoted by σess(L). The following is the main result of this
section.

Theorem 2.2.

(i) {λ : Reλ ≥ 0, λ �= 0} ⊂ ρ(L).
(ii) 0 is an algebraically simple eigenvalue with a positive eigenfunction φ′.
(iii) σess(L) ⊂ {λ : Reλ < −γ0}, where γ0 > 0 is a constant.
(iv) The adjoint operator L∗ has a positive eigenfunction corresponding to the

simple eigenvalue 0.
An immediate consequence of this is the following (see [20]).
Corollary 2.3.

(i) The traveling wave solution φ(x − c0t) and its translates is an exponentially
stable family with asymptotic phase.

(ii) There exist positive constants γ and C such that

‖eLtu‖ ≤ Ce−γt‖u‖.

for all u in the range of L.

3. Proof of Theorem 2.2. We divide the proof of the theorem into several
lemmas. We will apply comparison principle and perturbation theory to estimate the
spectrum. First we need the following comparison principle (see also [11] and [12]).
Here we will be assuming that t0 > τ are fixed times, D ≥ 0 and c0 are constant,
R1 is an open set and R2 = R \ R1 is the complement of R1, K0(x, t) ∈ L∞(R ×
[τ, t0]), Ĵ is an integral operator with nonnegative kernel Ĵ(x, y, t), i.e., (Ĵu)(x, t) =∫

R
Ĵ(x, y, t)u(y, t)dy, and Ĵ(x, y, t) ≥ 0 satisfies ess supx∈R t∈[τ,t0]

∫
R
Ĵ(x, y, t)dy < ∞.

Furthermore, J1 is that mentioned in (A1).
Lemma 3.1 (comparison principle). Assume that u ∈ C1([τ, t0], L

∞(R)) and that
u ∈ C([τ, t0],W

1,∞(R1)) if D = 0 and c0 �= 0 and u ∈ C1,2((τ, t0] × R1) if D �= 0.
Suppose that u(x, t) ≥ 0 for all t ∈ [τ, t0] and almost all x ∈ R2 and u(x, t) satisfies

ut −Duxx − c0ux −K0(x, t)u− (Ĵu)(x, t) ≥ 0(3.1)

for all t ∈ (τ, t0] and almost all x ∈ R1. If u(x, τ) ≥ 0 for almost all x ∈ R, then
u(x, t) ≥ 0 for all t ∈ [τ, t0] and almost all x ∈ R. Moreover, if Ĵ(x, y, t) ≥ c1J1(x−y)
for some c1 > 0, and u(·, τ) �= 0 in L∞(R), then u(x, t) > 0 for all t ∈ (τ, t0] and
almost all x ∈ R1.

Proof. We may assume τ = 0. Let ū(x, t) = u(x − c0t, t). Then ū(x, t) satisfies
(3.1) on R̄1 with c0 = 0, K0(x, t) replaced by K̄0(x, t) = K0(x− c0t, t) and Ĵ(x, y, t)
replaced by J̄(x, y, t) = Ĵ(x − c0t, y − c0t, t), where R̄1 = {(x, t) | (x − c0t, t) ∈
R1 × [0, t0]}.

By assumption, ess infx∈Rū(x, t) is continuous. If the first conclusion of the lemma
is not true, then there exist constants ε > 0, T ∈ (0, t0] such that ū(x, t) > −εe2Kt for
all 0 < t < T and almost all x ∈ R, and ess infx∈Rū(x, T ) = −εe2KT , where

K = D + ‖K0‖L∞ + ess sup
x∈R t∈[0,t0]

∫
R

Ĵ(x, y, t)dy.(3.2)

Therefore, there exist an interval [a, b] and a set S0 ⊂ [a, b] with positive Lebesgue
measure such that ū(x, T ) ≤ −15

16εe
2KT for x ∈ S0. Let z(x) be a smooth function such

that z(x) = minx∈R z(x) = 1 for x ∈ [a, b], supx∈R
z(x) = z(±∞) = 3, |z′(x)| ≤ 1, and
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|z′′(x)| ≤ 1. Define wσ(x, t) = −ε
(

3
4 + σ z(x)

)
e2Kt for σ ∈ [0, 1]. Since w 1

4
(x, t) ≤

ū(x, t) for 0 ≤ t ≤ T and almost all x ∈ R, and w 1
8
(x, T ) > ū(x, T ) for x ∈ S0, there

is a minimum σ∗ ∈
(

1
8 ,

1
4

]
such that wσ∗(x, t) ≤ ū(x, t) for t ∈ [0, T ] and almost all

x ∈ R. We claim that there exist (xn, tn) ∈ R̄1 and (x̄0, t̄0) such that inequality (3.1),
with u,K0, Ĵ replaced by ū, K̄0, J̄ , respectively, holds for (xn, tn); limn→∞(xn, tn) =
(x̄0, t̄0); limn→∞{ū(xn, tn) − wσ∗(xn, tn)} = 0, the essential infimum of ū(x, t) −
wσ∗(x, t) on R × [0, T ]; and limn→∞(ū − wσ∗)t(xn, tn) ≤ 0. If D > 0, we also have
limn→∞(ū− wσ∗)xx(xn, tn) ≥ 0.

We first prove the claim for D = 0. Let v(x, t) = ū(x, t) − wσ∗(x, t) and ρ(t) =
ess infx∈R v(x, t). Then ρ(0) > 0. Let t̄0 = max{t ∈ (0, t0] : ρ(τ) > 0 for all 0 ≤ τ <
t}. Note that wσ∗(±∞, t) ≤ − 9

8 εe2Kt < ū(x, t) and ū(x, t) > wσ∗(x, t) for t ∈ (0, T ]
and almost all x ∈ R2 + c0t. For each t < t̄0, since ρ(t̄0) = 0 < ρ(t), there is a
uniformly bounded set A(t̄0, t) ⊂ R1 + c0t of positive Lebesgue measure such that
v(x, t̄0) ≤ ρ(t) and inequality (3.1), with u,K0, Ĵ replaced by ū, K̄0, J̄ , respectively,
holds for all x ∈ A(t̄0, t). Therefore, for t̄n = t̄0 − 1

n , we have 0 ≤ v(x, t̄n)− v(x, t̄0) =∫ 1

0
vt(x, t̄0 + s(t̄n− t̄0))ds(t̄n− t̄0) for x ∈ A(t̄0, t̄n). Therefore, there exist tn ∈ (t̄n, t̄0)

and a bounded sequence xn ∈ A(t̄0, t̄n) such that vt(xn, tn) ≤ 0. After taking a
subsequence of xn we may assume that the limit of xn exists: call it x̄0. Then
v(xn, tn) ≤ |v(xn, t̄0)| + |v(xn, tn) − v(xn, t̄0)| ≤ |v(xn, t̄0)| + ‖vt‖L∞(R)(t̄0 − tn) → 0,
where we have used the fact that |v(xn, t̄0)| ≤ ρ(t̄n) → 0.

If D > 0, (xn, tn) can be chosen as the minimum point of ū(x, t) − wσ∗(x, t) in
R × [0, T ]. This proves the claim.

Therefore,

0 ≥ lim
n→∞

(ū− wσ∗)t(xn, tn) − lim
n→∞

D(ū− wσ∗)xx(xn, tn)

≥ lim inf
n→∞

(J̄ ū)(xn, tn)+ εe2Kt̄0

[
2K

(
σ∗z(x̄0)+

3

4

)
+Dσ∗z′′(x̄0)

]
+‖K0‖L∞wσ∗(x̄0, t̄0)

≥ εe2Kt̄0

⎡
⎢⎣7

4
K − 1

4
D − 3

2
‖K0‖L∞ − 3

2
ess sup

x∈R

t∈[0,t0]

∫ +∞

−∞
Ĵ(x, y, t)dy

⎤
⎥⎦ > 0,

which is a contradiction. Therefore u(x, t) ≥ 0 for almost all x ∈ R and t ∈ [τ, t0].
For the conclusion of the last part of the lemma, if D > 0, it follows from the

comparison principle of parabolic equations [19]. If D = 0, let v̄(x, t) = eKtū(x, t).
Then we have v̄t(x, t) ≥ c1J1 ∗ v̄(x, t) for (x, t) ∈ R̄1 since u(x, t) ≥ 0. Therefore,
v̄(x, t) ≥ c1(t− t∗)J1 ∗ v̄(x, t∗), where t∗ is any number less than t such that (x, t∗) ∈
R̄1. After the Nth iteration, we have v̄(x, t) ≥ (c1(t−t∗))N

N ! J1 ∗ · · · ∗ J1 ∗ v̄(x, t∗).
We first consider the first case for x where t∗ can be chosen to be 0. We have

v̄(x, t) ≥ (c1(t−t∗))N

N ! J1 ∗ · · · ∗ J1 ∗ ū(x, 0). If u(x, 0) �= 0 in L∞(R), we can choose N
large enough such that J1 ∗ · · · ∗ J1 ∗ u(x, 0) > 0. Therefore, we have v̄(x, t) > 0. The
rest of the case is reduced to prove that v̄(x, t∗) > 0 on a set in R1 +c0t∗ with positive
measure. After finite steps of reduction, with different choices of x and t∗, it can be
reduced to the first case. This completes the proof.

We are going to use perturbation theory to estimate the essential spectrum of L.
First, let ζ be a smooth function satisfying ζ(x) = 0 for x ≤ −1, ζ(x) = 1 for x ≥ 1,
and ζ ′(x) > 0 for x ∈ (−1, 1). Let

h(·) =f̄ ′(−1)(1 − ζ(·)) + f̄ ′(1)ζ(·),(3.3)
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where f̄ is defined in (A2). Note that f̄ ′(±1) < 0, by assumption (A2). Consider the
operator L0ψ on X0 with domain D(L0) = D(L) defined by

L0ψ = Dψ′′ + c0ψ
′ + hψ +

n∑
i=1

ki(Ji ∗ ψ − ψ),(3.4)

where

ki(·) =Fpi(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))siu(φ)(·)(3.5)

for i = 1, . . . , n. We also define

k0(·) =Fu(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))(·)(3.6)

for later use. We want to show that σess(L) = σess(L0) if D > 0 or c0 �= 0. First we
prove the next lemma.

Lemma 3.2. For λ ∈ C satisfying Reλ > max{f̄ ′(−1), f̄ ′(+1)}, the operator
λ− L0 : D(L0) → X0 is injective.

Proof. Let λ = α + iβ ∈ C with α > max{f̄ ′(−1), f̄ ′(1)} and let u(x) = u1(x) +
iu2(x) ∈ D(L0) be a solution of L0u = λu. We will prove that u ≡ 0.

Consider the Cauchy problem

vt = L0v − αv,(3.7)

v(x, 0) = u1(x).(3.8)

It has a unique solution v(x, t) = u1(x) cosβt− u2(x) sinβt.
On the other hand, since α > max{f̄ ′(−1), f̄ ′(+1)}, we can choose a constant

ρ0 > 0 such that α > max{f̄ ′(−1), f̄ ′(+1)} + ρ0. Let v̄(t) = maxx∈R |u(x)|e−ρ0t.
Then

v̄t − L0v̄ + αv̄ = (−ρ0 − h(x) + α)v̄ ≥ (α− ρ0 − max{f̄ ′(−1), f̄ ′(+1)})v̄ > 0.

By the comparison lemma, we deduce that |v(x, t)| ≤ v̄(t) for all x ∈ R and t > 0.
Therefore, if β = 0, the fact that |u1(x)| = |v(x, t)| ≤ v̄(t) → 0 as t → ∞ implies
u1(x) ≡ 0. The same argument applying to u2(x) yields u2(x) ≡ 0. If β > 0,
|v(x, t)| = |v(x, t + 2nπ/β)| ≤ v̄(t + 2nπ/β). Letting n → ∞, we deduce u(x) ≡ 0.
This proves the injectivity.

To prove the surjectivity of λ − L0, we first consider the case D > 0. Let M ≡
Mm = {u ∈ C(R) : u(x) = 0 for |x| ≥ m}, where m is a positive constant, and
consider the operator A0 on M defined by A0u = Du′′+c0u

′+h(x)u for u ∈ D(A0) =
M

⋂
C2(R). We have the next lemma.

Lemma 3.3. If D > 0, then {λ : Reλ > max{f̄ ′(−1), f̄ ′(+1)} } ⊂ ρ(A0).
Proof. Similar to the proof of Lemma 3.2, we can prove that λ − A0 is injec-

tive. The lemma follows from the Fredholm theory for elliptic operators on bounded
domains.

With this preparation, we can prove the following.
Lemma 3.4. For λ ∈ C satisfying Reλ > max{f̄ ′(−1), f̄ ′(+1)}, the operator

λ− L0 : D(L0) → X0 is surjective.
Proof. First let us assume D > 0. Let θ be a smooth nonnegative function on

R satisfying θ(x) = 1 for |x| ≤ 1
2 and θ(x) = 0 for |x| ≥ 1. Let A1 ≡ A1m be the

operator defined by A1u = A0u +
∑n

i=1 k̃i(x)(Ji ∗ u − u) for u ∈ D(A1) = D(A0),
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where k̃i(·) = ki(·)θ(·/m) and m is a positive number. We will prove the surjectivity
of A1 and let m approach the infinite to prove the surjectivety of λ− L0.

For λ ∈ C with Reλ > max{f̄ ′(−1), f̄ ′(+1)}, as in the proof of Lemma 3.2, one
can prove that λ−A1 is injective. On the other hand, for g ∈ M , the equation

(λ−A1)u = g(3.9)

is equivalent to u− R(λ,A0)
∑n

i=1 k̃i(x)(Ji ∗ u− u) = g1, where g1 = R(λ,A0)g and
R(λ,A0) is the resolvent of λ−A0. Since λ−A1 is injective and R(λ,A0) is compact,
by the Fredholm Alternative, u−R(λ,A0)

∑n
i=1 k̃i(x)(Ji ∗u−u) = g1 has a solution.

Therefore, for any g ∈ M , (λ−A1)u = g has a solution.
For g ∈ X0, let um be the solutions of (3.9) corresponding to gm = g(·)θ(·/m).

We claim that ‖um‖C(R) ≤ C‖g‖C(R) for some constant C. To prove this, suppose
λ = α + iβ, um(x) = u1

m(x) + iu2
m(x) and gm(x) = g1

m(x) + ig2
m(x). Then it is easy

to verify that the problem

vt −A1v + αv = g1
m(x) cosβt− g2

m(x) sinβt,(3.10)

v(x, 0) = u1
m(x)(3.11)

has the unique solution vm(x, t) = u1
m(x) cosβt − u2

m(x) sinβt. Let v̄(t) =
‖um‖C(R)e

−ρ0t + 1
ρ 0

(1 − e−ρ0t)‖g‖C(R), where ρ0 > 0 is a constant satisfying α >

max{f̄ ′(−1), f̄ ′(+1)} + ρ0. Applying the comparison principle to v̄ ± vm and using
(3.10), we conclude that |vm(x, t)| ≤ v̄(t) ≤ ‖um‖C(R)e

−ρ0t + 1
ρ 0

(1 − e−ρ0t)‖g‖C(R).

If β = 0, we have |u1
m(x)| = |vm(x, t)| ≤ v̄(t) → 1

ρ 0
‖g‖C(R) as t → ∞. The same

argument applies for estimate of u2(x). If β �= 0, for each x, choose tn → ∞ such
that vm(x, tn) = |um(x)|, implying |um(x)| ≤ 1

ρ 0
‖g‖C(R). This completes the proof of

the claim.
Since ‖um‖C(R) is uniformly bounded, there exist a function u ∈ X0 and a subse-

quence, which we label the same, such that um converges to u in the weak ∗ topology.
Note that the dual space of linear bounded functionals is represented by the space of
complex Borel measures. It is easily seen that u satisfies λu − L0u = g in the sense
of distributions. Therefore u is a solution in the classical sense. This completes the
proof of the lemma when D > 0.

For the case D = 0, we choose a positive sequence such that limj→∞ Dj = 0. Let
uj be the solutions of −Dju

′′ − c0u
′ + (λ− h(x))−

∑n
i=1 ki(x)(J i ∗ u− u) = g. Since

the proof above does not involve the size of D, we have that ‖uj‖C(R) ≤ C‖g‖C(R).
Again, by taking a subsequence, we can assume uj converges to some function u ∈ X0

in the weak ∗ topology. Similar to the above argument, we see that u is a solution to
(λ− L0)u = g. This completes the proof.

As an immediate consequence of Lemma 3.2 and 3.4, one gets {λ : Reλ >
max{f̄ ′(−1), f̄ ′(1)} } ⊂ ρ(L0).

Let L1 and L2 be bounded linear operators on X0 defined by L1u(·) =
(f̄ ′(φ) − h)u(·) = {Fu(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ)) +

∑n
i=1 ki − h}u(·) and L2u(·) =∑n

i=1{Fpi(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))Ji ∗ (su(φ)u) − kiJi ∗ u}(·), respectively, for
u ∈ X0. Then we have the next lemma.

Lemma 3.5. Let λ ∈ ρ(L0). Then if D > 0 or c0 �= 0, Li(λ−L0)
−1 is a compact

operator on X0 for i = 1, 2.
Proof. Let B be a bounded closed set in X0. Since ‖(λ−L0)

−1f‖C1(R) ≤ C‖f‖C(R)

if D > 0 or c0 �= 0, (λ − L0)
−1B is bounded in C1(R) and therefore it is compact
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in C([−n, n]) for all n > 0. A diagonal argument can be used to get a sequence
{uk} ⊂ (λ − L0)

−1B such that uk converges to some u in C([−n, n]) for each fixed
n. Note that Liu(x) (i = 1, 2) converges to zero as |x| → ∞ uniformly for u in a
bounded set in X0. It easily follows that Li(λ−L0)

−1uk converges to Li(λ−L0)
−1u

in C(R), respectively, for i = 1, 2.
Now we are ready to prove Theorem 2.2(iii).
Lemma 3.6. There exists a positive constant γ0 such that σess(L) ⊂ {λ : Reλ ≤

−γ0}.
Proof. Note that L = L0 + L1 + L2. We know that σess(L0) ⊂ {λ : Reλ ≤

max{f̄ ′(−1), f̄ ′(1)} }. If D > 0 or c0 �= 0, by Lemma 3.5 and applying Theorem
A.1 (p. 136) in [20], we deduce that the half-plane {λ | Reλ > max{f ′(−1), f ′(1)}}
consists entirely of normal points of L (see Lemma 3.7). This establishes the lemma
with γ0 = −max{f̄ ′(−1), f̄ ′(1)}.

For the case D = 0 and c0 = 0, we first show that λ−L is Fredholm with index 0 for
λ ∈ Sγ1 = {λ ∈ C : Reλ ≥ −γ1} for some constant γ1 > 0 to be chosen. Let ki be as
defined in (3.5) and (3.6) for i = 0, 1, . . . , n. By assumption (A3), k0(x) ≤ −δ̄0 < 0 for
all x ∈ R, where δ̄0 is a positive constant. Since f̄ ′(±1) = k0(±∞)+

∑n
i=1 ki(±∞) < 0,

by assumption (A2), we can choose γ1 > 0 such that λ − k0(x) �= 0 for all x ∈
R and |

∑n
i=1

ki(±∞)
λ−k0(±∞) | < 1 for all λ ∈ Sγ1 . For λ ∈ Sγ1 and i = 1, 2, . . . , n,

we choose smooth functions mi(x) on R satisfying limx→±∞ mi(x) = ki(±∞)
λ−k0(±∞) and∑n

i=1 |mi(x)| ≤ δ1 < 1, where δ1 is a positive constant. Then, we can write

(λ− L)ψ = (λ− k0)ψ −
n∑

i=1

Fpi(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ)) · Ji ∗ (siu(φ)ψ)

= (λ− k0)ψ −
n∑

i=1

kiJi ∗ ψ + B0ψ

= (λ− k0)(B1ψ + B2ψ) + B0ψ,(3.12)

where

B0ψ =

n∑
i=1

[kiJi ∗ ψ − Fpi(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))Ji ∗ (siu(φ)ψ)],

B1ψ =

n∑
i=1

[
mi −

ki
λ− k0

]
Ji ∗ ψ,

B2ψ = ψ −
n∑

i=1

miJi ∗ ψ.

By the choice of mi, we know that the bounded linear operator B2 is invertible on
X0. Therefore, the index of λ−L is 0 since B0 and B1 are compact operators on X0.

This and the simplicity of eigenvalue 0 of L (see Lemma 3.8) imply that X0 =
Range(L) ⊕ N , where N is one-dimensional. On the other hand, since 0 is an alge-
braically simple eigenvalue, we can take N = Ker(L) and hence X0 = Range(L) ⊕
Ker(L). Now L : Range(L) → Range(L) is one-to-one and onto, so it has a bounded
inverse. Therefore, for |λ| small, (λ−L)|Range(L) is invertible and hence if λ �= 0 with

|λ| small, Lψ = λψ has no nonzero solution in X0. On the other hand, by Lemma
3.7, Lψ = λψ has no nonzero solution in X0 for λ �= 0 with Reλ ≥ 0. From this and
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the fact that λ − L is Fredholm with index zero for λ ∈ Sγ1
, we deduce that λ is in

the resolvent set of L for λ �= 0 with |λ| small or Reλ ≥ 0. Since σ(L) is closed and
bounded, we deduce that λ is in the resolvent set of L for λ �= 0 with Reλ ≥ −γ0 for
some constant γ0 > 0.

From Lemma 3.6, we deduce that the half-plane {λ | Reλ > −γ0} consists entirely
of normal points of L. This establishes (iii) of Theorem 2.2. The rest of the statement
follows from the following lemmas.

Lemma 3.7. {λ : Reλ ≥ 0, λ �= 0} ⊂ ρ(L).
Proof. It is clear that every eigenfunction of L in X0 with nonzero eigenvalue is

at least C1. Suppose λ = α + iβ satisfying α ≥ 0 and β �= 0 is an eigenvalue with
eigenfunction u = u1(x) + iu2(x) �= 0. As in the proof of Lemma 3.2, we consider the
Cauchy problem

vt = Lv − αv,(3.13)

v(x, 0) = u1(x).(3.14)

It has a solution v(x, t) = u1(x) cosβt− u2(x) sinβt.
Note that v(x, t) ≤ |u(x)| for all x ∈ R and t ≥ 0. We claim that there is a τ > 0

such that v(x, t) ≤ τφ′(x) for all x ∈ R and t ≥ 0. To prove this claim, let θ0 be
a constant satisfying 0 < θ0 < −max{f̄ ′(−1), f̄ ′(1)}. Since φ(±∞) = ±1, we may
choose M large enough such that Fu(φ, J1∗s1(φ), . . . , Jn∗sn(φ))(x)+

∑n
i=1 Fpi(φ, J1∗

s1(φ), . . . , Jn ∗sn(φ))Ji ∗(siu(φ))(x) ≤ −θ0 for all |x| ≥ M and such that |u| is positive
at some point x ∈ [−M,M ]. Since φ′(x) > 0, there exists a constant τ > 0 such that
|u(x)| ≤ τφ′(x) for |x| ≤ M . We prove that the claim holds with this choice of τ .
Since limx→±∞ u(x) = 0, there exists a constant ε > 0 such that v(x, t) ≤ τφ′(x) + ε
for all x and t ≥ 0. Let ε0 = inf{ε : v(x, t) ≤ τφ′(x) + ε for all x ∈ R and t ≥ 0}. We
prove that ε0 = 0. Consider the function w(x, t) = τφ′(x) + ε0e

−θ0t. We have

wt − Lw + αw = ε0(−θ0 − Fu(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))(x)

−
n∑

i=1

Fpi
(φ, J1 ∗ s1(φ), . . . , Jn ∗ sn(φ))Ji ∗ (siu(φ))(x))e−θ0t + αw

≥0(3.15)

for all |x| > M and t > 0. Therefore w is a supersolution of (3.13) on |x| > M .
Notice that w(x, t) ≥ v(x, t) for |x| ≤ M and t > 0 and w(x, 0) ≥ v(x, 0) for all x.
The comparison principle (Lemma 3.1) yields w(x, t) ≥ v(x, t) for all x and t > 0.
Therefore v(x, t) = v(x, t + 2nπ/β) ≤ τφ′(x) + ε0e

−θ0(t+2nπ/β) for all n ∈ Z+, x ∈ R,
and t > 0. Letting n → ∞, we get v(x, t) ≤ τφ′(x) for all x. Therefore ε0 = 0 and
the claim is proved.

Clearly τ0 can be chosen such that |u(x)| ≤ τ0φ
′(x) for all |x| ≤ M and there

is a point x0 ∈ [−M,M ] such that |u(x0)| = τ0φ
′(x0). By the comparison principle,

we deduce that v(x, t) < τ0φ
′(x) for all x and t > 0. If we choose t such that

u(x0)/|u(x0)| = e−iβt, then v(x0, t) = |u(x0)| = τ0φ
′(x0) > v(x0, t), which is a

contradiction. Therefore u(x) = 0 for all x and λ is not an eigenvalue.
Now assume that λ > 0 is an eigenvalue with an eigenfunction u(x). Without

loss of generality, we may assume u is real and there is a point where u is positive.
Then v(x, t) ≡ u(x) is a solution of (3.13) with α = λ > 0 and the initial condition
v(x, 0) = u(x). A similar argument to the above can be used to prove that u(x) ≡ 0
and so λ > 0 is not an eigenvalue. This completes the proof.
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Lemma 3.8. 0 is an eigenvalue of L and it is algebraically simple.

Proof. Since (φ(· + s), c0) satisfies (1.4) for each s ∈ R and limz→∞ φ(±z) = ±1,
p = φ′ is a positive eigenfunction of L in X0 with corresponding eigenvalue 0.

To show that 0 is a geometrically simple eigenvalue we use the comparison prin-
ciple. Suppose that Lv = 0 with v ∈ X0 and assume, without loss of generality, that
v(x0) > 0 for some x0. For θ > 0, let wθ ≡ θφ′ − v. Note that φ′(x) > 0. We can
choose θ large enough such that wθ(x) ≥ 0 for |x| ≤ M , where M is a constant given
as in the proof of Lemma 3.7. Note that vθ(x, t) ≡ wθ(x) as a function of (x, t) (it is
independent of t) satisfies (3.13) with initial data v(x, 0) = wθ(x). Similar to the proof
in Lemma 3.7, we deduce that wθ(x) ≥ 0 for all x ∈ R. Let θ0 = inf{θ : wθ(x) ≥ 0}.
We claim that wθ0(x) ≡ 0. In fact, if wθ0 is not identically zero, we apply the compar-
ison principle to vθ0(x, t) ≡ wθ0(x) to deduce that wθ0 > 0 for all x ∈ R. Therefore
there exists ε0 > 0 such that wθ0−ε0(x) ≥ 0 for x ∈ [−M,M ]. This contradicts the
choice of θ0. Therefore, φ is a simple eigenfunction corresponding to eigenvalue 0.

To show algebraic simplicity of eigenvalue 0, suppose that there is v such that
Lv = −φ′ and recall that φ′(x) > 0 on R. Let wτ ≡ v + τφ′ and note that for τ > 0
and sufficiently large, wτ > 0 on [−M,M ] and, as we argued above, wτ > 0 on R.
Taking the infimum T of all such τ produces a function wT ≥ 0 on R and a point xT

where this function is zero. Then

0 ≤ Dw′′
T (xT ) +

n∑
i=1

Fpi(φ, J1 ∗ s1(φ), · · · , Jn ∗ sn(φ)) · Ji ∗ (siu(φ)wT )(xT )

= LwT (xT ) = −φ′
0(xT ) < 0.

This provides the contradiction which establishes the result.

Let L∗ be the adjoint operator of L on X∗
0 . Then we have the next lemma.

Lemma 3.9. The operator L∗ on X∗
0 has a positive eigenvector corresponding to

the simple eigenvalue 0.

Proof. Since 0 is a simple eigenvalue of L, by the Fredholm theory, L∗v = 0 has a
nonzero solution v and it is unique modulo a constant multiple. For any solution v �= 0
of L∗v = 0 in X∗

0 , v or −v must be a positive Borel measure. To show this, if v or −v
is not positive, we can find a function f ∈ X0 such that f(x) < 0 for all x and the
dual pairing < f, v >= 0. Then, by the Fredholm Alternative, Lu = f has a solution
u. As before, we can choose τ such that τφ′(x) ≥ −u(x) and τφ′(x0) = −u(x0) for
some x0. With w(x, t) = τφ′(x0) + u(x0), we have wt − Lw = −Lu = −f > 0 and
w(x0, t) = 0, in contradiction to the strong comparison principle.
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LOCALIZATION FOR THE SCHRÖDINGER EQUATION IN A
LOCALLY PERIODIC MEDIUM∗
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Abstract. We study the homogenization of a Schrödinger equation in a locally periodic medium.
For the time and space scaling of semiclassical analysis we consider well-prepared initial data that
are concentrated near a stationary point (with respect to both space and phase) of the energy, i.e.,
the Bloch cell eigenvalue. We show that there exists a localized solution which is asymptotically
given as the product of a Bloch wave and of the solution of an homogenized Schrödinger equation
with quadratic potential.
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1. Introduction. We study the homogenization of the following Schrödinger
equation:

⎧⎨
⎩

i

ε

∂uε

∂t
− div

(
A
(
x,

x

ε

)
∇uε

)
+

1

ε2
c
(
x,

x

ε

)
uε = 0 in R

N × R
+,

uε(0, x) = u0
ε(x) in R

N ,

(1.1)

where the unknown uε(t, x) is a complex-valued function. The coefficients A(x, y)
and c(x, y) are real and sufficiently smooth bounded functions defined for x ∈ R

N

(the macroscopic variable) and y ∈ T
N (the microscopic variable in the unit torus).

The period ε is a small positive parameter which is intended to go to zero. Further-
more, the matrix A is symmetric uniformly positive definite. Of course, the usual
Schrödinger equation is recovered when A ≡ Id, but since there is no additional diffi-
culty, we keep the general form of (1.1) in what follows (which can be interpreted as
introducing a nonflat locally periodic metric).

The scaling of (1.1) is that of semiclassical analysis (see, e.g., [5], [8], [10], [11],
[12], [13], [14], [18], [19]): if the period is rescaled to 1, it amounts to looking at
large time and space variables of order ε−1. At least in the case when A ≡ Id
and c(x, y) = c0(x) + c1(y), there is a well-known theory for the asymptotic limit of
(1.1) when ε goes to zero. By using WKB asymptotic expansion or the notion of
semiclassical measures (or Wigner transforms), the homogenized problem is in some
sense the Liouville transport equation for a classical particle which is the limit of
the wave function uε. In other words, for initial data living in the nth Bloch band
and under some technical assumptions on the Bloch spectral cell problem (1.4), the
semiclassical limit of (1.1) is given by the dynamic of the following Hamiltonian system
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in the phase space (x, θ) ∈ R
N × T

N :{
ẋ = ∇θλn(x, θ),

θ̇ = −∇xλn(x, θ),
(1.2)

where the Hamiltonian λn(x, θ) is precisely the nth Bloch eigenvalue of (1.4) (see [8],
[10], [11], [12], [13], [14], [18], [19] for more details).

Our approach to (1.1) is different since we consider special initial data that are
monochromatic and have zero group velocity and zero applied force. Namely, the ini-
tial data are concentrated at a point (xn, θn) of the phase space, where ∇θλn(xn, θn) =
∇xλn(xn, θn) = 0. In such a case, the previous Hamiltonian system (1.2) degenerates
(its solution is constant) and is unable to describe the precise dynamic of the wave
function uε. We exhibit another limit problem which is again a Schrödinger equa-
tion with quadratic potential. In other words, we build a sequence of approximate
solutions of (1.1) which are the product of a Bloch wave and of the solution of a ho-
mogenized Schrödinger equation. Furthermore, if the full Hessian tensor of the Bloch
eigenvalue λn(x, θ) is positive definite at (xn, θn), we prove that all the eigenfunctions
of a homogenized Schrödinger equation are exponentially decreasing at infinity. In
other words, we exhibit a localization phenomenon for (1.1) since we build a sequence
of approximate solutions that decay exponentially fast away from xn. The root of
this localization phenomenon is the macroscopic modulation (i.e., with respect to x)
of the periodic coefficients, which is similar in spirit to the randomness that causes
Anderson’s localization (see [9] and references therein).

Let us describe more precisely the type of well-prepared initial data that we
consider. For a given point (xn, θn) ∈ R

N × T
N and a given function v0 ∈ H1(RN )

we take

u0
ε(x) = ψn

(
xn,

x

ε
, θn

)
e2iπ θn·x

ε v0
(x− xn

√
ε

)
,(1.3)

where ψn(x, y, θ) is a so-called Bloch eigenfunction, solution of the Bloch spectral cell
equation

−(divy + 2iπθ)(A(x, y)(∇y + 2iπθ)ψn) + c(x, y) = λn(x, θ)ψn in T
N ,(1.4)

corresponding to the nth eigenvalue or energy level λn. The Bloch wave ψn is periodic
with respect to y, but v0 is not periodic, so v0

(
x−xn
√
ε

)
means that the initial data is

concentrated around xn with a support of asymptotic size
√
ε. The Bloch frequency

θn ∈ T
N , the localization point xn ∈ R

N , and the energy level n are chosen such that
λn(xn, θn) is simple and ∇xλn(xn, θn) = ∇θλn(xn, θn) = 0.

Our main result (Theorem 3.2) shows that the solution of (1.1) is approximately
given by

uε(t, x) ≈ ψn

(
xn,

x

ε
, θn

)
ei

λn(xn,θn)t
ε e2iπ θn·x

ε v
(
t,
x− xn

√
ε

)
,(1.5)

where v is the unique solution of the homogenized Schrödinger equation⎧⎨
⎩ i

∂v

∂t
− div (A∗∇v) + div(vB∗z) + c∗v + vD∗z · z = 0 in R

N × R
+,

v(0, z) = v0(z) in R
N ,

(1.6)
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where c∗ is a constant coefficient and A∗, B∗, D∗ are constant matrices defined by

A∗ =
1

8π2
∇θ∇θλn(xn, θn), B∗ =

1

2iπ
∇θ∇xλn(xn, θn), D∗ =

1

2
∇x∇xλn(xn, θn).

In Proposition 3.4 we show that the homogenized problem (1.6) is well-posed since
the underlying operator is self-adjoint. Furthermore, under the additional assumption
that the Hessian tensor ∇∇λn(xn, θn) (with respect to both variables x and θ) is
positive definite, we prove that (1.6) admits a countable number of eigenvalues and
eigenfunctions which all decay exponentially at infinity (see Proposition 3.5). In such a
case, formula (1.5) defines a family of approximate (exponentially) localized solutions
of (1.1).

Let us indicate that the case of the first eigenvalue (ground state) n = 1 with
θ1 = 0 was already studied in [3] (for the spectral problem rather than the evolution
equation). The case of purely periodic coefficients (i.e., that depend only on y and not
on x) is completely different and was studied in [4]. Indeed, in this latter case there is
no localization effect, and one proves that, for a longer time scale (of order ε−1 with
respect to (1.1)), the homogenized limit is again a Schrödinger equation without the
drift and quadratic potential in (1.6).

2. Preliminaries. In the present section we give our main assumptions and set
some notation and a few preliminary results needed in the proof of the main results
in section 3.

We first assume that the coefficients Aij(x, y) and c(x, y) are real, bounded, and
Carathéodory functions (measurable with respect to y and continuous in x), which are
periodic with respect to y. In other words, they belong to Cb(R

N ;L∞(TN )). Further-
more, the tensor A(x, y) is symmetric uniformly coercive. Under these assumptions,
it is well known that, for any values of the parameters θ ∈ T

N and x ∈ R
N , the cell

problem (1.4) defines a compact self-adjoint operator on L2(TN ), which admits a
countable sequence of real increasing eigenvalues {λn(x, θ)}n≥1 (repeated with their
multiplicity) with corresponding eigenfunctions {ψn(x, θ, y)}n≥1 normalized by

‖ψn(x, θ, ·)‖L2(TN ) = 1.

Our main assumptions are the following.
Hypothesis H1. There exist xn ∈ R

N and θn ∈ T
N such that⎧⎪⎨

⎪⎩
(i) λn(xn, θn) is a simple eigenvalue,

(ii) (xn, θn) is a critical point of λn(x, θ),

i.e.,∇xλn(xn, θn) = ∇θλn(xn, θn) = 0.

(2.1)

Hypothesis H2. The coefficients A(x, y) and c(x, y) are of class C2 with respect
to the variable x in a neighborhood of x = xn.

Then we set

A1,h(y) :=
∂A

∂xh
(xn, y), A2,lh(y) :=

∂2A

∂xl∂xh
(xn, y), for l, h = 1, . . . , N.

Similar notation is used to denote the derivatives of the function c with respect to the
x-variable. With an abuse of notation we further set

A(y) := A(xn, y), λn := λn(xn, θn), ψn(y) := ψn(xn, y, θn),
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and analogous notation holds for all derivatives of ψn and λn with respect to the x-
variable and the θ-variable evaluated at x = xn and θ = θn. Without loss of generality
we will assume in what follows that xn = 0.

Notation. For any function ρ(y) defined on T
N we set

ρε(z) := ρ(z/
√
ε),

where z :=
√
εy ≡ x/

√
ε. In what follows the symbols divy and ∇y will stand for the

divergence and gradient operators which act with respect to the y-variable, while div
and ∇ will indicate the divergence and gradient operators which act with respect to
the z-variable. Finally, throughout this paper the Einstein summation convention is
used.

Under Hypothesis H1-(i) it is a classical matter to prove that the nth eigencouple
of (1.4) is smooth with respect to the variable θ in a neighborhood of θ = θn (see
[16]) and has the same differentiability property as the coefficients with respect to the
variable x. Introducing the unbounded operator An(x, θ) defined on L2(TN ) by

An(x, θ)ψ = −(divy + 2iπθ)
(
A(x, y)(∇y + 2iπθ)ψ

)
+ c(x, y)ψ − λn(x, θ)ψ,

it is easy to differentiate (1.4). Denoting by (ek)1≤k≤N the canonical basis of R
N , the

first derivatives satisfy

An(x, θ)
∂ψn

∂θk
= 2iπekA(x, y)(∇y + 2iπθ)ψn

+ (divy + 2iπθ) (A(x, y)2iπekψn) +
∂λn

∂θk
(x, θ)ψn,

(2.2)

An(x, θ)
∂ψn

∂xl
= (divy + 2iπθ)

(
∂A

∂xl
(x, θ)(∇y + 2iπθ)ψn

)

− ∂c

∂xl
(x, y)ψn +

∂λn

∂xl
(x, θ)ψn.

(2.3)

Similar formulas hold for second order derivatives. By integrating the cell equations
for the second order derivatives against ψn, we obtain the following formulas that will
be useful in what follows (their proofs are safely left to the reader).

Lemma 2.1. Assume that assumptions H1 and H2 hold true. Then the following
equalities hold:

∫
TN

1

2πi

[
A1,h(∇y + 2iπθn)

∂ψn

∂θk
· (∇y − 2iπθn)ψ̄n + c1,h

∂ψn

∂θk
ψ̄n

]
dy(2.4)

+

∫
TN

[
A1,hekψn · (∇y − 2iπθn)ψ̄n + Aek

∂ψn

∂xh
· (∇y − 2iπθn)ψ̄n

]
dy

−
∫

TN

[
ekψ̄nA1,h · (∇y + 2iπθn)ψn + ekψ̄nA · (∇y + 2iπθn)

∂ψn

∂xh

]
dy

− 1

2iπ

∂2λn

∂xh∂θk
= 0,
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∫
TN

[
A2,lh(∇y + 2iπθn)ψn · (∇y − 2iπθn)ψ̄n +

(
c2,lh − ∂2λn

∂xl∂xh

)
|ψn|2

]
dy(2.5)

+

∫
TN

[
A1,h(∇y + 2iπθn)

∂ψn

∂xl
· (∇y − 2iπθn)ψ̄n + c1,h

∂ψn

∂xl
ψ̄n

]
dy

+

∫
TN

[
A1,l(∇y + 2iπθn)

∂ψn

∂xh
· (∇y − 2iπθn)ψ̄n + c1,l

∂ψn

∂xh
ψ̄n

]
dy = 0,

∫
TN

[
2iπekA(y)(∇y + 2iπθn)

∂ψn

∂θl
ψ̄n −

(
A(y)2iπek

∂ψn

∂θl

)
(∇y − 2iπθn)ψ̄n

]
dy

(2.6)

+

∫
TN

[
2iπelA(y)(∇y + 2iπθn)

∂ψn

∂θk
ψ̄n −

(
A(y)2iπel

∂ψn

∂θk

)
(∇y − 2iπθn)ψ̄n

]
dy

−
∫

TN

[
4π2ekA(y)el|ψn|2 + 4π2elA(y)ek|ψn|2

]
dy +

∂2λn

∂θl∂θk
(θn) = 0.

We now give the variational formulations of the above cell problems, rescaled at
size ε.

Lemma 2.2. Assume that assumptions H1 and H2 hold true, and let ϕ(z) be
a smooth compactly supported function defined from R

N into C. Then the following
equalities hold:∫

RN

[
Aε(∇y + 2iπθn)ψε

n · (
√
ε∇− 2iπθn)ϕ̄(z) + (cε − λε

n)ψε
nϕ̄

]
dz = 0,(2.7)

∫
RN

[
Aε(∇y + 2iπθn)

∂ψε
n

∂θnk
· (
√
ε∇− 2iπθn)ϕ̄ + (cε − λε

n)
∂ψε

n

∂θnk
ϕ̄

]
dz

(2.8)

+

∫
RN

[
− 2πiek ·Aε(∇y + 2iπθn)ψε

nϕ̄ + Aε 2πiekψ
ε
n · (

√
ε∇− 2iπθn)ϕ̄

]
dz = 0,

∫
RN

[
Aε(∇y + 2iπθn)

∂ψε
n

∂xh
· (
√
ε∇− 2iπθn)ϕ̄ + (cε − λε

n)
∂ψε

n

∂xh
ϕ̄

]
dz(2.9)

+

∫
RN

[
Aε

1,h(∇y + 2iπθn)ψε
n · (

√
ε∇− 2iπθn)ϕ̄ + cε1,h ψ

ε
nϕ̄

]
dz = 0.

Proof. Formula (2.7) follows straightforwardly from (1.4), while (2.8)–(2.9) are
consequences of (2.2)–(2.3).

Finally, we recall the notion of two-scale convergence introduced in [1], [17] (which
will be used with δ =

√
ε).

Proposition 2.3. Let fδ be a sequence uniformly bounded in L2(RN ).
(1) There exists a subsequence, still denoted by fδ, and a limit f0(x, y) ∈ L2(RN×

T
N ) such that fδ two-scale converges weakly to f0 in the sense that

lim
δ→0

∫
RN

fδ(x)φ(x, x/δ) dx =

∫
RN

∫
TN

f0(x, y)φ(x, y) dx dy

for all functions φ(x, y) ∈ L2(RN ;C(TN )).



132 GRÉGOIRE ALLAIRE AND MARIAPIA PALOMBARO

(2) Assume further that fδ two-scale converges weakly to f0 and that

lim
δ→0

‖fδ‖L2(RN ) = ‖f0‖L2(RN×TN ).

Then fδ is said to two-scale converge strongly to its limit f0 in the sense that,
if f0 is smooth enough, e.g., f0 ∈ L2(RN ;C(TN )), we have

lim
δ→0

∫
RN

|fδ(x) − f0(x, x/δ )|2 dx = 0.

(3) Assume that δ∇fδ is also uniformly bounded in L2(RN )N . Then there exists
a subsequence, still denoted by fδ, and a limit f0(x, y) ∈ L2(RN ;H1(TN ))
such that fδ two-scale converges to f0(x, y) and δ∇fδ two-scale converges to
∇yf0(x, y).

3. Main results. We begin by recalling the usual a priori estimates for the
solution of the Schrödinger equation (1.1), which hold true since the coefficients are
real. They are obtained by multiplying the equation successively by uε and ∂uε

∂t and
integrating by parts.

Lemma 3.1. There exists C > 0 independent of ε such that the solution of (1.1)
satisfies

‖uε‖L∞(R+;L2(RN )) = ‖u0
ε‖L2(RN ),

ε‖∇uε‖L∞(R+;L2(RN )) ≤ C
(
‖u0

ε‖L2(RN ) + ε‖∇u0
ε‖L2(RN )

)
.

Theorem 3.2. Assume that assumptions H1 and H2 hold true and that the initial
datum u0

ε is of the form (1.3). Then the solution of (1.1) can be written as

uε(t, x) = ei
λnt
ε e2iπ θn·x

ε vε

(
t,
x− xn

√
ε

)
,(3.1)

where vε(t, z) two-scale converges strongly to ψn(y)v(t, z); i.e.,

lim
ε→0

∫
RN

∣∣∣∣vε(t, z) − ψn

(
z√
ε

)
v(t, z)

∣∣∣∣
2

dz = 0,(3.2)

uniformly on compact time intervals in R
+, and v is the unique solution of the ho-

mogenized Schrödinger equation⎧⎨
⎩ i

∂v

∂t
− div (A∗∇v) + div(vB∗z) + c∗v + vD∗z · z = 0 in R

N × R
+,

v(0, z) = v0(z) in R
N ,

(3.3)

where

A∗ =
1

8π2
∇θ∇θλn(xn, θn), B∗ =

1

2iπ
∇θ∇xλn(xn, θn), D∗ =

1

2
∇x∇xλn(xn, θn),

and c∗ is given by

c∗ =

∫
TN

[
A (∇y + 2iπθn)ψn · ∂ψ̄n

∂xk
ek

−A(∇y − 2iπθn)
∂ψ̄n

∂xk
· ψn ek −A1,k(∇y − 2iπθn)ψ̄n · ψnek

]
dy.
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Remark 3.3. Notice that even if the tensor A∗ might be noncoercive, the ho-
mogenized problem (3.3) is well posed. Indeed, the operator A

∗ : L2(RN ) → L2(RN )
defined by

A
∗ϕ = −div (A∗∇ϕ) + div(ϕB∗z) + c∗ϕ + ϕD∗z · z(3.4)

is self-adjoint (see Proposition 3.4), and therefore by using semigroup theory (see,
e.g., [6] or Chapter X in [20]), one can show that there exists a unique solution in
C(R+;L2(RN )), although it may not belong to L2(R+;H1(RN )).

The next result establishes the conservation of the L2-norm for the solution v of
the homogenized equation (3.3) and the self-adjointness of the operator A

∗.
Proposition 3.4. Let v ∈ C(R+;L2(RN )) be solution to (3.3). Then

‖v(t, ·)‖L2(RN ) = ‖v0‖L2(RN ) ∀ t ∈ R
+.(3.5)

Moreover, the operator A
∗ defined in (3.4) is self-adjoint.

Proof. We multiply (3.3) by v̄ and take the imaginary part to obtain

1

2

d

dt

∫
RN

|v|2 dz = Im

(∫
RN

vB∗z · ∇v̄ − c∗|v|2 dz
)
.(3.6)

After integrating by parts one finds that the right-hand side of (3.6) equals

−
(

1

2i
trB∗ + Imc∗

)∫
RN

|v|2 dz,

and therefore (3.5) is proved as soon as we show that

1

2i
trB∗ + Imc∗ = 0.(3.7)

In order to do this we first rewrite the coefficients c∗ and B∗ in a suitable form.
Denoting by 〈·, ·〉 the Hermitian inner product in L2(TN ) and using (2.2), we write

c∗ =
1

2iπ

〈
An

∂ψn

∂θk
,
∂ψn

∂xk

〉
−
∫

TN

A1,k(∇y − 2iπθn)ψ̄n · ψnek dy,(3.8)

while by (2.2)–(2.4) it follows that

1

2iπ

∂2λn

∂xh∂θk
= − 1

2iπ

〈
An

∂ψn

∂θk
,
∂ψn

∂xh

〉
− 1

2iπ

〈
An

∂ψn

∂xh
,
∂ψn

∂θk

〉
(3.9)

+ 2iIm

∫
TN

A1,h(∇y − 2iπθn)ψ̄n · ψnek dy.

By formulas (3.8)–(3.9) it is readily seen that equality (3.7) holds true.
In order to prove the self-adjointness of the operator A

∗, one first checks that A
∗

is symmetric, which easily follows by (3.7) and the fact that B
∗

= −B∗, and then
observes that up to addition of a multiple of the identity the operator A

∗ is monotone
(see, e.g., [7, Chapter VII]).

In the next proposition we will denote by ∇∇λn the Hessian matrix of the function
λn(x, θ) evaluated at the point (xn, θn), namely,

∇∇λn =

(
∇x∇xλn ∇θ∇xλn

∇θ∇xλn ∇θ∇θλn

)
(xn, θn).
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Proposition 3.5. Assume that the matrix ∇∇λn is positive definite. Then there
exists an orthonormal basis {ϕn}n≥1 of eigenfunctions of A

∗; moreover, for each n
there exists a real constant γn > 0 such that

eγn|z|ϕn, e
γn|z|∇ϕn ∈ L2(RN ).(3.10)

Proof. Up to shifting the spectrum of the operator A
∗, we may assume that

Re(c∗) = 0. In order to prove the existence of an orthonormal basis of eigenfunctions
we introduce the inverse operator of A

∗, denoted by G∗,

G∗ : L2(RN ) → L2(RN ),

f → ϕ unique solution in H1(RN ) of

A
∗ϕ = f in R

N ,(3.11)

and we show that G∗ is compact. Indeed multiplication of (3.11) by ϕ̄ yields∫
RN

[A∗∇ϕ · ∇ϕ̄− iB∗Im(ϕz · ∇ϕ̄) + D∗z · z|ϕ|2] dz =

∫
RN

fϕ̄ dz.(3.12)

Upon defining the 2N -dimensional vector-valued function Φ,

Φ :=

(
2iπzϕ
∇ϕ

)
,

we rewrite (3.12) in agreement with this block notation:∫
RN

1

8π2
∇∇λnΦ · Φ dz =

∫
RN

fϕ̄ dz.

By the positivity assumption on the matrix ∇∇λn it follows that there exists a positive
constant c0 such that

c0
(
‖∇ϕ‖2

L2(RN ) + ‖zϕ‖2
L2(RN )

)
≤ ‖f‖L2(RN )‖ϕ‖L2(RN ),

which implies by a standard argument

‖ϕ‖2
L2(RN ) + ‖∇ϕ‖2

L2(RN ) + ‖zϕ‖2
L2(RN ) ≤ C‖f‖2

L2(RN ),

from which we deduce the compactness of G∗ in L2(RN )-strong. Thus there exists an
infinite countable number of eigenvalues for A

∗.
We are left to prove the exponential decay of the eigenfunctions (this fact is quite

standard; see, e.g., [2]). Let ϕn be an eigenfunction, and let σn be the associated
eigenvalue

A
∗ϕn = σnϕn.(3.13)

Let R0 > 0 and ρ ∈ C∞(R) be a real function such that 0 ≤ ρ ≤ 1, ρ(s) = 0
for s ≤ R0, and ρ(s) = 1 for s ≥ R0 + 1, and for every positive integer k define
ρk ∈ C∞(RN ) in the following way:

ρk(z) := ρ(|z| − k).
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We now multiply (3.13) by ϕ̄nρ
2
k to get∫

RN

ρ2
k

(
A∗∇ϕn · ∇ϕ̄n − iB∗Im(ϕnz · ∇ϕ̄n) + D∗z · z|ϕn|2 − σn|ϕn|2

)
dz(3.14)

=

∫
RN

(
ρk|ϕn|2B∗z · ∇ρk − 2ρk ϕ̄nA

∗∇ϕn · ∇ρk
)
dz.

Next remark that since the left-hand side of (3.14) is real, the right-hand side must
also be real, and therefore it is equal to∫

RN

−2ρk Re(ϕ̄nA
∗∇ϕn) · ∇ρk dz.(3.15)

Let Bk denote the ball of radius R0+k and center z = 0, and observe that the support
of ∇ρk is contained in Bk+1 \ Bk. Then putting up together (3.14) and (3.15) and
again using the positive definiteness of the matrix ∇∇λn, we obtain for R0 sufficiently
large (

√
R0 > σn does the job)

‖ϕn‖2
H1(RN\Bk+1)

≤ c1
(
‖ϕn‖2

H1(RN\Bk) − ‖ϕn‖2
H1(RN\Bk+1)

)
,

where c1 is a positive constant independent of k. Thus we deduce that

‖ϕn‖2
H1(RN\Bk+1)

≤
(

c1
1 + c1

)k

‖ϕn‖2
H1(RN\B0)

.(3.16)

Upon defining a positive constant γ0 > 0 by

( c1
1 + c1

)k

= e−2γ0(k+R0),

it is finally seen that (3.16) implies the estimate (3.10) for any exponent 0 < γn <
γ0.

Proof of Theorem 3.2. We rescale the space variable by introducing

z =
x√
ε
,

and define the sequence vε by

vε(t, z) := e−iλnt
ε e−2iπ θn·x

ε uε(t, x).(3.17)

By the a priori estimates of Lemma 3.1 it follows that vε(t, z) satisfies

‖vε‖L∞(R+;L2(RN )) +
√
ε‖∇vε‖L∞(R+;L2(RN )) ≤ C,

and applying the compactness of two-scale convergence (see Proposition 2.3), up to
a subsequence, there exists a limit v∗(t, z, y) ∈ L2(R+ × R

N ;H1(TN )) such that vε
and

√
ε∇vε two-scale converge to v∗ and ∇yv

∗, respectively. Similarly, by definition
of the initial data, vε(0, z) two-scale converges to ψn(y)v0(z).

Although vε is the unknown which will pass to the limit in what follows, it is
simpler to write an equation for another function, namely

wε(t, z) := e
2iπ θn·z√

ε vε(t, z) = e−iλnt
ε uε(t, x).(3.18)
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By (3.18) it follows that

∇wε = e
2iπ θn·z√

ε

(
∇ + 2iπ

θn√
ε

)
vε,(3.19)

and it can be checked that the new unknown wε solves the following equation:

(3.20)⎧⎨
⎩ i

∂wε

∂t
− div[A

(√
εz, z/

√
ε
)
∇wε] +

1

ε
[c(

√
εz, z/

√
ε) − λn]wε = 0 in R

N × R
+,

wε(0, z) = u0
ε(
√
εz) in R

N ,

where the differential operators div and ∇ act with respect to the new variable z.

First step. We multiply (3.20) by the complex conjugate of

εφ
(
t, z,

z√
ε

)
e
2iπ θn·z√

ε ,

where φ(s, z, y) is a smooth test function defined on R
+ × R

N × T
N , with compact

support in R
+×R

N . Since this test function has compact support (fixed with respect
to ε), the effect of the nonperiodic variable in the coefficients is negligible for suffi-
ciently small ε. Therefore we can replace the value of each coefficient at (

√
εz, z/

√
ε)

by its Taylor expansion of order two about the point (0, z/
√
ε). Integrating by parts

and using (3.18) and (3.19) yields

− iε

∫ +∞

0

∫
RN

vε
∂φ̄ε

∂t
dt dz − iε

∫
RN

vε(0, z)φ̄
(
0, z,

z√
ε

)
dz

+

∫ +∞

0

∫
RN

[
Aε + Aε

1,h

√
εzh +

1

2
Aε

2,lh εzlzh + o(ε)

]
(
√
ε∇ + 2iπθn)vε

· (
√
ε∇− 2iπθn)φ̄ε dz dt

+

∫ +∞

0

∫
RN

[
cε + cε1,h

√
εzh +

1

2
cε2,lh εzlzh + o(ε) − λn

]
vεφ̄

ε dz dt = 0.

Passing to the two-scale limit, we get the variational formulation of

−(divy + 2iπθn)(A(y)(∇y + 2iπθn)v∗) + c(y)v∗ = λnv
∗ in T

N .

The simplicity of λn implies that there exists a scalar function v(t, z) ∈ L2(R+ ×R
N )

such that

v∗(t, z, y) = v(t, z)ψn(y).(3.21)

Second step. We multiply (3.20) by the complex conjugate of

Ψε(t, z) = e
2iπθn· z√

ε

[
ψε
nφ(t, z) +

√
ε

N∑
k=1

(
1

2iπ

∂ψε
n

∂θk

∂φ

∂zk
(t, z) + zk

∂ψε
n

∂xk
φ(t, z)

)]
,
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where φ(t, z) is a smooth test function with compact support in R
+ × R

N . We first
look at those terms of the equation involving time derivatives:

∫ +∞

0

∫
RN

i
∂wε

∂t
Ψ̄ε dt dz

(3.22)

=

∫ +∞

0

∫
RN

−ivε

[
ψ̄ε
n

∂φ̄

∂t
+
√
ε

N∑
k=1

(
− 1

2iπ

∂ψ̄ε
n

∂θk

∂2φ̄

∂t∂zk
+ zk

∂ψ̄ε
n

∂xk

∂φ̄

∂t

)]
dt dz

− i

∫
RN

vε(0, z)

[
ψ̄ε
nφ̄(0, z) +

√
ε

N∑
k=1

(
− 1

2iπ

∂ψ̄ε
n

∂θk

∂φ̄

∂zk
(0, z) + zk

∂ψ̄ε
n

∂xk
φ̄(0, z)

)]
dz.

Recalling the normalization
∫

TN |ψn|2 dy = 1, we find that the two-scale limit of the
term on the left-hand side of (3.22) is given by the expression

−i

∫ +∞

0

∫
RN

v
∂φ̄

∂t
dz dt− i

∫
RN

v0φ̄(0, z) dz.(3.23)

We further decompose Ψε as follows:

Ψε = Ψ1
ε + Ψ2

ε · z with Ψ2
ε =

√
εe

2iπθn· z√
ε

N∑
k=1

∂ψε
n

∂xk
φ(t, z)ek.

Getting rid of all terms multiplied by o(ε) and taking into account (3.18) and (3.19),
we next pass to the limit in the remaining terms of (3.20) multiplied by Ψ̄ε. The
computation is similar to these in [4], but it involves new terms since ψn and its
derivatives also depend on x. We first look at those terms which are of zero order
with respect to z, namely,

∫ +∞

0

∫
RN

[
Aε∇wε · (∇Ψ̄1

ε + Ψ̄2
ε) +

1

ε
(cε − λn)wεΨ̄

1
ε

]
dz dt

(3.24)

=

∫ +∞

0

∫
RN

[
1

ε
Aε

(√
ε∇ + 2iπθn

)
vε · (∇y − 2iπθn)ψ̄ε

nφ̄ +
1

ε
(cε − λn)ψ̄ε

nvεφ̄

]
dz dt

− 1

2iπ

∫ +∞

0

∫
RN

[
1√
ε
Aε

(√
ε∇ + 2iπθn

)
vε · (∇y − 2iπθn)

∂ψ̄ε
n

∂θk

∂φ̄

∂zk

+
1√
ε
(cε − λn)vε

∂ψ̄ε
n

∂θk

∂φ̄

∂zk

]
dz dt

+

∫ +∞

0

∫
RN

1√
ε
Aε

(√
ε∇ + 2iπθn

)
vε · ψ̄ε

n∇φ̄ dz dt

+

∫ +∞

0

∫
RN

− 1

2πi
Aε

(√
ε∇ + 2iπθn

)
vε ·

∂ψ̄ε
n

∂θk
∇ ∂φ̄

∂zk
dz dt

+

∫ +∞

0

∫
RN

Aε
(√

ε∇ + 2iπθn
)
vε ·

∂ψ̄ε
n

∂xk
φ̄ ek dz dt.

Using (2.7) with ϕ = vεφ̄ and (2.8) with ϕ = vε
∂φ̄
∂zk

, we rewrite the first two integrals
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in the right-hand side of (3.24) as follows:∫ +∞

0

∫
RN

− 1√
ε
Aε(∇y − 2iπθn)ψ̄ε

n · vε∇φ̄ dz dt

+

∫ +∞

0

∫
RN

[
1

2iπ
Aε(∇y − 2iπθn)

∂ψ̄ε
n

∂θk
· vε∇

∂φ̄

∂zk
+

1√
ε
Aεek · vε

∂φ̄

∂zk
(∇y − 2iπθn)ψ̄ε

n

− 1√
ε
Aεψ̄ε

nek ·
(√

ε∇ + 2iπθn
)(

vε
∂φ̄

∂zk

)]
dz dt.

Combining the above terms with the other terms in (3.24) and passing to the two-scale
limit in (3.24) yields∫ +∞

0

∫
RN

∫
TN

[
1

2iπ
Aψn(∇y − 2iπθn)

∂ψ̄n

∂θk
(3.25)

− 1

2iπ
A
∂ψ̄n

∂θk
(∇y + 2iπθn)ψn −A|ψn|2ek

]
· v∇ ∂φ̄

∂zk
dy dz dt

+

∫ +∞

0

∫
RN

∫
TN

A(∇y + 2iπθn)ψn · ∂ψ̄n

∂xk
vφ̄ ek dy dz dt.

By (2.6) it can be seen that the first integral of (3.25) equals∫ +∞

0

∫
RN

A∗∇v∇φ̄ dz dt.(3.26)

We now focus on those terms which are linear in z:

(3.27)∫ +∞

0

∫
RN

[
Aε∇wε · (∇Ψ̄2

εz) +
1

ε
(cε − λn)wεΨ̄

2
εz + Aε

1,k

√
εzk∇wε · (∇Ψ̄1

ε + Ψ̄2
ε)

+
1√
ε
cε1,kzkwεΨ̄

1
e

]
dz dt

=

∫ +∞

0

∫
RN

[
1√
ε
Aε

(√
ε∇ + 2iπθn

)
vε · (∇y − 2iπθn)

∂ψ̄ε
n

∂xk
φ̄zk

+
1√
ε
(cε − λn)vε

∂ψ̄ε
n

∂xk
φ̄zk

]
dz dt

+

∫ +∞

0

∫
RN

[
1√
ε
Aε

1,k(
√
ε∇ + 2iπθn)vε·(∇y − 2iπθn)ψ̄ε

n φ̄zk +
1√
ε
cε1,kvεψ̄

ε
n φ̄ zk

]
dz dt

+

∫ +∞

0

∫
RN

[
Aε(

√
ε∇ + 2iπθn)vε ·

∂ψ̄ε
n

∂xk
∇φ̄ zk

+Aε
1,k(

√
ε∇ + 2iπθn)vε · ψ̄ε

n∇φ̄ zk

]
dz dt

− 1

2iπ

∫ +∞

0

∫
RN

[
Aε

1,h(
√
ε∇ + 2iπθn)vε · (∇y − 2iπθn)

∂ψ̄n

∂θk

∂φ̄

∂zk
zh

+ cε1,hvε
∂ψ̄n

∂θk

∂φ̄

∂zk
zh

]
dz dt

+

∫ +∞

0

∫
RN

[√
εAε

1,h(
√
ε∇ + 2iπθn)vε ·

(
− 1

2iπ

∂ψ̄ε
n

∂θk
∇ ∂φ̄

∂zk
+

∂ψ̄ε
n

∂xk
φ̄ ek

)
zh

]
dz dt.
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By (2.9) with ϕ = vεφ̄zk, it can be seen that the sum of the first two integrals in the
right-hand side of (3.27) gives

−
∫ +∞

0

∫
RN

(
Aε(∇y − 2iπθn)

∂ψ̄ε
n

∂xk
· vε∇(φ̄zk) + Aε

1,k(∇y − 2iπθn)ψ̄ε
n · vε∇(φ̄zk)

)
dz dt.

(3.28)

Therefore passing to the two-scale limit in (3.27), we find

−
∫ +∞

0

∫
RN

∫
TN

[
A(∇y − 2iπθn)

∂ψ̄n

∂xk
· vψnφ̄ ek(3.29)

+ A1,k(∇y − 2iπθn)ψ̄n · vψnφ̄ ek

]
dy dz dt

−
∫ +∞

0

∫
RN

∫
TN

[
A(∇y − 2iπθn)

∂ψ̄n

∂xk
· vψnzk∇φ̄

+ A1,k(∇y − 2iπθn)ψ̄n · vψnzk∇φ̄

]
dy dz dt

+

∫ +∞

0

∫
RN

∫
TN

[
A(∇y + 2iπθn)ψn · v ∂ψ̄n

∂xk
zk∇φ̄

+ A1,k(∇y + 2iπθn)ψn · vψ̄nzk∇φ̄

]
dy dz dt

− 1

2iπ

∫ +∞

0

∫
RN

∫
TN

[
A1,h(∇y + 2iπθn)ψn · (∇y − 2iπθn)

∂ψ̄n

∂θk
vzh

∂φ̄

∂zk

+ c1,hψn
∂ψ̄n

∂θk
vzh

∂φ̄

∂zk

]
dy dz dt.

By (2.4) it follows that the last integral in (3.29) is equal to∫ +∞

0

∫
RN

∫
TN

[
A1,hψnek · (∇y − 2iπθn)ψ̄n(3.30)

+ Aψnek · (∇y − 2iπθn)
∂ψ̄n

∂xh
ψn

]
vzh

∂φ̄

∂zk
dy dz dt

−
∫ +∞

0

∫
RN

∫
TN

[
A1,hψ̄nek · (∇y + 2iπθn)ψn

+ A
∂ψ̄n

∂xh
ek · (∇y + 2iπθn)ψn

]
vzh

∂φ̄

∂zk
dy dz dt

−
∫ +∞

0

∫
RN

∫
TN

1

2iπ

∂2λn

∂xh∂θk
|ψn|2vzh

∂φ̄

∂zk
dy dz dt.

Next notice that the first and the second lines of (3.30) cancel out with the second
and the third lines of (3.29), respectively, and therefore (3.29) reduces to

−
∫ +∞

0

∫
RN

∫
TN

[
A(∇y − 2iπθn)

∂ψ̄n

∂xk
· vψnφ̄ ek(3.31)

+ A1,k(∇y − 2iπθn)ψ̄n · vψnφ̄ ek

]
dy dz dt

−
∫ +∞

0

∫
RN

1

2iπ

∂2λn

∂xh∂θk
v
∂φ̄

∂zk
zh dz dt.
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Finally we consider all quadratic in z terms:

1

2

∫ +∞

0

∫
RN

[
Aε

2,lh εzlzh∇wε · (∇Ψ̄1
ε + Ψ̄2

ε) + cε2,lhzlzhwεΨ̄1
e

]
dz dt

+

∫ +∞

0

∫
RN

[
Aε

1,k

√
εzk∇wε · (z∇Ψ̄2

ε) +
1√
ε
cε1,kzkwεz · Ψ̄2

ε

]
dz dt

=
1

2

∫ +∞

0

∫
RN

Aε
2,lh

√
εzlzh(

√
ε∇ + 2iπθn)vε ·

[
1√
ε
(∇y − 2iπθn)ψ̄ε

nφ̄ + ψ̄ε
n∇φ̄

]
dz dt

− 1

2

∫ +∞

0

∫
RN

Aε
2,lh

√
εzlzh(

√
ε∇ + 2iπθn)vε

·
[

1

2πi
∇y

∂ψ̄ε
n

∂θk

∂φ̄

∂zk
+
√
ε

(
1

2iπ

∂ψ̄ε
n

∂θk
∇ ∂φ̄

∂zk
+ ek

∂ψ̄ε
n

∂xk
φ̄

)]
dz dt

+

∫ +∞

0

∫
RN

Aε
1,h zh

(√
ε∇ + 2iπθn

)
vε ·

[
zk(∇y − 2iπθn)

∂ψ̄ε
n

∂xk
φ̄ +

√
εzk

∂ψ̄ε
n

∂xk
∇φ̄

]
dz dt

+

∫ +∞

0

∫
RN

1

2
cε2,lhzlzhvε

(
ψ̄ε
nφ̄−

√
ε

1

2iπ

∂ψ̄ε
n

∂θk

∂φ̄

∂zk

)
dz dt

+

∫ +∞

0

∫
RN

cε1,hzhvεzk
∂ψ̄ε

n

∂xk
φ̄ dz dt,

which gives, on passing to the two-scale limit,

1

2

∫ +∞

0

∫
RN

∫
TN

[
A2,lh(∇y + 2iπθn)ψn · (∇y − 2iπθn)ψ̄n + c2,lhψnψ̄n

]
vφ̄ zlzh dy dz dt

(3.32)

+

∫ +∞

0

∫
RN

∫
TN

[
A1,h(∇y + 2iπθn)ψn · (∇y − 2iπθn)

∂ψ̄n

∂xk

+ c1,hψn
∂ψ̄n

∂xk

]
vφ̄ zhzk dy dz dt.

Now, using (2.5), we find that (3.32) reduces itself to

∫ +∞

0

∫
RN

1

2

∂2λn

∂xl∂xh
vφ̄ zlzh dz dt.(3.33)

Summing up together (3.23), (3.25), (3.26), (3.31), and (3.33) yields the weak formu-
lation of (3.3). By uniqueness of the solution of the homogenized problem (3.3), we
deduce that the entire sequence vε two-scale converges weakly to ψn(y)v(t, x).

It remains to prove the strong two-scale convergence of vε. By Lemma 3.1 we
have

‖vε(t)‖L2(RN ) = ‖uε(t)‖L2(RN ) = ‖u0
ε‖L2(RN ) → ‖ψnv

0‖L2(RN×TN ) = ‖v0‖L2(RN )

by the normalization condition of ψn. From the conservation of energy of the homog-
enized equation (3.3) we have

‖v(t)‖L2(RN ) = ‖v0‖L2(RN ),

and thus we deduce the strong convergence from Proposition 2.3.
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Remark 3.6. As usual in periodic homogenization [1], [5], [15], the choice of
the test function Ψε in the proof of Theorem 3.2 is dictated by the formal two-scale
asymptotic expansion that can be obtained for the solution wε of (3.20), namely,

wε(t, z) ≈ e
2iπθn· z√

ε

[
ψn

(
z√
ε

)
v(t, z) +

√
ε

N∑
k=1

(
1

2iπ

∂ψn

∂θk

(
z√
ε

)
∂v

∂zk
(t, z)

+ zk
∂ψn

∂xk

(
z√
ε

)
v(t, z)

)]
,

where v is the homogenized solution of (3.3). Actually the homogenized equation that
one gets by the asymptotic expansion method is

i
∂v

∂t
− div (A∗∇v) + B∗∇v · z + c̄∗v + vD∗z · z = 0,(3.34)

which apparently differs from (3.3) by the following zero order term:

(tr (∇θ∇xλn) − 4πIm(c∗)) v.

By virtue of (3.7), the above term vanishes, so that formulas (3.34) and (3.3) are
equivalent.
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18.

[12] P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, Homogenization limits and Wigner
transforms, Comm. Pure Appl. Math., 50 (1997), pp. 323–379.
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VISCOSITY SOLUTIONS OF INCREASING FLOWS OF SETS.
APPLICATION OF THE HELE–SHAW PROBLEM FOR

POWER-LAW FLUIDS∗

PIERRE CARDALIAGUET† AND ELISABETH ROUY‡

Abstract. An existence and inclusion principle of viscosity solutions for increasing flows of
sets is established. A typical example—the Hele–Shaw moving boundary problem for a power-law
fluid—is discussed extensively.

Key words. moving boundary problems, power-law fluids, viscosity solutions
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1. Introduction. The aim of this work is to investigate a viscosity solutions
approach for increasing flows of sets with velocity laws of the form

Vt,x = h(x,Ω(t)) ∀x ∈ ∂Ω(t),(1)

where Vt,x denotes the normal velocity to the expanding family of sets (Ω(t)) and
h = h(x,Ω(t)) is some nonnegative velocity law depending nonlocally on the set Ω(t).

A typical example of such evolution is the Hele–Shaw approximation model of the
injection of a power-law fluid between two closely situated plates. Since the fluid is
supposed to be surrounded by another fluid with small viscosity, this is a one-phase
moving boundary problem.

Let us denote by S the source of the injection, by Ω(t) the portion of space
occupied by the fluid at time t, and by Σ(t) the moving boundary. According to [2],
[3], and [22], Σ(t) evolves with a normal velocity Vt,x given, at each point x ∈ Σ(t),
by the quasi-static equation

Vt,x = h(x,Ω(t)), where h(x,Ω(t)) = |∇u(t, x)|p−1 ,(2)

and where u(t, x) satisfies at any time t > 0 the p-Laplace equation (with p > 1)⎧⎨
⎩

−div
(
|∇u(t, x)|p−2∇u(t, x)

)
= f(x) in Ω(t)\S,

u(t, x) = 0 on Σ(t),
u(t, x) = g(x) on S

(3)

for some positive functions f and g.
In this paper, we define a notion of viscosity solutions for (1) and prove existence

of such solutions. Our most important statement is the inclusion principle which holds
for those generalized solutions. Our results are true under some structure condition
on the velocity h that we detail further.
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When p = 2, this example is the well-known Hele–Shaw problem. If the initial
data are smooth, the evolution equation has a smooth short time solution (see [15]),
but singularities generally appear in finite time. In order to define the solutions after
the onset of singularities, various notions of generalized solutions have been intro-
duced. For instance, the Hele–Shaw problem is reformulated in terms of variational
inequalities via the Baiocchi transform in [14]; Hele–Shaw with surface tension is un-
derstood as the gradient flow of some functional in the space of measures in [17], while
Kim proposes in [19] a definition of viscosity solutions for this problem. To the best
of our knowledge, the case of p �= 2 has never been studied up to now.

The main assumption we require on the velocity law h = h(x,Ω) is that it is
nondecreasing with respect to Ω. Under this assumption, at least formally, the flow
preserves inclusion. Namely, if (Ω1(t))t and (Ω2(t))t are two families of solutions,
with Ω1(0) ⊂ Ω2(0), then this inclusion is preserved for all time. The main result of
the paper (Theorem 3.1) is that this “inclusion principle” holds true even for weak
solutions when h satisfies some additional regularity conditions.

The inclusion principle is one of the key tools for constructing generalized solutions
of front propagation problems: viscosity solutions in [16], [12] for the so-called level-set
approach of mean curvature motion; related but more geometric viscosity solutions
in [23], [4], [5]; and barrier solutions in [6], [7], and [8]. Viscosity solutions have also
been introduced for the porous-medium equation [9] and for a free boundary problem
motivated by combustion [20]. In [19] Kim proved the inclusion principle for the
viscosity solutions of the Hele–Shaw problem when p = 2, f ≡ 0, and a particular
source S. Let us underline that, although our work uses some ideas and techniques
which have counterparts in [19], its point of view is completely different: the main
unknown in [19] is the evolving function u (given by (3) for p = 2) while our unknown
is the evolving family of sets. Both approaches should lead to different extensions. In
that respect, we spent some effort in this paper to prove the inclusion principle for a
wide class of (nonnegative) velocity laws h and not only for (2). This is completely
new in this framework. Let us underline that the result could be extended to velocity
laws (1) depending at each time t not only on the set Ω(t) but also on the evolving
family (Ω(s))s≤t.

For proving this inclusion principle we use several ideas introduced by the first
author in [11] for simpler moving boundary problems. In particular, we use two
basic ingredients of [11]: an equivalent definition of solutions (Proposition 2.7) and
an Ilmanen interposition lemma [18]. However, proofs differ substantially. Indeed, in
[11], the velocity is invariant by translation, a property which is no longer satisfied
here.

We now briefly explain the organization of the paper. We first introduce the
notion of viscosity solutions for the evolution equation (1) and investigate the main
properties of the velocity defined by (2). Next, we state and prove the inclusion
principle. Finally, we apply this inclusion principle to derive existence, uniqueness,
and stability of solutions when the velocity is given by (2).

2. Definitions and preliminary results.

2.1. Definition of the solutions. Let us first fix some notations: throughout
the paper | · | denotes the Euclidean norm (of R

N or R
N+1, depending on the context).

If K is a subset of R
N and x ∈ R

N , then dK(x) denotes the usual distance from x to
K: dK(x) = infy∈K |y − x|. Finally, we denote by B(x,R) the open ball centered at
x and of radius R.
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We intend to study the evolution of compact hypersurfaces Σ(t) = ∂Ω(t) of R
N ,

where Ω(t) is an open set, evolving with the following law:

∀t ≥ 0, x ∈ Σ(t), Vt,x = h(x,Ω(t)),(4)

where Vt,x is the normal velocity of Ω(t) at the point x, and h = h(x,Ω) is defined for
any x ∈ ∂Ω and for any open set Ω with C1,1 boundary which belongs to some class
of sets D. To fix the ideas we assume that the set D is of the form

D =
{
Ω ⊂ R

N | Ω is open, bounded, and such that S ⊂⊂ Ω
}
,(5)

where S is some compact subset of R
N . This suffices in most applications.

Our key assumption is that h is nonnegative and nondecreasing with respect to
the set Ω: Namely

h(x,Ω) ≥ 0 ∀Ω ∈ D and x ∈ Ω,(6)

and

if Ω1 ∈ D and Ω2 ∈ D, Ω1 ⊂ Ω2, and x ∈ Ω1 ∩ ∂Ω2,
then h(x,Ω1) ≤ h(x,Ω2).

(7)

We explain below that the assumptions above are typically satisfied for the Hele–Shaw
problem described in the introduction.

From now on, we consider the graph of the evolving sets Ω(t). In order to underline
the fact that it need not be smooth, we denote this graph by K. Then K is a subset
of R

+ × R
N . Formally, with the notations above,

K = {(t, x) such that x ∈ Ω(t)}.

The set K is our main unknown. We denote by (t, x) an element of such a set, where
t ∈ R

+ denotes the time and x ∈ R
N denotes the space. We set

K(t) =
{
x ∈ R

N | (t, x) ∈ K
}
.

The closure of the set K in R
N+1 is denoted by K. The closure of the complementary

of K is denoted by K̂:

K̂ = (R+ × RN ) \K

and we set

K̂(t) = {x ∈ R
N | (t, x) ∈ K̂}.

Let us go further into terminology: If K is a subset of [0,+∞)×R
N , we say that

• K is a tube if ∀T ≥ 0, K ∩ ([0, T ] × R
N ) is a compact subset of R

N+1.
• K is nondecreasing if K(s) ⊂ K(t) for any 0 ≤ s ≤ t.
• K is left lower semicontinuous if

∀t > 0, ∀x ∈ K(t), if tn → t−, ∃xn ∈ K(tn) such that xn → x.

• Kr is a smooth tube if Kr is closed in I ×R
N (where I is some open interval),

has a nonempty interior, and ∂Kr ∩ (I ×R
N ) is a C1,1 submanifold of R

N+1,
such that at any point (t, x) ∈ Kr the outward normal (νt, νx) to Kr at

(t, x) satisfies νx �= 0. In this case the normal velocity V Kr

(t,x) of Kr at the

point (t, x) ∈ ∂Kr is given by V Kr

(t,x) = −νt/|νx|, where (νt, νx) is the outward

normal to Kr at (t, x).
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We use smooth tubes as “test sets.” Namely, we say that the smooth tube Kr is
externally tangent to a tube K at (t, x) ∈ ∂K if Kr is defined on some open interval I
containing t, and if

K(s) ⊂ Kr(s) ∀s ∈ I and (t, x) ∈ ∂Kr.

In the same way, the smooth tube Kr is said to be internally tangent to K at
(t, x) ∈ ∂K̂ if Kr(s) is defined on some open interval I containing t, and if

Kr(s) ⊂ K(s) ∀s ∈ I and (t, x) ∈ ∂Kr.

We are now ready to define the viscosity solutions of (4). Recall that the set D
is defined by (5).

Definition 2.1. Let K be a tube and K0 ⊂ R
N be an initial position.

1. K is a viscosity subsolution to the front propagation problem (4) if K is non-
decreasing, left lower semicontinuous, and K(0) ∈ D, and if for any smooth
tube Kr externally tangent to K at some point (t, x), with Kr(t) ∈ D and
t > 0, we have

V Kr

(t,x) ≤ h(x,Kr(t)),

where V Kr

(t,x) is the normal velocity of Kr at (t, x).

We say that K is a subsolution to the front propagation problem with initial
position K0 if K is a subsolution and if K(0) ⊂ K0.

2. K is a viscosity supersolution to the front propagation problem if K is non-
decreasing and K(0) ⊂ D, and if for any smooth tube Kr internally tangent
to K at some point (t, x), with Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≥ h(x,Kr(t)).

We say that K is a supersolution to the front propagation problem with initial
position K0 if K is a supersolution and if K̂(0) ⊂ RN\K0.

3. Finally, we say that a tube K is a viscosity solution to the front propagation
problem (with initial position K0) if K is a sub- and a supersolution to the
front propagation problem (with initial position K0).

Let us point out that, under assumptions (6) and (7), any classical solution is a
viscosity solution. The previous definition has been introduced in [1] and was also
used in [11].

2.2. Regularity properties of the velocity law for power-law fluids. We
now investigate the main regularity properties of the velocity law for power-law fluids.
This regularity shall be our guideline for the structure condition when investigating
the inclusion principle. Let us recall that the velocity law h for power-law fluids is
given by

h(x,Ω) = |∇u(x)|p−1,(8)

where u : Ω → R is the solution of the following p.d.e.:⎧⎨
⎩

(i) −div(|∇u|p−2∇u) = f in Ω\S,
(ii) u = g on ∂S,
(iii) u = 0 on ∂Ω,

(9)



VISCOSITY SOLUTIONS OF HELE–SHAW PROBLEM 147

and (i) is understood in the sense of distributions. The set S is a fixed source and we
always assume above that S ⊂⊂ Ω(t). If S = ∅, then we omit condition (ii) in (9).
We assume that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) S ⊂ R
N is bounded and equal to the closure of an open set

with a C2 boundary;
(ii) f : R

N → R is continuous and bounded and either
•f > 0 on R

N and f is locally Lipschitz continuous, or
•S �= ∅ and f = 0 on R

N ;
(iii) g : S → (0,+∞) is C1,β (for some β ∈ (0, 1)).

(10)

Remark 2.2. Following [21], h(x,Ω) is well defined as soon as Ω has a “smooth”
boundary. More precisely, it is proved in [21] that, if Ω has a C1,β boundary and if
S ⊂⊂ Ω, then the solution u is C1,α for some α ∈ (0, β). Moreover, the C1,α norm of
u is bounded by a constant which depends only on ‖f‖∞, |g|1,β , p and on the C1,β

norm of the mapping which locally flattens the boundary of Ω\S.
Let us recall that D is defined in (5) by

D = {Ω ⊂ R
N , Ω open bounded and S ⊂⊂ Ω}.

The following proposition is a straightforward application of the maximum prin-
ciple.

Proposition 2.3. The function h defined by (8) is nonnegative and nondecreas-
ing with respect to the inclusion, i.e., it satisfies (6) and (7).

Proof of Proposition 2.3. The velocity law h is nonnegative by definition. In order
to prove (7), let Ω1 ∈ D and Ω2 ∈ D be open with a C1,1 boundary, and assume that
Ω1 ⊂ Ω2 and x ∈ Ω1 ∩ ∂Ω2. Let u1 and u2 be solutions to (9) with Ω replaced by Ω1

and Ω2, respectively. Then u1 and u2 are nonnegative, and the maximum principle
states that

u1 ≤ u2 in Ω1.

Let ν be the outward unit normal to Ω1 and Ω2 at x. Since u1 and u2 vanish on
∂Ω1 and ∂Ω2, respectively, and are nonnegative inside Ω1 and Ω2, we have ∇u1(x) =
−|∇u1(x)|ν and ∇u2(x) = −|∇u2(x)|ν. Since moreover u1 ≤ u2 in Ω1, we get, for
h > 0 small,

u1(x− hν) = h|∇u1(x)| + hε1(h) ≤ u2(x− hν) = h|∇u2(x)| + hε2(h),

where ε1(h) → 0 and ε2(h) → 0 as h → 0+. Therefore, |∇u1(x)| ≤ |∇u2(x)|, which
proves (7).

In order to describe the continuity properties of h, let us first recall that, if Ω is
an open set with a C1,1 boundary, then the signed distance d defined by

d(x) =

{
dΩ(x) if x /∈ Ω,
−d∂Ω(x) otherwise

is C1,1 in a neighborhood of ∂Ω. We say that a sequence Ωn of sets with a C1,1

boundary converges to some set Ω with a C1,1 boundary if Ωn converges to Ω and
∂Ωn converges to ∂Ω for the Hausdorff distance, and if there is an open neighborhood
O of ∂Ω such that, if d (resp., dn) is the signed distance to Ω (resp., to Ωn), then (dn)
and (∇dn) converge uniformly to d and ∇d on O and if the L∞ norms of (∇2dn) are
uniformly essentially bounded on O.
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Proposition 2.4. The velocity h is sequentially continuous with respect to its
arguments, i.e.,

if Ωn and Ω ∈ D are open subsets of R
N with a C1,1 boundary,

such that Ωn converge to Ω, if xn ∈ ∂Ωn converge to x ∈ ∂Ω,
then limn h(xn,Ωn) = h(x,Ω).

(11)

Proof of Proposition 2.4. Note that, if Ω ∈ D, then, for n large enough, the sets
Ωn also belongs to D. The rest of the proposition is a straightforward application of
the regularity results of [21] recalled in Remark 2.2.

We now state some estimates on the variations of the mapping v → h(x+v,Ω+v)
for a set Ω with a smooth boundary and x ∈ ∂Ω. The key point is that such an
estimate has to be independent of the regularity of Ω. Here and below we set

Sr = {x ∈ R
N , dS(x) ≤ r}.

Proposition 2.5. Let R > 0 be some large constant and r > 0 be sufficiently
small so that Sr has a C2 boundary. There is a constant λ > 1/r, such that, for any
bounded set Ω with a C1,1 boundary such that Sr ⊂ Ω and Ω ⊂ B(0, R − r), for any
v ∈ R

N with |v| < 1/λ and any x ∈ ∂Ω, we have

Ω + v ∈ D and h(x + v,Ω + v) ≥ (1 − λ|v|)h(x,Ω).

Proof of Proposition 2.5. We give the proof in the case S �= ∅ and f > 0, the
proof for the other cases being similar. Since f > 0 and f is Lipschitz continuous, we
can find a constant C1 > 0 such that

∀x, y ∈ R
N , with |x|, |y| ≤ R, f(x) ≥ f(y)(1 − C1|x− y|).(12)

Let u+ and u−
r be, respectively, the solutions of⎧⎨

⎩
−div(|∇u+|p−2∇u+) = f in B(0, R)\S,

u+ = g on ∂S,
u+ = 0 on ∂B(0, R)

and ⎧⎨
⎩

−div(|∇u−
r |p−2∇u−

r ) = f in Int(Sr)\S,
u−
r = g on ∂S,

u−
r = 0 on ∂Sr.

Since g is C1,β , and since S, Sr, and B(0, R) have a C2 boundary, the functions u+

and u−
r belong to C1,α(Ω) (for some α ∈ (0, β)) and there is some constant C2 > 0

such that u+ and u−
r are C2-Lipschitz continuous, whence

∀x ∈ Sr\S , u−
r (x) ≥ u+(x) − 2C2dS(x),(13)

because u+ = u−
r on ∂S. We now choose λ = max{6C2(p − 1)/m,C1, 2/r}, where

m = minSr\S u+. Note that m is positive.
Let Ω ⊂ R

N be some open bounded set with a C1,1 boundary, such that Sr ⊂ Ω
and Ω ⊂ B(0, R−r), and let v ∈ R

N with |v| < 1/λ. Let u be the solution of (9) with
Ω and uv be the solution of (9) with Ω+v in place of Ω. From the maximum principle,
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we have u−
r ≤ u ≤ u+ and u−

r ≤ uv ≤ u+ on Sr\S because Sr ⊂⊂ Ω ⊂⊂ B(0, R) and
Sr ⊂⊂ Ω + v ⊂⊂ B(0, R) from the choice of λ > 1/r and v.

Since Sr ⊂ Ω and |v| < r, we have S ⊂⊂ Ω. We claim that

1

(1 − λ|v|)1/(p−1)
uv(x + v) ≥ u(x) ∀x ∈ Ω\S|v|.(14)

For proving this claim, let us set w(x) = 1
(1−λ|v|)1/(p−1)uv(x + v) for x ∈ Ω\S|v| and

let us show that

w ≥ u on ∂S|v| and − div(|∇w|p−2∇w) ≥ f on Ω\S|v|.(15)

We have, for any x ∈ ∂S|v|,

(1 − λ|v|)1/(p−1)w(x) = uv(x + v) ≥ u−
r (x + v) ≥ u−

r (x) − C2|v| ≥ u+(x) − 3C2|v|

because u−
r is C2-Lipschitz continuous and thanks to (13). Thus,

(1 − λ|v|)1/(p−1)w(x) ≥ u+(x) − 3C2|v| ≥ (1 − λ|v|)1/(p−1)u+(x)

because u+ ≥ m in Sr\S, |v| < 1/λ, and λ ≥ 6C2(p− 1)/m. So we have proved that
w(x) ≥ u+(x) ≥ u(x) for any x ∈ ∂S|v|.

From the definition of C1 in (12) and from the choice of λ, we have, for any
x ∈ Ω\S|v|,

−div(|∇uv(x + v)|p−2∇uv(x + v)) = f(x + v) ≥ f(x)(1 − λ|v|).

Thus,

−div(|∇w(x)|p−2∇w(x)) ≥ f(x) ∀x ∈ Ω\S|v|.

So (15) is proved, which entails (14). In particular, at any point x ∈ ∂Ω, we have,
since w ≥ u in Ω\S|v| and w = u in ∂Ω,

h(x,Ω) = |∇u(x)|p−1 ≤ |∇w(x)|p−1

=
1

1 − λ|v| |∇uv(x + v)|p−1 =
1

1 − λ|v|h(x + v,Ω + v).

In order to prove the global existence of the solution, we need to control the
growth of h, as shown in the following proposition.

Proposition 2.6. There are constants r0 > 0 and σ > 0 such that

∀r ≥ r0, ∀x ∈ ∂B(0, r), h(x,B(0, r)) ≤ σr.(16)

Moreover, the constants r0 and σ depend only on p, S, ‖f‖∞, and ‖g‖∞.

Proof of Proposition 2.6. Let us fix r0 > 0 such that S ⊂⊂ B(0, r0/2
(p−1)

p ) and

κ = max{ 2‖g‖∞

r
p/(p−1)
0

,
‖f‖1/(p−1)

∞ (p−1)

N1/(p−1)p
}. Let r ≥ r0 and u be the solution to

⎧⎨
⎩

−div(|∇u|p−2∇u) = f in B(0, r)\S,
u = g on ∂S,
u = 0 on ∂B(0, r).
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We claim that u ≤ w on B(0, r)\S, where w(x) = −κ|x|p/(p−1) +κrp/(p−1) and u = w
on ∂B(0, r). Indeed, −div(|∇w|p−2∇w) = κp−1N [p/(p − 1)]p−1 ≥ f in B(0, r)\S.
Since S ⊂ B(0, r0/2

(p−1)/p) we also have

∀x ∈ ∂S, w(x) ≥ −κ
r
p/(p−1)
0

2
+ κr

p/(p−1)
0 ≥ ‖g‖∞ ≥ g(x).

Finally, u = w = 0 on ∂B(0, r) by construction. So u ≤ w on B(0, r)\S and u = w on
∂B(0, r). This entails that h(x,B(0, r)) = |∇u|p−1 ≤ |∇w|p−1 = κp−1[p/(p− 1)]p−1r
for any x ∈ ∂B(0, r), whence the result with σ = κp−1[p/(p− 1)]p−1.

2.3. A preliminary result. We state here an equivalent definition for solutions
of (4). This formulation is introduced in [11].

Let us set, for any compact set K, x ∈ ∂K, and ν ∈ R
N , ν �= 0,

h�(x,K, ν) = inf{h(x,Ω)},(17)

where the infimum is taken over the sets Ω ∈ D with a C1,1 boundary, such that
K ⊂ Ω, x ∈ ∂Ω and ν is an outward normal to Ω at x. In the same way, we set

h�(x,K, ν) = sup{h(x,Ω)},(18)

where the supremum is taken over the sets Ω ∈ D with a C1,1 boundary, such that
Ω ⊂ K, and x ∈ ∂Ω and ν is an outward normal to Ω at x.

We set h�(x,K, ν) = +∞ or h�(x,K, ν) = −∞ if there is no set Ω with the
required properties.

If A is a subset of some finite dimensional space and x belongs to A, we say that
a vector ν is a proximal normal to A at x if the distance of x+ ν to A is equal to |ν|.

Proposition 2.7. Let h = h(x,Ω) satisfy (6), (7), and (11). Let K be a nonde-
creasing tube with K(0) ∈ D.

Then K is a subsolution of the front propagation problem for h if and only if K
is left lower semicontinuous and if, for any (t, x) ∈ K with t > 0, for any proximal
normal (νt, νx) to K at (t, x) such that νx �= 0, we have

− νt
|νx|

≤ h�(x,K(t), νx).

In the same way, the tube K is a supersolution of the front propagation problem
for h if and only if, for any (t, x) ∈ K̂ with t > 0, for any proximal normal (νt, νx) to

K̂ at (t, x) such that νx �= 0, we have

νt
|νx|

≥ h�(x,K(t),−νx).

Proof of Proposition 2.7. The proof is completely similar to that of Proposition
2.2 of [11]. The only difference is that our construction yields some approximation of
the tube K. We give only the main arguments for the case of subsolutions, the case
of supersolutions being symmetrical. For any ε > 0, let us set

Kε = {(t, x) ∈ R
+ × R

N | ∃(s, y) ∈ K with (t− s)2 + |x− y|2 ≤ ε2}.

In [11], since h was translation invariant, Kε was also a subsolution of the front
propagation problem. Instead here we have the following lemma.
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Lemma 2.8. If K is a subsolution of the front propagation problem for h, then
for any ε > 0, Kε is a subsolution for hε on the time interval [ε,+∞), where

hε(x,Ω) = sup
|v|≤ε

h(x + v,Ω + v)

is defined for any bounded open set Ω with a C1,1 boundary such that Sε ⊂⊂ Ω and
x ∈ ∂K (where S is the compact set in the definition of D; see (5)).

Once Lemma 2.8 is established, we can complete the proof of the proposition as
in [11] by noticing that hε → h as ε → 0+, thanks to (11).

Proof of Lemma 2.8. A straightforward application of the definition of Kε shows
that Kε is nondecreasing and left lower semicontinuous. Moreover, since S ⊂⊂
Int(K(0)) ⊂ Int(K(ε)), we have Sε ⊂⊂ Kε(ε).

Let Kr be a smooth tube which is externally tangent to Kε at some point (t, x),
with t > ε. Since (t, x) belongs to the boundary of Kε, there is some (s, y) ∈ K such
that

(t− s)2 + |x− y|2 = ε2.

Let us notice that, since t > ε, we have s > 0. Now it is easy to check that the tube
Kr − ((t, x)− (s, y)) is externally tangent to K at (s, y). Since K is a subsolution, we
have

V
Kr−((t,x)−(s,y))
(s,y) ≤ h(y,Kr(t) − (x− y)),

where V
Kr−((t,x)−(s,y))
(s,y) is the outward normal velocity of the smooth tube Kr−((t, x)−

(s, y)) at (s, y). Using the definition of hε, this leads to

V Kr

(t,x) = V
Kr−((t,x)−(s,y))
(s,y) ≤ h(y,Kr(t) − (x− y)) ≤ hε(x,Kr(t))

because |x− y| ≤ ε.

3. The inclusion principle. The aim of this part is to state and prove the
inclusion principle for the generalized solutions of our problem.

3.1. Statement of the result. We need the following structure conditions
on h:

1. h = h(x,Ω) is nonnegative and nondecreasing with respect to Ω (i.e., (6) and
(7) hold),

2. h is sequentially continuous (i.e., satisfies (11)),
3. h has the following regularity property: For any R > 0 sufficiently large and

r > 0 sufficiently small so that Sr has a C2 boundary, there are constants
λ > 1/r and C > 0, such that, for any compact set K with a C1,1 boundary
such that Sr ⊂ Int(K) and K ⊂ B(0, R− r), for any v ∈ R

N with |v| < 1/λ
and any x ∈ ∂K, we have

K + v ∈ D and h(x + v,K + v) ≥ (1 − λ|v|)h(x,K) − C|v|.(19)

Let us recall that, if K is a subset of [0,+∞) × R
N , we set

K̂ = [0,+∞) × RN\K.

Theorem 3.1 (inclusion principle). Under the above assumptions on h, let K1

be a subsolution of the front propagation problem on the interval [0, T ) for some T > 0
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and K2 be a supersolution on [0, T ). If K1(t) and K2(t) are nonempty for t ∈ [0, T )
and if

K1(0) ∩ K̂2(0) = ∅,

then

∀t ∈ [0, T ), K1(t) ∩ K̂2(t) = ∅.

Remarks.
1. Let K1 and K2 be bounded subsets of R

N such that K1 ⊂ Int(K2). If K1 is
a subsolution with initial condition K1 and K2 is a supersolution with initial
position K2, then the assumption of the theorem holds: K1(0) ∩ K̂2(0) = ∅.

2. The statement K1(t) ∩ K̂2(t) = ∅ implies that K1(t) ⊂ Int(K2(t)).
3. Remarks on the structure conditions. Thanks to Propositions 2.3, 2.4, and

2.5, our structure condition holds for the Hele–Shaw problem, where h is
defined by (8). It is also satisfied for nonlocal evolution laws of the form

h(x,Ω) =

∫
Ω

ρ(x, y)dy,

where ρ is some nonnegative smooth and compactly supported function. This
evolution equation is treated in particular in [10] and in [13] (the latter in the
more general case of Neumann-type boundary conditions).

3.2. Proof of Theorem 3.1. From the definition of subsolutions, we can assume
that K1 has a closed graph: K1 = K1. The main step of the proof amounts to showing
that, for any γ > 1, such that Sγ−1 ⊂ Int(K1(0)),

∀t ∈ [0, T ), K1(t) ∩ K̂2(γt) = ∅.(20)

We explain how to obtain Theorem 3.1 from (20) at the very end of the proof.
For showing (20), we argue by contradiction, by assuming that there is some γ > 1

with Sγ−1 ⊂ Int(K1(0)) and some T ∗ ∈ [0, T ) such that

K1(T
∗) ∩ K̂2(γT

∗) �= ∅.(21)

Since K1(0) ∩ K̂2(0) = ∅, we have T ∗ > 0. We now introduce several notations:
Let R > 0 be sufficiently large so that K1(T ) ⊂ B(0, R − (γ − 1)) and K2(T ) ⊂
B(0, R − (γ − 1)). We denote by λ and C the constants defined in (19) for R and
r := γ − 1 > 0. Let us recall that λ > 1/r and that, for any compact set K with a
C1,1 boundary such that Sr ⊂ Int(K) and K ⊂ B(0, R − r), for any v ∈ R

N with
|v| < 1/λ and any x ∈ ∂K, we have

h(x + v,K + v) ≥ (1 − λ|v|)h(x,K) − C|v|.(22)

We also set

κ = γC + 1.(23)

For any ε ∈ (0, τ0) and any σ ∈ (0, 1], we set

Kε,σ
1 =

{
(t, x) ∈ R

+ ×R
N | ∃(s, y) ∈ K1 with

1

σ2
(t− s)2 + |x− y|2 ≤ ε2e−2κs

}
(24)
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and

K̂ε,σ
2 =

{
(t, x) ∈ R

+ ×R
N | ∃(s, y) ∈ K̂2 with

1

σ2
(t− s)2 + |x− y|2 ≤ ε2e−2κs

}
(25)

and

T ε,σ,γ = min{t ≥ ε | Kε,σ
1 (t) ∩ K̂ε,σ

2 (γt) �= ∅}.

Let us point out that

T ε,σ,γ ≤ T ∗(26)

because assumption (21) implies that K1(T
∗)∩K̂2(γT

∗) �= ∅ and K1(t) ⊂ Kε,σ
1 (t) and

K̂2(t) ⊂ K̂ε,σ
2 (t).

Let us define Πσ
1 and Πσ

2 , the projections on the sets K1 and K̂2, as follows:
∀σ ∈ (0, 1],

Πσ
1 (t, x) =

{
(s1, y1) ∈ K1

∣∣∣∣ 1
σ2 (t− s1)

2 + |x− y1|2
= inf(s,y)∈K1

1
σ2 (t− s)2 + |x− y|2

}

and

Πσ
2 (t, x) =

{
(s2, y2) ∈ K̂2

∣∣∣∣ 1
σ2 (t− s2)

2 + |x− y2|2
= inf

(s,y)∈K̂2

1
σ2 (t− s)2 + |x− y|2

}
.

Proposition 3.2. One can choose ε and σ sufficiently small so that, for any
x ∈ Kε,σ

1 (T ε,σ,γ) ∩ K̂ε,σ
2 (γT ε,σ,γ), for any (s1, y1) ∈ Πσ

1 (T ε,σ,γ , x), and any (s2, y2) ∈
Πσ

2 (γT ε,σ,γ , x), we have y1 �= x, y2 �= x, s1 > 0, and s2 > 0.
Proof of Proposition 3.2. Let us first prove that there is some positive ε0 such

that

for any ε ∈ (0, ε0) and any σ ∈ (0, 1], we have T ε,σ,γ > ε.(27)

Since K1(0)∩ K̂2(0) = ∅ and the sets K1 and K̂2 are closed in R
+ ×R

N , there is some
τ > 0 such that

∀0 ≤ s, t ≤ τ, K1(s) ∩ K̂2(t) = ∅.

Then set

θ = min{|y1 − y2| | y1 ∈ K1(s), y2 ∈ K̂2(t), 0 ≤ s, t ≤ τ};(28)

then θ > 0. Set ε0 = min{ θ
2 ,

τ
1+γ }. We claim that, for any ε ∈ (0, ε0) and for any

σ ∈ (0, 1], we have

Kε,σ
1 (ε) ∩ K̂ε,σ

2 (γε) = ∅.(29)

It is clearly enough to prove the result for σ = 1. We argue by contradiction. Suppose
that, contrary to our claim, there is some x ∈ Kε,1

1 (ε) ∩ K̂ε,1
2 (γε). Then there is some

(s1, y1) ∈ K1 and some (s2, y2) ∈ K̂2 such that

|(ε, x) − (s1, y1)| ≤ εe−κs1 and |(γε, x) − (s2, y2)| ≤ εe−κs2 .
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This implies, on the one hand, that |y1 − y2| ≤ 2ε < θ and, on the other hand, that

0 ≤ s1 ≤ 2ε < τ and 0 ≤ s2 ≤ (1 + γ)ε < τ,

which is in contradiction with the definition of θ in (28). Thus, (29) is proved, which
obviously implies that T ε,σ,γ > ε, i.e., (27) holds.

From now on we fix ε ∈ (0, ε0). Let us first notice that T ε,σ,γ is nondecreasing
with respect to σ and is bounded by T ∗ thanks to (26). Let us set t̄ = limσ→0+ T ε,σ,γ .
Let us also define

Kε,0
1 = {(t, x) ∈ R

+ × R
N | ∃y ∈ K1(t) with |x− y| ≤ εe−κt}

and

K̂ε,0
2 = {(t, x) ∈ R

+ × R
N | ∃y ∈ K̂2(t) with |x− y| ≤ εe−κs}.

It is easily checked that⋂
σ∈(0,1]

Kε,σ
1 = Kε,0

1 and
⋂

σ∈(0,1]

K̂ε,σ
2 = K̂ε,0

2 .(30)

Moreover, Kε,0
1 and K̂ε,0

2 are closed since K1 and K̂2 are. Hence, from the definition
of T ε,σ,γ and of t̄, we have

Kε,0
1 (t̄) ∩ K̂ε,0

2 (γt̄) �= ∅ .

Let us also point out that, for any t ∈ (0, t̄),

Kε,0
1 (t) ∩ K̂ε,0

2 (γt) = ∅(31)

because, Kε,0
1 (t) ⊂ Kε,σ

1 (t), K̂ε,0
2 (γt) ⊂ K̂ε,σ

2 (γt), and Kε,σ
1 (t)∩ K̂ε,σ

2 (γt) = ∅ as soon as
T ε,σ,γ > t.

The next step of the proof amounts to showing that

∀x ∈ Kε,0
1 (t̄) ∩ K̂ε,0

2 (γt̄), dK1(t̄)(x) = εe−κt̄ and dK̂2(γt̄)
(x) = εe−γκt̄.(32)

For proving this, we argue by contradiction, by assuming (for instance) that dK1(t̄)(x)<

εe−κt̄. Then there is some y1 ∈ K1(t̄) such that |y1 −x| < εe−κt̄. Let also y2 ∈ K̂2(γt̄)
be such that |y2 − x| ≤ εe−γκt̄. Since K1 is a subsolution, it is left lower semi-
continuous. Thus, for any sequence tk → t̄−, there is some yk1 → y1 with yk1 ∈ K1(tk).

In the same way, since K2 is a supersolution, K̂2 is left lower semicontinuous, and there
is a sequence yk2 ∈ K̂2(γtk) which converges to y2. Since |y1 − y2| < εe−κt̄ + e−γκt̄,
for k large enough we still have |yk1 − yk2 | ≤ ε(e−κtk + e−γκt̄). Then it is easy to find
some point xk ∈ [yk1 , y

k
2 ] such that |yk1 − xk| ≤ εe−κtk and |yk2 − xk| ≤ εe−γκt̄, i.e.,

xk ∈ Kε,0
1 (tk) ∩ K̂ε,0

2 (γtk). This is in contradiction with (31). Hence, claim (32) is
proved.

From this claim we deduce that, for ε′ = ε/4 < ε, we have

Kε′,0
1 (t̄) ∩ K̂ε,0

2 (γt̄) = ∅.

Hence, there is some σ0 ∈ (0, 1) such that

Kε′,σ0

1 (t̄) ∩ K̂2

ε,σ0

(γt̄) = ∅
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because of (30). Since Kε′,σ0

1 and K̂2

ε,σ0

are closed and since T ε,σ,γ → t̄ as σ → 0+,
we have, for any σ > 0 sufficiently small, that

Kε′,σ0

1 (T ε,σ,γ) ∩ K̂2

ε,σ0

(γT ε,σ,γ) = ∅.(33)

Let x ∈ Kε,σ
1 (T ε,σ,γ) ∩ K̂ε,σ

2 (T ε,σ,γ). Then, from (33), x /∈ Kε′,σ0

1 (T ε,σ,γ). Therefore, if
(s1, y1) ∈ Πσ

1 (T ε,σ,γ , x), we have

1

σ2
(T ε,σ,γ − s1)

2 + |x− y1|2 ≤ ε2e−2κs1

and

1

σ2
0

(T ε,σ,γ − s1)
2 + |x− y1|2 > (ε′)2e−2κs1 .

This implies that x �= y1 as soon as σ < σ0/2 (recall that ε′ = ε/4). So we have

proved that, for any σ sufficiently small, for any x ∈ Kε,σ
1 (T ε,σ,γ) ∩ K̂ε,σ

2 (T ε,σ,γ), and
for any (s1, y1) ∈ Πσ

1 (T ε,σ,γ , x), we have x �= y1. We can prove in the same way that,
for any (s2, y2) ∈ Πσ

2 (T ε,σ,γ , x), we have y2 �= x.
Finally, s1 is positive because the inequality 1

σ2 (T ε,σ,γ −s1)
2 + |x−y1|2 ≤ εe−2κs1

implies that

s1 ≥ T ε,σ,γ − σεe−κs1 ,

where the right-hand side is positive thanks to (27). We can prove in the same way
that s2 > 0.

From now on we fix ε > 0 and σ > 0 as in Proposition 3.2 and also sufficiently
small so that

ε < 1/(2λ) and
1

(1 − 2λε)
≤ γ.(34)

Recall that λ is defined at the beginning of the proof. Let x, (s1, y1), and (s2, y2) be
as in Proposition 3.2. For simplicity, we set t∗ = T ε,σ,γ .

Let us define, for any two sets U and V , the minimal distance d(U, V ) between
U and V by

d(U, V ) = inf
x∈U,y∈V

|x− y|.

Proposition 3.3. The point (t∗, x) belongs to the boundary of Kε,σ
1 , while the

point (γt∗, x) belongs to the boundary of K̂ε,σ
2 . Moreover,

d(K1(s1), K̂2(s2)) = |y1 − y2|.

In particular, y1 ∈ ∂K1(s1), y2 ∈ ∂K̂2(s2), and

1

σ2
(t∗ − s1)

2 + |x− y1|2 = ε2e−2κs1 and
1

σ2
(γt∗ − s2)

2 + |x− y2|2 = ε2e−κs2 .

Proof of Proposition 3.3. For proving that the point (t∗, x) belongs to the bound-
ary of Kε,σ

1 , we argue by contradiction by assuming that (t∗, x) belongs to the interior

of Kε,σ
1 . Then, since K̂2 is left lower semicontinuous, so is K̂ε,σ

2 . Thus, for any



156 PIERRE CARDALIAGUET AND ELISABETH ROUY

tn → (t∗)−, there is some xn → x such that (γtn, xn) ∈ K̂ε,σ
2 . But, since (t∗, x)

belongs to the interior of Kε,σ
1 , (tn, xn) also belongs to Kε,σ

1 for n large enough. This
is in contradiction with the definition of t∗.

Symmetric arguments show that the point (γt∗, x) belongs to the boundary of

K̂ε,σ
2 . Let us now prove that d(K1(s1), K̂2(s2)) = |y1 − y2|. Since y1 ∈ K1(s1)

and y2 ∈ K̂2(s2), we have d(K1(s1), K̂2(s2)) ≤ |y1 − y2|. Assume for a while that

d(K1(s1), K̂2(s2)) < |y1 − y2|. Let z1 ∈ K1(s1) and z2 ∈ K̂2(s2) be such that
|z1 − z2| < |y1 − y2|. One can choose ρ ∈ (0, 1) such that, if xρ = ρz1 +(1−ρ)z2, then

|z1 − xρ| < |y1 − x| and |z2 − xρ| < |y2 − x|

because |z1 − z2| < |y1 − y2| ≤ |y1 − x| + |y2 − x|. Therefore,

1

σ2
(t∗ − s1)

2 + |z1 − xρ|2 <
1

σ2
(t∗ − s1)

2 + |y1 − x|2 ≤ ε2e−2κs1

and

1

σ2
(γt∗ − s2)

2 + |z2 − xρ|2 <
1

σ2
(γt∗ − s2)

2 + |y2 − x|2 ≤ ε2.

So one can find some t < t∗ such that

1

σ2
(t− s1)

2 + |z1 − xρ|2 ≤ ε2e−2κs1 and
1

σ2
(γt− s2)

2 + |z2 − xρ|2 ≤ ε2,

which means that xρ ∈ Kε,σ
1 (t)∩K̂ε,σ

2 (γt) and t < t∗. This is in contradiction with the

definition of t∗. Therefore, we have proved that d(K1(s1), K̂2(s2)) = |y1 − y2|.
Let us introduce two new notations:

(ν1
t , ν

1
x) = (t∗ − s1 − ε2σ2κe−2κs1 , σ2(x− y1))(35)

and

(ν2
t , ν

2
x) = (γt∗ − s2 − ε2σ2κe−2κs2 , σ2(x− y2)).(36)

Proposition 3.4. There is some ρ > 0 such that the vectors ρ(ν1
t , ν

1
x) and

ρ(ν2
t , ν

2
x) are proximal normals to K1 at (s1, y1) and to K̂2 at (s2, y2), respectively.

Proof of Proposition 3.4. We do the proof only for (ν1
t , ν

1
x), with the proof for

(ν2
t , ν

2
x) being similar. From Proposition 3.3, (t∗, x) belongs to the boundary of Kε,σ

1 .
Therefore, the set K1 is contained in the set

E =

{
(s, y) ∈ R

+ × R
N ,

1

σ2
(t∗ − s)2 + |y − x|2 ≥ ε2e−2κs

}
.

From Proposition 3.3 again, the point (s1, y1) belongs to the boundary of E. Moreover,
E has a smooth boundary in a neighborhood of (s1, y1) because the gradient of the
map (s, y) → ε2e−2κs − 1

σ2 (t∗ − s)2 − |y − x|2 at (s1, y1) is(
−2ε2κe−2κs1 − 2(s1 − t∗)

σ2
,−2(y1 − x)

)
=

2

σ2
(ν1

t , ν
1
x),

which does not vanish since y2 �= x from Proposition 3.2. Therefore, this gradient
is, up to some small positive multiplicative constant, a proximal normal to E at the
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point (s1, y1). Since K1 ⊂ E with (s1, y1) ∈ K1, it is also a proximal normal to K1 at
(s1, y1). Since (ν1

t , ν
1
x) is proportional to this gradient, the proof is complete.

Since K1 is a subsolution and ρ(ν1
t , ν

1
x) is a proximal normal to K1 at (s1, y1),

with ν1
x �= 0 and s1 > 0 thanks to Proposition 3.2, Proposition 2.7 states that

− ν1
t

|ν1
x|

= − t∗ − s1 − ε2σ2κe−2κs1

σ2|x− y1|
≤ h�(y1,K1(s1), ν

1
x).(37)

Similarly, since K2 is a supersolution and ρ(ν2
t , ν

2
x) is a proximal normal to K̂1 at

(s2, y2), with ν2
x �= 0 and s2 > 0, Proposition 2.7 also states that

ν2
t

|ν2
x|

=
γt∗ − s2 − ε2σ2κe−2κs2

σ2|x− y2|
≥ h�(y2,K2(s2),−ν2

x).(38)

To proceed, we need some relations between (ν1
t , ν

1
x) and (ν2

t , ν
2
x).

Proposition 3.5. There is some θ > 0 such that

ν2
x = −θν1

x and ν2
t + ε2σ2κe−2κs2 ≤ −θ(ν1

t + ε2σ2κe−2κs1)/γ.

Proof of Proposition 3.5. From the definition of t∗, we know that

∀ε < s < t∗, Kε,σ
1 (s) ∩ K̂ε,σ

2 (γs) = ∅.

Let us now notice that the sets B1 and B2 defined by

B1 =

{
(s, y) | 1

σ2
(s− s1)

2 + |y − y1|2 ≤ ε2e−2κs1

}

and

B2 =

{
(s, y) | 1

σ2
(γs− s2)

2 + |y − y2|2 ≤ ε2e−2κs2

}

are, respectively, subsets of Kε,σ
1 and of the graph of K̂ε,σ

2 (γ·). Therefore,

∀(s, y), if (s, y) ∈ B1 ∩B2, then s ≥ t∗.(39)

From Proposition 3.3, the point (t∗, x) belongs to ∂Kε,σ
1 . Hence, (t∗, x) ∈ ∂B1. In the

same way, (γt∗, x) belongs to ∂K̂ε,σ
2 , and so (t∗, x) ∈ ∂B2. Therefore, (39) states that

(t∗, x) is a minimum in the following problem: Minimize s over the points (s, y) ∈
B1 ∩B2.

The necessary conditions for this problem (for the extended Lagrangian) state
that there is some (λ1, λ2, λ3) ∈ R

3
+ with (λ1, λ2, λ3) �= 0, such that

λ1

(
1

σ2
(t∗ − s1), x− y1

)
+ λ2

(
γ

σ2
(γt∗ − s2), x− y2

)
+ λ3(1, 0) = 0.

Using the notations (35) and (36), this is equivalent to

λ1(ν
1
t + ε2σ2κe−2κs1 , σ2ν1

x) + λ2(γν
2
t + ε2σ2κe−2κs2 , σ2ν2

x) + λ3(σ
2, 0) = 0.

Since, from Proposition 3.2, ν1
x �= 0 and ν2

x �= 0, we have λ1 �= 0 and λ2 �= 0. Setting
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θ = λ1/λ2 > 0, we get ν2
x = −θν1

x and

ν2
t + ε2σ2κe−2κs2 = − 1

γ

(
θ(ν1

t + ε2σ2κe−2κs1) +
λ3σ

2

λ2

)

≤ − θ

γ
(ν1

t + ε2σ2κe−2κs1).

Let us now recall the Ilmanen interposition lemma [18], which plays a crucial role
in our study.

Lemma 3.6 (Ilmanen). Let A and B be two disjoint subsets of R
N , A being

compact and B closed. Then there exists some closed set Kr with a C1,1 boundary,
such that

A ⊂ Kr and Kr ∩B = ∅

and

d(A,B) = d(A, ∂Kr) + d(∂Kr, B).

Let us apply Lemma 3.6 to A = K1(s1) and B = K̂2(s2): There exists some set
Kr with a C1,1 boundary such that

K1(s1) ⊂ Kr and K̂2(s2) ∩Kr = ∅

and

d(K1(s1), K̂2(s2)) = d(∂Kr,K1(s1)) + d(∂Kr, K̂2(s2)).

Let us set ρ1 = d(∂Kr,K1(s1)), ρ2 = d(∂Kr, K̂2(s2)), and w = y2−y1

|y2−y1| . Let us notice

that ν1
x = |ν1

x|w, while ν2
x = −|ν2

x|w.
Proposition 3.7. The smooth set Kr − ρ1w is externally tangent to K1(s1) at

the point y1 and w is a normal to Kr − ρ1w at y1; namely,

K1(s1) ⊂ (Kr − ρ1w) and y1 ∈ ∂K1(s1) ∩ ∂(Kr − ρ1w).(40)

In the same way, the smooth set Kr +ρ2w is internally tangent to K2(s2) at the point
y2 and w is a normal to Kr + ρ2w at y2:

Kr + ρ2w ⊂ K̂2(s2) and y2 ∈ ∂(Kr + ρ2w) ∩ ∂K̂2(s2).(41)

Finally, S ⊂ Int(Kr − ρ1w) and S ⊂ Int(Kr + ρ2w).
Remark. The proposition states that we can estimate the quantity h�(y1,K1(s1), ν

1
x)

by using the set Kr − ρ1w, while the estimate of h�(y2,K2(s2),−ν2
x) can be done by

using Kr + ρ2w.
Proof of Proposition 3.7. For proving (40) and (41), let us first notice that the fact

that K1(s1) ⊂ Kr and d(∂Kr,K1(s1)) = ρ1 implies the inclusion K1(s1) ⊂ (Kr−ρ1w).

In the same way, since K̂2(s2)∩Kr = ∅ and d(∂Kr, K̂2(s2)) = ρ2, we have Kr +ρ2w ⊂
K̂2(s2).

Let z = y2−ρ2w = y1 +ρ1w. We have dK1(s1)(z) ≤ |y1−z| = ρ1 and dK̂2(s2)
(z) ≤

|y2 − z| = ρ2. Since, from Propositions 3.3, d(K1(s1), K̂2(s2)) = |y2 − y1|, this leads
to

ρ1 + ρ2 ≥ dK1(s1)(z) + dK̂2(s2)
(z) ≥ d(K1(s1), K̂2(s2)) = |y1 − y2| = ρ1 + ρ2.
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So

dK1(s1)(z) = |y1 − z| = ρ1 and dK̂2(s2)
(z)|y2 − z| = ρ2.(42)

This implies that z /∈ R
N\Kr, since d(∂Kr,K1(s1)) = ρ1, and that z /∈ Int(Kr), since

d(∂Kr, K̂2(s2)) = ρ2. Thus, z ∈ ∂Kr, and y1 = z − ρ1w ∈ ∂K1(s1) ∩ ∂(Kr − ρ1w),

while y2 = z + ρ2w ∈ ∂(Kr + ρ2w) ∩ ∂K̂2(s2). Moreover, using (42) again shows
that d(K1(s1), ∂Kr) = |y1 − z|. Since Kr is smooth, this implies that w (which is
proportional to z − y1) is a normal to Kr at z; so (40) and (41) hold.

We now prove that S ⊂ Int(Kr − ρ1w) and S ⊂ Int(Kr + ρ2w). Indeed, since
S ⊂ Int(K1(0)) and since K1(0) ⊂ (Kr − ρ1w), we have that S ⊂ Int(Kr − ρ1w).
Moreover, since, from the choice of ε in (34),

S2ε ⊂ Int(Sγ−1) ⊂ Int(K1(0)) ⊂ Int(K1(s1)) ⊂ Int(Kr − ρ1w)

and since ρ1 + ρ2 = |y2 − y1| ≤ 2ε, we have that S ⊂ Int(Kr + ρ2w).
We are now ready to prove the main step.
Proof of (20). Considering now the definition of h� (introduced before Proposition

2.7), (40) and the facts that ν1
x = |ν1

x|w is a normal to Kr at y1 and that S ⊂
Int(Kr − ρ1w) yield

h�(y1,K1(s1), ν
1
x) ≤ h(y1,Kr − ρ1w).(43)

In the same way, (41) together with the facts that ν2
x = −|ν2

x|w is a normal to Kr at
y2 and that S ⊂ Int(Kr + ρ2w) implies that

h�(y2,K2(s2),−ν2
x) ≥ h(y2,Kr + ρ2w).(44)

Using inequality (22), we can estimate the difference between the right-hand sides of
the two previous inequalities:

h(y2,Kr + ρ2w) ≥ (1 − 2λε)h(y1,Kr − ρ1w) − Cε(e−κs1 + e−κs2)(45)

because y2 − y1 = (ρ1 + ρ2)w and |y1 − y2| ≤ ε(e−κs1 + e−κs2) ≤ 2ε with ε < 1/(2λ).
Let us also note that

|νjx| ≤ σ2|yj − x| ≤ σ2εe−κsj for j = 1, 2.(46)

Using Proposition 3.5 and putting together (37), (38), and the three previous
inequalities finally gives

h(y2,Kr + ρ2w) ≤ h�(y2,K2(s2),−ν2
x) (from (44))

≤ ν2
t

|ν2
x|

(from (38))

≤ −ν1
t + ε2σ2κe−2κs1

γ|ν1
x|

− ε2σ2κe−2κs2

|ν2
x|

(from Proposition 3.5)

≤ 1

γ
h�(y1,K1(s1), ν

1
x) − ε2σ2κe−2κs1

γ|ν1
x|

− εκe−κs2 (from (37) and (46))

≤ 1

γ
h(y1,Kr − ρ1w) − εκ(e−κs1 + e−κs2)

γ
(from (43) and (46) again)

≤ 1

γ(1 − 2λε)
h(y2,Kr + ρ2w) +

Cε(e−κs1 + e−κs2)

γ(1 − 2λε)
− εκ(e−κs1 + e−κs2)

γ
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using (45) in the last inequality. This is impossible since h(y2,Kr + ρ2w) ≥ 0 and we
have chosen γ ≥ 1/(1 − 2λε) in (34) and κ = Cγ + 1 in (23). So we have found a
contradiction, and (20) is proved.

Proof of Theorem 3.1. Since from our assumption K1(0) ∩ K̂2(0) = ∅, and since

K1 and K̂2 have a closed graph, one can find τ > 0 such that

∀t ∈ [0, τ ], K1(t) ∩ K̂2(0) = ∅.

Let us now apply (20) to the subsolution K1,δ and the supersolution K2, where

δ ∈ (0, τ) ∀t ≥ 0, K1,δ(t) = K1(t + δ).

Since K1,δ(0) ∩ K̂2(0) = ∅, we have, for any γ > 1,

∀t ≥ 0, K1,δ(t) ∩ K̂2(γt) = ∅.

Applying this with t− δ (for t > δ) and to γ = t/(t− δ) > 1 gives

∅ = K1,δ(t− δ) ∩ K̂2(γ(t− δ)) = K1(t) ∩ K̂2(t)

because γ(t−δ) = t. Since we can choose δ > 0 arbitrary small, the proof of Theorem
3.1 is complete.

4. Existence, uniqueness, and stability of solutions. In this section, we
prove the existence of viscosity solutions for the Hele–Shaw problem for power-law
fluids. We also state some uniqueness and stability results.

Throughout this section we assume that h is given by (8). However, most results
can be easily extended to the general velocity law h.

4.1. Some preliminary estimates. We give here some technical estimates
which are necessary in what follows. We first establish some estimates of the growth
of the solutions. For this, we recall that, according to Proposition 2.6, there are
constants r0 > 0 and σ > 0 such that

∀r ≥ r0, ∀x ∈ ∂B(0, r), h(x,B(0, r)) ≤ σr.

Moreover, the constants r0 and σ depend only on S, p, ‖f‖∞, and ‖g‖∞.
Lemma 4.1. If K is a subsolution of the front propagation problem, then

∀t ≥ 0, K(t) ⊂ B
(
0,max{|K(0)|, r0}eσt

)
,

where |K(0)| = supy∈K(0) |y|.
Proof of Lemma 4.1. From Proposition 2.6, for any ε > 0, the tube

Kε
2(t) = B

(
0, (max{|K(0)|, r0} + ε)eσt

)
is a supersolution of the front propagation problem with K(0) ∩ K̂ε

2(0) = ∅. Hence,

K(t) ∩ K̂ε
2(t) = ∅ for any t ≥ 0, which entails the desired result when letting

ε → 0+.
The following results state that the left lower semicontinuity of a subsolution is

somehow “uniform.”
Lemma 4.2. Let us fix ε > 0 and ρ > 0 such that ρ > ε. Then there is some

constant η > 0 such that, for any subsolution K of the front propagation problem,
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with K(0) ⊂ B(0, ρ) and for any x0 ∈ R
N with dK(0)(x0) ≥ ε and |x0| ≤ ρ, we have

dK(0, x0) ≥ η.
Moreover, the constant η > 0 depends only on ε, ρ and on the maximum of the

velocity h(y,Kr) for y ∈ ∂Kr and for Kr belonging to the compact family of smooth
sets: {

B(z,R)\B(z, r) | ε
4
≤ r ≤ ε

2
, 2ρ ≤ R ≤ 3ρ, |z| ≤ ρ, dS(z) ≥ ε

}
.

Remarks.
1. Since the front propagation problem we are considering is invariant with re-

spect to time translations, the above estimate also shows that, for any subso-
lution K of the front propagation problem, with K(t) ⊂ B(0, ρ) and for any
x0 ∈ R

N with dK(t)(x0) > ε and |x0| ≤ ρ, we have dK(t, x0) ≥ η.
2. The symmetric estimates for a supersolution (i.e., if K is a supersolution,

dK̂(0)(x0) > ε and |x0| ≤ ρ implies that dK̂(0, x0) ≥ η, for some η) clearly

hold with η = ε because, since K is nondecreasing, K̂ is nonincreasing.
Proof of Lemma 4.2. Let us denote by κ the maximum of the velocity h(y,Kr)

for y ∈ ∂Kr and for Kr belonging to the compact family of smooth sets:{
B(z,R)\B(z, r) | ε

4
≤ r ≤ ε

2
, 2ρ ≤ R ≤ 3ρ, |z| ≤ ρ, dS(z) ≥ ε

}
.

Note that κ < +∞ since the above family is compact and the velocity h is continuous
(Proposition 2.4). Let us introduce the tube K2 defined by

K2(t) = B(x0, 2ρ + κt)\B
(
x0,

ε

2
− κt

)
.

Then, from the definition of κ, K2 is a smooth supersolution of the Hele–Shaw problem
on the time interval [0, τ ], where τ = min{ ε

4κ ,
ρ
κ}, because, on this time interval,

2ρ ≤ 2ρ + κt ≤ 3ρ and ε/4 ≤ ε− κt ≤ ε/2.
Let K be some subsolution of the Hele–Shaw problem, with K(0) ⊂ B(0, ρ), and

let x0 ∈ R
N with dK(0)(x0) > ε and |x0| ≤ ρ. Then we have K(0) ⊂ B(x0, 2ρ)\B(x0, ε).

Hence, K(0) ∩ K̂2(0) = ∅. Then the inclusion principle (Theorem 3.1) states that

∀t ∈ [0, τ ], K(t) ∩ K̂2(t) = ∅.

Therefore, dK(0, x0) ≥ η, where η = min{ε/2, τ}, because B((0, x0), η) ⊂ K̂2.

4.2. Existence and uniqueness of solutions. Let us first give an existence
result.

Theorem 4.3. For any initial position K0, with S ⊂ Int(K0) and K0 bounded,
there is (at least) one solution to the front propagation problem.

Moreover, there is a largest solution, denoted by S(K0), and a smallest solution,
denoted by s(K0), to this problem. The largest solution has a closed graph while the
smallest solution has an open graph in R

+ × R
N . The largest solution contains all

the subsolutions of the front propagation problem with initial condition K0, while the
smallest solution is contained in any supersolution.

Remarks.
1. From the maximality property of the largest solution and the time invariance

of the evolution law, the semigroup property holds for this solution:

∀s ≥ 0, t ≥ 0, S(S(K0)(s) )(t) = S(K0)(s + t).
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2. For general front propagation problems, one cannot expect the uniqueness of
the solutions. Soner pointed out in [23] the existence of a maximal and a
minimal solution for geometric flows of mean curvature type. This result has
been generalized in [10] for some class of geometric flows with nonlocal terms.

Proof of Theorem 4.3. The proof is based on Perron’s method. Since it is exactly
the same as the proof of Theorem 4.1 and of Corollary 4.2 of [11], we omit it.

We say that the solution of our Hele–Shaw problem with initial position K0 is

unique if s(K0) = S(K0) or if, equivalently, Ŝ(K0) = ŝ(K0) (note that ŝ(K0) =
(R+ × R

N )\s(K0) since s(K0) has an open graph in R
+ × R

N ).
We have the following uniqueness result.
Theorem 4.4. Assume that K0 is the closure of an open, connected, and bounded

subset of R
N with a C2 boundary and such that S ⊂ Int(K0). Then there is a unique

viscosity solution to the Hele–Shaw problem.
Remark. Some uniqueness criteria for geometric flows can be found in [23] and

[4]. Our proof uses several arguments from these papers.
Proof of Theorem 4.4. Since K0 is the closure of an open, connected, and bounded

subset of R
N with a C2 boundary and such that S ⊂ Int(K0), the Hopf maximum

principle implies that there is a constant δ > 0 such that h(x,K0) ≥ 2δ for any
x ∈ ∂K0. Let us set, for any σ ∈ R, Kσ = {x ∈ K0| d(x) ≤ σ}, where d is the signed
distance to the boundary of K0 (negative in Int(K0)). From the continuity of h (see
(11)), there is some ε > 0 such that h(x,Kσ) ≥ δ for any x ∈ ∂Kσ and for any σ
such that |σ| ≤ ε. Hence, the tube K(t) = Kδt−ε is a subsolution of the Hele–Shaw
problem starting from K−ε on the time interval [0, 2ε/δ], because it is smooth and
has a normal velocity δ on this interval of time. In particular, K(t) ⊂ S(K−ε)(t) on
[0, 2ε/δ], which proves that K(2ε/δ) = Kε ⊂ S(K−ε)(2ε/δ).

Since K0 ⊂ Int(Kε) ⊂ Int(S(K−ε)(2ε/δ)), the inclusion principle (Theorem 3.1)
combined with the semigroup property gives

S(K0)(t) ⊂ S(S(K−ε)(2ε/δ))(t) = S(K−ε)(2ε/δ + t) ∀t ≥ 0.

Moreover, since K−ε ⊂ Int(K0), the inclusion principle also states that S(K−ε)(t) ⊂
s(K0)(t). Accordingly, we have, for all t ≥ 0, S(K0)(t) ⊂ s(K0)(2ε/δ + t). Letting
ε → 0+ gives the desired inclusion S(K0)(t) ⊂ s(K0)(t).

4.3. Stability of the solutions. We are now investigating the stability of the
flow under variations of the initial position and of the data f and g.

For this we first generalize the well-known stability result of viscosity solutions to
our framework.

Let us assume that we are given a family of maps hn = hn(x,K) which are defined
for any set K with a C1,1 boundary and for any x ∈ ∂K, and continuous in the sense
of (11). We also assume that hn converges to a continuous map h; i.e., if a sequence of
closed set Kn with a C1,1 boundary converges to a closed set K with a C1,1 boundary
for the C1,1 convergence, and if a sequence of points (xn), with xn ∈ ∂Kn, converges
to some x ∈ ∂K, then hn(xn,Kn) converges to h(x,K).

Let us recall that the upper limit of a sequence of sets An is the set of all limits
of converging subsequences of sequences (xn) with xn ∈ An.

Proposition 4.5. If Kn is a sequence of subsolutions for hn, locally uniformly
bounded w.r.t. t, then K∗, the upper limit of the Kn, is also a subsolution for h.

In a similar way, if Kn is a sequence of supersolutions for hn, locally uniformly
bounded w.r.t. t, then K∗, the complementary of the upper limit of K̂n, is also a
supersolution for h.
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Proof of Proposition 4.5. We prove only the statement for the subsolutions, the
proof for the supersolutions being similar. Let us first prove that K∗ is a left lower
semicontinuous tube. Indeed K∗ is a tube because the Kn are locally uniformly
bounded. In order to show that K∗ is left lower semicontinuous, it is enough to
establish that, for any T ≥ 0 and for any ε > 0, there is some η > 0 such that

∀t ∈ [0, T ], ∀x ∈ R
N , dK∗(t)(x) > ε ⇒ dK∗(t, x) ≥ η.

For this, let us fix T ≥ 0 and ε > 0. Since the hn converge to h, Lemma 4.2 states
that there is some η > 0 (independent of n and of t ∈ [0, T ]) such that

∀n ∈ N, ∀t ∈ [0, T ], ∀x ∈ R
N , dKn(t)(x) > ε/2 ⇒ dKn(t, x) ≥ η.

Let us now assume that dK∗(t)(x) > ε for some x ∈ R
N and for some t ∈ [0, T ]. Since

K∗ is equal to the upper limit of the Kn, we have dKn(t)(x) > ε/2 for any n large
enough, whence dKn(t, x) ≥ η. This implies that dK∗(t, x) ≥ η. So K∗ is a left lower
semicontinuous tube.

Let us now check that K∗ is a subsolution. For this, let us fix some smooth tube
Kr which is externally tangent to K∗ at some point (t, x). We denote by d the signed
distance function to ∂Kr. This function is C1,1 in a neighborhood V = {|d| < η} of
∂Kr.

Let us now consider the function dε(s, y) = d(s, y) − ε|(s, y) − (t, x)|2, for ε > 0.
Let us underline that dε has a unique maximum on K∗ at the point (t, x). We can
choose ε > 0 sufficiently small in such a way that the set Kε

r = {dε ≤ 0} has a
boundary which is contained in V and ∇dε �= 0 on V. Let us now consider a point
(tn, xn) of maximum of dε onto Kn. By using a standard argument, we can prove that
a subsequence of (tn, xn) (again denoted (tn, xn)) converges to (t, x), because dε has
a unique maximum on K∗ at the point (t, x). Hence, the set Kn

r = {dε ≤ dε(tn, xn)}
is a smooth tube for n large enough, since, for n large enough, the boundary of Kn

r is
in V. Since Kn is a subsolution and since Kn

r is externally tangent to Kn at (tn, xn),
we have

V
Kn

r

(tn,xn) ≤ hn(xn,Kn
r (tn)).

The sequence of sets Kn
r converges to Kε

r for the C1,1 topology. So we get at the limit

V
Kε

r

(t,x) ≤ h(x,Kε
r(t))

because hn converges to h. Letting ε → 0 gives the desired result, since Kε
r converges

to Kr for the C1,1 topology and h is continuous.
We finally investigate the stability of solutions with respect to the initial position

K0 and to the functions f and g.
Theorem 4.6. Let (fn, gn) and (f, g) satisfy (10) for any n, with f > 0

and locally Lipschitz continuous. Let Kn ∈ D be a sequence of initial positions and
K0 ∈ D.

Let us assume that the fn are globally bounded and converge to f locally uniformly,
that the gn converge to some g > 0 in C1,β(∂S) for some β ∈ (0, 1), and that the Kn

converge to K0, in the sense that the upper limit of the Kn is contained in K0 and
the upper limit of the R

N\Kn is contained in RN\K0. Let us also suppose that there
is a unique solution, denoted by S(K0), of the Hele–Shaw problem starting from K0

with data f and g.
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If Kn is a solution of the Hele–Shaw problem, with data fn and gn, starting from
Kn, then the Kn converge to S(K0) in the following sense: The upper limit of the Kn

is equal to S(K0), while the upper limit of the K̂n is equal to Ŝ(K0).
Proof of Theorem 4.6. Let K∗ be the upper limit of the Kn and K∗ be the

complementary of the upper limit of the K̂n.
Let us first prove that K∗ is a subsolution to the front propagation problem with

initial position K0. According to Proposition 4.5, it is enough to prove that the Kn

are locally uniformly bounded w.r.t. t and the maps hn, defined for any smooth set
Kr ∈ D and any x ∈ ∂Kr by hn(x,Kr) = |∇u(x)|p−1, where u is the solution to⎧⎨

⎩
−div(|∇u|p−1∇u) = fn in Kr,

u = gn on ∂S,
u = 0 on ∂Kr,

converge to h defined by (8). The Kn are locally uniformly bounded thanks to Lemma
4.1, because the fn and the gn are uniformly bounded. Moreover, the local uniform
convergence of the hn to h is a straightforward application of the estimates in [21].
Using Lemma 4.2, we can also show that K∗(0) ⊂ K0 (the arguments are similar to
those developed for proving that K∗ is left lower semicontinuous in Proposition 4.5).
Hence, K∗ is a subsolution to the Hele–Shaw problem with initial position K0. In
particular, this implies that K∗ ⊂ S(K0), because S(K0) contains any subsolution.

In the same way, K∗ is a supersolution for h, with K̂∗(0) ⊂ RN\K0. Hence,
s(K0) ⊂ K∗. So we have proved that

s(K0) ⊂ K∗ ⊂ K∗ ⊂ S(K0).(47)

From our assumption, the Hele–Shaw problem with initial position K0 has a
unique solution, i.e., s(K0) = S(K0). Combining this equality with (47) gives s(K0) =
K∗ = K∗ = S(K0), since K∗ and S(K0) have a closed graph.

Taking the complementary in (47) also gives Ŝ(K0) ⊂ K̂∗ ⊂ K̂∗ ⊂ ŝ(K0). Since

Ŝ(K0) = ŝ(K0) from the uniqueness of the solution, we finally have the equality

K̂∗ = Ŝ(K0), which is the desired result since K̂∗ = (R+ ×R
N )\K∗ is the upper limit

of the K̂n.
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PERIODIC OSCILLATIONS OF BLOOD CELL POPULATIONS IN
CHRONIC MYELOGENOUS LEUKEMIA∗
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Abstract. Periodic chronic myelogenous leukemia and cyclical neutropenia are two hemato-
logical diseases that display oscillations in circulating cell numbers with a period far in excess of
what one might expect based on the stem cell cycle duration. Motivated by this observation and a
desire to understand how long period oscillations can arise, we analytically prove the existence and
stability of long period oscillations in a G0 phase cell cycle model described by a nonlinear differential
delay equation. This periodic oscillation p∞ can be analytically constructed when the proliferative
control is of a “bang-bang” type (the Hill coefficient involved in the nonlinear feedback is infinite).
We further obtain a contractive return map (for the semiflow generated by the functional differential
equation) in a closed and convex cone containing p∞ when the proliferative control is smooth (the
Hill coefficient is large but finite). The fixed point of this contractive map gives the long period
oscillation previously observed both numerically and experimentally.

Key words. cell proliferation, G0 cell cycle model, periodic chronic myelogenous leukemia, long
period oscillations, delay differential equations, Hill function, Walther’s method
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1. Introduction. Periodic hematological diseases have attracted a significant
amount of modeling attention from mathematicians, notably the disorders periodic
autoimmune hemolytic anemia [3, 17] and cyclical thrombocytopenia [27, 29]. Periodic
hematological diseases of this type, in which only a single cell type is typically involved,
usually display a periodicity in circulating cell numbers between two and four times
the bone marrow production delay. This clinical observation has a clear explanation
within a modeling context [10].

Other periodic hematological diseases such as cyclical neutropenia [4, 10, 11, 15,
16, 18] and periodic chronic myelogenous leukemia (PCML) [8] have more than one
circulating blood cell type (i.e., white cells, red blood cells, and platelets) that display
oscillatory levels. The oscillations in cell numbers in these two diseases have period
durations ranging from weeks to months in general and are thought to originate in
the pluripotential stem cell compartment [10]. In the particular case of PCML, the
period can range from 40 to 80 days. Two lines of evidence indicate that the PCML
oscillations originate in the stem cell population based in the bone marrow. The
first suggestion that this is the case comes from the presence of the Philadelphia
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chromosome in all hematopoietic cells in PCML [5, 7, 9, 12, 30]. Second, in PCML
it is observed that white blood cells, erythrocytes, and platelets all oscillate with the
same period [8].

“How do ‘short’ cell cycles give rise to ‘long’ period oscillations?” This question
has arisen from the observation of circulating blood cell oscillations in PCML [8].
There is an enormous difference between the relatively short cell cycle duration, which
ranges between 1 and 4 days [13, 18, 19], and the long period oscillations in PCML
(between 40 and 80 days) [8]. The link between these relatively short cycle durations
and the long periods of peripheral cell oscillations in PCML is unclear and has been
neither biologically explained nor understood.

Using a G0 model of the cell cycle [6, 20, 28], an attempt to answer this ques-
tion has been made in [1, 25, 24], where the role of various model parameters on
the period and amplitude of the cellular oscillations was examined. When cellular
reentry from G0 into the proliferative phase is subject to “bang-bang” control (tech-
nically, where the Hill coefficient in the model re-entry rate n is infinite—see below),
qualitatively the cell cycle regulation parameters have a major influence on the os-
cillation amplitude, while the oscillation period is primarily determined by the cell
death and differentiation parameters. Under this strong assumption, the cell cycle
model is described by a piecewise linear scalar delay differential equation that, after
nontrivial but straightforward calculations, has a periodic solution with large period
and amplitude and strong stability properties.

Here, we prove analytically that similar conclusions hold in the more biologically
realistic case that the re-entry rate is a smooth monotone function. We construct a
convex closed cone containing the periodic solution when n = ∞ and a contractive
return map defined on this cone such that a fixed point of the return map gives a
stable periodic solution of the model equation when n is large. This method was first
developed by Walther [31, 32] for a scalar delay differential equation with constant
linear instantaneous friction and a negative delayed feedback, and was later extended
to state-dependent delay differential equations [33, 34] and to delay differential systems
[34, 36]. This method was further developed in [23] by incorporating some ideas
from classical asymptotic analysis and using matching methods. Applications of this
method to the present cell cycle model are nontrivial since both the instantaneous
loss and the delayed production of stem cells involve the nonlinearity and there is no
analytic formula for the periodic solution in the limiting case (n = ∞).

This paper is organized as follows. In section 2 we present the model in detail.
Section 3 summarizes previous results from [24] in the case where the Hill coefficient n
is infinite. Then, we introduce a more general result for the perturbed delay equation
given in section 4, and we present our main results in section 5 including the full
asymptotic expansion for the periodic solutions.

2. Description of the model. The G0 model of the cell cycle (see Figure 2.1 for
a depiction) is conceptually based on the work of Lajtha [14] and was first developed
by Burns and Tannock [6]. It can be derived from an age structured system of two
coupled partial differential equations, along with appropriate boundary and initial
conditions [15, 16, 21, 26]. Integrating along characteristics [35] these equations can
be transformed into a pair of coupled nonlinear first-order differential delay equations
[15, 16, 18]. The resulting model depicted in Figure 2.1 consists of a proliferating
phase cellular population P (t) at time t and a G0 resting phase, with a population
of cells N(t). The proliferative phase cells consist of cells in the G1 phase of the cell
cycle, the DNA synthesis (S) phase, G2, and mitosis M . In this proliferative phase,
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Fig. 2.1. A schematic representation of the G0 stem cell model. Proliferating phase cells (P )
include those cells in G1, S (DNA synthesis), G2, and M (mitosis), while the resting phase (N)
cells are in the G0 phase. δ is the rate of differentiation into all the committed populations arising
from the stem cells, and γ represents the apoptotic loss of proliferating phase cells. β is the rate of
cell re-entry from G0 into the proliferative phase, and the cell cycle time τ is the duration of the
proliferative phase. See [15, 16, 18] for further details.

cells are committed to undergo cell division a constant time τ after their entry into
G1. The choice of a constant cell cycle time τ simplifies the problem, though some
models with a nonconstant value of τ have been examined [2, 4]. The proliferative
phase death rate γ is due to apoptosis (programmed cell death). At the point of
cytokinesis (cell division), a cell divides into two daughter cells, both of which are
assumed to enter the resting (N) phase. In this phase, cells cannot divide but they
may have one of three possible fates: differentiate at a constant rate δ, re-enter the
proliferative phase at a rate β, or remain in G0. The re-entry rate β is a nonlinear
function of the cellular density and the central focus of this study.

The full model, described by a coupled nonlinear first-order delay equation, takes
the form

dP (t)

dt
= −γP (t) + β(N)N − e−γτβ(Nτ )Nτ(2.1)

and

dN(t)

dt
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ ,(2.2)

where Nτ = N(t−τ). The resting (G0) to proliferative phase feedback rate β is taken
to be a monotone Hill function of the form

β(N) =
β0θ

n

θn + Nn
.

In (2.2), the first term represents the loss of nonproliferating cells to the proliferative
phase (flux β(N)N) and to differentiation (flux δN). The second term represents the
production of G0 phase cells from the proliferating stem cells. The factor 2 accounts
for the amplifying effect of cell division while e−γτ accounts for the attenuation in the
proliferative phase due to apoptosis. Note that we need to study only the dynamics
of the G0 phase resting population (governed by (2.2)) since the proliferating phase
dynamics (governed by (2.1)) are driven by the dynamics of the resting cells. This is
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strictly a consequence of the fact that we have assumed β to be a function of N alone
[21, 22].

Introducing the dimensionless variable x = N/θ, we can rewrite (2.2) as

dx

dt
= −[β(x) + δ]x + kβ(xτ )xτ ,(2.3)

where

β(x) = β0
1

1 + xn
,(2.4)

and k = 2e−γτ . The steady states x∗ of (2.3) are given by the solution of dx/dt ≡ 0.
Thus we have x∗ ≡ 0, and

x∗ =

(
β0

k − 1

δ
− 1

)1/n

.(2.5)

Here we require

τ < − 1

γ
ln

δ + β0

2β0
,

so β0
k−1
δ > 1 in (2.5) and the second nontrivial steady state will be positive. Note

that when n → ∞, x∗ → 1 in (2.5) and β(x) tends to a piecewise constant function
(the Heaviside step function).

A solution of (2.3) is a continuous function x : [−τ,+∞) → R+ obeying (2.3) for
all t > 0. The continuous function ϕ : [−τ, 0] → R+, ϕ(t) = x(t) for all t ∈ [−τ, 0],
is called the initial condition for x. Using the method of steps, it is easy to prove
that for every ϕ ∈ C([−τ, 0]), where C([−τ, 0]) is the space of continuous functions
on [−τ, 0], there is a unique solution of (2.3) subject to the initial condition ϕ.

3. Periodic solutions: Limiting nonlinearity. In this section we study the
dynamics of (2.3) when β(x) is the step function

β(x) =

{
0, x ≥ 1,
β0, x < 1.

By a solution of (2.3) in this case, we mean a continuous function x(t) on the interval
[−τ,∞) which is piecewise differentiable and satisfies (2.3) for t ∈ [0,∞) except at
the point t where x(t) or x(t− τ) is equal to 1. For any initial data ϕ ∈ C[−τ, 0], it
is not difficult to obtain a unique solution x(t) by using the method of steps. As in
[24], we introduce two constants

α = β0 + δ, Γ = 2β0e
−γτ = kβ0.

Inserting the step function β(x) into (2.3), we obtain

dx

dt
=

⎧⎪⎪⎨
⎪⎪⎩

−δx, 1 < x, xτ ,
−αx, 0 < x < 1 < xτ ,
−αx + Γxτ , 0 < x, xτ < 1,
−δx + Γxτ , 0 < xτ < 1 < x,

(3.1)

where xτ = x(t− τ).
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For (3.1), we choose the initial function ϕ(t) ≥ 1+η for t ∈ [−τ, 0) and ϕ(0) = 1+η
where η is a small positive constant specified later. By the continuity of the solution
x, we have from (3.1) the existence of t1 such that x(t) and x(t− τ) are greater than
1 for t ∈ [0, t1) and x(t1) = 1. The solution x(t) then satisfies

dx

dt
= −δx for t ∈ [0, t1].(3.2)

Thus solving the above equation, we have x(t) = ϕ(0)e−δt = (1 + η)e−δt. It follows
that

t1 =
lnϕ(0)

δ
=

ln(1 + η)

δ
.(3.3)

In the next interval of time, defined by (t1, t1 + τ), we have x(t − τ) > 1. From the
first two lines in (3.1), the solution is decreasing and thus crosses the level x = 1. The
dynamics are given by

dx

dt
= −αx(3.4)

as long as x(t) < 1. The solution is then given by x(t) = e−α(t−t1) for t ∈ [t1, t1 + τ ]
and x(t1 + τ) = e−ατ independent of the initial function ϕ(t). Thus, the dynamics
eventually destroy all memory of the initial function.

The solution in the next interval will be such that x, xτ < 1. In order that (3.1)
has periodic solutions, we impose an extra condition on Γ and α so that

−αx + Γxτ > 0.(3.5)

Otherwise, if −αx + Γxτ ≤ 0, then the solution may tend to zero as t approaches
infinity and thus we cannot expect a periodic solution. In particular, if

−αx + Γxτ ≈ 0,

then the solution may stay below the line x = 1 so long that the resulting analysis
becomes very complicated. Note that for t ∈ [t1 + τ, t1 + 2τ ], we have x(t − τ) =
e−α(t−t1−τ). Then if x(t) < 1, from (3.1), we have dx

dt = −αx + Γxτ = −αx +

Γe−α(t−t1−τ) which gives

x(t) = e−α(t−t1−τ)(e−ατ + Γ(t− t1 − τ)).(3.6)

For the sake of simplicity, we impose an extra condition on Γ:

Γ > max

{
1

τ
(eατ − e−ατ ), αeατ

}
.(3.7)

Note that condition (3.7) clearly holds if β0 is large.
Equation (3.6) is only valid if the value of x(t) is less than or equal to 1. However

when we directly replace t in (3.6) by t1+2τ , we have x(t1+2τ) = e−ατ (e−ατ+Γτ) > 1.
Thus we need to use (3.6) to find a point t2 ∈ (t1 + τ, t1 + 2τ) such that x(t2) = 1
and (3.6) is valid for t ∈ [t1 + τ, t2]. Assume t2 = t1 + τ + u, u ∈ (0, τ). Then from
(3.6) we have

eαu = e−ατ + Γu.(3.8)
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Equation (3.8) is a transcendental equation and cannot be solved explicitly. However,
the existence of a positive solution u ∈ (0, τ) is obvious given (3.7). Therefore (3.5)
holds for t ∈ [t1 + τ, t2] (due to the fact that x(t− τ) ≥ e−ατ ).

Next for t ∈ (t2, t2 + τ), we claim that

x(t) > 1.(3.9)

Indeed, from the above analysis, we know that e−ατ < x(t − τ) < 1 and at the
particular point t2, x(t2 + 0) = limt→t2+0 x(t) = 1, so x(t2 − τ) ≥ e−ατ . By (2.3) and
(3.7) we have

x′(t2 + 0) = −[β(x) + δ]x + kβ(xτ )xτ > −α + Γxτ > 0.

The solution x(t) is differentiable with respect to t as long as x(t) and x(t − τ) are
not equal to 1. To see our claim suppose, by contradiction, that there exists a point
h ∈ (t2, t2 + τ) such that x(h) = 1, x′(h − 0) ≤ 0, and x(t) > 1 for t ∈ (t2, h). Then
using (3.1), we have by (3.7) that

x′(h− 0) = −δ + Γx(h− τ) ≥ −δ + Γe−ατ > 0.

This is a contradiction, and our claim is true.
Splitting [t2, t2 + τ ] into two subintervals [t2, t1 + 2τ ] and [t1 + 2τ, t2 + τ ], we can

give explicit formulae for the solution x(t) as follows.
For t ∈ [t2, t1 + 2τ ], we know that x(t− τ) = e−α(t−t1−τ) < 1. The dynamics are

thus given by

dx

dt
= −δx + Γxτ = −δx + Γe−α(t−t1−τ),

which has the solution

x(t) = e−δτ(t−t2)

{
1 − Γ

β0
eα(t1+τ)−δt2

(
e−β0t − e−β0t2

)}
.(3.10)

Moreover, since the solutions are differentiable provided that x(t) and x(t − τ) are
not equal to 1, and the solutions are continuous everywhere, for t ∈ [t1 + 2τ, t2 + τ ]
we have

dx

dt
= −δx + Γxτ

= −δx + Γe−α(t−t1−2τ)(e−ατ + Γ(t− t1 − 2τ)),

so

x(t) = e−δ(t−t1−2τ) [x(t1 + 2τ) + Γ (j(t) − j(t1 + 2τ))] ,

where

j(t) =
1

(δ − α)

(
e−ατ + Γ(t− t1 − 2τ) − Γ

δ − α

)
e(δ−α)(t−t1−2τ).

After the time t2 + τ , both xτ and x are greater than 1, and the solution satisfies

x′ = −δx(3.11)

as long as x(t) > 1 and thus is decreasing. Therefore, there exists a point, say, t = d,
so that x(d) = 1. Note that in the interval [t2, d], the graph of the solution x(t) is
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independent of the initial function ϕ(t). Now we can use (3.9) and (3.11) to choose a
small positive constant η < 1 such that the following hold:

1. We have

t1 =
log(1 + η)

δ
< τ ;(3.12)

2. we have

Γ > max

{
1

τ
(eατ − e−ατ ), α(1 + η)eατ

}
,(3.13)

and x(t) reaches 1 + η at a point t3 ∈ (t2, t2 + τ); and
3. there is a point Tx, t3 + τ < Tx < d so that

x(Tx) = 1 + η, x(Tx + s) > 1 + η, s ∈ [−τ, 0).(3.14)

With this choice of η, we have x(t) > 1 + η for t ∈ (t3, Tx) and the solution is
strictly increasing for t ∈ [t2, t3] (due to (3.13)). Finally, when we continue to solve
(3.1) step by step, we have x(t) = x(t+Tx) for t ≥ 0. Summarizing the above analysis,
we have the following result.

Theorem 3.1. Suppose that Γ satisfies (3.7). Assume that x is the solution of
(3.1) subject to the initial condition φ ≥ 1 + η where η is chosen to satisfy (3.12),
(3.13), and (3.14). Then the solution x satisfies x(t) = x(t + Tx) for t ≥ 0.

4. Periodic solutions: General nonlinearity.

4.1. Perturbed delay equation. With the preceding analysis of the G0 phase
cell cycle model when the feedback function β is a Heaviside step function, we turn
to a consideration of the general continuous nonlinearity. More precisely, we consider

dy

dt
= −[β(y) + δ]y + kβ(yτ )yτ ,(4.1)

returning to the original problem with β = β0
1

1+yn . Let ε = 1/n. Then we can rewrite
the Hill function as

βε(y) = β0
1

1 + y1/ε
.

Let the initial function ϕ be chosen from the closed convex set

Aη = {ϕ ∈ C([−τ, 0]) : 1 + η ≤ ϕ(t) for t ∈ [−τ, 0], and ϕ(0) = 1 + η},

where η < 1 is a small positive constant as chosen in the previous section. For given
ϕ in Aη, we have a unique solution to (4.1). The relations

Fε(t, ϕ) = yt, yt = y(t + s), −τ ≤ s ≤ 0, t ≥ 0,

define a continuous semiflow F = Fε on C([−τ, 0]).
As a technical preparation, we now describe some elementary properties of the

Hill function we employ here.
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Lemma 4.1. Assume ε = 1
n < 1. The following inequalities hold:

(a) If y >
(

1
ε

)ε/(1−ε)
, then

βε(y) < β0ε, yβε(y) < β0ε

and if 0 < y < εε, then

β0 > βε(y) > β0(1 − ε) and |yβε(y) − β0y| < β0ε.(4.2)

(b) Also, ∣∣∣∣d(yβε(y))

dy

∣∣∣∣ < β0ε for y >

(
1

ε

)2ε

,

and ∣∣∣∣d(yβε(y) − β0y)

dy

∣∣∣∣ < β0ε for 0 < y <

(
ε2

1 + ε

)ε

.

Proof. (a) If y >
(

1
ε

)ε/(1−ε)
, then

βε(y) =
β0

1 + y1/ε
<

β0

y1/ε
<

β0(
1
ε

)1/(1−ε)
< β0ε,

and

yβε(y) =
β0y

1 + y1/ε
<

β0

y
1
ε−1

< β0ε.

If 0 < y < εε, then

β0 > βε(y) =
β0

1 + y1/ε
> β0(1 − y1/ε) ≥ β0(1 − ε),

and

|yβε(y) − β0y| =

∣∣∣∣β0
y1/ε+1

1 + y1/ε

∣∣∣∣ < β0y
1/ε+1 < β0ε.

(b) If y > (1/ε)
2ε

, then

∣∣∣∣d (yβε(y))

dy

∣∣∣∣ = β0

∣∣∣∣
(

1

ε
− 1

)
y1/ε − 1

∣∣∣∣
(1 + y1/ε)2

≤ β0

(
1

ε
− 1

)
y−1/ε < β0ε.

Since

f(x) =

(
1 +

1

ε

)
x +

1

ε
x2

1 + x

is strictly increasing for x ∈ (0, ε2

1+ε ) and f( ε2

1+ε ) < ε, we obtain∣∣∣∣d (yβε(y) − β0y)

dy

∣∣∣∣ = β0

(1 + 1
ε )y1/ε + 1

εy
2/ε

1 + y1/ε
< β0ε

for 0 < y < ( ε2

1+ε )
ε.
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We found that for (3.1), if ϕ ∈ Aη, then the solution will return to Aη after finite
time. The following lemma shows a similar property for (4.1).

Lemma 4.2. Let y be the solution of (4.1) with an initial function ϕ ∈ Aη. Then
there exists a point Ty > 0 such that y(Ty) = 1 + η and

y(t) ≥ 1 + η for t ∈ [Ty − τ, Ty].(4.3)

Moreover, there exists a constant ε1, ε1 ∈ (0, 1), such that for each ε ∈ (0, ε1), we
have

Ty = Tx + O(ε log ε)(4.4)

and

y(t) = x(t) + O(ε log ε),(4.5)

uniformly for t ∈ [0, Tx] and ϕ ∈ Aη, where Tx is the period of the periodic solution x
to (3.1) obtained in Theorem 3.1.

Proof of Lemma 4.2. We first claim that there exist three points η1, t
y
1, η2, 0 <

η1 < ty1 < η2, which are dependent on ε and ϕ, such that

y(η1) =

(
1

ε

)2ε

> 1, y(ty1) = 1, y(η2) =

(
ε2

1 + ε

)ε

< 1.(4.6)

Indeed, if y(t) > ( 1
ε )2ε >

(
1
ε

)ε/(1−ε)
> 1 and y(t − τ) > ( 1

ε )2ε > ( 1
ε )ε/(1−ε), then we

have by Lemma 4.1 that

βε(y(t))y(t) < β0ε, βε(y(t− τ))y(t− τ) < β0ε

and

dy(t)

dt
= −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ),

= −δy(t) + O(ε)

< −δ

2
for ε ∈ (0, σ1).(4.7)

Here σ1 is chosen so that for each ε ∈ (0, σ1), we have −δy(t) + O(ε) < − δ
2 . This

means that y is decreasing as long as y(t) ≥ ( 1
ε )2ε > ( 1

ε )ε/(1−ε). Therefore there is a

point η1 > 0 so that y(η1) = (1/ε)
2ε

and 1 + η > y(t) > (1/ε)
2ε

for t ∈ (0, η1). Using
dy
dt = −δy + O(ε) and y(0) = 1 + η, we also have

η1 =
log(1 + η)

δ
+ O(−ε log ε) = t1 + O(−ε log ε).(4.8)

Here the term O(−ε log ε) holds uniformly for all the initial functions ϕ in Aη. Next
in the interval (η1, η1 + τ), we have βε(y(t− τ))y(t− τ) = O(ε) and

dy(t)

dt
= −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ)

< −δy(t) + kβε(y(t− τ))y(t− τ)

= −δy(t) + O(ε)

< −δ

2
for ε ∈ (0, σ2)
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as long as y(t) ≥ ( ε2

1+ε )
ε. Here σ2 is chosen so that for each ε ∈ (0, σ2), we have

−δy(t) + O(ε) < −δ

(
ε2

1 + ε

)ε

+ O(ε) < −δ

2
.

This means that the solution is decreasing and there exist two points ty1, η2, η1 < ty1 <
η2, such that

y(ty1) = 1, y(η2) =

(
ε2

1 + ε

)ε

.

By the mean value theorem, it is easy to show that

|y(η1) − y(η2)| ≥
δ

2
|η1 − η2|

or, equivalently,

η2 − η1 ≤ 2

δ
(y(η1) − y(η2)) =

2

δ

[(
1

ε

)2ε

−
(

ε2

1 + ε

)ε
]

= O(−ε log ε).

Therefore,

0 < ty1 − η1 < η2 − η1 = O(−ε log ε).(4.9)

Now using (4.1) for t ∈ [0, η1], we have

y′ = −δy + O(ε), y(0) = 1 + η,

which gives

y(t) = (1 + η)e−δt + O(ε).

We claim that

y(t) = x(t) + O(ε)(4.10)

uniformly for t ∈ [0, ξ1] and ϕ ∈ Aη, where

ξ1 = min{t1, η1}.

Indeed, this is true, since x(t) = (1 + η)e−δt for t ∈ [0, t1].
Next for t ∈ [ξ1, η2], using an argument that the length of the interval [t1, η1] is

of order O(−ε log ε), and both |x′(t)| and |y′(t)| are bounded by a constant, say, M ,
which is independent of ε and η, we conclude from (4.10) that

y(t) = x(t) + O(−ε log ε).(4.11)

For t ∈ [η2, τ + ξ1], we can show that y(t − τ) > (1/ε)
2ε

. Note that η2 ≤ ξ1 + τ
since η2 − ξ1 = O(ε log ε) and τ is a constant. Here we have assumed that ε ∈ (0, σ3),
where σ3 is small enough so that for each ε ∈ (0, σ3), we have O(ε log ε) < τ. By
Lemma 4.1, we have

y(t− τ)β(y(t− τ)) = O(ε).
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Using (4.1) we know that

−αy + O(ε) ≤ y′ ≤ −δy + O(ε),

and thus the solution y(t) ≥ (ε2/(1 + ε))εe−ατ + O(ε) and its derivative

y′(t) ≤ −δ(ε2/(1 + ε))εe−ατ + O(ε) < 0 for ε ∈ (0, σ4),

where σ4 is chosen so that for each ε ∈ (0, σ4), we have −δ(ε2/(1+ε))εe−ατ+O(ε) < 0.
So y(t) is decreasing for t ∈ [η2, τ + ξ1]. Note that 0 < y < y(η2) ≤ εε so that (4.2) in
Lemma 4.1 holds. Thus we can derive from (4.1) that

y′(t) = −αy(t) + O(ε)(4.12)

for t ∈ [η2, τ + ξ1]. Coupling this equation with (3.4) and using (4.11) at the point
t = η2 give

y(t) = x(t) + O(−ε log ε)

for t ∈ [η2, τ + ξ1].
For t ∈ [τ + ξ1, τ + η2], again using the fact that both the derivatives of x and y

are bounded and the length of this interval is of order O(−ε log ε), we have

y(t) = x(t) + O(−ε log ε).

For t ≥ τ + η2, the solution y begins to increase since Γ satisfies (3.7). To be
precise, we have βε(y(t)) < β0, βε(y(t− τ))y(t− τ) = β0y(t− τ) + O(−ε log ε) and

y′(t) = −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ)

≥ −αy(t) + kβ0y(t− τ) + O(−ε log ε)

= −αy(t) + Γx(t− τ) + O(−ε log ε)

≥ −α(1 + η) + Γe−ατ + O(−ε log ε)

> 0 for ε ∈ (0, σ5)

as long as y(t) ≤ 1 + η and t ≤ 2τ + η2. Here σ5 is sufficiently small so that for each
ε ∈ (0, σ5), we have −α(1 + η) + Γe−ατ + O(−ε log ε) > 0. Using similar arguments
as above, we conclude that there exist three points η3, t

y
2, η4, with η3 < ty2 < η4 such

that

y(η3) =

(
ε2

1 + ε

)ε

, y(ty2) = 1, y(η4) =

(
1

ε

)2ε

,

η3 = ty2 + O(−ε log ε), η4 = ty2 + O(−ε log ε),(4.13)

and

ty2 = t2 + O(−ε log ε).(4.14)

We can continue this process to find that y will satisfy

y(t) = x(t) + O(−ε log ε)
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for t ∈ [0, τ + ξ2], where ξ2 = min{t2, η3}. From the expression for x, we know from
the preceding equation that there exists a point ty3 ∈ (η4, τ+ξ2) such that y(ty3) = 1+η
and ty3 = t3 + O(−ε log ε).

For t ∈ [τ + ξ2, τ + η4], using the same argument as in the interval [τ + ξ1, τ + η2],
we again have

y(t) = x(t) + O(−ε log ε).(4.15)

Finally for t ≥ τ +η4, the solution is decreasing and will reach the value 1+η at some
point Ty. In the whole interval [0, Tx], if we choose ε1 = min{σi, 1 ≤ i ≤ 5}, then we
can show as before that for each ε ∈ (0, ε1), we have

y(t) = x(t) + O(−ε log ε), x ∈ [0, Tx],(4.16)

and

Ty = Tx + O(−ε log ε).(4.17)

Furthermore, we also have y(Ty) = 1 + η and

y(t) ≥ 1 + η for [Ty − τ, Ty].(4.18)

Remark 4.3. By Lemma 4.2 and (4.1) we have two positive constants M1 and
M2 which are independent of ε and the initial data ϕ so that for t ≥ 0,

|y(t)| ≤ M1(4.19)

and ∣∣∣∣dy(t)dt

∣∣∣∣ ≤ M2.(4.20)

Now we are ready to define a continuous return map

R : Aη 	 ϕ → yq(ϕ) = Fε(q(ϕ), ϕ) ∈ Aη,

where q(ϕ) = Ty. To verify that there exists a unique fixed point in Aη for the map
R, we need to show that the map R is contractive, i.e., derive an estimation for the
Lipschitz constant and show that the Lipschitz constant is less than 1.

4.2. Lipschitz constant for the map R. The Lipschitz constant of a given
map T : DT → Y , DT ⊂ X, where X and Y are normed linear spaces, is given by

L(T ) = sup
u∈DT ,v∈DT ,u �=v

||T (u) − T (v)||
||u− v|| .

In the case where DT = X = Y = R, [u1, u2] ⊂ R, and f = T , we set

L[u1,u2](f) = L(f |[u1, u2]).

If f(u) = uβε(u), u ∈ R, we define the following four Lipschitz constants:

Lε
1 = L[1+η,+∞)(uβε(u)),

Lε
2 = L[( 1

ε )2ε,+∞)(uβε(u)),

Lε
3 = L(0,+∞)(uβε(u)),

Lε
4 = L

(0,( ε2

1+ε )ε)
(uβε(u)).
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Similarly for the function f(u) = uβε(u)−β0u, u ∈ R, we define the following Lipschitz
constant for later use:

Lε
5 = L

(0,( ε2

1+ε )ε)
(uβε(u) − β0u).

When ε << 1, we have

Lε
1 = O

(
1

ε(1 + η)1/ε

)
, Lε

2 = O(ε), Lε
3 = O(1/ε), Lε

4 = O(1), Lε
5 = O(ε).(4.21)

Theorem 4.4. There exists ε2, ε2 ∈ (0, ε1), such that for each ε ∈ (0, ε2) the
Lipschitz constant Lε

R of the map R is less than 1. In particular, we have

lim
ε→0

Lε
R = 0.

Proof. Step 1. Take φ, φ̄ in Aη. Using a similar argument as in the proof of
Lemma 4.2, we conclude that there exist η1, η2 and η̄1, η̄2 such that

yφ(η1) =

(
1

ε

)2ε

, yφ(η2) =

(
ε2

1 + ε

)ε

, η1 − η2 = O(−ε log ε)

and

yφ̄(η̄1) =

(
1

ε

)2ε

, yφ̄(η̄2) =

(
ε2

1 + ε

)ε

, η̄1 − η̄2 = O(−ε log ε).

Let

ηmin = min{η1, η̄1}

and

ηmax = max{η2, η̄2}.

Then by (4.8) and (4.9) we have

ηmin = t1 + O(−ε log ε), ηmax = t1 + O(−ε log ε), and(4.22)

ηmax − ηmin = O(−ε log ε).

Since t1 = log(1 + η)/δ < τ , from (4.22) we have that ηmin < τ and ηmax < τ .
Here we have chosen σ6 > 0 sufficiently small so that for each ε ∈ (0, σ6)

ηmax = log(1 + η)/δ + O(−ε log ε) < τ.

For t ∈ [0, ηmin], using (4.1) for yφ(t) and yφ̄(t) gives

dyφ(t)

dt
= −[δ + βε(y

φ(t))]yφ(t) + kβε(y
φ(t− τ))yφ(t− τ)(4.23)

and

dyφ̄(t)

dt
= −[δ + βε(y

φ̄(t))]yφ̄(t) + kβε(y
φ̄(t− τ))yφ̄(t− τ).(4.24)
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Now we estimate the difference between yφ(t) and yφ̄(t). Subtracting (4.24) from
(4.23) yields

(yφ(t) − yφ̄(t))′ = −δ(yφ(t) − yφ̄(t))(4.25)

−[βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)]

+k[βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)].

Substituting the inequalities

|βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)| ≤ Lε
2|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
1||φ− φ̄||

into (4.25), we have

(yφ(t) − yφ̄(t))′ ≤ (δ + Lε
2) |yφ(t) − yφ̄(t)| + kLε

1||φ− φ̄||.(4.26)

Integrating (4.26) from 0 to t gives

(yφ(t) − yφ̄(t)) ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.

Similarly, we have

−(yφ(t) − yφ̄(t)) ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.

Thus, we have found that

|yφ(t) − yφ̄(t)| ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.(4.27)

From Gronwall’s inequality, we obtain

|yφ(t) − yφ̄(t)| ≤ C1||φ− φ̄||,(4.28)

where

C1 =
e(δ+Lε

2)ηmin − 1

δ + Lε
2

kLε
1.(4.29)

Step 2. For t ∈ [ηmin, ηmax], we have

|βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)| ≤ Lε
3|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
1||φ− φ̄||.

Thus from (4.23) and (4.24) we obtain, as before,

|yφ(t) − yφ̄(t)| ≤
∫ t

ηmin

(
(δ + Lε

3) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds + C1||φ− φ̄||.
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Then by Gronwall’s inequality, we have

|yφ(t) − yφ̄(t)| ≤ C2||φ− φ̄||,(4.30)

where

C2 = C1e
(δ+Lε

3)(ηmax−ηmin) +
e(δ+Lε

3)(ηmax−ηmin) − 1

δ + Lε
3

kLε
1 > C1.(4.31)

Remember that ηmin ≤ τ since t1 < τ in (3.14) and ηmin = t1 + O(−ε log ε).
Moreover ηmax ≤ τ since ηmax = t1 + O(−ε log ε) from (4.22).

Step 3. For t ∈ [ηmax, τ + ηmin],

|βε(y
φ(τ))yφ(t) − β0y

φ(t) − (βε(y
φ̄(t))yφ̄(t) − β0y

φ̄(t))| ≤ Lε
5|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
2C2||φ− φ̄||.

It is thus easy to derive

|yφ(t) − yφ̄(t)| ≤
∫ t

ηmax

(
(α + Lε

5)|yφ(s) − yφ̄(s)| + kLε
2C2||φ− φ̄||

)
ds + C2||φ− φ̄||

and to conclude that (since τ + ηmin − ηmax < τ)

|yφ(t) − yφ̄(t)| ≤ C3||φ− φ̄||,(4.32)

where

C3 = C2e
ατ+τLε

5 +
eατ+τLε

5 − 1

α + Lε
5

kLε
2C2 > C2.(4.33)

Step 4. When t ≥ τ + ηmin, we have from (4.13) and (4.14) that there exist
η3 < η4 and η̄3 < η̄4 such that

yφ(η3) =

(
ε2

1 + ε

)ε

, yφ(η4) =

(
1

ε

)2ε

, η4 − η3 = O(−ε log ε)

and

yφ̄(η̄3) =

(
ε2

1 + ε

)ε

, yφ̄(η̄4) =

(
1

ε

)2ε

, η̄4 − η̄3 = O(−ε log ε).

Let

η3
min = min{η3, η̄3}, η4

max = max{η4, η̄4}.

Then by (4.13) and (4.14) we have

η3
min = t2 + O(−ε log ε), η4

max = t2 + O(−ε log ε), η4
max − η3

min = O(−ε log ε).(4.34)

Since t2 > t1 + τ , we can choose σ7 > 0 sufficiently small so that for each ε ∈ (0, σ7)
the inequality

τ + ηmax < η3
min
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holds. For t ∈ [τ + ηmin,η
3
min], we similarly have

|yφ(t) − yφ̄(t)| ≤
∫ t

τ+ηmin

(
(α + Lε

5)|yφ(s) − yφ̄(s)| + kLε
3C3||φ− φ̄||

)
ds + C3||φ− φ̄||

and

|yφ − yφ̄| ≤ C4||φ− φ̄||,(4.35)

where

C4 = C3e
(α+Lε

5)(η
3
min−τ−ηmin) +

e(α+Lε
5)(η

3
min−τ−ηmin) − 1

α + Lε
5

kLε
3C3 > C3.(4.36)

Step 5. For t ∈ [η3
min, η

4
max], from (4.22) and (4.34) it is easy to demonstrate that

ηmax ≤ t− τ ≤ η3
min. Thus we have

|yφ(t) − yφ̄(t)| ≤
∫ t

η3
min

(
(δ + Lε

3)|yφ(s) − yφ̄(s)| + kLε
4C4||φ− φ̄||

)
ds + C4||φ− φ̄||.

Then it follows that

|yφ(t) − yφ̄(t)| ≤ C5||φ− φ̄||,(4.37)

where

C5 = C4

(
e(δ+Lε

3)(η
4
max−η3

min) +
e(δ+Lε

3)(η
4
max−η3

min) − 1

δ + Lε
3

kLε
4

)
.(4.38)

Step 6. For t ∈ [η4
max, τ+η4

max], we claim that yφ(t) ≥ (1/ε)2ε and yφ̄(t) ≥ (1/ε)2ε.
We prove this claim only for the function yφ, because the proof for the function yφ̄ is
similar and hence omitted. Note that t3 > η4

max = t2 +O(−ε log ε) for each ε ∈ (0, σ8)
where σ8 is chosen so that t3 > t2 + O(−σ8 log σ8). Using yφ(t) = x(t) + O(−ε log ε),
with yφ(t − τ) = x(t − τ) + O(−ε log ε) ≥ e−ατ + O(−ε log ε), and (3.7) and (4.34),
we have from (4.1) that dyφ(t)/dt > 0 for t ∈ [η4, t3], and thus yφ is increasing and
satisfies yφ(η4

max) ≥ yφ(η4) ≥ (1/ε)2ε. For t ∈ [t3, τ + η4
max], x(t) ≥ 1 + η. Then using

Lemma 4.2 again we have

yφ(t) = x(t) + O(−ε log ε) >

(
1

ε

)2ε

provided ε ∈ (0, σ9), where σ9 is sufficiently small so that the above formula holds for
ε ∈ (0, σ9). Therefore, we obtain

|yφ(t) − yφ̄(t)| ≤
∫ t

η4
max

(
(δ + Lε

2)|yφ(s) − yφ̄(s)| + kLε
3C5||φ− φ̄||

)
ds + C5||φ− φ̄||

and

|yφ(t) − yφ̄(t)| ≤ C6||φ− φ̄||,(4.39)

where

C6 = C5

(
e(δ+Lε

2)τ +
e(δ+Lε

2)τ − 1

δ + Lε
2

kLε
3

)
.(4.40)
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Step 7. When t ≥ τ + η4
max, both y and ȳ are decreasing and will take the value

1 + η after a finite time. Suppose that s and s̄ satisfy

yφ(s) = 1 + η, yφ̄(s̄) = 1 + η.

For the rest of the proof, we consider only the case s < s̄, since the case when s ≥ s̄
can be similarly dealt with and the proof is omitted. By (4.4) and (4.34), we also
obtain

s− (τ + η4
max) = Tx − (τ + t2) + O(−ε log ε)

and

s̄− (τ + η4
max) = Tx − (τ + t2) + O(−ε log ε),

where Tx is the period of the function x. Because the distance between τ + η4
max and

s may be greater than τ , we need to split the interval [τ + η4
max, s] into subintervals

[τ + η4
max, 2τ + η4

max], [2τ + η4
max, 3τ + η4

max], . . . , [mτ + η4
max, s], where the length of

each interval is exactly τ except the last one. Here m is the largest integer less than
or equal to (s − (τ + η4

max))/τ . We can successively estimate |yφ − yφ̄| on the above
subintervals to obtain

|yφ(t) − yφ̄(t)| ≤ C7||φ− φ̄||, t ∈ [τ + η4
max, s],(4.41)

with

C7 = C6

(
e(δ+Lε

2)τ +
e(δ+Lε

2)τ − 1

δ + Lε
2

kLε
2

)Tx

.(4.42)

For t ∈ [s, s̄], the function yφ̄ satisfies

yφ̄(s̄) = 1 + η and yφ̄(t) = 1 + η + O(−ε log ε),

because the length of the interval [s, s̄] is of order O(−ε log ε) and the derivative of
yφ̄ is bounded; c.f. Remark 4.3. On the other hand, since s = Tx + O(−ε log ε),
s̄ = Tx + O(−ε log ε), x(t) ≥ 1 + η for t ∈ [t3,Tx], and yφ̄(t) = x(t) + O(−ε log ε) for
t ∈ [0, Tx], we know by (4.20) that for t ∈ [s, s̄],

yφ̄(t− τ) ≥
(

1

ε

)2ε

and

kβε(y
φ̄(t− τ))yφ̄(t− τ) = O(−ε log ε).

Therefore, from (4.1) we know that for t ∈ [s, s̄] the function yφ̄ is decreasing and∣∣∣∣∣dy
φ̄(t)

dt

∣∣∣∣∣ =
∣∣∣−(δ + βε(y

φ̄(t)))yφ̄(t) + kβε(y
φ̄(t− τ))yφ̄(t− τ)

∣∣∣
≥ |−δ(1 + η) + O(−ε log ε)|

≥ δ(1 + η)

2
.
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Here we have assumed that ε is in the interval (0, σ10), where σ10 is chosen so that
for each ε ∈ (0, σ10), the inequality

−δ(1 + η) + O(−ε log ε) < −δ(1 + η)

2

holds. Applying the mean value theorem to the function yφ̄ yields the existence of
ρ ∈ [s, s̄] such that

|yφ̄(s̄) − yφ̄(s)| = |(yφ̄)′(ρ)(s̄− s)| ≥ δ(1 + η)

2
|s̄− s|

or, by (4.41),

|s̄− s| ≤ 2

δ(1 + η)
|yφ̄(s̄) − yφ̄(s)| =

2

δ(1 + η)
|yφ(s) − yφ̄(s)|,(4.43)

≤ 2C7

δ(1 + η)
||φ− φ̄||.

Our ultimate goal is to derive an estimate of |yφ̄s̄ (θ) − yφs (θ)| where θ ∈ [−τ, 0].
Indeed, we have

|yφ̄s̄ (θ) − yφs (θ)| ≤ |yφ̄s̄ (θ) − yφ̄s (θ)| + |yφ̄s (θ) − yφs (θ)|.(4.44)

The first term of the right-hand side is bounded by

∫ s̄+θ

s+θ

dyφ̄(t)

dt
dt ≤ M2 |s̄− s| ,

where M2 is the maximum value of the derivative of the function yφ̄; c.f. Remark 4.3.
The second term of (4.44) is bounded by C7||φ− φ̄||. Thus from (4.44), we have

|yφ̄s̄ (θ) − yφs (θ)| ≤ C7

(
1 +

2M2

δ(1 + η)

)
||φ− φ̄||.(4.45)

Using (4.21), we conclude from (4.29), (4.31), (4.33), (4.36), (4.38), (4.40), and (4.42)
that

lim
ε→0

Lε
R = lim

ε→0
C7

(
1 +

2M2

δ(1 + η)

)
= 0 < 1.

Therefore we conclude that there exists ε2 < min{ε1, σ6, σ7, σ8, σ9, σ10} so that for
each ε ∈ (0, ε2), the Lipschitz constant Lε

R of the map R is less than 1. This completes
our proof.

For Lε
R < 1, the return map R is contractive and there exists a unique fixed point φ

in Aη. Thus we have demonstrated the existence of a unique slowly oscillating periodic
solution for (4.1). The stability and exponential attractivity of this unique periodic
orbit can be established using the standard techniques developed in [31, 32, 33, 34, 36].

5. Asymptotic expansions for the periodic solution. In the previous sec-
tion we used fixed point theory to prove that there exists a unique periodic orbit for
(4.1). We now carry out a quantitative analysis of this periodic solution as ε < ε2.
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Since the map R is contractive and the Lipschitz constant Lε
R is exponentially decay-

ing as ε → 0, we are able to give an asymptotic expansion for this particular solution
for t ∈ [−τ, 0] with error bound beyond all integer orders of ε.

If we take the initial function given by φ = 1 + η, then we have a solution y1+η(·)
which is not periodic. But by Lemma 4.2, we have y1+η(t) = x(t) + O(−ε log ε) for t
∈ [0, Tx], and a T1+η > 0 such that

y1+η
T1+η

(0) = 1 + η, y1+η
T1+η

(θ) > 1 + η, θ ∈ [−τ, 0).

It is obvious that y1+η
T1+η

(θ) ∈ Aη.

Assume that y is the periodic solution to (4.1) and satisfies y(θ) ∈ Aη for θ ∈
[−τ, 0]. Suppose also that y(θ) has the following asymptotic expansion:

y(θ) =

∞∑
i=0

φi(θ), θ ∈ [−τ, 0].(5.1)

The function φ0 is given by y1+η
T1+η

, and φi, i ≥ 1, with the norm ||φ|| =

max−τ≤θ≤0 |φ(θ)|, will be constructed below. Let yφ0

T0
denote the image of the re-

turn map R at φ0, i.e.,

yφ0

T0
(θ) = R(φ0) = Fε(T0, φ0), θ ∈ [−τ, 0],

where T0 > 0 satisfies

yφ0

T0
(0) = 1 + η, yφ0

T0
(θ) > 1 + η, θ ∈ [−τ, 0).

Similarly, by induction, we set

φ1 = R(φ0) − φ0 = yφ0

T0
− φ0,

yφ1

T1
(θ) = R(φ1) = Fε(T1, φ1),

φn(θ) = Rn(φ0) −Rn−1(φ0) for n ≥ 2,

yφn

Tn
(θ) = R(φn) = Fε(Tn, φn) for n ≥ 2,

where Tn satisfies

yφn

Tn
(0) = 1 + η, yφn

Tn
(θ) > 1 + η, θ ∈ [−τ, 0), n ≥ 1.

Thus we have

|φn(θ) − φn−1(θ)| ≤ Lε
R|φn−1(θ) − φn−2(θ)|

≤ (Lε
R)n−1|φ1(θ) − φ0(θ)|.

Therefore, y(θ) =
∑∞

i=0 φi(θ) is uniformly convergent for θ ∈ [−τ, 0] and it is the fixed
point of R.
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We now give an asymptotic expansion for the period of the periodic solution y.
Using (4.43), we have

|Ti − Ti−1| ≤
2C7

δ(1 + η)
||φi − φi−1||,

which means that the series

T0 +

∞∑
j=1

(Tj − Tj−1)

is absolutely convergent to some constant, say, Tε. Since LR is exponentially decaying
as ε → 0, it is easy to see that the value of Tε is dominated by T0 in the sense that
Tε−T0 is exponentially small as ε → 0. Likewise the value of y(θ) in (5.1) is dominated
by φ0 with an exponential error bound as ε → 0. Thus when t ∈ [0, T0], we know
that the periodic solution y(t) is also dominated by yφ0(t). Therefore the estimate
of yφ0(t) and T0 becomes significant. From Lemma 4.2 we have the following rough
result for yφ0(t) and T0:

yφ0(t) = x(t) + O(−ε log ε), T0 = Tx + O(−ε log ε).

We now give refined estimates for yφ0(t) and T0 using the above information. As
in the proof of Lemma 4.2, we split the interval [0, T0] into subintervals and estimate
yφ0(t) on each subinterval successively. We demonstrate this process on the first
subinterval for the purpose of illustration. Remember that the initial data are taken
to be φ0 which is greater than 1+η when t lies in the interval [−τ, 0). Let tφ0

1 , η1, and

η2 be the values as defined in the proof of Lemma 4.2. Thus tφ0

1 satisfy yφ0(tφ0

1 ) = 1.

Integrating (4.1) from 0 to t, t ∈ [0, tφ0

1 ], gives

yφ0(t) − yφ0(0) = −δ

∫ t

0

yφ0(s)ds−
∫ t

0

βε(y
φ0(s))yφ0(s)ds(5.2)

+ k

∫ t

0

βε(y
φ0(s− τ))yφ0(s− τ)ds.

Since tφ0

1 = t1 + O(−ε log ε) and t1 < τ , it is easy to see that the last term of the
right-hand side of (5.2) is small and of O(ε). Next we claim that∫ t

0

βε(y
φ0(s))yφ0(s)ds = O(ε), t ∈ [0, tφ0

1 ].(5.3)

Indeed when t ∈ [0, tφ0

1 ], we have kβyφ0(t− τ)yφ0(t− τ) = O(ε). Then from (4.1) we
have

−α(1 + η) ≤ dyφ0(t)

dt
= −[βε(y

φ0(t)) + δ]yφ0(t) + O(ε) ≤ −δ + O(ε).(5.4)

Thus from (5.4) and the fact that∣∣∣∣
∫ t

0

βε(y
φ0(s))yφ0(s)

dyφ0

ds
ds

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

φ0
1

0

βε(y
φ0(s))yφ0(s)

dyφ0

ds
ds

∣∣∣∣∣
=

∣∣∣∣
∫ 1

1+η

β0u

1 + u1/ε
du

∣∣∣∣
= O(ε),
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we know that
∫ t

0
βε(y

φ0(s))yφ0(s)ds is also of O(ε) and the claim (5.3) is true. It

follows then from (5.2) that for t ∈ [0, tφ0

1 ],

yφ0(t) = −δ

∫ t

0

yφ0(t)dt + 1 + η + O(ε).

Using Gronwall’s inequality, we obtain

yφ0(t) = (1 + η + O(ε))e−δt,

which implies

yφ0(t) = x(t) + O(ε), t ∈ [0, tφ0

1 ].(5.5)

Continuing the above process, we can prove that (5.5) holds in the entire interval
[0, T0]. Furthermore, we also have

T0 = Tx + O (ε) ,

which completes our refined estimate.
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Abstract. We establish long-time existence results for quasilinear wave equations in the exterior
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1. Introduction. The purpose of this article is to establish long-time existence
results for quasilinear wave equations in the exterior of a star-shaped obstacle. The
proofs that are presented rely upon the classical invariance of the wave operator under
translations and spatial rotations. These techniques use only energy methods, and
thus we are optimistic about their potential use in other applications. A key step
in completing the proof is to establish a weighted L2

tL
2
x-estimate for the perturbed

equation that is analogous to the one of Keel, Smith, and Sogge [8] for the free wave
equation.

Let us more explicitly describe the initial value boundary value problem that we
will study. We begin by fixing an obstacle K ⊂ R

n that is compact, has smooth
boundary, and is star-shaped with respect to the origin. The latter condition means
that there is a smooth positive function ψ on Sn−1 so that

K = {(r, ω) : ψ(ω) − r ≥ 0}.

Here, we have expanded x in polar coordinates as x = rω, (r, ω) ∈ [0,∞) × Sn−1.
For such a fixed K, we examine the quasilinear wave equation⎧⎪⎨

⎪⎩
�u = Q(du, d2u), (t, x) ∈ R+ × R

n\K,

u(t, · )|∂K = 0,

u(0, · ) = f, ∂tu(0, · ) = g.

(1.1)

Here and throughout, � = (∂2
t − Δ) denotes the standard d’Alembertian.

The nonlinearity Q(du, d2u) in (1.1) is quadratic in its arguments and is linear in
d2u. We can expand

Q(du, d2u) = B(du) +
∑

0≤α,β,γ≤n

Bαβ
γ ∂γu∂α∂βu,(1.2)
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where B(du) is a quadratic form and the Bαβ
γ are real constants. We assume the

symmetry condition

Bαβ
γ = Bβα

γ .(1.3)

By scaling, we note that it suffices to choose K ⊂ {|x| < 1}, and we will make this
assumption throughout.

In order to solve (1.1), the data must be assumed to satisfy the relevant com-
patibility conditions. Briefly, this means that if we set Jku = {∂α

x u : 0 ≤ |α| ≤ k}
and if u is a formal Hm solution for some fixed m, then we can write ∂k

t u(0, · ) =
ψk(Jkf, Jk−1g), 0 ≤ k ≤ m, for compatibility functions ψk which depend on Q, Jkf ,
and Jk−1g. The compatibility condition for (f, g) ∈ Hm ×Hm−1 states that ψk must
vanish on ∂K when 0 ≤ k ≤ m− 1. Additionally, (f, g) ∈ C∞ are said to satisfy the
compatibility condition to infinite order if this condition holds for all m. For a more
detailed exposition on compatibility conditions, see, e.g., [7].

In describing the main results, we will use the notation {Ω} = {xi∂j − xj∂i :
1 ≤ i < j ≤ n} to denote the generators of the spatial rotations. We will also use
{Z} = {∂k,Ω : 0 ≤ k ≤ n} to denote the generators of translations and spatial
rotations.

Our main results are as follows. The first states that small-data solutions to (1.1)
exist almost globally if n = 3.

Theorem 1.1. Assume that the star-shaped obstacle K ⊂ R
3 and the nonlinearity

Q(du, d2u) are as above. Suppose that the initial data (f, g) ∈ C∞(R3\K) satisfy the
compatibility condition to infinite order. Then, there are constants κ, ε0 > 0 and an
integer N > 0 so that for all ε < ε0 and data satisfying

∑
|μ|≤N

‖Zμ∇xf‖L2(R3\K) +
∑

|μ|≤N

‖Zμg‖L2(R3\K) ≤ ε,(1.4)

(1.1) has a unique solution u ∈ C∞([0, Tε] × R
3\K) with

Tε = exp(κ/ε).(1.5)

This bound on the lifespan of solutions in n = 3 is sharp, as is illustrated by
finite propagation speed and the counterexamples of John [5] and Sideris [21] in the
boundaryless case.

The second main result states that small-data solutions exist globally in higher
dimensions.

Theorem 1.2. Suppose n ≥ 4. Assume that the star-shaped obstacle K ⊂ R
n

and the nonlinearity Q(du, d2u) are as above. Suppose that the initial data (f, g) ∈
C∞(Rn\K) satisfy the compatibility condition to infinite order. Then, there are a
constant ε0 > 0 and an integer N > 0 so that for all ε < ε0 and data satisfying

∑
|μ|≤N

‖Zμ∇xf‖L2(Rn\K) +
∑

|μ|≤N

‖Zμg‖L2(Rn\K) ≤ ε,(1.6)

(1.1) has a unique solution u ∈ C∞([0,∞) × R
n\K).

While we have stated only the theorems for scalar wave equations, as the proofs
rely only upon energy methods, straightforward modifications would yield the results
for multiple speed systems of wave equations. In order not to further complicate the
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notation, we will prove only the scalar case. A more detailed exposition concerning
the multiple speed case will be available in a forthcoming paper on null-form wave
equations.

Theorem 1.1 was first proved by Keel, Smith, and Sogge [9]. It is an analogue of
the results concerning boundaryless wave equations of John and Klainerman [6] and
Klainerman and Sideris [11]. Theorem 1.2 was previously shown by the authors [17].
This generalizes the work on wave equations in higher dimensions previously com-
pleted by Metcalfe [13], Shibata and Tsutsumi [20], and Hayashi [3]. It is also worth
pointing out the following works for related problems involving null-form nonlineari-
ties: Keel, Smith, and Sogge [7]; Metcalfe and Sogge [16]; and Metcalfe, Nakamura,
and Sogge [14, 15]. The techniques in this paper appear to allow for some simplifica-
tions of these proofs, and this will be explored in a subsequent paper. The arguments,
however, are more involved as they require the use of the scaling vector field and decay
estimates of Klainerman and Sideris [11].

The techniques used to prove Theorem 1.1 represent an improvement over those in
[9] in a number of ways. Most importantly, the proofs in this article make no reference
to the fundamental solution of the wave equation or to the sharp Huygens’ principle.
Thus, it is believed that these techniques will be more suitable for other applications.
For example, one might compare the methods of Sideris and Tu [24] to those used
in Sideris [22, 23]. Additionally, we are not required to use the scaling vector field
L = t∂t + r∂r. On a lesser note, we remark that the proofs herein seem to require
less regularity of the initial data and less regularity of the boundary of the obstacle.
As neither proof takes care to minimize such regularity, there is much possibility for
further improvement in this direction. The proof of Theorem 1.2 improves upon the
techniques of previous works in similar ways.

It is interesting to note that our arguments never make explicit use of the well-
known decay of local energy. See, e.g., Lax, Morawetz, and Phillips [12]. We do,
however, rely upon a geometrical condition that is sufficient to ensure such estimates.
This condition is used in ways that are reminiscent of those of Morawetz [18] in proving
said decay estimates.

A key estimate which is common to many of the previous studies of wave equations
in exterior domains was established by Keel, Smith, and Sogge [8] and states that for
n ≥ 3

(1.7) (log(2 + T ))−1/2
(
‖〈x〉−1/2∇t,xφ‖L2

tL
2
x([0,T ]×Rn) + ‖〈x〉−3/2φ‖L2

tL
2
x([0,T ]×Rn)

)
� ‖∇t,xφ(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds.

The proof is easily modified to yield the second estimate

(1.8) ‖〈x〉−1/2−∇t,xφ‖L2
tL

2
x([0,T ]×Rn) + ‖〈x〉−3/2−φ‖L2

tL
2
x([0,T ]×Rn)

� ‖∇t,xφ(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds.

Here, we are using the notation 〈x〉 = 〈r〉 = (1 + |x|2)1/2. We are also using the
notation 〈x〉−1/2− and 〈x〉−3/2− to indicate that (1.8) holds with the weights replaced,
respectively, by 〈x〉−1/2−δ and 〈x〉−3/2−δ for any δ > 0. Moreover, we are using A � B
to indicate A ≤ CB for some positive, unspecified constant C.

These estimates are related to an earlier one of Strauss [27] and were used by
Keel, Smith, and Sogge [8] to give a proof of almost global existence to semilinear
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wave equations in exterior domains. Using this estimate, long-time existence was
established using the O(1/|x|) decay of the wave equation rather than the more stan-
dard O(1/t) decay which is much more difficult to prove when there is a boundary.
Metcalfe [13] completed the analogous result for higher dimensions using an estimate
of the form (1.8) and arguments that are reminiscent of [8].

It should be noted that estimates similar to (1.7) and (1.8) which hold in all
dimensions have been shown by Hidano and Yokoyama [4]. The above estimates
should also be compared to the Morawetz identities (see, e.g., [19])

‖|x|−1/2 �∇φ‖L2
tL

2
x([0,T ]×Rn) + ‖|x|−3/2φ‖L2

tL
2
x([0,T ]×Rn)

� ‖∇t,xφ(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds, n ≥ 4,

and

‖|x|−1/2 �∇φ‖L2
tL

2
x([0,T ]×R3) + ‖φ( · , 0)‖L2

t ([0,T ])

� ‖∇t,xφ(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds, n = 3,

which correspond to choosing f(r) ≡ 1 in the proof of Lemma 4.1. Here �∇ denotes
the angular portion of ∇x.

The estimates (1.7) and (1.8) are proved by scaling a version of (1.8) where
the norms in the left side are taken over [0, T ] × {|x| < 1}. These local versions
are established either, in odd dimensions, by noticing that the backward light cones
s + |x| ∈ (j − 1, j], j = 1, 2, 3, . . . , have finite overlap or by an argument using
Plancherel’s identity (see Smith and Sogge [25]). Then, using techniques that resemble
those of [25], one can show that an estimate for the Dirichlet-wave equation follows
from those for the free equation.

The estimates (1.7) and (1.8) are, however, insufficient to give a proof of long-time
existence for quasilinear equations as there is a loss of regularity in the right side. In
order to get around this, previous works have had to rely on pointwise estimates that
involve direct estimation of the fundamental solution of the free wave equation.

Recently, Rodnianski [26, Appendix] has given a new proof of an estimate related
to (1.8). This new proof relies only upon energy methods. A main topic of this paper
is the further study of this argument. In particular, we show that Rodnianski’s argu-
ment can be used to prove (1.7) and (1.8). Moreover, we show that this argument can
be used to directly prove an estimate for the Dirichlet-wave equation if the obstacle
is assumed to be star-shaped. Thus, we will not rely on the cutoff methods used pre-
viously. Last, this new geometric argument, unlike the previously established proofs,
lends itself well to establishing similar weighted estimates for perturbed equations.
With such estimates for the perturbed equation, one can prove Theorems 1.1 and 1.2
using the arguments of [8].

The mixed-norm estimates for the perturbed equation in Theorem 5.1 give a
partial answer to questions raised in Alinhac [1] concerning the adaptability of the
Keel–Smith–Sogge estimates to more general settings. During final preparations of
this article, it was learned that Alinhac [2] had independently obtained a Keel–Smith–
Sogge-type estimate for the perturbed wave equation using different (although related)
techniques. This argument, however, requires assumptions on the perturbation that
are less favorable in the current setting. In particular, it is required that the perturba-
tion decay in t. When there is a boundary, such decay is quite difficult to prove, and
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we are using the mixed-norm estimates in place of such decay. Thus, it is essential
that we require the perturbation terms to have decay only in |x| = r.

Before proceeding, we fix some notation. Throughout the paper, we will use the
Einstein convention where repeated indices are summed. We will use Greek indices
α, β, γ, δ when the indices are to run from 0, . . . , n. We will use Latin indices a, b
when the implicit summations run from 1, . . . , n. We will let gαβ = diag(−1, 1, . . . , 1)
be the Minkowski metric, and 〈 · , · 〉 will occasionally be used to denote the Euclidean
inner product on R

n. Unless explicitly stated to the contrary, L2 norms are taken
over R

n\K. We will let ST = [0, T ] × R
n\K denote a time strip of height T . We

will use the notation t = x0, ∂t = ∂0 interchangeably. And, when convenient, we will
use ′ = ∂ = ∇t,x = (∂t,∇x) to denote the full space-time gradient. We will use D
to denote the Levi–Civita connection of gαβ , but as this metric is flat, we have the
correspondence Dα = ∂α.

This paper is organized as follows. In the next section, we will give the weighted
Sobolev inequality from which we easily obtain the required O(1/|x|(n−1)/2) decay
for solutions to the wave equation. In the third section, we prove the basic energy
estimates that will be used in the proofs of long-time existence. In the fourth section,
we give the new geometrical proof of the mixed-norm estimates of Keel, Smith, and
Sogge. This argument follows that of Rodnianski [26, Appendix] quite closely. In the
following section, we show that the energy methods used to prove the mixed-norm
estimates are stable under small perturbations. In the final two sections, we give the
proofs of Theorems 1.1 and 1.2, respectively.

2. Sobolev estimates. In this section, we give the now standard weighted
Sobolev estimate from which one can obtain the necessary O(1/|x|(n−1)/2) decay in
order to show our long-time existence results. See [10].

Lemma 2.1. Suppose that h ∈ C∞(Rn). Then, for R ≥ 1,

‖h‖L∞(R/2<|x|<R) � R−(n−1)/2
∑

|μ|+|ν|≤n+2
2

‖Ωμ∂ν
xh‖L2(R/4<|x|<2R).(2.1)

3. Energy estimates. In this section, we will collect the energy estimates that
we will require. These results are rather standard. We will be concerned with solutions
φ ∈ C∞(R+ × R

n\K) of the Dirichlet-wave equation{
�hφ = F,

φ|∂K = 0,
(3.1)

where

�hφ = −∂α∂αφ + hαβ∂α∂βφ = (∂2
t − Δ)φ +

n∑
α,β=0

hαβ(t, x)∂α∂βφ.

We shall assume that the hαβ satisfy the symmetry conditions

hαβ = hβα(3.2)

as well as the size conditions

n∑
α,β=0

|hαβ(t, x)| ≤ δ  1.(3.3)
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We define the energy form associated with �h

e0 = e0(φ) = (∂0φ)2 +
1

2
∂γφ∂γφ− g0γh

γδ∂δφ∂0φ− 1

2
hγδ∂γφ∂δφ.(3.4)

Our most basic estimate involves

EM (t) = EM (φ)(t) =

∫
Rn\K

M∑
j=0

e0(∂
j
tφ)(t, x) dx.

Lemma 3.1. Fix M = 0, 1, 2, . . . and assume that the perturbation terms hαβ are
as above. Suppose also that φ ∈ C∞ solves (3.1) and that for every t, φ(t, x) = 0 for
large |x|. Then,

(3.5) EM (T ) � EM (0) +

M∑
j,k=0

∫ T

0

∫
Rn\K

|(∂0∂
k
t φ)(�h∂

j
tφ)| dx dt

+
M∑

j,k=0

∫ T

0

∫
Rn\K

(
|(∂αhαβ)(∂0∂

j
tφ)(∂β∂

k
t φ)| + |(∂0h

αβ)(∂α∂
j
tφ)(∂β∂

k
t φ)|

)
dx dt.

We first note that since ∂j
tφ satisfies the Dirichlet boundary conditions for 1 ≤

j ≤ M it suffices to prove the result for M = 0. To proceed with the proof, we must
define the other components of the energy-momentum vector. For k = 1, . . . , n, we
set

ek = ek(φ) = ∂kφ∂0φ− gkγh
γδ∂δφ∂0φ.(3.6)

Calculating the divergence of this energy-momentum vector, we see that

Dαeα = −∂0φ�hφ− (∂αh
αδ)∂δφ∂0φ +

1

2
(∂0h

γδ)∂γφ∂δφ.(3.7)

If we integrate in the spatial components and apply the divergence theorem, it follows
that

(3.8) ∂t

∫
Rn\K

e0 dx +

∫
∂K

ean
a dσ =

∫
Rn\K

∂0φ�hφ dx

+

∫
Rn\K

(
(∂αh

αδ)∂δφ∂0φ− 1

2
(∂0h

γδ)∂γφ∂δφ

)
dx,

where n is the outward unit normal to K and dσ is the surface measure on ∂K.
Since ∂t preserves the Dirichlet boundary condition, we have that ∂tφ vanishes on

∂K and that the integrand of the second term in the left side of (3.8) vanishes. If we
integrate the remaining terms over a time interval [0, T ], (3.5) follows easily.

Next, we will need energy estimates that also involve spatial derivatives.
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Lemma 3.2. Suppose that the hαβ are as above with δ chosen sufficiently small.
Then, if φ solves (3.1) and if N = 0, 1, 2, . . . is fixed,∑

|μ|≤N

‖∂μ
t,xφ

′(T, · )‖2 �
∑
j≤N

‖∂j
tφ

′(0, · )‖2(3.9)

+

N∑
j,k=0

(∫ T

0

∫
Rn\K

|(∂0∂
k
t φ)(�h∂

j
tφ)| dx dt

)1/2

+

N∑
j,k=0

[∫ T

0

∫
Rn\K

(
|(∂αhαβ)(∂0∂

j
tφ)(∂β∂

k
t φ)| + |(∂0h

αβ)(∂α∂
j
tφ)(∂β∂

k
t φ)|

)
dx dt

]1/2

+
∑

|μ|≤N−1

‖�∂μ
t,xφ(T, · )‖2.

Since

1

2
|φ′(t, x)|2 ≤ e0(t, x) ≤ 2|φ′(t, x)|2

for δ in (3.3) sufficiently small, this follows from (3.9) and a standard elliptic regularity
argument. The interested reader can see, e.g., Lemma 2.3 of [16] or Theorem 5.2 of
[9].

Finally, we will need energy estimates that involve the generators of spatial rota-
tions as well as derivatives.

Lemma 3.3. Fix N = 0, 1, 2, . . . and set

YN (t) =
∑

|μ|≤N

∫
e0(Z

μφ)(t, x) dx.

Suppose that (3.3) holds for δ sufficiently small. Then

(3.10) ∂tYN (t) �
∑

|μ|,|ν|≤N

∫
Rn\K

|(∂0Z
μφ)(�hZ

νφ)| dx

+
∑

|μ|,|ν|≤N

∫
Rn\K

(
|(∂γhγδ)(∂0Z

μφ)(∂δZ
νφ)| + |(∂0h

γδ)(∂γZ
μφ)(∂δZ

νφ)|
)
dx

+
∑

|μ|≤N+1

‖∂μu′(s, · )‖2
L2(|x|<1).

In order to prove (3.10), we argue as in the proof of Lemma 3.1 and find that

∂tYN �
∑

|μ|,|ν|≤N

∫
Rn\K

|(∂0Z
μφ)(�hZ

νφ)| dx

+
∑

|μ|,|ν|≤N

∫
Rn\K

(
|(∂γhγδ)(∂0Z

μφ)(∂δZ
νφ)| + |(∂0h

γδ)(∂γZ
μφ)(∂δZ

νφ)|
)
dx

+

∫
∂K

|eNk nk| dσ,
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where n is the outward normal at a given point of ∂K and the eNk =
∑

|μ|≤N eNk (Zμφ)(t, x)

are as in (3.6). Since K ⊂ {|x| < 1} and since∑
|μ|≤N

|Zμφ(t, x)| �
∑

|μ|≤N

|∂μφ(t, x)|, x ∈ ∂K,

we have ∫
∂K

|eNk nk| dσ �
∫
{x∈Rn\K : |x|<1}

∑
|μ|≤N+1

|∂μφ′(t, x)|2 dx,

which completes the proof.

4. Geometric approach to L2
t L2

x-estimates. In this section, we show that
the estimates (1.7) and (1.8) hold in the exterior of a star-shaped obstacle. In the
next section, we will show that these estimates also hold for the perturbed wave
equation. For clarity of exposition, we begin here with the proofs for the standard
d’Alembertian. These estimates will be shown directly using energy methods and
result from straightforward modifications of Rodnianski’s argument [26, Appendix].

Lemma 4.1. Suppose that K is as above and n ≥ 3. Suppose also that φ ∈ C∞

satisfies φ|∂K = 0 and that φ vanishes for large |x| for every t. Then, we have

(4.1) (log(2 + T ))−1/2
(
‖〈x〉−1/2φ′‖L2

tL
2
x(ST ) + ‖〈x〉−3/2φ‖L2

tL
2
x(ST )

)
� ‖φ′(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds

and

‖〈x〉−1/2−φ′‖L2
tL

2
x(ST ) + ‖〈x〉−3/2−φ‖L2

tL
2
x(ST ) � ‖φ′(0, · )‖2 +

∫ T

0

‖�φ(s, · )‖2 ds

(4.2)

for any T > 0. The implicit constants in (4.1) and (4.2) are independent of K.
By Duhamel’s principle, we shall need only the homogeneous case. So, let φ be a

solution to {
�φ = (∂2

t − Δ)φ = 0,

φ|∂K = 0.
(4.3)

We let Qαβ denote its energy-momentum tensor

Qαβ [φ] = ∂αφ∂βφ− 1

2
gαβ∂

γφ∂γφ.(4.4)

It is well known that Qαβ is divergence free. That is,

DαQαβ [φ] = 0.

In order to get the weighted estimates, we define the momentum density

Pα[φ,X] = Qαβ [φ]Xβ(4.5)
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by contracting Qαβ [φ] with the radial vector field

X = f(r)∂r(4.6)

(and thus, Xa = f(r)
r xa for a = 1, . . . , n and X0 = 0). One can check that this

satisfies

DαPα[φ,X] =
1

2
Qαβ [φ]παβ ,

where

παβ = DαXβ + DβXα

is the deformation tensor of X.
A direct calculation then yields that

DαPα[φ,X] = f ′(r)|∂rφ|2 +
f(r)

r
|�∇φ|2 − 1

2
trπ∂γφ∂γφ,(4.7)

where, as you can check,

trπ = f ′(r) + (n− 1)
f(r)

r
.(4.8)

Here, �∇φ denotes the angular portion of the spatial gradient ∇xφ. At this point, we
define the modified momentum density

P̃α[φ,X] = Pα[φ,X] +
1

2
trπφ∂αφ− 1

4
∂α(trπ)|φ|2,(4.9)

which satisfies

DαP̃α[φ,X] = f ′(r)|∂rφ|2 +
f(r)

r
|�∇φ|2 − 1

4
Δ(trπ)|φ|2.(4.10)

If we integrate this identity over a time strip [0, T ] × R
n\K and apply the diver-

gence theorem, we see that

(4.11)

∫
Rn\K

P̃0[φ,X](0) dx−
∫

Rn\K
P̃0[φ,X](T ) dx−

∫ T

0

∫
∂K

P̃a[φ,X](t)na dσ dt

=

∫ T

0

∫
Rn\K

(
f ′(r)|∂rφ|2 +

f(r)

r
|�∇φ|2 − 1

4
Δ(trπ)|φ|2

)
dx dt,

where n is the outward unit normal to K and dσ is the surface measure on ∂K. Here∫
Rn\K

P̃0[φ,X](0) dx =

∫
Rn\K

(
Xa∂tφ(0)∂aφ(0) +

1

2
trπφ(0)∂tφ(0)

)
dx.

There is an identical expression for the time T piece on the left side of (4.11), since
trπ is independent of t. If one chooses f(r) so that |f(r)| � 1 and |f ′(r)| � 1

r , it
follows from (4.8) and the Schwarz inequality that∣∣∣∣∣

∫
Rn\K

P̃0[φ,X](0) dx

∣∣∣∣∣ �
(
‖r−1φ(0)‖2 + ‖∇t,xφ(0)‖2

)
‖∇t,xφ(0)‖2

� ‖∇t,xφ(0)‖2
2.
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The last inequality above follows from the Hardy inequality. Analogous estimates
hold for the P̃0[φ,X](T ) term. Thus, by conservation of energy, this term is also
controlled by ‖∇t,xφ(0)‖2

2.
Since φ|∂K = 0 and since ∂t preserves the Dirichlet boundary condition, for the

remaining boundary term, we have

−
∫ T

0

∫
∂K

P̃a[φ,X](t) ·na dσ dt = −
∫ T

0

∫
∂K

f(r)

r

(
∂	nφ∂βφx

β − 1

2
|∇φ|2〈x, n〉

)
dσ dt.

Here, ∂	nφ = 〈n,∇x〉φ denotes differentiation with respect to the outward normal to
K. Since φ = 0 on ∂K, we have that ∂βφ = ∂	nφnβ . And, thus, we see that

−
∫ T

0

∫
∂K

P̃a[φ,X](t) · na dσ dt = −1

2

∫ T

0

∫
∂K

f(r)

r
(∂	nφ)2〈x, n〉 dσ dt.

This term is then easily seen to be negative as 〈x, n〉 > 0 for star-shaped K.
Combining (4.11) and these estimates for the boundary terms, we see that∫ T

0

∫
Rn\K

(
f ′(r)|∂rφ|2 +

f(r)

r
|�∇φ|2 − 1

4
Δ(trπ)|φ|2

)
dx dt � ‖∇t,xφ(0)‖2

2.(4.12)

At this point, we choose the weight function

f(r) =
r

ρ + r
(4.13)

for some ρ > 0. It is easy to check that

Δ(trπ) = − 1

r(ρ + r)4

(
(n− 1)(n− 3)r2 + 2(n2 − 2n− 2)rρ(4.14)

+ (n + 1)(n− 1)ρ2
)
< 0

for n ≥ 3. Indeed, each term above is nonpositive. This, therefore, gives the a priori
estimate ∫ T

0

∫
Rn\K

(
ρ

(ρ + r)2
|∂rφ|2 +

1

r + ρ
|�∇φ|2 +

ρ

(ρ + r)4
|φ|2

)
dx dt(4.15)

� ‖∇t,xφ(0)‖2
2.

The implicit constant is independent of ρ.
By choosing ρ = 1, this yields the estimate∫ T

0

∫
|x|≤1

(
|∇xφ|2 + |φ|2

)
dx dt � ‖∇t,xφ(0)‖2

2.(4.16)

Similarly, if we choose ρ = 2k for an integer k ≥ 0, we get∫ T

0

∫
2k−1≤|x|≤2k

( |∇xφ|2
r

+
|φ|2
r3

)
dx dt � ‖∇t,xφ(0)‖2

2.(4.17)

If we combine (4.16) and (4.17) and sum over k ≥ 1, we see immediately that

‖〈r〉−1/2−∇xφ‖L2
tL

2
x([0,T ]×Rn\K) + ‖〈x〉−3/2−φ‖L2

tL
2
x([0,T ]×Rn\K)(4.18)

� ‖∇t,xφ(0)‖2.
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The same argument also yields

(4.19) (log(2 + T ))−1/2
(
‖〈r〉−1/2∇xφ‖L2

tL
2
x([0,T ]×Rn\K)

+ ‖〈x〉−3/2φ‖L2
tL

2
x([0,T ]×Rn\K)

)
� ‖∇t,xφ(0)‖2.

Indeed, (4.19) follows trivially from the energy inequality and a Hardy inequality if
the norms on the left side are taken over |x| ≥ T . Thus, we need only sum over the
O(log(2 + T )) choices of k with 2k−1 � T .

It remains to see that a similar bound holds for ∂tφ. To do so, we define another
modified momentum density

P̄α[φ,X] = Pα[φ,X] +
n− 1

2

f(r)

r
φ∂αφ− n− 1

4
∂α

(f(r)

r

)
|φ|2.(4.20)

Calculating the divergence, we have

DαP̄α[φ,X] = f ′(r)(∂rφ)2 +
f(r)

r
|�∇φ|2 − 1

2
f ′(r)∂γφ∂γφ(4.21)

− n− 1

4
Δ
(f(r)

r

)
|φ|2.

Thus, if we integrate both sides of (4.21) over a time strip, apply the divergence
theorem, and use similar arguments for controlling the boundary terms, it follows
that ∫ T

0

∫
Rn\K

f ′(r)(∂rφ)2 +
f(r)

r
|�∇φ|2 − 1

2
f ′(r)∂γφ∂γφ− n− 1

4
Δ

(
f(r)

r

)
|φ|2(4.22)

� ‖∇xφ(0)‖2
2.

For f as in (4.13), we have f ′(r) < f(r)/r and

Δ

(
f(r)

r

)
=

−(n− 3)r − (n− 1)ρ

r(r + ρ)3
< 0(4.23)

for n ≥ 3. Since ∂γφ∂γφ = −(∂tφ)2 + (∂rφ)2 + |�∇φ|2, we see from (4.22) that

∫ T

0

∫
Rn\K

ρ

(r + ρ)2
(∂tφ)2 dx dt � ‖∇t,xφ(0)‖2

2.

By choosing ρ = 1 and ρ = 2k for k ≥ 1, we get the estimates analogous to (4.16) and
(4.17) for ∂tφ. Summing over k as above and combining this with (4.18) and (4.19)
immediately yield (4.1) and (4.2).

It is worth noting that the proof shows that there is additional decay for certain
derivatives of the solution φ, namely, for �∇φ. Indeed, from (4.15), one can see that
the log(2 + T ) factor in (4.1) is not necessary for the angular derivatives. This extra
decay is something that has been exploited in other estimates and applications. See,
e.g., Alinhac [1].

5. L2
t L2

x-estimate for the perturbed equation. The goal of this section is to
show that the methods of the previous section can be adapted to give similar bounds
for perturbed wave equations. This is the main new estimate of this article.
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Theorem 5.1. Suppose K is as above and that n ≥ 3. Let φ ∈ C∞(R+ ×R
n\K)

be a solution of (3.1). Suppose that hαβ satisfies (3.2) and (3.3) for a small choice
of δ. Then, if �hφ = F , we have

(5.1) ‖〈x〉−1/2−φ′‖L2
tL

2
x(ST ) + (log(2 + T ))−1/2‖〈x〉−1/2φ′‖L2

tL
2
x(ST )

+ ‖〈x〉−3/2−φ‖L2
tL

2
x(ST ) + (log(2 + T ))−1/2‖〈x〉−3/2φ‖L2

tL
2
x(ST )

� ‖φ′(0, · )‖2 +

(∫ T

0

∫
Rn\K

(
|∇t,xφ| +

|φ|
r

)
|F | dx dt

)1/2

+

[∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,xφ|

(
|∇t,xφ| +

|φ|
r

)
dx dt

]1/2

for any T ≥ 0.
Here, in an abuse of notation, we are setting

|h| =

n∑
α,β=0

|hαβ(t, x)|, |∂h| =

n∑
α,β,γ=0

|∂γhαβ(t, x)|.

Although we shall not use this, we point out that this estimate holds when the
regularity of the boundary of K is merely C1. Also, the implicit constants in (5.1) are
independent of the choice of star-shaped obstacle K.

To prove (5.1), we set

Qαβ [φ] = ∂αφ∂βφ− 1

2
gαβ∂

γφ∂γφ− gαγh
γδ∂δφ∂βφ +

1

2
gαβh

γδ∂γφ∂δφ.(5.2)

Then it is straightforward to check that

DαQαβ [φ] = −(∂βφ)F − (∂γh
γδ)∂δφ∂βφ +

1

2
(∂βh

γδ)∂γφ∂δφ.

As above, we contract this with a radial vector field X = f(r)∂r, define Pα[φ,X] =
Qαβ [φ]Xβ , and compute that

DαPα[φ,X] = f ′(r)(∂rφ)2 +
f(r)

r
|�∇φ|2 − 1

2
trπ∂γφ∂γφ− F (∂rφ)f(r)

− (∂γh
γδ)∂δφ∂rφf(r) +

1

2
(∂rh

γδ)∂γφ∂δφf(r) − xah
aδ∂δφ∂rφ

f ′(r)

r

+ xah
aδ∂δφ∂rφ

f(r)

r2
− haδ∂δφ∂aφ

f(r)

r
+

1

2
(trπ)hγδ∂γφ∂δφ,

where trπ is given as in (4.8).
By modifying this momentum density as in (4.20) and setting

(5.3) P̄α[φ,X] = Pα[φ,X] +
n− 1

2

(f(r)

r

)
φ∂αφ

− n− 1

4
∂α

(
f(r)

r

)
|φ|2 − n− 1

2

(
f(r)

r

)
gαγh

γβφ∂βφ,
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it follows that

DαP̄α[φ,X] = f ′(r)(∂rφ)2 +
f(r)

r
|�∇φ|2 − 1

2
f ′(r)∂γφ∂γφ(5.4)

− n− 1

4
Δ

(
f(r)

r

)
|φ|2 − F (∂rφ)f(r) − n− 1

2
F
φ

r
f(r)

− (∂γh
γδ)∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f(r) +

1

2
(∂rh

γδ)∂γφ∂δφf(r)

− xah
aδ∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f ′(r)

r

+ xah
aδ∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f(r)

r2

− haδ∂δφ∂aφ
f(r)

r
+

1

2
f ′(r)hγδ∂γφ∂δφ.

Integrating both sides of (5.4) in a time strip ST yields

(5.5)

∫
Rn\K

P̄0[φ,X](0) dx−
∫

Rn\K
P̄0[φ,X](T ) dx−

∫ T

0

∫
∂K

P̄a[φ,X]na dσ dt

=

∫ T

0

∫
Rn\K

DαP̄α[φ,X] dx dt.

For f as given by (4.13), we have |f(r)| � 1 and |f ′(r)| � 1
r . Thus, we see that

∣∣∣∣∣
∫

Rn\K
P̄0[φ,X](0) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Rn\K

(
∂tφ(0)∂rφ(0)f(r) − g0γh

γδ(0)∂δφ(0)∂rφ(0)f(r)

+
n− 1

2

f(r)

r
φ(0)∂tφ(0) − n− 1

2

f(r)

r
g0γh

γβφ(0)∂βφ(0)
)
dx

∣∣∣∣∣
� ‖∇t,xφ(0)‖2

2.

For the last inequality, we are, as above, using the Schwarz inequality and the Hardy
inequality. We are also using the bound (3.3).

A similar estimate holds for the P̄0[φ,X](T ) term. And, thus, by the energy
inequality (3.5),

∣∣∣∣∣
∫

Rn\K
P̄0[φ,X](T ) dx

∣∣∣∣∣ � ‖∇t,xφ(T )‖2
2

� ‖∇t,xφ(0)‖2
2 +

∫ T

0

∫
Rn\K

|∂tφ||F | dx dt

+

∫ T

0

∫
Rn\K

(
|(∂αhαβ)∂tφ∂βφ| + |(∂thαβ)∂αφ∂βφ|

)
dx dt.

For the remaining boundary terms, we use the fact that the Dirichlet boundary
conditions permit us to write ∂aφ = ∂	nφna on ∂K. Thus, if δ in (3.3) is small enough,
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we have

−
∫ T

0

∫
∂K

P̄a[φ,X]na dσ dt

= −1

2

∫ T

0

∫
∂K

f(r)

r

(
(∂	nφ)2〈x, n〉 − (∂	nφ)2(habnanb)〈x, n〉

)
dσ dt

≤ −1

4

∫ T

0

∫
∂K

f(r)

r
(∂	nφ)2〈x, n〉 dσ dt ≤ 0.

For the first inequality, we are using (3.3). For the second inequality, we use the fact
that 〈x, n〉 > 0 for star-shaped K.

Using these bounds in (5.5), fixing f as in (4.13), and applying (5.4), it follows
that

∫ T

0

∫
Rn\K

f ′(r)(∂rφ)2 +
f(r)

r
|�∇φ|2 − 1

2
f ′(r)∂γφ∂γφ− n− 1

4
Δ

(
f(r)

r

)
|φ|2

− (∂γh
γδ)∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f(r) +

1

2
(∂rh

γδ)∂γφ∂δφf(r)

− xah
aδ∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f ′(r)

r
+ xah

aδ∂δφ

(
∂rφ +

n− 1

2

φ

r

)
f(r)

r2

− haδ∂δφ∂aφ
f(r)

r
+

1

2
f ′(r)hγδ∂γφ∂δφ dx dt

� ‖∇t,xφ(0)‖2
2 +

∫ T

0

∫
Rn\K

(
|∇t,xφ| +

|φ|
r

)
|F | dx dt

+

∫ T

0

∫
Rn\K

(
|(∂αhαβ)∂tφ∂βφ| + |(∂thαβ)∂αφ∂βφ|

)
dx dt.

Using (4.23), this yields∫ T

0

∫
Rn\K

ρ

(r + ρ)2
(∂rφ)2 +

1

r + ρ
|�∇φ|2 +

ρ

(r + ρ)2
(∂tφ)2(5.6)

+
ρ

r(r + ρ)3
|φ|2 dx dt

� ‖∇t,xφ(0)‖2
2 +

∫ T

0

∫
Rn\K

(
|∇t,xφ| +

|φ|
r

)
|F | dx dt

+

∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,xφ|

(
|∇t,xφ| +

|φ|
r

)
dx dt,

since f ′(r) < f(r)/r. Thus, it follows that

(5.7)

∫ T

0

∫
|x|≤1

(
|∇xφ|2 + |∂tφ|2 + |φ|2

)
dx dt

� ‖∇t,xφ(0)‖2
2 +

∫ T

0

∫
Rn\K

(
|∇t,xφ| +

|φ|
r

)
|F | dx dt

+

∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,xφ|

(
|∇t,xφ| +

|φ|
r

)
dx dt



202 JASON METCALFE AND CHRISTOPHER D. SOGGE

for the choice ρ = 1 (since 0 ∈ K and thus 1/r is bounded on the complement of K)
and

(5.8)

∫ T

0

∫
2k−1≤|x|≤2k

(
|∇xφ|2

r
+

|∂tφ|2
r

+
|φ|2
r3

)
dx dt

� ‖∇t,xφ(0)‖2
2 +

∫ T

0

∫
Rn\K

(
|∇t,xφ| +

|φ|
r

)
|F | dx dt

+

∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,xφ|

(
|∇t,xφ| +

|φ|
r

)
dx dt

for ρ = 2k. If we sum over k ≥ 1 as above, (5.1) follows, which completes the
proof.

If we use an elliptic regularity argument as above, the following lemma holds.
Lemma 5.2. Suppose that K is as above and n ≥ 3. Let φ ∈ C∞(R+ ×R

n\K) be
a solution of (3.1). Suppose that hαβ satisfies (3.2) and (3.3) for a small choice of
δ. Then, we have

(log(2 + T ))−1/2
∑

|μ|≤N

‖〈x〉−1/2∂μ
t,xφ

′‖L2
tL

2
x(ST )(5.9)

+
∑

|μ|≤N

‖〈x〉−1/2−∂μ
t,xφ

′‖L2
tL

2
x(ST )

�
∑
j≤N

‖∂j
tφ

′(0, · )‖2 +
∑

j,k≤N

(∫ T

0

∫
Rn\K

(
|∇t,x∂

j
tφ| +

|∂j
tφ|
r

)
|�h∂

k
t φ| dx dt

)1/2

+
∑

j,k≤N

[∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,x∂

j
tφ|

(
|∇t,x∂

k
t φ| +

|∂k
t φ|
r

)
dx dt

]1/2

+
∑

|μ|≤N−1

‖�∂μ
t,xφ‖L2

tL
2
x(ST )

for any T > 0 and N = 0, 1, 2, . . . .
Indeed, in order to obtain (5.9), we argue inductively where (5.1) is the base case

(N = 0). We then notice that

(5.10)
∑

|μ|≤N

‖〈x〉−1/2−∂μ
t,xφ

′‖L2
tL

2
x(ST ) ≤

∑
|μ|≤N−1

‖〈x〉−1/2−∂μ
t,x∂

2
xφ‖L2

tL
2
x(ST )

+
∑

|μ|≤N−1

‖〈x〉−1/2−∂μ
t,x(∂tφ)′‖L2

tL
2
x(ST ) + ‖〈x〉−1/2−φ′‖L2

tL
2
x(ST ).

The estimate for the last term on the right follows trivially from (5.1). Since ∂t
preserves the Dirichlet boundary condition, we can use the inductive hypothesis to
bound the second term on the right.

In order to bound the first term on the right side of (5.10), we will use elliptic
regularity. To see this, we fix a smooth cutoff function β with β ≡ 1 for 1/2 < |x| < 1
and β ≡ 0 outside of 1/4 ≤ |x| ≤ 2. Applying elliptic regularity to β(x/R)φ(t, x),
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we see that

∑
|μ|≤N−1

‖∂μ
t,x∂

2
xφ(t, · )‖L2

x({|x|∈[R/2,R]})(5.11)

�
∑

|μ|≤N−1

‖∂μ
t,xΔφ(t, · )‖L2

x({|x|∈[R/4,2R]})

+
∑

|μ|≤N−1

‖∂μ
t,xφ

′(t, · )‖L2
x({|x|∈[R/4,2R]}) + ‖〈x〉−1φ(t, · )‖L2

x({|x|∈[R/4,2R]})

for R ≥ 2. Similarly

∑
|μ|≤N−1

‖∂μ
t,x∂

2
xφ(t, · )‖L2

x({|x|≤1}) �
∑

|μ|≤N−1

‖∂μ
t,xΔφ(t, · )‖L2

x({|x|≤2})

+
∑

|μ|≤N−1

‖∂μ
t,xφ

′(t, · )‖L2
x({|x|≤2}),

where we have used the fact that the Dirichlet boundary conditions allow us to control
φ locally by φ′. By multiplying both sides of (5.11) by R−1/2−, summing over R = 2k,
k = 1, 2, . . . , and integrating in time, we see that

(5.12)
∑

|μ|≤N−1

‖〈x〉−1/2−∂μ
t,x∂

2
xφ‖L2

tL
2
x(ST ) �

∑
|μ|≤N−1

‖〈x〉−1/2−∂μ
t,xΔφ‖L2

tL
2
x(ST )

+
∑

|μ|≤N−1

‖〈x〉−1/2−∂μ
t,xφ

′‖L2
tL

2
x(ST ) + ‖〈x〉−3/2−φ‖L2

tL
2
x(ST ).

The estimates for the last two terms can, again, be obtained by the inductive hypoth-
esis and (5.1), respectively.

For the first term in the right side of (5.12), we simply notice that

∑
|μ|≤N−1

‖〈x〉−1/2−∂μ
t,xΔφ‖L2

tL
2
x(ST ) �

∑
|μ|≤N−1

‖〈x〉−1/2−∂μ
t,x∂

2
t φ‖L2

tL
2
x(ST )

+
∑

|μ|≤N−1

‖∂μ
t,x�φ‖L2

tL
2
x(ST ).

As ∂t preserves the boundary condition, we may use the inductive hypothesis to see
that the first term on the right is bounded by the right side of (5.9). As a similar
argument may be used to obtain the estimate for the first term on the left of (5.9),
the proof of Lemma 5.2 is complete.

Similarly, if as above (Lemma 3.3), we repeat the argument with φ replaced by
Zμφ for some multi-index μ, we see that the following holds.
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Lemma 5.3. Suppose that K is as above and n ≥ 3. Let φ ∈ C∞(R+ ×R
n\K) be

a solution of (3.1). Suppose that hαβ satisfies (3.2) and (3.3) for a small choice of
δ. Then, we have

(log(2 + T ))−1/2
∑

|μ|≤N

‖〈x〉−1/2Zμφ′‖L2
tL

2
x(ST )(5.13)

+
∑

|μ|≤N

‖〈x〉−1/2−Zμφ′‖L2
tL

2
x(ST )

�
∑

|μ|≤N

‖Zμφ′(0, · )‖2 +
∑

|μ|,|ν|≤N

(∫ T

0

∫
Rn\K

(
|∇t,xZ

μφ| + |Zμφ|
r

)
|�hZ

νφ| dx dt

)1/2

+
∑

|μ|,|ν|≤N

[∫ T

0

∫
Rn\K

(
|∂h| + |h|

r

)
|∇t,xZ

μφ|
(
|∇t,xZ

νφ| + |Zνφ|
r

)
dx dt

]1/2

+
∑

|μ|≤N+1

‖∂μ
xφ

′‖L2
tL

2
x([0,T ]×{|x|<1})

for any T > 0 and N = 0, 1, 2, . . . .
In particular, notice that the last term of (5.13) can be controlled using (5.9).

The same is true for the boundary term of (3.10).

6. Almost global existence for n = 3. In this section, we shall prove The-
orem 1.1. Since (5.9) and (5.13) have been established, this proof will resemble that
of the semilinear case [8], which is much easier than the subsequent proofs for the
quasilinear case. We shall use an iteration argument to solve (1.1) and to show that
the solution satisfies

(6.1)
∑

|μ|≤15

(
‖∂μu′(t, · )‖2 + (log(2 + t))−1/2‖〈x〉−1/2∂μu′‖L2

tL
2
x(St)

)

+
∑

|μ|≤14

(
‖Zμu′(t, · )‖2 + (log(2 + t))−1/2‖〈x〉−1/2Zμu′‖L2

tL
2
x(St)

)
≤ Cε

for 0 ≤ t ≤ Tε and for uniform constant C.
Here, we let u−1 ≡ 0 and then recursively define uk, k = 0, 1, 2, . . . , to solve⎧⎪⎨

⎪⎩
�uk(t, x) = Q(duk−1, d

2uk), (t, x) ∈ [0, T ] × R
3\K,

uk|∂K = 0,

uk(0, · ) = f, ∂tuk(0, · ) = g.

(6.2)

We set

(6.3)

Mk(T ) = sup
0≤t≤T

⎡
⎣ ∑
|μ|≤15

(
‖∂μu′

k(t, · )‖2 + (log(2 + t))−1/2‖〈x〉−1/2∂μu′
k‖L2

tL
2
x(St)

)

+
∑

|μ|≤14

(
‖Zμu′

k(t, · )‖2 + (log(2 + t))−1/2‖〈x〉−1/2Zμu′
k‖L2

tL
2
x(St)

)⎤⎦ .
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Clearly, by (1.3), the standard energy inequality, and (5.9) and (5.13) (with hαβ ≡
0), there is a uniform constant C0 so that

M0(T ) ≤ C0ε

for any T . Here, C0 can be chosen to be larger than the implicit constants of (3.9),
(3.10), (5.9), and (5.13). For ε < ε0 sufficiently small and for κ in (1.5) small, we will
show inductively that for k = 1, 2, 3, . . .

Mk(Tε) ≤ 10C0ε.(6.4)

By (1.4), (3.9), (3.10), (5.9), and (5.13), we have

(6.5)

Mk(Tε) ≤ 4C0ε +
∑

|μ|,|ν|≤15

(∫ Tε

0

∫
R3\K

(
|∇t,x∂

μuk| +
|∂μuk|

r

)
|∂ν�huk| dx dt

)1/2

+
∑

|μ|,|ν|≤15

(∫ Tε

0

∫
R3\K

(
|∇t,x∂

μuk| +
|∂μuk|

r

)
|[∂ν ,�h]uk| dx dt

)1/2

+
∑

|μ|,|ν|≤15

[∫ Tε

0

∫
R3\K

(
|∂h| + |h|

r

)
|∇t,x∂

μuk|
(
|∇t,x∂

νuk| +
|∂νuk|

r

)
dx dt

]1/2

+
∑

|μ|,|ν|≤14

(∫ Tε

0

∫
R3\K

(
|∇t,xZ

μuk| +
|Zμuk|

r

)
|Zν�huk| dx dt

)1/2

+
∑

|μ|,|ν|≤14

(∫ Tε

0

∫
R3\K

(
|∇t,xZ

μuk| +
|Zμuk|

r

)
|[Zν ,�h]uk| dx dt

)1/2

+
∑

|μ|,|ν|≤14

[∫ Tε

0

∫
R3\K

(
|∂h| + |h|

r

)
|∇t,xZ

μuk|
(
|∇t,xZ

μuk| +
|Zμuk|

r

)
dx dt

]1/2

+ sup
0≤t≤Tε

[ ∑
|μ|≤14

‖∂μ
t,x�uk(t, · )‖2

]
+

∑
|μ|≤14

‖∂μ
t,x�uk‖L2

tL
2
x(STε ).

Here, we set hγδ = −
∑

0≤β≤3 B
γδ
β ∂βuk−1. We note that

∑
|μ|≤15

(
|∂μ�huk| +

∑
|μ|≤15

|[∂μ,�h]uk|
)

�
∑
|μ|≤7

|∂μu′
k−1|

∑
|ν|≤15

|∂νu′
k| +

∑
|μ|≤8

|∂μu′
k|

∑
|ν|≤15

|∂νu′
k−1|

+
∑
|μ|≤7

|∂μu′
k−1|

∑
|ν|≤15

|∂νu′
k−1|.
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Similarly,∑
|μ|≤14

(
|Zμ�huk| +

∑
|μ|≤14

|[Zμ,�h]uk|
)

�
∑
|μ|≤7

|Zμu′
k−1|

∑
|ν|≤14

|Zνu′
k| +

∑
|μ|≤8

|Zμu′
k|

∑
|ν|≤14

|Zνu′
k−1|

+
∑
|μ|≤7

|Zμu′
k−1|

∑
|ν|≤14

|Zνu′
k−1|.

If we use this, (2.1), the Schwarz inequality, and a Hardy inequality, it follows
that the second, third, and fourth terms in (6.5) are controlled by

(6.6)
∑
|μ|≤9

‖〈x〉−1/2Zμu′
k−1‖

1/2

L2
tL

2
x(STε )

∑
|μ|≤15

‖〈x〉−1/2∂μu′
k‖

1/2

L2
tL

2
x(STε )

× sup
0≤t≤Tε

∑
|μ|≤15

‖∂μu′
k(t, · )‖

1/2
2

+

⎛
⎝ ∑

|μ|≤10

‖〈x〉−1/2Zμu′
k‖

1/2

L2
tL

2
x(STε )

+
∑
|μ|≤9

‖〈x〉−1/2Zμu′
k−1‖

1/2

L2
tL

2
x(STε )

⎞
⎠

×
∑

|μ|≤15

‖〈x〉−1/2∂μu′
k−1‖

1/2

L2
tL

2
x(STε )

⎛
⎝ sup

0≤t≤Tε

∑
|μ|≤15

‖∂μu′
k(t, · )‖

1/2
2

⎞
⎠ .

In particular, for the fourth term in (6.5), notice that for the given choice of h, we
have (

|∂h| + |h|
r

)
�

∑
|μ|≤1

|∂μu′
k−1|.

Here, we use that 1
r is bounded on R

3\K since 0 ∈ K. Thus, by (2.1) and the Schwarz
inequality, we have

∑
|μ|,|ν|≤15

∫ 2j

2j−1

(
|∂h| + |h|

r

)
|∇t,x∂

μuk(t, x)|
(
|∇t,x∂

νuk(t, x)| + |∂νuk(t, x)|
r

)
dx

�
∑
|μ|≤3

‖〈x〉−1/2Zμu′
k−1(t, · )‖L2(2j−2≤|x|≤2j+1)

∑
|μ|≤15

‖〈x〉−1/2∂μu′
k(t, · )‖L2(2j−1≤|x|≤2j)

×

⎛
⎝ ∑

|μ|≤15

‖∂νu′
k(t, · )‖2 +

∥∥∥∥1

r
uk(t, · )

∥∥∥∥
2

⎞
⎠ .

A similar bound holds over |x| ∈ [0, 1]. If we sum over j and integrate in t, it follows
that the fourth term in (6.5) is indeed controlled by the first term in (6.6). Here,
we use a Hardy inequality to gain the control ‖(1/r)uk(t, · )‖2 � ‖u′

k(t, · )‖2. Similar
arguments yield the given bounds for the second and third terms in (6.5).
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By the inductive hypothesis, we see that (6.6) is controlled by

C1ε
1/2(log(2 + Tε))

1/2Mk(Tε) + C1ε
3/2.(6.7)

This provides the necessary bound for the second, third, and fourth terms in (6.5).
Similarly, the fifth, sixth, and seventh terms in (6.5) are bounded by∑

|μ|≤9

‖〈x〉−1/2Zμu′
k−1‖

1/2

L2
tL

2
x(STε )

∑
|μ|≤14

‖〈x〉−1/2Zμu′
k‖

1/2

L2
tL

2
x(STε )

× sup
0≤t≤Tε

∑
|μ|≤14

‖Zμu′
k(t, · )‖

1/2
2

+

⎛
⎝ ∑

|μ|≤10

‖〈x〉−1/2Zμu′
k‖

1/2

L2
tL

2
x(STε )

+
∑
|μ|≤9

‖〈x〉−1/2Zμu′
k−1‖

1/2

L2
tL

2
x(STε )

⎞
⎠

×
∑

|μ|≤14

‖〈x〉−1/2Zμu′
k−1‖

1/2

L2
tL

2
x(STε )

⎛
⎝ sup

0≤t≤Tε

∑
|μ|≤14

‖Zμu′
k(t, · )‖

1/2
2

⎞
⎠ ,

which as above is controlled by

C2ε
1/2(log(2 + Tε))

1/2Mk(Tε) + C2ε
3/2.(6.8)

By similar arguments, it follows that the last two terms of (6.5) are controlled by

C3

(
εMk(Tε) + ε2 + ε(log(2 + Tε))

1/2Mk(Tε) + ε2(log(2 + Tε))
1/2

)
.(6.9)

If we have

(C1 + C2 + C3)ε
1/2(log(2 + Tε))

1/2 ≤ 1

2
,

which indeed is the case if κ is chosen to be smaller than 1
2(C1+C2+C3)2

, we can

bootstrap the terms in (6.7), (6.8), and (6.9) involving Mk(Tε). Thus, we see that

Mk(Tε) ≤ 2[4C0ε + (C1 + C2 + C3κ
1/2(log 2)1/2)ε3/2].

Thus, if ε is small enough, we obtain (6.4) as desired.
If we define

Ak(T ) = sup
0≤t≤T

⎡
⎣ ∑
|μ|≤14

(
‖∂μ(u′

k − u′
k−1)(t, · )‖2

+ (log(2 + t))−1/2‖〈x〉−1/2∂μ(u′
k − u′

k−1)‖L2
tL

2
x(St)

)
+

∑
|μ|≤13

(
‖Zμ(u′

k − u′
k−1)(t, · )‖2

+ (log(2 + t))−1/2‖〈x〉−1/2Zμ(u′
k − u′

k−1)‖L2
tL

2
x(St)

) ⎤
⎦ ,

similar arguments can be used to show that

Ak(Tε) ≤
1

2
Ak−1(Tε).

Thus, we have that uk converges to a solution of (1.1) satisfying (6.1), which completes
the proof.
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7. Global existence in higher dimensions. In this last section, we provide
a few remarks that explain how to modify the proof in the previous section in order
to obtain a proof of Theorem 1.2. Indeed, it is possible to show via iteration that a
solution exists and satisfies

(7.1)
∑

|μ|≤n+10

(
‖∂μu′(t, · )‖2 + ‖〈x〉−(n−1)/4∂μu′‖L2

tL
2
x(St)

)

+
∑

|μ|≤n+9

(
‖Zμu′(t, · )‖2 + ‖〈x〉−(n−1)/4Zμu′‖L2

tL
2
x(St)

)
≤ Cε

for any T > 0. Here, we argue as in the previous section. When we apply the weighted
Sobolev estimate, we get weights 〈x〉−(n−1)/4. When n ≥ 4, we have (n− 1)/4 > 1/2,
and thus, we may apply the bound for the first term in the left side of (5.1) rather
than that for the second term. Since the first term in the left side of (5.1) does not
require the loss of a log(2 + T )1/2, we see immediately that we have no restriction on
Tε, which proves the desired global existence result.
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NAVIER–STOKES EQUATIONS WITH NAVIER BOUNDARY
CONDITIONS FOR A BOUNDED DOMAIN IN THE PLANE∗

JAMES P. KELLIHER†

Abstract. We consider solutions to the Navier–Stokes equations with Navier boundary con-
ditions in a bounded domain Ω in R

2 with a C2-boundary Γ. Navier boundary conditions can be
expressed in the form ω(v) = (2κ−α)v ·τ and v ·n = 0 on Γ, where v is the velocity, ω(v) the vorticity,
n a unit normal vector, τ a unit tangent vector, and α is in L∞(Γ). These boundary conditions were
studied in the special case where α = 2κ by J.-L. Lions and P.-L. Lions. We establish the existence,
uniqueness, and regularity of such solutions, extending the work of Clopeau, Mikelić, and Robert and
of Lopes Filho, Nussenzveig Lopes, and Planas, which was restricted to simply connected domains
and nonnegative α.

Assuming a particular bound on the growth of the Lp-norms of the initial vorticity with p
(Yudovich vorticity), and also assuming additional smoothness on Γ and α, we obtain a uniform-in-
time bound on the rate of convergence in L2(Ω) of solutions to the Navier–Stokes equations with
Navier boundary conditions to the solution to the Euler equations in the vanishing viscosity limit.
We also show that for smoother initial velocities, the solutions to the Navier–Stokes equations with
Navier boundary conditions converge uniformly in time in L2(Ω), and L2 in time in Ḣ1(Ω), to the
solution to the Navier–Stokes equations with the usual no-slip boundary conditions as we let α grow
large uniformly on the boundary.

Key words. Navier–Stokes equations, vanishing viscosity limit
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1. Introduction. Let Ω be a bounded domain in R
2 with a C2-boundary Γ

consisting of a finite number of connected components, and let n and τ be unit
normal and tangent vectors, respectively, to Γ. We follow the convention that n is an
outward normal vector and that the ordered pair (n, τ ) gives the standard orientation
to R

2. Define the rate-of-strain tensor,

D(v) =
1

2

[
∇v + (∇v)T

]
.

We consider the existence, uniqueness, and regularity of solutions to the Navier–
Stokes equations with Navier boundary conditions. These boundary conditions, in-
troduced by Navier in [19] and derived by Maxwell in [18] from the kinetic theory of
gases (see [12]), assume that the tangential “slip” velocity, rather than being zero, is
proportional to the tangential stress. With a factor of proportionality a in L∞(Γ), we
can express Navier boundary conditions for a sufficiently regular vector field v as

v · n = 0 and 2ν(n ·D(v)) · τ + av · τ = 0 on Γ.(1.1)

We will find it more convenient, however, to let α = a/ν, and write these boundary
conditions in the form

v · n = 0 and 2(n ·D(v)) · τ + αv · τ = 0 on Γ.(1.2)
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(We give an equivalent form of Navier boundary conditions in Corollary 4.2.)
The reason for preferring the second form for the boundary conditions is that,

in the vanishing viscosity limit, we will hold α fixed as we let ν approach zero, and
we will show that the solution to the Navier–Stokes equations with Navier boundary
conditions converges to a solution to the Euler equations. (See, however, the comment
at the end of section 8.)

J.-L. Lions in [15, pp. 87–98] and P.-L. Lions in [16, pp. 129–131] consider the
following boundary conditions, which we call Lions boundary conditions:

v · n = 0 and ω(v) = 0 on Γ,

where ω(v) = ∂1v
2 − ∂2v

1 is the vorticity of v. Lions boundary conditions are the
special case of Navier boundary conditions in which α = 2κ, as we show in Corollary
4.3.

J.-L. Lions, in Theorem 6.10 on page 88 of [15], proves existence and uniqueness
of a solution to the Navier–Stokes equations in the special case of Lions boundary
conditions but includes the assumption that the initial vorticity is bounded. With
the same assumption of bounded initial vorticity, the existence and uniqueness are
established in Theorem 4.1 of [5] for Navier boundary conditions, under the restriction
that α is nonnegative (and in C2(Γ)). This is the usual restriction, which is imposed
to ensure the conservation of energy. Mathematically, negative values of α present
no real difficulty, so we do not make that restriction (except in section 9). The only
clear gain from removing the restriction, however, is that it allows us to view Lions
boundary conditions as a special case of Navier boundary conditions for more than
just convex domains (nonnegative curvature).

P.-L. Lions establishes an energy inequality on page 130 of [16] that can be used in
place of the usual one for no-slip boundary conditions. He argues that existence and
uniqueness can then be established for initial velocity in L2(Ω)—and no additional as-
sumption on the initial vorticity—exactly as was done for no-slip boundary conditions
in the earlier sections of his text. As we will show, P.-L. Lions’s energy inequality
applies to Navier boundary conditions in general, which gives us the same existence
and uniqueness theorem as for no-slip boundary conditions. (P.-L. Lions’s comment
on the regularity of ∂tu does not follow as in [16], though, because (4.18) of [16] is not
valid for general Navier boundary conditions.) We include a proof of existence and
uniqueness in section 6 that closely parallels the classical proofs due to Leray as they
appear in [15] and [22]. In section 7, we extend the existence, uniqueness, regularity,
and convergence results of [5] and [17] to multiply connected domains.

It is shown in [17] that if the initial vorticity is in Lp(Ω) for some p > 2, then
after extracting a subsequence, solutions to the Navier–Stokes equations with Navier
boundary conditions converge in L∞([0, T ];L2(Ω)) to a solution to the Euler equations
(with the usual boundary condition of tangential velocity on the boundary) as ν → 0.
This extends a result in [5] for initial vorticity in L∞(Ω), and because the solution to
the Euler equations is unique in this case, it follows that the convergence is strong in
L∞([0, T ];L2(Ω))—that is, does not require the extraction of a subsequence.

The convergence in [17] also generalizes the similar convergence established for the
special case of Lions boundary conditions on page 131 of [16] (though not including the
case p = 2). The main difficulty faced in making this generalization is establishing a
bound on the Lp-norms of the vorticity, a task that is much easier for Lions boundary
conditions (see pages 91–92 of [15] or page 131 of [16]). In contrast, nearly all of [5] and
[17], including the structure of the existence proofs, is directed toward establishing an
analogous bound.
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The methods of proof in [5] and [17] do not yield a bound on the rate of con-
vergence. With the assumptions in [17], such a bound is probably not possible. We
can, however, make an assumption that is weaker than that of [5] but stronger than
that of [17] and achieve a bound on the rate of convergence. Specifically, we assume,
as in [14], that the Lp-norms of the initial vorticity grow sufficiently slowly with p
(Definition 8.2) and establish the bound given in Theorem 8.4. To achieve this result,
we also assume additional regularity on α and Γ.

The bound on the convergence rate in L∞([0, T ];L2(Ω)) in Theorem 8.4 is the
same as that obtained for Ω = R

2 in [14]. In particular, when α is nonnegative, it gives
a bound on the rate of convergence for initial vorticity in L∞(Ω) that is proportional
to

(νt)
1
2 exp(−C‖ω0‖L2∩L∞ t),

where C is a constant depending on Ω and α, and ω0 is the initial vorticity. This is
essentially the same bound on the convergence rate as that for Ω = R

2 appearing in
[3].

Another interesting question is whether solutions to the Navier–Stokes equations
with Navier boundary conditions converge to a solution to the Navier–Stokes equations
with the usual no-slip boundary conditions if we let the function α grow large. We
show in section 9 that such convergence does take place for initial velocity in H3(Ω)
and Γ in C3 when we let α approach +∞ uniformly on Γ. This type of convergence
is, in a sense, an inverse of the derivation of the Navier boundary conditions from
no-slip boundary conditions for rough boundaries discussed in [10] and [11].

In [13], Kato gives necessary and sufficient conditions for the vanishing viscosity
limit of solutions to the Navier–Stokes equations with no-slip boundary conditions to
converge to a strong solution to the Euler equations. In particular, he shows that
the vanishing viscosity limit holds if and only if the L2-norm of the gradient of the
velocity in a boundary layer of width proportional to the viscosity vanishes sufficiently
rapidly as the viscosity goes to zero. For Navier boundary conditions, it is easy to
show that this norm on the boundary layer converges sufficiently rapidly, and because
we have established the vanishing viscosity limit, it follows that Kato’s conditions all
hold, thus completing, in a sense, Kato’s program for Navier boundary conditions.
We describe this in more detail in section 10.

We follow the convention that C is always an unspecified constant that may vary
from expression to expression, even across an inequality (but not across an equality).
When we wish to emphasize that a constant depends, at least in part, upon the
parameters x1, . . . , xn, we write C(x1, . . . , xn). To distinguish between unspecified
constants, we use C and C ′.

For vectors u and v in R
2, by u · ∇v we mean the vector whose jth component is

ui∂iv
j . For 2× 2 matrices A and B we define A ·B = AijBij , so ∇u · ∇v = ∂ju

i∂jv
i.

Here, as everywhere in this paper, we follow the common convention that repeated
indices are summed—whether or not one is a superscript and one is a subscript.

For the vector u and the scalar function ψ we define

u⊥ = (−u2, u1), ∇⊥ψ = (−∂2ψ, ∂1ψ), ω(u) = ∂1u
2 − ∂2u

1.

If X is a function space and k a positive integer, we define (X)k to be

{(f1, . . . , fk) : f1 ∈ X, . . . , fk ∈ X} .
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For instance, (H1(Ω))2 is the set of all vector fields, each of whose components lies
in H1(Ω). To avoid excess notation, however, we always suppress the superscript
k when it is clear from the context whether we are dealing with scalar-, vector-, or
matrix-valued functions.

We will make use of the following generalization of Gronwall’s lemma. The suc-
cinct form of the proof is due to Tehranchi [21].

Lemma 1.1 (Osgood’s lemma). Let L be a measurable nonnegative function and
γ a nonnegative locally integrable function, each defined on the domain [t0, t1]. Let
μ : [0,∞) → [0,∞) be a continuous nondecreasing function, with μ(0) = 0. Let a ≥ 0,
and assume that for all t in [t0, t1],

L(t) ≤ a +

∫ t

t0

γ(s)μ(L(s)) ds.(1.3)

If a > 0, then ∫ L(t)

a

ds

μ(s)
≤

∫ t

t0

γ(s) ds.

If a = 0 and
∫∞
0

ds/μ(s) = ∞, then L ≡ 0.
Proof. We have

∫ L(t)

a

dx

μ(x)
≤

∫ a+
∫ t
t0

γ(u)μ(L(u)) du

a

dx

μ(x)

≤
∫ t

t0

γ(s)μ(L(s)) ds

μ(a +
∫ s

t0
γ(u)μ(L(u)) du)

≤
∫ t

t0

γ(s) ds.

The last inequality follows from (1.3), since μ is nondecreasing.
We have stated Lemma 1.1 in the form that it appears on page 92 of [4]. This

lemma is equivalent to a theorem of Bihari [2], though with an assumption only of
measurability of μ rather than continuity; see, for example, Theorem 5.1 on pages
40–41 of [1].1 An early form of the inequality appears in the work of Osgood [20],
who assumes that a = 0, γ ≡ 1, and the bound is on |L(t)| in (1.3); because of this,
Lemma 1.1 is often referred to as Osgood’s lemma. See also the historical discussion
in section 2.14 of [6].

2. Function spaces. Let

E(Ω) =
{
v ∈ (L2(Ω))2 : div v ∈ L2(Ω)

}
,(2.1)

as in [22], with the inner product

(u, v)E(Ω) = (u, v) + (div u, div v).

We will use the following theorem, which is Theorem 1.2 on page 7 of [22], several
times.

Lemma 2.1. There exists a continuous linear operator γn mapping E(Ω) into
H−1/2(Γ) such that

γnv = the restriction of v · n to Γ for every v in (D(Ω))2.

1The inequality in equation (5.2) of Theorem 5.1 of [1] should be ≤ instead of ≥.
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Also, the following form of the divergence theorem holds for all vector fields v in
E(Ω) and scalar functions h in H1(Ω):∫

Ω

v · ∇h +

∫
Ω

(div v)h =

∫
Γ

γnv · γ0h.

We always suppress the trace function γ0 in our expressions, and we write v · n
in place of γnv.

Define the following function spaces as in [5]:

H =
{
v ∈ (L2(Ω))2 : div v = 0 in Ω and v · n = 0 on Γ

}
,

V =
{
v ∈ (H1(Ω))2 : div v = 0 in Ω and v · n = 0 on Γ

}
,

W =
{
v ∈ V ∩H2(Ω) : v satisfies (1.2)

}
.

(2.2)

We give W the H2-norm, H the L2-inner product and norm, which we symbolize by
(·, ·) and ‖·‖L2(Ω), and V the H1-inner product,

(u, v)V =
∑
i

(∂iu, ∂iv),

and associated norm. This norm is equivalent to the H1-norm, because Poincaré’s
inequality,

‖v‖Lp(Ω) ≤ C(Ω, p) ‖∇v‖Lp(Ω)(2.3)

for all p in [1,∞], holds for all v in V .
Ladyzhenskaya’s inequality,

‖v‖L4(Ω) ≤ C(Ω) ‖v‖1/2
L2(Ω) ‖∇v‖1/2

L2(Ω) ,(2.4)

also holds for all v in V , though the constant in the inequality is domain dependent,
unlike the constant for the classical version of the space V .

We will also frequently use the following inequality, which follows from the stan-
dard trace theorem, Sobolev interpolation, and Poincaré’s inequality:

‖v‖L2(Γ) ≤ C(Ω) ‖v‖1/2
L2(Ω) ‖∇v‖1/2

L2(Ω) ≤ C(Ω) ‖v‖V(2.5)

for all v in V .

3. Hodge decomposition of H. Only simply connected domains are consid-
ered in [5] and [17]. To handle multiply connected domains we will need a portion of
the Hodge decomposition of L2(Ω). We briefly summarize the pertinent facts, drawing
mostly from Appendix I of [22].

We assume that Ω is connected, for if it has multiple components we perform
the decomposition separately on each component. Let Γ1, . . . ,ΓN+1 be the com-
ponents of the boundary Γ with ΓN+1 bounding the unbounded component of ΩC .
Let Σ1, . . . ,ΣN be one-manifolds with boundary that generate H1(Ω,Γ; R), the one-
dimensional real homology class of Ω relative to its boundary Γ.

We can decompose the space H into two subspaces, H = H0 ⊕Hc, where

H0 = {v ∈ H : all internal fluxes are zero} ,
Hc = {v ∈ H : ω(v) = 0} .
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An internal flux is a value of
∫
Σi

v · n. Then H0 = H⊥
c .

Define ψi, i = 1, . . . , N , to be the solution to Δψi = 0 on Ω, ψi = Ci on Γi,
and ψi = 0 on all other components of Γ, where Ci is a nonzero constant. By elliptic
regularity, ψi is in H2(Ω) (apply, for instance, Theorem 8.12 on page 176 of [8]). Thus,
hi := ∇⊥ψi is in H1(Ω) and is divergence-free since div∇⊥ = 0, and hi · n = 0 since
ψi is locally constant along Γ; that is, hi is in V . The vectors (h1, . . . , hN ) form an
orthogonal basis for Hc ⊆ V , which we can assume is orthonormal by choosing (Ci)
appropriately.

If v is in V then v is also in H so there exist a unique u in H0 and h in Hc such
that v = u + h; also, (u, h)H = 0. But h is in V ; hence, u also lies in V . This shows
that V = (V ∩H0) ⊕Hc, though this is not an orthogonal decomposition of V .

Given v in H we construct an associated stream function ψ in H1(Ω) as follows.
Fix a point a on ∂Ω. For any x in Ω, and let γ be a smooth curve in Ω from a to x.
Along the curve γ let τ be a unit tangent vector in the direction of γ and n be the
unit normal vector for which (n, τ ) gives the standard orientation to R

2. Then one
can show that the function ψ defined by

ψ(x) = −
∫
γ

v · n ds(3.1)

is independent of the choice of γ and of the set of generators, and that v = ∇⊥ψ. (The
salient fact is that v ·n integrates to zero along any generator of the first (nonrelative)
homology because v · n = 0 along ∂Ω.)

On the boundary component containing a, ψ is zero, because v · n = 0 on Γ.
On the other boundary components, ψ is constant, because the internal fluxes are
independent of the path. In the special case where v is in H0, all the internal fluxes
are zero, so ψ is zero on all of Γ. From the way that we defined the basis (hk) for Hc,
it is clear that the projection into Hc of a vector lying in H is uniquely determined
by the value of its stream function on the boundary.

The following is due to Yudovich.
Lemma 3.1. For any p in [2,∞) and any v in H0 with ω(v) in Lp(Ω),

‖∇v‖Lp(Ω) ≤ C(Ω)p ‖ω(v)‖Lp(Ω) .

Proof. Let v be in H0 with ω(v) in Lp(Ω). Then, as noted above, the associated
stream function ψ vanishes on Γ. Applying Corollary 1 of [24] with the operator
L = Δ and r = 0 gives

‖∇v‖Lp(Ω) ≤ ‖ψ‖H2,p(Ω) ≤ C(Ω)p ‖Δψ‖Lp(Ω) = C(Ω)p ‖ω(v)‖Lp(Ω) .

For Ω simply connected, H = H0, and Lemma 3.1 applies to all of H. The critical
feature of Lemma 3.1 is that the dependence of the inequality on p is made explicit,
a fact we will exploit in the proof of Theorem 8.4.

With the assumption of additional regularity on Γ, we have the following result
for velocity fields in H.

Corollary 3.2. Assume that Γ is C2,ε for some ε > 0. Then for any p in [2,∞)
and any v in H with ω(v) in Lp(Ω),

‖∇v‖Lp(Ω) ≤ C(Ω)p ‖ω(v)‖Lp(Ω) + C ′(Ω) ‖v‖L2(Ω) ,

the constants C(Ω) and C ′(Ω) being independent of p.
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Proof. Because Γ is C2,ε, it follows from elliptic regularity theory that each ψi is
in C2,ε(Ω) (apply, for instance, Theorem 6.14 on page 101 of [8]). Thus, each basis
element hi = ∇⊥ψi for Hc is in C1,ε(Ω) and so ∇hi is in L∞(Ω).

Let v be in H with ω(v) in Lp(Ω), and let v = u + h, where u is in H0 and h is

in Hc. Let h =
∑N

i=1 cihi and r = ‖h‖L2(Ω) = (
∑

i c
2
i )

1/2. Then

‖∇h‖Lp(Ω) ≤
N∑
i=1

|ci| ‖∇hi‖Lp(Ω) ≤
N∑
i=1

r|Ω|1/p ‖∇hi‖L∞(Ω)

≤ rmax
{

1, |Ω|1/2
} N∑

i=1

‖∇hi‖L∞(Ω) ≤ C ‖h‖L2(Ω) .

But H0 = H⊥
c , so ‖v‖2

L2(Ω) = ‖u‖2
L2(Ω) + ‖h‖2

L2(Ω), and thus ‖h‖L2(Ω) ≤ ‖v‖L2(Ω).
Therefore,

‖∇v‖Lp(Ω) ≤ ‖∇u‖Lp(Ω) + ‖∇h‖Lp(Ω)

≤ C(Ω)p ‖ω(v)‖Lp(Ω) + C ′(Ω) ‖v‖L2(Ω)

by virtue of Lemma 3.1.

4. Vorticity on the boundary. Let κ be the curvature of Γ. Then κ is con-
tinuous because Γ is C2, and if we parameterize each component of Γ by arc length,
s, it follows that

∂n

∂τ
:=

dn

ds
= κτ .

Lemma 4.1. If u and v are in (H2(Ω))2 with u · n = v · n = 0 on Γ, then

(v · ∇u) · n = −κu · v,(4.1)

(n · ∇v) · τ = ω(v) + (τ · ∇v) · n = ω(v) − κv · τ ,(4.2)

(n ·D(v)) · τ =
1

2
ω(v) − κv · τ .(4.3)

Proof. Because u · n has a constant value (of zero) along Γ,

0 =
∂

∂τ
(u · n) =

∂u

∂τ
· n + u · ∂n

∂τ
= (τ · ∇u) · n + κu · τ ,

so (τ · ∇u) · n = −κu · τ . But v is parallel to τ , so (4.1) follows by linearity. The
identity in (4.3) is Lemma 2.1 of [5], and (4.2) is established similarly.

Corollary 4.2. A vector v in V ∩H2(Ω) satisfies Navier boundary conditions
(that is, lies in W) if and only if

ω(v) = (2κ− α)v · τ and v · n = 0 on Γ.(4.4)

Also, for all v in W and u in V ,

(n · ∇v) · u = (κ− α)v · u on Γ.(4.5)
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Proof. Let v be in V ∩H2(Ω). Then from (4.3),

2(n ·D(v)) · τ + 2κ(v · τ ) = ω(v).(4.6)

If v satisfies Navier boundary conditions, then (4.4) follows by subtracting 2(n·D(v))·
τ + αv · τ = 0 from (4.6). Conversely, substituting the expression for ω(v) in (4.4)
into (4.6) gives 2(n ·D(v)) · τ + αv · τ = 0.

If v is in W, then from (4.2),

(n · ∇v) · τ = ω(v) − κv · τ = (2κ− α)v · τ − κv · τ = (κ− α)v · τ ,

and (4.5) follows from this, since u is parallel to τ on Γ.
Corollary 4.3. For initial velocity in H2(Ω), Lions boundary conditions are

the special case of Navier boundary conditions in which

α = 2κ.

That is, any solution of (NS) with Navier boundary conditions where α = 2κ is also
a solution to (NS) with Lions boundary conditions.

5. Weak formulations. We give two equivalent formulations of a weak solution
to the Navier–Stokes equations with Navier boundary conditions, in analogy with
Problems 3.1 and 3.2 on pages 190–191 of [22].

For all u in W and v in V ,∫
Ω

Δu · v =

∫
Ω

(div∇ui)vi =

∫
Γ

(∇ui · n)vi −
∫

Ω

∇ui · ∇vi

=

∫
Γ

(n · ∇u) · v −
∫

Ω

∇u · ∇v =

∫
Γ

(κ− α)u · v −
∫

Ω

∇u · ∇v,

(5.1)

where we used (4.5) of Corollary 4.2. This motivates our first formulation of a weak
solution.

Definition 5.1. Given viscosity ν > 0 and initial velocity u0 in H, u in
L2([0, T ];V ) is a weak solution to the Navier–Stokes equations (without forcing) if
u(0) = u0 and

(NS )
d

dt

∫
Ω

u · v +

∫
Ω

(u · ∇u) · v + ν

∫
Ω

∇u · ∇v − ν

∫
Γ

(κ− α)u · v = 0

for all v in V . (We make sense of the initial condition u(0) = u0 as in [22].)
This formulation of a weak solution is equivalent to that in (2.11) and (2.12) of

[5]. This follows from the identity

2

∫
Ω

D(u) ·D(v) =

∫
Ω

∇u · ∇v −
∫

Γ

κu · v,

which holds for all u and v in V . To establish this identity, let u and v be in V ∩H2(Ω)
and observe that 2D(u) ·D(v) = ∇u ·∇v+∇u · (∇v)T . Also, because u is divergence-
free, ∇u·(∇v)T = ∂iu

j∂jv
i = ∂j(∂iu

jvi) = div(v ·∇u). Then, using (4.1), the identity
follows from∫

Ω

∇u · (∇v)T =

∫
Ω

div(v · ∇u) =

∫
Γ

(v · ∇u) · n = −
∫

Γ

κu · v
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and the density of H2(Ω) ∩ V in V .
Our second formulation of a weak solution will be identical to that of Problem 3.2

on page 191 of [22], except that the operator A of [22] will also include the boundary
integral of (5.1). Accordingly, we define the operators A and B by

(Au, v)V,V ′ =

∫
Ω

∇u · ∇v −
∫

Γ

(κ− α)u · v,

(Bu, v)V,V ′ =

∫
Ω

(u · ∇u) · v

for all u and v in V .
By (2.5),

|(Au, v)V,V ′ | ≤ ‖u‖V ‖v‖V + C ‖u‖L2(Γ) ‖v‖L2(Γ) ≤ C ‖u‖V ‖v‖V .(5.2)

Thus, A : L2([0, T ];V ) → L2([0, T ];V ′), and, as it does for the classical version of the
space V (for which vectors are zero on Γ), B : L2([0, T ];V ) → L1([0, T ];V ′). Thus, if
u is a solution as in Definition 5.1, then −νAu−Bu lies in L1([0, T ];V ′) and

d

dt
〈u, v〉 = (−νAu−Bu, v)V,V ′

for all v in V . It follows from Lemma 1.1 on page 169 of [22] that u is in C([0, T ];H).
This not only makes sense of the initial condition u(0) = u0 but also shows that the
following formulation of a weak solution is equivalent to that of Definition 5.1.

Definition 5.2. Given viscosity ν > 0 and initial velocity u0 in H, u in
L2([0, T ];V ) is a weak solution to the Navier–Stokes equations if u(0) = u0 and⎧⎨

⎩
u′ ∈ L1([0, T ];V ′),

u′ + νAu + Bu = 0 on (0, T ),
u(0) = u0,

where u′ := ∂tu.
From here on we will refer to either of the formulations in Definitions 5.1 and 5.2

as (NS).

6. Existence and uniqueness. We can obtain existence and uniqueness of a
solution to (NS) assuming only that the initial velocity is in H.

Theorem 6.1. Assume that Γ is C2 and α is in L∞(Γ). Let u0 be in H and
let T > 0. Then there exists a solution u to (NS). Moreover, u is in L2([0, T ];V ) ∩
C([0, T ];H), u′ is in L2([0, T ];V ′), and we have the energy inequality

‖u(t)‖L2(Ω) ≤ eC(α)νt‖u0‖L2(Ω).(6.1)

The constant C(α) is zero if α is nonnegative on Γ.
Sketch of proof. Existence of a solution to (NS) proceeds as in the first proof of

existence in [15, pp. 75–77], though using the analogue of the energy inequality on
page 130 of [16]. Using (4.5), we have, formally,

1

2

d

dt
‖u‖2

L2(Ω) + ν ‖∇u‖2
L2(Ω) = ν

∫
Ω

(n · ∇u) · u ≤ Cν ‖u‖2
L2(Γ) ,(6.2)
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where C = supΓ|κ− α|. Arguing exactly as in [16], it follows that

d

dt
‖u‖2

L2(Ω) + ν ‖∇u‖2
L2(Ω) ≤ Cν ‖u‖2

L2(Ω) .

Integrating over time gives

‖u(t)‖2
L2(Ω) + ν

∫ t

0

‖∇u(s)‖2
L2(Ω) ds

≤ ‖u0‖2
L2(Ω) + Cν

∫ t

0

‖u(s)‖2
L2(Ω) ds.

(6.3)

The energy bound, (6.1), then follows from Gronwall’s lemma. (If α is nonnegative,
then, in fact, energy is nonincreasing—in the absence of forcing—so C(α) = 0. This
follows from the equation preceding (2.16) of [5].)

The proofs of regularity in time and space and of uniqueness proceed exactly as
in the proof of Theorem 3.2 on page 199 of [22], though in the proof of uniqueness we
must account for the presence of the boundary integral in (NS).

7. Additional regularity. If we assume extra regularity on the initial velocity,
that regularity will be maintained for all time. This is crucial for establishing the
vanishing viscosity limit in section 8, where we must impose stronger regularity on
the initial velocity to obtain existence of a solution to the Euler equations.

Theorem 7.1. Assume that Γ is C2,1/2+ε and that α is in H1/2+ε(Γ)+C1/2+ε(Γ)
for some ε > 0. Let u0 be in W with initial vorticity ω0, and let u be the unique
solution to (NS) given by Theorem 6.1 with corresponding vorticity ω. Let T > 0.
Then

u′ ∈ L2([0, T ];V ) ∩ C([0, T ];H).

If, in addition, ω0 is in L∞(Ω) (so u0 is compatible), then

u ∈ C([0, T ];H2(Ω)), ω ∈ C([0, T ];H1(Ω)) ∩ L∞([0, T ] × Ω).

Proof. Regularity of u′. We prove that u′ lies in L2([0, T ];V ) ∩ L∞([0, T ];H) in
three steps as in the proof of Theorem 3.5 on pages 202–204 of [22]. In this proof,
Temam uses a Galerkin approximation sequence (um) to the solution u. We employ
the same sequence, though using the basis of Corollary A.3 rather than that of [22];
this is the only change to step (i).

No change to step (ii) of Temam’s proof is required, because the bound on
‖u′

m(0)‖2
L2 in (3.88) of [22], which does not involve boundary integrals, still holds.

In step (iii), an additional term of

ν

∫
Γ

(κ− α)|u′
m|2

appears on the right side of (3.94) of Temam’s proof, which we bound by

Cν‖u′
m‖L2(Ω)‖∇u′

m‖L2(Ω) ≤
ν

2
‖∇u′

m‖2
L2(Ω) + Cν‖u′

m‖2
L2(Ω).

Then (3.95) of Temam’s proof becomes

d

dt
‖u′

m(t)‖2
L2(Ω) ≤ φm(t)‖u′

m(t)‖2
L2(Ω),
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where

φm(t) =

(
2

ν
+ Cν

)
‖um(t)‖2

L2(Ω),

and the proof that u′ lies in L2([0, T ];V ) ∩ L∞([0, T ];H) is completed as in [22].
Regularity of u and ω. To establish the regularity of u and ω we follow the boot-

strap argument in the second half of the proof of Theorem 2.3 in [5]. For completeness,
we give a full account of this argument here, adapting it to multiply connected do-
mains.

Because u′ is in L2([0, T ];V ) we can argue as in the paragraph preceding Defini-
tion 5.2, with u′ playing the role of u, that u′ is in C([0, T ];H). The membership of u′

in L2([0, T ];V ) also gives u in H1([0, T ];V ); by one-dimensional Sobolev embedding,
u is then in C1/2([0, T ];V ) and hence in C([0, T ];V ). It follows that u · ∇u is in
C([0, T ];Lq(Ω)) for all q in [1, 2) (see, for instance, Theorem 1.4.4.2 on page 28 of [9]).

Now let β > 0 and let Φ := −u · ∇u− u′ + βu. Then Φ is in C([0, T ];Lq(Ω)) for
all q in [1, 2) by our observations above. Because of the additional regularity we have
imposed on Γ and on α over that assumed in Theorem 6.1, g := (2κ− α)u · τ lies in
C([0, T ];H1/2(Γ)) (see, for instance, Theorem 1.4.1.1 on page 21 and Theorem 1.4.4.2
on page 28 of [9]).

Let a : V ×V → R be defined by a(u, v) = (Au+βu, v)V,V ′ and require that β > 0
be sufficiently large that a(v, v) ≥ ‖v‖2

V for all v in V . This is possible because α
is in L∞(Γ) ⊆ H1/2+ε(Γ) + C1/2+ε(Γ) by one-dimensional Sobolev embedding. Also
by (5.2) we see that |a(u, v)| ≤ C ‖u‖V ‖v‖V . Applying the Lax–Millgram lemma,
we find that there exists a unique w in V such that a(w, v) = Φ for all v in V . By
Definition 5.2, w = u(t) for all t in [0, T ]. By Definition 5.1, u(t) is also the unique
variational solution at time t in [0, T ] to Stokes’s problem,⎧⎨

⎩
−νΔu + ∇p + βu = Φ in Ω,
div u = 0 in Ω,
ω(u) = g on Γ.

Formally, the vorticity formulation of the above system is{
−νΔω + βω = ω(Φ) in Ω,
ω = g on Γ.

Because ω(Φ) is in C([0, T ];H−1,q(Ω)), standard elliptic theory gives a unique solution
ω in C([0, T ];H1,q(Ω)). Because u is in C([0, T ];H), there exists an associated stream
function ϕ in C([0, T ]×Ω) that is constant on each component of Γ at time t in [0, T ];
this follows directly from (3.1). Letting ψ be the unique solution to{

Δψ = ω in Ω,
ψ = ϕ on Γ,

it follows that u = ∇⊥ψ, because u and ∇⊥ψ have the same vorticity (curl∇⊥ = Δ)
and their stream functions (namely, ϕ and ψ) share the same value on Γ.

By Theorem 2.5.1.1 on page 128 of [9], ψ is in C([0, T ];H3,q(Ω)); u, then, is in
C([0, T ];H2,q(Ω)) and hence in C([0, T ] × Ω) by Sobolev embedding. But u is in
C([0, T ];V ), so u · ∇u and also Φ are in C([0, T ];L2(Ω)). Passing through the same
argument again, this time with q = 2, gives u in C([0, T ]; (H2(Ω))2).
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With Theorem 7.1, we have a replacement for Theorem 2.3 of [5] that applies
regardless of the sign of α. Since the nonnegativity of α is used nowhere else in [5]
and [17], all the results of both of those papers apply to simply connected domains as
well regardless of the sign of α—with the regularity we have assumed on Γ and α.

To remove the restriction on the domain being simply connected, it remains only
to show that Lemmas 2 and 3 of [17] remain valid for multiply connected domains.
We show this for Lemma 2 of [17] in Theorem A.2. Because, however, for multiply
connected domains there is no longer a unique vector field in W with a given vorticity,
we must define a vector field to be compatible, rather than its vorticity, as was done
in [17].

Definition 7.2. A vector field v in W is called compatible if ω(v) is in L∞(Ω).
As for Lemma 3 of [17], we need only use Corollary 3.2 to replace the term

‖ω(·, t)‖1−θ
Lp(Ω) with (‖ω(·, t)‖Lp(Ω) +‖u(·, t)‖L2(Ω))

1−θ in the proof of Lemma 3 in [17].

Lemma 3 of [17] then follows with no other changes in the proof—only the value of
the constant C changes.

We thus have the following theorem, which is only a slight modification of Propo-
sition 1 of [17], and which applies to multiply connected domains and unsigned α.

Theorem 7.3. Assume that Γ and α are as in Theorem 7.1. Let q be in (2,∞],
and assume that u0 is in V with initial vorticity ω0 in Lp(Ω) for some p in [q,∞]. Let
T > 0. Then there exists a unique solution u to (NS) with corresponding vorticity ω,
and for all p in [q,∞],

‖ω(t)‖Lp ≤ ‖ω0‖Lp + C0(7.1)

a.e. in [0, T ]. The constant C0, which is independent of p, is given by

C0 = C(T, α, κ, q)eC(α)νT max{|Ω|1/2, 1}
(
‖u0‖L2(Ω) + ‖ω0‖Lq(Ω)

)
.

Also, u is in L∞([0, T ];C(Ω)) ∩ L∞([0, T ];V ), the norm of u in this space being
bounded over any finite range of viscosity ν.

Proof. Approximate u0 by a sequence of compatible vector fields via Theorem A.2,
and let un be the corresponding solutions to (NS) given by Theorem 7.1. The argu-
ment in the proof of Lemma 3 of [17] can be used to bound Λ = ‖(2κ− α)un · τ‖L∞(Ω)

in terms of ‖ω0‖Lq(Ω), and this in turn gives the bound ‖ωn(t)‖Lp ≤ ‖ω0‖Lp + C0.
This bound holds for the solution u in the limit, as in the proof of Proposition 1 in
[17]. (The constant C(T, α, κ, q) approaches infinity as q approaches 2, so it is not
possible to extend this result to p = 2.)

Finally, using Sobolev interpolation, (2.3), and Corollary 3.2,

‖u(t)‖C(Ω) ≤ C ‖u(t)‖θL2(Ω) ‖u(t)‖1−θ
H1,q(Ω)

≤ C ‖u(t)‖θL2(Ω) (‖ω(t)‖Lq(Ω) + ‖u(t)‖L2(Ω))
1−θ,

(7.2)

where θ = (q−2)/(2q−2). This norm is finite by (6.1), so u is also in L∞([0, T ];C(Ω))
and its norm is uniformly bounded over any finite range of viscosity, as is its norm in
L∞([0, T ];V ). Explicitly,

‖u‖L∞([0,T ];V ) = ‖∇u‖L∞([0,T ];L2(Ω)) ≤ C ‖∇u‖L∞([0,T ];Lq(Ω))

≤ C(‖ω‖L∞([0,T ];Lq(Ω)) + ‖u‖L∞([0,T ];L2(Ω)))

≤ C(T, α, κ)eC(α)νT ,

(7.3)

a bound we will use in section 8. In the second inequality above we used Corollary
3.2.
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8. Vanishing viscosity. In this section we bound the rate of convergence in
L∞([0, T ];L2(R2)) of solutions to (NS) to the unique solution to the Euler equations
for the class of (bounded or unbounded) Yudovich vorticities. To describe Yudovich
vorticity, we need the following definition.

Definition 8.1. Let θ : [p0,∞) → R for some p0 > 1. We say that θ is
admissible if the function β : (0,∞) → [0,∞), defined for some M > 0 by 2

β(x) := βM (x) := x inf
{
(M εx−ε/ε)θ(1/ε) : ε in (0, 1/p0]

}
,(8.1)

satisfies ∫ 1

0

dx

β(x)
= ∞.(8.2)

Because βM (x) = Mβ1(x/M), this definition is independent of the value of M ,
though the presence of M in the definition will turn out to be convenient. Also, β is
a monotonically increasing continuous function, with limx→0+ β(x) = 0.

Yudovich proves in [26] that for a bounded domain in R
n, if ‖ω0‖Lp ≤ θ(p) for

some admissible function θ, then at most one solution to the Euler equations exists.
Because of this, we call the class of all such vorticities Yudovich vorticity.

Definition 8.2. We say that a vector field v has Yudovich vorticity if p �→
‖ω(v)‖Lp(Ω) is an admissible function.

Examples of admissible bounds on vorticity are

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log log p · · · logm p,(8.3)

where logm is log composed with itself m times. These admissible bounds are de-
scribed in [26] (see also [14].) Roughly speaking, the Lp-norm of a Yudovich vorticity
can grow in p only slightly faster than log p and still be admissible. Such growth in
the Lp-norm arises, for example, from a point singularity of the type log log(1/|x|).

Definition 8.3. Given an initial velocity u0 in V , u in L2([0, T ];V ) is a weak
solution to the Euler equations if u(0) = u0 and

d

dt

∫
Ω

u · v +

∫
Ω

(u · ∇u) · v = 0

for all v in V .
The existence of a weak solution to the Euler equations under the assumption that

the initial vorticity ω0 is in Lp(Ω) for some p > 1 (a weaker assumption than that of
Definition 8.3 when 1 < p < 2) was proved in [25]. By the result in [26] mentioned
above, the solutions are unique in the class of all such solutions u for which ω(u) and
u′ lie in L∞

loc(R;Lp(Ω)) for all p in an interval [p0,∞).
Theorem 8.4. Assume that Γ and α are as in Theorem 7.1. Fix T > 0, let u0

be in V , and assume that ω0 is in Lp(R2) for all p in [2,∞), with ‖ω0‖Lp ≤ θ(p)
for some admissible function θ. Let u be the solution to (NS) for ν > 0 given by
Theorem 7.3 and u be the unique weak solution to the Euler equations for which ω(u)
and u′ are in L∞

loc(R;Lp(Ω)) for all p in [2,∞), u and u both having initial velocity
u0. Then

u(t) → u(t) in L∞([0, T ];L2(Ω) ∩ L2(Γ)) as ν → 0.

2The definition of β in (8.1) differs from that in [14] in that it directly incorporates the factor of
p that appears in the Calderón–Zygmund inequality; in [14] this factor is included in the equivalent
of (8.2).
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Also, there exists a constant R = C(T, α, κ), such that if we define the function
f : [0,∞) → [0,∞) by

∫ f(ν)

Rν

dr

β(r)
= CT,

where β is defined as in (8.1), then

‖u− u‖L∞([0,T ];L2(Ω)) ≤ f(ν)1/2 and

‖u− u‖L∞([0,T ];L2(Γ)) ≤ C ′(T, α, κ)f(ν)1/4
(8.4)

for all ν in (0, 1].
Proof. We let w = u − u. It is possible to show that integral identity in Defini-

tion 5.1 extends to any v in L2([0, T ];V ) in the form∫
Ω

∂tu · v +

∫
Ω

(u · ∇u) · v + ν

∫
Ω

∇u · ∇v − ν

∫
Γ

(κ− α)u · v = 0

with a similar extension for the identity in Definition 8.3. Applying these identities
with v = w and subtracting give∫

Ω

w · ∂tw +

∫
Ω

w · (u · ∇w) +

∫
Ω

w · (w · ∇u)

= ν

∫
Γ

(κ− α)u · w − ν

∫
Ω

∇u · ∇w.

(8.5)

Both ∂tu and ∂tu are in L2([0, T ];V ′), so (see, for instance, Lemma 1.2 on page
176 of [22]) ∫

Ω

w · ∂tw =
1

2

d

dt
‖w‖2

L2(Ω) .

Applying Lemma 2.1,∫
Ω

w · (u · ∇w)

=

∫
Ω

wiuj∂jw
i =

1

2

∫
Ω

uj∂j
∑
i

(wi)2 =
1

2

∫
Ω

u · ∇|w|2

=
1

2

∫
Γ

(u · n)|w|2 − 1

2

∫
Ω

(div u)|w|2 = 0,

since u · n = 0 on Γ and div u = 0 in Ω. Thus, integrating (8.5) over time,

‖w(t)‖2
L2(Ω) ≤ K + 2

∫ t

0

∫
Ω

|w|2|∇u|,(8.6)

where

K = 2ν

∫ t

0

[∫
Γ

(κ− α)u · w −
∫

Ω

∇u · ∇w

]

≤ 2ν

∫ t

0

[∫
Γ

(κ− α)u · w +

∫
Ω

∇u · ∇u

]
.
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Applying (2.5) and then using (7.3) and its equivalent for solutions to the Euler
equations (where the constant does not increase with time), we have∣∣∣∣

∫
Γ

(κ− α)u · w
∣∣∣∣ ≤ ‖κ− α‖L∞(Γ) ‖u‖L2(Γ) ‖w‖L2(Γ)

≤ C ‖u‖V ‖w‖V ≤ C(T, α, κ)eC(α)νT .

(8.7)

By (7.3) we also have∣∣∣∣
∫

Ω

∇u · ∇u

∣∣∣∣ ≤ ‖∇u‖L2(Ω) ‖∇u‖L2(Ω) ≤ C(T, α, κ)eC(α)νT ,(8.8)

so

K ≤ C(T, α, κ)eC(α)νT ν ≤ Rν(8.9)

for all ν in (0, 1] for some constant R.
By (7.2), ‖u‖L∞([0,T ]×Ω) ≤ C for all ν in (0, 1]. It is also true that u is in

L∞([0, T ] × Ω) (arguing, for instance, exactly as in (7.2)). Thus,

M = sup
ν∈(0,1]

‖|w|2‖L∞([0,T ]×Ω)

is finite.
Also, because the Lp-norms of vorticity are conserved for u, we have, by Corollary

3.2,

2 ‖∇u(t)‖Lp(Ω) ≤ Cp‖ω0‖Lp(Ω) + C‖u0‖L2(Ω) ≤ Cp(θ(p) + 1/p)(8.10)

for all p ≥ 2. Because θ is admissible, so is p �→ C[θ(p) + 1/p], and its associated β
function—call it β—is bounded by a constant multiple of that associated to θ; that
is, β ≤ Cβ.

We now proceed as in [14]. Let s be in [0, T ], and let

A = |w(s, x)|2, B = |∇u(s, x)|, L(s) = ‖w(s)‖2
L2 .

Then ∫
R2

|w(s, x)|2|∇u(s, x)| dx =

∫
R2

AB =

∫
R2

AεA1−εB ≤ M ε

∫
R2

A1−εB

≤ M ε‖A1−ε‖L1/(1−ε)‖B‖L1/ε = M ε‖A‖1−ε
L1 ‖B‖L1/ε

= M εL(s)1−ε‖∇u(s)‖L1/ε ≤ CM εL(s)1−ε 1

ε
(θ(1/ε) + ε).

Since this is true for all ε in [1/p0,∞), it follows that

2

∫
R2

|∇u(s, x)||w(s, x)|2 dx ≤ Cβ(L(s)) ≤ Cβ(L(s)).

From (8.6) and (8.9), then, we have

L(t) ≤ Rν + C

∫ t

0

β(L(r)) dr.
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By Lemma 1.1,

∫ L(t)

Rν

ds

Cβ(s)
=

(
−
∫ 1

L(t)

+

∫ 1

Rν

)
ds

Cβ(s)
≤

∫ t

0

ds = t.(8.11)

It follows that for all t in (0, T ],

∫ 1

Rν

ds

β(s)
≤ CT +

∫ 1

L(t)

ds

β(s)
.(8.12)

As ν → 0+, the left side of (8.12) becomes infinite because of (8.2); hence, so must
the right side. But this implies that L(t) → 0 as ν → 0+ and that the convergence is
uniform over [0, T ]. It also follows from (8.11) that

∫ L(t)

Rν

dr

β(r)
≤ Ct(8.13)

and that, as ν → 0, L(t) → 0 uniformly over any finite time interval. The rate of
convergence given in L∞([0, T ];L2(Ω)) in (8.4) can be derived from (8.13) precisely
as in [14].

By (2.5),

‖u− u‖L2(Γ) = ‖w‖L2(Γ) ≤ C ‖∇w‖1/2
L2(Ω) ‖w‖

1/2
L2(Ω)

≤ C(T, α, κ)eC(α)νTL(t)1/4,

from which the convergence rate for L∞([0, T ];L2(Γ)) in (8.4) follows.
The convergence rate in L∞([0, T ];L2(Ω)) established in Theorem 8.4 is the same

as that established for the entire plane in [14], except for the presence of the constant
C and the value of the constant R, which now increases with time (linearly, when α
is nonnegative).

In the important special cased of bounded initial vorticity, one obtains the bound

‖u− u‖L∞([0,T ];L2(R2)) ≤ M1/2

(
Rν

M

) 1
2 e

−εT

(8.14)

for all t in [0, T ] for which ν < (M/R)e−2. Here, the R and M are defined as
in the proof of Theorem 8.4, and ε = C‖ω0‖L2∩L∞ . When α is nonnegative, R is
proportional to t, and (8.14) is essentially the same bound obtained by Chemin in [3]
working in all of R

2.
One can also calculate explicit bounds for the sequence of admissible vorticities

in (8.3), obtaining bounds similar to that of (8.14), but with iterated exponentials. In
general, it is not possible to obtain an explicit bound. The important point, however,
is that, as described in section 5 of [14], it is possible to obtain an arbitrarily poor
bound on the convergence rate for properly chosen initial vorticity. This is because
the function f , which was defined implicitly in terms of β, can, conversely, be used
to define β, and we can choose f so that it approaches zero arbitrarily slowly. (It is
an open and difficult question whether initial vorticities actually exist that achieve
arbitrarily slow convergence.)

In Theorem 8.4, we held α constant in (1.2) and let ν → 0, which is equivalent to
letting a → 0 linearly with ν in (1.1). One could modify the proof of Theorem 8.4 in
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an attempt to obtain the vanishing viscosity limit with slower than linear convergence
of a to 0 by being explicit about the value of the constant C0 in Theorem 7.3. This
constant controls the bounds on both K and M in the proof of Theorem 8.4, which,
along with the Lp-norms of the initial vorticity, ultimately determine the convergence
rate. But C0 increases to infinity with ‖α‖L∞(Γ), and the bounds on K and M each

increase to infinity with C0. The conclusion is that ‖α‖L∞(Γ) must be bounded over
sufficiently small values of ν for the approach in the proof of Theorem 8.4 to remain
valid. Thus, using our approach, we cannot significantly improve over the assumption
that α remains fixed as ν → 0 in the vanishing viscosity limit.

9. No-slip boundary conditions. As long as α is nonvanishing, we can let
γ = 1/α and re-express the Navier boundary conditions in (1.2) as

v · n = 0 and 2γ(n ·D(v)) · τ + v · τ = 0 on Γ.(9.1)

When γ is identically zero, we have the usual no-slip boundary conditions. An obvious
question to ask is whether it is possible to arrange for γ to approach zero in such a
manner that the corresponding solutions to the Navier–Stokes equations with Navier
boundary conditions approach the solution to the Navier–Stokes equations with the
usual no-slip boundary conditions in L∞([0, T ];L2(Ω)).

Let u0 be an initial velocity in V , and assume that γ > 0 lies in L∞(Γ). Fix a
ν > 0 and let

u = the unique solution to the Navier–Stokes equations
with Navier boundary conditions for α = 1/γ and

ũ = the unique solution to the Navier–Stokes equations
with no-slip boundary conditions,

in each case with the same initial velocity u0.
If we let γ approach 0 uniformly on the boundary, we automatically have some

control over u on the boundary.
Lemma 9.1. For sufficiently small ‖γ‖L∞(Γ),

‖u‖L2([0,T ];L2(Γ)) ≤
‖u0‖L2(Ω)√

ν
‖γ‖1/2

L∞(Γ) .(9.2)

Proof. Assume that ‖γ‖L∞(Γ) is sufficiently small that α > κ on Γ. Then, as in
the proof of Theorem 6.1, we have

1

2

d

dt
‖u(t)‖2

L2(Ω) + ν ‖∇u(t)‖2
L2(Ω) = ν

∫
Γ

(κ− α)u · u,

so

‖u(t)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) + 2ν

∫ t

0

∫
Γ

(κ− α)u · u.

But ∫
Γ

(κ− α)u · u ≤ − inf
Γ

{α− κ} ‖u(t)‖2
L2(Γ) ,

so

‖u(t)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) − 2ν inf
Γ

{α− κ} ‖u‖2
L2([0,t];L2(Γ))
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and

‖u‖2
L2([0,t];L2(Γ)) ≤ ‖u0‖2

L2(Ω)/(2ν inf
Γ

{α− κ}).

Then (9.2) follows because ‖γ‖L∞(Γ) infΓ {α− κ} → 1 as ‖γ‖L∞(Γ) → 0.

If we assume enough smoothness of the initial data and of Γ, we can use (9.2) to
establish convergence of u to ũ as ‖γ‖L∞(Γ) → 0.

Theorem 9.2. Fix T > 0, assume that u0 is in V ∩ H3(Ω) with u0 = 0 on Γ,
and assume that Γ is C3. Then for any fixed ν > 0,

u → ũ in L∞([0, T ];L2(Ω)) ∩ L2([0, T ]; Ḣ1(Ω)) ∩ L2([0, T ];L2(Γ))(9.3)

as γ → 0 in L∞(Γ). Here, Ḣ1(Ω) is the homogeneous Sobolev space.
Proof. First, u exists and is unique by Theorem 6.1; the existence and uniqueness

of ũ are classical results. Because u0 is in H3(Ω) and Γ is C3, ũ is in L∞([0, T ];H3(Ω))
by the argument on page 205 of [22] following the proof of Theorem 3.6 of [22]. Hence,
∇ũ is in L∞([0, T ];H2(Ω)) and so in L∞([0, T ];C(Ω)).

Arguing as in the proof of Theorem 8.4 with w = u− ũ, we have∫
Ω

∂tw · w +

∫
Ω

w · (u · ∇w) +

∫
Ω

w · (w · ∇ũ) + ν

∫
Ω

∇w · ∇w

− ν

∫
Γ

(κ− α)u · w + ν

∫
Γ

(n · ∇ũ) · w = 0.

(Even though w is not a valid test function for ũ, we are working with sufficiently
smooth solutions that this integration is still valid. Since w is divergence-free and
tangential to the boundary, the pressure term for each equation integrates to zero.)
But ũ = 0 on Γ, so w = u on Γ, and∫

Ω

∂tw · w +

∫
Ω

w · (w · ∇ũ) + ν

∫
Ω

|∇w|2 + ν

∫
Γ

(α− κ)|u|2

+ ν

∫
Γ

(n · ∇ũ) · u = 0.

For ‖γ‖L∞(Γ) sufficiently small that α = 1/γ > κ on Γ, integrating over time
gives

‖w(t)‖2
L2(Ω) + ν

∫ t

0

‖∇w‖2
L2(Ω) ≤ K + 2

∫ t

0

∫
Ω

|w|2|∇ũ|,(9.4)

where

K = −2ν

∫ t

0

∫
Γ

(n · ∇ũ) · u ≤ 2ν

∫ t

0

‖∇ũ‖L2(Γ) ‖u‖L2(Γ)

≤ Cν

∫ t

0

‖ũ‖H2(Ω) ‖u‖L2(Γ) ≤ Cν ‖ũ‖L2([0,T ];H2(Ω)) ‖u‖L2([0,T ];L2(Γ)) .

By Theorem 3.10 on page 213 of [22], ‖ũ‖L2([0,T ];H2(Ω)) is finite (though the bound

on it in [22] increases to infinity as ν goes to 0), so by Lemma 9.1,

K ≤ C1(ν) ‖γ‖1/2
L∞(Γ) .(9.5)
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Because ∇ũ is in L∞([0, T ];C(Ω)),

∫ t

0

∫
Ω

|w|2|∇ũ| ≤ C2(ν)

∫ t

0

‖w(s)‖2
L2(Ω) ds,

where C2(ν) = ‖∇ũ‖L∞([0,T ]×Ω), and (9.4) becomes

‖w(t)‖2
L2(Ω) + ν

∫ t

0

‖∇w‖2
L2(Ω) ≤ C1(ν) ‖γ‖1/2

L∞(Γ) + C2(ν)

∫ t

0

‖w(s)‖2
L2(Ω) ds.

By Gronwall’s lemma,

‖w(t)‖2
L2(Ω) ≤ C1(ν) ‖γ‖1/2

L∞(Γ) e
C2(ν)t,

and the convergence in L∞([0, T ];L2(Ω)) and thus also in L2([0, T ]; Ḣ1(Ω)) follow
immediately. Convergence in L2([0, T ];L2(Γ)) then follows directly from Lemma 9.1,
since ũ = 0 on Γ.

10. The boundary layer. In [13], Kato investigates the vanishing viscosity
limit of solutions of the Navier–Stokes equations with no-slip boundary conditions to
a solution of the Euler equations for a bounded domain in R

d, d ≥ 2. What Kato
shows is the following: Let u be the weak solution to the Navier–Stokes equations
with no-slip boundary conditions and with u(0) in H, and let u be the solution to the
Euler equations, where sufficient smoothness is assumed for u(0) that ∇u is bounded
on [0, T ] × Ω. Assume also that u(0) → u(0) in H as ν → 0. Then the following are
equivalent:

(i) u(t) → u(t) in L2(Ω) as ν → 0 uniformly over t in [0, T ];
(ii) u(t) → u(t) in L2(Ω) as ν → 0 weakly for all t in [0, T ];

(iii) ν
∫ T

0
‖∇u‖2

L2(Ω) dt → 0 as ν → 0;

(iii′) ν
∫ T

0
‖∇u‖2

L2(Γcν) dt → 0 as ν → 0.
Here, Γcν is the boundary strip of width cν with c > 0 fixed but arbitrary.

Let us return to the setting of Theorem 8.4 and compare the situation to that
of [13]. We now have zero forcing and the same initial conditions for both (NS)
and (E), which simplifies the analysis in [13] slightly, but we have different boundary
conditions on (NS) and we have insufficient smoothness of u0 for Kato’s conditions
to apply. However, we have already proven that condition (i) holds and hence also
(ii), and since conditions (iii) and (iii’) follow immediately from (7.1), no further work
is required to show the equivalence of Kato’s four conditions.

(It is also possible to directly adapt Kato’s argument to our setting, thereby
establishing the vanishing viscosity limit in the spirit of Kato. This requires, however,
all of the results developed to prove the vanishing viscosity limit in Theorem 8.4 and
considerably more effort besides.)

We can bound the rate at which the convergence in condition (iii′) occurs, giving
us some idea of what is happening in the boundary layer.

Theorem 10.1. With the assumptions in Theorem 8.4,

ν

∫ T

0

‖∇u‖2
L2(Γcν) dt ≤ C(p, T, α, κ, u0)T (2c)1−2/pν2−2/p

for all p in (2,∞) and t in [0, T ].
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Proof. We have, using (7.1) and Corollary 3.2,

‖∇u‖L2(Γδ/2)
≤ ‖z∇u‖L2(Γδ)

≤ ‖z‖Lp′ (Γδ)
‖∇u‖Lp(Ω)

≤ ‖z‖Lp′ (Γδ)

(
Cp ‖ω‖Lp(Ω) + C ′ ‖u‖L2(Ω)

)
≤ ‖z‖Lp′ (Γδ)

(
Cp

(
‖ω0‖Lp + C0

)
+ C ′ ‖u‖L2(Ω)

)
,

where 1/p′ + 1/p = 1/2. But

‖z‖Lp′ ≤ Cδ1/p′
= Cδ1/2−1/p.

Substituting this into the earlier inequality, squaring the result, setting δ = 2cν, and
integrating over time conclude the proof.

The proof of Theorem 10.1 shows that the square of the gradient of the velocity for
a solution to (NS) with Navier boundary conditions vanishes in the L2-norm nearly
linearly with the width of the boundary layer. We could obtain linear convergence for
appropriate smoother initial velocities if we could show that ‖∇u‖L∞(Ω) is bounded
uniformly over small ν. It is not at all clear, however, whether such a result is
obtainable. In any case, the behavior of the boundary layer for Navier boundary
conditions is principally derived from the boundary conditions themselves and is not
highly dependent upon the smoothness of the initial velocity.

This is in contrast to no-slip boundary conditions, where for smooth data probably
the strongest general statement that can be made was made by Kato in [13] with
his equivalent conditions for the vanishing viscosity limit. (See also the incremental
improvement in [23] and [27].) For the less regular initial velocities that we assume
in Theorem 8.4, it is quite possible that a condition stronger than Kato’s condition
(iii′) is required to imply convergence in the vanishing viscosity limit. This is because
there is no known bound on ‖u‖L2([0,T ];L∞(Ω)) uniform over small ν, which is required
to achieve the vanishing viscosity limit using Osgood’s lemma as in section 8. In fact,
obtaining such a bound would almost certainly require obtaining a uniform bound on
the Lp-norm of the vorticity for some p > 2, which is tantamount to establishing the
vanishing viscosity limit to begin with, at least for smooth initial data.

Appendix. Compatible sequences. For p in (1,∞), define the spaces

Xp
0 = H0 ∩H1,p(Ω) and Xp = H ∩H1,p(Ω) = Xp

0 ⊕Hc,(A.1)

each with the H1,p(Ω)-norm.
Lemma A.1. Let p be in (1,∞]. For p < 2 let p̂ = p/(2−p), for p > 2 let p̂ = ∞,

and for p = 2 let p̂ be any value in [2,∞]. Then for any v in Xp
0 ,

‖v‖Lp̂(Γ) ≤ C(p) ‖ω(v)‖Lp(Ω) .

Proof. For p < 2 and any v in Xp
0 , we have

‖v‖Lp̂(Γ) ≤ C(p) ‖v‖1−λ
Lp(Ω) ‖∇v‖λLp(Ω) ≤ C(p) ‖∇v‖Lp(Ω)

≤ C(p) ‖ω(v)‖Lp(Ω) ,

where λ = 2(p̂− p)/(p(p̂− 1)) = 1 if p < 2 and λ = 2/p if p ≥ 2. The first inequality
follows from Theorem 3.1 on page 43 of [7], the second follows from (2.3), and the
third from Lemma 3.1.
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Given a vorticity ω in Lp(Ω) with p in (1,∞), the Biot–Savart law gives a vector
field v in H whose vorticity is ω. (That v is in L2(Ω) follows as in the proof of
Lemma A.1, Ω being bounded.) Let v = u + h, where u is in H0 and h is in Hc.
Then ω(u) = ω as well, so we can define a function KΩ: Lp(Ω) → H0 by ω �→ u
having the property that ω(KΩ[ω]) = ω. By (2.3) and Lemma 3.1, u is also in
H1,p(Ω), so, in fact, KΩ: Lp(Ω) → Xp

0 and is the inverse of the function ω. It is
continuous by the same two lemmas. We can write the inequality in Lemma A.1,
then, as ‖KΩ[ω]‖Lp̂(Γ) ≤ C(p) ‖ω‖Lp(Ω).

Theorem A.2. Assume that Γ is C2 and α is in L∞(Γ). Let v be in Xp for
some p in (1,∞) and have vorticity ω. Then there exists a sequence (vn) of compatible
vector fields (Definition 7.2) whose vorticities converge strongly to ω in Lp(Ω). The
vector fields (vn) converge strongly to v in Xp and, if p ≥ 2, also in V .

Proof. Our proof is a minor adaptation of that of Lemma 2 of [17], which we first
summarize. Let Nn be a tubular neighborhood of Γ of width 2/n (for n sufficiently
large) and let Un = Nn ∩ Ω. Define d : Un → R

+ by d(x) = dist(x,Γ) and r : Un → Γ
by letting r(x) be the nearest point to x on Γ. Define a cutoff function ζn in C∞(Ω)
taking values in [0, 1] so that ζn ≡ 0 on Un+1 and ζn ≡ 1 on Ω \ Un, and let the
sequence (ηk) be an approximation of the identity.

It is shown in [17] that β is a continuous extension operator from Lp̂(Γ) into
Lp(Ω), where

β(G)(x) := ζn(x)(ηn ∗ ω)(x) + (1 − ζn(x))e−nd(x)G(r(x))

and where p̂ is defined as in Lemma A.1. In calculating ηn ∗ ω, we extend ω by zero
to all of R

2. Defining Ψ: Lp̂(Γ) → Lp̂(Γ) by

Ψ(G) = (2κ− α)KΩ[βn(G)] · τ ,

it is shown that Ψ is a contraction mapping for sufficiently large n and so has a unique
fixed point, Gn. Finally, defining ωn = β(Gn), the authors show that ωn converges to
ω in Lp(Ω) (this argument uses Lemma A.1). Key to this last step is demonstrating
that ‖Gn‖Lp̂(Γ) is bounded over n.

Since the authors of [17] are working in a simply connected domain, they can deal
exclusively with vorticity. To adapt their proof to multiply connected domains, where
we must recover the velocity with the proper harmonic component, requires only one
change to their construction. We suppose that v = u + h with u ∈ Xp

0 and h in Hc

and define

Ψ(G) = (2κ− α)(KΩ[β(G)] + h) · τ .

In forming the difference Ψ(G1) − Ψ(G2) the term (2κ − α)h · τ cancels, and the
existence of a unique fixed point Gn follows precisely as in [17].

We can now define

ωn = β(Gn), vn = KΩ[ωn] + h,

and observe that on Γ,

ω(vn) = ωn = β(Gn) = Gn = Ψ(Gn) = (2κ− α)(KΩ[β(Gn)] + h) · τ
= (2κ− α)(KΩ[ωn] + h) · τ = (2κ− α)vn · τ ,
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so vn satisfies the Navier boundary conditions. (Note that we had to include the
harmonic component h of the velocity in the definition of Ψ; we could not simply
apply Lemma 2 of [17] to u and add h to the resulting vector field, because such a
vector field would not, in general, satisfy the Navier boundary conditions.)

The convergence of ωn to ω in Lp(Ω) is argued as in [17], except that now, to
show that ‖Gn‖Lp̂(Γ) is bounded over n, we have

‖Gn‖Lp̂(Γ) ≤ ‖2κ− α‖L∞ ‖KΩ[ωn] + h‖Lp̂(Γ)

≤ C(‖KΩ[ωn]‖Lp̂(Γ) + ‖h‖Lp̂(Γ))

≤ C

(
‖ω‖Lp(Ω) +

1

2
‖Gn‖Lp̂(Γ) + ‖∇h‖Lp(Ω)

)

for n sufficiently large. Here, the bound on ‖KΩ[ωn]‖Lp̂(Γ) is as in [17] and the bound

on ‖h‖Lp̂(Γ) follows from Theorem 3.1 on page 43 of [7] and (2.3) as in the proof of

Lemma A.1. It follows that ‖Gn‖Lp̂(Γ) ≤ C ‖v‖Xp
for sufficiently small n, which is

what is required to complete the proof of the convergence of ωn to ω in Lp(Ω) as in
[17].

To prove the convergence of vn to v in Xp, we observe that

‖∇v −∇vn‖Lp(Ω) = ‖∇u + ∇h− (∇KΩ[ωn] + ∇h)‖Lp(Ω)

= ‖∇(u−KΩ[ωn])‖Lp(Ω) ≤ Cp ‖ω(u−KΩ[ωn])‖Lp(Ω)

= Cp ‖ω − ωn‖Lp(Ω) ,

where we used Lemma 3.1. Then by (2.3), vn converges strongly to v in Xp as well.
Convergence in V for p ≥ 2 follows since Ω is bounded.

Our only use of Theorem A.2 is in the proofs of Theorem 7.3 and Corollary A.3.
In both of these instances we need only the case p ≥ 2. We include all the cases,
however, for the same reason as in [17]: we hope that if the vorticity bound in Lemma
3 of [17] can be extended to p in (1, 2), then the convergence in Proposition 1 of [17]
can also be extended (for multiply connected Ω).

Corollary A.3. Assume that Γ is C2, and α is in L∞(Γ). Then there exists a
basis for V lying in W that is also a basis for H.

Proof. The space V = (V ∩H0) ⊕Hc is separable because V ∩H0 is the image
under the continuous function KΩ of the separable space L2(Ω) and Hc is finite-
dimensional. Let {vi}∞i=1 be a dense subset of V . Applying Theorem A.2 to each vi
and unioning all the sequences, we obtain a countable subset {ui}∞i=1 of W that is
dense in V . Selecting a maximal independent set gives us a basis for V and for H as
well, since V is dense in H.
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[1] D. Băınov and P. Simeonov, Integral inequalities and applications, Math. Appl. 57, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1992.

[2] I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems
of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), pp. 81–94.



232 JAMES P. KELLIHER

[3] J.-Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Comm.
Partial Differential Equations, 21 (1996), pp. 1771–1779.

[4] J.-Y. Chemin, Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl. 14, The Claren-
don Press, Oxford University Press, New York, 1998. Translated from the 1995 French
original by Isabelle Gallagher and Dragos Iftimie.
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Paris, 1969.

[16] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, Oxford Lecture Ser. Math. Appl.
3, The Clarendon Press, Oxford University Press, New York, 1996.

[17] M. C. Lopes Filho, H. J. Nussenzveig Lopes, and G. Planas, On the inviscid limit for
two-dimensional incompressible flow with Navier friction condition, SIAM J. Math. Anal.,
36 (2005), pp. 1130–1141.

[18] J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Phil.
Trans. Royal Society, 1879, pp. 704–712.

[19] C. M. L. H. Navier, Sur les lois de l’equilibre et du mouvement des corps élastiques, Mem.
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Abstract. Established here is the uniquenes of solutions for the traveling wave problem cU ′(x) =
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1. Introduction. Consider a system of countably many ordinary differential
equations, for {un(·)}n∈Z,

(1.1) u̇n(t) = un+1(t) − 2un(t) + un−1(t) + f(un(t)), n ∈ Z, t > 0,

where f is a nonlinear forcing term satisfying f(0) = f(1) = 0. This system can be
embedded into a larger one, for an unknown {u(x, ·)}x∈R,

ut(x, t) = u(x + 1, t) − 2u(x, t) + u(x− 1, t) + f(u(x, t)), x ∈ R, t > 0.(1.2)

A solution of (1.2) or (1.1) is called a traveling wave with speed c if there exists
a function U defined on R such that u(x, t) = U(x + ct) or un(t) = U(n + ct). Here
U is referred to as the wave profile. Of interest are solutions taking values in [0, 1],
specifically, traveling waves connecting the steady states 0 and 1, i.e., traveling wave
solutions (c, U) ∈ R × C1(R) of the traveling wave problem{

cU ′(·) = U(· + 1) + U(· − 1) − 2U(·) + f(U(·)) on R,
U(−∞) = 0, U(∞) = 1, 0 � U � 1 on R.

(1.3)

Equation (1.1) can be found in many biological models (e.g., [9, 20, 22]). Also,
it can be regarded as a spatial-discrete version of the parabolic partial differential
equation

ut = uxx + f(u).(1.4)
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The existence, uniqueness, and stability of traveling waves of (1.1) have been exten-
sively studied recently under various assumptions on f ; see, for example, [1, 5, 6,
7, 10, 12, 24, 25, 26, 27]. The commonly used assumption includes the condition of
nondegeneracy f ′(0)f ′(1) �= 0. For bistable dynamics, i.e., f ′(0) < 0 and f ′(1) < 0,
the results on traveling waves are quite complete; see, for example, [1, 7, 25, 26] and
the references therein. This paper concerns only the monostable dynamics, i.e., f
satisfies

(A) f ∈ C1([0, 1]), f(0) = f(1) = 0 < f(s) ∀ s ∈ (0, 1).

Under the nondegeneracy and the condition that f(s) � f ′(0)s for all s ∈ [0, 1],
Zinner, Harris, and Hudson established the existence of traveling waves [27]; see also
the later developments of Fu, Guo, and Shieh [10] and Chen and Guo [5]. The
uniqueness issue was not satisfactorily resolved until a recent paper of Chen and Guo
[6]. For easy reference, we quote here the following existence and uniqueness result
from [6].

Proposition 1. Assume (A).
(i) There exists cmin > 0 such that (1.3) admits a solution if and only if c � cmin.
(ii) Given c � cmin, there is a speed c wave profile satisfying U ′ > 0 on R.
(iii) Given c > 0, (1.3) admits a solution if there is a supersolution of speed c.
(iv) When f ′(0)f ′(1) �= 0, wave profiles are unique up to a translation. In addi-

tion,

lim
x→−∞

U ′(x)

U(x)
= λ, lim

x→∞

U ′(x)

U(x) − 1
= μ,(1.5)

where λ is a positive real root of the characteristic equation

c λ = eλ + e−λ − 2 + f ′(0)(1.6)

and μ is the negative real root of the characteristic equation

c μ = eμ + e−μ − 2 + f ′(1).(1.7)

In addition, when c > cmin, λ is the smaller real root of the characteristic equation
(1.6).

Here by a supersolution of wave speed c it means a nonconstant Lipschitz contin-
uous function Φ from R to [0, 1] satisfying

cΦ′(x) � Φ(x + 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) a.e. x ∈ R.

Note that for any real numbers m and k, the function z ∈ R → ez+e−z+mz+k is
strictly convex, so the characteristic equation has at most two real roots. Since f ′(1) �
0 and c > 0, there is a unique nonpositive real root μ to c μ = eμ + e−μ − 2 + f ′(1).
For the characteristic equation at 0, we define

c∗ = min
z>0

ez + e−z − 2 + f ′(0)

z

{
> 0 if f ′(0) > 0,
= 0 if f ′(0) = 0.

(1.8)

Suppose f ′(0) > 0. There are two real roots to cλ = eλ + e−λ − 2 + f ′(0) when
c > c∗; both are positive. When c = c∗, there is a unique real root, positive and of
multiplicity two. When c < c∗, there are no real roots, so the assertion of Proposition 1
implicitly implies that cmin � c∗. In addition, suppose f(s) � f ′(0)s for all s ∈ [0, 1].
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Then it is easy to verify that Φ(x) := min{eλx, 1} is a supersolution of speed c if
cλ = eλ + e−λ − 2 + f ′(0). This implies that cmin = c∗. When f ′(0) = 0, we see that
c∗ = 0 and λ = 0 is a root to the characteristic equation at 0. Nevertheless, since
cmin > 0, we see an example that cmin > c∗.

It is important to observe that a (monotonic) wave profile Umin of the minimum
speed is a supersolution of any wave speed c > cmin. Since among all wave profiles of
all admissible speeds Umin decays with the largest exponential rate as x → −∞, it is
not always true that near −∞ a supersolution is bigger than a true solution under a
certain translation. Thus, Proposition 1(iii) is highly nontrivial; its proof in [6] was
based on an original idea of the authors of [27], with a simplification that avoids the
use of degree theory.

The purpose of this paper is to remove the nondegeneracy condition f ′(0)f ′(1) �= 0
made in Proposition 1(iv); that is, we are mainly concerned with the degenerate case
f ′(0)f ′(1) = 0. We shall also introduce a number of new techniques. In terms of the
differential equation (1.4), existence, uniqueness, and asymptotic stability of traveling
waves have been established (cf. [13, 14, 17, 21]). Here we would like to extend the
analogous result for (1.4) to (1.1). We summarize our results for the traveling wave
problem (1.3) as follows.

Theorem 1. Assume (A). Wave profiles of a given speed are unique up to a
translation.

Theorem 2. Assume (A). Any wave profile is monotonic; i.e., U ′ > 0 on R.
Theorem 3. Assume (A). Any solution (c, U) of (1.3) satisfies (1.5) and

lim
x→−∞

U ′′(x)

U ′(x)
= λ, lim

x→−∞

f(U(x))

U ′(x)
=

{
c if λ = 0,
f ′(0)/λ otherwise,

lim
x→∞

U ′′(x)

U ′(x)
= μ, lim

x→∞

f(U(x))

U ′(x)
=

{
c if μ = 0,
f ′(1)/μ otherwise,

where λ is a nonnegative real root of the characteristic equation (1.6) and μ is the
nonpositive real root of (1.7).

In addition, λ is the smaller root when c > cmin and the larger root when c = cmin.
Note that the root μ � 0 to (1.7) is unique. In particular, μ = 0 when f ′(1) = 0.

Also, λ = 0 when f ′(0) = 0 and c > cmin; otherwise, λ > 0. Note also that when
cmin > c∗, the characteristic equation (1.6) always has two positive real roots. To our
knowledge, it is new in the literature that, as a principle, λ is the larger root of the
characteristic equation (1.6) when c = cmin > c∗, where c∗ is as in (1.8).

In [6], the following general system is considered

ut(x, t) = g(u(x + 1, t)) − 2g(u(x, t)) + g(u(x− 1, t)) + f(u(x, t)),

where g(·) is increasing. Under a variable change v = [g(u) − g(0)]/[g(1) − g(0)], the
system can be rewritten as

h(v(x, t))vt(x, t) = v(x + 1, t) + v(x− 1, t) − 2v(x, t) + f̃(v(x, t)).

Under assumptions that h ∈ C1 and h > 0 on [0, 1], all the analysis and results
presented in this paper apply to such an extended version.

In one of his celebrated pioneer works in 1982, Weinberger [23] studied the long
time (as n → ∞) behavior and the existence of planar traveling waves for fully discrete
Fisher’s-type models of the form, for un := {un

j }j∈H ,

un+1 − un = Q[un], n = 0, 1, 2, . . . ,
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where Q is a translation invariant (e.g., autonomous) nonlinear operator and typical
examples of H are H = R

m and H = Z
m (m � 1). In particular, for each unit vector

ξ there exists a constant c∗(ξ) (the minimal wave speed) such that c∗(ξ) is the asymp-
totic propagation speed for arbitrarily initial disturbance. After deriving a lower and
an upper bound for c∗(ξ), the author established the existence of planar traveling
wave with speed c for any c ≥ c∗(ξ), and nonexistence for c < c∗(ξ). While Wein-
berger established striking results for an extremely general fully discrete monostable
dynamics, here by contrast, we focus our attention only on a one-dimensional semidis-
crete (i.e., continuous in time) version (1.1) or (1.2). Our main concerns in this paper
are (1) the uniqueness and asymptotic behavior (as x → ∞) of the traveling waves,
and (2) the highly nontrivial extension of the current knowledge on nondegenerate
monostable dynamics to its degenerate case, i.e., to the case f ′(0)f ′(1) = 0. That
is to say, our work extends that of Weingerber’s pioneer systematic analysis in two
directions: firstly from the fully discrete version to semidiscrete version and, secondly,
from nondegenerate steady states to general degenerate and/or nondegenerate steady
states.

In the higher space dimensional case, the dynamics

ut(x, t) =

m∑
i,j=1

aij
∂2u(x, t)

∂xi∂xj
+ f(u(x, t)), x ∈ R

m, t > 0,

where (aij)m×m is a positive definite matrix, exhibits a variety of interesting wave phe-
nomena; see, for example, Hamel and Nadirashvili [11], Berestycki and Larrouturou
[3], and the references therein. A two-dimensional analogue of (1.1) takes the form

u̇ij = a[ui+1,j + ui−1,j ] + b[ui,j+1 + ui,j−1] + F (uij), i, j ∈ Z,

where a, b are positive constants. Here a planar traveling wave refers to a solution of
the form uij(t) = U(i cos θ + j sin θ + ct) for all i, j ∈ Z and t ∈ R, where (cos θ, sin θ)
is the wave direction and c = c(θ) is the wave speed. Note that U ∈ C1(R) satisfies

cU ′(ξ) = a[U(ξ + cos θ) + U(ξ − cos θ)] + b[U(ξ + sin θ) + U(ξ − sin θ)] + F (U(ξ)).

In this direction, we refer the reader to Chen [4], Chow, Mallet-Paret and Shen [7, 8]
and Mallet-Paret [15, 16] for the bistable case and Shen [18, 19] for the bistable time
almost periodic case. Clearly, our traveling wave problem is only the special case of
|θ| = π

4 . We expect that our results and methods can be extended in a great extent
to this new problem.

We remark that limit, as a ↘ 0, of the bistable nonlinearity f(u) = u(1 −
u)(u − a) is the degenerate monostable nonlinearity f(u) = u2(1 − u). The limiting
process is continuous in the sense that the unique (modulo the translation invariance)
traveling wave for the bistable nonlinearity approaches the unique minimum wave
speed traveling wave for the degenerate monostable nonlinearity. The limiting process
is not continuous in the sense that for the bistable case there is only one traveling wave,
whereas for the monostable case, there are infinitely many traveling waves. We would
like to point out that many tools that work for the bistable case do not work here
for the monostable case; for example, in general the tools used for the construction of
supersolutions in the bistable case do not work for the monostable case. Exaggerating
a little bit, one may say that the bistable dynamics and monostable dynamics are
different, and so are many of the mathematical tools to study them.
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Now we briefly discuss our analysis towards our main results. The proof of unique-
ness (Theorem 1) relies on the monotonicity (Theorem 2) and the detailed asymptotic
behavior (Theorem 3) of wave profiles. Two new techniques are specifically developed
here to study the uniqueness of traveling waves of monostable dynamics. One of them,
which we call magnification and is originated from [6], is to magnify appropriately the
difference between two wave profiles U and V by (for the purpose of demonstration
only, considering the case c > cmin)

W (ξ, x) =

∫ U(x+ξ)

V (x)

ds

f(s)
.

Such a magnification has a special property limx→−∞ Wx(ξ, x) = 0 for any ξ ∈ R and
a general property inf(ξ,x)∈R2 Wξ(ξ, x) > 0. From a basic comparison (for monotonic
profiles) which says that if U > V on [a−1, a)∪(b, b+1], then U > V on [a, b], these two
properties prohibit W from any oscillations with nonvanishing magnitude as x → −∞;
namely, there exists limx→−∞ W (ξ, x) (which may be infinite). Consequently, any
two wave profiles are ordered near −∞; see section 4 for more details. An additional
advantage of this magnification is that limx→−∞ W (ξ, x) exists even if V is merely
a sub- or a supersolution. This fact will be used in section 5 to find asymptotic
expansions of wave profiles.

The other technique, which we call compression, is developed to include the treat-
ment of the degenerate case f ′(1) = 0. Traditionally near ∞ one uses min{U + ε, 1}
as a supersolution which works for both monostable and bistable dynamics but needs
the assumption that f ′ � 0 on [1− δ, 1] for some δ > 0. To deal with the general case,
we use the following compression to obtain (local) supersolutions:

Z(�, x) = U([1 + �]x), x 
 1, � ∈ (0, 1].

The asymptotic behavior of wave profiles implies that Z approaches 1 as x → ∞ at
a rate faster than any wave profile. With a limiting � ↘ 0 process, we can show that
near ∞, one wave profile is always bigger than a certain translation of any other wave
profile.

The asymptotic behavior (1.5) follows from an analysis similar to that in [6].
After a thorough reinvestigation of the method used in [6], we found that the method
in [6] can be rephrased into the following quite fundamental theory.

Theorem 4. Let c > 0 be a constant and B(·) be a continuous function having
finite B(±∞) := limx→±∞ B(x). Let z(·) be a measurable function satisfying

c z(x) = e
∫ x+1
x

z(s)ds + e−
∫ x
x−1

z(s)ds + B(x) ∀x ∈ R.(1.9)

Then z is uniformly continuous and bounded. In addition, ω± = limx→±∞ z(x) exist
and are real roots of the characteristic equation c ω = eω + e−ω + B(±∞).

Note that each of z = U ′/U,U ′/(U − 1) and U ′′/U ′ satisfies an equation of the
form (1.9). This theory provides a powerful tool to study the asymptotic behavior, as
x → ±∞, of positive solutions of a variety of semilinear finite difference-differential
equations. In particular, once the monotonicity U ′ > 0 is shown, z = U ′′/U ′ is then
well defined and all the limits stated in Theorem 3 follow immediately from the theory.

Now the focus is shifted to show the monotonicity of U . In the nondegenerate
case, μ < 0 < λ, so that (1.5) and a comparison between U(x + h) and U(x) on a
compact interval imply that U ′ > 0 on R. In the degenerate case, λμ = 0, so (1.5) is
not sufficient for such an argument. We shall develop a blow-up technique, showing
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that U ′ > 0 on a sequence of intervals {[ξi − 1, ξi + 1]} of two-unit length, where
limi→±∞ ξi = ±∞. Then we develop a modified sliding method which enables us to
compare U(x + h) and U(x) on any finite interval [ξi − 1, ξj + 1] (i < j) to prove the
monotonicity result.

For a solution of (1.2) or (1.4) with initial value u(x, 0), its long time behavior
(e.g. approaching a traveling wave) depends on the asymptotic behavior of u(x, 0) as
x → −∞, i.e., tails of which wave profile U(x) that u(·, 0) resembles; see, for example,
[2, 5] and the references therein. For this purpose, we shall also provide asymptotic
expansions, accurate enough to capture the translation difference of wave profiles near
±∞. In particular, under the condition that f(u) = f ′(0)u+O(u1+α) for some α > 0
and all small u, we show the following:

(i) If c = cmin and the larger root λ of (1.6) is not a double root, then for some
x0 ∈ R,

lim
x→−∞

e−λxU(x + x0) = 1.(1.10)

(ii) If c = cmin and λ is a double root, then for some x0 ∈ R,

either lim
x→−∞

U(x + x0)

|x|eλx = 1 or lim
x→−∞

U(x + x0)

eλx
= 1.(1.11)

(iii) If c > cmin and f ′(0) > 0, then (1.10) holds for some x0 ∈ R with λ the
smaller root of (1.6).

Note that λ > 0 in all these cases, so, as we expected from (1.5), U(x) decays to
zero exponentially fast as x → −∞. Earlier results (e.g., [5, 10, 12, 27]) on this matter
depend on the construction of global sub- and supersolution pairs that sandwich a
wave profile. Such a construction is possible for all large wave speeds for general f
and for all nonminimum wave speeds when f(s) � f ′(0)s for all s ∈ [0, 1]. We remark
that the stability (which implies uniqueness) result in [5] was established under the
assumption (1.10). By proving (1.10), the result in [5] then implies that any solution
of (1.2) approaches, as t → ∞, a traveling wave of speed c (> cmin) if u(·, 0) takes
values on [0, 1] and

lim
x→−∞

e−λxu(x, 0) = 1, lim inf
x→∞

u(x, 0) > 0.

On the other hand, λ = 0 when f ′(0) = 0 and c > cmin, so from (1.5), an
exponential decay is impossible and an algebraic decay is to be expected (cf. [13, 14,
17, 21] for (1.4)). Indeed, under certain additional assumptions (cf. (B1) in section
5) we show the following:

If c > cmin and f ′(0) = 0, then for some x0 ∈ R,

lim
x→−∞

{∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x + x0

c

}
= 0.(1.12)

For example, when f(u) = κu2(1 − u)p (κ > 0, p ≥ 1), the above limit yields

U(x) =
c

κ[|x| − x0 + o(1)] + (pc− 2κ/c) ln |x| as x → −∞.

The asymptotic expansion of U(x) as x → ∞ can be treated similarly. Indeed,

lim
x→∞

{∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x + x0

ν

}
= 0,
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for some x0 ∈ R, where ν = c if f ′(1) = 0 and ν = f ′(1)/μ if f ′(1) < 0. Since this
limiting behavior has nothing to do with the condition needed on the initial data for
the long time behavior of solutions of (1.2), we choose to omit the details here.

This paper is organized as follows. In section 2, we derive the asymptotic behavior
of wave profiles near ±∞ and prove Theorem 3. We prove the monotonicity of wave
profiles (Theorem 2) in section 3, by using the method of sliding and a new blow-
up technique. In section 4, the uniqueness of traveling waves is established. Finally
in section 5, we construct suitable local super/subsolutions to verify our asymptotic
expansions of wave profiles near x = ±∞.

2. Asymptotic behavior of wave profiles near x = ±∞. In the following,
the assumption (A) is always assumed.

2.1. The idea in [6]. The most important technique developed in [6] can be
presented as follows. Suppose that the following quantities

ρ(x) :=
U ′(x)

U(x)
, σ(x) :=

U ′(x)

U(x) − 1
, χ(x) :=

U ′′(x)

U ′(x)

are well defined. This is the case, if U > 0, U < 1, and U ′ > 0 for ρ, σ, and χ,
respectively. Then each of them satisfies an equation of the form (1.9), where B(·) is
a continuous function having limx→±∞ B(x) =: B(±∞). For any positive constant
m, we set

v(x) = emx+
∫ x
0

z(s)ds.

Then

c v′(x) = [cm + B(x)]v(x) + e−mv(x + 1) + emv(x− 1).

Assume that c > 0. We take a specific m = ‖B(x)‖L∞(R)/c. Then v′(x) ≥ 0.
Consequently,

c v(x) − c v(x− 1/2) >

∫ x

x−1/2

e−mv(s + 1)ds >
1

2
v(x + 1/2)e−m.

This implies that v(x) > v(x + 1/2)/(2cem) > v(x + 1)/(2cem)2. Therefore,

e
∫ x+1
x

z(s)ds =
v(x + 1)e−m

v(x)
� 4c2em, e−

∫ x
x−1

z(s)ds =
emv(x− 1)

v(x)
� em,

and so

−m < z(x) < m + 4cem + em/c ∀x ∈ R, m := ‖B‖L∞(R)/c.(2.1)

The uniform boundedness of z implies that z is uniformly continuous. Hence, for any
unbounded sequence {xi}, {z(xi + ·)} is a bounded and equicontinuous family. Along
a subsequence, it converges to a limit r, uniformly in any compact subset of R. In
addition, r satisfies the fundamental equation

c r(x) = e
∫ x+1
x

r(s) ds + e
∫ x−1
x

r(s) ds + b ∀x ∈ R,(2.2)

where b = B(∞) if limi→∞ xi = ∞ and b = B(−∞) if limi→∞ xi = −∞. For the
fundamental equation, Chen and Guo established in [6] the following key result.
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Proposition 2. Let c > 0, b ∈ R and P (ω) = cω− eω − e−ω − b. Consider (2.2).
(i) When P (ω) = 0 has no real root, there is no solution.
(ii) When P (ω) = 0 has only one real root λ, r ≡ λ is the only solution.
(iii) When P (ω) = 0 has two real roots {λ,Λ} (λ < Λ), every solution can be

written as

r(x) =
u′(x)

u(x)
, u(x) = θeλx + (1 − θ)eΛx, θ ∈ [0, 1].

In particular, any nonconstant solution satisfies r′ > 0, r(−∞) = λ, and r(∞) = Λ.
Proof of Theorem 4. We need consider only the case when the characteristic

equation has two real roots. For this, let λ and Λ be the roots where λ < Λ. Sup-
pose limx→−∞ z(x) does not exist. Then there exist ω �∈ {λ,Λ} and a sequence {xi}
satisfying limi→−∞ xi = −∞, z(xi) = ω and z′(xi) � 0 for all i. Since {z(xi + ·)}
is uniformly bounded and equi-continuous, a subsequence converges to a limit r which
solves (2.2) with b = B(−∞). In addition, by the definition of r, we have r(0) = ω
and r′(0) � 0. But from Proposition 2, there are no such kind of solutions. Hence,
limx→−∞ z(x) exists and is one of the two roots to the characteristic equation. Simi-
larly, one can show that limx→∞ z(x) exists.

Remark 1.

(i) By working on the function ẑ(x) := −z(−x) the assertion of the theorem
remains unchanged when c < 0.

(ii) Theorem 4 extends to a more general equation

z(x) = a1(x)e
∫ x+1
x

z(s)ds + a2(x)e−
∫ x
x−1

z(s)ds + B(x),

where a1 and a2 are continuous positive functions having limits

a± := lim
x→±∞

a1(x) = lim
x→±∞

a2(x) > 0.

(iii) Theorem 4 also extends to the case when z is a continuous function defined
on [−1,∞) (or (−∞, 1]) and satisfies (1.9) on [0,∞) (or (−∞, 0]). The conclusion
is that limx→∞ z(x) (or limx→−∞ z(x)) exists and is the root of the characteristic
equation.

2.2. The asymptotic behavior. Now we establish the limits stated in Theo-
rem 3.

We begin with the limits in (1.5). First we show that U > 0. Suppose on the
contrary there exists y ∈ R such that U(y) = 0. Then it is a global minimum so that
U ′(y) = 0 and from the equation in (1.3), U(y+ 1) +U(y− 1) = 0 which implies that
U(y±1) = 0. An induction gives U(y+k) = 0 for all k ∈ Z, contradicting U(∞) = 1.
Thus, U > 0. Similarly, U < 1. Once we know 0 < U < 1, we can define

ρ(x) :=
U ′(x)

U(x)
⇒

∫ x+1

x

ρ(z)dz = ln
U(x + 1)

U(x)
,

σ(x) :=
U ′(x)

U(x) − 1
⇒

∫ x+1

x

σ(z)dz = ln
U(x + 1) − 1

U(x) − 1
.

Dividing the ode in (1.3) by U and U − 1, respectively, we obtain

cρ(x) = e
∫ x+1
x

ρ(z)dz + e
∫ x−1
x

ρ(z)dz − 2 + B1(x),

cσ(x) = e
∫ x+1
x

σ(s) ds + e
∫ x−1
x

σ(s) ds − 2 + B2(x),
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where B1(x) = f(U(x))/U(x) and B2(x) = f(U(x))/[U(x) − 1]. Since U(−∞) = 0
and U(∞) = 1, we see that B1(−∞) = f ′(0), B1(∞) = 0, B2(−∞) = 0, and
B2(∞) = f ′(1). The limits in (1.5) thus follow from Theorem 4.

Next, we establish the remaining limits stated in Theorem 3. Here we shall use
the fact U ′ > 0, to be proven in the next section. Differentiating the ode in (1.3) with
respect to x we have

cU ′′(x) = U ′(x + 1) + U ′(x− 1) + [f ′(U(x)) − 2]U ′(x).

Define

χ(x) :=
U ′′(x)

U ′(x)
⇒

∫ x+1

x

χ(z)dz = ln
U ′(x + 1)

U ′(x)
.

Then

c χ(x) = e
∫ x+1
x

χ(z)dz + e−
∫ x
x−1

χ(z)dz + f ′(U(x)) − 2 ∀x ∈ R.

The stated limits for χ in Theorem 3 thus follow from Theorem 4 and l’Hôpital’s rule.

Finally, the limits of f(U(x))/U ′(x) as x → ±∞ are obtained by using the limits
of χ and the identity

f(U(x))

U ′(x)
= c− [U(x + 1) − U(x)] − [U(x) − U(x− 1)]

U ′(x)

= c−
∫ 1

0

{
e
∫ x+z
x

χ(s)ds − e−
∫ x
x−z

χ(s)ds
}
dz.

In the next two subsections, we show the additional part of Theorem 3; namely,
we show that λ is the smaller real root to the characteristic equation (1.6) when
c > cmin and the larger root when c = cmin.

2.3. The characteristic values of nonminimum speed waves.

Lemma 2.1. If (c, U) is a traveling wave of speed c > cmin, then the charac-
teristic equation cλ = eλ + e−λ − 2 + f ′(0) has two different real roots and λ :=
limx→−∞ U ′(x)/U(x) is the smaller root. In the particular instance when f ′(0) = 0,
limx→−∞ U ′(x)/U(x) = 0.

Proof. Recall from Theorem 2 of [6] that cmin � c∗, where

c∗ := min
z>0

ez + e−z − 2 + f ′(0)

z
.

Hence cminz = ez + e−z − 2 + f ′(0) always has a root. This implies that c z =
ez + e−z − 2 + f ′(0) has exactly two roots, which we denote by λ(c) and Λ(c) with
λ(c) < Λ(c), for c > cmin.

Suppose on the contrary that limx→−∞ U ′(x)/U(x) = Λ(c). Let ĉ ∈ (cmin, c) and
(ĉ, Û) be a traveling wave of speed ĉ. By (1.5), limx→−∞ Û ′(x)/Û(x) � Λ(ĉ). Then

lim
x→−∞

d

dx

(
ln

Û(x)

U(x)

)
= lim

x→−∞

{ Û ′(x)

Û(x)
− U ′(x)

U(x)

}
� Λ(ĉ) − Λ(c) < 0
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by the strictly monotonicity of Λ(c) in c. Thus, limx→−∞ ln[Û(x)/U(x)] = ∞ and
there exists M > 0 such that Û(x) > U(x) for all x � −M . Similarly,

lim
x→∞

d

dx

{∫ Û(x)

U(x)

ds

f(s)

}
= lim

x→∞

{
Û ′(x)

f(Û(x))
− U ′(x)

f(U(x))

}

=

{
1/ĉ− 1/c if f ′(1) = 0,
[μ(ĉ) − μ(c)]/f ′(1) if f ′(1) < 0.

This quantity is positive when f ′(1) = 0; so is the case when f ′(1) < 0 since the
negative root μ = μ(c) of cμ = eμ + e−μ − 2 + f ′(1) satisfies μ(ĉ) < μ(c). Thus there
exists M1 > 0 such that Û(x) > U(x) for all x � M1. In conclusion, Û(· + M1) >
U(· −M).

Now both u1(x, t) := Û(x+M1 + ĉt) and u2(x, t) := U(x−M + ct) are solutions
of (1.2). Since u1(·, 0) � u2(·, 0), the comparison principle for (1.2) implies u1(·, t) �
u2(·, t) for all t > 0, which is impossible since c > ĉ. Thus, limx→−∞ U ′(x)/U(x) =
λ(c).

The asymptotic behavior of U stated in Theorem 3 immediately gives the following
corollary.

Corollary 2.2. Suppose (c1, U1) and (c2, U2) are two traveling waves where
c1 < c2. Then there exist a, b ∈ R such that

U1 < U2 in (−∞, a), U1 > U2 in (b,∞).

We remark that in the case of the differential equation cU ′ = U ′′ + f(U) one
can take a = b to conclude that a smaller speed wave profile is steeper than a larger
speed wave profile; namely, on the phase plane (U,U ′), if one writes U ′ = P (c, U),
then P (c1, s) > P (c2, s) for all s ∈ (0, 1) and c2 > c1 � cmin. For (1.3), we believe
that this should also be the case.

2.4. The characteristic value of minimum speed waves.
Lemma 2.3. If (cmin, U) is a wave of minimum speed, then Λ := limx→−∞ U ′(x)/

U(x) is the larger root (if there are two) of the characteristic equation cminz = ez +
e−z − 2 + f ′(0).

Proof. Notice that when cmin = c∗ (defined in (1.8)), the characteristic equation
has only one real root, so there is nothing to prove in this case. Hence we consider
the case when cmin > c∗. We denote the smaller real root by λ and the larger root
by Λ. We use a contradiction argument by assuming that limx→−∞ U ′(x)/U(x) = λ.
As we shall see, this will allow us to construct a supersolution Φ of wave speed c for
some c < cmin by joining an exponential function ψ defined on (−∞, 0] and another
function φ defined on [0,∞) obtained from the wave profile U of speed cmin. We
divide this construction into the following steps.

First, set ω = (λ+ Λ)/2 and δ := cmin ω− eω − e−ω + 2− f ′(0). Then δ > 0 since
the function P (z) := cmin z − ez − e−z + 2 − f ′(0) is concave and vanishes at λ and
Λ. Also by translation, we can assume that U(0) is so small that

sup
0<s�U(0)eω

∣∣∣∣f(s)

s
− f ′(0)

∣∣∣∣ < δ

2
, sup

x�1

U ′(x)

U(x)
< ω .

Set ψ(x) = U(0)eωx. For every c ∈ [cmin − δ/(2ω), cmin],

Lψ(x) := c ψ′(x) − ψ(x + 1) − ψ(x− 1) + 2ψ(x) − f(ψ(x))

= ψ(x)

{
c ω − eω − e−ω + 2 − f(ψ(x))

ψ(x)

}
> 0 ∀ x ≤ 1.
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Next, we construct φ(c, ·), to be used as the supersolution defined on [0,∞).
For each c ∈ (0, cmin], consider the equation φ = Tcφ on R, where

Tcφ :=

{
e−mx/c{U(0) + c

∫ x

0
emz/cW [m,φ](z)dz} if x � 0,

U(x) if x < 0,

W [m,φ](z) := φ(z + 1) + φ(z − 1) + [m− 2]φ(z) + f(φ(z)).

Following [6], a solution can be obtained as follows. Define {φn}∞n=0 by

φ0(c, ·) ≡ 1, φn+1(c, ·) := Tcφn(c, ·) ∀n ∈ N.

Note that Tc is a monotonic operator: ψ1 � ψ2 ⇒ Tcψ1 � Tcψ2. It follows that
φn+1 � φn � 1. In addition, since

c (emx/cU)′ − emx/cW [m,U ] = (c− cmin)U ′eμx/c � 0,

integrating this inequality over [0, x] gives U � TcU . This implies that φn � U for
all n. Consequently, φ(c, ·) := limn→∞ φn exists and is a solution to φ = Tcφ. It is
easy to see that U � φ < 1 on [0,∞), φ(c, 0) = U(0), and

c φ′(c, x) = φ(c, x + 1) + φ(c, x− 1) − 2φ(c, x) + f(φ(c, x)) ∀x > 0.

This equation implies, for 0 < c1 < c2 � cmin, that φ(c2, ·) � Tc1φ(c2, ·), so that
φn(c1, ·) � φ(c2, ·) for all n and φ(c1, ·) > φ(c2, ·) on (0,∞). Following an idea in [6]
or the technique for the uniqueness of U presented in this paper (section 4), one can
further show that φ(c, ·) is unique. The uniqueness implies that φ(c, ·) is continuous
in c and φ(cmin, ·) ≡ U . Therefore, limc→cmin φ(c, ·) = U in C1([0,∞)). This further
implies that

lim
c→cmin

φ′(c, x)

φ(c, x)
=

U ′(x)

U(x)
uniformly for x ∈ [0, 1].

Finally, let c ∈ [cmin − δ/(2ω), cmin) be such that

max
x∈[0,1]

φ′(c, x)

φ(c, x)
< ω.

We define

Φ(x) =

{
ψ(x) if x � 0,
φ(c, x) if x > 0.

Since ψ(0) = U(0) = φ(c, 0) and

ψ′(x)

ψ(x)
= ω >

φ′(c, x)

φ(c, x)
∀x ∈ (−∞, 0) ∪ (0, 1],

φ < ψ in (0, 1] and ψ < φ ≡ U in (−∞, 0). That is,

Φ = min{φ , ψ} on (−∞, 1].

Consequently, considering separately x ∈ (−∞, 0), (0, 1] and (1,∞), we see that

cΦ′(x) � Φ(x + 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) ∀ x ∈ (−∞, 0) ∪ (0,∞);

that is, Φ is a supersolution of wave speed c.



244 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Thus, by Proposition 1(iii), there is a traveling wave of speed c for some c < cmin,
contradicting the minimality of cmin. This proves the lemma.

Remark 2. If f ′(·) � 0 on [1 − δ, 1] for some δ > 0, then a constructive proof of
Lemma 2.3 can be obtained by taking

Φ(x) = [U(0) + ε]eωx ∀x � 0, Φ(x) = U(x + ε− εe−kx) + ε ∀ x > 0,

where 0 < ε � ε � U(0) � 1 � k. We leave the verification to the interested
reader.

3. Monotonicity of wave profiles. This section is dedicated to the proof of
the monotonicity of any wave profile U . We point out here that the limits in (1.5) are
established without the knowledge of the monotonicity of U so that we can use them
here.

3.1. The method of sliding. This traditional method is to compare U(· + τ)
and U(·) by decreasing τ continuously from a large value down to zero, namely, to
show that

inf {τ > 0 | U(· + τ) > U(·) onR} = 0.(3.1)

This implies U ′ � 0, and from an integral equation, U ′ > 0 on R. If we know U ′ > 0
near x = ±∞ (e.g., by (1.5) for the case μ < 0 < λ), then (3.1) follows easily from
a comparison principle (cf. [6]). When f ′(0) = 0, it is very difficult to show directly
that U ′ > 0 in a vicinity of x = −∞. Similar difficulty occurs near x = ∞ when
f ′(1) = 0. To overcome this difficulty, we use a modification of the method, stated in
the third part of the following lemma.

Lemma 3.1.

(i) If [a, b] is an interval on which U ′ � 0, then b− a < 1.
(ii) If U ′ > 0 on [ξ, ξ + 1], then U(ξ) < U(x) for all x > ξ.
(iii) If U ′ > 0 on [ξ− 1, ξ + 1]∪ [η− 1, η + 1], where ξ < η, then U ′ > 0 on [ξ, η].
Proof.
(i) Let [a, b] be an interval on which U ′ � 0. We want to show that b − a < 1.

Suppose otherwise b− a � 1. Let x̂ ∈ [b,∞) be a point such that U(x̂) � U(x) for all
x � b. Then x̂ is a global minimum of U restricted on [a,∞), since U ′ � 0 on [a, b].
This leads to the following contradiction:

0 = cU ′(x̂) = U(x̂ + 1) + U(x̂− 1) − 2U(x̂) + f(U(x̂)) � f(U(x̂)) > 0.

(ii) Assume that U ′ > 0 on [ξ, ξ + 1]. Let x̂ � ξ + 1 be a point such that
U(x̂) � U(x) for all x � ξ+1. Then U(ξ) < U(x̂) since otherwise x̂ � ξ+1 is a point
of global minimum of U on [ξ,∞) and the same contradiction as above arises. Thus
U(ξ) < U(x) for all x > ξ.

(iii) Assume that U ′ > 0 on [ξ − 1, ξ + 1] ∪ [η − 1, η + 1], where ξ < η. By the
second assertion, U(η) > U(ξ) so that we can define

τ∗ := inf { τ ∈ (0, η − ξ] | U(·) < U(· + τ) on[ξ, η − τ ]}.

Clearly, τ∗ ∈ [0, η − ξ). We claim that τ∗ = 0. Suppose on the contrary that τ∗ > 0.
Then there exists x̂ ∈ [ξ, η − τ∗] such that

U(x̂ + τ∗) − U(x̂) = 0 � U(x + τ∗) − U(x) ∀ x ∈ [ξ, η − τ∗].
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For x ∈ [ξ − 1, ξ]: (1) if x + τ∗ ≤ ξ, then U(x + τ∗) − U(x) > 0 since U ′ > 0
on [ξ − 1, ξ]; (2) if x + τ∗ > ξ, by the second assertion, U(x + τ∗) > U(ξ) ≥ U(x).
Thus U(x + τ∗) > U(x) for all x ∈ [ξ − 1, ξ]. Similarly, U(x + τ∗) > U(x) for all
x ∈ [η − τ∗, η − τ∗ + 1]. Hence,

U(x̂ + τ∗) − U(x̂) = 0 � U(x + τ∗) − U(x) ∀x ∈ [ξ − 1, η − τ∗ + 1].

Consequently, U ′(x̂ + τ∗) = U ′(x̂). Using the equation for U , we conclude that

U(x̂ + τ∗ + 1) + U(x̂ + τ∗ − 1) = U(x̂ + 1) + U(x̂− 1).

Since U(·+ τ∗) � U(·) on [ξ−1, η− τ∗ +1], we see that U(x̂+ τ∗±1) = U(x̂±1). By
induction, U(x̂+τ∗+k) = U(x̂+k) for all integer k satisfying x̂+k ∈ [ξ−1, η−τ∗+1].
But this is impossible since U(x + τ∗) > U(x) for all x ∈ [ξ − 1, ξ]. Thus, τ∗ = 0.

That τ∗ = 0 implies U(· + τ) > U(·) on [ξ, η − τ ] along a sequence τ ↘ 0.
In particular, U ′(x) � 0 on [ξ, η]. Finally, for m = max0�s�1 |2 − f ′(s)| and every
x ∈ [ξ, η],

cU ′′(x) = U ′(x + 1) + U ′(x− 1) + [f ′(U) − 2]U ′(x) � −mU ′(x).

It follows that (U ′(x)emx/c)′ � 0 or U ′(x)emx/c � U ′(ξ)emξ/c > 0 for all
x ∈ [ξ, η].

3.2. A linear equation from blow-up. To show that U ′ > 0 on R, we use
Lemma 3.1(iii). For this, we need only to find a sequence {[ξj − 1, ξj +1]} of intervals
on which U ′ > 0. To do this, we shall use a blow-up technique for the functions
ρ = U ′/U and σ = U ′/(U − 1), leading to the following two linear problems:{

cR′(x) = R(x + 1) + R(x− 1) − 2R(x) ∀x ≤ 1,
|R| ≤ 1 on (−∞, 2], |R(0)| = 1;

(3.2) {
cR′(x) = R(x + 1) + R(x− 1) − 2R(x) ∀x ≥ −1,
|R| ≤ 1 on[−2,∞), |R(0)| = 1.

(3.3)

Lemma 3.2.

(i) If R solves (3.2), then |R| > 1/2 on [A− 1, A + 1] for some A > 0.
(ii) Any solution of (3.3) satisfies |R| > 1/2 on [A− 1, A + 1] for some A > 0.
Proof.
(i) Suppose R solves (3.2). Then |R′| � 4/c on (−∞, 1]. Set z(x) := R′(x)/[R(x)+

2]. Dividing the ode in (3.2) by R(x) + 2 we obtain

c z(x) = e
∫ x+1
x

z(t)dt + e−
∫ x
x−1

z(t)dt − 2, |z(x)| ≤ 4/c ∀x ≤ 1.

Following the argument used in the previous section, we conclude that limx→−∞ z(x)
exists. Since R is bounded, lim infx→−∞ |R′(x)| = 0. Thus, limx→−∞ z(x) = 0, which
implies that limx→−∞ R′(x) = 0.

As R(0) is a global extremum of R restricted on (−∞, 1], R(j) = R(0) for all
integer j ≤ 1. Upon using limx→−∞ R′(x) = 0, we derive that limx→−∞ R(x) = R(0).
Since |R(0)| = 1, there exists A > 0 such that |R(·)| > 1/2 on [A − 1, A + 1]. This
proves the first assertion (i).

(ii) The proof of the second assertion (ii) is analogous to the case (i) and therefore
is omitted.
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3.3. The monotonicity of wave profile. That U ′ > 0 follows from Lemma
3.1(iii) and the following lemma.

Lemma 3.3. There exists a sequence {ξi}i∈Z such that U ′ > 0 on [ξi − 1, ξi + 1]
for each i ∈ Z and limi→±∞ ξi = ±∞.

Proof. The sequence {ξi}i�0: Here we construct the sequence such that U ′ > 0
on ∪i�0[ξi − 1, ξi + 1] and limi→∞ ξi = −∞.

When f ′(0) > 0, limx→−∞ U ′(x)/U(x) = λ > 0 so U ′(x) > 0 for all x � −1.
Hence, we need consider only the case f ′(0) = 0 and limx→−∞ ρ(x) = 0, where
ρ(x) = U ′(x)/U(x). Define

εj = max
x≤j

|ρ(x)| ∀ j < 0, θ = lim sup
j→−∞

εj−3

εj
∈ [0, 1].

We claim that θ = 1. Suppose not. Then, for θ̂ = (1 + θ)/2, there exists J < 0

such that εj−3 ≤ θ̂εj for all j ≤ J . Hence, εJ−3k ≤ εJ θ̂
k for every integer k ≥ 0.

Consequently, |ρ(x)| ≤ εJ θ̂
(J−x)/3−1 for all x ≤ J . For y < J ,

ln
U(J)

U(y)
=

∫ J

y

ρ(x)dx �
∫ J

y

εJ θ̂
(J−x)/3−1dx � 3εJ

|θ̂ ln θ̂|
.

Sending y → −∞ we obtain a contradiction. Hence θ = 1.
Let {jk}∞k=1 be a sequence such that limk→∞ jk = −∞ and limk→∞ εjk−3/εjk = 1.

Let xk � jk−3 be a point such that |ρ(xk)| = εjk−3. Define ρk(x) := ρ(xk+x)/|ρ(xk)|.
Then maxx≤3 |ρk(x)| ≤ εjk/εjk−3, |ρk(0)| = 1, and

c ρ′k(x) = [ρk(x + 1) − ρk(x)]eρ(xk)
∫ x+1
x

ρk(z)dz

+ [ρk(x− 1) − ρk(x)]e−ρ(xk)
∫ x
x−1

ρk(z)dz + ρk(x)f1(U(xk + x)),

where f1(s) = f ′(s) − f(s)/s → 0 as s ↘ 0. This equation implies that {ρk}∞k=1 is
a family of bounded and equicontinuous functions on (−∞, 2]. Hence, a subsequence
which we still denote by {ρk} converges to a limit R, uniformly in any compact subset
of (−∞, 2]. Clearly, R satisfies (3.2).

By Lemma 3.2(i), there exists a constant A < 0 such that either R � 1/2 on
[A− 1, A + 1] or R � −1/2 on [A− 1, A + 1]. As limk→∞ ρk → R on [A− 1, A + 1],
there exists an integer K > 0 such that for every integer k � K, either ρk > 0
on [A − 1, A + 1] or ρk < 0 on [A − 1, A + 1]. By Lemma 3.1(i), the latter case is
impossible. Thus ρk > 0 on [A − 1, A + 1], i.e., U ′ > 0 on [xk + A − 1, xk + A + 1].
Define ξi = A + xK+|i| for all integer i ≤ 0. Then limi→−∞ ξi = −∞ and U ′ > 0 on
[ξi − 1, ξi + 1] for every integer i ≤ 0.

The sequence {ξi}i�1: When f ′(1) < 0, we have limx→∞ U ′(x)/[1−U(x)] > 0 so
U ′(x) > 0 for all x 
 1. It remains to consider the case f ′(1) = 0. Define

σ(x) =
U ′(x)

U(x) − 1
, δj = max

x∈[j,∞)
|σ(x)|, θ = lim sup

j→∞

δj+3

δj
∈ [0, 1].

With an analogous argument as before, we can show that θ = 1. Take a sequence
{jk}∞k=1 satisfying limk→∞ jk = ∞ and limk→∞ δjk+3/δjk = 1. Let xk ≥ jk + 3 be a
point such that δjk+3 = |σ(xk)|. Set σk(x) = σ(x+xk)/|σ(xk)|. Then |σk| ≤ δjk/δjk+3

in [−3,∞). Same as before, a subsequence of {σk}∞k=0 converges to a limit R satisfying
(3.3). The rest of the proof follows from an analogous argument as before. This
completes the proof of Lemma 3.3 and also the proof of Theorems 2 and 3.
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4. Uniqueness of traveling waves. In this section we prove Theorem 1. In
the following, U and V are two traveling waves with the same speed c. We want to
show that U(·) ≡ V (· − ξ) for some ξ ∈ R.

4.1. A comparison principle. The sliding method applies on compact inter-
vals.

Lemma 4.1. If V � U on [a−1, a)∪ (b, b+1] where a � b, then V � U on [a, b].
Proof. Let ξ be the number such that min[a−1,b+1]{U(·) − V (· − ξ)} = 0 and let

y ∈ [a−1, b+1] be the maximum value satisfying U(y)−V (y−ξ) = 0. Then y �∈ [a, b]
since, otherwise, U ′(y) = V ′(y− ξ) and the equations for U(·) and V (· − ξ) evaluated
at y would imply U(y ± 1) = V (y − ξ ± 1), contradicting the maximality of y. Thus,
y ∈ [a − 1, a) ∪ (b, b + 1], and by the assumption, V (y) � U(y) = V (y − ξ). Thus
ξ � 0. We conclude that U(·) � V (· − ξ) � V (·) on [a− 1, b + 1].

The success of such a simple translation technique relies on (1) the existence of a
minimal translation ξ and (2) the existence of a maximum y, both of which attribute
to the fact that a continuous function on a compact set attains its global extremes.
When the domain of interest is unbounded, neither ξ nor y may exist, and therefore
different techniques are needed.

4.2. Comparison near x = ∞. We shall compare traveling waves on the
unbounded domain [0,∞). Since simple translation technique does not work, we shall
instead construct a family of supersolutions for which translation technique works. If
one is willing to make the assumption f ′ � 0 on [1 − δ, 1] for some δ > 0, then for
every ε > 0,

min{U + ε, 1} on [−1,∞)

is a supersolution on [0,∞) provided that U(−1) � 1− δ. In this manner, no asymp-
totic behavior of U near x = ∞ is needed.

When only the assumption (A) is made, we construct a different family of super-
solutions obtained from the detailed asymptotic behavior of wave profiles and com-
pression:

Z(�, x) := U([1 + �]x) ∀x ∈ [−1,∞), � ∈ (0, 1].

The idea here is that the rate of Z approaching 1 as x → ∞ is faster than that of
any wave profile, and therefore is strictly bigger than any wave profile for sufficiently
large x.

Since limx→∞ U ′′(x)/U ′(x) = μ � 0 < c and U ′(x+h)/U ′(x) = e
∫ x+h
x

U ′′(s)/U ′(s)ds,
by translation, we may assume that

sup
x�0, |h|�2

U ′′(x + h)

U ′(x)
< c.(4.1)

For � ∈ (0, 1] and x � 0, writing y = (1 + �)x and Z(�, x) = Z(x), we calculate

LZ(x) := cZ ′(x) − Z(x + 1) − Z(x− 1) + 2Z(x) − f(Z(x))

= c[1 + �]U ′(y) − U(y + 1 + �) − U(y − 1 − �) + 2U(y) − f(U(y))

= c � U ′(y) + U(y + 1) + U(y − 1) − U(y + 1 + �) − U(y − 1 − �)

= � U ′(y)

{
c−

∫ 1

0

∫ 1+
z

−1−
z

U ′′(y + h)

U ′(y)
dhdz

}
> 0.

This shows that for each � ∈ (0, 1], Z(�, ·) is a (strict) supersolution on [0,∞).
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Lemma 4.2. Assume (4.1). Suppose V � U on [0, 1]. Then V � U on [0,∞).
Proof. Consider the function, for x � 0, ξ ∈ R, and � > 0,

Ψ(ξ, �, x) :=

∫ U([1+
]x)

V (x−ξ)

ds

f(s)
.

Note that

lim
x→∞

∂Ψ(ξ, �, x)

∂x
= lim

x→∞

(
(1 + �)U ′

f(U)
− V ′

f(V )

)
> 0 ∀ � > 0, ξ ∈ R;

inf
x≥0,ξ∈R,
∈[0,1]

∂Ψ

∂ξ
= inf

y∈R

V ′(y)

f(V (y))
> 0.

Thus limx→∞ Ψ(ξ, �, x) = ∞. For each fixed � ∈ (0, 1], there exists at least one ξ such
that Ψ(ξ, �, ·) � 0 on [0,∞). Let ξ(�) be the infimum of such numbers.

We claim that ξ(�) � 0. Suppose otherwise. Since limx→∞ Ψ(ξ(�), �, x) = ∞,
there exists y ∈ [0,∞) such that Ψ(ξ(�), �, y) = 0. We must have y > 1, since
V (· − ξ(�)) < V (·) � U(·) � U([1 + �]·) on [0, 1]. Thus, for Z(x) = U([1 + �]x),

Z(y) = V (y − ξ(�)), V (· − ξ(�)) � Z(·) on [0,∞).

This implies V ′(y − ξ(�)) = Z ′(y) and a contradiction

0 = LV
∣∣
y−ξ(
) ≥ LZ

∣∣
y
> 0.

This contradiction shows that ξ(�) � 0, so that V (·) � V (· − ξ(�)) � U([1 + �]·) on
[0,∞). Sending � ↘ 0, we obtain that V (·) � U(·) on [0,∞).

4.3. Comparison near x = −∞. In general, on the unbounded interval
(−∞, 0], it is very hard to construct a family of supersolutions that can be used
for the translation argument such as that in the previous two subsections; this is due
to the fact that the constant state 0 is unstable. Hence we compare directly two
traveling waves. We shall show that wave profiles are ordered (i.e., one is bigger than
the other) near x = −∞, by magnifying differences between any two wave profiles.

For every ξ ∈ R and x ∈ R, we define

W (ξ, x) =

⎧⎨
⎩

∫ U(x)

V (x−ξ)

ds

f(s)
if c > cmin,

lnU(x) − lnV (x− ξ) if c = cmin.

Note that W (ξ, x) magnifies the differences between U and V . When c > cmin,

Wx(ξ, x) :=
∂W (ξ, x)

∂x
=

U ′

f(U)
− V ′

f(V )
−→ 0 as x → ±∞.

This limit shows that the magnified difference between wave profiles changes slowly.
The conclusion for c = cmin is analogous.

Lemma 4.3. There exist ν > 0 and A ∈ [−∞,∞] such that

lim
x→−∞

W (ξ, x) = A + νξ ∀ ξ ∈ R.(4.2)

Consequently, near x = −∞, U < V (· − ξ) if A + νξ < 0 and U > V (· − ξ) if
A + νξ > 0.
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Proof. First, we consider the case c > cmin. Note that

lim
x→−∞

{
W (ξ, x) −W (0, x)

}
= lim

x→−∞

∫ x

x−ξ

V ′(y)dy

f(V (y))
= νξ,

where ν = 1/c when f ′(0) = 0 and ν = λ/f ′(0) otherwise. Suppose limx→−∞ W (ξ, x)
does not exist. Then A := lim supx→−∞ W (ξ, x) > B := lim infx→−∞ W (ξ, x). Tak-
ing an appropriate ξ, we can assume without loss of generality that A > 0 > B. Let
α, β be finite numbers satisfying B < β < 0 < α < A. Then there exist sequences
{xi} and {yi} satisfying

W (ξ, xi) = α, W (ξ, yi) = β, xi+1 < yi < xi, lim
i→∞

xi = −∞.

Since limx→−∞ Wx(ξ, x) = 0, there exists a large integer i such that W (ξ, ·) > 0 in
[xi+1 − 1, xi+1] ∪ [xi, xi + 1] and W (ξ, yi) < 0. This implies that V (· − ξ) < U(·) on
[xi+1 − 1, xi+1]∪ [xi, xi +1] and V (yi− ξ) > U(yi) which is impossible by Lemma 4.1.
Thus A = B.

The case c = cmin is analogous.

4.4. Proof of Theorem 1. Let U and V be two traveling wave profiles with
the same speed c. By translation, we can assume that V (0) = U(0) and that U and
V satisfy (4.1). By exchanging the roles of U and V if necessary we can use Lemma
4.3 to conclude that (4.2) holds with A ∈ [0,∞].

Let η � 0 be the unique value such that

min
x∈[0,1]

{U(x) − V (x− η)} = 0.

By Lemma 4.2, V (·− η) � U(·) on [0,∞). We claim that V (·− η) � U(·) on (−∞, 0].
Suppose not. Then infx∈R W (η, x) < 0. Since Wξ > 0 and W (η,±∞) � 0, there
is a unique value ξ > η such that minR W (ξ, ·) = 0. This implies that there exists
y ∈ R such that W (ξ, y) = 0 = minR W (ξ, ·). It further implies that V (· − ξ) � U(·)
and V (y − ξ) = U(y). A comparison principle shows that this is impossible. Hence,
V (· − η) � U(·) on R. Since min[0,1]{U(· − η) − V (·)} = 0, we must have η = 0 and
U ≡ V .

5. Asymptotic expansions. Finally, we derive and verify asymptotic expan-
sions for traveling wave profiles near x = −∞, accurate enough to distinguish the
translation differences. The idea is to construct, on (−∞, 1], sub/supersolutions hav-
ing special tails near x = −∞ and slopes on the interval [0, 1]. The comparison
between a wave profile and a sub/super solution near x = −∞ will be made by a
result similar to (4.2) in Lemma 4.3. The comparison on [0, 1] will be made in a
manner similar to that in the last step of the proof of Lemma 2.3.

5.1. Super/subsolutions. In the following, a Lipschitz continuous function de-
fined on [a− 1, b + 1] is called a super/subsolution (of speed c) on [a, b] if

±L [φ](x) � 0 a.e. x ∈ (a, b),

where L [φ](x) := c φ′(x) − φ(x + 1) − φ(x− 1) + 2φ(x) − f(φ(x)).
Lemma 5.1. Suppose φ is a subsolution (or supersolution) on [a, b] and φ < U

(or φ > U) on [a− 1, a) ∪ (b, b + 1]. Then φ < U (or φ > U) on [a, b].
The proof is similar to that for Lemma 4.1 and is omitted.
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Our asymptotic expansion for a wave profile is expressed in terms of a constructed
function φ such that, for some x0 ∈ R,

U(x + x0) = φ(x + o(1)) ∀x � 0 where lim
x→−∞

o(1) = 0.(5.1)

For this, we shall use the same idea as that of Lemma 4.3. Consider the case λ �= 0.
Suppose φ is either a subsolution or a supersolution on (−∞, 0] and

lim
x→−∞

φ′(x)

φ(x)
= lim

x→−∞

U ′(x)

U(x)
= λ > 0.(5.2)

Consider the function, for ξ ∈ R and x � 0,

W (ξ, x) =

∫ U(x+ξ)

φ(x)

ds

s
= ln

U(x + ξ)

φ(x)
.(5.3)

Lemma 5.2. Suppose φ satisfies (5.2) and is either a supersolution or a sub-
solution on (−∞, 0]. Let W be defined as in (5.3). Then (4.2) holds for some
A ∈ [−∞,∞].

The proof is similar to that for Lemma 4.3 and therefore is omitted.
Suppose A is shown to be finite. Then for x0 := −A/ν, every ε > 0, and all

x � −1, W (x0 − ε, x) < 0 < W (x0 + ε, x); that is, φ(x− ε) < U(x + x0) < φ(x + ε)
for every ε > 0 and all x � −1. Hence (5.1) holds. To construct sub/supersolutions
and to show that A is finite, we shall assume that

(B) |f(u)−f ′(0)u| ≤ Mu1+α for all u ∈ [0, 1] and some positive constants M and α.

In most cases, we shall construct sub/supersolutions via linear combinations of
exponential functions. Note that for φ = aeωx, Lφ = P (ω)φ + [f ′(0)φ− f(φ)], where

P (ω) := c ω − eω − e−ω + 2 − f ′(0).

Observe that P (·) is concave, positive between its two roots, and negative outside of
these two roots. Denote by λ and Λ, where 0 � λ � Λ, the two roots of P (·) = 0.
Among all possibilities, we divide them into four cases:

(i) c = cmin and (1.6) has two real roots;
(ii) c = cmin and (1.6) has only one real root;
(iii) c > cmin and f ′(0) > 0;
(iv) c > cmin and f ′(0) = 0.
Note that limx→−∞{U ′(x)/U(x)} > 0 in the cases (i)–(iii). For the last case (iv),

λ = 0 so that sub/supersolutions have to be constructed by nonexponential functions.
For this, we need extra assumptions on f .

5.2. The case c = cmin and (1.6) has two real roots. Assume that c = cmin

is the minimum wave speed and that the characteristic equation cminz = ez + e−z −
2 + f ′(0) has two real roots. Let λ be the smaller real root and Λ be the large real
root. Then λ < Λ and

lim
x→−∞

U ′(x)

U(x)
= Λ > 0 =⇒ U(x)

U(0)
= e

∫ x
0

U ′/U = eΛx+o(x).

Choose ω1 and ω2 satisfying

λ < ω1 < Λ < ω2, ω2 < (1 + α)Λ.
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Then P (ω1) > 0 = P (Λ) > P (ω2). Consider, for ε ∈ [0, 1] and small δ > 0,

φ±(ε, δ, x) := δ
{
eΛx ± ε(eω1x − eΛx) ± δα/2(eΛx − eω2x)

}
.

Note that when ε > 0 and x � −1, φ+ 
 U and φ− < 0. Also, for all x � 0,

L [φ+] = δ
{
εP (ω1)e

ω1x − P (ω2)δ
α/2eω2x + O(1)δα

[
ε1+αe(1+α)ω1x + e(1+α)Λx

]}
> 0

if ε ∈ [0, 1] and δ ∈ (0, δ0] for some δ0 > 0. Similarly, for every ε ∈ [0, 1] and δ ∈ (0, δ0],
max{0, φ−(ε, δ, ·)} is a subsolution on (−∞, 0]. Taking δ0 small enough we can assume
that φ±

x > 0 for all x ∈ [0, 1], ε ∈ [0, 1] and δ ∈ [0, δ0].
Take ξ negatively large such that δ := U(ξ) < δ0. Comparing U(· + ξ − 1) with

φ+(ε, δ, ·) on (−∞, 0] for every ε ∈ (0, 1], we see that U(x + ξ − 1) ≤ φ+(ε, δ, x) for
all x ≤ 0. Here the positivity of ε guarantees that φ+ > U near x = −∞. Now
sending ε ↘ 0 we conclude that U(x+ ξ− 1) ≤ δ[1+ δα/2]eΛx for all x � 0. Similarly,
U(x + ξ + 1) > δ[1 − δα/2]eΛx for all x � 0.

Now applying Lemma 5.2 to φ = φ+(0, δ0, x), we see that there is the limit

A = lim
x→−∞

{
lnU(x)− lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x)−Λx

}
− ln

[
δ0

(
1 + δ

α/2
0

)]
.

From the estimate in the previous paragraph, A must be finite. Hence we proved the
following theorem.

Theorem 5.1. Assume (A) and (B). Let (cmin, U) be a traveling wave of the
minimum speed where the characteristic equation has two roots λ,Λ, λ < Λ. Then,
for some x0 ∈ R,

U(x) = eΛ[x+x0+o(1)] ∀x � −1, where lim
x→−∞

o(1) = 0.

5.3. The case c = cmin and (1.6) has only one real root. Let P (z) =
cminz − [ez + e−z − 2 + f ′(0)] be the characteristic function at 0. That P (·) = 0 has
only one real root, denoted by λ, implies that P (λ) = P ′(λ) = 0; that is,

cmin = eλ − e−λ, f ′(0) = λ(eλ − e−λ) + (2 − eλ − e−λ).(5.4)

Take ω ∈ (λ, [1 + α]λ) and consider the function, for small δ > 0,

φ∗(δ, x) = δ[−xeλx − δα/2(eλx − eωx)].(5.5)

Note that φ∗ > 0 in (−∞, 0) and φ∗ < 0 in (0,∞). Since P (ω) < 0, for x ≤ 0,

Lφ∗ = δ
{
δα/2P (ω)eωx + O(1)δα[|x| + 1]1+αe(1+α)λx

}
< 0.

It follows that φ− := max{φ∗, 0} is a subsolution for every δ ∈ (0, δ0], where δ0 > 0.
From Lemma 5.2, there exists the limit

A = lim
x→−∞

{
lnU(x) − λx− ln |x|

}
.(5.6)

We claim that A < ∞. Suppose A = ∞. Then for each fixed ξ ∈ R, U(x + ξ) >
φ−(δ, x) for all x � −1. Since φ− = 0 on [0,∞) and φ− is a subsolution, a comparison
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gives U(x + ξ) > φ−(δ, x) for all x ∈ R. This is impossible for every ξ ∈ R. Thus
A < ∞.

We now consider the lower bound of A. Since P (·) is a concave function, that λ is
a double root to P (·) = 0 implies that P (ω) < 0 for every ω �= λ. It is then very hard
to construct supersolutions. As the existence of a supersolution implies the existence
of a traveling wave, the construction of a supersolution is equivalent to find cmin which
is not totally determined by the local behavior of f(s) near s = 0. That cmin is the
solution of (5.4) which is uniquely determined by f ′(0) requires special properties on
the nonlinearity on f . The whole nonlinear structure of f on [0, 1] determines whether
A is bounded from below. As will be seen in a moment, the answer to whether A
is bounded is all we need to determine uniquely the asymptotic behavior of U as
x → −∞, i.e., the alternatives in (1.11).

Case 1. A > −∞. Then A is finite, so from (5.6), the first alternative in (1.11)
holds.

Case 2. A = −∞. Fix ω ∈ (λ, (1 + α)λ). Consider, for ε ∈ [0, 1] and small δ > 0,

φ+(ε, δ, x) = δ
{

[1 − εx]eλx − δα/2eωx
}
.

Direct calculation shows that φ+ is a supersolution on (−∞, 0] for every ε ∈ [0, 1] and
δ ∈ (0, δ0]. Fix a translation such that U(1) ≤ δ0/2. For every ε ∈ (0, 1] we compare
U(·) and φ+(ε, δ0, ·) on (−∞, 0]. When x ∈ [0, 1], U(x) ≤ U(1) < δ0/2 < φ(ε, δ0, x).
Since A = −∞, we see that U < φ for all x � −1. It then follows that U(·) < φ(ε, δ0, ·)
on (−∞, 1]. Sending ε ↘ 0 we obtain U(x) ≤ δ0e

λx for all x ∈ (−∞, 0].
Also, by Lemma 5.2, there exists the limit

Ã := lim
x→−∞

{
lnU(x) − lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x) − λx

}
− ln δ0.

In addition, since U(x) ≤ δ0e
λx for all x ∈ (−∞, 0], Ã ≤ 0.

Next we show that Ã > −∞. To do this, for every ω1 ∈ [λ, ω], consider the
function φ−(ω1, δ, x) := δ[eω1x + eωx]. It is easy to show that φ− is a subsolution on
(−∞, 0] for every ω1 ∈ [λ, ω] and every δ ∈ (0, δ0].

Fix a translation such that U(−1) > 2δ0. For every ω1 ∈ (λ, ω], by comparing U
and φ−(ω1, δ0, x), we see that U > φ−(ω1, δ0, x), since ω1 > λ implies U > φ− for all
x � −1. Now sending ω1 ↘ λ we see that U(x) ≥ δ0e

λx for all x ≤ 0. Thus Ã is
finite; namely, the second alternative in (1.11) holds.

Finally, we provide two examples showing that both alternatives in (1.11) can
happen.

Example 1. This example provides the second alternative in (1.11). We define

U(x) =
ex

1 + ex
, λ = 1, c = e− 1

e
,

f(u) =
u(1 − u)(e− 1)[2(1 − u)2 + 2eu2 + (e2 + 1)(e + 1)u(1 − u)/e]

e(1 − u)2 + eu2 + u(1 − u)(e2 + 1)
.

Using ex = U(x)/[1 − U(x)], one can verify that (c, U) is a traveling wave. Since
f ′(0) = 2− 2/e, λ = 1 is a double root of the characteristic equation cω = eω + e−ω −
2 + f ′(0). Consequently, cmin = e− 1/e.

Example 2. We show that the first alternative in (1.11) holds if

f ∈ C1+α([0, 1]), f(0) = f(1) = 0 < f(u) � f ′(0)u ∀u ∈ (0, 1).(5.7)
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First of all, defining (cmin, λ) as in (5.4), one can show that min{1, eλx} is a super-
solution with c = cmin so that there is a traveling wave of speed cmin. Consequently,
the minimum wave speed is given by the solution of (5.4); see, for example, [5, 6, 27].

Also, there is a supersolution given by

φ+(x) = [1 − λ
1+λ x]eλx ∀x < 0, φ+(x) = 1 for x � 0.

Note that, for a large constant M , φ+(x + M) > φ∗(δ0, x) on R, where φ∗ is as in
(5.5). Following the existence proof of [5], (max{φ∗, 0}, φ+) sandwiches a solution
which satisfies the first alternative in (1.11).

We conclude the following theorem.
Theorem 5.2. Assume (A) and (B). Suppose c = cmin and the characteristic

equation has a root λ of multiplicity 2, i.e., (5.4) holds. Then there is the alternative
(1.11). In addition, under (5.7), only the first alternative in (1.11) holds.

5.4. The case c > cmin and f ′(0) > 0. Let λ and Λ, λ < Λ, be two roots of
the characteristic equation P (·) = 0, where P (z) = c z − [ez + e−z − 2 + f ′(0)]. Pick
ω such that λ < ω < min{Λ, (1 + α)λ}. Then P (ω) > 0. For each ε ∈ (0, e−ω] and
small δ, consider functions

φ±(ε, δ, x) := δ
(
[1 ∓ ε]eλx ± εeωx

)
, x � 1.

Note that

min
0�x�1

φ+
x (ε, δ, x)

φ+(ε, δ, x)
= λ + ε(ω − λ), max

0�x�1

φ−
x (ε, δ, x)

φ−(ε, δ, x)
= λ− ε(ω − λ).

In addition, for all x � 0, ε ∈ (0, 1], and δ ∈ (0, 1], using |f(u) − f ′(0)u| ≤ Mu1+α

and 0 < φ± ≤ 2δeλx we obtain

±L [φ±δ] = δεP (ω)eωx ± [f(φ±δ) − f ′(0)φ±δ]

� δeωx
{
ε P (ω) − 21+αMδαe[(1+α)λ−ω]x

}
.

Hence, we have the following:
(i) For every ε ∈ (0, e−ω], there exists xε � 0 such that φ±(ε, 1, ·) is a super/sub-

solution on (−∞, xε].
(ii) For every ε ∈ (0, e−ω], there exists δε > 0 such that for every δ ∈ (0, δε],

φ±(ε, δ, ·) is a super/subsolution on (−∞, 0].
Indeed, we need only take

xε := min

{
0,

ln[εP (ω)] − ln[21+αM ]

(1 + α)λ− ω

}
, δε = min

{
1,
( εP (ω)

21+αM

)1/α
}
.

Theorem 5.3. Assume (A), (B), and f ′(0) > 0. Let (c, U) be a traveling
wave with speed c > cmin. Then U(x) = eλ(x+x0+o(1)) for some x0 ∈ R, where
limx→−∞ o(1) = 0.

Proof. First of all, note that (4.2) holds for W defined as in (5.3) with φ =
φ+(ε, 1, x).

We show that A > −∞. Suppose A = −∞. Fix ε = e−ω. Since

lim
x→∞

U ′(x)/U(x) = λ,
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there exists ξ < 0 such that U ′(x)/U(x) < λ + ε(ω − λ) for all x < ξ + 2. Now we
compare U(· + ξ) with φ := φ+(ε, U(ξ), ·) on (−∞, 0]. By taking negatively large ξ,
we may assume that U(ξ) < δε so that φ is a supersolution on (−∞, 0].

Note that φ(0) = U(0 + ξ) and

φ′(x)

φ(x)
> λ + ε(ω − λ) >

U ′(x + ξ)

U(x + ξ)
∀x ∈ [0, 1]

so that U(·+ ξ) < φ(·) on (0, 1]. Also, limx→−∞[lnφ(x)− lnU(x+ ξ)] = ∞. It follows
by comparison that φ(·) > U(· + ξ) on (−∞, 0], contradicting φ(0) = U(0 + ξ). Thus
A > −∞.

Similarly, by using the subsolution φ−, one can show that A < ∞. Thus A =
limx→−∞{lnU(x) − λx} exists and is finite. This completes the proof.

5.5. The case c > cmin and f ′(0) = 0. When c > cmin, λ := limx→−∞ U ′(x)/
U(x) is the smaller root to the characteristic equation cz = ez +e−z−2+f ′(0). When
f ′(0) = 0, we have λ = 0. Thus as x → −∞, U(x) does not decay to 0 exponentially
fast. To find the precise rate of decay, we shall assume the following:

(B1) 0 � ff ′′ � Mf ′2 on (0, ε] for some ε > 0 and M > 0;
∫ ε

0
f ′2(s)/f(s)ds < ∞.

Simple examples of such functions are

f(u) = κu1+q(1 − u)p, f(u) = κe−1/u(1 − u)p (κ > 0, q > 0, p � 1).

Theorem 5.4. Assume (A), (B1), and f ′(0) = 0. Let (c, U) be a traveling wave
with nonminimum speed c. Then (1.12) holds for some x0 ∈ R.

Proof.
The idea. The proof is based on the following formal calculation. When f ′(0) = 0

and c > cmin, it follows from Theorem 3 that cU ′ ≈ f(U). Then at least formally
we should have c2U ′′ ≈ cf ′(U)U ′ ≈ f(U)f ′(U). Since by the mean value theorem
U(x + 1) + U(x− 1) − 2U(x) = U ′′(y) ≈ U ′′(x), we obtain

cU ′ ≈ U ′′ + f(U) ≈ f(U)f ′(U)/c2 + f(U) = f(U)[1 + f ′(U)/c2].

This suggests that sub/super solutions can be obtained from solutions of ODEs of the
form c φ′ = f(φ)[1+f ′(φ)/c2]±o(1), where o(1) is a small positive term large enough
to offset the error of the approximation U(x+1)+U(x−1)−2U(x) = U ′′(y) ≈ U ′′(x).

Construction of super/subsolutions. Let δ0 be a small enough constant and be
fixed. For every δ ∈ (0, δ0] and K ∈ [1, 1/(4f ′2(δ))], let φ be the solution of

c φ′ = f(φ) { 1 + f ′(φ)/c2 ±Kf ′2(φ) } on (−∞, 1], φ(0) = δ.(5.8)

The solution is given implicitly by∫ φ(x)

δ

ds

f(s)[1 + f ′(s)/c2 ±Kf ′2(s)]
=

x

c
∀ x � 1.

When δ0 is small, we have φ ≤ δ[1 + o(1)] and cφ′ = f(φ)[1 + o(1)] on (−∞, 1]. In
the following, O(1) is a quantity bounded by a constant independent of K and δ.

Write (5.8) as c φ′ = (1 + g(φ))f(φ), where g := f ′/c2 ±Kf ′2. In the following,
the arguments of f , f ′, f ′′, and g are evaluated at φ(x), if not specified. Since f ′′ � 0
and ff ′′ = O(1)f ′2 on the interval of interest, we see that

|g| + |g′f/f ′| = O(f ′) + O(f ′2)K.
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Consequently,

c2φ′′(x) = {(1 + g)f ′ + fg′}(1 + g)f = ff ′{1 + O(f ′) + O(f ′2)K}.

Also by the mean value theorem,

φ(x + 1) + φ(x− 1) − 2φ(x) = φ′′(y) for some y ∈ [x− 1, x + 1],

f ′(φ(y))

f ′(φ(x))
= exp

(∫ y

x

(1 + g)ff ′′

cf ′

)
= exp

(∫ y

x

O(f ′(φ(z))dz

)
.

This implies that

f ′(φ(y)) = [1 + O(f ′(φ(x)))]f ′(φ(x)).

Similarly,

f(φ(y)) = [1 + O(f ′(φ(x)))]f(φ(x)).

This follows that

c2φ′′(y) = f ′f{1 + O(f ′) + O(f ′2)K}
∣∣∣
φ(x)

.

Hence, for all x � 1,

L [φ](x) = cφ′ − f − f ′f
{
c−2 + O(f ′) + O(f ′2)K

}
= ff ′2

{
±K + O(1) + O(f ′)K

}
.

Thus we have the following lemma.
Lemma 5.3. There exist a small positive constant δ0 and a large constant K0 such

that for every δ ∈ (0, δ0] and every K ∈ [K0, 1/(4f
′2(δ))], the solution φ±(δ, x) := φ(x)

of (5.8) is a super/subsolution on (−∞, 0].
The comparison. Consider the function

W±(ξ, x) =

∫ U(x+ξ)

φ±(δ,x)

ds

f(s)[1 + f ′(s)/c2]
x ≤ 1, ξ ∈ R.

Following a proof similar to that for Lemma 4.3, we can show that (4.2) holds
with W = W±, A = A± ∈ [−∞,∞] and ν = 1/c. Note that

W+ −W− =

∫ δ

φ+

{
1

f [1 + f ′/c2]
− 1

f [1 + f ′/c2 + Kf ′2]

}
ds

−
∫ δ

φ−

{
1

f [1 + f ′/c2]
− 1

f [1 + f ′/c2 −Kf ′2]

}
ds,

since the two integrals involving K cancel each other. Sending x → −∞ and using
φ±(−∞) = 0 and

∫ ε

0
f ′2(s)/f(s)ds < ∞, we then obtain

lim
x→−∞

{W+(ξ, x) −W−(ξ, x)} =

∫ δ

0

2Kf ′2

f{[1 + f ′/c2]2 − [Kf ′2]2} ds < ∞.
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We now show that A+ > −∞. Suppose on the contrary that A+ = −∞. For
each δ ∈ (0, δ0], taking K = 1/(4f ′(δ)2) we see that

φ+′(x)

f(φ+(x))
=

1

c
− f ′(φ+)

c3
+

f ′2(φ+)

4cf ′2(δ)
� 1

c
+

1

8c
∀ x ∈ [0, 1]

if δ0 is small enough. As we know that limx→−∞ U ′/f(U) = 1/c, there exits ξ < 0
such that U ′/f(U) < 1/c + 1/(8c) for all x ≤ ξ + 1. Now set δ = U(ξ) and compare
U(ξ + ·) and φ+(δ, ·) on (−∞, 0].

As φ+′/f(φ+) > U ′/f(U) on [0, 1] and φ(0) = U(ξ+0), we have φ+(·) > U(ξ+ ·)
on (0, 1]. Also, A+ = −∞ implies that φ+(x) > U(ξ + x) for all x � −1. By
comparison, φ+ > U on (−∞, 0], contradicting φ+(0) = U(ξ + 0). Thus A+ > −∞.
Similarly, using φ−, we can show that A− < ∞. Hence A± are finite.

Finally, we observe that

lim
x→−∞

W+(0, x) = lim
x→−∞

{∫ U(x)

δ

ds

f(s)[1 + f ′(s)/c2]
− x

c

}

−
∫ δ

0

{
1

1 + f ′(s)/c2
− 1

1 + f ′(s)/c2 + Kf ′2(s)

}
ds

f(s)
,

the assertion of the theorem, i.e., (1.12) thus follows.
As an illustration, we consider the case when

f(u) = κu2(1 − u)p (κ > 0, p � 1).

Then for some integral constant a∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
= − 1

κu
+

(
p

κ
− 2

c2

)
lnu + a + O(u) as u → 0.

After translation, we see that, as x → −∞,

− 1

κU(x)
+

(
p

κ
− 2

c2

)
lnU(x) =

x

c
+ o(1).

This implies that, as x → −∞,

1

U(x)
=

κ|x|
c

+ O(ln |x|) =
κ|x|
c

(
1 + o(1)

)
, lnU(x) = ln

c

κ|x| + o(1).

Thus, after another translation,

U(x) =
c

κ[|x| − x0 + o(1)] + (p c− 2κ/c) ln |x|

=
c

κ|x| −
(pc2 − 2κ) ln |x|

κ2x2
− cx0 + o(1)

κx2
as x → −∞.

Note that the translation is distinguished by the third term in the Taylor’s expansion.
Finally, observe that∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
=

∫ u

1/2

ds

f(s)
− ln f(u)

c2
+ a + o(1) as u → 0.
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In particular, if f(u) = κu1+q[1 + o(1)] for some q > 0, then U ∝ |x|−1/q so that
ln f(U) ≈ −b ln |x|+B + o(1) for some b > 0 and B ∈ R. Therefore, it is generic that
for some constants b > 0 and x0 ∈ R,

∫ U(x)

1/2

ds

f(s)
=

c[x + x0 + o(1)] − b ln |x|
c2

.

In a similar manner, we can establish an asymptotic expansion near ∞. We omit
the details.

Acknowledgments. We are grateful to the anonymous referees for many helpful
comments.
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DEAD CORES AND BURSTS
FOR QUASILINEAR SINGULAR ELLIPTIC EQUATIONS∗

PATRIZIA PUCCI† AND JAMES SERRIN‡

Abstract. We consider divergence structure quasilinear singular elliptic partial differential
equations on domains of R

n and show that there exist solutions with dead cores and, furthermore,
solutions which involve both a dead core and bursts within the core. The results are obtained under
appropriate monotonicity conditions on both the nonlinearity and the elliptic operator. Important
special cases treated here are the p-Laplace and the mean curvature operators.

We also study related problems for p-Laplace equations with weights, which include the Matukuma
equation as a prototype.

While it is usually thought that dead cores arise due to loss of smoothness of the underlying
equation, we show by examples that they can occur equally for analytic p-Laplace equations.

Key words. quasilinear singular elliptic equations, dead cores
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1. Introduction. We consider quasilinear elliptic partial differential equations
having the canonical divergence structure

div{A(|Du|)Du} = f(u) in Ω.(1.1)

Here Ω is a domain (connected open set) in R
n, n ≥ 1, and Du denotes the vector

gradient of the given function u = u(x), x ∈ Ω. Unless otherwise stated explicitly, we
assume throughout the paper the following conditions on the operator A = A(�) and
the nonlinearity f = f(u):

(A1) A ∈ C(R+), R
+ := (0,∞);

(A2) � �→ �A(�) is strictly increasing in R
+ and �A(�) → 0 as � → 0;

(F1) f ∈ C(R); and
(F2) f(0) = 0, f is nondecreasing on R, and f(u) > 0 for u > 0.

Condition (A2) is a minimal requirement for ellipticity of (1.1). Furthermore, it allows
both singular and degenerate behavior of the operator A at � = 0, that is, at critical
points of u. We emphasize that no assumptions of differentiability are made on either
A or f .

We also study the related elliptic equation

div(g(|x|)|Du|p−2Du) = h(|x|)f(u) in Ω, p > 1,(1.2)

where g, h : R
+ → R

+ are radial functions of class C1(R+) and where the general el-
liptic operator A is replaced by the p-Laplacian function A(�) = �p−2. The celebrated
Matukuma equation is a prototype for (1.2).
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By a classical solution (or a classical distribution solution) of (1.1) or (1.2) in Ω
we mean a function u ∈ C1(Ω) which satisfies (1.1) or (1.2) in the distribution sense.

With the notation Φ(�) = �A(�) when � > 0, and Φ(0) = 0, we introduce the
function

H(�) = �Φ(�) −
∫ �

0

Φ(s)ds, � ≥ 0.

This function is easily seen to be strictly increasing, as follows from the inequality

�1Φ(�1) − �0Φ(�0) > (�1 − �0)Φ(�1) >

∫ �1

�0

Φ(s)ds

when �1 > �0 ≥ 0. Alternatively, monotonicity follows from the representation

H(�) =

∫ Φ(�)

0

Φ−1(s)ds, � ≥ 0,

this being a consequence of the Stieltjes formula H(�) =
∫ �

0
s dΦ(s).

For the Laplace operator, that is, when (1.1) takes the classical form

Δu = f(u),

we have A(�) ≡ 1 and H(�) = 1
2�

2. Similarly, for the degenerate p-Laplace operator,
here denoted by Δp, p > 1, we have A(�) = �p−2 and H(�) = �p/p′, while for the

mean curvature operator, one has A(�) = 1/
√

1 + �2 and H(�) = 1 − 1/
√

1 + �2.
In the last example, note the anomalous behavior Φ(∞) = H(∞) = 1, a possibility
which requires extra care and will be treated and discussed separately.

It is also worth observing that (1.1) is precisely the Euler–Lagrange equation for
the variational integral

I[u] =

∫
Ω

{G(|Du|) + F (u)}dx, F (u) =

∫ u

0

f(s)ds,

where G and A are related by A(�) = G′(�)/�, � > 0. In this case H(�) = �G′(�)−G(�),
the pre-Legendre transform of G. Similarly, the variational integral for (1.2) is given
by

I[u] =

∫
Ω

{
g(|x|) |Du|p

p
+ h(|x|)F (u)

}
dx,

where now H(�) = �p/p′ and p′ is the Hőlder conjugate of p.
An elliptic equation or inequality is said to have a dead core solution u in some

domain Ω ⊂ R
n provided that there exists an open subset Ω1 with compact closure

in Ω, called the dead core of u, such that

u ≡ 0 in Ω1, u > 0 in Ω \ Ω1.

The condition u > 0 could be replaced by u 	= 0, but for definiteness (and physical
reality) we prefer the condition as stated. By the strong maximum principle (see
Theorem 1.1 of [7, 8]) a nonnegative solution of (1.1) or (1.2) can have a dead core
only if ∫

0+

ds

H−1(F (s))
< ∞,(1.3)
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where H−1 is the inverse of H. We assume that condition (1.3) holds throughout the
sequel, except for Theorems 1.2, 1.3, 6.2, and 6.3.

The equation Δu = uq, for example, allows dead cores only if 0 < q < 1. Actually
condition (1.3) is not only necessary but also sufficient for the existence of solutions
with dead cores. More specifically, we have the following main result for (1.1).

Theorem 1.1. Suppose Φ(∞) = H(∞) = ∞. Assume the dead core condition
(1.3) holds and let u be a solution of (1.1), with 0 ≤ u(x) ≤ m on ∂Ω for some
positive constant m. Then the following properties are valid:

(a) 0 ≤ u < m in Ω.
(b) Assume that

C =

∫ ∞

0

ds

H−1(F (s)/n)
< ∞,(1.4)

and let BR be a ball with radius R ≥ C, compactly contained in Ω. Then u
has a dead core in Ω for all m > 0.

(c) If B is any ball compactly contained in Ω, then u ≡ 0 in B provided that
m > 0 is suitably small.

Equation (1.2) allows a corresponding dead core result, which however we defer
until section 6.

A more refined version of Theorem 1.1 can be obtained when Ω = BR, where BR

is any open ball in R
n, n ≥ 1, of radius R > 0. Until explicitly noted in section 9, we

continue to assume that Φ(∞) = H(∞) = ∞.
Theorem 1.2. The problem{

div{A(|Du|)Du} = f(u) in BR,

u = m > 0 on ∂BR, u ∈ C(BR),
(1.5)

admits a unique classical (distribution) solution u, necessarily radial. Moreover u =
u(r) = u(r,m) is of class C1[0, R] and satisfies u ≥ 0, u′ ≥ 0 in [0, R] and u′(0) = 0,
where ′ = d/dr.

Finally, at any r > 0 where u(r,m) > 0 we have also u′(r,m) > 0.
It follows from Theorem 1.2 that the solution u(· ,m) must be one of the following

three types:
1. u > 0 in BR.
2. u(0,m) = 0 and u′(r,m) > 0 when r > 0.
3. There exists S ∈ (0, R) such that u ≡ 0 in BS and u′(r,m) > 0 when r > S.

That is, in case 3 the solution u of (1.5) has a dead core BS . The solution u = u(· ,m)
of (1.5) has further properties of interest, given in the next result.

Theorem 1.3. The function u = u(· ,m) is continuous and nondecreasing in the
variable m (> 0), and u < m in BR.

The following theorem gives an important relation between the value m and dead
cores solutions of (1.5).

Theorem 1.4. Let u(· ,m) be the unique solution of (1.5). Then either u(· ,m)
has a dead core for all m > 0, or there is a unique (finite) number

m = m0 = m0(R) > 0

for which a solution u0 = u0(r) = u0(r ,m0) of (1.5) in BR exists, with the properties
that

(i) u0(0) = 0;
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(ii) u(0 ,m) > 0 for every m > m0; and
(iii) u(· ,m) has a dead core for every 0 < m < m0.
For convenience we define m0 = m0(R) to be ∞ when u(0 ,m) = 0 for all m > 0.

The examples

Δu = (signu)
√
|u|,(1.6)

Δ4u = u(1.7)

are particularly interesting as illustrations of the main theorems above. Indeed, both
of these are included in the canonical case

Δpu = u|u|q−1, p > 1, q > 0,

for which F (u) = |u|q+1/(q + 1). Here the dead core condition (1.3) reduces exactly
to

0 < q < p− 1.

For these special cases, we search for u0 in the form c rk, c, k > 0. Then from (1.5)
one finds

k =
p

p− 1 − q
, c = k−k/p′

(n + kq)−k/p, m0 = cRk.(1.8)

For the case (1.6) we have p = 2, q = 1/2, k = 4, so that

m0 =
1

(n + 2)2

(
R

2

)4

,

while p = 4, q = 1, k = 2 for (1.7), and, in turn,

m0 =
R2

2
√

2(n + 2)
,

which reduces exactly to m0 = R4/400 and m0 = R2/2
√

10 when n = 3. In particular
for the unit radius R = 1 we obtain, respectively, the unexpectedly small numbers
m0 = 0.00125 and m0

∼= 0.158.
Equation (1.7), when written in full for n = 2, has the form

|Du|2Δu + 2u2
xuxx + 4uxuyuxy + 2u2

yuyy = u,

which is analytic in all its variables. Thus dead core behavior is not due simply to a
lack of smoothness in the basic equation. In fact (1.7) is an analytic partial differen-
tial equation, elliptic except at the singular point Du = 0, which has a nonanalytic
solution.

As a final example, consider the equation

Δu = (signu)
√
|u| + u|u|2.

Here A(�) ≡ 1, H−1(�) =
√

2�, and F (u) = 2
3 |u|3/2 + 1

4 |u|4. Then

C =

√
n

2

∫ ∞

0

ds√
(2/3)s3/2 + s4/4

< ∞.
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By numerical calculation C ∼= 6.4334 if n = 2. Therefore, by the results of section 4
we have m0 = ∞ whenever R ≥ 7. In particular, for the problem{

Δu = (signu)
√
|u| + u|u|2 in B7 ⊂ R

2,

u = m > 0 on ∂B7,

a dead core occurs for all m > 0. This result also follows without recourse to numerical
calculation, since one can write, when n = 2,

C =

(
9

2

)1/5 ∫ ∞

0

dt√
t3/2 + t4

<

(
9

2

)1/5 {∫ 1

0

dt√
t3/2

+

∫ ∞

1

dt√
t4

}
= 5(4.5)1/5 ∼= 6.75.

The case n = 3 can be treated in the same way, with C ∼= 7.879, but here the radius
R = 7 should be replaced by R = 8.

In a related paper [1] Bandle and Vernier-Piro also studied the dead core problem
for the weighted equation (1.2). Because of the different assumptions on the weights
g and h made there it is hard to compare the two papers. A further dead core
theorem concerning p-regular equations (see section 11 of [7, 8]) was given by Diaz
and Veron [3]. Again the assumptions are different enough to make it difficult to
compare the results.

Sperb [10] considers similar dead core problems for the particular special case
of the Laplace equation without weights, that is, A ≡ 1, g ≡ 1, and h ≡ 1. He
estimates the critical value m0 for more general domains than balls, but only for the
homogeneous case f(u) = Constu|u|q−1, 0 < q < 1. For balls BR his estimate is
weaker than our exact result (1.8). Similarly his estimates for the size of dead cores
apply to more general domains than balls, but again are weaker than ours in the latter
case.

Theorems 1.4 for the general equation (1.1) and 7.2 for the weighted p-Laplace
equation (1.2) seem to capture and extend many of the ideas of these earlier papers.

2. Proof of Theorem 1.2. Existence of a radial solution u of (1.5), with u ≥ 0,
u′ ≥ 0, and u′(0) = 0. For the purpose of this proof only, we shall redefine f so that
f(v) = f(m) for all v≥m, and f(v) = 0 when v ≤ 0. This will not affect the conclusion
of the theorem, since clearly any ultimate solution u of (1.5), with u ≥ 0, u′ ≥ 0 in
[0, R], satisfies 0 ≤ u ≤ m.

We shall make use of the Leray–Schauder fixed point theorem, as in Proposi-
tion 4.1 of [7, 8]. Denote by X the Banach space X = C[0, R], endowed with the
usual norm ‖ · ‖∞, and let T be the mapping from X to X defined pointwise for all
w ∈ X by

T [w](r) = m−
∫ R

r

Φ−1

(
s1−n

∫ s

0

tn−1f(w(t))dt

)
ds, r ∈ [0, R].(2.1)

Clearly T [w](R) = m. Also

T [w]′(r) = Φ−1

(
r1−n

∫ r

0

tn−1f(w(t))dt

)
, r ∈ (0, R].(2.2)

Obviously T [w]′ is continuous and nonnegative in (0, R], since 0 ≤ f(w) ≤ f(m) for
all w ∈ X. Moreover r1−n

∫ r

0
tn−1f(w(t))dt tends to zero as r → 0+. Therefore

T [w]′(r) approaches 0 as r → 0+, since Φ(0) = 0, and in turn T [w] ∈ C1[0, R] with
T [w]′(0) = 0.
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We claim that if w is a fixed point of T in X, then w(0) ≥ 0. Otherwise w(0) < 0
and w(R) = m > 0. Thus there exists a first point r0 ∈ (0, R) such that w(r) < 0 in
[0, r0) and w(r0) = 0. Consequently f(w(r)) = 0 in [0, r0] and so w′ ≡ 0 for r ∈ [0, r0]
by (2.2). Hence w(r0) = w(0) < 0, which is impossible, proving the claim.

Define the homotopy H : X × [0, 1] → X by

H[w, σ](r) = σm−
∫ R

r

Φ−1

(
σs1−n

∫ s

0

tn−1f(w(t))dt

)
ds.(2.3)

By the above argument, any fixed point wσ = H[wσ, σ] is of class C1[0, R] and has
the properties wσ ≥ 0, w′

σ ≥ 0 in [0, R], and wσ(R) = σm. Additionally, by (2.2) we
find that Φ(w′

σ) ∈ C1[0, R], and then from (2.1) that wσ is a classical (distribution)
solution of the problem{

[rn−1Φ(w′
σ(r))]′ − σrn−1f(wσ(r)) = 0 in (0, R],

w′
σ(0) = 0, wσ(R) = σm.

(2.4)

In turn, it is evident that any function w1 which is a fixed point of H[w, 1] (that
is w1 = H[w1, 1]) is a nonnegative radial distribution solution of problem (1.5), in
BR \ {0}, with w′(0) = 0 and w′ ≥ 0 in [0, R].

Since f > 0 for u > 0 it follows equally from (2.4) that the final statement of the
theorem is valid.

We assert that such a fixed point w = w1 exists. We shall use Browder’s version
of the Leray–Schauder theorem for this purpose (see Theorem 11.6 of [5]).

To begin with, obviously H[w, 0] ≡ 0 for all w ∈ X; that is, H[w, 0] maps X into
the single point w0 = 0 in X. (This is the first hypothesis required in the application
of the Leray–Schauder theorem.)

We show next that H is compact from X × [0, 1] into X. First, H is continuous
on X × [0, 1]. Indeed, let wj → w, σj → σ, (wj , σj) ∈ X × [0, 1]. Then in (2.3)
clearly σjf(wj) → σf(w), since the modified function f is continuous on R. Hence
H[wj , σj ] → H[w, σ], as required.

Next let (wk, σk)k be a bounded sequence in X × [0, 1]. It is clear from (2.2) that

‖H[wk, σk]
′‖∞ ≤ Φ−1 (Rf(m)/n).(2.5)

As an immediate consequence of the Ascoli–Arzelà theorem H then maps bounded
sequences into relatively compact sequences in X, so H is compact.

To apply the Leray–Schauder theorem it is now enough to show that there is a
constant M > 0 such that

‖w‖∞ ≤ M for all (w, σ) ∈ X × [0, 1], with H[w, σ] = w.(2.6)

Let (w, σ) be a pair of type (2.6). But, as observed above, one has w ≥ 0, w′ ≥ 0, so
that ‖w‖∞ = w(R) ≤ σm ≤ m. Thus we can take M = m in (2.6).

The Leray–Schauder theorem therefore implies that the mapping T [w] = H[w, 1]
has a fixed point w ∈ X as asserted, which is the required solution of (1.5) in BR\{0}.
The fixed point u = w is a C1 distribution solution of (1.5) in BR. The proof is
standard. Let ϕ ∈ C1

c (BR). We have to show that∫
BR

A(|Du|)Du ·Dϕdx = −
∫
BR

f(u)ϕdx.
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To this end let ψ = ϕkε, 0 < 2ε < R, where

kε(x) =

{
0 for |x| ≤ ε,

1 for |x| ≥ 2ε,

and such that kε ∈ C1(Rn), 0 ≤ kε ≤ 1 in R
n, |Dkε(x)| ≤ 2/ε for all x with

ε ≤ |x| ≤ 2ε. Consequently, using ψ as a test function in BR \ {0}, we get∫
BR\B2ε

A(|Du|)Du ·Dϕdx +

∫
B2ε\Bε

A(|Du|)Du · (kεDϕ + ϕDkε)dx

= −
∫
BR\B2ε

f(u)ϕdx−
∫
B2ε\Bε

f(u)kεϕdx.

Now∣∣∣∣∣
∫
B2ε\Bε

A(|Du|)Du · (kεDϕ + ϕDkε)dx

∣∣∣∣∣ ≤ sup
B2ε

{
Φ(|Du|) ·

[
|Dϕ| + 2

ε
|ϕ|

]}
· |B2ε|

= o(εn−1)

since Du(0) = 0, and Φ is continuous at � = 0 by (A2). Moreover∣∣∣∣∣
∫
B2ε\Bε

f(u)kεϕdx

∣∣∣∣∣ ≤ Const εn.

Letting ε → 0 we get the required conclusion.
Uniqueness of C1 distribution solutions of (1.5). This is an immediate conse-

quence of the weak comparison principle given in Theorem 5.4 of [7, 8].
Theorem 2.1 (weak comparison principle [7, 8]). Assume (A1), (A2), (F1), and

(F2) are satisfied. Let u and v be, respectively, classical solutions of

div{A(|Du|)Du} − f(u) ≥ 0 and div{A(|Dv|)Dv} − f(v) ≤ 0

in a bounded domain Ω; that is, u is a subsolution and v is a supersolution of (1.1).
Suppose also that u and v are continuous in Ω, with u ≤ v on ∂Ω. Then u ≤ v in Ω.

3. Proof of Theorem 1.3. Monotonicity. This follows from the weak compar-
ison principle, as above.

Continuity. Let 0 < m1 < m2 and write u1(r) = u(r,m1) and u2(r) = u(r,m2).
We show that

0 ≤ u2(r) − u1(r) ≤ m2 −m1, r ∈ [0, R].(3.1)

By (2.1), for all r ∈ [0, R],

u2(r) = m2 −
∫ R

r

Φ−1

(
s1−n

∫ s

0

tn−1f(u2(t))dt

)
ds,

u1(r) = m1 −
∫ R

r

Φ−1

(
s1−n

∫ s

0

tn−1f(u1(t))dt

)
ds.

Then by subtraction

u2(r) − u1(r) = m2 −m1

−
∫ R

r

[
Φ−1

(
s1−n

∫ s

0

tn−1f(u2(t))dt

)
− Φ−1

(
s1−n

∫ s

0

tn−1f(u1(t))dt

)]
ds.
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The function Φ−1 is strictly increasing by (A2) and f is nondecreasing by (F2).
Therefore, since u1 ≤ u2 in [0, R] by monotonicity, one sees that the quantity in
square brackets above is nonnegative, and (3.1) is proved.

Proof that u < m in BR. By (2.1) it is enough to show that

I =

∫ R

r

Φ−1

(
s1−n

∫ s

0

tn−1f(u(t))dt

)
ds > 0 for r ∈ [0, R).

Clearly u > 0 in some interval (r0, R] with r0 ≥ 0, and in turn f(u(s)) > 0 in (r0, R]
by (F2). Therefore

I ≥
∫ R

max{r0, r}
Φ−1

(
s1−n

∫ s

r0

tn−1f(u(t))dt

)
ds > 0,

as required.

4. The critical value m0. We begin with a preliminary result, of interest in
itself.

Theorem 4.1. If u1 = u(·,m1) has a dead core BS1 , then u2 = u(·,m2), where
m2 < m1, has a dead core BS2 , with S2 > S1. Similarly, if either u1(0) > 0 or
u1(0) = 0 and u1(r) > 0 for r ∈ (0, R], then u2 > u1 in BR when m2 > m1.

Proof. To prove the first part of the lemma, assume for contradiction that m2 <
m1, and either u2(r) > 0 in (0, R], or 0 < S2 ≤ S1. In the first of these cases the
solutions u1 and u2 must cross at some point r0 ∈ (S1, R). Then applying Theorem 2.1
we find that u1 ≡ u2 in [0, r0], which is an obvious contradiction since u2(r) > 0 on
(0, r0], while u2 ≡ u1 ≡ 0 in [0, S1]. The next case 0 < S2 < S1 leads to a contradiction
in the same way.

The remaining case, when S = S2 = S1 > 0, needs more care. For ε ∈ (0, R)
define

uε(r) =

{
0, r ∈ [0, ε],

u1(r − ε), r ∈ (ε,R].

If ε > 0 is suitably small then one has m1 > uε(R) > m2 = u2(R), while at the same
time

u2(S + ε) > 0 = u1(S) = uε(S + ε).(4.1)

Thus there is a point r0 ∈ (S + ε,R) where uε and u2 cross.
We assert that uε is a supersolution of (1.1) in the annulus BR \ Bε. Indeed in

this set we have

div{A(|Duε|)Duε} − f(uε) = {A(|u′
ε|)u′

ε}′ +
n− 1

r
A(|u′

ε|)u′
ε − f(uε)

=

(
n− 1

r
− n− 1

r − ε

)
Φ(u′

1(r − ε))

= −ε
n− 1

r(r − ε)
Φ(u′

1(r − ε)) ≤ 0.

(4.2)

Observing that u2(0) = uε(0) = 0, we can then apply the comparison principle,
Theorem 2.1, in Br0 . Therefore u2 ≤ uε in [0, r0], which contradicts (4.1) at the point
r = S + ε and completes the first part of the proof.
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To obtain the second part of the theorem, assume for contradiction that u2(0) =
u1(0) when m2 > m1. Of course by Theorem 1.2 we have u′

1(r) > 0 for r ∈ (0, R].
Define

ũε(r) =

{
u2(0), r ∈ [0, ε],

u2(r − ε), r ∈ (ε,R],

where ε is chosen so small that m2 > ũε(R) > m1 = u1(R). On the other hand
u1(ε) > ũε(ε) = 0. Hence there is a crossing point r0 ∈ (ε,R) where u1(r0) = ũε(r0).
As before uε is a supersolution of (1.1) in BR so that u1 ≤ ũε in Br0 by Theorem 2.1.
Therefore, u1 ≡ ũε ≡ 0 in [0, ε], which is impossible, since u1(r) > 0 for all r ∈ (0, R].

That u2 > u1 in all BR now follows at once, since otherwise u2 and u1 would
cross at some value r = r0 in which case comparison would lead to the absurd result
u2 ≡ u1 in Br0 .

Proof of Theorem 1.4. For the purpose of this proof, we suppose that there is
some m > 0 for which u(0 ,m) > 0.

Existence of u0. Define

m0 = inf{m > 0 : u(0,m) > 0}.(4.3)

We assert first that m0 > 0. Let m̄ > 0 be so small that

Cm̄ =

∫ m̄

0

ds

H−1(F (s)/n)
< R,(4.4)

which of course is possible by assumption (1.3); see Lemma 3.2 of [7, 8]. Define
v(r) = w(r − S), r ∈ [S,R], S = R− Cm̄, where w is the function constructed in the
dead core Lemma 7.1 of [7, 8], with σ = 1/n and C = Cm̄. We assert that v is a
supersolution of (1.1) in the set BR \BS . In fact

div{A(|Dv|)Dv} = [Φ(v′)]′ +
n− 1

r
Φ(v′) ≤

{
1 +

n− 1

r
(r − S)

}
σf(v)

by (iii) and (iv) of Lemma 7.1 of [7, 8]. Thus

div{A(|Dv|)Dv} ≤
{

1 − n− 1

nr
S

}
f(v) ≤ f(v),

as required. Then, since v(S) = v′(S) = 0 and v(R) = m̄, by defining v to be zero
on BS , the extended function v is a supersolution of (1.1) in BR. By the comparison
principle, Theorem 2.1, we find that u(· , m̄) ≡ 0 in BS . Therefore m0 ≥ m̄ > 0 by
(4.3) and the claim is proved.

Next, if (i) would be false, then u0(0) > 0 and by Theorem 1.3 also u(0 ,m) > 0
for all m > 0 sufficiently near m0, which would contradict (4.3). Property (ii) is again
a direct consequence of the definition (4.3) of m0 and Theorem 1.3. Finally if there is
m ∈ (0,m0) such that the corresponding solution u(· ,m) of (1.5) has no dead core,
then u(0 ,m) ≥ 0 and u(r ,m) > 0 for r ∈ (0, R]. Thus by Theorem 4.1, with m1 = m
and m2 = m0, we get u0(0) > u(0,m) ≥ 0, contradicting (i) and proving (iii).

Uniqueness of u0. Suppose both m0 and m̄0 have the properties (i)–(iii) of the
theorem. Then u0(0) = u0(0 ,m0) = 0 by (i), while u(0 ,m) > 0 when m > m̄0 by
(ii). Hence m0 ≤ m̄0. Similarly m̄0 ≤ m0. Therefore m̄0 = m0, as desired.



268 PATRIZIA PUCCI AND JAMES SERRIN

The case m0 = ∞. If every solution of (1.5) is such that u(0 ,m) = 0 for all
m > 0, then u(· ,m) has a dead core for all m > 0. Otherwise there would be
m̄ > 0 for which u(0 , m̄) = 0 and u(r , m̄) > 0 for r ∈ (0, R]. Hence u(0 ,m) > 0 for
m > m̄ by Theorem 4.1, contradicting the assumption. This also justifies the earlier
agreement that m0 = ∞ in this case.

Remark. In summary, if m0 is finite and m > m0, then the solution u = u(· ,m)
of (1.5) is positive; namely, u(r ,m) > 0 for all r ∈ [0, R]. On the other hand, if
m < m0 ≤ ∞ then the solution u = u(· ,m) of (1.5) has a dead core BS ⊂ BR,
0 < S < R.

5. The size of a dead core and proof of Theorem 1.1. Recall the assump-
tion that Φ(∞) = H(∞) = ∞, and let

C =

∫ ∞

0

ds

H−1(F (s)/n)
.(5.1)

Clearly 0 < C ≤ ∞ since the integral is convergent at 0 by (1.3) and by Lemma 3.2
of [7, 8] with σ = 1/n. Of course the integral can possibly diverge at ∞.

Theorem 5.1. We have

m0 = ∞ if C < ∞ and R ≥ C,(5.2)

while

m0 ≥ m̄ if R < C,(5.3)

where m̄ is defined by the relation

R =

∫ m̄

0

ds

H−1(F (s)/n)
.

Proof. The proof of (5.2) is essentially the same as the proof of the first part of
Theorem 1.4, the only exception being that Cm̄ given by (4.4) is replaced by C.

To obtain (5.3), we define v(r) = w(r) as in the proof of Theorem 1.4, with
S = 0, σ = 1/n, and C = R. Then by Lemma 7.1 of [7, 8] we have v(0) = v′(0) = 0,
v(R) = w(R) = m̄, while v is a supersolution of (1.1) in BR. It follows by comparison
that 0 ≤ u(r, m̄) ≤ v(r). Hence u(0 , m̄) = v(0) = 0, and in turn from the definition
(4.3) of m0 we get m0 ≥ m̄, as required in (5.3).

Theorem 5.2. Let m < m0, so that a dead core exists by Theorem 1.4, (iii). In
particular the solution u = u(· ,m) satisfies

u ≡ 0 in BS ⊂ BR,

where

R−
∫ m

0

ds

H−1(F (s)/n)
< S < R.

If R ≥ C, then for all m > 0 one has

R− C < S < R.

Proof. The proof is the same as the first part of the proof of Theorem 1.4.
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Remark. For any ε > 0, if m is suitably small (depending on ε) we have R− ε <
S < R.

Proof of Theorem 1.1. (a) That u ≥ 0 follows from Theorem 2.1 by comparing
the given solution u with the trivial solution 0.

The constant function m is a supersolution of (1.1), so that again by Theorem 2.1
we have u ≤ m in Ω. In fact u < m in Ω. To see this, let y be any point of Ω and B a
ball in Ω centered at y. Let v(· ,m) be the radial solution of (1.1) in B constructed in
Theorem 1.2, with v(|x−y| ,m) = m for x ∈ ∂B. Therefore u(x) ≤ m = v(|x−y| ,m)
for x ∈ ∂B, and in turn u(x) ≤ v(|x − y| ,m) < m for x ∈ B by the final part of
Theorem 1.3.

(b) This is a direct consequence of Theorem 5.1.
(c) Clearly there exists R > 0 such that B ⊂ BR ⊂⊂ Ω, with B and BR centered

at the same point of Ω. By (a) we know that u < m on ∂BR. Denote by R − ε the
radius of B; then by comparison, together with the remark after Theorem 5.2, we
have u ≡ 0 in B when m > 0 is suitably small.

6. The equation div{g(|x|)|Du|p−2Du} = h(|x|)f(u). Consider the quasi-
linear singular elliptic equation

div(g(|x|)|Du|p−2Du) = h(|x|)f(u) in Ω, p > 1,(6.1)

where g, h : R
+ → R

+ are radial functions of class C1(R+), and Ω is a domain of
R

n, n ≥ 1, containing the origin. Prototypes of (6.1), with nontrivial functions g,
h, are given, for example, by equations of Matukuma type and equations of Batt–
Faltenbacher–Horst type. More precisely, the Matukuma-type equation is given by

Δpu =
f(u)

1 + rσ
, r = |x|, σ > 0,(6.2)

where Δp denotes the p-Laplace operator, p > 1, and where also g(|x|) ≡ 1, h(|x|) =
1/(1 + rσ). A second example is the equation

Δpu =
rσ

(1 + rp′)σ/p′ ·
f(u)

rp′ , σ > 0,(6.3)

where now g(|x|) ≡ 1, h(|x|) = rσ−p′
/(1 + rp

′
)σ/p

′
.

All these equations are discussed in detail in section 4 of [6], as special cases of
the main example1

div(rk|Du|p−2Du) = r�
(

rs

1 + rs

)σ/s

f(u),

k ∈ R, � ∈ R, s > 0, σ > 0.

(6.4)

In particular, in [6] conditions on the exponents were found so that, under appropriate
behavior of the nonlinearity f , radial ground states for (6.2)–(6.4) are unique.

We shall also be interested in the radial version of (6.1), when Ω is a ball BR

centered at 0 with radius R > 0, namely,

[a(r)|u′|p−2u′]′ = b(r)f(u) in (0, R),(6.5)

1In [6] the equation (6.1) was written in the form

div(g(|x|)|Du|p−2Du) + h(|x|)f(u) = 0.

The two versions are reconciled by replacing f by −f .
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where, with obvious notation,

a(r) = rn−1g(r), b(r) = rn−1h(r).(6.6)

Motivated by the case a(r) = b(r) = rn−1 in [6], the functions a and b are assumed
to be such that (6.5) can be transformed by the change of variables r �→ t(r),

t(r) =

∫ r

0

[b(s)/a(s)]
1/p

ds, r ≥ 0,(6.7)

t : R
+
0 → R

+
0 , t(0) = 0, to the form

[q(t)|vt|p−2vt]t = q(t)f(v),(6.8)

where

q(t) = [a(r(t))]1/p[b(r(t))]1/p
′
, t > 0.(6.9)

This requires, in particular, the following conditions on the coefficients:

(A3) a, b > 0, a, b ∈ C1(R+), (b/a)1/p ∈ L1[0, R].

We shall ask as well that the transformed equation (6.8) be compatible with the
structure:

(Q1) q ∈ C1(R+), q > 0 in R
+;

(Q2) there is δ > 0 such that qt > 0 in (0, δ).

By (Q2) the weight q(t) has a finite limit as t → 0+ and in turn also q̄(r) = q(t(r)) is
bounded as r → 0+ by (6.7). Hence b = (b/a)1/pq̄ = O((b/a)1/p) as r → 0+ by (6.9),
and so by (A3)

b ∈ L1[0, R] and h ∈ L1
loc(BR).(6.10)

Definition. A classical solution of (6.1) is a nonnegative function u of class C(Ω)∩
C1(Ω \ {0}), which is a distribution solution of (6.1) in Ω, of course also with

g|Du|p−1 ∈ L1
loc(Ω).(6.11)

Theorem 6.1 (weak comparison principle). Let u and ũ be, respectively, classical
super- and subsolutions of (6.1) in a bounded domain Ω. Suppose also that u and ũ
are continuous in Ω, with u ≥ ũ on ∂Ω. Then u ≥ ũ in Ω.

Proof. We follow the proof of Theorem 5.4 of [7, 8].
Let w = u − ũ in Ω. If the conclusion fails, then there exists a point x1 ∈ Ω

such that w(x1) < 0. Fix ε > 0 so small that w(x1) + ε < 0. Consequently, since
w ≥ 0 on ∂Ω it follows that the function wε = min{w + ε, 0} is nonpositive and has
compact support in Ω. By the distribution meaning of solutions, taking the Lipschitz
continuous function wε as a test function, we get∫

Ω

g(|x|){|Du|p−2Du− |Dũ|p−2Dũ}Dwε ≤
∫

Ω

h(|x|){f(ũ) − f(u)}wε.(6.12)
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The left-hand side of (6.12) is positive since p > 1 and g(|x|) > 0 for x ∈ Ω \ {0} and
Dwε ≡ Dw = Du−Dũ 	≡ 0 when w + ε < 0, while otherwise Dwε = 0 (a.e.).

Moreover, when w+ ε < 0 there holds 0 ≤ u < ũ− ε; hence f(ũ)− f(u) ≥ 0 since
f is nondecreasing by (F2). Thus the right-hand side of (6.12) is nonpositive, since
h(|x|) > 0 for x ∈ Ω \ {0}, which is a contradiction.

In the rest of this section we continue to denote by BR the open ball centered
at 0 with radius R > 0, that is, BR = B(0 , R). Our first result is the analogue of
Theorem 1.2, where now we use A(�) = �p−2, Φ(�) = �p−1, consistent with section 1.
In this case of course Φ(∞) = H(∞) = ∞ and Φ−1(τ) = τ1/(p−1).

Theorem 6.2. The problem{
div{g(|x|)|Du|p−2Du} = h(|x|)f(u) in BR,

u = m > 0 on ∂BR, u ∈ C(BR),
(6.13)

admits a unique classical solution u, necessarily radial.
Moreover u = u(r) = u(r ,m) is of class C1[0, R] and satisfies u ≥ 0, u′ ≥ 0 in

[0, R] and u′(0) = 0, where ′ = d/dr. Finally, at any r > 0 where u(r,m) > 0 we
have also u′(r,m) > 0.

It follows from Theorem 6.2 that the solution u(· ,m) must be one of the following
three types:

1. u > 0 in BR.
2. u(0,m) = 0 and u′(r,m) > 0 when r > 0.
3. There exists S ∈ (0, R) such that u ≡ 0 in BS and u′(r,m) > 0 when r > S.

That is, in case 3 the solution u of (1.5) has a dead core BS .
Proof. Existence of a radial solution u of (6.13), with u ≥ 0, u′ ≥ 0, and

u′(0) = 0. This will be accomplished by first showing that (6.8) has a solution
v = v(t) on [0, T ], T = t(R), with v ≥ 0, vt ≥ 0, and vt(0) = 0, where t = t(r) is given
by (6.7).

Indeed, by following the proof of Theorem 1.2 almost word for word, including the
redefinition of f , but with the exception that rn−1 is replaced by q(t), one obtains2

an appropriate fixed point w = w(t) ∈ X = C[0, T ] satisfying

w(t) = m−
∫ T

t

(
1

q(s)

∫ s

0

q(τ)f(w(τ))dτ

)1/(p−1)

ds, t ∈ [0, T ].(6.14)

Clearly w(T ) = m and

wt(t) =

(
1

q(t)

∫ t

0

q(τ)f(w(τ))dτ

)1/(p−1)

, t ∈ (0, T ].(6.15)

Obviously wt is continuous and nonnegative in (0, T ], since 0 ≤ f(w) ≤ f(m) for all
w ∈ X. Moreover by (Q2)

0 <
1

q(t)

∫ t

0

q(τ)f(w(τ))dτ ≤ tf(m) → 0 as t → 0+.

2In view of (Q2), the bound Rf(m)/n in (2.5), holding for the standard weight rn−1, should be
replaced by

L =

⎧⎪⎨
⎪⎩
Rf(m) if 0 < R ≤ δ,

R
maxt∈[δ,R] q(t)

mint∈[δ,R] q(t)
f(m) if δ < R.
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Therefore wt(t) approaches 0 as t → 0+ by (6.15). In turn we have w ∈ C1[0, T ] with
wt(0) = 0.

We claim moreover that w(0) ≥ 0. Otherwise w(0) < 0 and w(T ) = m > 0.
Thus there exists a first point t0 ∈ (0, T ) such that w(t) < 0 in [0, t0) and w(t0) = 0.
Consequently f(w(t)) = 0 in [0, t0] and so wt ≡ 0 for t ∈ [0, t0] by (6.15). Hence
w(t0) = w(0) < 0, which is impossible, proving the claim.

The function v = w is the desired solution of (6.8) in [0, T ], and in turn u(r) =
v(t(r)) is a C1 solution of (6.5) on (0, R].

The function u(|x|) = v(t(|x|)) is a C1 distribution solution of (6.13) in BR.
First we show (6.11) for Ω = BR. Recall that v ∈ C1[0, T ] and vt(0) = 0, while also,
as shown above, q is bounded as t → 0+. Then using the change of variables (6.7) we
get

a(r)|u′(r)|p−1 = q(t)|vt(t)|p−1 → 0 as r, t → 0+.

Therefore, recalling (6.6), it follows that (6.11) holds in BR for u(|x|) = v(t(|x|)). The
rest of the proof is standard, as in the last part of the proof of Theorem 1.2. Thus u
is a C1 distribution solution of (6.13) in BR.

Uniqueness of C1 distribution solutions of (6.13). This is an immediate conse-
quence of the weak comparison principle given in Theorem 6.1.

The solution u = u(· ,m) of (6.13) has further properties of interest, given in the
next result.

Theorem 6.3. The function u = u(· ,m) is continuous and nondecreasing in the
variable m, and u < m in BR.

Proof. Monotonicity. This follows from the weak comparison principle Theo-
rem 6.1.

Continuity. Using the notation of the proof of Theorem 1.3, we show that if
0 < m1 < m2, then

0 ≤ v2(t) − v1(t) ≤ m2 −m1 on [0, T ].(6.16)

By (6.14) we have for all t ∈ [0, T ]

v2(t) − v1(t) = m2 −m1

−
∫ T

t

[(
1

q(s)

∫ s

0

q(τ)f(v2(τ))dτ

)1/(p−1)

−
(

1

q(s)

∫ s

0

q(τ)f(v1(τ))dτ

)1/(p−1)
]
ds,

and (6.16) now follows exactly as in the proof of Theorem 1.3. Consequently

0 ≤ u2(r) − u1(r) = v2(t(r)) − v1(t(r)) ≤ m2 −m1 for r ∈ [0, R],

as required.
Proof that u < m in BR. It is equivalent to show the same property for the

corresponding fixed point solution v of (6.9). By (6.14) it is enough to prove that

I =

∫ T

t

(
1

q(s)

∫ s

0

q(τ)f(v(τ))dτ

)1/(p−1)

ds > 0 for t ∈ [0, T ).

Clearly v > 0 in some interval (t0, T ] with t0 ≥ 0, and in turn f(v(t)) > 0 in (t0, T ]
by (F2). Therefore

I ≥
∫ T

max{t0, t}

(
1

q(s)

∫ s

t0

q(τ)f(v(τ))dτ

)1/(p−1)

ds > 0,

as required.
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7. The critical value m0 for (6.1). We now turn to the dead core theorem
for (6.1), analogous to Theorem 1.4 for (1.1). In the present case we have H−1(τ) =
(p′τ)1/p and the dead core condition (1.3) becomes∫

0+

ds

[F (s)]1/p
< ∞.(7.1)

In what follows we assume also that

(Q3)
qt
q

is nonincreasing on R
+;

(Q4) lim sup
t→0+

tqt(t)

q(t)
< ∞.

Theorem 7.1. If u1 = u(· ,m1) has a dead core BS1 , then u2 = u(· ,m2),
m2 < m1, has a dead core BS2 , with S2 > S1. On the other hand, if either u1(0) > 0
or u1(0) = 0 and u1(r) > 0 for r ∈ (0, R], then u2 > u1 in BR when m2 > m1.

Proof. It is equivalent to show the same result with u1 and u2 replaced by v1 =
v1(t) = u1(r(t)) and v2 = v2(t) = u2(r(t)), t ∈ [0, T ], respectively. To do this we
can repeat the proof of Theorem 4.1 almost word for word, of course with u1 and u2

replaced by v1 and v2, and also with the following necessary changes: (i) replace (4.2)
by

1

q(t)
{[q(t)|vε,t|p−2vε,t]t − q(t)f(vε)} = [|vε,t|p−2vε,t]t +

qt(t)

q(t)
|vε,t|p−2vε,t − f(vε)

=

[
qt(t)

q(t)
− qt(t− ε)

q(t− ε)

]
[v1,t(t− ε)]p−1,

which is nonpositive in view of (Q3) and the fact that v1,t ≥ 0, that is,

[q(t)|vε,t|p−2vε,t]t − q(t)f(vε) ≤ 0;

and (ii) replace the use of Theorem 2.1 in Br0 by the use of the radial analogue of
Theorem 6.1 in [0, r0).

The following theorem gives an important relation between the value m and dead
core solutions of (6.13).

Theorem 7.2. Let u(· ,m) be the unique solution of (6.13). Then either u(· ,m)
has a dead core for all m > 0, or there is a unique (finite) number

m = m0 = m0(R) > 0

for which a solution u0 = u0(r) = u0(r ,m0) of (6.13) in BR exists, with the properties
that

(i) u0(0) = 0;
(ii) u(0 ,m) > 0 for every m > m0;
(iii) u(· ,m) has a dead core for every 0 < m < m0.

For convenience we define m0 = m0(R) to be ∞ when all solutions of (6.13) are such
that u(0 ,m) = 0 for all m > 0.

Before proving Theorem 7.2, it is useful to give a preliminary lemma. For this
and later purposes we introduce the constant M ≥ 1 by

sup
0<t<T

tqt(t)

q(t)
= M − 1,(7.2)
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which is well defined by (Q1), (Q2), and (Q4).
Lemma 7.3. Any nonnegative solution u of (6.1) in BR which is suitably small

on ∂BR has a dead core.
Proof. Let m̄ > 0 be so small that

Dm̄ =

∫ m̄

0

ds

[F (s)/M ]1/p
= M1/p

∫ m̄

0

ds

[F (s)]1/p
< T, T = t(R),(7.3)

which of course is possible by assumption (7.1), where T = t(R) and t is given in (6.7).
Define ṽ(t) = w(t− S̃), t ∈ [S̃, T ], S̃ = T −Dm̄, where w is the function constructed
in the dead core Lemma 7.1 of [7, 8], with σ = 1/M . By analogy with (7.4) of [7, 8]
the function ṽ is a supersolution of (6.8) in the interval [S̃, T ]; that is, for t ∈ (S̃, T )

{(ṽt(t))p−1}t +
qt(t)

q(t)
(ṽt(t))

p−1 − f(ṽ(t)) ≤
{
σ

[
1 + (M − 1)

t− S̃

t

]
− 1

}
f(ṽ(t))

≤ (σM − 1)f(ṽ(t)) = 0,(7.4)

where we have used (iii) and (iv) of the dead core Lemma 7.1 of [7, 8]. Of course also
ṽ(S̃) = ṽt(S̃) = 0 and ṽ(T ) = m̄. Let ũ(x) = ṽ(t(|x|)), x ∈ BR \BS , where S̃ = t(S).
Then

div(g(|x|)|Dũ|p−2Dũ) − h(|x|)f(ũ) ≤ 0 inBR \BS .

Moreover defining ũ to be zero on BS , the extended function ũ is a supersolution
in BR of (6.1). Let the given solution u of (6.1) in BR have nonnegative boundary
values less than or equal to m. By the weak comparison Theorem 6.1 we get u ≤ ũ
whenever m ≤ m̄. Therefore u ≡ 0 in BS . This completes the proof.

Proof of Theorem 7.2. Existence of u0. Suppose that there is some m > 0 for
which u(0 ,m) > 0 and define as before

m0 = inf{m > 0 : u(0,m) > 0},(7.5)

so that m0 > 0 by Lemma 7.3.
The rest of the proof is exactly the same as the proof of Theorem 1.4, with the

exception that Theorems 1.3 and 4.1 are replaced by the corresponding Theorems 6.3
and 7.1.

Uniqueness of u0. The proof is exactly as for the corresponding result in Theo-
rem 1.4.

The case m0 = ∞. If every solution of (6.1) in BR is such that u(0 ,m) = 0 for
all m > 0, then u(· ,m) has a dead core for all m > 0. Otherwise there would be
m̄ > 0 for which u(0 , m̄) = 0 and u(r , m̄) > 0 for r ∈ (0, R]. Hence u(0 ,m) > 0 for
m > m̄ by Theorem 7.1, contradicting the assumption. This also justifies the earlier
agreement that m0 = ∞ in this case.

Remark. In summary, if m0 is finite and m > m0, then the solution u = u(· ,m)
of (6.13) is positive; namely, u(r ,m) > 0 for all r ∈ [0, R]. On the other hand, if
m < m0 ≤ ∞ then the solution u = u(· ,m) of (6.13) has a dead core BS ⊂ BR,
0 < S < R.

8. The size of a dead core and the case of general domains for (6.1).
Recall the assumption that Φ(∞) = H(∞) = ∞, and let

D =

∫ ∞

0

ds

[F (s)/M ]1/p
,(8.1)
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where M ≥ 1 is the number given in (7.2). Clearly 0 < D ≤ ∞ since the integral is
convergent at 0 by (7.1) and by Lemma 3.2 of [7, 8] with σ = 1/M ≤ 1, but possibly
divergent at ∞. The next two results are the analogues of Theorems 5.1 and 5.2.

Theorem 8.1. We have

m0 = ∞ if D < ∞ and R ≥ r(D),(8.2)

where r is the inverse function of change of variable t given in (6.7), while

m0 ≥ m̄ if R < r(D),(8.3)

where m̄ is given by the relation R = r(Dm̄).
Proof. The proof of (8.2) is essentially the same as that of Lemma 7.3, the only

exception being that Dm̄ is replaced by D, and R by T = t(R).
To obtain (8.3) one again follows the outline of the proof of Lemma 7.3. Now,

however, in addition to replacing Dm̄ by D, we take S̃ = S = 0. One thus obtains
(7.4) for ṽ, with ṽ(0) = ṽt(0) = 0 and ṽ(T ) = m̄. Hence ũ(0) = ũ′(0) = 0 and
ũ(R) = m̄, where ũ(r) = ṽ(t(r)). The conclusion is that 0 ≤ ũ(r , m̄) ≤ u(r , m̄), by
virtue of the weak comparison Theorem 6.1. Hence ũ(0 , m̄) = u(0 , m̄) = 0, and in
turn from the definition (7.5) of m0 we get m0 ≥ m̄, as required in (8.3).

Remark. It is interesting to calculate the function t �→ r(t) for the classical
Matukuma equation, in which g ≡ 1 and h(r) = 1/(1 + r2), p = 2. One finds from
(6.7) that t(r) = arcsinh r, so that r(t) = sinh t. Thus in this case (8.2) becomes

m0 = ∞ if D < ∞ and R ≥ sinhD,

with a similar relation for (8.3).
Theorem 8.2. Let m < m0, so that a dead core exists in BR by Theorem 7.2.

In particular

u ≡ 0 in BS ⊂ BR,

where T = t(R), S̃ = t(S), and

T −
∫ m

0

ds

[F (s)/M ]1/p
< S̃ < T.(8.4)

If R ≥ r(D), then for all m > 0 one has

R− r(D) < S < R.

Proof. This is the same as the proof of (8.2).
Remark. Let ε > 0. Then if m is suitably small (depending on ε) we have

T − ε < S̃ < T by (8.4).
The next result is the analogue for (6.1) of Theorem 1.1 for (1.1) and for general

domains Ω. Let 0 ∈ Ω. As before we denote by BR the open ball centered at 0 with
radius R > 0, and we let

R = sup{R > 0 : BR ⊂ Ω}.

Theorem 8.3. Assume the dead core condition (7.1) holds and let u be a solution
of (6.1), with 0 ≤ u(x) ≤ m on ∂Ω for some positive constant m. Then the following
properties are valid:
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(a) 0 ≤ u ≤ m in Ω and 0 ≤ u < m in BR.
(b) If R ≥ r(D), with D given in (8.1), then u has a dead core in Ω for all m > 0.
(c) Let BR be compactly contained in Ω. Then u ≡ 0 in BR provided that m > 0

is suitably small.

Proof of Theorem 8.3. (a) That u ≥ 0 follows by comparison (Theorem 6.1) of
the given solution u with the trivial solution 0. Also the constant function m is a
supersolution of (6.1), so that again by comparison u ≤ m in Ω.

Moreover u < m in BR. To see this, let u(· ,m) be the radial solution of (6.1) in
BR constructed in Theorem 6.2. Clearly u(x) ≤ m = u(|x|,m) for x ∈ ∂BR, and in
turn u(x) ≤ u(|x|,m) < m for x ∈ BR by the final part of Theorem 6.2.

(b) This is a direct consequence of Theorem 8.1.

(c) Let ε > 0 be so small that BR ⊂ BR+ε ⊂ Ω. In analogy with part (a), let
u(· ,m) be the solution of (6.13) with BR replaced by BR+ε. Then u(x) ≤ u(|x| ,m) =
m for x ∈ ∂BR+ε. By the remark after Theorem 8.2 we have u ≡ 0 in BR when m > 0
is suitably small, and in turn u ≡ 0 in BR by the weak comparison Theorem 6.1.

9. The case Φ(∞) < ∞. This is the case, for example, for the mean curvature
operator noted in the introduction, in which Φ(∞) = H(∞) = 1. Here the proof
of the critical Theorem 1.2 requires the modification that the parameter m in (1.5)
should be restricted so that

f(m) + Φ(m) <

(
R

R + 1

)n−1

Φ(∞) and F (m) ≤ nH(∞);(9.1)

see Proposition 4.1 of [7, 8]. Denote by m∞ the supremum of all m > 0 satisfying
(9.1).

Then the main results stated in the introduction remain true provided that the
condition m < m∞ is assumed in all the statements. For instance we have the
following analogue of Theorem 1.1.

Theorem 9.1. Assume the dead core condition (1.3) holds and let u be a solution
of (1.1), with 0 ≤ u(x) ≤ m on ∂Ω for some positive constant m < m∞. Then the
following properties are valid:

(a) 0 ≤ u < m in Ω.
(b) Assume that C =

∫m∞
0

ds
H−1(F (s)/n) < ∞, and let BR be a ball with radius

R ≥ C, compactly contained in Ω. Then u has a dead core in Ω for all
m ∈ (0,m∞).

(c) If B is any ball compactly contained in Ω, then u ≡ 0 in B provided that
m > 0 is suitably small.

It is not hard to show that if Φ(∞) = ∞ then necessarily H(∞) = ∞, but it is

possible to have Φ(∞) < ∞ and H(∞) = ∞, as shown by A(�) = 1
/
(1 +

√
1 + �2),

with corresponding

H(�) =
1

2

[
�2

1 +
√

1 + �2
− log

1 +
√

1 + �2

2

]
.

In this example Φ(∞) = 1, while H(∞) = ∞.

The case H(∞) < ∞ for unrestricted m > 0 was treated by Siegel in [9].

10. Bursts. Here we assume (F1) and apply the previous theory to problems
with nonlinearities f with (F2) replaced by the following:
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(F3) f is nondecreasing in (0, δ), F (u) > 0 on (0, β), with F (β) = 0, and there is
γ ∈ (β,∞] such that the following conditions hold:
(i) f(u) < 0 on [β, γ), f(γ) = 0 if γ < ∞;
(ii) max[0,β] F (u) + |F (γ)| < H(∞) if H(∞) < ∞;

(iii) lim infu→∞
H−1(|F (u)|)

u = 0 if H(∞) = |F (γ)| = ∞ and Φ(∞) < ∞;

(iv) lim infu→∞
H−1(|F (u)|)

u < ∞ if H(∞) = Φ(∞) = |F (γ)| = ∞.
In (F3) for the case γ = ∞ we define F (γ) = limu→∞ F (u), which certainly exists
though possibly being −∞. Clearly F (γ) = −∞ can occur only if γ = ∞. As noted
above, H(∞) = ∞ whenever Φ(∞) = ∞.

For such functions f Franchi, Lanconelli, and Serrin proved in Theorem A of
[4] that (1.1) admits a nonnegative radial ground state u = u(r), with central value
u(0) = α ∈ (β, γ] if γ < ∞, or u(0) = α ∈ (β,∞) if γ = ∞; moreover u′(r) ≤ 0 for
all r ≥ 0. Furthermore, since the dead core condition (1.3) is assumed to hold, then
the solution is compactly supported.

Remarks. Clearly, if F (γ) > −∞ and H(∞) = ∞ then only condition (i) is
needed. For the Laplacian operator and the p-Laplacian degenerate operator H(∞) =
∞ and Φ(∞) = ∞, so conditions (ii), (iii), and (iv) are not needed if γ < ∞, though
(iv) must be used when |F (γ)| = ∞. On the other hand, for the mean curvature
operator H(∞) = 1, and so in consequence of (ii), the function F must be quite
restrictive to apply Theorem A of [4] in order to get existence of radially symmetric
ground states for (1.1).

Consider next the Dirichlet problem{
div{A(|Du|)Du} = f(u) in BR ⊂ R

n, n ≥ 2,

u = δ on ∂BR,
(10.1)

under the dead core condition (1.3) for functions f satisfying (F1) and (F3). If
H(∞) = ∞, define

C ′ =

∫ δ

0

ds

H−1(F (s)/n)
< ∞,

by (1.3) and (F1). Then there exists, according to Theorems 1.2 and 5.2, a solution
of (10.1) which has a dead core BS , with R − S < C ′. In other words the main
equation (1.1) has two nonnegative solutions—the compact support burst shown above
by Theorem A of [4], and the dead core solution just derived by Theorem 1.2.

These two solutions can clearly be superposed, even if problem (10.1) is nonlinear,
to obtain another combined solution of (10.1), with a dead core BS \BT , T < S < R,
and a symmetrical burst at its center.

In particular, the Dirichlet problem (10.1), with the loop nonlinearity f verify-
ing (F1) and (F3), neither has a unique solution nor obeys the ordinary maximum
principle.

Since (1.1) in problem (10.1) is translation invariant, it is evident that the burst
need not be centered in the ball BR. Even more, if R is made many times larger, one
can place multiple bursts into original dead cores.

The main open problem arising in the study of dead cores is the question of
stability, particularly in dynamic situations for parabolic time dependent problems of
the type, e.g.,

ut = div{A(|Du|)Du} − f(u), u = u(t, x), (t, x) ∈ R
+ × Ω.
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1. Introduction and main results. In a fundamental paper in the theory of
rearrangements [BZ], Brothers and Ziemer elucidated minimal conditions ensuring
that functionals that depend on the modulus of the gradient admit only spherically
symmetric minimizers in classes of Sobolev functions whose level sets have prescribed
Lebesgue measures. The functionals considered in [BZ] have the form

JA(|∇u|),(1.1)

where JA is defined at a real-valued measurable function f in R
n as

JA(f) =

∫
Rn

A(|f(x)|) dx,(1.2)

and A is a Young function, namely a convex function from [0,∞) into [0,∞] vanishing
at 0. It has been long known under the name of the Pólya–Szegö principle that, if
a function u belongs to W 1

+(Rn), the space of nonnegative functions from W 1,1(Rn)
satisfying Ln({u > 0}) < +∞, then also its spherically symmetric rearrangement u�

is in W 1
+(Rn), and

JA(|∇u�|) ≤ JA(|∇u|).(1.3)

Here, Ln denotes the Lebesgue measure. The contribution of [BZ] amounts to
showing that if A satisfies a slightly stronger condition than just convexity, then any
function u ∈ W 1

+(Rn), attaining equality in (1.3), necessarily equals u� Ln-a.e. (up
to translations), provided that

Ln({∇u = 0} ∩ {0 < u < esssupu}) = 0.(1.4)

An exhaustive discussion of the necessity of assumption (1.4) can be found in [BZ].
The condition on A appearing in that paper has a somewhat technical nature, but
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was later realized that strict convexity of A is sufficient (and necessary) for the con-
clusion to be true (see, e.g., [B], [CF1]; see also [FV2], where a more elementary
proof of Brothers and Ziemer’s theorem is offered, and [CF2], dealing with asymme-
try estimates for u in the case where condition (1.4) and the strict convexity of A are
dropped).

Apart from its own interest, this symmetry result is relevant in view of applica-
tions to the uniqueness of minimizers of variational problems. For instance, as recently
observed in [CNV] and in [M], it can be used to prove that the only extremals in the
Sobolev inequality with best constant are those exhibited in [Ta]. On the other hand,
Brothers and Ziemer’s theorem does not apply to certain functionals Φ(|∇u|), not in
integral form, on which, nevertheless, Schwarz symmetrization is known to act mono-
tonically. Functionals enjoying this property are, for example, when Φ( · ) = ‖ · ‖A,
the Luxemburg norm, or Φ( · ) = ‖ · ‖(A), the Orlicz norm, in the Orlicz space LA(Rn)
associated with a Young function A. Recall that these (equivalent) norms are defined
at a measurable function f in R

n as

‖f‖A = inf

{
λ > 0:

∫
Rn

A

(
|f(x)|
λ

)
dx ≤ 1

}
(1.5)

and

‖f‖(A) = sup

{∫
Rn

|f(x)g(x)| dx :

∫
Rn

Ã(|g(x)|)dx ≤ 1

}
,(1.6)

respectively, where Ã(s) = sup{rs−A(r) : r ≥ 0}, the Young conjugate of A.
Other functionals of the gradient not included in [BZ], but yet satisfying a Pólya–

Szegö principle, arise from the definition of the Lorentz spaces Lp,q(Rn) (see, e.g., [A]).
Given p, q ∈ (0,+∞], the relevant functionals are defined at a measurable function f
in R

n by

‖f‖p,q = ‖s 1
p−

1
q f∗(s)‖Lq(0,∞),(1.7)

where f∗ is the decreasing rearrangement of f , and

‖f‖(p,q) = ‖s 1
p−

1
q f∗∗(s)‖Lq(0,∞),(1.8)

where

f∗∗(s) =
1

s

∫ s

0

f∗(r)dr for s > 0.

Notice that, if 1 < p ≤ ∞ and 0 < q ≤ ∞, the quantities ‖ ‖p,q and ‖ ‖(p,q) are
equivalent (up to multiplicative constants)—see, e.g., [BS, Chapter 4, Lemma 4.5].

The fact that, when evaluated at |∇u|, functionals (1.5), (1.6), (1.8), and also
(1.7) for suitable values of p and q do not increase under Schwarz symmetrization
of u is a consequence of an extended version of the Pólya–Szegö principle stated in
Theorem 1.2 below. This theorem deals with general functionals of the form Φ(|∇u|),
with Φ defined in

L1
+(Rn) = {f ∈ L1(Rn) : f ≥ 0 and Ln({f > 0}) < +∞}.

The key property of Φ in order for the functional Φ(|∇u|) to support a Pólya–Szegö
principle is the ∗∗-monotonicity defined as follows.



SYMMETRIC FUNCTIONALS OF THE GRADIENT 281

Definition 1.1. A functional Φ : L1
+(Rn) → [0,∞] is called ∗∗-increasing if

Φ(f) ≤ Φ(g) whenever f∗∗(s) ≤ g∗∗(s) for s > 0.

Besides those considered above, other examples of ∗∗-increasing functionals are
provided by all rearrangement invariant norms in the sense of Luxemburg, namely
norms in Banach function spaces depending only on the decreasing rearrangement—
see Proposition 5.2, section 5. However, rearrangement invariant norms do not ex-
haust the class of ∗∗-increasing functionals, as the case where Φ(·) = ‖ · ‖(p,q), with
0 < q < 1, demonstrates. Relations between ∗∗-monotonicity and other notions of
monotonicity, convexity, and semicontinuity will be examined in sections 2 and 5.

Theorem 1.2. Let Φ : L1
+(Rn) → [0,∞] be a ∗∗-increasing functional. Then

Φ(|∇u�|) ≤ Φ(|∇u|)(1.9)

for every u ∈ W 1
+(Rn).

Theorem 1.2 is essentially known in literature as a consequence of the fact that
every u ∈ W 1

+(Rn) satisfies

|∇u�|∗∗(s) ≤ |∇u|∗∗(s) for s > 0(1.10)

(see, e.g., [CP], [F], [K]). Here, we shall present a proof of Theorem 1.2 where an
intermediate step is enucleated, showing that a third quantity, involving |∇u|, always
lies between the left-hand side and the right-hand side of (1.9) (see also [RT] and
[FV1] for contributions in this direction). This is crucial in preparation for our main
results concerning the equality case in (1.9).

Indeed, the purpose of the present paper is to complement the result of [BZ] and
to characterize the class of those ∗∗-increasing functionals Φ for which the equation

Φ(|∇u�|) = Φ(|∇u|) < +∞,(1.11)

coupled with condition (1.4), necessarily implies u = u� (up to translations). Ac-
cording to the terminology of [BZ], we shall call any u ∈ W 1

+(Rn) satisfying (1.11) a
minimal rearrangement of Φ.

In fact, we give a more detailed picture of the situation at hand. In order to grasp
the spirit of our discussion, recall that the proof of the symmetry result for extremals
in the standard inequality (1.3), where Φ = JA, consists of two steps. First, (1.11) is
used to deduce that

the level sets {u > t} are (equivalent to) balls for L1-a.e. t > 0,(1.12)

and that

|∇u| is constant Hn−1-a.e. on {u = t} for L1-a.e. t > 0,(1.13)

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Combining (1.12)
and (1.13) with (1.4) then entails that the balls {u > t} must be concentric, and hence
that u is symmetric. In particular, we stress that (1.11) plays a role in the derivation
only of (1.12) and (1.13). In view of these facts, the problem arises of characterizing
all ∗∗-increasing functionals having the property that every minimal rearrangement u
necessarily fulfills (1.12) or (1.13). Let us emphasize that the issue is not immaterial,
since not every ∗∗-increasing functional enjoys this property. A typical example in
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this connection is provided by the L∞-norm, since functions u can be easily exhibited
which fulfill (1.11) with Φ( · ) = ‖ · ‖L∞ , but not (1.12) (nor, a fortiori, (1.13)—see the
comment following Theorem 1.6 below). Our first main result tells us that failure of
(1.12) can occur only for minimal rearrangements of ∗∗-increasing functionals, which,
like ‖ ‖L∞ , are not strictly monotone in a sense specified in the next definition.

Definition 1.3. A ∗∗-increasing functional Φ : L1
+(Rn) → [0,∞] is said to be

∗-strictly increasing if

f∗(s) ≤ g∗(s) for s ≥ 0 and Φ(f) = Φ(g) < +∞ imply that f∗ ≡ g∗.

Actually, the following theorem holds.
Theorem 1.4. Let Φ : L1

+(Rn) → [0,∞] be a ∗∗-increasing functional. Then
every minimal rearrangement u of Φ necessarily fulfills (1.12) if and only if Φ is
∗-strictly increasing.

Theorem 1.4 settles the question concerning the validity of (1.12) for minimal
rearrangements u. The parallel issue for (1.13) turns out to be related to a stronger
assumption on Φ, which, loosely speaking, amounts to a proper weak notion of strict
convexity. The necessity of an assumption of this kind is suggested by another simple
instance corresponding to the choice Φ( · ) = ‖ · ‖L1 . Since such a functional is clearly
∗-strictly increasing, by Theorem 1.4 every minimal rearrangement u satisfies (1.12);
however, such a u does not necessarily fulfill (1.13), since the balls {u > t} at different
levels t need not be concentric. This assertion can be verified via the coarea formula,
and remains true even for any other functional given by (1.2) with a nonstrictly convex
A.

A sharp assumption on Φ guaranteeing property (1.13) for every minimal rear-
rangement u is introduced in the next definition.

Definition 1.5. A ∗∗-increasing functional Φ : L1
+(Rn) → [0,∞] is said to be

∗∗-strictly increasing if

f∗∗(s) ≤ g∗∗(s) for s > 0 and Φ(f) = Φ(g) < +∞ imply that f∗ ≡ g∗.

Connections among ∗∗-strict monotonicity, classical strict convexity, and other
related notions will be discussed in Proposition 5.3 of section 5.

We are now in position to state our second main result.
Theorem 1.6. Let Φ : L1

+(Rn) → [0,∞] be a ∗∗-increasing functional. Then
every minimal rearrangement u of Φ necessarily fulfills (1.13) if and only if Φ is
∗∗-strictly increasing.

Notice that, since every ∗∗-strictly increasing functional is also ∗-strictly increas-
ing, Theorems 1.4 and 1.6 ensure, in particular, that (1.12) is fulfilled by every minimal
rearrangement u of Φ whenever (1.13) is.

Thanks to Theorems 1.4 and 1.6, any minimal rearrangement u of a ∗∗-strictly
increasing functional Φ has to satisfy (1.12)–(1.13), and hence, if also (1.4) is in force,
it must be spherically symmetric. Thus, the following general version of Brothers and
Ziemer’s theorem holds.

Theorem 1.7. Let Φ : L1
+(Rn) → [0,∞] be a ∗∗-strictly increasing functional.

Let u be any minimal rearrangement u of Φ satisfying (1.4). Then u ≡ u� Ln-a.e in
R

n (up to translations).
Let us mention that an extension of the theorem of [BZ] in the special case where

Φ( · ) = ‖ · ‖(p,q) can also be found in [Ra].
Theorems 1.2, 1.4, and 1.6 are established in sections 2, 3, and 4, respectively.

Applications of these theorems to functionals (1.1) and (1.5)–(1.8) are presented in
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section 5; let us just anticipate here that some of the conclusions are somewhat sur-
prising (to us at least). For instance, as a consequence of Theorem 1.4 and Proposition
5.7, strictly convex Young functions A exist, like A(t) = et

α −1 with α > 1, such that

‖ |∇u�| ‖A = ‖ |∇u| ‖A

for some u ∈ W 1
+(Rn) fulfilling (1.4), which is not symmetric and does not even satisfy

(1.12).

2. The Pólya–Szegö inequality for ∗∗-increasing functionals. In this sec-
tion we provide a proof of Theorem 1.2. After recalling a few basic definitions about
rearrangements, our first concern will be, however, to clarify the connections between
the notion of ∗∗-monotonicity of functionals, upon which Theorem 1.2 relies, and
other definitions of monotonicity which play a role in what follows.

Given any function f ∈ L1
+(Rn), the function μf : [0,+∞) → [0,+∞), defined by

μf (t) = Ln({x ∈ R
n : f(x) > t}) for t ≥ 0,

is called the distribution function of f . The decreasing rearrangement of f is the
function f∗ : [0,+∞) → [0,+∞) obeying

f∗(s) = sup{t ≥ 0 : μf (t) > s} for s ≥ 0.

The spherically symmetric rearrangement f� : R
n → [0,+∞) of f is defined as

f�(x) = f∗(ωn|x|n) for x ∈ R
n,(2.1)

where ωn denotes the measure of the unit ball in R
n. Functions having the same

distribution function will be called equidistributed or equimeasurable. Clearly, f , f∗,
and f� are equidistributed.

A basic property of rearrangements tells us that, if f is as above, then

sup

{∫
E

f(x)dx : Ln(E) = s

}
=

∫ s

0

f∗(r)dr for every s > 0(2.2)

and ∫
Rn

f(x)dx =

∫ +∞

0

f∗(r)dr.

In what follows, given f and g in L1
+(Rn), we write f ≺ g to denote that

f∗∗(s) ≤ g∗∗(s) for s > 0 and

∫
Rn

f(x)dx =

∫
Rn

g(x)dx.

Definition 2.1. Let Φ be a functional from L1
+(Rn) into [0,∞].

(i) Φ is called pointwise increasing if

Φ(f) ≤ Φ(g) whenever f(x) ≤ g(x) for Ln-a.e. x ∈ R
n;

Φ is called strictly pointwise increasing if, in addition,

f(x) ≤ g(x) for Ln -a.e. x ∈ R
n and Φ(f) = Φ(g) < +∞ imply f = g

for Ln -a.e. x ∈ R
n.
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(ii) Φ is called ∗-increasing if

Φ(f) ≤ Φ(g) whenever f∗(s) ≤ g∗(s) for s > 0;

Φ is called ∗-strictly increasing if, in addition,

f∗(s) ≤ g∗(s) for L1-a.e. s > 0 and Φ(f) = Φ(g) < +∞ imply f∗ ≡ g∗.

(iii) Φ is called ≺-increasing if

Φ(f) ≤ Φ(g) whenever f ≺ g;

Φ is called ≺-strictly increasing if, in addition,

f ≺ g and Φ(f) = Φ(g) < +∞ imply f∗ ≡ g∗.

We give one more definition involving functionals on L1
+(Rn).

Definition 2.2. A functional Φ : L1
+(Rn) → [0,∞] is called rearrangement

invariant if

Φ(f) = Φ(g) whenever f∗ ≡ g∗.

Relations among the above notions of monotonicity are established in the next
proposition.

Proposition 2.3. Let Φ be a functional from L1
+(Rn) into [0,∞]. Then

(i) Φ is ∗-increasing [respectively ∗-strictly increasing] if and only if Φ is point-
wise increasing [strictly pointwise increasing] and rearrangement invariant.

(ii) Φ is ∗∗-increasing [∗∗-strictly increasing] if and only if Φ is ∗-increasing [∗-
strictly increasing] and ≺-increasing [≺-strictly increasing].

Proof. (i) If Φ is ∗-increasing, it is obviously rearrangement invariant. It is also
pointwise increasing, since if f, g ∈ L1

+(Rn) and f(x) ≤ g(x) for Ln-a.e. x ∈ R
n, then

f∗(s) ≤ g∗(s) for s > 0, and hence Φ(f) ≤ Φ(g).
Conversely, assume that Φ is pointwise increasing and rearrangement invariant.

Let f and g be functions from L1
+(Rn) such that f∗(s) ≤ g∗(s) for s > 0. Conse-

quently,

Φ(f) = Φ(f�) ≤ Φ(g�) = Φ(g),

where the equalities hold because Φ is rearrangement invariant, and the inequality is
due to the fact that Φ is pointwise increasing. Thus, Φ is ∗-increasing.

As for the assertions about strict monotonicity, if Φ is ∗-strictly increasing, then
it must be also strictly pointwise increasing. Otherwise, there would exist f, g ∈
L1

+(Rn), satisfying f(x) ≤ g(x) for Ln-a.e. x ∈ R
n, f(x) < g(x) for x in a set of

positive Lebesgue measure, and Φ(f) = Φ(g). The first two conditions entail that
f∗(s) ≤ g∗(s) for s > 0 and that f∗(s) < g∗(s) for s in a set of positive measure,
and these facts, combined with the equality Φ(f) = Φ(g), contradict the ∗-strict
monotonicity of Φ.

Suppose now that Φ is strictly pointwise increasing and rearrangement invariant,
but not ∗-strictly increasing. Then there exist f, g ∈ L1

+(Rn) fulfilling f∗(s) ≤ g∗(s)
for s > 0, f∗(s) < g∗(s) for s in a set of positive measure, and Φ(f) = Φ(g). The same
argument as above shows that the functions f� and g� violate the strict pointwise
monotonicity of Φ.
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(ii) The fact that any ∗∗-increasing functional is both ∗-increasing and ≺-increasing
is trivial. To prove the converse, choose any f, g ∈ L1

+(Rn) such that

f∗∗(s) ≤ g∗∗(s) for s > 0.(2.3)

If
∫

Rn f(x)dx =
∫

Rn g(x)dx, then f ≺ g, whence Φ(f) ≤ Φ(g) by the ≺-monotonicity
of Φ. Suppose, instead, that

∫
Rn f(x)dx <

∫
Rn g(x)dx. Then, there exists s0 > 0 such

that ∫
Rn

f(x)dx =

∫ s0

0

g∗(s)ds.(2.4)

Set h(x) = g�(x)χ[0,s0](ωn|x|n), where χE denotes the characteristic function of a set
E. Clearly, h∗(s) = g∗(s)χ[0,s0](s) ≤ g∗(s) for s > 0. Thus, since Φ is ∗-increasing,

Φ(h) ≤ Φ(g).(2.5)

On the other hand, by (2.3) and (2.4), f ≺ h, whence, by the ≺-monotonicity of Φ,

Φ(f) ≤ Φ(h).(2.6)

Combining (2.5) and (2.6) yields the ∗∗-monotonicity of Φ.
As far as strict monotonicity properties are concerned, it is again clear that any

∗∗-strictly increasing functional is also ∗-strictly increasing and ≺-strictly increasing.
Conversely, if Φ is both ∗-strictly increasing and ≺-strictly increasing, and if f, g ∈
L1

+(Rn) satisfy (2.3) and Φ(f) = Φ(g), then equality holds in (2.5) and (2.6). The
∗-strict monotonicity and the ≺-strict monotonicity then imply that g∗ ≡ h∗ ≡ f∗.
Hence, Φ is ∗∗-strictly increasing.

We now come to the proof of Theorem 1.2. Basic tools are the isoperimetric in-
equality in R

n and the coarea formula for Sobolev functions. De Giorgi’s isoperimetric
theorem in R

n states that

Hn−1(∂∗E) ≥ nω1/n
n Ln(E)1−1/n(2.7)

for every measurable subset E of R
n having finite measure, and that equality holds in

(2.7) if and only if E is equivalent to a ball. Here, ∂∗E denotes the reduced boundary
of E.

The coarea formula entails that if u ∈ W 1
+(Rn) and f : R

n → [0,∞) is a Borel
function, then ∫

Rn

|∇u|(x)f(x)dx =

∫ ∞

0

dt

∫
∂∗{u>t}

f(x)dHn−1(x)(2.8)

(see, e.g., [AFP], [Z]). Notice that, if a suitable precise representative of u is chosen,
a choice that will be always tacitly made throughout, then ∂∗{u > t} and {u = t}
agree, up to a set of zero Hn−1-measure, for L1-a.e. t > 0, and hence (2.8) reads∫

Rn

|∇u|(x)f(x)dx =

∫ ∞

0

dt

∫
{u=t}

f(x)dHn−1(x).(2.9)

Another ingredient in our proof of Theorem 1.2 is the following lemma (see [AT],
[FV2]).
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Lemma 2.4. Let u ∈ W 1
+(Rn). Then the function given by

s →
∫
u>u∗(s)

|∇u(x)|dx for s ≥ 0

is absolutely continuous in [0,∞). Moreover, on setting

|∇u|∗u(s) =
d

ds

∫
u>u∗(s)

|∇u|(x)dx for s ≥ 0

and

|∇u|�u(x) = |∇u|∗u(ωn|x|n) for x ∈ R
n

we have

|∇u|�u ≺ |∇u|.(2.10)

Proof of Theorem 1.2. By the coarea formula (2.8),

|∇u|∗u(s) = −du∗

ds
(s)Hn−1(∂∗{u > u∗(s)}) for L1-a.e. s > 0.(2.11)

Denote by {ti}i∈P , with P ⊆ N, the (possibly empty) family of all levels t > 0
satisfying

Ln ({u = ti}) = L1 ({u∗ = ti}) > 0 for i ∈ P ,

and by {Ii}i∈P the corresponding family of intervals in [0,Ln({u > 0})] such that
(u∗)|Ii = ti for i ∈ P . Then,

Ln({u > u∗(s)}) = s for every s ∈ [0,Ln({u > 0})] \
(
∪i∈P Ii

)
(2.12)

and

du∗

ds
(s) = 0 for L1-a.e. s ∈ ∪i∈P Ii.

Thus, from (2.11) and from the isoperimetric inequality (2.7), we deduce that

nω
1/n
n s1−1/n

(
−du∗

ds
(s)

)
≤ |∇u|∗u(s) for L1-a.e. s > 0.(2.13)

Hence, owing to (2.1),

|∇u�(x)| ≤ |∇u|�u(x) for Ln-a.e. x ∈ R
n.(2.14)

Combining (2.14) and (2.10) yields

Φ(|∇u�|) ≤ Φ(|∇u|�u) ≤ Φ(|∇u|),(2.15)

where the first inequality holds because Φ is, in particular, pointwise increasing, and
the second one because Φ is also ≺-increasing (see Proposition 2.3).
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3. Extremals of ∗-strictly increasing functionals. This section is devoted
to Theorem 1.4. Its proof, as well as the proof of Theorem 1.6 contained in the next
section, makes use of measure preserving maps. Recall that, given subsets Ω of R

n

and G of R
m having finite Lebesgue measure, a function γ : G → Ω is called a measure

preserving (briefly m.p.) map if

Lm(γ−1(E)) = Ln(E)

for every measurable subset E of Ω. Notice that, on modifying, if necessary, γ on a
set of Lebesgue measure zero, we may assume without loss of generality that γ is a
Borel function.

Since any measurable function f : Ω → [0,+∞) is equidistributed with the func-
tion f ◦ γ : G → [0,+∞), we have∫

G

f(γ(y))dy =

∫
Ω

f(x)dx.(3.1)

If σ : Ω → [0,Ln(Ω)] is a bijective m.p. map, then σ−1 : [0,Ln(Ω)] → Ω is also an
m.p. map, and hence (3.1) yields

∫ Ln(Ω)

0

f(σ−1(s))ds =

∫
Ω

f(x)dx.(3.2)

In what follows, we shall repeatedly exploit the fact that if σ : Ω → [0,Ln(Ω)] is
any m.p. map, φ : [0,Ln(Ω)] → [0,∞) is nondecreasing and right-continuous, and
u : R

n → [0,∞) is given by

u(x) =

{
φ ◦ σ(x) if x ∈ Ω,

0 otherwise,
(3.3)

then, by the equimeasurability of u and φ,

u∗(s) =

{
φ(s) if s ∈ [0,Ln(Ω)),

0 otherwise.
(3.4)

Proof of Theorem 1.4. Assume that Φ is ∗-strictly increasing. Let u be any mini-
mal rearrangement of Φ. Since u satisfies (1.11), equality holds in the first inequality
in (2.15). Inasmuch as Φ is ∗-strictly increasing, by Proposition 2.3 it is also point-
wise strictly increasing. An inspection of the proof of Theorem 1.2 then reveals that
equality must hold in (2.14) for Ln-a.e. x ∈ R

n, and hence in (2.13) for L1-a.e. s > 0.
In conclusion, owing to (2.11), one has that

Hn−1 (∂∗{u > u∗(s)}) = nω
1/n
n s1−1/n(3.5)

for L1-a.e. s > 0 such that du∗

ds (s) exists and is different from zero. Set

D1 = {s > 0 : u∗ is not differentiable at s}

and

D2 =

{
s > 0 :

du∗

ds
(s) = 0

}
,
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and observe that the intervals {Ii}i∈P introduced in the proof of Theorem 1.2 satisfy
∪i∈P Ii ⊆ D1 ∪D2. Thus, owing to (2.12), equation (3.5) reads

Hn−1 (∂∗{u > u∗(s)}) = nω
1/n
n Ln ({u > u∗(s)})1−1/n

(3.6)

for L1-a.e. s �∈ D1

⋃
D2. Since u∗ is locally absolutely continuous on (0,∞), then

L1(D1) = 0, and since absolutely continuous functions map sets of measure zero into
sets of measure zero, L1(u∗(D1)) = 0 as well. We also have L1(u∗(D2)) = 0 (see, e.g.,
[CF1, Lemma 2.4]). Consequently, one can infer from (3.6) that

Hn−1 (∂∗{u∗ > t}) = nω
1/n
n Ln ({u > t})1−1/n

for L1-a.e. t ∈ (0, ess supu).

In other words, equality holds in the isoperimetric inequality (2.7) with E = {u > t}
for L1-a.e. t ∈ (0, ess supu). Hence, (1.12) follows.

Conversely, assume that every function satisfying (1.11) necessarily fulfills (1.12),
and suppose, by contradiction, that Φ is not ∗-strictly increasing. Then there exist
f, g ∈ L1

+(Rn) and s0 > 0 satisfying

f∗(s) ≤ g∗(s) for every s > 0,(3.7)

Φ(f) = Φ(g) < +∞,(3.8)

and

0 < f∗(s0) < g∗(s0).

This information will enable us to exhibit a function u ∈ W 1
+(Rn), in the form (3.3),

fulfilling (1.11) but not (1.12). First, choose Ω = {x : ωN |x|n ≤ Ln({g > 0})} and
define φ : [0,Ln(Ω)] → [0,+∞) as

φ(s) =

∫ Ln(Ω)

s

f∗(r)

nω
1/n
n r1−1/n

dr for s ∈ [0,Ln(Ω)].(3.9)

Next, we construct σ. Consider any family D = {D(s)}s∈[0,Ln(Ω)] of measurable
subsets of Ω satisfying

D(s1) ⊆ D(s2) if 0 ≤ s1 ≤ s2 ≤ Ln(Ω)(3.10)

and

Ln(D(s)) = s for s ∈ [0,Ln(Ω)].(3.11)

If σ is given by

σ(x) = inf{s > 0 : x ∈ D(s)} for x ∈ Ω,(3.12)

then

σ−1 ((0, s)) = D(s) for s ∈ [0,Ln(Ω)].

Hence, σ is an m.p. map, and its level sets belong to the family D. The point is now
to choose the sets D(s) in such a way that the function u given by (3.3), with φ as



SYMMETRIC FUNCTIONALS OF THE GRADIENT 289

in (3.9), enjoys the desired properties. To this purpose, suppose for a moment that
D(s) = {x ∈ R

n : ωn|x|n < s} for s > 0, and observe that, in this case, σ(x) = ωn|x|n,
u ≡ u�, and hence, in particular, (1.11) certainly holds. The idea is then to slightly
perturb the balls {x ∈ R

n : ωn|x|n < s} for s close to s0, and exploit (3.8) to deduce
that the function u, associated with this perturbed function σ, still fulfills (1.11). In
order to make this idea precise, note that, since f∗ and g∗ are right continuous, there
exist positive numbers ε and δ such that

f∗(s)(1 + δ) < g∗(s) for every s ∈ [s0, s0 + ε].(3.13)

Then we define

D(s) =

⎧⎪⎪⎨
⎪⎪⎩
{x ∈ R

n : ωn|x|n < s} if s �∈ [s0, s0 + ε],⎧⎨
⎩x ∈ R

n : ωn

[
x2

1

a2(s)
+

n∑
i=2

x2
i

b2(s)

]n/2
< s

⎫⎬
⎭ if s ∈ [s0, s0 + ε],

(3.14)

where the functions a and b are sufficiently smooth, nonconstant in [s0, s0 + ε], and
satisfy the following properties:

a(s)bn−1(s) = 1 for s ∈ [s0, s0 + ε],(3.15)

a(s0) = a(s0 + ε) = 1,(3.16)

min
{ (

a(s)s1/n
)′
,
(
b(s)s1/n

)′ }( s0

s0 + ε

)1/n

≥ s−1+1/n

n(1 + δ)
for s ∈ [s0, s0 + ε].

(3.17)

Here, prime stands for differentiation. In particular, by (3.17), the functions s →
a(s)s1/n and s → b(s)s1/n are increasing in [s0, s0 + ε]. A possible choice is, for
instance,

a(s) =

[
(s0 + ε)1/n − s

1/n
0

ε
(s− s0) + s

1/n
0

]
s−1/n

and

b(s) = a(s)−1/(n−1),

provided that ε is sufficiently small. Notice that (3.16) along with the monotonicity
of a(s)s1/n and b(s)s1/n ensure that (3.10) is fulfilled, whereas (3.15) implies (3.11).
Condition (3.17), combined with (3.13), will be used to show that

Φ(|∇u�|) = Φ(|∇u|).(3.18)

Clearly, this yields the announced contradiction, since the level sets of u whose mea-
sure lies between s0 and s0 + ε are not balls.

To verify (3.18), observe that, by (3.3) and (3.9),

|∇u(x)| =
f∗(σ(x))

nω
1/n
n σ(x)1−1/n

|∇σ(x)| for Ln-a.e. x ∈ Ω.(3.19)
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Such an equation holds since σ is Lipschitz continuous. The Lipschitz continuity of
σ is, in turn, a consequence of the fact that, by (3.12) and (3.14), σ(x) equals ωn|x|n
when ωn|x|n �∈ [s0, s0 + ε], and that it is implicitly defined by the equation

K(x, σ(x)) = 1(3.20)

otherwise, where K : R
n × (0,∞) → R is given by

K(x, s) =
(ωn

s

)2/n x2
1

a(s)2
+
(ωn

s

)2/n 1

b(s)2

n∑
i=2

x2
i for (x, s) ∈ R

n × (0,∞).

Now we have

(3.21)

|∇σ(x)|=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣( ω

1/n
n

s1/na(s)

)4

x2
1 +

(
ω

1/n
n

s1/nb(s)

)4 n∑
i=2

x2
i

⎤
⎦

1/2

(
ω

1/n
n

s1/na(s)

)2

x2
1

(
s1/na(s)

)′
s1/na(s)

+

(
ω

1/n
n

s1/nb(s)

)2 (
s1/nb(s)

)′
s1/nb(s)

n∑
i=2

x2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
s=σ(x)

if s0 ≤ ωn|x|n ≤ s0 + ε, by the implicit function theorem, and

|∇σ(x)| = nω
1/n
n σ(x)1−1/n if ωn|x|n �∈ [s0, s0 + ε].(3.22)

From (3.21), via the monotonicity of a(s)s1/n and b(s)s1/n, and due to (3.16), (3.17),
and (3.20), one can easily deduce that

|∇σ(x)| ≤ nω
1/n
n σ(x)1−1/n(1 + δ) if s0 ≤ ωn|x|n ≤ s0 + ε.(3.23)

Thus (3.19), (3.22), and (3.23) yield

|∇u(x)| ≤ h(x) for Ln-a.e. x ∈ Ω,(3.24)

where

h(x) =

{
f∗(σ(x))(1 + δ) if s0 ≤ ωn|x|n ≤ s0 + ε,

f∗(σ(x)) otherwise.

By (3.7) and (3.13),

h(x) ≤ g∗(σ(x)) for Ln-a.e. x ∈ Ω.(3.25)

Combining (3.24) and (3.25), and exploiting the fact that σ is an m.p. map tell us
that

|∇u|∗(s) ≤ g∗(s) for s > 0.(3.26)

On the other hand,

f∗∗(s) = |∇u�|∗∗(s) ≤ |∇u|∗∗(s) ≤ g∗∗(s) for s > 0,

where the equality is due to (2.1) and to (3.4) and (3.9), the first inequality to (1.10),
and the last inequality to (3.26). Hence, owing to (3.8), equation (3.18) follows.
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4. Extremals of ∗∗-strictly increasing functionals. The proof of Theorem
1.6, which will be accomplished in this section, requires some preliminary results.
The first one appears in [ALT, Theorem 2.3] and deals with weak limits in L1 of
equidistributed sequences of functions.

Lemma 4.1. Let Ω be a measurable subset of R
n having finite measure, and let

f ∈ L1(Ω). Let {fk}k∈N be any sequence of functions in L1(Ω) such that

fk ⇀ f weakly in L1(Ω) and f∗
k ≡ f∗ for every k ∈ N.

Then

fk → f strongly in L1(Ω).

The convergence in L1 of the composition of a fixed function with a convergent
sequence of m.p. maps is the object of the following lemma.

Lemma 4.2. Let Ω be a measurable subset of R
n having finite measure, and let σ

and {σk}k∈N be, respectively, an m.p. map and a sequence of m.p. maps from Ω into
[0,Ln(Ω)] such that

lim
k→+∞

σk(x) = σ(x) for Ln-a.e. x ∈ Ω.

Let φ be any function from L1(0,Ln(Ω)). Then

φ ◦ σk → φ ◦ σ strongly in L1(Ω).(4.1)

Proof. When φ is continuous, limk→+∞ φ(σk(x)) = φ(σ(x)) for Ln-a.e. x ∈ Ω.
Moreover, since the functions φ ◦σk, φ ◦σ, and φ are equimeasurable for every k ∈ N,
‖ φ ◦ σk ‖L1(Ω)= ‖ φ ◦ σ ‖L1(Ω)=‖ φ ‖L1(0,Ln(Ω)) for every k ∈ N. Hence (4.1) follows
(see, e.g., [AFP, Proposition 1.33]). In the general case, where φ ∈ L1(0, ln(Ω)),
fix any ε > 0, and choose a continuous function φ̃ : [0,Ln(Ω)] → R such that ‖
φ− φ̃ ‖L1(0,Ln(Ω))< ε. Hence,∫

Ω

|φ(σk(x)) − φ(σ(x))|dx ≤
∫

Ω

|φ(σk(x)) − φ̃(σk(x))|dx

+

∫
Ω

|φ̃(σk(x)) − φ̃(σ(x))|dx +

∫
Ω

|φ̃(σ(x)) − φ(σ(x))|dx

= 2 ‖ φ− φ̃ ‖L1(0,Ln(Ω)) + ‖ φ̃ ◦ σk − φ̃ ◦ σ ‖L1(Ω)≤ 2ε+ ‖ φ̃ ◦ σk − φ̃ ◦ σ ‖L1(Ω) .

Notice that the equality holds by property (3.1). Owing to the arbitrariness of ε, (4.1)
for φ is now a consequence of (4.1) applied to φ̃.

The next lemma provides us with a weak approximation |∇u|∗u involving a se-
quence of m.p. maps related to the level sets of u.

Lemma 4.3. Let u ∈ W 1
+(Rn). Let σ and {σk}k∈N be an m.p. map and a sequence

of bijective m.p. maps, respectively, from {u > 0} into [0,Ln({u > 0})], such that

u(x) = u∗(σ(x)) for Ln-a.e. x ∈ {u > 0}(4.2)

and

lim
k→+∞

σk(x) = σ(x) for Ln-a.e. x ∈ {u > 0}.(4.3)
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Then

|∇u| ◦ σ−1
k ⇀ |∇u|∗u weakly in L1(0,Ln({u > 0})).

Remark 4.4. Let us notice that σ and {σk}, as in the statement of Lemma 5.1,
certainly exist owing to [FV1].

Proof. Set V = Ln({u > 0}). We begin by showing that

lim
k→+∞

∫ V

0

|∇u|(σ−1
k (t))ϕ(t)dt =

∫ V

0

|∇u|∗u(t)ϕ(t)dt(4.4)

for every ϕ ∈ C0(0, V ). In order to prove (4.4), observe first that

lim
k→+∞

∫ V

0

|∇u|(σ−1
k (t))ϕ(t)dt = lim

k→+∞

∫
{u>0}

|∇u|(x)ϕ(σk(x))dx(4.5)

=

∫
{u>0}

|∇u|(x)ϕ(σ(x))dx,

where the former equality is due to (3.2) and the latter follows from (4.3) via the
dominated convergence theorem for integrals. Now, let {ti}i∈P and {Ii}i∈P be the
families of levels and intervals, respectively, introduced in the proof of Theorem 1.2.
It is easily seen that

u∗−1({t}) = μ(t) if t �= ti for every i ∈ P(4.6)

and (see, e.g., [BZ, proof of Lemma 2.4])

μ(u∗(s)) = s if s �∈ ∪i∈P Ii.(4.7)

By the coarea formula (2.9),∫
{u>0}

|∇u|(x)ϕ(σ(x))dx =

∫ ∞

0

dt

∫
{u=t}

ϕ(σ(x))dHn−1(x).(4.8)

Furthermore, by (4.2) and (4.6),

{u = t} = {σ = μ(t)} if t �= ti for every i ∈ P .(4.9)

Consequently, (4.8) reads∫
{u>0}

|∇u|(x)ϕ(σ(x))dx =

∫ ∞

0

ϕ(μ(t))Hn−1({u = t})dt.(4.10)

The change of variable t = u∗(s) in the last integral and (4.7) entail that

∫ ∞

0

ϕ(μ(t))Hn−1({u = t})dt =

∫ V

0

ϕ(s)Hn−1({u = u∗(s)})
(
−du∗

ds
(s)

)
ds.(4.11)

Thanks to the coarea formula (2.9) again,

|∇u|∗u(s) =

(
−du∗

ds
(s)

)
Hn−1({u = u∗(s)}) for L1-a.e. s > 0.(4.12)
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Combining (4.5), (4.8), (4.10), (4.11), and (4.12) yields (4.4).
In order to conclude, we need to extend (4.4) to every ϕ ∈ L∞(0, V ). Fixing any

such ϕ and any ε > 0, by Lusin’s theorem there exists ϕ̃ ∈ C0(0, V ) such that

L1({t : ϕ(t) �= ϕ̃(t)}) < ε(4.13)

and

‖ϕ̃‖L∞(0,V ) ≤ ‖ϕ‖L∞(0,V ).(4.14)

By (4.14),

(4.15)∣∣∣∣∣
∫ V

0

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)
ϕ(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ V

0

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)
ϕ̃(t)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
{ϕ �=ϕ̃}

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)(
ϕ(t) − ϕ̃(t)

)
dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ V

0

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)
ϕ̃(t)dt

∣∣∣∣∣
+ 2‖ϕ‖L∞(0,V )

∫
{ϕ �=ϕ̃}

(
|∇u|(σ−1

k (t)) + |∇u|∗u(t)
)
dt.

Equations (3.2) and (2.10) yield

∫
{ϕ �=ϕ̃}

|∇u|∗u(t)dt ≤
∫ L1({ϕ �=ϕ̃})

0

(|∇u|∗u)
∗
(s)ds ≤

∫ L1({ϕ �=ϕ̃})

0

|∇u|∗(s)ds.(4.16)

Moreover, since σk is a bijective m.p. map, (|∇u| ◦ σ−1
k )∗ ≡ |∇u|∗ for every k ∈ N.

Hence, by (3.2) and (4.13),

∫
{ϕ �=ϕ̃}

|∇u|(σ−1
k (t))dt ≤

∫ L1({ϕ �=ϕ̃})

0

(
|∇u| ◦ σ−1

k

)∗
(s)ds ≤

∫ ε

0

|∇u|∗(s)ds.(4.17)

From (4.15), (4.16), (4.17), and (4.13) one infers that

∣∣∣∣
∫ V

0

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)
ϕ(t)dt

∣∣∣∣
≤
∣∣∣∣
∫ V

0

(
|∇u|(σ−1

k (t)) − |∇u|∗u(t)
)
ϕ̃(t)dt

∣∣∣∣+ 4‖ϕ‖L∞(0,V )

∫ ε

0

|∇u|∗(s)ds.

Owing to the arbitrariness of ε, equation (4.4) follows from the same equation applied
with ϕ replaced by ϕ̃.

A technical, but crucial, result in preparation for Theorem 1.6 is the following
perturbation lemma.

Lemma 4.5. Let f and g be any functions in L1
+(Rn) satisfying

f ≺ g(4.18)
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and

f∗ �≡ g∗.(4.19)

Then there exist numbers s̄ > 0, ε > 0, and δ ∈ (0, 1
2 ) having the following property.

Fix any point x0 ∈ R
n such that |x0| < ε, and set

Ωs̄,ε = {x : ωn|x− x0|n ≥ s̄ and ωn|x|n ≤ s̄ + ε}.

If

σ : Ωs̄,ε → [s̄, s̄ + ε]

is an m.p. map and h is a function from L1
+(Rn) fulfilling∫

Rn

h(x)dx =

∫
Rn

f(x)dx,(4.20)

h(x) =

{
f�(x− x0) if ωn|x− x0|n < s̄,

f�(x) if ωn|x|n > s̄ + ε,
(4.21)

and

f∗(σ(x))(1 − δ) ≤ h(x) ≤ f∗(σ(x))(1 + δ) for Ln-a.e. x ∈ Ωs̄,ε,(4.22)

then

h ≺ g.(4.23)

Proof. By (4.18) and (4.19), there exists ŝ > 0 such that
∫ ŝ

0
f∗(r)dr <

∫ ŝ

0
g∗(r)dr.

Let [â, b̂] be the maximal interval in [0,+∞) containing ŝ and having the property
that ∫ s

0

f∗(r)dr <

∫ s

0

g∗(r)dr for s ∈ (â, b̂).

Then,

∫ â

0

f∗(r)dr =

∫ â

0

g∗(r)dr,

∫ b̂

0

f∗(r)dr =

∫ b̂

0

g∗(r)dr,

and

f∗(â) ≤ g∗(â), f∗(b̂−) ≥ g∗(b̂−).

Here, f∗(b̂−) and g∗(b̂−) stand for the limits of f∗ and g∗ at b̂ from the left. It is not

difficult to see that a subinterval [a, b] of [â, b̂] can be found such that∫ s

0

f∗(r)dr <

∫ s

0

g∗(r)dr for s ∈ [a, b],

and

f∗(a) < g∗(a), f∗(b) > g∗(b).
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Fix any η > 0 fulfilling

f∗(a)(1 + η) < g∗(a), f∗(b)(1 − η) > g∗(b).(4.24)

We shall prove that the conclusion holds with

s̄ = b(4.25)

δ = min

{
η

2
,
1

4
,

1

f∗(b)
min

s∈[a,b]

∫ s

0

(g∗(r) − f∗(r)) dr

}
(4.26)

and any ε ∈ (0, 1) satisfying

f∗(b + ε)

f∗(b)
>

(1 − 2δ)

(1 − δ)
.(4.27)

Notice that, since δ < 1
2 , such an ε certainly exists, due to the continuity of f∗ from

the right. Let h be any function as in the statement. By (4.18) and (4.20),∫
Rn

h(x)dx =

∫
Rn

g(x)dx.

Thus, by (2.2), equation (4.23) will follow if we show that

∫
E

h(x)dx ≤
∫ Ln(E)

0

g∗(s)ds(4.28)

for every measurable subset E of R
n. Given any such E, define

E1 = E ∩G1, E2 = E ∩G2, E3 = E ∩G3,

where

G1 = {x ∈ R
n : ωn|x− x0|n < b}, G2 = Ωb,ε, G3 = {x ∈ R

n : ωn|x|n > b + ε},

and decompose
∫
E
h(x)dx as∫

E

h(x)dx =

∫
E1

h(x)dx +

∫
E2

h(x)dx +

∫
E3

h(x)dx.(4.29)

The first and the third integral on the right-hand of (4.29) can be easily estimated in
terms of f∗ via (4.21). Indeed,

∫
E1

h(x)dx =

∫
E1

f�(x− x0)dx ≤
∫ Ln(E1)

0

f∗(s)ds(4.30)

and ∫
E3

h(x)dx =

∫
E3

f�(x)dx ≤
∫ b+ε+Ln(E3)

b+ε

f∗(s)ds.(4.31)

We now accomplish the proof of (4.28) on distinguishing the following three cases.
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Case I. Ln(E) ≤ a. Since σ is an m.p. map and σ(x) ∈ [b, b + ε] for Ln-a.e.
x ∈ G2, by (4.22)∫

E2

h(x)dx ≤ (1 + δ)

∫
E2

f∗(σ(x))dx ≤ (1 + δ)

∫ b+Ln(E2)

b

f∗(s)ds.(4.32)

Furthermore,

(1 + δ)

∫ b+Ln(E2)

b

f∗(s)ds ≤ (1 + δ)f∗(a)Ln(E2) ≤ g∗(a)Ln(E2)(4.33)

≤
∫ a

a−Ln(E2)

g∗(s)ds,

where the first and the third inequalities lean on the monotonicity of f∗ and g∗,
respectively, and the second inequality is a consequence of (4.24) and (4.26). The
monotonicity of g∗ again and the assumption Ln(E) ≤ a entail that∫ a

a−Ln(E2)

g∗(s)ds ≤
∫ Ln(E)

Ln(E)−Ln(E2)

g∗(s)ds =

∫ Ln(E)

Ln(E1)+Ln(E3)

g∗(s)ds.(4.34)

Combining inequalities (4.29)–(4.34) yields

(4.35)∫
E

h(x)dx ≤
∫ Ln(E1)

0

f∗(s)ds +

∫ b+ε+Ln(E3)

b+ε

f∗(s)ds +

∫ Ln(E)

Ln(E1)+Ln(E3)

g∗(s)ds.

On the other hand,∫ Ln(E1)

0

f∗(s)ds +

∫ b+ε+Ln(E3)

b+ε

f∗(s)ds ≤
∫ Ln(E1)+Ln(E3)

0

f∗(s)ds(4.36)

≤
∫ Ln(E1)+Ln(E3)

0

g∗(s)ds,

where the last inequality holds because of (4.18). Inequality (4.28) follows from (4.35)
and (4.36).

Case II. a < Ln(E) ≤ b. We have

∫
E2

h(x)dx ≤ (1 + δ)

∫ Ln(E2)+b

b

f∗(s)ds ≤
∫ b+Ln(E2)

b

f∗(s)ds + δLn(E2)f
∗(b)

(4.37)

≤
∫ b+Ln(E2)

b

f∗(s)ds + δf∗(b) ≤
∫ b+Ln(E2)

b

f∗(s)ds + min
s∈[a,b]

∫ s

0

(g∗(r) − f∗(r)) dr,

where the first inequality is due to (4.32), the second one holds thanks to the mono-
tonicity of f∗, the third one is a consequence of the fact that Ln(E2) ≤ ε < 1, and the
last one follows from (4.26). Since we are assuming that a < Ln(E) ≤ b, combining
(4.29), (4.30), (4.31), and (4.37) ensures that∫

E

h(x)dx ≤
∫ Ln(E1)

0

f∗(s)ds +

∫ b+ε+Ln(E3)

b+ε

f∗(s)ds(4.38)

+

∫ b+Ln(E3)

b

f∗(s)ds +

∫ Ln(E)

0

(g∗(s) − f∗(s)) ds.
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Since the first three integrals on the right-hand side of (4.38) are extended over disjoint

intervals whose total measure is Ln(E), their sum does not exceed
∫ Ln(E)

0
f∗(s)ds.

Hence, (4.28) follows.
Case III. Ln(E) > b. Assumptions (4.20) and (4.21) and the choice (4.25) ensure

that ∫
G2

h(x)dx =

∫
Rn

f(x)dx−
∫
G1

f�(x− x0)dx−
∫
G3

f�(x)dx

=

∫ +∞

0

f∗(s)ds−
∫ b

0

f∗(s)ds−
∫ +∞

b+ε

f∗(s)ds =

∫ b+ε

b

f∗(s)ds.(4.39)

Now, ∫
G2\E2

h(x)dx ≥ (1 − δ)

∫
G2\E2

f�(σ(x))dx(4.40)

≥ (1 − δ)

∫ b+ε

b+ε−Ln(G2\E2)

f∗(s)ds = (1 − δ)

∫ b+ε

b+Ln(E2)

f∗(s)ds,

where the first inequality is a consequence of (4.22), and the second one holds since
σ(x) ∈ [b, b + ε] for Ln-a.e. x ∈ G2. By (4.27), (4.24), and (4.26),

(1 − δ)

∫ b+ε

b+Ln(E2)

f∗(s)ds ≥ (1 − δ)f∗(b + ε) (ε− Ln(E2))

≥ g∗(b) (ε− Ln(E2)) ≥
∫ b+ε+Ln(E2)

b

g∗(s)ds.(4.41)

From (4.39)–(4.41), and from the assumption Ln(E) > b, one gets∫
E2

h(x)dx ≤
∫ b+ε

b

f∗(s)ds−
∫ b+ε+Ln(E2)

b

g∗(s)ds(4.42)

≤
∫ b+ε

b

f∗(s)ds−
∫ ε+Ln(E)−Ln(E2)

Ln(E)

g∗(s)ds

=

∫ b+ε

b

f∗(s)ds−
∫ ε+Ln(E1)+Ln(E3)

Ln(E)

g∗(s)ds.

Combining (4.29)–(4.31) and (4.42) yields

(4.43)∫
E

h(x)dx ≤
∫ Ln(E1)

0

f∗(s)ds +

∫ b+ε+Ln(E3)

b

f∗(s)ds−
∫ ε+Ln(E1)+Ln(E3)

Ln(E)

g∗(s)ds.

Since Ln(E1) ≤ b and f∗ is nonincreasing,∫ b+ε+Ln(E3)

b

f∗(s)ds ≤
∫ ε+Ln(E1)+Ln(E3)

Ln(E1)

f∗(s)ds.(4.44)

Inequalities (4.43) and (4.44) and assumption (4.18) enable us to conclude that

∫
E

h(x)dx ≤
∫ ε+Ln(E1)+Ln(E3)

0

g∗(s)ds −
∫ ε+Ln(E1)+Ln(E3)

Ln(E)

g∗(s)ds =

∫ Ln(E)

0

g∗(s)ds.
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Hence, (4.28) holds also in this case.
We are now in position to prove Theorem 1.6.
Proof of Theorem 1.6. Assume that Φ is ∗∗-strictly increasing. By Proposition

2.3, Φ is, in particular, ≺-strictly increasing. If u is a minimal rearrangement, i.e.,
satisfies (1.11), then, thanks to the second of inequalities (2.15),

Φ (|∇u|�u) = Φ (|∇u|) < +∞.(4.45)

From (4.45), (2.10), and the ≺-strict monotonicity of Φ, one deduces that

(|∇u|�u)
∗ ≡ |∇u|∗.(4.46)

Let {σk}k∈N and σ be as in Lemma 4.3. Since σk is an m.p. map for every k ∈ N,(
|∇u| ◦ σ−1

k

)∗ ≡ |∇u|∗ for every k ∈ N. Hence, inasmuch as (|∇u|�u)
∗ ≡ (|∇u|∗u)

∗
,

equation (4.46) entails that

(
|∇u| ◦ σ−1

k

)∗ ≡ (|∇u|∗u)
∗

for every k ∈ N.(4.47)

From Lemma 4.3, (4.47), and Lemma 4.1, we infer that

lim
k→+∞

‖|∇u| ◦ σ−1
k − |∇u|∗u‖L1(0,Ln({u>0})) = 0,

whence, by (3.2),

lim
k→+∞

‖|∇u| − |∇u|∗u ◦ σk‖L1({u>0}) = 0.(4.48)

On the other hand, by Lemma 4.2,

lim
k→+∞

‖|∇u| − |∇u|∗u ◦ σk‖L1({u>0}) = ‖|∇u| − |∇u|∗u ◦ σ‖L1({u>0}).(4.49)

Equations (4.48) and (4.49) tell us that

|∇u(x)| = |∇u|∗u(σ(x)) for Ln-a.e. x ∈ {u > 0}.(4.50)

Denote by N the set of those points in {u > 0} where (4.50) does not hold. Thus
Ln(N) = 0. Since both |∇u| and |∇u|∗u ◦ σ are Borel functions, N is a Borel set.
Hence, an application of the coarea formula (2.9) with f = χN entails that

Hn−1 ({u = t} ∩N) = 0 for L1-a.e. t > 0.(4.51)

Now, let {ti}i∈P be the family of levels introduced in the proof of Theorem 1.2. Then,
by (4.6), we again deduce (4.9). Equations (4.50), (4.51), and (4.9) ensure that, for
L1-a.e. t > 0,

|∇u(x)| = |∇u|∗u(μ(t)) for Hn−1-a.e. x ∈ {u = t}.

Hence, (1.13) follows.
Conversely, suppose that any minimal rearrangement of Φ necessarily fulfills

(1.13). We shall prove that Φ is ∗∗-strictly increasing. By Proposition 2.3, this is
equivalent to showing that Φ is simultaneously ∗-strictly increasing and ≺-strictly
increasing.
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The functional Φ has to be ∗-strictly increasing, since otherwise the same function
u constructed in the proof of Theorem 1.4 would satisfy (1.11) but not (1.13).

In order to show that Φ is also ≺-strictly increasing, we argue by contradiction,
and suppose that f, g ∈ L1

+(Rn) exist such that f ≺ g and

Φ(f) = Φ(g) < +∞,(4.52)

but f∗ �≡ g∗. Our aim is to exhibit a function u ∈ W 1
+(Rn) satisfying

|∇u�| ≡ f�(4.53)

and

|∇u| ≺ g(4.54)

but not (1.13). This will lead to a contradiction, since, by (2.15), (4.52)–(4.54), and
the ∗∗-monotonicity of Φ, such a function u is a minimal rearrangement of Φ. As in
the proof of Theorem 1.4, we look for a function u in the form (3.3), where

φ(s) =

∫ Ln(Ω)

s

f∗(r)

nω
1/n
n r1−1/n

dr for s ∈ [0,Ln(Ω)](4.55)

and Ω = {x : ωn|x|n ≤ Ln({g > 0})}. Owing to (3.4) and (4.55), any such function
satisfies (4.53). Thus, our task is to construct σ in such a way that (4.54) holds. The
idea is again to obtain u as a perturbation of u�, namely, to define σ(x) by a slight
modification of ωn|x|n. It is at this stage that Lemma 4.5 comes into play. Actually,
the functions f and g satisfy the assumptions of this lemma. Let s̄, ε, and δ be the
numbers appearing in its statement. Consider any λ > 0 and any sufficiently smooth
function

p : [s̄, s̄ + ε] → [0, λ]

enjoying the following properties: p is strictly decreasing,

p(s̄) = λ, p(s̄ + ε) = 0,(4.56)

and

p′(s) ≥ − δ

n(1 + δ)

s−1+1/n

ω
1/n
n

for s ∈ [s̄, s̄ + ε].(4.57)

In particular, by (4.57), the function s → p(s) + ( s
ωn

)1/n is strictly increasing in
[s̄, s̄ + ε]. For instance, the choice

λ =
δ

1 + δ

(s̄ + ε)1/n − s̄1/n

ω
1/n
n

and p(s) =
δ

1 + δ

(s̄ + ε)1/n − s1/n

ω
1/n
n

is admissible. Now, define x0 ≡ (λ, . . . , 0) ∈ R
n and P (s) ≡ (p(s), 0, . . . , 0) ∈ R

n for
s ∈ [s̄, s̄ + ε], and set

D(s) =

⎧⎪⎨
⎪⎩
{x ∈ R

n : ωn|x− x0|n < s} if s < s̄,

{x ∈ R
n : ωn|x− P (s)|n < s} if s̄ ≤ s ≤ s̄ + ε,

{x ∈ R
n : ωn|x|n < s} if s > s̄ + ε.
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The m.p. map σ associated with the family of balls D = {D(s)}s∈[0,Ln(Ω)] as in (3.12)
obeys

σ(x) =

{
ωn|x− x0|n if ωn|x− x0|n < s̄,

ωn|x|n if ωn|x|n > s̄ + ε,
(4.58)

and it is otherwise implicitly defined by the equation

H(x, σ(x)) = 1,

where H : R
n × (0,∞) → R is given by

H(x, s) =
(ωn

s

)2/n
[
(x1 − p(s))2 +

n∑
i=2

x2
i

]
for (x, s) ∈ R

n × (0,∞).

Such a function σ is clearly Lipschitz continuous. Moreover, one can easily verify from
(4.58) that

|∇σ(x)| = nω1/n
n σ(x)1−1/n for Ln-a.e. x such that σ(x) �∈ [s̄, s̄ + ε],(4.59)

and that, by the implicit function theorem,

|∇σ(x)| =

[(
1

n

s2/n−1

ω
2/n
n

+ (x1 − p(s))p′(s)

)−1(
s

ωn

)1/n
]
s=σ(x)

(4.60)

for Ln-a.e. x such that σ(x) ∈ [s̄, s̄ + ε]. We claim that

1 − δ ≤ |∇σ(x)|
nω

1/n
n σ(x)1−1/n

≤ 1 + δ(4.61)

for Ln-a.e. x such that σ(x) ∈ [s̄, s̄ + ε]. Indeed, since |x1 − p(s)| ≤
(

s
ωn

)1/n
if

s ∈ [s̄, s̄ + ε], by (4.56) and (4.57) we have

1

1 + δ

s2/n−1

nω
2/n
n

≤ s2/n−1

nω
2/n
n

+ (x1 − p(s))p′(s) ≤ 1 + 2δ

1 + δ

s2/n−1

nω
2/n
n

.(4.62)

Inequality (4.61) follows via (4.60) and (4.62). From (3.19) and (4.61) we deduce that

(1 − δ)f∗(σ(x)) ≤ |∇u(x)| ≤ (1 + δ)f∗(σ(x))(4.63)

for Ln-a.e. x such that σ(x) ∈ [s̄, s̄ + ε]. On the other hand, by (4.59) and (3.19),

|∇u(x)| =

{
f�(x− x0) if ωn|x− x0|n < s̄,

f�(x) if ωn|x|n > s̄ + ε.
(4.64)

Finally, by the coarea formula (2.8),∫
Rn

|∇u(x)|dx =

∫
Rn

f∗(σ(x))

nω
1/n
n σ(x)1−1/n

|∇σ(x)|dx

=

∫ ∞

0

f∗(t)

nω
1/n
n t1−1/n

Hn−1(∂∗{σ > t})dt =

∫ ∞

0

f∗(t)dt =

∫
Rn

f(x)dx.(4.65)

Notice that in the third equality we have made use of the fact that {σ > t} is a ball
of measure t for every t > 0. Equation (4.54) follows from (4.63)–(4.65), via Lemma
4.5 applied with h = |∇u|. The proof is complete.
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5. Examples. We conclude by discussing the monotonicity and strict mono-
tonicity properties involved in Theorems 1.2, 1.4, and 1.6 for the functionals consid-
ered in section 1.

We preliminarily present a few general propositions linking ∗∗-monotonicity and
strict monotonicity to customary notions appearing in the literature. The first one
provides sufficient conditions for a functional Φ to be ∗∗-increasing in terms of con-
vexity and lower-semicontinuity.

Proposition 5.1. Assume that the functional Φ : L1
+(Rn) → [0,∞] is convex,

weakly lower-semicontinuous in L1, and ∗-increasing. Then Φ is ∗∗-increasing.
Proof. By [CR, Chapter VI, Lemma 20.2], our assumptions on Φ ensure that a

family {hj}j∈J , with J ⊆ N, of nonnegative functions hj ∈ L∞(Rn) and a family
{rj}j∈J of real numbers rj exist such that

Φ(f) = sup
j∈J

{∫ ∞

0

f∗(s)h∗
j (s)ds + rj

}
for every f ∈ L1

+(Rn).(5.1)

On the other hand, Hardy’s lemma [BS, Chapter 2, Proposition 3.6] entails that if
f∗∗(s) ≤ g∗∗(s) for s > 0, then∫ ∞

0

f∗(s)φ(s)ds ≤
∫ ∞

0

g∗(s)φ(s)ds(5.2)

for every nonincreasing function φ : [0,∞) → [0,∞). Combining (5.1) and (5.2) tells
us that Φ is ∗∗-increasing.

The next result can be found, e.g., in [BS, Chapter 2, Corollary 4.7] (see also
[CR]) and concerns the ∗∗-monotonicity of rearrangement invariant (r.i.) norms,
namely norms in Banach function spaces which are r.i. according to Definition 3.2.

Proposition 5.2. Any r.i. norm is a ∗∗-increasing functional.
The last general property that will be established yields a sufficient condition for

the ∗∗-strict monotonicity of a functional Φ in terms of standard strict convexity and,
more generally, of rotundity. Recall that a functional Φ : L1

+(Rn) → [0,+∞] is called
rotund if

Φ(f) = Φ(g) = Φ

(
f + g

2

)
< +∞ implies that f = g Ln-a.e. in R

n.

Clearly, any strictly convex functional Φ is rotund.
Proposition 5.3. Any rotund and ∗∗-increasing functional Φ : L1

+(Rn) →
[0,+∞] is ∗∗-strictly increasing. In particular, Φ is ∗∗-strictly increasing, provided
that it is ∗∗-increasing and strictly convex.

Proof. Let f and g be functions in L1
+(Rn) such that

f∗∗(s) ≤ g∗∗(s) for s > 0(5.3)

and

Φ(f) = Φ(g) < +∞.(5.4)

By (5.3),

f∗∗(s) ≤ f∗∗(s) + g∗∗(s)

2
≤ g∗∗(s) for s > 0.(5.5)
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Moreover,

f∗∗(s) + g∗∗(s)

2
=

[
f� + g�

2

]∗∗
(s) for s > 0.(5.6)

Since Φ is ∗-increasing, and hence rearrangement invariant, equations (5.4)–(5.6) im-
ply that

Φ(f�) = Φ(f) = Φ

(
f� + g�

2

)
= Φ(g) = Φ(g�).

The rotundity of Φ then forces f� to agree with g�, whence f∗ ≡ g∗.
We now examine the concrete examples provided by ‖ ‖(p,q), ‖ ‖p,q, JA, ‖ ‖A,

and ‖ ‖(A). In order to avoid technical complications, we are not going to consider
the most general possible choices of the exponents p, q and of the Young function A.
However, the cases discussed below cover most situations arising in applications and
interestingly show that even equivalent functionals may enjoy different monotonicity
properties.

The following two propositions deal with ‖ ‖(p,q) and ‖ ‖p,q, respectively, for
p, q ∈ [1,∞].

Proposition 5.4. Let 1 ≤ p, q ≤ +∞. Then
(i) ‖ ‖(p,q) is ∗∗-increasing;
(ii) ‖ ‖(p,q) is ∗-strictly increasing if and only if q < +∞;
(iii) ‖ ‖(p,q) is ∗∗-strictly increasing if and only if q < +∞.
Proof. The facts that ‖ ‖(p,q) is ∗∗-increasing and that, if q < +∞, it is also

∗∗-strictly increasing (and hence ∗-strictly increasing) are obvious consequences of the
definitions.

To verify that ‖ ‖(p,q) is not ∗-strictly increasing (and hence also not ∗∗-strictly
increasing) when q = +∞ and 1 ≤ p ≤ +∞, choose any functions f, g ∈ L1

+(Rn) such
that

f∗(s) =

{
s−1/p if s ∈ (0, 1),

0 otherwise,
g∗(s) =

⎧⎪⎨
⎪⎩
s−1/p if s ∈ (0, 1),

1 if s ∈ [1, 2),

0 otherwise.

(Here, we agree that s−1/p ≡ 1 if p = +∞.) Obviously, f∗(s) ≤ g∗(s) for s > 0, and
f∗ �≡ g∗, but nevertheless, ‖f ‖Lp,∞ = ‖g‖Lp,∞ .

Proposition 5.5. Let 1 ≤ p, q ≤ +∞. Then
(i) ‖ ‖p,q is ∗∗-increasing if and only if q ≤ p;
(ii) ‖ ‖p,q is ∗-strictly increasing if and only if q ≤ p and q < +∞;
(iii) ‖ ‖p,q is ∗∗-strictly increasing if and only if q ≤ p, q < +∞, and p > 1.

Proof. (i) If q ≤ p, then the function s
q
p−1 is nonincreasing. Thus, by Hardy’s

lemma [BS, Chapter 2, Proposition 3.6],∫ ∞

0

f∗(s)qs
q
p−1ds ≤

∫ ∞

0

g∗(s)qs
q
p−1ds

whenever f∗∗(s) ≤ g∗∗(s). Hence, ‖ ‖p,q is ∗∗-increasing. Assume now that q > p.
Fix α ∈ (0, 1), and choose any f, g ∈ L1

+(Rn) such that

g∗(s) =

{
s−α if s ∈ (0, 1),

0 otherwise,
and f∗(s) =

{
1

1−α if s ∈ (0, 1),

0 otherwise.
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Then f ≺ g, but ‖ f ‖p,q>‖ g ‖p,q if α is sufficiently small. This shows that ‖ ‖p,q is
not ∗∗-increasing.

(ii) When q ≤ p and q < +∞, the functional ‖ ‖p,q is obviously ∗-strictly
increasing. If p = q = +∞, then ‖ ‖∞,∞=‖ ‖(∞,∞)=‖ ‖L∞ , and Proposition 5.4
tells us that it is not ∗-strictly increasing.

(iii) Assume that q ≤ p, q < ∞, p > 1. Let f, g ∈ L1
+(Rn) ∩ Lp,q(Rn). Suppose

that

f∗∗(s) ≤ g∗∗(s)(5.7)

and

‖f ‖p,q = ‖g‖p,q .(5.8)

Inequality (5.7) and [ALT, Proposition 2.1] entail that∫ s

0

f∗(t)qdt ≤
∫ s

0

g∗(t)qdt for s > 0.(5.9)

Integration by parts in the integral defining ‖ ‖p,q tells us that (5.8) is equivalent to∫ ∞

0

s
q
p−2

∫ s

0

f∗(t)qdtds =

∫ ∞

0

s
q
p−2

∫ s

0

g∗(t)qdtds.(5.10)

From (5.9) and (5.10) we infer that equality holds in (5.9) for every s > 0, and hence
that f∗(s) = g∗(s) for s > 0. Thus, ‖ ‖p,q is ∗∗-strictly increasing.

If p = q = +∞, then ‖ ‖∞,∞ is not ∗∗-strictly increasing by (ii).
Finally, if p = 1, then also q = 1. Therefore, ‖ ‖1,1=‖ ‖L1 , and the latter is

not ∗∗-strictly increasing as demonstrated by any couple of functions f, g ∈ L1
+(Rn)

satisfying
∫ s

0
f∗(t)dt <

∫ s

0
g∗(t)dt for s ≥ 0 and

∫∞
0

f∗(t)dt =
∫∞
0

g∗(t)dt.
The conclusions of Propositions 5.4–5.5 are summarized in the following table.

1 ≤ p, q ≤ ∞ ∗∗-increasing ∗-strictly increasing ∗∗-strictly increasing

‖ ‖(p,q) any p, q q < ∞ q < ∞
q ≤ p q ≤ p, p > 1

‖ ‖p,q q ≤ p and and
q < ∞ q < ∞

The functional JA and the norms ‖ ‖A and ‖ ‖(A) are the object of the next
propositions. Henceforth, we take into account finite-valued Young functions A, which
are strictly positive in (0,+∞) and satisfy

lim
t→0

A(t)

t
= 0 and lim

t→+∞

A(t)

t
= +∞.

According to usage, Young functions fulfilling these mild additional assumptions will
be called N -functions.

Proposition 5.6. Let A be an N-function. Then
(i) JA is ∗∗-increasing;
(ii) JA is ∗-strictly increasing;
(iii) JA is ∗∗-strictly increasing if and only if A is strictly convex.
Proof. (i) The fact that JA is ∗∗-increasing for every Young function A is proved,

e.g., in [ALT, Corollary 2.1].
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(ii) The ∗-strict monotonicity of JA is a straightforward consequence of the equa-
tion

JA(f) =

∫ ∞

0

A(f∗(s))ds for every f ∈ L1
+(Rn)

and of the strict monotonicity of A.
(iii) If A is strictly convex, then JA is strictly convex, and its ∗∗-strict monotonic-

ity follows from Proposition 5.3.
Conversely, assume that A is not strictly convex. Then there exists an interval

(t0, t1) ⊂ (0,∞) and numbers a > 0 and b ≤ 0 such that

A(t) = at + b if t0 < t < t1.(5.11)

Fixing any C ∈ (t0, t1) and any ε > 0 such that (C − ε, C + ε) ⊂ (t0, t1), choose any
disjoint measurable subsets E1 and E2 of R

n satisfying Ln(E1) = Ln(E2) < +∞.
Define f, g : R

n → [0,+∞) as

f(x) =

{
C if x ∈ E1

⋃
E2,

0 otherwise,
and g(x) =

⎧⎪⎨
⎪⎩
C + ε if x ∈ E1,

C − ε if x ∈ E2,

0 otherwise.

It is easily verified that f ≺ g. Moreover,

JA(f) = 2aCLn(E1) + b = a(C + ε)Ln(E1) + a(C − ε)Ln(E2) + b = JA(g).

Since f∗ �≡ g∗, JA is not ∗∗-strictly monotone.
The notion of Δ2-condition near infinity plays a role in the characterization of the

monotonicity properties of the Luxemburg norm ‖ ‖A. Recall that a Young function
A is said to satisfy the Δ2 condition near infinity if there exist positive constants K
and s0 such that

A(2s) ≤ KA(s) for every s ≥ s0.

We shall also write “A ∈ Δ2 near infinity” to denote that A satisfies the Δ2-condition
near infinity. Notice that, as a consequence of [RR, Chapter VII, Theorem 4], A ∈ Δ2

near infinity if and only if∫
Rn

A

(
f(x)

‖f ‖A

)
dx = 1 for every f ∈ L1

+(Rn) ∩ LA(Rn) \ {0}.(5.12)

Clearly, any power tp, with p ≥ 1, satisfies the Δ2 condition near infinity. Functions
A(t) behaving like tp logα(1 + t) for large t are in Δ2 near infinity as well. On the
other hand, if A(t) has an exponential growth at infinity of type et

α

for some α > 0,
then A �∈ Δ2 near infinity. Other instances of Young functions which are not in Δ2

near infinity are those “oscillating” between different powers.
Proposition 5.7. Let A be an N-function. Then
(i) ‖ ‖A is ∗∗-increasing;
(ii) ‖ ‖A is ∗-strictly increasing if and only if A ∈ Δ2 near infinity;
(iii) ‖ ‖A is ∗∗-strictly increasing if and only if A ∈ Δ2 near infinity and A is

strictly convex.
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Proof. (i) ‖ ‖A is an r.i. norm. Thus, by Proposition 5.2, it is ∗∗-increasing.
(ii) Assume that A ∈ Δ2 near infinity. Suppose, by contradiction, that ‖ ‖A is

not ∗-strictly monotone. Then there exist two functions f and g in L1
+(Rn)∩LA(Rn)

and a measurable set E ⊂ (0,∞) with L1(E) > 0 such that

f∗(s) ≤ g∗(s) for s ≥ 0, f∗(s) < g∗(s) for s ∈ E,(5.13)

and

‖f ‖A = ‖g‖A .(5.14)

We have

1 ≥
∫

Rn

A

(
g(x)

‖g‖A

)
dx =

∫ ∞

0

A

(
g∗(s)

‖g‖A

)
ds >

∫ ∞

0

A

(
f∗(s)

‖g‖A

)
ds(5.15)

=

∫ ∞

0

A

(
f∗(s)

‖f ‖A

)
=

∫
Rn

A

(
f(x)

‖f ‖A

)
dx = 1,

a contradiction. Notice that the second inequality in (5.15) is due to (5.13) and to
the strict monotonicity of A, the second equality to (5.14), and the last equality to
(5.12).

Conversely, suppose that ‖ ‖A is ∗-strictly increasing. By (5.12) again, if A �∈ Δ2

near infinity, then there exists f ∈ L1
+(Rn) ∩ LA(Rn) such that∫

Rn

A

(
f(x)

‖f ‖A

)
dx < 1.(5.16)

Given three positive numbers s0, ε, and δ, consider the function g ∈ L1
+(Rn) defined

by

g(x) =

{
f�(x) if ωn|x|n �∈ [s0, s0 + δ],

f∗(s0) + ε if ωn|x|n ∈ [s0, s0 + δ].

Clearly, f∗(s) ≤ g∗(s) for s > 0, and f∗(s) < g∗(s) if s ∈ [s0, s0 + δ]. Consequently,

‖f ‖A < ‖g‖A.(5.17)

On the other hand,∫
Rn

A

(
g(x)

‖f ‖A

)
dx =

∫
{x:ωn|x|n �∈[s0,s0+δ]}

A

(
f�(x)

‖f ‖A

)
dx(5.18)

+

∫
{x:ωn|x|n∈[s0,s0+δ]}

A

(
f∗(s0) + ε

‖f ‖A

)
dx

≤
∫

Rn

A

(
f(x)

‖f ‖A

)
dx + δA

(
f∗(s0) + ε

‖f ‖A

)
.

Owing to (5.16) and (5.18), we may choose δ > 0 so small that
∫

Rn A
(

g(x)
‖f‖A

)
dx ≤ 1.

Hence, ‖g‖A≤‖f ‖A, thus contradicting (5.17).
(iii) Suppose that A is strictly convex and satisfies the Δ2-condition near infinity.

In order to prove that ‖ ‖A is ∗∗-strictly increasing, observe that if functions f, g ∈
L1

+(Rn) ∩ LA(Rn) existed such that

f∗∗(s) ≤ g∗∗(s) for s > 0, f∗ �≡ g∗, and ‖f ‖A = ‖g‖A,
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then we would have the contradiction

1 =

∫
Rn

A

(
g(x)

‖g‖A

)
dx =

∫
Rn

A

(
g(x)

‖f ‖A

)
dx >

∫
Rn

A

(
f(x)

‖f ‖A

)
dx = 1,

where the first and the last equality hold thanks to (5.12), and the inequality is due
to the fact that, by Proposition 5.6, the functional JA is ∗∗-strictly increasing.

Conversely, if ‖ ‖A is ∗∗-strictly increasing, then it is, in particular, ∗-strictly
increasing, and hence, by (ii), A ∈ Δ2 near infinity. We have to show that A is also
strictly convex. Assume, by contradiction, that this is not the case. Then there exist
s0, t1 ∈ (0,+∞), a > 0, and b ≤ 0 such that (5.11) holds. Choose C, ε, E1, and E2

satisfying the same properties as in the proof of Proposition 5.6, and, in addition,

2aCLn(E1) + b = 1.

Let f and g be defined as in the proof of Proposition 5.6. Then,∫
Rn

A(f(x))dx = aCLn(E1) + aCLn(E2) + b = 2aCLn(E1) + b = 1

and ∫
Rn

A

(
f(x)

λ

)
dx > 1 if λ < 1,

whence ‖f ‖A = 1. On the other hand,∫
Rn

A(g(x))dx = a ((C + ε)Ln(E1) + (C − ε)Ln(E2)) + b = 1,

and consequently, ‖ g ‖A≤ 1. Since f ≺ g, ‖ f ‖A = ‖ g ‖A, and since f∗ �≡ g∗, this
contradicts the ∗∗-strict monotonicity of ‖ ‖A.

The Orlicz norm ‖ ‖(A) is considered in Proposition 5.8 below. Its proof requires
a characterization of ‖ ‖(A), which tells us that, if A is an N -function, then

‖f ‖(A)= min

{
1

k

(
1 +

∫
Rn

A (kf(x)) dx

)
: k > 0

}
(5.19)

for every f ∈ L1
+(Rn) ∩ LA(Rn) (see [RR, Chapter III, Theorem 13]).

Proposition 5.8. Let A be an N -function. Then
(i) ‖ ‖(A) is ∗∗-increasing;
(ii) ‖ ‖(A) is ∗-strictly increasing;
(iii) ‖ ‖(A) is ∗∗-strictly increasing if and only if A is strictly convex.
Proof. (i) ‖ ‖(A) is an r.i. norm, and hence, by Proposition 5.2, it is ∗∗-increasing.
(ii) Let f, g ∈ L1

+(Rn) ∩ LA(Rn) be such that

(5.20)

f∗(s) ≤ g∗(s) for s > 0 and f∗(s) < g∗(s) for s in a set of positive measure.

By (5.19) applied to g, a positive number kg exists such that

‖g‖(A) =
1

kg

(
1 +

∫
Rn

A(kgg(x))dx

)
.(5.21)
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We have

‖g‖(A) =
1

kg

(
1 +

∫
Rn

A(kgg(x))dx

)
=

1

kg

(
1 +

∫ ∞

0

A(kgg
∗(s))ds

)
(5.22)

>
1

kg

(
1 +

∫ ∞

0

A(kgf
∗(s))ds

)
=

1

kg

(
1 +

∫
Rn

A(kgf(x))dx

)
≥ ‖f ‖(A),

where the first inequality holds thanks to (5.20), and the last inequality is a conse-
quence of (5.19). The ∗-strict monotonicity of ‖ ‖(A) follows.

(iii) Assume that A is strictly convex. By Proposition 5.6, the functional JA is
∗∗-strictly increasing. Thus, if f, g ∈ L1

+(Rn)∩LA(Rn) are such that f∗∗(s) ≤ g∗∗(s)
for s > 0 but f∗ �≡ g∗, then∫

Rn

A(kgg(x))dx >

∫
Rn

A(kgf(x))dx,

where kg is the number appearing in (5.21). The same chain as in (5.22) tells us that
‖f‖(A) < ‖g‖(A), and the ∗∗-strict monotonicity of ‖ ‖(A) follows.

Finally, assume that ‖ ‖(A) is ∗∗-strictly increasing, and suppose, by contradic-
tion, that A is not strictly convex. Then there exist an interval (t0, t1) ⊂ (0,+∞) and
a > 0, b ≤ 0 such that (5.11) holds. Let f be any function in L1

+(Rn)
⋂
LA(Rn) such

that f∗ is continuous and strictly decreasing in (0,+∞) and lims→0+ f∗(s) = +∞.
Let kf be a positive number such that

‖f‖(A) =
1

kf

(
1 +

∫
Rn

A(kff(x))dx

)
.(5.23)

Since f∗ is continuous and f∗(0,+∞) = [0,+∞), there exist s̄ > 0 and δ > 0 satisfying

t0 < kff
∗(s) < t1 if s̄− δ ≤ s ≤ s̄ + δ.

Let g be the function in L1
+(Rn) obeying

g∗(s) =

⎧⎪⎨
⎪⎩
f∗(s) if s �∈ (s̄− δ, s̄ + δ),

f∗(s̄− δ) if s̄− δ < s < s0,

f∗(s̄ + δ) if s0 ≤ s < s̄ + δ,

where s0 is chosen in (s̄− δ, s̄ + δ) in such a way that∫ s̄+δ

s̄−δ

f∗(s)ds =

∫ s̄+δ

s̄−δ

g∗(s)ds.(5.24)

Thus,

f ≺ g and f∗ �≡ g∗.(5.25)

On the other hand, by (5.23) and (5.24),

‖f ‖(A) =
1

kf

(
1 +

∫
[0,∞)\(s̄−δ,s̄+δ)

A(kff
∗(s))ds +

∫ s̄+δ

s̄−δ

(akff
∗(s) + b)ds

)
(5.26)

=
1

kf

(
1 +

∫
[0,∞)\(s̄−δ,s̄+δ)

A(kfg
∗(s))ds +

∫ s̄+δ

s̄−δ

(akfg
∗(s) + b)ds

)

=
1

kf

(
1 +

∫
Rn

A(kfg(x))dx

)
≥ ‖g‖(A).
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Equations (5.25) and (5.26) contradict the ∗∗-strict monotonicity of ‖ ‖(A).
For ease of comparison, the results of Propositions 5.6–5.8 are collected in the

following table.

A N-function ∗∗-increasing ∗-strictly increasing ∗∗-strictly increasing

JA any A any A A strictly convex
A ∈ Δ2 near infinity

‖ ‖A any A A ∈ Δ2 near infinity and
A strictly convex

‖ ‖(A) any A any A A strictly convex
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CONTRACTING LORENZ ATTRACTORS THROUGH RESONANT
DOUBLE HOMOCLINIC LOOPS∗

C. A. MORALES† , M. J. PACIFICO† , AND B. SAN MARTIN‡

Abstract. A contracting Lorenz attractor of a three-dimensional vector field is an attractor with
a unique singularity whose eigenvalues are real and satisfy the eigenvalue conditions λss < λs < 0 <
λu and λs + λu < 0. The study of contracting Lorenz attractors started in [A. Rovella, Bol. Soc.
Brasil. Mat. (N.S.), 24 (1993), pp. 233–259]. In this paper we show that certain resonant double
homoclinic loops in dimension three generate contracting Lorenz attractors in a positive Lebesgue
subset of the parameter space. This gives a positive answer to a question posed in [C. Robinson,
SIAM J. Math. Anal., 32 (2000), pp. 119–141].

Key words. contracting Lorenz attractors, resonant double homoclinic loops

AMS subject classifications. 37G10, 37G15, 37G25
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1. Introduction. Inspired by the dynamical features of Lorenz and Henon-like
attractors, Rovella [Rov] studied attractors with a unique singularity exhibiting real
eigenvalues λss, λs, λu satisfying the eigenvalue conditions

λss < λs < 0 < λu and λs + λu < 0.

Today these kinds of attractors are denominated contracting Lorenz attractors, as op-
posed to expanding Lorenz attractors [GW] in which the second eigenvalue condition
is replaced by λs + λu > 0. The result obtained by Rovella was that there are con-
tracting Lorenz attractors which are measure-theoretical persistent in parametrized
families of codimension two. In the meantime Robinson [Rob1], [Rob2] developed a
theory of expanding Lorenz attractors appearing in the unfolding of resonant double
homoclinic loops in dimension three. These works are the motivation for our investiga-
tion. Indeed, we prove that positive Lebesgue measure sets of vector fields exhibiting
contracting Lorenz attractors also appear in the unfolding of certain resonant double
homoclinic loops. This gives a positive answer for a question posed by Robinson in
[Rob1, Remark 5.1].

Let us state our main result in a precise way. Hereafter M will be a closed
3-manifold whose space of Cr-vector fields is denoted by X r(M), r ≥ 1. If X ∈
X r(M), we denote by Xt the flow it generates. An invariant set Λ of X is transitive
if Λ = ωX(q) for some q ∈ Λ, where

ωX(q) =
{
x ∈ M : lim

n→∞
Xtn(q) for some sequence tn → ∞

}
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Fig. 1.1. A butterfly loop for Xη0 .

is the omega-limit set of q. An attracting set of X is a compact invariant set Λ such
that

Λ =
⋂
t>0

Xt(U)

for some compact neighborhood U of Λ. We note that U above can be chosen positively
invariant, i.e., Xt(U) ⊂ Int(U) for all t > 0. An attractor is a transitive attracting set.

Let Q be a singularity of X ∈ X r(M) with real eigenvalues λu, λss, λs satisfying

λss < λs < 0 < λu.

Then Q is hyperbolic, and so there are stable and unstable Cr manifolds Wu(Q,X)
and W s(Q,X) tangent to the eigenvectors associated to the eigenvalues λu and
{λss, λs}, respectively [HPS]. In particular, Wu(Q,X) is one-dimensional and so
Wu(Q,X) \ {Q} consists of two regular orbits Γ+,Γ−. There are also a strong stable
manifold W ss(Q,X) tangent to the eigenvector associated to λss and a central un-
stable manifold W cu(Q,X) tangent to the eigendirection associated to λs, λu. The
latter one is C1, is nonunique, and contains Wu(Q,X). Although W cu(Q,X) is not
unique in general we can define the plane field P = {P (q) : q ∈ Wu(Q,X)} by

P (q) = TqW
cu(Q,X) for q ∈ Wu(Q,X).

We note that the plane field P defined above is continuous if W cu(Q,X) is transverse
to W s(Q,X) along Wu(Q,X).

We say that X has a double homoclinic loop at Q if

Wu(Q,X) ⊂ W s(Q,X)

(equivalently, Γ+ ∪Γ− ⊂ W s(Q,X)). The double homoclinic loop is said to be either
figure-eight or butterfly depending on whether the regular orbits Γ+,Γ− are contained
in the same connected component of W s(Q,X) \ W ss(Q,X) or not. (See Figure
1.1.) All double homoclinic loops considered in this paper will satisfy the generic
assumption

Wu(Q,X) ∩W ss(Q,X) = {Q}.
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Now suppose that X has a double homoclinic loop at Q. If X is Cr with r ≥ 3,
and the eigenvalue condition

λss < 2λs

holds, then W cu(Q,X) is C2. This permits us to define a constant C+(X) by taking
a parametrization q+(t) of Γ+ and defining

C+(X) = exp

(∫ ∞

−∞
Div2(q

+(t))dt

)
,

where Div2(q
+(t)) is the Jacobian of X at t restricted to TΓ+W cu(Q,X). Analogously

we define the constant C−(X) just replacing + by − in the above expression. These
constants represent the change in area within the planes P (q) along the whole length
of Γ±. It happens that C+(X), C−(X) are finite and positive when Q is resonant, i.e.,

λu + λs = 0.

Then, in the resonant case, we can define the constant B(X) by

B(X) =
C+(X) + C−(X)

C+(X)C−(X)
.

Definition 1.1. Define N as the set of vector fields X ∈ X r(M) satisfying the
following six properties:

(A1) X has a singularity Q whose eigenvalues {λu, λs, λss} are real and satisfy

λss < λs < 0 < λu.

(A2) X exhibits a butterfly double homoclinic loop at Q.
(A3) W cu(Q,X) is transverse to W s(Q,X) along Wu(Q,X).
(A4) λss − λs + 2λu < 0 and λss < 2λs.
(A5) B(X) < 1.
(A6) λu + λs = 0.

The implicit function theorem in Banach spaces implies that N is a codimension
three submanifold of X r(M) for all r ≥ 1. Given a set A we denote its closure by
Cl(A). Our main result is the following.

Theorem 1.2. Let {Xη} be a Ck three-parametrized family of Cr-vector fields
transverse to N at Xη0 , k, r ≥ 3. Then, there is a positive Lebesgue measure set L in
the parameter space with η0 ∈ Cl(L) such that Xη has a contracting Lorenz attractor
for all η ∈ L.

The proof of this theorem will be reduced to Theorem 2.2 in section 2 where
one-parameter families of discontinuous maps are studied.

The present paper, together with [MPS], gives a full description of the bifurcation
scenario in the case when the constant B 	= 1: The family generates expanding or
contracting Lorenz attractors depending on whether B > 1 or B < 1. Viana posed
the question of what bifurcation scenario can appear in the case B = 1. Another
problem is to exhibit a polynomial vector field with a contracting Lorenz attractor.
To find such a polynomial we expect to find a parametrized polynomial vector field
family satisfying the hypotheses of Theorem 1.2.

2. One-dimensional reduction. In this section we deduce Theorem 1.2 from
Theorem 2.2 stated below. Hereafter we let Xη be a one-parameter family satisfying



312 C. A. MORALES, M. J. PACIFICO, AND B. SAN MARTIN

the hypotheses of Theorem 1.2. In particular, the parameter η0 satisfies Xη0
∈ N and

then the corresponding vector field Xη0 satisfies assumptions (A1)–(A6).
Throughout the paper we fix the notation

C+ = C+(Xη0
), C− = C−(Xη0

), and B = B(Xη0
).

Let P be the plane field used in the introduction to define the constants C±. Consider
the regular orbits Γ+,Γ− forming Wu(Qη0 , Xη0)\{Qη0}.

Define ν+ = 1 (if P is orientable in Γ+ ∪ {Qη0}) and ν+ = −1 (otherwise).
Analogously we define ν− = 1 (if P is orientable in Γ− ∪ {Qη0

}) and ν− = −1
(otherwise).

By assumption (A2) we can fix a cross-section Σ of Xη0 with the following prop-
erties: Σ is close to Qη0 , Σ is transversal to W s(Qη0), and Σ intersects both Γ+ and
Γ−. There is a neighborhood V of Σ ∩W s(Qη0) in Σ such that the positive orbit of
every point at V \W s(Qη0) intersects Σ for every parameter η near enough η0. This
defines a Poincaré map from V \W s(Qη0) to Σ.

As in [MPS] (see also [Rob2]) we can use (A1)–(A4) and the standard stable
manifold theory [HPS], [Sh] to show the existence of a stable foliation in a small
neighborhood of W s(Qη) varying C2 with the parameter. For convenience, we assume
this neighborhood to be equal to V . Hence we can reduce the problem to a one-
dimensional Poincaré map

fη : V ′ \ {cη} ⊂ [−1, 1] → [−1, 1],

where cη is the projection of W s(Qη0
) ∩ V onto V ′. We assume cη = 0 for every η.

We shall use the notation

a±η = fη(0±) = lim
τ→±0

fη(τ).

As in [MPS] or [Rob2] we have the following.
Lemma 2.1. There is an interval J , 0 ∈ J , such that for every η sufficiently near

to η0, the map fη : J ⊂ [−1, 1] → [−1, 1] has the following form:

fη(τ) =

{
a+
η + ν+C+

η |τ |α(η) + Oη,1(|τ |α(η)) if τ > 0,

a−η − ν−C−
η |τ |α(η) + Oη,2(|τ |α(η)) if τ < 0,

where α(η) = − λs(η)
λu(η) , Oη,i and C±

η are C2, varying C2 with respect to η, and

limx→0
Oη,i(x)

x = 0 uniformly on η.
The proof of Theorem 1.2 is a direct consequence of the result below. We denote

by Int(A) the interior and by Cl(A) the closure of a subset A.
Theorem 2.2. Let {Xη} be a Ck three-parametrized family of Cr-vector fields

transverse to N at Xη0 , k, r ≥ 3. Let fη be the corresponding three-parametrized
family of one-dimensional maps as in Lemma 2.1. For all neighborhoods V of η0 in
the parameter space there is a positive Lebesgue measure set L′ ⊂ V with η0 ∈ Cl(L′)
such that for every η ∈ L′ one has α(η) > 1 and further there is a closed nontrivial
interval Θη with the following properties:

1. 0 ∈ Int(Θη).
2. There is a compact interval W ⊂ J with Θη ⊂ Int(W ) such that Cl(fη(W \

{0})) ⊂ Int(W ) and f2
η (W \ {0}) ⊂ Θη.

3. fη/Θη\{0} is transitive.
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Proof of Theorem 1.2. Let {Xη} be a Ck three-parametrized family of Cr-vector
fields transverse to N at Xη0 , k, r ≥ 3. We have to prove that there is a positive
Lebesgue measure set L in the parameter space with η0 ∈ Cl(L) such that Xη has a
contracting Lorenz attractor for all η ∈ L. For this we proceed as follows.

As hypothesis (A1) is an open condition we can fix a neighborhood V of η0 in the
parameter space such that

λss(η) < λs(η) < 0 < λu(η) ∀ η ∈ V.(2.1)

Since Qη0 in (A1) is hyperbolic we can consider the analytic continuation Qη of Qη0

which we assume to be defined for all η ∈ V.
Now, let fη be the three-parameter family of one-dimensional maps associated to

Xη as in Lemma 2.1. Let L′ be the positive Lebesgue measure set in Theorem 2.2 for
the fixed neighborhood V of η0. Define L = L′. We shall prove that L works. First
we observe that η0 ∈ Cl(L) by Theorem 2.2.

Next we claim that if η ∈ L, then Xη has a contracting Lorenz attractor. Indeed,
let πη be the projection along the invariant stable foliation defining fη. Define

Ση = π−1
η (Θη).

It follows that Ση ⊂ Σ is a cross-section of X. We note that the set⋃
t>0

Xt
η(Ση)

is positively invariant but not closed since there exists a compact part Wη of
Wu(Qη, Xη) which is not contained in it. However, by item 2 of Theorem 2.2, we
can choose a small tubular neighborhood Uη of Wη in a way that

Uη = Uη ∪
( ⋃

t>0

Xt
η(Ση)

)

is now compact and positively invariant. Moreover, by a suitable modification of Uη

via the long tubular flow-box theorem [dMP], we can even assume that ∂Uη is smooth
and the vector field Xη points inward to Uη in ∂Uη.

Now define

Λη =
⋂
t>0

Xt
η(Uη).

Item 3 of Theorem 2.2 implies that Λη is a transitive set of Xη because the foliation
which defines πη is contracting; see also the proof of Theorem 11.3 in [Rob3]. In
particular, Λη is compact invariant. On the other hand, Λ ⊂ Int(Uη) because Xη

points inward to Uη in ∂Uη. It follows that Uη is a compact neighborhood of Λη, and
so Λη is an attractor.

To finish we prove that Λ is a contracting Lorenz attractor. By item 1 of Theorem
2.2 we have

Qη ∈ Λη,

where Qη is the continuation of Qη0 . As η ∈ L ⊂ V we obtain (2.1). Recalling that

α(η) = − λs(η)
λu(η) in Lemma 2.1 we have λs(η)+λu(η) < 0 because α(η) > 1 in Theorem

2.2. As Qη ∈ Λη we conclude that Λη is a contracting Lorenz attractor. This finishes
the proof.
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The rest of the paper is devoted to the proof of Theorem 2.2. It is done in sections
3–8. In section 3 we restate Lemma 2.2 of [MPS] for α > 1 because B < 1 in the
present case. In section 4 we define new parameters (μ(α), ν(α)) and study their limits
as α → 1+. These limits will be preperiodic for the piecewise linear map g defined in
Lemma 4.2. In section 5 we introduce the rescaling map gα (see (5.3)). We prove in
Lemma 5.7 the convergence gα (in the C0, C1, and C2 topologies) to a piecewise linear
map. We finish section 5 by proving in Theorem 5.8 the existence of invariant intervals
for gα(μ, ν, ·) for almost all α → 1+. In section 6 we define the Rovella map and state
the Rovella theorem which asserts that a one-parameter unfolding of a Rovella map
displays a full density set of parameters exhibiting transitive invariant closed intervals.
We refer the reader to the proof of Rovella’s theorem in the original paper [Rov]. In
section 7 we define the map hα and prove that it is a Rovella map (Theorem 7.1).
In addition, in Theorem 7.3, we use gα to define a one-parameter family of maps ϕt

unfolding hα and satisfying the hypothesis of Rovella’s theorem. As a corollary we
obtain that the invariant interval of gα(μ, ν, ·) found in section 5 contains a transitive
invariant interval for a positive Lebesgue measure set of parameters (μ, ν) (Corollary
7.4). We use this interval in section 8 to define the interval Θη required in Theorem
2.2. This complete the proof.

3. Preliminary properties of fη. These are summarized in Lemma 3.1 below.
From now on we assume that η ∈ R

3 belongs to a neighborhood of η0 and Xη satisfies
the hypothesis of Theorem 1.2. In particular, X = Xη0 satisfies (A1)–(A7) in Defini-
tion 1.1. By the transversal hypothesis (A7) we have that the map η �→ (αη, a

+
η , a

−
η )

is a diffeomorphism from a neighborhood of η0 onto a neighborhood of (1, 0, 0). This
allows us to consider the inverse

η = η(α, a+, a−)(3.1)

of this diffeomorphism. In particular,

η0 = η(1, 0, 0)

and also

α(η(α, a+, a−)) = α, a+
η(α,a+,a−) = a+, a−η(α,a+,a−) = a−.(3.2)

The next lemma is analogous to Lemma 2.2 in [MPS]. The difference here is that
in [MPS] we found O ⊂ (0, 1) and here we found O ⊂ (1, 1 + Λ) for some Λ > 0.
The proof follows as in [MPS] except, for instance, in the case where ν+ = ν− = 1,
when the system of equations fη(p(α)) = p(α), fη(q(α)) = q(α), fη(0+) = p(α),
fη(0−) = q(α) can be solved only for α > 1 and not for α < 1 as in [MPS] because
B < 1 here and B > 1 there.

Lemma 3.1. There are Λ > 0, an open full Lebesgue measure set O ⊂ (1, 1 + Λ),
and C1 maps

a+(·), a−(·), p(·), q(·) : O → R

with p(α) < 0 < q(α) such that if

η = η(α, a+(α), a−(α)),

then the following hold:
(a) If ν+ = 1 and ν− = 1, then fη(p(α)) = p(α), fη(q(α)) = q(α), fη(0+) = p(α),

and fη(0−) = q(α).
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Fig. 3.1. Possible dynamics for fη in a neighborhood of 0.

(b) If ν+ = 1 and ν− = −1, then fη(p(α)) = q(α), fη(q(α)) = q(α), and fη(0+) =
fη(0−) = p(α).

(c) If ν+ =−1 and ν− = 1, then fη(p(α)) = p(α), fη(q(α)) = p(α), and fη(0+) =
fη(0−) = q(α).

(d) If ν+ = −1 and ν− = −1, then fη(p(α)) = q(α), fη(q(α)) = p(α), fη(0+) =
q(α), and fη(0−) = p(α).

In any case,

lim
α→1+

p(α)

q(α)
= −C+

C− ,

lim
α→1+

q(α) = 0 = lim
α→1+

p(α), and lim
α→1+

q(α)α−1 = lim
α→1+

|p(α)|α−1 = B.

(See Figure 3.1.)

4. Parameters (μ(α), ν(α)). Consider a parametrized family {Xη} satisfying
the hypotheses of Theorem 1.2. Let O be the set found in Lemma 3.1. Given α ∈ O
let a−(α), a+(α), p(α), and q(α) be the maps in Lemma 3.1. Define

(μ(α), ν(α)) =

(
a+(α)

q(α)
,
a−(α)

q(α)

)
.(4.1)

The proofs of the next two lemmas follow from direct calculations and are left to
the reader.

Lemma 4.1. The limits

μ(1) = lim
α→1+

μ(α) and ν(1) = lim
α→1+

ν(α)

exist and satisfy the following properties:

1. If ν+ = 1 and ν− = 1, then μ(1) = −C+

C− and ν(1) = 1.

2. If ν+ = 1 and ν− = −1, then μ(1) = −C+

C− and ν(1) = −C+

C− .
3. If ν+ = −1 and ν− = 1, then μ(1) = 1 and ν(1) = 1.

4. If ν+ = −1 and ν− = −1, then μ(1) = 1 and ν(1) = −C+

C− .
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Lemma 4.2. Let μ(1), ν(1) be the limits in Lemma 4.1. Let g : R \ {0} → R be
defined by

g(x) =

{
μ(1) + ν+C+Bx if x > 0,
ν(1) + ν−C−Bx if x < 0.

Then, the following properties hold:
1. If ν+ = 1 and ν− = 1, then g(μ(1)) = μ(1) and g(ν(1)) = ν(1).
2. If ν+ = 1 and ν− = −1, then g(μ(1)) = 1 and g(ν(1)) = 1.

3. If ν+ = −1 and ν− = 1, then g(μ(1)) = −C+

C− and g(ν(1)) = −C+

C− .
4. If ν+ = −1 and ν− = −1 g(μ(1)) = ν(1), then and g(ν(1)) = μ(1).

5. The rescaling map gα. Let (μ(α), ν(α)) be defined as in (4.1). Let a±(·)
be the maps in Lemma 3.1. Define in a neighborhood of (a+(α), a−(α)) onto a neigh-
borhood of (μ(α), ν(α)) the map Tα by

Tα(a+, a−) =

(
a+

q(α)
,
a−

q(α)

)
.(5.1)

Define the new parameters (μ, ν) by

(μ, ν) = Tα(a+, a−)(5.2)

and

gα(μ, ν, x) =
1

q(α)
fη(α,q(α)μ,q(α)ν)(q(α)x).(5.3)

For the next lemma we consider p(α) and q(α) as in Lemma 3.1. For all α ∈ O
we define

x(α) =
p(α)

q(α)
and y(α) = 1.(5.4)

Combining Lemmas 3.1 and 4.1 we get the following lemma.
Lemma 5.1. The limits

x(1) = lim
α→1+

x(α) and y(1) = lim
α→1+

y(α)

exist and satisfy

x(1) = −C+

C− and y(1) = 1.

In particular, we have the following:
1. If ν+ = 1 and ν− = 1, then μ(1) = x(1) and ν(1) = y(1).
2. If ν+ = 1 and ν− = −1, then μ(1) = x(1) and ν(1) = x(1).
3. If ν+ = −1 and ν− = 1, then μ(1) = y(1) and ν(1) = y(1).
4. If ν+ = −1 and ν− = −1, then μ(1) = y(1) and ν(1) = x(1).

Replacing (5.4) in (5.3) and using Lemma 3.1 for the respective cases, one gets
the following lemma.

Lemma 5.2. For all α ∈ O consider x(α) and y(α) as in (5.4). Then the following
cases hold:

1. If ν+ = 1 and ν− = 1, then

gα(μ(α), ν(α), x(α)) = x(α) and gα(μ(α), ν(α), y(α)) = y(α).
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2. If ν+ = 1 and ν− = −1, then

gα(μ(α), ν(α), x(α)) = y(α) and gα(μ(α), ν(α), y(α)) = y(α).

3. If ν+ = −1 and ν− = 1, then

gα(μ(α), ν(α), x(α)) = x(α) and gα(μ(α), ν(α), y(α)) = x(α).

4. If ν+ = −1 and ν− = −1, then

gα(μ(α), ν(α), x(α)) = y(α) and gα(μ(α), ν(α), y(α)) = x(α).

The proof of the next lemma is straightforward.
Lemma 5.3. For all α ∈ O consider x(α) and y(α) as in (5.4). Then the following

cases hold:
1. If ν+ = 1 and ν− = 1, then μ(α) = x(α) and ν(α) = y(α).
2. If ν+ = 1 and ν− = −1, then μ(α) = x(α) and ν(α) = x(α).
3. If ν+ = −1 and ν− = 1, then μ(α) = y(α) and ν(α) = y(α).
4. If ν+ = −1 and ν− = −1, then μ(α) = y(α) and ν(α) = x(α).

The next definitions are the same as in [MPS] except that the differentiability is
up to order C2.

Definition 5.4. Let g : R
2 × (R \ {0}) → R. We say that gα → g in the C0

topology in compact sets of R
3 as α → 1+ if

(a) Dom(gα) → R
2 × (R \ {0}) as α → 1+, that is, for all R > 0 there is δ0 > 0

such that if 1 < α < 1 + δ0, then BR(0) ∩ (R2 × (R \ {0}) ⊂ Dom(gα), where
BR(0) is the ball of radius R centered at (0, 0, 0).

(b) for every compact set K ⊂ R
3 and every ε > 0 there is δ0 > 0 such that if

1 < α < 1 + δ0, then

sup
y∈K∩(R2×(R\{0}))

|gα(y) − g(y)| < ε.

Definition 5.5. Let g : R
2 × (R \ {0}) → R. We say that gα → g in the C1

topology in compact sets of R
2 × (R \ {0}) if

(a) Dom(gα) → R
2 × (R \ {0}) as α → 1+, and

(b) for every compact set K ⊂ R
2 × (R \ {0}) and every ε > 0 there is δ0 > 0

such that if 1 < α < 1 + δ0, then

sup
i∈{0,1},y∈K

∣∣Digα(y) −Dig(y)
∣∣ < ε.

Definition 5.6. We say that gα → g in the C2 topology in x-compact sets of
R \ {0} uniformly in compact sets of R

2 if
(a) Dom(gα) → R

2 × (R \ {0}) as α → 1+, and
(b) for every compact K ⊂ R

2 × (R \ {0}) and every ε > 0 there is δ0 > 0 such
that if 1 < α < 1 + δ0, then

sup
i∈{0,1,2},(ρ,x)∈K

∣∣∂i
xgα(ρ, x) − ∂i

xg(ρ, x)
∣∣ < ε.

The following lemma corresponds to Lemma 3.3 in [MPS]. The difference is that
in [MPS] we care about C1 convergence and here we care about C2 convergence.

Lemma 5.7. Let gα be as in (5.3). Define

g(μ, ν, x) =

{
μ + ν+C+Bx if x > 0,
ν + ν−C−Bx if x < 0.

Then the following hold:
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(i) gα → g in the C0 topology in compact sets of R
3 as α → 1+, α ∈ O.

(ii) gα → g in the C1 topology in compact sets of R
2 × (R \ {0}) as α → 1+,

α ∈ O.
(iii) gα → g in the C2 topology in compact sets of R

2 × (R \ {0}) as α → 1+,
α ∈ O.

Moreover, for any c > max{1, C+/C−}, there are constants α0 > 1, 0 < K1 < K2

such that for α ∈ O ∩ (1, α0) we have the following:
(a) [−c, c]2 × ([−c, c] \ {0}) ⊂ Dom(gα).
(b) If (μ, ν, x) ∈ [−c, c]2 × ([−c, c] \ {0}), then

K1 | x |α−1≤
∣∣∣∣ ∂∂xgα(μ, ν;x)

∣∣∣∣ ≤ K2 | x |α−1 .(5.5)

(c) If (μ, ν, x) ∈ [−c, c]2 × ([−c, c] \ {0}), then

K1 | x |α−2≤
∣∣∣∣ ∂2

∂x2
gα(μ, ν;x)

∣∣∣∣ ≤ K2 | x |α−2 .(5.6)

Proof. The proofs of (i), (ii), (a), and (b) are similar to the proofs in [MPS,
Lemma 3.3]. To prove (iii), put k = q(α), where q(α) is given by Lemma 3.1. Recall
k → 0 as α → 1+. Now note that

∂2
xgα(μ, ν, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν+C+
η α(α− 1)kα−1|x|α−2 + O′′

η,1(|kx|α)α2k2α|x|2(α−1)

+ O′
η,1(|kx|α)α(α− 1)|kx|α−2k for x > 0,

− ν−C−
α α(α− 1)kα−1|x|α−2 −O′′

η,2(|kx|α)α2k|kx|2(α−1)

− O′
η,2(|kx|α)α(α− 1)|kx|α−2k for x < 0.

By Lemma 2.1 Oη,i is C2 and so Oη,i(|kx|α) is uniformly bounded in K. By
Lemma 3.1 we have that k2α → 0 and kα−1 → B as α → 1+. Since |x|2α−1 is
uniformly bounded in K we finally obtain that ∂2

xgα(μ, ν, x) → 0 as α → 1+ in
compact sets of R

2 × (R \ {0}). Now note that the expression above for ∂2
xgα(μ, ν, x)

together with the bounds for k, k2α, kα−1 imply (c). All together conclude the proof
of Lemma 5.7.

Now we prove the existence of trapping regions for the maps gα(μ, ν, ·). A trapping
region for gα(μ, ν, .) is a closed interval J such that gα(μ, ν, J) ⊂ Int(J). The following
theorem corresponds to Theorem 4.1 in [MPS] with a similar proof.

Given (μ0, ν0) ∈ R
2, r > 0 and angles 0 ≤ θ1 < θ2 ≤ 2π we define the cone

Cr(μ0, ν0; θ1, θ2) = {(μ, ν) ∈ R
2 :|| (μ0, ν0) − (μ, ν) || <r; Arg((μ0, ν0) − (μ, ν)) ∈

[θ1, θ2]}.
Theorem 5.8. Let O be the open set given in Lemma 3.1 and let (μ(1), ν(1))

be as in Lemma 4.1. For every neighborhood V of (μ(1), ν(1)) there is an open set
O ⊂ R

3 and α1 > 1 such that if α ∈ O ∩ (1, α1), then the set Oα defined by

Oα = {(μ, ν) : (α, μ, ν) ∈ O}

is contained in V . In addition, for every α ∈ O ∩ (1, α1), there is a cone field
Cr(μ(α), ν(α); θ1, θ2) ⊂ Oα such that if (μ, α) ∈ Cr(μ(α), ν(α); θ1, θ2), then there
exists a closed interval

I(α,μ,ν) ⊂ [x(α) − 1, y(α) + 1]
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with 0 ∈ Int(I(α,μ,ν)) such that

gα(μ, ν, x) ⊂ Int(I(α,μ,ν)) ∀x ∈ I(α,μ,ν) \ {0}.

Proof. Let (μ(1), ν(1)) be as in Lemma 4.1. Fix a neighborhood V of (μ(1), ν(1)).
We break the proof into four cases depending on the values of ν+, ν−. We work only
with the case ν+ = 1, ν− = 1 since the remaining cases are similar.

Fix α ∈ O. Let x(α) and y(α) be as in Lemma 5.2. By item 1 of Lemma 5.1 we
have that the limits

x(1) = lim
α→1+

x(α) and y(1) = lim
α→1+

y(α)

exist and satisfy μ(1) = x(1) and ν(1) = y(1). Then, by item 1 of Lemma 4.2, x(1)
and y(1) are fixed points of the map g defined in Lemma 4.2. We have that these
fixed points are hyperbolic because C±B > 1. Then, as gα → g in the C1 topology by
Lemma 5.7(ii), there are δ1 > 0 and a neighborhood V ′ ⊂ V of (μ(1), ν(1)) such that
the continuations x(α, μ, ν) and y(α, μ, ν) of x(1) and y(1) are defined for all (α, μ, ν)
in the product neighborhood (1 − δ1, 1 + δ1) × V ′ with α ∈ O.

Now define {
O = (1 − δ1, 1 + δ1) × V ′,
α1 = 1 + δ1.

As V ′ ⊂ V one has

Oα ⊂ V

for all α ∈ O ∩ (1, α1).
We claim that

x(α) = x(α, μ(α), ν(α)) and y(α) = y(α, μ(α), ν(α))

for all α ∈ O ∩ (1, α1). Indeed, by item 1 of Lemma 5.2 x(α) and y(α) are fixed
points of the one-dimensional map gα(μ(α), ν(α), ·). But x(1) = limα→1+ x(α) and
y(1) = limα→1+ y(α). So, x(α) = x(α, μ(α), ν(α)) and y(α) = y(α, μ(α), ν(α)) since
the continuation is unique. The claim is proved.

For all α ∈ O ∩ (1, α1) we define the C1 map Fα : V ′ → R
2 by

Fα(μ, ν) = (μ− x(α, μ, ν), ν − y(α, μ, ν)).

It follows from Lemmas 5.2 and 5.3 that Fα(μ(α), ν(α)) = (0, 0).
Shrinking α1 if necessary we can repeat the proof of Theorem 4.2 in [MPS] to

obtain

detDFα(μ(α), ν(α)) 	= 0

for all α ∈ O ∩ (1, α1). The proof uses the above claim, the limits in Lemma 3.1, and
α → 0+ instead of α → 0−. From this we obtain that Fα is a diffeomorphism in a
neighborhood Vα of (μ(α), ν(α)) onto a neighborhood of Fα(μ(α), ν(α)) = (0, 0).

Fix α ∈ O ∩ (1, α1). Define Wα = Fα(Vα) ∩ {(x, y), x > 0, y < 0}. As {(x, y), x >
0, y < 0} is a cone and Fα/Vα is a diffeomorphism there are r > 0 and angles
0 ≤ θ1 < θ2 ≤ 2π such that

Cr(μ(α), ν(α); θ1, θ2) ⊂ F−1
α (Wα).
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But F−1
α (Wα) ⊂ Vα ⊂ V ′. Then, Cr(μ(α), ν(α); θ1, θ2) ⊂ V ′ and so

Cr(μ(α), ν(α); θ1, θ2) ⊂ Oα

by the definition of O. This proves the first part of the theorem.
Choose α ∈ O ∩ (1, α1) and (μ, ν) ∈ Cr(μ(α), ν(α); θ1, θ2). Repeating the ar-

gument of the proof of Theorem 4.1-(2) in [MPS] we can find the closed interval
I(α,μ,ν) ⊂ [x(α) − 1, y(α) + 1] with 0 ∈ Int(I(α,μ,ν)) required in the second part. This
finishes the proof.

Corollary 5.9. Let (μ(1), ν(1)), V , O, and α1 be as in Theorem 5.8. Let α ∈
O∩ (1, α1) and Cr(μ(α), ν(α); θ1, θ2) be as in the same theorem. Define Iα = [θ1, θ2].
For each θ ∈ Iα consider the straight line Lα,θ in the (μ, ν)-plane given by

Lα,θ = {(μ, ν) : ν = θ(μ− μ(α)) + ν(α)}.

Then, there is an open segment Iα,θ ⊂ Lα,θ ∩ Oα such that

Iα,θ ⊂ Cr(μ(α), ν(α); θ1, θ2) and (μ(α), ν(α)) ∈ ∂Iα,θ.
6. Rovella’s theorem. The following definition is similar to Definition 5.6.
Definition 6.1. Given a < 0 < b let ϕ : [a, b] \ {0} → [a, b] be a Cr map, r ≥ 0.

A one-parameter family ϕt : [a, b] \ {0} → [a, b] of Cr maps converges to ϕ in the Cr

topology as t → 0+ if for every η > 0 and ε > 0 there is δ > 0 such that

sup
i∈{0,1,...,r},x∈[a,b]\(−η,η)

∣∣∣ϕ(i)
t (x) − ϕ(i)(x)

∣∣∣ < ε ∀ 0 < t < δ.

Let ϕ be a map with domain Dom(ϕ) ⊂ R. A point p ∈ Dom(ϕ) is fixed, pre-
fixed, or periodic with period 2 depending on whether ϕ(p) = p or ϕ(p) ∈ Dom(ϕ) and
ϕ(ϕ(p)) = ϕ(p) or ϕ(p) ∈ Dom(ϕ) and ϕ(ϕ(p)) = p.

Now we define a Rovella map.
Definition 6.2. Let a < 0 < b be fixed. A C1 map ϕ : [a, b] \ {0} → [a, b] is a

Rovella map if it satisfies the following properties.
1. ϕ is monotone in each connected component of [a, b] \ {0}.
2. The lateral limits

ϕ(0+) = lim
x→0+

ϕ(x), ϕ(0−) = lim
x→0−

ϕ(x)

exist.
3. The points a and b are fixed, prefixed, or periodic with period 2 and

ϕ(0+), ϕ(0−) ∈ {a, b}.

4. There is λ > 1 such that for every ε > 0 there is c > 0 such that if x ∈ [a, b],
n ∈ N, and |ϕj(x)| ≥ ε for all integers 0 ≤ j ≤ n− 1, then

|(ϕn)′(x)| ≥ cλn.

As usual we denote ωϕ(x) the omega-limit of the point x with respect to a map
ϕ. The name “Rovella map” above comes from the following result [Rov]. We use the
notation

CH{x, y, z, t}
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for the convex hull of x, y, z, t ∈ R.
Theorem 6.3 (Rovella’s theorem). Let a, a0, b0, b be real numbers such that

a < a0 < 0 < b0 < b.

Let ϕ : [a, b] \ {0} → R be a C2 map such that ϕ([a0, b0] \ {0}) ⊂ [a0, b0] and ϕ/[a0,b0]

is a Rovella map. Let ϕt : [a, b] \ {0} → R, t ∈ (0, d], be a one-parameter family of
C2 maps satisfying the properties below:

1. ϕt → ϕ in the C2 topology as t → 0+.
2. The lateral limits

ϕt(0+) = lim
x→0+

ϕt(x), ϕt(0−) = lim
x→0−

ϕt(x)

exist and satisfy

∂ϕt(0+)

∂t
(0) 	= 0,

∂ϕt(0−)

∂t
(0) 	= 0,

and

ωϕt
(ϕt(0+)) ∪ ωϕt

(ϕt(0−)) ⊂ [a, b].

3. There are α > 1, t0 > 0, and 0 < K1 < K2 such that the following hold:
(a) If x ∈ [a, b] \ {0} and t ∈ (0, t0], then

K1 | x |α−1≤
∣∣∣∣ ∂∂xϕt(x)

∣∣∣∣ ≤ K2 | x |α−1 .(6.1)

(b) If x ∈ [a, b] \ {0} and t ∈ (0, t0], then

K1 | x |α−2≤
∣∣∣∣ ∂2

∂x2
ϕt(x)

∣∣∣∣ ≤ K2 | x |α−2 .(6.2)

Then

lim
δ→0+

m(C ∩ (0, δ])

δ
= 1,

where C is the set of t ∈ (0, d] such that the interval

It = CH{ϕt(0+), ϕt(0−), ϕt(ϕt(0+)), ϕt(ϕt(0−))}

contains 0 in its interior and is ϕt-invariant and the map ϕt/It is transitive. Moreover
there is a compact interval Wt with It ⊂ Int(Wt) such that Cl(ϕt(Wt\{0})) ⊂ Int(Wt)
and ϕ2

t (Wt \ {0}) ⊂ It.

7. The map hα. Let Λ > 0 and O ⊂ (1, 1 + Λ) be as in Lemma 3.1. Let p(α)
and q(α) be as in Lemma 3.1. If α ∈ O, we consider x(α) and y(α) as in (5.4),
namely,

x(α) =
p(α)

q(α)
and y(α) = 1.
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Since p < 0 < q by Lemma 3.1 we have x(α) < 0 < y(α). Let x(1) and y(1) be the
limits in Lemma 5.1. Define

c1 = 1 + max{−x(1), y(1)}.

By Lemma 5.1 one has

c1 > max{1, C+/C−}.

Then, by Lemma 5.7, we can fix α0 > 1, 0 < K1 < K2 such that the conclusions
(a)–(c) of that lemma hold (with c = c1).

Given α ∈ O ∩ (1, α0) let (μ(α), ν(α)) and gα(μ, ν, x) be as in (4.1) and (5.3),
respectively.

Define

hα(x) = gα(μ(α), ν(α), x).

The first result of this section is the following.
Theorem 7.1. There is α∗ > 1 such that if 1 < α < α∗, then
1. hα([x(α), y(α)] \ {0}) ⊂ [x(α), y(α)], and
2. hα/[x(α),y(α)]\{0} is a Rovella map.

Proof. We shall work only with the cases ν+ = 1 and ν− = 1; the remaining cases
are similar.

Recall the definition of x(α) and y(α) = 1 in the beginning of this section. Let
1 < α < α0 and δ > 0 be small (less than 1/2 · min{−x(1), 1}, say). Define the
numbers

M+
δ (α) = sup

{∣∣∣∣ ∂∂xgα(μ(α), ν(α), x)

∣∣∣∣ : |x− y(α)| ≤ δ

}
,

m+
δ (α) = inf

{∣∣∣∣ ∂∂xgα(μ(α), ν(α), x)

∣∣∣∣ : |x− y(α)| ≤ δ

}
,

M−
δ (α) = sup

{∣∣∣∣ ∂∂xgα(μ(α), ν(α), x)

∣∣∣∣ : |x− x(α)| ≤ δ

}
,

and

m−
δ (α) = inf

{∣∣∣∣ ∂∂xgα(μ(α), ν(α), x)

∣∣∣∣ : |x− x(α)| ≤ δ

}
.

Let g be as in Lemma 5.7. Hence g is piecewise linear with slope C−B (for x < 0)
and C+B (for x > 0). By Lemma 5.7(ii) we have that gα → g in the C1 topology in
compact sets of R

2 × (R \ {0}) as α → 1, α ∈ O. This implies

lim
(α,δ)→(1+,0)

M−
δ (α) = lim

(α,δ)→(1+,0)
m−

δ (α) = C−B

and

lim
(α,δ)→(1+,0)

M+
δ (α) = lim

(α,δ)→(1+,0)
m+

δ (α) = C+B

because of the above-mentioned slopes of g. These limits imply

lim
(α,δ)→(1+,0)

m−
δ (α)(

M−
δ (α)

)α−1
α

= C−B
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and

lim
(α,δ)→(1+,0)

m+
δ (α)(

M+
δ (α)

)α−1
α

= C+B

because C±B > 0.
Define

λ0 = min{C+B,C−B}.

The definition of B = B(Xη0) implies λ0 > 1. Then we can fix 1 < λ1 < λ0. The last
limits imply that there are δ1 > 0 and 1 < α1 < α0 such that

min

⎧⎨
⎩ m−

δ (α)(
M−

δ (α)
)α−1

α

,
m+

δ (α)(
M+

δ (α)
)α−1

α

⎫⎬
⎭ > λ1(7.1)

for all 0 < δ < δ1 and 1 < α < α1.
For fixed ε > 0, δ0 > 0, and α > 1 we define

l−ε (x, α) = min{l ≥ 1 : |hl
α(x) − x(α)| ≥ δ0, x ∈ (0, ε)}

and

l+ε (x, α) = min{l ≥ 1 : |hl
α(x) − y(α)| ≥ δ0, x ∈ (0, ε)}.

Because hα(0+) = x(α), hα(0−) = y(α), hα(x(α)) = x(α), and hα(y(α)) = y(α) one
gets

lim
(ε,α)→(0+,1+)

inf
x∈(0,ε]

{l−ε (x, α)} = ∞ and lim
(ε,α)→(0−,1+)

inf
x∈[−ε,0)

{l+ε (x, α)} = ∞.

Fix 1 < λ2 < λ1 and define

N =
log(K1

λ1
) +

(
α−1
α

)
· log

(
α·δ0
K2

)
− log λ2

.

By the above limits we can fix ε0 > 0 and 1 < α2 < α1 such that

l−ε (x, α) > N ∀ (ε, x, α) ∈ (0, ε0] × (0, ε] × (1, α2](7.2)

and

l+ε (x, α) > N ∀ (ε, x, α) ∈ (0, ε0] × [−ε, 0) × (1, α2].(7.3)

Hereafter we fix 0 < δ0 < δ1 and use the notation

m± = m±
δ0

(α), M± = M±
δ0

(α), l±(x) = l±ε (x, α)

for the sake of simplicity.
By Lemma 5.7(ii) we have that gα → g in the C1 topology as α → 1+. More

precisely, the following property holds (see Definition 5.5): For every compact set
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K ⊂ R
2 × (R \ {0}) and every ε > 0 there is 1 < α3 < α2 such that if 1 < α < α3,

then

sup
i∈{0,1},y∈K

∣∣Digα(y) −Dig(y)
∣∣ < ε.

Applying this property to ε = ε0 and K = [−c1, c1]
2 × ([−c1, c1] \ (−ε0, ε0)) we

obtain ∣∣∣∣ ∂∂xgα(μ(α), ν(α), x)

∣∣∣∣ ≥ λ1 ∀|x| ≥ ε0.(7.4)

(For this we use (μ(α), ν(α), x) ∈ K (as α → 1+), λ1 < λ0, and λ0 is about the slope
of the piecewise linear maps x → g(μ(α), ν(α), x).)

Define

λ =
λ1

λ2
.

Then, λ > 1. We use λ in the following lemma.
Lemma 7.2. Let 0 < ε < ε0 and 1 < α < α3 be fixed. If ε ≤ x < ε0, then

|(hl−(x)
α )′(x)| ≥ λl−(x)

and if −ε0 < x ≤ −ε, then

|(hl+(x)
α )′(x)| ≥ λl+(x).

Proof. We prove only the first inequality since the second one is analogous. Fix
0 < ε < ε0, 1 < α < α3, and ε ≤ x < ε0. The chain rule and the definitions of m−

and hα imply

|(hl−(x)−1
α )′(hα(x))| = Π

l−(x)−1
i=1

∣∣∣∣ ∂∂xgα(μ(α), ν(α), hi
α(x))

∣∣∣∣ ≥ (m−)l
−(x)−1.

As above we have (μ(α), ν(α), x) ∈ [−c1, c1]
2 × ([−c1, c1] \ {0}) because α → 1+. The

chain rule, (5.5) in Lemma 5.7(b), and the definitions of m− and l−(x) imply

|(hl−(x)
α )′(x)| = |h′

α(x)| · |(hl−(x)−1
α )′(hα(x))| ≥ K1 · |x|α−1 · (m−)l

−(x)−1.(7.5)

On the other hand, Lemma 3.1(a) and the definition of gα imply

hα(x(α)) = gα(μ(α), ν(α), x(α)) = x(α).

So, |hl−(x)−1
α (x(α)) − h

l−(x)−1
α (hα(x))| = |x(α) − h

l−(x)
α (x)|. Then, the definition of

l−(x) implies

|hl−(x)−1
α (x(α)) − hl−(x)−1

α (hα(x))| ≥ δ0.

Consequently, for some intermediate point ξ in between x(α) and hα(x) we obtain

|x(α) − hl−(x)
α (x)| = |hl−(x)−1

α (x(α)) − hl−(x)−1
α (hα(x))|

= |(hl−(x)−1
α )′(ξ)| · |x(α) − hα(x)|.
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However, |(hl−(x)−1
α )′(ξ)| ≤ (M−)l

−(x)−1 because |x(α) − ξ| ≤ |x(α) − hα(x)| and so

|x(α) − hi
α(ξ)| ≤ |x(α) − hi+1

α (x)| ≤ δ0

for all 0 ≤ i ≤ l−(x) − 2 because hα is monotone in [x(α), 0). Then,

|(hl−(x)−1
α )′(ξ)| · |x(α) − hα(x)| ≤ (M−)l

−(x)−1 · |x(α) − hα(x)|

and so

|x(α) − hl−(x)
α (x)| ≤ (M−)l

−(x)−1 · |x(α) − hα(x)|.

As |x(α) − h
l−(x)
α (x)| ≥ δ0 by the definition of l−(x) we obtain

|x(α) − hα(x)| · (M−)l
−(x)−1 ≥ δ0

and so

|x(α) − hα(x)| ≥ (M−)1−l−(x) · δ0.

On the other hand,

|hα(x) − x(α)| =

∣∣∣∣
∫ x

0

h′
α(τ)dτ

∣∣∣∣ ≤
∫ x

0

K2 · τα−1dτ =
K2

α
|x|α,

where K2 comes from inequality (5.5) in Lemma 5.7(b). With this we obtain

|x|α−1 ≥
(
α · δ0
K2

· (M−)1−l−(x)

)α−1
α

.(7.6)

Combining (7.5) and (7.6) we obtain

|(hl−(x)
α )′(x)| ≥ K1 ·

(
α · δ0
K2

)α−1
α

·
(

m−

(M−)
α−1
α

)l−(x)−1

≥ K1 ·
(
α · δ0
K2

)α−1
α

· λl−(x)−1
1

because x ∈ (0, ε0) and inequality (7.1) holds. Finally using inequality (7.2) we obtain

|(hl−(x)
α )′(x)| ≥ λl−(x).

The proof follows.
Choose α3 > 1 as in Lemma 7.2 and define

α∗ = α3.

We shall prove that α∗ satisfies 1 and 2 of Theorem 7.1. For this we fix 1 < α < α∗.
Proof of item 1 of Theorem 7.1. By item 1 of Lemma 5.2 we have

hα(x(α)) = x(α) and hα(y(α)) = y(α).

By (5.3) we have

hα(0+) = gα(μ(α), ν(α), 0+) =
fη(0+)

q(α)
=

a+(α)

q(α)
= μ(α)
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and analogously hα(0−) = ν(α). Moreover, hα is monotone in [x(α), 0) and (0, y(α)]
by Lemma 2.1 and the definition of gα(μ, ν, x). Then the result follows.

Proof of item 2 of Theorem 7.1. Items 1 and 2 of Definition 6.2 follow from the
previous calculations. Item 3 of Definition 6.2 follows from item 1 of Lemma 5.2 and
item 1 of Lemma 5.3.

Now we prove item 4 of Definition 6.2. Recall λ = λ1

λ2
(thus λ > 1) and 1 < α < α∗.

Fix ε > 0. We have to find c > 0 such that if for all x ∈ [x(α), y(α)], n ∈ N and
|hj

α(x)| ≥ ε for all integers 0 ≤ j ≤ n− 1, then

|(hn
α)′(x)| ≥ cλn.(7.7)

If ε ≥ ε0, then (7.7) holds by inequality (7.4) choosing c = 1. Then, we can assume

0 < ε < ε0.

For simplicity we write h instead of hα.
Define

c = inf
|y|≥ε

{|h′(y)|}.

Then, c > 0 because of the choice of K1.
Next we break the orbit {x, h(x), . . . , hn−1(x)} of x in the following way:

0 ≤ r0 < r1 < · · · < rs ≤ n− 1,

such that

ε ≤ |hri(x)| < ε0

for all 0 ≤ i ≤ s. For all i we define the integers

li = l∗(hri(x)),

where ∗ is + or − depending on the signal of hri(x). The chain rule implies

|(hn)′(x)| = |(hr0)′(x)| · (Πs
i=1|(hri)′(hri−1(x))|) · |(hn−rs)′(hrs(x))|.(7.8)

This product consists of three terms to be bounded in what follows. The first one is
bounded by

|(hr0)′(x)| > λr0(7.9)

because of (7.4) since |hj(x)| ≥ ε0 for 0 ≤ j < r0. The last one is bounded by

|(hn−rs)′(hrs(x))| ≥ c · λn−rs−1(7.10)

by the definition of c because |hrs(x)| ≥ ε and |hj(x)| ≥ ε0 for rs + 1 ≤ j < n.
Next we bound the middle term Πs

i=1|(hri)′(hri−1(x))|. For all 1 ≤ i ≤ s we have
that

|(hri)′(hri−1(x))| = |(hli−1)′(hri−1(x))| · |(hri−li−1)′(hri+li(x))|.

On the other hand

|(hli−1)′(hri−1(x))| ≥ λli−1
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by Lemma 7.2 applied to hri−1(x) (instead of x). And also

|(hri−li−1)′(hri+li(x))| ≥ λri+li−1

by inequality (7.2) because |hj(x)| ≥ ε0 for all ri−1 + 1 ≤ j < ri. All together yield

|(hri)′(hri−1(x))| ≥ λli−1 · λri+li−1 = λri .(7.11)

Replacing (7.11), (7.10), and (7.9) in (7.8) we obtain (7.7). This finishes the proof of
Theorem 7.1.

The second result of this section is the following.
Theorem 7.3. Let (μ(1), ν(1)), V , O, α1, and O be as in Corollary 5.9. Fix

α ∈ O ∩ (1, α1) and consider Iα as in that corollary. For each θ ∈ Iα consider the
open segment Iα,θ ⊂ Lα,θ ∩ Oα as in that corollary. Let s : [0, dα,θ] ⊂ R → Iα,θ be
the parametrization of Iα,θ given by

s(t) = t · vθ + (μ(α), ν(α)),

where vθ = (cos(θ), sin(θ)) is the unitary vector with argument θ. Define the numbers

a = −3 max{1, C+/C−}, b = 3 max{1, C+/C−},

and the map ϕ : [a, b] \ {0} → R by

ϕ(x) = gα(μ(α), ν(α), x).

There is α∗∗ > 1 such that if 1 < α < α∗∗ and θ ∈ Iα \ {0, π/2, π, 3π/2, 2π}, then ϕ
and the family ϕt : [a, b] \ {0} → R, t ∈ (0, dα,θ] defined by

ϕt(x) = gα(s(t), x)

satisfy the hypotheses (1)–(3) of Rovella’s theorem (Theorem 6.3).
Proof. Let x(α) and y(α) be as in (5.4), let α∗ > 1 be as in Theorem 7.1, and

define

a0 = x(α) and b0 = y(α).

The definition of x(α), y(α) and Lemma 5.1 imply

lim
α→1+

x(α) = −C+/C−,

and obviously

lim
α→1+

y(α) = 1.

So, there is 1 < α∗∗ < α∗ close to 1 such that if 1 < α < α∗∗, then

a < x(α) − 1 < a0 < 0 < b0 < y(α) + 1 < b.(7.12)

Let us prove that such an α∗∗ works. Hereafter we fix

1 < α < α∗∗ and θ ∈ Iα \ {0, π/2, π, 3π/2, 2π}.

By Theorem 7.1 we have ϕ([a0, b0] \ {0}) ⊂ [a0, b0] and ϕ/[a0,b0] is a Rovella map.
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Let us verify hypothesis 1 of Rovella’s theorem. By (5.3) one has

ϕt(x) = gα(s(t), x) =
1

q(α)
· fη(α,q(α)·s(t))(q(α) · x).

As t → 0+ we have

ϕt(x) → 1

q(α)
· fη(α,q(α)·s(0))(q(α) · x) = ϕ(x)

because of (5.3) and the definition of ϕ. The C2 convergence ϕt → ϕ required in
hypothesis 1 follows from the C2 variation mentioned in Lemma 2.1.

Next we verify hypothesis 2 of Rovella’s theorem. Recalling the definition of vθ
we have

s(t) = (μt(α), νt(α)),

where {
μt(α) = t · cos θ + μ(α),
νt(α) = t · sin θ + μ(α).

By Lemma 2.1 we have

fη(0+) = a+
η and fη(0−) = a−η

for all η, where a±η are the leading terms in the Taylor expansion of fη in Lemma 2.1.
Then,

fη(α,q(α)·s(t))(0+) = a+
η(α,q(α)·s(t)) = q(α) · μt(α)

by (3.2) applied to a+ = q(α) · μt(α) and a− = q(α) · νt(α). Analogously

fη(α,q(α)·s(t))(0−) = q(α) · νt(α).

Thus,

lim
x→0+

ϕt(x) = lim
x→0+

gα(s(t), x) = lim
x→0+

1

q(α)
· fη(α,q(α)·s(t))(q(α) · x)

=
1

q(α)
· fη(α,q(α)·s(t))(0+) =

1

q(α)
· q(α) · μt(α) = μt(α),

and so,

ϕt(0+) = μt(α).

Analogously

ϕt(0−) = νt(α).

This proves the existence of the lateral limits in hypothesis 2. These equalities also
imply

∂ϕt(0+)

∂t
(0) =

∂μt(α)

∂t
(0) =

∂(t · cos θ + μ(α))

∂t
(0) = cos θ 	= 0
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because θ 	= π/2, 3π/2. Analogously

∂ϕt(0+)

∂t
(0) 	= 0

since θ 	= 0, π (for in such cases sin θ 	= 0). These facts together imply

∂ϕt(0+)

∂t
(0) 	= 0,

∂ϕt(0−)

∂t
(0) 	= 0.

To see

ωϕt
(ϕt(0+)) ∪ ωϕt(ϕt(0−)) ⊂ [a, b]

we proceed as follows. By Corollary 5.9 we have Iα,θ ⊂ Cr(s(t); θ1, θ2). In particular,
s(t) ∈ Cr(s(t); θ1, θ2) for all t ∈ (0, dα,θ], and so, by the second part of Theorem 5.8,
there is a closed interval I(α,s(t)) ⊂ [x(α)−1, y(α)+1] with 0 ∈ Int(I(α,s(t))) such that

ϕt(x) = gα(s(t), x) ⊂ Int(I(α,s(t))) ∀x ∈ I(α,s(t)).

This already implies ωϕt
(ϕt(0+)) ∪ ωϕt(ϕt(0−)) ⊂ I(α,s(t)) and then we are done

because (7.12) implies [x(α) − 1, y(α) + 1] ⊂ [a, b].
To finish we prove hypothesis 3 of Rovella’s theorem. Shrinking α∗∗ if necessary

we can assume 1 < α∗∗ < α0, where α0 comes from Lemma 5.7. Choosing c = −a (or
b) we have c > max{1, C+/C−}. Then, the result follows from (a), inequality (5.5)
in (b), and inequality (5.6) in (c) of Lemma 5.7.

We finish this section with the following corollary. Recall that CH{x, y, z, t}
denote the convex hull of x, y, z, t ∈ R.

Corollary 7.4. Let O be as in Lemma 3.1 and (μ(1), ν(1)) be the limit in
Lemma 4.1. Let V be a neighborhood of (μ(1), ν(1)). Let (μ(α), ν(α)) be as in (4.1).
There is α∗∗∗ > 1 such that for all α ∈ O ∩ (1, α∗∗∗) there is a positive Lebesgue
measure subset Ẽα ⊂ V with (μ(α), ν(α)) ∈ Cl(Ẽα) such that the following property
holds: If (μ, ν) ∈ Ẽα, then the interval

I = CH{gα(μ, ν, 0+), gα(μ, ν, 0−), gα(μ, ν, gα(μ, ν, 0+)), gα(μ, ν, gα(μ, ν, 0−))}

contains 0 in its interior and is gα(μ, ν, ·)-invariant and the map gα(μ, ν, ·)/I is
transitive. Moreover there is a compact interval W with Int(W ) ⊃ I such that
Cl(gα(W \ {0})) ⊂ W and g2

α(W \ {0}) ⊂ I.
Proof. Let O as in Theorem 5.8 and α∗∗ > 1 be as in Theorem 7.3.
We claim that α∗∗∗ = α∗∗ works. Indeed, by Theorem 7.3, for each θ ∈ Iα \

{o, π/2, π, 3π/2, 2π} the family ϕt : [a, b] \ {0} → R, t ∈ (0, dα,θ], defined by

ϕt(x) = gα(s(t), x)

satisfies (1)–(3) of Rovella’s theorem. So, for those θ’s we have

lim
δ→0+

m(C(α, θ) ∩ [0, δ])

δ
= 1,(7.13)

where C(α, θ) is the set of t ∈ (0, dα,θ] such that the interval

It = CH{ϕt(0+), ϕt(0−), ϕt(ϕt(0+)), ϕt(ϕt(0−))}
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contains 0 in its interior and is ϕt-invariant and the map ϕt/It is transitive. Moreover
there is a compact interval Wt with It ⊂ Int(Wt) such that Cl(ϕt(Wt\{0})) ⊂ Int(Wt)
and ϕ2

t (Wt \ {0}) ⊂ It. Observe that 0 ∈ Cl(C(α, θ)) because of (7.13). Again by
(7.13) we have that C(α, θ) has positive Lebesgue measure in R.

Define

Ẽα,θ = s(C(α, θ)).

Then, Ẽα,θ has positive Lebesgue measure in Iα,θ.
Let us prove Ẽα,θ ⊂ V . Indeed, Corollary 5.9 implies Iα,θ ⊂ Cr(μ(α), ν(α); θ1, θ2)

where the last cone comes from Theorem 5.8. By the first part of this theorem we
have Cr(μ(α), ν(α); θ1, θ2) ⊂ Oα which in turn is contained in V . This proves the
result.

Now define

Ẽα =
⋃

θ∈Iα\{0,π/2,π,3π/2,2π}
Ẽα,θ.

As Ẽα,θ ⊂ V for all α, θ we have

Ẽα ⊂ V.

We also have that Ẽα has positive Lebesgue measure in R
2 by Fubini’s theorem since

Ẽα,θ has positive Lebesgue measure in R. We have (μ(α), ν(α)) ∈ Cl(Ẽα,θ) because
of 0 ∈ Cl(C(α, θ)). Now, the proof follows from the definition of ϕt.

8. Proof of Theorem 2.2. Let {Xη} be a Ck three-parametrized family of Cr-
vector fields transverse at Xη0 to the submanifold N given in Definition 1.1, k, r ≥ 3.
Hence Xη0 satisfies (A1)–(A6) in that definition. Let fη : J ⊂ [−1, 1] → [−1, 1] be the
corresponding three-parametrized family of one-dimensional maps as in Lemma 2.1.
Fix a neighborhood V of η0 in the parameter space. We have to prove that there is a
positive Lebesgue measure set L′ ⊂ V with η0 ∈ Cl(L′) such that for every η ∈ L′ one
has α(η) > 1 and further there is a closed nontrivial interval Θη with the following
properties:

1. 0 ∈ Int(Θη).
2. There is a compact interval W ⊂ J with Θη ⊂ Int(W ) such that Cl(fη(W \

{0})) ⊂ Int(W ) and f2
η (W \ {0}) ⊂ Θη.

3. fη/Θη\{0} is transitive.
We proceed as follows. Let η be the diffeomorphism in (3.1). Fix Λ > 0 and

O ⊂ (1, 1 + Λ) as in Lemma 3.1. Let (μ(1), ν(1)) be the limits in Lemma 4.1. Let Tα

be as in (5.1). Then, the inverse of Tα is given by

T−1
α (μ, ν) = q(α) · (μ, ν).(8.1)

For all neighborhoods V of (μ(1), ν(1)) and β > 1 we define

Ṽ (β) =
⋃

α∈O∩(1,β)

{α} × T−1
α (V ).

Lemma 3.1 implies limα→1+ q(α) = 0. Thus, there are V and β > 1 such that

η(Ṽ (β)) ⊂ V.



LORENZ ATTRACTORS AND HOMOCLINIC LOOPS 331

In what follows we fix such V and β.
Let α∗∗∗ > 1 be as in Corollary 7.4 for such a V . Shrinking α∗∗∗ if necessary we

can assume

1 < α∗∗∗ < β.

For all α ∈ O ∩ (1, α∗∗∗) we define

Eα = (Tα)−1(Ẽα),

where Ẽα ⊂ V comes from Corollary 7.4. It follows that

Eα ⊂ T−1
α (V ).

Since Tα is linear (and Ẽα has positive Lebesgue measure by Corollary 7.4) we have
that Eα has positive Lebesgue measure for all α ∈ O ∩ (1, α∗∗∗).

Define

L′ = {η(α, a+, a−) : α ∈ O ∩ (1, α∗∗∗), (a
+, a−) ∈ Eα}.

As Eα ⊂ T−1
α (V ), the definition of Ṽ (β) implies L′ ⊂ η(Ṽ (β)), and so,

L′ ⊂ V.

We have that L′ has positive Lebesgue measure because Eα has positive Lebesgue
measure (for all α ∈ O ∩ (1, α∗∗∗)) and O has full Lebesgue measure in (1, 1 + Λ).

Lemma 8.1. If η0 is the parameter in Theorem 1.2, then η0 ∈ Cl(L).
Proof. Note that η0 = η(1, 0, 0), where η is the map given in (3.1). Pick a sequence

αn ∈ O converging to 1+. It follows that αn ∈ O ∩ (1, α∗∗∗) for n large.
We have Eαn

= T−1
αn

(Ẽαn) by definition.
Recalling (8.1) and (4.1) we get

(μ(α), ν(α)) =

(
a+(α)

q(α)
,
a−(α)

q(α)

)
;

see Lemma 3.1. Then, because (μ(αn), ν(αn)) ∈ Cl(Ẽαn
) by Corollary 7.4 we have

(a+(αn), a−(αn)) ∈ Cl(Eαn
)

by the definition of Eα. Then, there is a sequence (a+
n , a

−
n ) ∈ Eαn arbitrarily close to

(a+(αn), a−(αn)).
On the other hand,

(a+(αn), a−(αn)) → (0, 0)

as n → ∞ because q(αn) → 0 (see Lemma 3.1) and (8.1) (note that the limit
(μ(αn), ν(αn)) → (μ(1), ν(1)) by Lemma 4.1). Then,

(a+
n , a

−
n ) → (0, 0)

and so

η(αn, a
+
n , a

−
n ) → η(1, 0, 0) = η0.
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Then the result follows since η(αn, a
+
n , a

−
n ) ∈ L because (a+

n , a
−
n ) ∈ Eαn

. This proves
the lemma.

Define

Θη = CH{fη(a+), fη(a
−), a+, a−}.

Recalling (5.3) one has

gα(μ, ν, x) =
1

q(α)
fη(q(α)x).

Then, the properties (1)–(3) in Theorem 2.2 follow from the conclusion of Corollary
7.4. The proof follows.
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AN OPTIMAL EXAMPLE FOR THE BALIAN–LOW UNCERTAINTY
PRINCIPLE∗
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Abstract. We analyze the time-frequency concentration of the Gabor orthonormal basis G(f, 1, 1)
constructed by Høholdt, Jensen, and Justesen. We prove that their window function f has near
optimal time and frequency localization with respect to a nonsymmetric version of the Balian–
Low theorem. In particular, we show that if (p, q) = (3/2, 3), then

∫
|t|p−ε|f(t)|2dt < ∞ and∫

|γ|q−ε|f̂(γ)|2dγ < ∞, for 0 < ε ≤ 3/2, but that both integrals are infinite if ε = 0.

Key words. Gabor analysis, Balian–Low theorem, time-frequency analysis
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1. Introduction. Given a square integrable function g ∈ L2(R) and constants
a, b > 0, the associated Gabor system, G(g, a, b) = {gm,n}m,n∈Z, is defined by

gm,n(t) = e2πiamtg(t− bn).

Gabor systems are of considerable interest for their ability to give frame decom-
positions for many function spaces [18], [13], [14], [4]. A collection {en}n∈Z ⊆ L2(R)
is a frame for L2(R) if there exist constants 0 < A ≤ B < ∞ such that

∀f ∈ L2(R), A||f ||2L2(R) ≤
∑
n∈Z

|〈f, en〉|2 ≤ B||f ||2L2(R).

If G(g, a, b) is a frame for L2(R), we shall refer to it as a Gabor frame for L2(R); if
it is an orthonormal basis for L2(R), we refer to it as a Gabor orthonormal basis for
L2(R).

A key property of Gabor systems is the fact that one can construct Gabor frames,
G(g, a, b), for L2(R) such that the window function g has excellent time and frequency

localization. For example, if 0 < ab < 1 and g(t) = e−t2 , then G(g, a, b) is an over-
sampled Gabor frame for L2(R); see, e.g., [18, Chapter 7]. Overcompleteness is a very
important part of such well-localized constructions and can provide robustness and
numerical stability in applied settings. On the other hand, if g ∈ L2(R), and G(g, a, b)
is an orthonormal basis for L2(R), then one must have ab = 1; see, e.g., [18, Corollary
7.5.2]. If one wishes to construct Gabor orthonormal bases, i.e., nonredundant frames,
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then there are severe restrictions on the window function’s time and frequency local-
ization. The Balian–Low theorem makes this precise. We use the Fourier transform
defined by ĝ(γ) =

∫
g(t)e−2πiγtdt, where our convention is that the integral without

specific limits denotes the integral over R.
Theorem 1.1 (Balian–Low). Let g ∈ L2(R). If∫

|t|2|g(t)|2dt < ∞ and

∫
|γ|2|ĝ(γ)|2dγ < ∞,

then G(g, 1, 1) is not an orthonormal basis for L2(R).
The Balian–Low theorem has undergone numerous extensions and generalizations

since the early references [2], [23], [3], [8]. For example, it holds in higher dimensions
for rather general time-frequency lattices, and also holds if one replaces “orthonormal
basis” with “Riesz basis.” For recent work related to the Balian–Low theorem, see
[1], [5], [6], [7], [9], [10], [16], [19], [11]. The issue of sharpness or optimality in the
Balian–Low theorem was investigated in [6]. There, it was shown that the following
result holds true.

Theorem 1.2. If 1
p + 1

q = 1, where 1 < p, q < ∞, and d > 2, then there exists a

function g ∈ L2(R) such that G(g, 1, 1) is an orthonormal basis for L2(R) and∫
1 + |t|p

logd(2 + |t|)
|g(t)|2dt < ∞ and

∫
1 + |γ|q

logd(2 + |γ|)
|ĝ(γ)|2dγ < ∞.

Letting (p, q) = (2, 2) in Theorem 1.2 shows how to construct Gabor orthonor-
mal bases which are essentially optimally localized with respect to the Balian–Low
theorem. In particular, the bases constructed come within a logarithmic factor of
satisfying the forbidden localization hypotheses of the Balian–Low theorem.

Since Theorem 1.2 also constructs Gabor orthonormal bases for values of (p, q)
other than (2, 2), it is natural to ask whether there are versions of the Balian–Low
theorem for the weights (tp, γq). The best that is known is the following.

Theorem 1.3. Suppose 1
p + 1

q = 1 with 1 < p < ∞ and let ε > 0. If

∫
|t|(p+ε)|g(t)|2dt < ∞ and

∫
|γ|(q+ε)|ĝ(γ)|2dγ < ∞,

then G(g, 1, 1) is not an orthonormal basis for L2(R).
The above theorem follows by combining Theorem 4.4 of [12] and Theorem 1 of

[17]. By the Balian–Low theorem, one may set ε = 0 if (p, q) = (2, 2). A version of
the Balian–Low theorem for the case (p, q) = (1,∞) is given in [7].

2. Overview. Theorem 1.2 constructively produces Gabor orthonormal bases
which are almost optimally localized with respect to the Balian–Low theorem and
Theorem 1.3. However, these bases do not have simple expressions. The main aim of
this paper is to study the elegant Gabor orthonormal basis constructed by Høholdt,
Jensen, and Justesen in [22] and to show that it is almost optimally localized with
respect to Theorem 1.3 for a certain choice of (p, q). Their basis has a simpler, more
explicit form than those in [6] and gives insight into other components needed for
constructing well-localized Gabor bases. The key ingredients in the constructions
in [22] and [6] are functions which possess unimodular Zak transforms with small
singular supports. For perspective, we remark that [21] provides several examples of
functions with Zak transforms with few zeros which are used to construct tight Gabor
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frames. These examples could provide further insight into the study of optimality in
the Balian–Low theorem and merit future investigation.

The remainder of the paper is organized as follows. In section 3, we recall the
basis of Høholdt, Jensen, and Justesen, and we state our main result, Theorem 3.3.
In section 4 we prove the time localization estimates for the basis, and in section 5 we
prove the frequency localization estimates. We conclude with some relevant remarks
in section 6.

3. The Gabor basis of Høholdt, Jensen, and Justesen. The Zak transform
is an important tool in the analysis and construction of Gabor systems; see, e.g., [18,
Chapter 8]. Given g ∈ L2(R), the Zak transform is formally defined by

∀(t, γ) ∈ R × R, Zg(t, γ) =
∑
n∈Z

g(t− n)e2πinγ .

With the above definition, the Zak transform satisfies the quasi-periodicity relations

∀k ∈ Z, Zf(x, γ + k) = Zf(x, γ)

and

∀k ∈ Z, Zf(x + k, γ) = Zf(x, γ) e2πikγ ;

see, e.g., [18, section 8.2]. Thus, the Zak transform Zf of a function f ∈ L2(R) is
a locally square integrable function defined on all of R

2 and is uniquely determined
by its values on Q ≡ [0, 1)2. Therefore, Z defines a unitary operator from L2(R) to
L2(Q), and its inverse Z−1 : L2(Q) → L2(R) is formally given by

∀t ∈ R, (Z−1F )(t) =

∫ 1

0

F (t, γ)dγ.

The utility of the Zak transform for constructing Gabor bases stems from the
following result (see, e.g., [18, Corollary 8.3.2]), which forms the foundation for the
constructions in both [6] and [22]; cf. [21].

Theorem 3.1. Let g ∈ L2(R). Then G(g, 1, 1) is an orthonormal basis for L2(R)
if and only if |Zg(t, γ)| = 1 for a.e. (t, γ) ∈ Q.

This shows that constructing Gabor orthonormal bases is equivalent to construct-
ing unimodular functions on L2(Q). Høholdt, Jensen, and Justesen consider the func-
tion F ∈ L2(Q) defined by

∀(t, γ) ∈ Q, F (t, γ) =
1 + α(t)e2πiγ

1 + α(t)e−2πiγ
,(3.1)

where α : [0, 1] → [0, 1] is a measurable function. In [22], the function α was chosen

as α(t) = sin(π2 t), since this was shown to minimize
∫
|γ|2|(Ẑ−1F )(γ)|2dγ.

Definition 3.2. Let f ∈ L2(R) be the function defined by (3.1), where

f = Z−1F and α(t) = sin
(π

2
t
)
.(3.2)

It was proven in [22] that f ∈ L1(R) ∩ L2(R) and that f (see Figure 3) is explicitly
defined by

f(t) =

⎧⎨
⎩

0 if t ∈ (−∞,−1],
sin(π2 (t + 1)) if t ∈ (−1, 0],

(−1)n cos2(π2 (t− n)) sinn(π2 (t− n)) if t ∈ (n, n + 1], n = 0, 1, 2, . . . .
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Fig. 3.1. Graph of the function f .

It is easy to verify that |Zf(t, γ)| = |F (t, γ)| = 1 for a.e. (t, γ) ∈ Q, and hence
G(f, 1, 1) is an orthonormal basis for L2(R). We may now state our main result as
follows.

Theorem 3.3. Let f ∈ L2(R) be the window function defined by Definition 3.2.
For every 0 < ε ≤ 3/2, f satisfies∫

|t|3/2−ε|f(t)|2dt < ∞ and

∫
|γ|3−ε|f̂(γ)|2dγ < ∞.(3.3)

Moreover, ∫
|t|3/2|f(t)|2dt = ∞ and

∫
|γ|3|f̂(γ)|2dγ = ∞.(3.4)

In particular, the Gabor orthonormal basis G(f, 1, 1) is almost optimally localized
with respect to Theorem 1.3 with (p, q) = (3/2, 3).

4. Time localization estimates. In this section we derive the time localization
estimates in Theorem 3.3.

Theorem 4.1. Let f ∈ L2(R) be the function defined in Definition 3.2 and let
a > 0. Then ∫

|t|a|f(t)|2dt < ∞ if and only if a < 3/2.

Proof. A direct calculation shows that for n = 0, 1, 2, . . .∫ n+1

n

|f(t)|2dt =

∫ 1

0

cos4
(π

2
t
)

sin2n
(π

2
t
)
dt(4.1)

=
2

π

(
3

4n2 + 12n + 8

)∫ π/2

0

sin2n u du.

One can also calculate that

2

π

∫ π/2

0

sin2n u du =
(1)(3)(5)(7) · · · (2n− 1)

(2)(4)(6)(8) · · · (2n)
≡ Pn.(4.2)
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By taking the natural log of Pn and using Taylor approximations for ln(1 − x) near
x = 0 to estimate the resulting sum, it is straightforward to show that

Pn ∼ 1√
n
.(4.3)

Equivalently, we could use Stirling’s formula for the Gamma function to show (4.3).
Here and subsequently A ∼ B means that A � B � A, where A � B, in turn, means
that there exists an absolute constant C such that A ≤ CB. When necessary, we shall
point out any dependence of the implicit constants on other parameters. Therefore,

∫ ∞

1

|t|a|f(t)|2dt ≥
∞∑

n=1

na

∫ n+1

n

|f(t)|2dt

=

∞∑
n=1

na

(
3

4n2 + 12n + 8

)
Pn �

∞∑
n=1

na−5/2.

In particular,

a ≥ 3/2 =⇒
∫

|t|a|f(t)|2dt = ∞.

Also, using (4.1), (4.2), and (4.3), we obtain the estimate

∫ ∞

1

|t|a|f(t)|2dt �
∞∑

n=1

(n + 1)a

n5/2
.

Since f is bounded on [−1, 1], and f = 0 on (−∞,−1), it follows that

0 < a < 3/2 =⇒
∫

|t|a|f(t)|2dt < ∞.

5. Frequency localization estimates. In this section we derive the frequency
localization estimates in Theorem 3.3.

Theorem 5.1. Let f ∈ L2(R) be the function defined in Definition 3.2 and let
0 < a. Then ∫

|γ|a|f̂(γ)|2dγ < ∞ if and only if a < 3.

It will be convenient to view Theorem 5.1 in terms of Sobolev spaces. Given
s > 0, the homogeneous Sobolev space of order s, denoted by Ḣs(R), consists of all
g ∈ L2(R) such that ||g||2

Ḣs(R)
≡

∫
|γ|2s|ĝ(γ)|2dγ < ∞. For later convenience, we

also define 〈f, g〉Ḣs(R) =
∫
|γ|2sf̂(γ)ĝ(γ)dγ. Theorem 5.1 now says that 0 < s < 3/2

implies f ∈ Ḣs(R), and that s ≥ 3/2 implies f /∈ Ḣs(R). The following result (see,
e.g., [24, Chapter 8]) gives a useful alternate characterization of Ḣs(R). It is used in
the proof of Lemma 5.6.

Lemma 5.2. If 0 < s < 2 and f ∈ Ḣs(R), then there exists Cs > 0 such that

||f ||2
Ḣs(R)

= Cs

∫ ∫ |f(x + t) + f(x− t) − 2f(x)|2
|t|1+2s

dxdt.
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Lemma 5.2 can be proven by applying Parseval’s theorem to the inner integral.
A similar calculation gives the following result used in the proof of Lemma 5.8.

Lemma 5.3. If 0 < s < 2 and f, g ∈ Ḣs(R), then there exists Cs > 0 such that

〈f, g〉Ḣs(R)= Cs

∫ ∫
(f(x + t) + f(x− t) − 2f(x))(g(x + t) + g(x− t) − 2g(x))

|t|2s+1
dxdt.

We shall use the following lemma directly in Theorem 5.1.
Lemma 5.4. If 3 ≤ a, then f /∈ Ḣa/2(R).
Proof. If 3 ≤ a < 4, then for 0 < η small

||f ||2
Ḣa/2(R)

∼
∫ ∫ |f(x + t) + f(x− t) − 2f(x)|2

|t|1+a
dxdt ≥

∫ η

0

∫ 0

−t

sin2(π2 (x + t))

|t|1+a
dxdt

�
∫ η

0

∫ 0

−t

(x + t)2

|t|1+a
dxdt �

∫ η

0

t3

|t|1+a
dt = ∞.

Since f ∈ L1(R), it now also follows that f /∈ Ḣa/2(R) for all 3 ≤ a.
We now prove that 0 < a < 3 implies f ∈ Ḣa/2. Since this is more involved

than our prior estimates, we split it up into several lemmas (Lemmas 5.9 and 5.10).
Lemma 5.5 is used in Lemma 5.6, which, in turn, is used in the proof of Lemma 5.7.
Lemmas 5.7 and 5.8 allow us to prove Lemma 5.9.

Lemma 5.5. For n ≥ 3, let fn(t) = 1(n,n+1](t)f(t), where 1S(t) denotes the
characteristic function of a set S ⊆ R. The functions fn have the following properties:

1. fn is continuous and differentiable on R.
2. f ′′

n (t) exists for all t ∈ R\{n + 1}.
3. ||fn||2L2(R) � 1/n5/2 and ||fn||1/2L1/2(R)

� 1/n.

4. If 0 < δ < 3/2, then ||fn||1/2+δ

L1/2+δ(R)
� 1/n1+δ.

5. For all t ∈ R\{n + 1}, |f ′′
n (t)| � 1.

The implicit constants in (3) and (4) are independent of n, and the implicit constant
in (5) is independent of t and n.

Proof. The first two items can be verified by direct calculations. The estimate
for ||fn||2L2(R) in (3) has already been done in the proof of Theorem 4.1. In fact,

||fn||2L2(R) =

(
3

4n2 + 12n + 8

)
Pn � 1

n2.5
.

The estimate for ||fn||1/2L1/2(R)
in (3) holds since

||fn||1/2L1/2(R)
=

∫ n+1

n

cos
(π

2
(t− n)

)
sin

n
2

(π
2

(t− n)
)
dt =

4

π(n + 2)
.

The fourth item follows from (3) and the following standard interpolation formula
(see, e.g., [15, Proposition 6.10]):

||f ||Lq(R) ≤ ||f ||λLp(R)||f ||1−λ
Lr(R),

where

0 < p < q < r ≤ ∞ and λ =
1/q − 1/r

1/p− 1/r
.
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To prove (5) first note that, for n < t < n + 1,

f ′′
n (t− n) = (−1)n

(
−(5n + 2)

π2

4
sinn

(π
2
t
)

cos2
(π

2
t
)

+ 2
π2

4
sinn+2

(π
2
t
)

+
π2

4
n(n− 1) cos4

(π
2
t
)

sinn−2
(π

2
t
))

.

Therefore, f ′′
n (t− n) = (−1)nhn(u), where u = sin2(π2 (t− n)), and

hn(u) =
π2

4
un/2−1

[
2u2 − (5n + 2)u(1 − u) + n(n− 1)(1 − u)2

]
.

Straightforward, but tedious, calculations show that |hn(t)| ≤ C on (n, n+ 1) for
some constant C independent of t and n. Since f ′′

n (t) = 0 on R\(n, n+1], we conclude
that |f ′′

n (t)| � 1 on R\{n + 1}.
Lemma 5.6. Assume 0 < a < 3, and let ε = 3 − a. Then

∀n ≥ 3, ||fn||2Ḣa/2(R)
� 1

n1+ε/4
.

The implicit constant is independent of n.
Proof. We shall estimate ||fn||2Ḣa/2(R)

by using the double integral in Lemma 5.2.

Let B = {t ∈ R : |t| < 1}, and note that∫
R\B

∫
R

|fn(x + t) + fn(x− t) − 2fn(x)|2
|t|a+1

dxdt � ||fn||2L2(R)

∫
R\B

1

|t|a+1
dt � 1

n5/2
.

It remains for us to estimate∫
B

∫
R

|fn(x + t) + fn(x− t) − 2fn(x)|2
|t|a+1

dxdt.

We write this as the sum of two integrals, over [0, 1]×R and [−1, 0]×R, respectively.
Since the estimates for both integrals are similar, it suffices to consider the first, which,
in turn, is estimated by breaking it up into the following four integrals:

I1 =

∫ 1

0

∫ n−t

−∞
, I2 =

∫ 1

0

∫ n+1−t

n−t

, I3 =

∫ 1

0

∫ n+1+t

n+1−t

, I4 =

∫ 1

0

∫ ∞

n+1+t

.

First, note that the support properties of fn imply that I1 = 0 and I4 = 0.
Next note that if x + t, x − t, x are all less than n + 1, then Lemma 5.5 and the

mean value theorem imply

|fn(x + t) + fn(x− t) − 2fn(x)| � |t|2,(5.1)

where the implicit constant is independent of x, t, and n. To estimate I2 note that,
by (5.1) and Lemma 5.5,

W2(t) ≡
∫ n+1−t

n−t

|fn(x + t) + fn(x− t) − 2fn(x)|2dx

� |t|3−ε/2

∫ n+1−t

n−t

|fn(x + t) + fn(x− t) − 2fn(x)|1/2+ε/4dx

� |t|3−ε/2 ||fn||1/2+ε/4

L1/2+ε/4(R)
� |t|3−ε/2

n1+ε/4
.
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It now follows that

I2 =

∫ 1

0

W2(t)

|t|a+1
dt =

∫ 1

0

W2(t)

|t|4−ε
dt � 1/n1+ε/4

∫ 1

0

1

|t|1−ε/2
dt � 1/n1+ε/4.

To estimate I3, define

W3(t) =

∫ n+1+t

n+1−t

|fn(x + t) + fn(x− t) − 2fn(x)|2dx.

Note that by the definition of fn and its support properties,

W3(t) =

∫ n+1+t

n+1−t

|fn(x− t) − 2fn(x)|2dx �
∫ n+1

n+1−2t

|fn(x)|2dx

�
∫ n+1

n+1−2t

cos4
(π

2
(x− n)

)
dx � |t|5.

Moreover, we also have

W3(t) � ||fn||2L2(R) � 1

n5/2
.

Thus, in order to estimate W3 we may use the fact that for x, y > 0 and α ∈ [0, 1],
min{x, y} ≤ xαy1−α. When α = (6 − ε)/10, we obtain

W3(t) � |t|3−ε/2

n1+ε/4
.

Thus

I3 =

∫ 1

0

W3(t)

|t|a+1
dt =

∫ 1

0

W3(t)

|t|4−ε
dt � 1/n1+ε/4.

Lemma 5.7. Assume 0 < a < 3 and let ε = 3 − a. If 3 ≤ m,n, and |m− n| = 1,
then

|〈fn, fm〉Ḣa/2(R)| � 1

n1+ε/4
.

The implicit constant is independent of n and m.
Proof. Without loss of generality assume m = n + 1. It follows from Lemma 5.6

that

|〈fn, fm〉Ḣa/2(R)| ≤ ||fn||Ḣa/2(R)||fm||Ḣa/2(R)

�
(

1

n1+ε/4

) 1
2
(

1

m1+ε/4

) 1
2

≤ 1

n1+ε/4
.

Lemma 5.8. Let 0 < a. If 3 ≤ m,n and 1 < |m− n|, then

|〈fn, fm〉Ḣa/2(R)| � 1

|m− n|a|n|5/4|m|5/4 .

The implicit constant is independent of m and n.
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Proof. Without loss of generality assume 0 < n < m − 1. Let Sm,n = {t ∈ R :
|t| > (m− n− 1)/2} and let

Fm(x, t) = fm(x + t) + fm(x− t) − 2fm(x).

Note that

t /∈ Sm,n =⇒ Fm(x, t)Fn(x, t) = 0.

Also, ∫
|Fm(x, t)Fn(x, t)|dx � ||fn||L2(R)||fm||L2(R).

Therefore, by Lemma 5.3,

|〈fn, fm〉Ḣa/2(R)| ≤
∫
Sm,n

∫
R

|Fm(x, t)Fn(x, t)|
|t|a+1

dxdt

� ||fn||L2(R)||fm||L2(R)

∫
Sm,n

1

|t|a+1
dt

�
||fn||L2(R)||fm||L2(R)

|m− n|a � 1

n5/4m5/4|m− n|a .

To estimate the norm ||f ||Ḣa/2(R) we first break f up into the two parts F1(t) =

f(t)1(−1,3](t) and F2(t) = f(t)1(3,∞)(t). Since f = 0 on (−∞,−1] we have f =
F1 + F2. We have the following estimate for F2.

Lemma 5.9. If 0 < a < 3, then ||F2||2Ḣa/2(R)
< ∞.

Proof. Let ε = 3 − a, and note that F2 =
∑∞

n=3 fn. Define

S1 = {(m,n) ∈ Z
2 : m,n ≥ 3 and |m− n| = 1}

and

S2 = {(m,n) ∈ Z
2 : m,n ≥ 3 and |m− n| > 1}.

By Lemmas 5.6, 5.7, and 5.8 we have

||F2||2Ḣa/2(R)
=

∣∣∣∣∣
∣∣∣∣∣
∞∑

n=3

fn

∣∣∣∣∣
∣∣∣∣∣
2

Ḣa/2(R)

≤
∞∑

m=3

∞∑
n=3

|〈fm, fn〉Ḣa/2(R)|

=

∞∑
n=3

||fn||2Ḣa/2(R)
+

∑
(m,n)∈S1

|〈fn, fm〉Ḣa/2(R)| +
∑

(m,n)∈S2

|〈fn, fm〉Ḣa/2(R)|

�
∞∑

n=1

1

n1+ε/4
+

∞∑
n=1

1

n1+ε/4
+

∑
(m,n)∈S2

1

n5/4m5/4|m− n|2a < ∞.

In view of Lemma 5.9, and since

||f ||Ḣa/2(R) ≤ ||F1||Ḣa/2(R) + ||F2||Ḣa/2(R),

it remains only to estimate ||F1||Ḣa/2(R). Note that by the definition of f , F1 is
compactly supported, continuous on R, and infinitely differentiable away from x1 =
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−1, x2 = 0, x3 = 1, x4 = 2, and x5 = 3. Moreover the first derivative of F1 also exists
at x2, x3, x5. However, the second derivative of F1 does not exist at any of the points
x1, x2, x3, x4, x5.

It therefore suffices to estimate ||ϕjF1||Ḣa/2(R) for j = 1, 2, 3, 4, 5, where ϕj is an
infinitely differentiable function satisfying

ϕj(x) = 1 for |x− xj | < 2ν and ϕj(x) = 0 for |x− xj | > 4ν,

with 0 < ν sufficiently small.
We present a proof that is analogous to our previous estimates and uses Lemma

5.2. Alternately, one can proceed more directly and use an argument involving inte-
gration by parts.

Lemma 5.10. Let 0 < a < 3 and let ϕjF1 be as above for j = 1, 2, 3, 4, 5. Then

||ϕjF1||Ḣa/2(R) < ∞, j = 1, 2, 3, 4, 5.

Consequently, ||F1||Ḣa/2(R) < ∞.

Proof. We shall show the estimate for ||ϕ3F1||Ḣa/2(R) only, since the other four
estimates proceed along similar lines.

Let h(t) = (ϕ3F1)(t− 1). We need to estimate the double integral

||ϕ3F1||2Ḣa/2(R)
= ||h||2

Ḣa/2(R)
∼

∫ ∫ |h(x + t) + h(x− t) − 2h(x)|2
|t|1+a

dxdt.

Let ν be as in the definition of ϕ3 above, and note that if Bν = {t ∈ R : |t| < ν}, then

∫
R\Bν

∫
R

|h(x + t) + h(x− t) − 2h(x)|2
|t|1+a

dxdt � ||h||2L2(R)

∫
R\Bν

1

|t|1+a
dt < ∞.

Next note that h(t) is infinitely differentiable away from t = 0 and has bounded
first and second derivatives on R\{0}. Therefore, if x+ t, x− t and x are all positive,
or all negative, then it follows from the mean value theorem that

|h(x + t) + h(x− t) − 2h(x)| � |t|2.(5.2)

Likewise, if x + t and x are both positive or both negative, then

|h(x + t) − h(x)| � |t|.(5.3)

The implicit constants in (5.2) and (5.3) are independent of x and t.
To estimate the remaining integral∫ ν

−ν

∫
R

|h(x + t) + h(x− t) − 2h(x)|2
|t|1+a

dxdt,

we break this integral up over the domains [ν, 0] × R and [−ν, 0] × R. Since both
integrals are similar we show estimates for the first only, which, in turn, we estimate
by considering the integrals

J1 =

∫ ν

0

∫ ∞

t

, J2 =

∫ ν

0

∫ t

0

, J3 =

∫ ν

0

∫ 0

−t

, J4 =

∫ ν

0

∫ −t

−∞
.
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It follows from (5.2) and the compact support of h that

J1 =

∫ ν

0

∫ ∞

t

|h(x + t) + h(x− t) − 2h(x)|2
|t|1+a

dxdt

=

∫ ν

0

∫ 5ν

t

|h(x + t) + h(x− t) − 2h(x)|2
|t|1+a

dxdt �
∫ ν

0

|t|4
|t|1+a

dt < ∞.

The estimate for J4 < ∞ is similar.

To estimate J2, note that J2 � J2,1 + J2,2 where

J2,1 =

∫ ν

0

∫ t

0

|h(x + t) − h(x)|2
|t|a+1

dxdt and J2,2 =

∫ ν

0

∫ t

0

|h(x− t) − h(x)|2
|t|a+1

dxdt.

It follows from (5.3) that

J2,1(t) �
∫ ν

0

∫ t

0

|t|2
|t|1+a

dxdt =

∫ ν

0

|t|3
|t|a+1

dt < ∞.

Next, define

H(x, t) = cos2
(π

2
(x− t− 1)

)
+ cos2

(π
2
x
)

sin
(π

2
x
)

= sin2
(π

2
(x− t)

)
+ cos2

(π
2
x
)

sin
(π

2
x
)
,

and note that ∫ t

0

|H(x, t)|2dx �
∫ t

0

|(x− t)2|2dx +

∫ t

0

|x|2dx � |t|3.

It now follows that

J2,2 =

∫ ν

0

∫ t

0

|H(x, t)|2
|t|a+1

dxdt �
∫ ν

0

|t|3
|t|a+1

dt < ∞.

Therefore,

J2 � J2,1 + J2,2 < ∞.

By using calculations similar to those used to deal with J2, one can also show that
J3 < ∞. We can now conclude that ||ϕ3F1||Ḣa/2(R) = ||h||Ḣa/2(R) < ∞.

The estimates for ||ϕjF2||Ḣa/2(R), j = 1, 2, 4, 5, proceed along similar lines to those
above.

Proof of Theorem 5.1. Combining Lemmas 5.9 and 5.10 shows that if 0 < a < 3,
then

(∫
|γ|a|f̂(γ)|2dγ

)1/2

= ||f ||Ḣa/2(R) ≤ ||F1||Ḣa/2(R) + ||F2||Ḣa/2(R) < ∞.

Together with Lemma 5.4 this completes the proof of Theorem 5.1.

Our main result, Theorem 3.3, now follows by combining Theorems 4.1 and 5.1.
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6. Concluding remarks. 1. Throughout this remark we shall assume that
Zak transforms have been quasi-periodically extended to L2

loc(R
2). A key idea in

the construction of [6] was to choose the Gabor window function g so that |Zg| = 1
almost everywhere and such that Zg has minimal singular support. In fact, the
function Zg used in [6] was locally C∞ on R

2 except at one point in each square
Sj,k = (j, j + 1] × (k, k + 1], j, k ∈ Z.

By comparison, one can show that the quasi-periodic extension of Høholdt, Jen-
sen, and Justesen’s function F = Zf defined in (3.1) is continuous on R

2 except at
the set {(j, k+1/2) : j, k ∈ Z}. However, F is nondifferentiable on the set {(t, j) : t ∈
R, j ∈ Z}. In this regard, the construction in [6] provides a Gabor orthonormal basis
G(g, 1, 1) such that Zg has more smoothness than F = Zf in (3.1).

2. We have shown that the basis of Høholdt, Jensen, and Justesen is almost
optimally localized with respect to the (p, q) Balian–Low result in Theorem 1.3 when
(p, q) = (3/2, 3). It would be interesting to see whether Høholdt, Jensen, and Juste-
sen’s method of construction can be extended to provide optimality for other values
of (p, q). With respect to further potentially optimal examples, Janssen in [20] and
[21] provides several other families of functions which have the Zak transforms with
minimal singular support. These include Gaussians, hyperbolic secants, and two-sided
exponentials. The operation Z−1(Zg/|Zg|) applied to these functions yields examples
of Gabor orthonormal bases for L2(R). The examples of Janssen are analogous in na-
ture to the examples in [22] and [6], but they possess more symmetry in their decay
properties. At the present, [6] provides the only construction which has been proven
to be optimal for general values of the time and frequency localization parameters
(p,q).
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THE STRUCTURE OF C1 SPLINE SPACES ON FREUDENTHAL
PARTITIONS∗

G. HECKLIN† , G. NÜRNBERGER† , AND F. ZEILFELDER†

Abstract. We analyze the structure of trivariate C1 splines on uniform tetrahedral partitions
Δ. The Freudenthal partitions Δ are obtained from uniform cube partitions by using three planes
with a common line to subdivide every cube into six tetrahedra. This is a natural three-dimensional
generalization of the well-known three-directional mesh in the plane. By using Bernstein–Bézier
techniques, we construct minimal determining sets for C1 spline spaces on Δ of arbitrary degree and
give explicit formulae for the dimension of the spaces.

Key words. trivariate splines, Freudenthal partitions, C1 smoothness conditions, minimal
determining sets, Bernstein–Bézier techniques, dimension of spline spaces
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1. Introduction. Spline spaces play a fundamental role in approximation theory
and computer aided geometric design. In particular, this concerns multivariate splines
(see Chui [12], and the references therein), i.e., splines in more than one variable which
are defined on appropriate partitions of a multidimensional domain. In contrast to the
univariate case (cf. Nürnberger [24], Schumaker [34]), only few results on the struc-
ture of these spaces are known. Even the most basic problems such as determining
the dimension (i.e., the number of degrees of freedom) of the spaces and constructing
interpolation sets are often difficult to solve. Recently, there has been some progress
in developing efficient interpolation and approximation methods for bivariate splines
(cf. Alfeld and Schumaker [4, 5], Davydov and Zeilfelder [13], Lai and Schumaker
[19, 20], Nürnberger, Rayevskaya, Schumaker and Zeilfelder [25], Nürnberger, Schu-
maker and Zeilfelder [27], Nürnberger and Zeilfelder [29, 30], Zeilfelder [42], and the
references therein) which are useful for many applications. On the other hand, much
less is known for trivariate splines, i.e., splines defined on tetrahedral partitions. One
reason for this is that the smoothness conditions imply complex relations between the
coefficients of the splines. For example, it has been observed (cf. Alfeld, Schumaker
and Sirvent [6, Example 25], Alfeld, Schumaker and Whiteley [7, Remark 66]) that
even for tetrahedral partitions of certain conic domains an analysis of these conditions
would require the knowledge of the structure of bivariate spline spaces of any degree
on general triangulations. It is known that even for uniform (type) three-dimensional
partitions it is a complex task to analyze this structure since all the smoothness con-
ditions in space directions have to be taken into account. In this paper, we investigate
C1 spline spaces of any polynomial degree defined on uniform tetrahedral partitions.

Different types of splines in three variables have been suggested in the literature
(see the comparison and discussion in Remark 6.2). For trivariate splines as we con-
sider here, there are basically two approaches. For the case of arbitrary tetrahedral
partitions, there exist methods for super spline spaces (i.e., subspaces with a higher
smoothness on lower-dimensional faces) with a relatively high degree (cf. Ženǐsek [43]).
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http://www.siam.org/journals/sima/38-2/61498.html
†University of Mannheim, Institute for Mathematics, D-68131 Mannheim, Germany (hecklin@

rumms.uni-mannheim.de, nuern@rumms.uni-mannheim.de, zeilfeld@rumms.uni-mannheim.de).
347
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A C1 quintic super spline construction, where all the tetrahedra are split into four sub-
tetrahedra, was given by Alfeld [2], while the C1 cubic and quadratic spline methods of
Worsey and Farin [40] and Worsey and Piper [41] (see also Sorokina and Worsey [38])
are based on splitting all the tetrahedra into 12 and 24 subtetrahedra, respectively. In
the second approach, classes of tetrahedral partitions are investigated, where no splits
are used. Smooth quintic super spline constructions on such partitions were recently
developed by Lai and Le Méhauté [18] and Schumaker and Sorokina [35]. One special
class of tetrahedral partitions is obtained from a cube partition, where each cube is
uniformly split into 24 tetrahedra. These partitions are sometimes called type-6 tetra-
hedral partitions and are natural three-dimensional generalizations of the well-known
four-direction mesh in the plane. For these partitions, independently, Schumaker
and Sorokina [36] constructed a generalization of the element of Fraejis de Veubeke
and Sander (see the survey of Zeilfelder [42], for instance) by using C1 trivariate su-
per splines of degree six, while Hangelbroek, Nürnberger, Rössl, Seidel and Zeilfelder
[16] determined the dimension of C1 spline spaces (with no super smoothness) of arbi-
trary degree. Based on the latter results on the structure of spline spaces, Nürnberger,
Rössl, Seidel and Zeilfelder [26, 31, 32] (see also Schlosser, Hesser, Zeilfelder, Rössl,
Männer, Nürnberger, and Seidel [33]) developed methods for the approximation and
visualization of volumetric data by using quadratic and cubic trivariate splines with
appropriate smoothness properties. This shows that a structural analysis of the spline
spaces is sometimes the first step to develop approaches useful for the applications,
where volumetric models with advantageous properties such as high-quality visualiza-
tion have to be reconstructed from discrete data. The numerical tests in [26, 31, 32, 33]
indicate the potential of trivariate splines to approximate huge volumetric (gridded
and scattered) data sets with up to millions of data points with a high efficiency.

In this paper, we determine the dimension of trivariate C1 splines of arbitrary
degree on a natural class of uniform type tetrahedral partitions Δ, where no tetra-
hedron is split. These partitions Δ generalize the well-known three-direction mesh
in the plane and are called Freudenthal partitions. The Freudenthal partitions Δ are
obtained from a uniform cube partition of a domain Ω in R

3, where each cube is subdi-
vided into six tetrahedra (see Figure 1). Hence the number of tetrahedra within each
cube is smaller than for the above-mentioned type-6 tetrahedral partitions. We inves-
tigate the structure of the spaces of trivariate C1 polynomial splines on Δ, i.e., the
spaces defined by

S1
q (Δ) = {s ∈ C1(Ω) : s|T ∈ Pq for all tetrahedra T ∈ Δ},(1.1)

where

Pq = span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ q}

denotes the space of trivariate polynomials of total degree q. The main result of this
paper (Theorem 3.1) is an explicit formula for the dimension of the spline spaces
in (1.1). Its proof is complex. We construct a so-called minimal determining set
(cf. Alfeld, Piper and Schumaker [3], Schumaker and Sorokina [35, 36]) for S1

q (Δ)
based on the piecewise Bernstein–Bézier representation of the splines. Our inductive
construction is based on two steps. In the first step, we construct minimal determin-
ing sets for C1 splines defined on a tetrahedral partition of a single cube. Then, in the
second step, we construct a minimal determining set for the whole C1 spline space
(Theorem 5.1), where in each step, we determine the remaining degrees of freedom.
To do this, we pass through the cubes in an appropriate order. The cardinality of
the minimal determining set gives the dimension of the spline spaces. As a main tool
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for proving our results, we use a well-known characterization of the C1 smoothness
of two neighboring polynomial pieces in its Bernstein–Bézier representation (cf. de
Boor [8], Farin [14]). We note that, although the results presented here are of inde-
pendent interest, this paper can be understood as a basis for our recent local data
interpolation methods (cf. Hecklin, Nürnberger, Schumaker and Zeilfelder [17]) for
cubic C1 splines on partially subdivided Freudenthal partitions, which yield optimal
approximation order of smooth functions. A first paper (cf. Nürnberger, Schumaker
and Zeilfelder [28]) dealing with the difficult problem of constructing local Lagrange
interpolation sets for smooth trivariate splines has recently appeared.

The paper is organized as follows. In section 2, we describe trivariate splines
on Freudenthal partitions Δ, their piecewise Bernstein–Bézier representation and C1

smoothness conditions. Section 3 contains our main result on the dimension of the
spline spaces S1

q (Δ), and the definition of minimal determining sets. In section 4,
we construct such sets for C1 splines on a partition of a cube and give an explicit
formula for the dimension of the corresponding spline spaces. These results are used
in section 5, where we construct minimal determining sets for the whole space of C1

splines and prove our main results. We close the paper with some remarks.

2. Splines on Freudenthal partitions and C1 smoothness conditions.
Let ♦ be the uniform cube partition of the domain Ω = [0, n] × [0, n] × [0, n] ⊆ R

3

which is obtained by intersecting Ω with n + 1 parallel planes in each of the three
space dimensions, i.e.,

♦ = {Q(i,j,k) : Q(i,j,k) = [i− 1, i] × [j − 1, j] × [k − 1, k], i, j, k = 1, . . . , n}.

We cut each of the n3 cubes Q(i,j,k), i, j, k = 1, . . . , n, in ♦ with the three planes in
R

3 defined by

L1 : x− y = i− j, L2 : x− z = i− k, and L3 : y − z = j − k.(2.1)

This leads to a natural, uniform tetrahedral partition Δ of Ω, where in correspondence
to the six possible orderings of the variables x, y, and z each cube Q ∈ ♦ is split into
six tetrahedra (see Figure 1, left and middle). More precisely, the construction is as
follows. First, we subdivide each cube by slicing with L1. Then, the two resulting
prisms are further subdivided by slicing each of them with L2 and L3. Note that the
planes L1, L2, and L3 coincide along the main diagonal of Qi,j,k, which connects the
points (i − 1, j − 1, k − 1) and (i, j, k). It can be observed that the six tetrahedra

Fig. 1. Freudenthal partitions Δ are obtained by splitting each cube of a uniform cube partition
♦ (left) into six tetrahedra by using three planes: first each cube is split into two prisms, then both
prisms are further subdivided into three tetrahedra (middle). Each cutting plane of these partitions
is a three-direction mesh known from bivariate spline theory (right).
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within each cube Q join the main diagonal of Q as a common edge. Moreover, the
six tetrahedra can be obtained by taking the main diagonal of the cube as one edge,
where the opposite edge is one of the six edges of the cube which are disjoint to the
main diagonal. It is easy to see that the intersection of Δ with any plane parallel
to the xy−, xz−, and yz−plane as well as with L1, L2, and L3 is a three-direction
mesh known from the bivariate setting (see Figure 1, right). Therefore, the tetra-
hedral partitions Δ are natural three-dimensional generalizations of these uniform
triangulations. According to our knowledge, the partitions Δ were first considered by
Freudenthal [15]; therefore we follow Carr, Möller and Snoeyink [11] and call them
Freudenthal (tetrahedral) partitions.

Counting the number of tetrahedra NΔ, triangular faces FΔ, edges EΔ, and
vertices VΔ of a Freudenthal partition Δ, respectively, it is easy to see that

NΔ = 6 n3, FΔ = 12 n3 + 6n2, EΔ = 7 n3 + 9 n2 + 3 n,

and VΔ = n3 + 3 n2 + 3 n + 1.(2.2)

In the following, we consider trivariate C1 splines of arbitrary degree with respect to
Δ . This means that we investigate the spaces S1

q (Δ) defined in (1.1). Since this is the
trivial space of linear polynomials for q = 1, we are obviously interested in the choice
q ≥ 2. In order to analyze the structure of these spaces, the smoothness conditions
across the interior triangular faces of Δ have to be taken into account. To do this, we
use the piecewise Bernstein–Bézier representation of the splines from S1

q (Δ), which
allows us to describe these conditions in a convenient form.

Given a (nondegenerate) tetrahedron T = [v0, v1, v2, v3] ∈ Δ with vertices v0,
v1, v2, and v3, the linear polynomials Φν ∈ P1, ν = 0, . . . , 3, with the interpolation
property Φν(vμ) = δν,μ, μ = 0, . . . , 3, are called the barycentric coordinates w.r.t. T .
Every polynomial piece p = s|T ∈ Pq of a continuous spline s on Δ can be written in
its Bernstein–Bézier representation

s|T (z) =
∑

ω+ρ+σ+τ=q

bω,ρ,σ,τ Bq,T
ω,ρ,σ,τ (z), z ∈ T,(2.3)

where Bq,T
ω,ρ,σ,τ = q!/(ω!ρ!σ!τ !) Φω

0 Φρ
1Φ

σ
2Φτ

3 ∈ Pq, ω+ ρ+σ+ τ = q, are the Bernstein
polynomials of degree q w.r.t. T and bω,ρ,σ,τ ∈ R, ω+ρ+σ+τ = q, are the Bernstein–
Bézier coefficients of p. It is well known (cf. Alfeld, Piper and Schumaker [3], Alfeld,
Schumaker and Whiteley [7]) that each coefficient bω,ρ,σ,τ in the Bernstein–Bézier
representation (2.3) of s|T can be uniquely associated with the domain point ξω,ρ,σ,τ =
(ω v0 + ρ v1 + σ v2 + τ v3)/q, i.e., we define bω,ρ,σ,τ (s) := bω,ρ,σ,τ (s|T ) = bω,ρ,σ,τ , ω +
ρ + σ + τ = q. We note that the coefficients associated with the domain points on
common triangular faces of the tetrahedra coincide, since the splines are continuous.
Moreover, we set Dq(Δ) as the union of all sets of domain points Dq,T w.r.t. the
tetrahedra T of Δ.

Due to the special structure of Freudenthal partitions Δ the domain points can
be described in terms of Euclidian coordinates. In the following, we set

ξ
Q(i,j,k)

α,β,γ = (i− 1 + α/q, j − 1 + β/q, k − 1 + γ/q), α, β, γ = 0, . . . , q,

for the domain points Dq,Q(i,j,k)
within the cube Q(i,j,k) and indicate for i, j, k ∈

{1, . . . , n},

bξ(s) = bξ, ξ = ξ
Q(i,j,k)

α,β,γ , α, β, γ = 0, . . . , q.

We use this natural notation to keep the proofs in the subsequent sections short.
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It is known that for any tetrahedral partition, the number of domain points
coincides with the dimension of continuous spline spaces of arbitrary degree. For
Freudenthal partitions Δ, a straightforward computation shows that this number is
equal to (q + 1 + (n − 1) q)3 = (n q + 1)3 = q3 n3 + 3q2 n2 + 3q n + 1, since the
continuity of a spline s on Δ is equivalent to bξ(s) = bξ = bξ′ = bξ′(s) for all ξ, ξ′,
where(

ξ = ξ
Q(i,j,k)

q,α,β and ξ′ = ξ
Q(i+1,j,k)

0,α,β

)
,

(
ξ = ξ

Q(j,i,k)

α,q,β and ξ′ = ξ
Q(j,i+1,k)

α,0,β

)
,(

ξ = ξ
Q(j,k,i)

α,β,q and ξ′ = ξ
Q(j,k,i+1)

α,β,0

)
, α, β = 0, . . . , q,

and i, j, k = 1, . . . , n, i �= n. The situation is much more complex if we consider
differentiable splines s on Δ, i.e., s ∈ S1

q (Δ), where S1
q (Δ) is the space defined in (1.1).

As noted above, in this case, it is necessary to describe the smoothness conditions of
the polynomial pieces of the splines on neighboring tetrahedra of Δ (i.e., tetrahedra
with a common triangular face) in a convenient form. It is well known that this can
be done by using the next result of Farin [14] (see also de Boor [8], and Chui [12])
which characterizes smoothness conditions for splines on two neighboring tetrahedra
in terms of the coefficients of its piecewise Bernstein–Bézier representation.

Theorem 2.1. Let two neighboring tetrahedra T = [v0, v1, v2, v3], T̃ = [v0, v1,
v2, ṽ3], and a continuous spline s on T ∪ T̃ with

s|T = p =
∑

ω+ρ+σ+τ=q

bω,ρ,σ,τ Bq,T
ω,ρ,σ,τ and s|T̃ = p̃ =

∑
ω+ρ+σ+τ=q

b̃ω,ρ,σ,τ Bq,T̃
ω,ρ,σ,τ

be given. Then, s is differentiable across the common triangular face T ∩ T̃ =
[v0, v1, v2], i.e., s ∈ C1(T ∪ T̃ ) if and only if for all ω + ρ + σ = q − 1,

b̃ω,ρ,σ,1 = bω+1,ρ,σ,0 Φ0(ṽ3) + bω,ρ+1,σ,0 Φ1(ṽ3)(2.4)

+ bω,ρ,σ+1,0 Φ2(ṽ3) + bω,ρ,σ,1 Φ3(ṽ3),

where Φν(ṽ3), ν = 0, . . . , 3, are the barycentric coordinates with respect to T , evaluated
at the point ṽ3.

The relations in (2.4) show that in order to guarantee the C1 smoothness across
T ∩ T̃ exactly q(q + 1)/2 conditions have to be satisfied. In particular, the relations
imply that if coefficients of the form bω,ρ,σ,�, ω+ρ+σ = q−�, � = 0, 1, are determined,

then the coefficients b̃ω,ρ,σ,1, ω+ ρ+σ = q− 1 (i.e., the coefficients in distance one to

T ∩ T̃ ) are uniquely determined. In general, there are five coefficients involved in each
of these conditions (see Figure 2, left). Analogous to the univariate and bivariate
case, each of these conditions has the geometric interpretation that there are five
corresponding points in R

4 which lie in the same (three-dimensional) hyperplane.
The fourth component of these points is a Bernstein–Bézier coefficient which appears
in (2.4) while the first three components are the associated domain points. If one or
even two of the barycentric coordinates at the point ṽ3 vanish, then the number of
involved coefficients is four and three, respectively (see Figure 2, middle and right).
In these cases, the smoothness conditions degenerate to lower dimensional conditions
which are similar as in the bivariate and univariate setting, i.e., four points of the
above form lie in a plane and three points lie on a line, respectively. Therefore, these
cases are sometimes called degenerate cases.
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Fig. 2. Illustration of C1 smoothness conditions across the common triangular face of two
neighboring tetrahedra (in the case q = 3). The domain points associated with coefficients involved
are shown as dark dots. In general, there are five coefficients involved in every condition (left).
In the special case when three of the five vertices of the neighboring tetrahedra lie on one line,
the smoothness conditions degenerate to conditions of univariate type, which means that only three
points are affected by every condition (right). For Freudenthal partitions Δ only four coefficients are
relevant for each C1 smoothness condition (middle), since for every pair of neighboring tetrahedra
in Δ four of the five vertices lie in a plane.

(6):

(11):

(8):

(7):

Fig. 3. Each smoothness condition satisfied by the C1 splines on Freudenthal partitions Δ
degenerates to a C1 condition of bivariate type. The example shows the case q = 3, where the
domain points associated with the four coefficients involved in each smoothness condition are shown
as dark dots. Conditions on neighboring tetrahedra inside a cube of ♦ (i.e., the conditions in (6)–(8))
are illustrated on the left, while an example illustrating the smoothness conditions on two neighboring
tetrahedra from different cubes (i.e., the conditions in (11)) is shown on the right.

While on general tetrahedral partitions these three types of smoothness conditions
can appear, we observe that all the conditions on neighboring tetrahedra satisfied by
the splines from S1

q (Δ), where Δ is a Freudenthal partition, are of the same type. More
precisely, for every pair of neighboring tetrahedra in Δ exactly four Bernstein–Bézier
coefficients are involved in each C1 condition and hence only degenerate smoothness
conditions of bivariate type appear for these splines. The following lemma shows that
the smoothness conditions satisfied by these splines can easily be described by one
single formula. However, the arguments given in the subsequent sections indicate that
even for Δ the analysis of the overall smooth spline spaces is a complex task since the
conditions have to be satisfied simultaneously across all the interior triangular faces
of Δ. Figure 3 further illustrates the lemma.

Lemma 2.2. Let s be a continuous spline on a Freudenthal partition Δ with BB-
coefficients bξ(s) = bξ, ξ ∈ Dq(Δ) in its piecewise Bernstein–Bézier representation
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(2.3). Then, s ∈ S1
q (Δ) if and only if bξ + bξ′ = bξ∗ + bξ′′ for all ξ, ξ′, ξ∗, ξ′′, where(

ξ = ξ
Q(i,j,k)

β,α,α , ξ′ = ξ
Q(i,j,k)

β,α+1,α+1, ξ∗ = ξ
Q(i,j,k)

β,α+1,α, and ξ′′ = ξ
Q(i,j,k)

β,α,α+1

)
,(2.5) (

ξ = ξ
Q(i,j,k)

α,β,α , ξ′ = ξ
Q(i,j,k)

α+1,β,α+1, ξ∗ = ξ
Q(i,j,k)

α+1,β,α, and ξ′′ = ξ
Q(i,j,k)

α,β,α+1

)
,(2.6) (

ξ = ξ
Q(i,j,k)

α,α,β , ξ′ = ξ
Q(i,j,k)

α+1,α+1,β , ξ∗ = ξ
Q(i,j,k)

α+1,α,β , and ξ′′ = ξ
Q(i,j,k)

α,α+1,β

)
,(2.7)

α, β = 0, . . . , q, α �= q, i, j, k = 1, . . . , n,

and (
ξ = ξ

Q(i,j,k)

q,α,β , ξ′ = ξ
Q(i,j,k)

q,α+1,β+1, ξ∗ = ξ
Q(i,j,k)

q−1,α,β , and ξ′′ = ξ
Q(i+1,j,k)

1,α+1,β+1

)
,(2.8) (

ξ = ξ
Q(j,i,k)

α,q,β , ξ′ = ξ
Q(j,i,k)

α+1,q,β+1, ξ∗ = ξ
Q(j,i,k)

α,q−1,β , and ξ′′ = ξ
Q(j,i+1,k)

α+1,1,β+1

)
,(2.9) (

ξ = ξ
Q(j,k,i)

α,β,q , ξ′ = ξ
Q(j,k,i)

α+1,β+1,q, ξ∗ = ξ
Q(j,k,i)

α,β,q−1, and ξ′′ = ξ
Q(j,k,i+1)

α+1,β+1,1

)
,(2.10)

α, β = 0, . . . , q − 1, i, j, k = 1, . . . , n, i �= n.

Proof of Lemma 2.2. Let T = [v0, v1, v2, v3] and T̃ = [v0, v1, v2, ṽ3] be two tetra-
hedra from Δ with a common triangular face F = T ∩ T̃ = [v0, v1, v2], where v3 �= ṽ3.
It follows from the special structure of Δ that in all cases the vertices v0, v1, and v2 of
F can be arranged such that v0, v1, v3, and ṽ3 lie in the same plane and form a par-
allelogram P with diagonal [v0, v1]. If T and T̃ are contained in two different cubes,
then P lies within a plane of the form (2.1). Otherwise, P lies in a plane parallel to
one of the three coordinate planes. In both cases, we compute

Φ0(ṽ3) = 1, Φ1(ṽ3) = 1, Φ2(ṽ3) = 0, and Φ3(ṽ3) = −1,

where Φν , ν = 0, . . . , 3, denote the barycentric coordinates w.r.t. T . Therefore, the
assertion follows from Theorem 2.1. This proves the lemma.

Remark 2.3. Combining the conditions in (2.5)–(2.7) which involve the coeffi-
cients along the main diagonal of the cube Q(i,j,k), we observe that for any C1 spline
on Δ the hidden conditions bξ + 2 bξ′ = bξ′′ + bξ∗ + bξ̃ are satisfied, where

(
ξ = ξ

Q(i,j,k)

α+1,α+1,α+1, ξ′ = ξ
Q(i,j,k)
α,α,α , ξ′′ = ξ

Q(i,j,k)

α+1,α,α, ξ∗ = ξ
Q(i,j,k)

α,α+1,α,(2.11)

and ξ̃ = ξ
Q(i,j,k)

α,α,α+1

)
, α = 0, . . . , q − 1, i, j, k = 1, . . . , n.

3. Minimal determining sets and main result. An analysis of the structure
of smooth multivariate splines is frequently done by constructing minimal determining
sets for the spaces. Following Alfeld, Piper and Schumaker [3] (see also Schumaker
and Sorokina [35, 36]), we call M ⊆ Dq(Δ) a determining set (DS) for S1

q (Δ), if
setting the coefficients bξ(s), ξ ∈ M, of a spline s ∈ S1

q (Δ) to zero, implies that
s = 0. A determining set M is called a minimal determining set (MDS) for S1

q (Δ)
if no determining set for S1

q (Δ) with fewer elements than in M exists. Hence, it is
obvious that M is an MDS for S1

q (Δ), if setting the coefficients bξ(s), ξ ∈ M, of a
spline s ∈ S1

q (Δ) to arbitrary real values, all its coefficients bξ(s), ξ ∈ Dq(Δ), are
uniquely determined (whereby all smoothness conditions described in (2.5)–(2.10) are
satisfied). The cardinality of an MDS for S1

q (Δ) coincides with the dimension (i.e., the
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Table 1

Dimensions of C1 and C0 splines on Freudenthal partitions Δ.

q Dimension of S1
q (Δ) n = 1 Dimension of S0

q (Δ) n = 1

1 4 4 n3 + O(n2) 8

2 9 n + 4 13 8 n3 + O(n2) 27

3 12 n2 + 18 n + 4 34 27 n3 + O(n2) 64

4 6 n3 + 36 n2 + 27 n + 4 73 64 n3 + O(n2) 125

5 24 n3 + 72 n2 + 36 n + 4 136 125 n3 + O(n2) 216

6 60 n3 + 120 n2 + 45 n + 4 229 216 n3 + O(n2) 343

7 120 n3 + 180 n2 + 54 n + 4 358 343 n3 + O(n2) 512

8 210 n3 + 252 n2 + 63 n + 4 529 512 n3 + O(n2) 729

9 336 n3 + 336 n2 + 72 n + 4 748 729 n3 + O(n2) 1 000

number of degrees of freedom) of the spline space. Moreover, we note that it is well
known in multivariate spline theory that the explicit construction of MDS gives insight
on the structure of spline spaces. In section 5, we construct an MDS for C1 splines of
any degree on Freudenthal partitions Δ. From this construction (see Theorem 5.1),
we obtain the following theorem, which we state here as our main result.

Theorem 3.1. Let Δ be a Freudenthal partition. Then the dimension of S1
q (Δ)

is given by

(q − 3)(q − 2)(q − 1) n3 + 6 (q − 2)(q − 1) n2 + 9 (q − 1) n + 4.(3.1)

Table 1 lists the dimension of S1
q (Δ) for low degrees, i.e., q ∈ {1, . . . , 9}, for

arbitrary n and n = 1 (i.e., the case of one cube), and compares them with the
asymptotic number of degrees of freedom as well as with the case n = 1 for the
continuous spline spaces on Δ of the same degree.

In the next corollary, we give some alternative formulae for the dimension of
S1
q (Δ). Recall that for Freudenthal partitions Δ the quantities NΔ, FΔ, EΔ, and VΔ

are given as in (2.2). In addition, let VI be the number of interior vertices of Δ, VB

the number of boundary vertices of Δ, FI the number of interior triangular faces of
Δ, and EI the number of interior edges of Δ. An elementary computation shows that
we have

VI = n3 − 3 n2 + 3 n− 1, VB = 6 n2 + 2, FI = 12 n3 − 6 n2,

and

EI = 7 n3 − 9 n2 + 3 n.

Since Δ can be completely constructed by starting with an appropriate tetrahedron
and adding successively tetrahedra which intersect the union of the tetrahedra con-
sidered before along one, two or three triangular faces, the Euler-type formulae

VB = 2 NΔ − FI + 2, NΔ = VI − EI + FI + 1,

are satisfied (see the discussion on shellable tetrahedral partitions in Lai and Schu-
maker [21]). By using these relations, the formula in (3.1), and some elementary
computations, we obtain the following result.
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Corollary 3.2. Let Δ be a Freudenthal partition. Then, the dimension of
S1
q (Δ) is given by

1
6

(
24 VΔ + 6 (3 q − 7) EΔ + 3 (2 q2 − 15 q + 21) FΔ

+ (q3 − 18 q2 + 80 q − 87) NΔ

)
= 1

6

(
18 (q − 1) VI + 3 (2 q2 − 3 q + 1) VB + (q3 − 6 q2 + 8 q − 3) NΔ

− 12 (q2 − 3 q)
)

= 1
6

(
(q3 + 6 q2 + 8 q − 15) VI − (q3 + 6 q2 − 10 q + 3) EI +

(q3 − q) FI + (q3 + 6 q2 + 8 q + 9)
)
.

4. MDS for C1 splines on a tetrahedrized cube. In this section, we deal
with C1 splines of arbitrary degree on the Freudenthal partition ΔQ which is obtained
by subdividing the single cube Q = Q(1,1,1) into six tetrahedra, i.e., the case n = 1.
This can be considered as the starting point of our inductive construction of an MDS
for S1

q (Δ), which is given in the next section. In the following, we construct two

different MDSs for the spaces S1
q (ΔQ), which we denote by M̃Q and MQ, respectively.

We first use the set M̃Q to determine the number of degrees of freedom of the smooth
splines on ΔQ. For defining this set, we consider the tetrahedra Ti of ΔQ and choose
appropriate subsets of Dq,Ti

, i = 1, . . . , 6. The definition of the second set MQ

requires the notation introduced in section 2 since its points are not chosen tetrahedron
by tetrahedron. (We want to keep the number of symbols as small as possible, and
therefore we describe both sets by using the above notation.) The set MQ is more

complex than M̃Q, but at that point we only have to show that MQ is a DS, since

the cardinalities of MQ and M̃Q coincide. Note that the construction of MQ is the
key of the proof of our main result (see section 5).

In the following, we set ξα,β,γ = ξQα,β,γ , α, β, γ = 0, . . . , q, and define M̃Q ⊆
Dq(ΔQ). To do this, we consider six auxiliarly sets M̃i, i = 1, . . . , 6, which are given
as follows:

M̃1 = {ξα,β,γ : γ ≤ β ≤ α},
M̃2 = {ξα,β,γ : β + 2 ≤ γ ≤ α},
M̃3 = {ξα,β,γ : β ≤ α ≤ γ − 2},
M̃4 = {ξα,β,γ : γ ≤ α ≤ β − 2},
M̃5 = {ξα,β,γ : α + 2 ≤ γ < β} ∪ {ξα,β,β : α + 3 ≤ β},
M̃6 = {ξα,β,γ : α + 2 ≤ β ≤ γ − 2} .

In these definitions as well as in what follows, the indices which are not further
specified run over all possible choices from {0, . . . , q}. It is easy to see that M̃1 is
equal to Dq,T1 , where T1 is the tetrahedron of ΔQ with the vertices (0, 0, 0), (1, 0, 0),

(1, 1, 0), and (1, 1, 1). The set M̃2 is obtained from Dq,T2 = {ξα,β,γ : β ≤ γ ≤ α},
where T2 is the tetrahedron of ΔQ with the vertices (0, 0, 0), (1, 0, 0), (1, 0, 1), and
(1, 1, 1), by removing the domain points in Dq,T2 on the common triangular face of T2

and T1 as well as the points in Dq,T2 associated with coefficients in distance one to
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this face. The set M̃4 is similar to M̃2: here we remove the analogous points from
Dq,T4 = {ξα,β,γ : γ ≤ α ≤ β}, where T4 is the tetrahedron of ΔQ with vertex (0, 1, 0),
which has the triangular face with vertices (0, 0, 0), (1, 1, 0), and (1, 1, 1) in common

with T1. Similarly, the set M̃3 is obtained from Dq,T3 = {ξα,β,γ : β ≤ α ≤ γ},
where T3 is the tetrahedron of ΔQ with the vertices (0, 0, 0), (0, 0, 1), (1, 0, 1), and
(1, 1, 1), by removing the domain points in T3 on the common triangular face of T3

and T2 as well as the points in T3 associated with coefficients in distance one to
this face. The sets M̃5 and M̃6 are subsets of Dq,T5

= {ξα,β,γ : α ≤ γ ≤ β} and
Dq,T6 = {ξα,β,γ : α ≤ β ≤ γ}, where T5 is the tetrahedron of ΔQ with the vertices
(0, 0, 0), (0, 1, 0), (0, 1, 1), and (1, 1, 1), and T6 is the tetrahedron of ΔQ with the
vertices (0, 0, 0), (0, 0, 1), (0, 1, 1), and (1, 1, 1), respectively: here, we remove similar
points as above, and some additional points on their common triangular face with
vertices (0, 0, 0), (0, 1, 1), and (1, 1, 1), i.e., the points in distance two to the main
diagonal in Q.

We set

M̃Q =

6⋃
i=1

M̃i.

Lemma 4.1. Let ΔQ be the Freudenthal partition of Q = Q(1,1,1). Then, M̃Q is
an MDS for S1

q (ΔQ) and the dimension of S1
q (ΔQ) is given by q3 + 2 q + 1.

Proof. Let arbitrary coefficients bξ = bξ(s), ξ ∈ M̃Q of a spline s ∈ S1
q (ΔQ)

be given. We have to show that the remaining coefficients of s, i.e., the coefficients
bξ, where ξ ∈ Dq(ΔQ) \ M̃Q, are uniquely determined, while the C1 smoothness
conditions involving the coefficients associated with each choice of four points in (2.5)–
(2.7) are satisfied. In the following, we use the above notation for the tetrahedra

T1, . . . , T6 in ΔQ. First, it is obvious that the choice of M̃1 ⊆ M̃Q implies that
the polynomial piece s|T1

is uniquely determined. In particular, the coefficients bξ,
where ξ = ξβ,α,α ∈ T1, α ≤ β, and ξ = ξβ,α+1,α ∈ T1, α + 1 ≤ β, are uniquely
determined. In view of (2.5), it follows that the coefficients bξ, where ξ = ξβ,α,α+1 ∈
T2, α + 1 ≤ β, are uniquely determined. The choice of M̃2 therefore implies that
s|T2

is uniquely determined. Similarly, the smoothness conditions in (2.6) for the
neighboring polynomial pieces on T2 and T3 determine the coefficients bξ, where ξ =

ξα,β,α+1 ∈ T3, β ≤ α, and it follows that the choice of M̃3 uniquely determines s|T3
.

Independently, the smoothness conditions in (2.7) for the neighboring polynomial
pieces on T1 and T4 determine the coefficients bξ, where ξ = ξα,α+1,β ∈ T4, β ≤ α,

and hence, the choice of M̃4 shows that s|T4
is uniquely determined. Moreover, the

remaining smoothness conditions in (2.6) for the neighboring polynomial pieces on T4

and T5 determine the coefficients bξ, where ξ = ξα,β,α+1 ∈ T5, α + 1 ≤ β, and the
remaining smoothness conditions in (2.7) for the neighboring polynomial pieces of T3

and T6 determine the coefficients bξ, where ξ = ξα,α+1,β ∈ T6, α + 1 ≤ β. Now, we
consider the remaining smoothness conditions in (2.5) for the neighboring polynomial
pieces on T5 and T6 in the case α = β + 1, i.e.,

bξβ,β+2,β+2
= bξβ,β+2,β+1

+ bξβ,β+1,β+2
− bξβ,β+1,β+1

.

It follows from above that the coefficients on the right of this equation are already
uniquely determined, and hence bξβ,β+2,β+2

is uniquely determined. The choice of

M̃5 now uniquely determines s|T5
. Finally, we get that the remaining smoothness
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Fig. 4. Illustration of the MDS M̃Q for S1
q (ΔQ) in the cases q = 3 (top) and q = 4 (bottom).

The points of M̃Q are marked by black symbols, while the white symbols indicate the order of
determining the remaining coefficients in the proof of Lemma 4.1.

conditions in (2.5) for the neighboring polynomial pieces on T5 and T6 and the choice

of M̃6 imply that s|T6
is uniquely determined, and therefore all the coefficients bξ

of s are uniquely determined. It is easy to see that the number of points M̃i is
equal to

(
q+3
3

)
= (q3 + 6q2 + 11q + 6)/6 if i = 1,

(
q+1
3

)
= (q3 − q)/6 if i ∈ {2, 3, 4},(

q+1
3

)
− (q− 1) = (q3 − 7q + 6)/6 if i = 5, and

(
q−1
3

)
= (q3 − 6q2 + 11q− 6)/6 if i = 6.

(Note that we set here and in the following
(
j
k

)
:= 0 whenever j < k.) Therefore,

it follows from some elementary computations that the number of points in M̃Q is
equal to q3 + 2 q + 1. This completes the proof of the lemma.

Example 4.2. In Figure 4, we show the MDS M̃Q in the cases q = 3 (top) and
q = 4 (bottom). The figure illustrates the different layers of domain points within the
cube Q in a front to back manner, where the thin lines indicate the intersections with
triangular faces in the interior of Q. In these examples the set M̃Q contains 34 and
73 points, respectively, which we illustrate by black symbols, i.e., we mark the points
from the sets M̃i, i = 1, . . . , 6, by •, �, �, �, � and �. In the proof of Lemma 4.1,
the coefficients associated with the remaining domain points are determined in the
order of the white symbols, i.e., ◦, �, �, �, 	
 , and ♦. Note that the coefficients
indicated by 	
 are determined from � and � by using conditions described in (2.5).

We proceed by defining a subset MQ of Dq(ΔQ) different from M̃Q which is also
an MDS for S1

q (ΔQ), but more symmetric. Again, we use the above abbreviations
and consider three auxiliary sets Mi, i = 1, . . . , 3, which are defined as follows:

M1 = {ξ0,0,0} ∪ {ξ0,α,β , ξα,0,β , ξα,β,0 : α �= β},
M2 = {ξα,β,γ , ξβ,α,γ , ξβ,γ,α : 1 ≤ α ≤ q − 3, α + 1 ≤ β, γ ≤ q − 1, β �= γ},
M3 = {ξq,α,β , ξα,q,β , ξα,β,q : 1 ≤ α, β ≤ q − 1, α �= β}.

The set M1 consists of all domain points contained in the left, front, and bottom face
of Q except for those which differ from ξ0,0,0 and lie on a diagonal of such a face. The
set M2 represents a symmetric constellation of points in the interior of Q. Moreover,
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Fig. 5. Illustration of the MDS MQ for S1
q (ΔQ) in the cases q = 3 (top) and q = 4 (bottom).

The points from MQ are marked by black symbols, while the white symbols indicate the order of
determining the remaining coefficients in the proof of Theorem 4.3.

M3 includes certain domain points contained in the right, back, and top face of Q.
This choice of points is illustrated in Figure 5 for the cases q = 3 (top) and q = 4
(bottom). Here, we use the symbols •, �, and � for the points in M1, M2, and M3,
respectively. The next theorem shows that

MQ =

3⋃
i=1

Mi

is an MDS for S1
q (ΔQ). We note that the construction of MQ is the key for showing

our main result (see next section). By using Lemma 4.1 its proof is essentially simpli-
fied, since it now suffices to show that MQ contains the right number of points and
is a determining set. Following the proof of the next theorem, it can be seen that the
coefficients of the splines associated with the remaining domain points indicated as
white symbols in Figure 5 are determined in the order ◦, �, �, and �.

Theorem 4.3. Let ΔQ be the Freudenthal partition of Q = Q(1,1,1). Then, MQ

is an MDS for S1
q (ΔQ).

Proof. The number of points in M1,M2, and M3 is equal to 3q2 + 1, q3 − 6q2 +
11q− 6, and 3(q2 − 3q + 2), respectively. Hence, some elementary computations show
that the number of points in MQ is equal to q3 + 2 q + 1. Therefore, in view of
Lemma 4.1, it suffices to show that MQ is a DS. We may assume that q ≥ 2 and
have to show that for any spline s ∈ S1

q (ΔQ), with coefficients bξ = bξ(s) = 0, where
ξ ∈ MQ, the remaining coefficients bξ(s), ξ ∈ Dq(ΔQ)\MQ, are also zero, i.e., s = 0.

First, we note that it follows from an inductive argument involving the smoothness
conditions in (2.5) for the case β = 0 that bξ = 0, where ξ = ξ0,α,α, α = 1, . . . , q.
Analogously, we get bξ = 0, where ξ = ξα,0,α and ξ = ξα,α,0, α = 1, . . . , q, by using
(2.6) and (2.7), respectively. The choice of M1 therefore implies that bξ = 0, where
ξ = ξ0,α,β , ξ = ξα,0,β , and ξ = ξα,β,0, α, β = 0, . . . , q. We now show inductively
that for any m ∈ {1, . . . , q − 1}, we have bξ = 0, where ξ = ξm,α,β , ξ = ξα,m,β , and
ξ = ξα,β,m, α, β = m, . . . , q − 1. Let us assume that this has already been shown
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for m − 1 ≤ q − 2. Then, it follows from induction hypothesis that bξ = 0, where
ξ = ξα,β,γ and α = m− 1 or β = m− 1 or γ = m− 1. The smoothness conditions in
(2.5) for the cases α = m− 1 and β = m, . . . , q − 1, now read as follows:

bξβ,m,m
= bξβ,m,m−1

+ bξβ,m−1,m
− bξβ,m−1,m−1

,

and we therefore get bξ = 0, where ξ = ξβ,m,m, β = m, . . . , q − 1. Analogously, we
get bξ = 0, where ξ = ξm,β,m and ξ = ξm,m,β , β = m + 1, . . . , q − 1, by using (2.6)
and (2.7), respectively. In particular, bξ = 0, where ξ = ξm,m,m, ξ = ξm,m+1,m, and
ξ = ξm,m,m+1. Thus, (2.5) in the case α = m + 1 and β = m gives bξ = 0, where
ξ = ξm,m+1,m+1. Similarly, bξ = 0, where ξ = ξm+1,m,m+1 and ξ = ξm+1,m+1,m. The
points ξm,α,α+1 and ξm,α+1,α, α = m+1, . . . , q−2, are contained in M2, and therefore
a similar inductive argument as above involving the smoothness conditions in (2.5)
for the case β = m now shows that bξ = 0, where ξ = ξm,α,α, α = m + 2, . . . , q − 1.
Similarly, bξ = 0, where ξ = ξα,m,α and ξ = ξα,α,m, α = m+ 2, . . . , q − 1. The choice
of the remaining points in M2 now shows that the assertion holds true for m.

We conclude that bξ = 0 for all domain points ξ which lie in the interior of Q.
It remains to consider the coefficients associated with points on the right, back,

and top face of Q. By using the conditions in (2.5)–(2.7) in the case α = 0 and β = q,
we can see that bξ = 0, where ξ = ξq,1,1, ξ = ξ1,q,1, and ξ = ξ1,1,q. The points
ξq,α,α+1 and ξq,α+1,α, α = 1, . . . , q − 2, are contained in M3, and therefore a similar
inductive argument as above involving the smoothness conditions in (2.5) for the case
β = q now shows that bξ = 0, where ξ = ξq,α,α, α = 1, . . . , q − 1. Similarly, bξ = 0,
where ξ = ξα,q,α and ξ = ξα,α,q, α = 1, . . . , q− 1. Now, we consider (2.5) in the cases
α = q − 1 and β = 1, . . . , q − 1, i.e.,

bξβ,q,q
= bξβ,q,q−1

+ bξβ,q−1,q
− bξβ,q−1,q−1

.

As one can see from the above, the coefficients on the right of this equation are zero,
and hence we have bξ = 0, where ξ = ξβ,q,q, β = 1, . . . , q− 1. Similarly, bξ = 0, where
ξ = ξq,β,q and ξ = ξq,q,β , β = 1, . . . , q − 1. Finally, (2.11) gives

bξq,q,q = bξq,q−1,q−1
+ bξq−1,q,q−1 + bξq−1,q−1,q − 2 bξq−1,q−1,q−1 = 0,

and we conclude that s = 0. This proves the theorem.
We close this section with an explicit example.
Example 4.4. The space S1

2 (ΔQ) is 13-dimensional. In Figure 6 we show the MDS
MQ with coefficients ai, i = 0, . . . , 12. The remaining coefficients bi, i = 0, . . . , 13,
are uniquely determined as follows:
b0 = −a0 + a1 + a5, b1 = a0 − a1 − a5 + a7 + a8,
b2 = −a0 + a3 + a5, b3 = a0 − a3 − a5 + a9 + a10,
b4 = −a0 + a1 + a3, b5 = a0 − a1 − a3 + a11 + a12,
b6 = −2a0 + a1 + a3 + a5, b7 = −a2 + a7 + a11,
b8 = −a4 + a10 + a12, b9 = −a6 + a8 + a9,

b10 = 2a0 − a1 − a2 − a3 − a4 − a5 + a7 + a10 + a11 + a12,
b11 = 2a0 − a1 − a3 − a4 − a5 − a6 + a8 + a9 + a10 + a12,
b12 = 2a0 − a1 − a2 − a3 − a5 − a6 + a7 + a8 + a9 + a11,
b13 = 4a0 − 2a1 − a2 − 2a3 − a4 − 2a5 − a6 + a7 + a8 + a9 + a10 + a11 + a12.

5. An MDS for S1
q (Δ) and proof of main result. We construct an MDS M

for S1
q (Δ), where Δ is a Freudenthal partition obtained from n3 cubes Q(i,j,k), i, j, k =



360 G. HECKLIN, G. NÜRNBERGER, AND F. ZEILFELDER

b2 b6

a6

a5

b1

b12

b7

a8

b0 a7

a2a1a0

a9 b9

a3 b4 a11

b3 b11 b13

a10 b8 b10

a4 a12 b5

Fig. 6. Illustration of the case of quadratic C1 splines on ΔQ. The points associated with the
coefficients ai, i = 0, . . . , 12, are an MDS for this space.

1, . . . , n, (see section 2). To do this, we use the results from the previous section. In
particular, we use Theorem 4.3 dealing with the case n = 1, which shows that MQ

is an MDS for S1
q (ΔQ), where Q = Q(1,1,1). In the following, we define M. To do

this, we need three auxiliary sets A(i,j,k), B(i,j,k), C(i,j,k), which are based on the
construction of MQ. For i, j, k = 1, . . . , n, we let

M(i,j,k) = {ξ ∈ Dq,Q(i,j,k)
: ξ − (i− 1, j − 1, k − 1) ∈ MQ}(5.1)

be the “shifted versions” of the set MQ. Then, we let

A(i,j,k) = {ξα,β,γ ∈ M(i,j,k) : α ≥ 2},
B(i,j,k) = {ξα,β,γ ∈ M(i,j,k) : β ≥ 2},
C(i,j,k) = {ξα,β,γ ∈ M(i,j,k) : γ ≥ 2},

for all i, j, k = 1, . . . , n, where here and in the following for simplicity, we set

ξα,β,γ := ξ
Q(i,j,k)

α,β,γ ∈ Dq,Q(i,j,k)
, α, β, γ = 0, . . . , q.

Roughly speaking, A(i,j,k) consists of all domain points in Q(i,j,k), which are not
contained or in distance one to the two triangles which form the left square face of
Q(i,j,k). Similarly, B(i,j,k) and C(i,j,k) consist of all points in Dq,Q(i,j,k)

, which are not
contained or in distance one to the two triangles which form the front and bottom
square face of Q(i,j,k), respectively. Now, we define

M = M(1,1,1) ∪
n⋃

i=2

[
A(i,1,1) ∪ B(1,i,1) ∪ C(1,1,i)

]

∪
n⋃

i,j=2

[(
A(i,j,1) ∩ B(i,j,1)

)
∪
(
A(i,1,j) ∩ C(i,1,j)

)
∪
(
B(1,i,j) ∩ C(1,i,j)

)]

∪
n⋃

i,j,k=2

[
A(i,j,k) ∩ B(i,j,k) ∩ C(i,j,k)

]
.

The next theorem particuarly shows that Theorem 3.1 holds true.
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Theorem 5.1. Let Δ be a Freudenthal partition. Then, M is an MDS for S1
q (Δ)

and the cardinality of M coincides with the number in (3.1).
Proof. Let q ≥ 2 and arbitrary coefficients bξ = bξ(s), ξ ∈ M, of a spline

s ∈ S1
q (Δ), be given. We first have to show that the remaining coefficients of s,

i.e., the coefficients in Dq(Δ) \M, are uniquely determined, while all C1 smoothness
conditions described in Lemma 2.2 are satisfied.

Our method of proof is to show inductively that the coefficients bξ, ξ ∈ Dq,Q(i,j,k)
,

are uniquely determined for i, j, k = 1, . . . , n, where we use Theorem 4.3 and pass
through the cubes Q(i,j,k) in an appropriate order. This natural order is as follows.
First, we consider (i, 1, 1), i = 1, . . . , n. Then, we consider (1, i, 1) and (1, 1, i), i =
2, . . . , n. Here, we have to take the C1 continuity across exactly one square face of the
cubes into account. We proceed by considering (i, j, 1), (i, 1, j), and (1, i, j), i, j =
2, . . . , n. Now, we have to take the C1 continuity across exactly two square faces of the
cube (which have a common edge) into account. Finally, we consider (i, j, k), i, j, k =
2, . . . , n. This is the most difficult situation, where we have to take the C1 continuity
across exactly three square faces of the cubes (which have a common point) into
account.

Since M(1,1,1) = MQ ⊆ M, it follows from Theorem 4.3 that all the coefficients
bξ, where ξ ∈ Dq,Q(1,1,1)

, are uniquely determined. Now, we consider the cube Q(2,1,1).
This cube has exactly one square face in common with Q(1,1,1). This square face
contains two triangular faces. Obviously, the coefficients associated with domain
points within these triangular faces are uniquely determined. Moreover, since the
coefficients bξ, where ξ ∈ {ξq−1,α,β , ξq,α,β , ξq,α+1,β+1} ⊆ Dq,Q(1,1,1)

, are uniquely
determined, it follows from the smoothness conditions in (2.8) that the coefficients bξ,
where ξ = ξ1,α+1,β+1 ∈ Dq,Q(2,1,1)

, α, β = 0, . . . , q − 1, are determined. Note that an
elementary computation shows that the conditions (2.5) for β = 1 and α = 1, . . . , q−1
(w.r.t. Q(2,1,1)) are automatically satisfied, and therefore the above coefficients are
also uniquely determined. In particular, the coefficients bξ, where ξ = ξ1,β,1 and ξ =
ξ1,1,β , β = 1, . . . , q, are uniquely determined. The smoothness conditions (2.6) and
(2.7) for α = 0 (w.r.t. Q(2,1,1)) now imply that the coefficients bξ, where ξ = ξ1,β,0 and
ξ = ξ1,0,β , β = 1, . . . , q, respectively, are uniquely determined. Finally, we use some
elementary computations to show that an application of the smoothness condition
(2.5) for α = 0 and β = 1, as well as the smoothness conditions (2.6) and (2.7) for
α = 0 and β = 0, respectively, give the same value for the coefficient bξ1,0,0 , which
is therefore uniquely determined. The choice of A(2,1,1) ⊆ M and an argumentation
along the lines of the proof of Theorem 4.3 now show that all the coefficients bξ,
where ξ ∈ Dq,Q(2,1,1)

are uniquely determined, while the smoothness conditions (2.8)
for i = 1, j = 1, k = 1, and (2.5)–(2.7) for i = 2, j = 1, k = 1, are satisfied. It now
follows from induction, the choice of points in A(i,1,1)∪B(1,i,1)∪C(1,1,i) ⊆ M, and the
same arguments that bξ is uniquely determined if ξ ∈ Dq,Q(i,1,1)

∪Dq,Q(1,i,1)
∪Dq,Q(1,1,i)

,
where i = 2, . . . , n.

Next, we consider the cube Q(2,2,1). According to the above ordering, this cube has
exactly two square faces in common with some of the cubes considered before, namely,
the cubes Q(1,2,1) and Q(2,1,1). It follows from the above that the coefficients associat-
ed with domain points in the triangular faces within these squares are uniquely deter-
mined. Moreover, since the coefficients bξ, where ξ ∈ {ξq−1,α,β , ξq,α,β , ξq,α+1,β+1} ⊆
Dq,Q(1,2,1)

and ξ ∈ {ξα,q−1,β , ξα,q,β , ξα+1,q,β+1} ⊆ Dq,Q(2,1,1)
, are uniquely deter-

mined, it follows from the smoothness conditions in (2.8) and (2.9) that the coeffi-
cients bξ, where ξ ∈ {ξ1,α+1,β+1, ξα+1,1,β+1} ⊆ Dq,Q(2,2,1)

, α, β = 0, . . . , q − 1, are
uniquely determined. In particular, the smoothness conditions (2.5) and (2.6) for
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β = 1 and α = 0, . . . , q − 1 (w.r.t. Q(2,2,1)) are automatically satisfied, which can
be seen by performing some elementary computations. Moreover, we note that the
coefficients of the form bξ, where ξ = ξ1,1,β , β = 0, . . . , q, are uniquely determined,
since the spline s and its (three) first partial derivatives are already uniquely deter-
mined along the common edge of Q(1,2,1) and Q(2,1,1). An argument as above shows
that the coefficients bξ, where ξ = ξ1,β,0 and ξ = ξβ,1,0, β = 1, . . . , q, respectively,
are uniquely determined. The choice of A(2,2,1) ∩ B(2,2,1) ⊆ M and an argumenta-
tion along the lines of the proof of Theorem 4.3 now show that all the coefficients
bξ, where ξ ∈ Dq,Q(2,2,1)

, are uniquely determined, while the smoothness conditions
(2.8) for i = 1, j = 2, k = 1, (2.9) for i = 2, j = 1, k = 1, and (2.5)–(2.7) for
i = 2, j = 2, k = 1 are satisfied. It now follows from induction, the choice of points
in

(
A(i,j,1) ∩ B(i,j,1)

)
∪
(
A(i,1,j) ∩ C(i,1,j)

)
∪
(
B(1,i,j) ∩ C(1,i,j)

)
⊆ M, and the same

arguments that bξ is uniquely determined if ξ ∈ Dq,Q(i,j,1)
∪ Dq,Q(i,1,j)

∪ Dq,Q(1,i,j)
,

where i, j = 2, . . . , n.
Finally, we consider the cube Q(2,2,2). According to the above ordering, this cube

has exactly three square faces in common with cubes already considered, namely, the
common faces with the cubes Q(1,2,2), Q(2,1,2), and Q(2,2,1). It follows from the above
that the coefficients associated with domain points in the triangular faces within
these squares are uniquely determined. Moreover, since the coefficients bξ, where
ξ ∈ {ξq−1,α,β , ξq,α,β , ξq,α+1,β+1} ⊆ Dq,Q(1,2,2)

, ξ ∈ {ξα,q−1,β , ξα,q,β , ξα+1,q,β+1} ⊆
Dq,Q(2,1,2)

, and ξ ∈ {ξα,β,q−1, ξα,β,q, ξα+1,β+1,q} ⊆ Dq,Q(2,2,1)
, are uniquely deter-

mined, it follows from the smoothness conditions in (2.8)–(2.10) that the coefficients
bξ, where ξ ∈ {ξ1,α+1,β+1, ξα+1,1,β+1, ξα+1,1,β+1} ⊆ Dq,Q(2,2,2)

, α, β = 0, . . . , q−1, are
uniquely determined. In particular, the smoothness conditions (2.5)–(2.7) for β = 1
and α = 0, . . . , q− 1 (w.r.t. Q(2,2,2)) are automatically satisfied, which can be seen by
performing some elementary computations. Moreover, we note that the coefficients
of the form bξ, where ξ ∈ {ξ1,1,β , ξ1,β,1, ξβ,1,1}, β = 0, . . . , q, are uniquely deter-
mined, since the spline s and its (three) first partial derivatives are already uniquely
determined along the common edge of each pair of the cubes Q(1,2,2), Q(2,1,2) and
Q(2,2,1). The choice of A(2,2,2) ∩ B(2,2,2) ∩ C(2,2,2) ⊆ M and an argumentation along
the lines of the proof of Theorem 4.3 now show that all the coefficients bξ, where
ξ ∈ Dq,Q(2,2,2)

, are uniquely determined, while the smoothness conditions (2.8) for
i = 1, j = 2, k = 2, (2.9) for i = 2, j = 1, k = 2, (2.10) for i = 2, j = 2, k = 1, and
(2.5)–(2.7) for i = 2, j = 2, k = 2 are satisfied. It now follows from induction, the
choice of points in A(i,j,k) ∩ B(i,j,k) ∩ B(i,j,k) ⊆ M and the same arguments that bξ is
uniquely determined if ξ ∈ Dq,Q(i,j,k)

, where i, j, k = 2, . . . , n.

This shows that all the coefficients of s are uniquely determined, while all the C1

smoothness conditions described in Lemma 2.2 are satisfied. To complete the proof,
we have to count the number of points in M and have to show that the cardinality
of this set coincides with the number in (3.1).

Lemma 4.1 and Theorem 4.3 show that the set M(1,1,1) = MQ contains q3+2 q+1
domain points, and it is obvious that this is also the number of points in every set
M(i,j,k) defined in (5.1), where i, j, k = 1, . . . , n. Since the cardinality of M(2,1,1) \
A(2,1,1) is 2 q2 + 2, it follows that A(2,1,1) contains q3 − 2 q2 + 2 q− 1 domain points.
The same number of points are contained in each of the sets A(i,1,1), B(1,i,1), and
C(1,1,i), i = 2, . . . , n. The cardinality of M(2,2,1)\(A(2,2,1)∩B(2,2,1)) is 4 q2−3 q+3, and
therefore q3−4 q2+5 q−2 domain points are contained in A(2,1,1)∩B(2,2,1). The same
number of points are contained in each of the sets A(i,j,1) ∩ B(i,j,1), A(i,1,j) ∩ C(i,1,j),
and B(1,i,j) ∩ C(1,i,j), i, j = 2, . . . , n. Since the cardinality of M(2,2,2) \ (A(2,2,2) ∩



THE STRUCTURE OF C1 SPLINES 363

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
���������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���������
���������
���������
���������

���������
���������
���������
������������������

���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
������������������

���������
���������
���������
���������

���������
���������
���������
���������
���������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

Fig. 7. The MDS M for n = 2 in the case q = 3.

B(2,2,2) ∩ C(2,2,2)) is 6 q2 − 9 q + 7, it follows that A(2,2,2) ∩ B(2,2,2) ∩ C(2,2,2) contains
q3 − 6 q2 + 11 q− 6 domain points. The same number of points are contained in each
of the sets A(i,j,k) ∩ B(i,j,k) ∩ C(i,j,k), i, j, k = 2, . . . , n. We conclude that the total
number of points in M is equal to

(q3 + 2 q + 1) + 3 (n− 1) (q3 − 2 q2 + 2 q − 1)

+3 (n− 1)2 (q3 − 4 q2 + 5 q − 2) + (n− 1)3 (q3 − 6 q2 + 11 q − 6).

Some elementary computations now show that this is the number in (3.1). The proof
is complete.

Example 5.2. Figures 7 and 8 show examples for the MDS M for n = 2 in
the cases q = 3 and q = 4, respectively. The figures show the different layers of
domain points in a front to back manner, i.e., inside the planes y = �/q, � = 0, . . . , 2q,
organized in a spiral, where the different sizes of the layers indicate the distances to
the front. The points from the set M are marked by black dots, the domain points
associated with coefficients which are removed from M(i,j,k) are marked by grey dots,
while the remaining domain points determined by the various smoothness conditions
are marked by white dots. The dimension of the spline spaces S1

3 (Δ) and S1
4 (Δ)

in these examples are 88 and 250, respectively. In the proof of Theorem 5.1, the
different cubes are considered in the order illustrated by the different symbols: grey,
horizontally stripped, vertically stripped, and white.

6. Remarks. We close the paper with some remarks on possible extensions of
our approach and discuss the differences to other spline spaces.
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Fig. 8. The MDS M for n = 2 in the case q = 4.

Fig. 9. A more general domain Ω, where the inductive arguments of the proof of Theorem 5.1
can be applied.

Remark 6.1. Our main results, Theorem 3.1 and Theorem 5.1, can be extended
to more general partitions on different domains. An example for such a uniform cube
partition is shown in Figure 9. Other examples of such domains are obtained from
rectangular cube partitions, where there are nj cubes with edge lengths 1 in the jth
space direction, j = 1, 2, 3. In this case, the total number of cubes is equal to n1n2n3
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and the dimension of the corresponding C1 spline space is given by

6
(
q−1
3

)
n1n2n3 + 4

(
q−1
2

)
(n1n2 + n1n3 + n2n3) + 3

(
q−1
1

)
(n1 + n2 + n3) + 4.

Moreover, we observe that the spacing in each direction does not need to be uni-
form, i.e., our arguments still hold when we start from a partition ♦, where Q(i,j,k) =
[xi−1, xi] × [yj−1, yj ] × [zk−1, zk], with xi−1 < xi, i = 1, . . . , n1, yj−1 < yj , j =
1, . . . , n2, zk−1 < zk, k = 1, . . . , n3. However, in this case, the smoothness conditions
of the spaces can no longer be described by one single formula as in Lemma 2.2. More
precisely, one has to distinguish two cases: smoothness conditions across triangular
faces for tetrahedra in different boxes involve different weights (barycentric coordi-
nates evaluated at ṽ3), while smoothness conditions across triangular faces inside a
box remain the same. In both cases, the smoothness conditions are still all of bivariate
type, and our arguments hold for these more general partitions. However, in order
to avoid complicated notations, we consider the uniform case, only. Moreover, we
observe that Cr splines, r ≥ 2, on Freudenthal partitions lead to more complex spline
spaces, since the smoothness conditions are much more involved.

Remark 6.2. Since the trivariate splines we consider here are defined on a tetra-
hedral partition of a uniform grid, it is possible to compare them with different spline
methods, which require the same grid, namely, approaches based on tensor-product
splines and box-splines. First, we observe that the dimension of the trivariate splines
is much larger than that of the tensor-product splines of the same total degree. For in-
stance, tensor-product C1 splines of lowest possible total degree are quadratic tensor-
product splines (sometimes called triquadratic splines) and form a n3 +12n2 +6n+8-
dimensional subspace of S1

6 (Δ). Hence, using the full space S1
6 (Δ) instead provides

some additional flexibility, since its complete number of degrees of freedom is accord-
ing to our result 60n3 + 120n2 + 45n + 4. More generally, if tensor-product spline
spaces exist, i.e., q is divisible by three, then we can understand these spaces as sim-
ple subspaces of S1

q (Δ) possessing a huge number of (unnecessary) supersmoothness
conditions. This has also consequences for the approximation order, which for these
subspaces is known to be not higher than q/3 + 1 << q + 1. A different approach
is based on box-splines (see de Boor, Höllig and Riemenschneider [10]). These are
piecewise polynomial functions of a certain degree and smoothness on uniform par-
titions with a local support which are usually defined as in Chui [12]. Most of the
papers on these splines deal with the bivariate setting (see, for instance, de Boor and
Höllig [9]), and it is known that box-splines may form a subspace or even a linearly
dependent set of spline functions (see, for instance, Nürnberger [24]). For (slightly)
more nonuniform partitions as described in the previous remark, the box-spline con-
structions would have to be—at least—adjusted. Moreover, we are not aware of any
work on trivariate box-splines which yields explicit results on the dimension of the
full trivariate spline space as we develop them here. For instance, Shi and Wang
[37] focused on the existence of a trivariate box-spline and particuarly showed this
for S1

q (Δ) iff q ≥ 4. On the other hand, for defining approximation operators as in
Hecklin, Nürnberger, Schumaker and Zeilfelder [17] and Nürnberger, Rössl, Seidel and
Zeilfelder [26, 32] (see also Schlosser, Hesser, Zeilfelder, Rössl, Männer, Nürnberger,
and Seidel [33]) with advantageous properties for the applications, it is often neces-
sary to know the precise structure of the trivariate spline spaces. We are not aware
of a method or a practical test based on the usage of trivariate box-splines which has
a comparable algorithmic behavior as it is reported in these trivariate spline meth-
ods. Also note that the implementation of the above-mentioned operators does not
require an intermediate step of constructing explicitly a basis or a set of locally sup-
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ported functions (see also the discussion in [39])—taking advantage of the piecewise
Bernstein–Bézier form the methods can be directly applied to the given data and the
methods from computer aided geometric design can be used for the effective further
treatment of the reconstructed objects. Finally concerning the development of the
above-mentioned operators, our approaches using low-degree trivariate splines pro-
vide the flexibility to subdivide (some of) the tetrahedra, and can therefore often be
applied to deformed grids and more general tetrahedral partitions, too.

Remark 6.3. Bivariate and trivariate C1 splines of lowest possible degree are ex-
tremely complex spaces. For instance, it is known that the dimension of quadratic C1

bivariate splines on the three-directional mesh essentially coincides with the degrees
of freedom of univariate splines, and we particuarly showed here that this property is
inherited by S1

2 (Δ). On the other hand, it is still possible to work with quadratic C1

splines. We note that the special structure of the Freudenthal partitions Δ allows to
satisfy the necessary geometric constraints described in Worsey and Piper [41] (see
also Sorokina and Worsey [38]) to apply the Worsey–Piper split to each tetrahedron
of Δ.

Acknowledgments. The authors would like to thank the referees for their valu-
able comments.
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[43] A. Ženǐsek, Polynomial approximation on tetrahedrons in the finite element method, J. Approx.
Theory, 7 (1973), pp. 334–351.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 368–384

VANISHING VISCOSITY LIMIT TO RAREFACTION WAVES FOR
THE NAVIER–STOKES EQUATIONS OF ONE-DIMENSIONAL

COMPRESSIBLE HEAT-CONDUCTING FLUIDS∗

SONG JIANG† , GUOXI NI† , AND WENJUN SUN†

Dedicated to Professor Rolf Leis on the occasion of his 75th birthday

Abstract. We prove the solution of the Navier–Stokes equations for one-dimensional compress-
ible heat-conducting fluids with centered rarefaction data of small strength exists globally in time,
and moreover, as the viscosity and heat-conductivity coefficients tend to zero, the global solution
converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly
away from the initial discontinuity.
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1. Introduction and the main result. We study the asymptotic behavior, as
the viscosity and heat-conductivity go to zero, of solutions to the Cauchy problem for
the Navier–Stokes equations for a one-dimensional (1-d) compressible heat-conducting
fluid (in Lagrangian coordinates):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + px = ε
(ux

v

)
x
,

(
e +

u2

2

)
t
+ (up)x =

(
κ
θx
v

+ ε
uux

v

)
x

(1.1)

with (discontinuous) initial data

(u, v, e)(x, 0) = (u0, v0, e0)(x), x ∈ R,(1.2)

where v, u, θ, p = p(e, v) and e denote the specific volume, the velocity, the temper-
ature, the pressure, and the internal energy, respectively, and ε, κ are the viscosity
and heat-conductivity coefficients, respectively. At infinity, the initial data u0, v0, e0

are assumed to satisfy

lim
x→±∞

(u0, v0, e0)(x) = (u±, v±, e±),(1.3)

where u±,v± and e± are given constant states.
The system (1.1), describing the motion of the fluid, are the conservation laws of

mass, momentum, and energy.
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The asymptotic behavior of viscous flows, as the viscosity vanishes, is one of the
important topics in the theory of compressible flows. It is expected that a general
weak entropy solution to the Euler equations should be a (strong) limit of solutions to
the corresponding Navier–Stokes equations with the same initial data as the viscosity
and heat-conductivity tend to zero.

For the 1-d compressible isentropic Navier–Stokes equations⎧⎨
⎩

vt − ux = 0,

ut + p(v)x = ε
(ux

v

)
x
,

(1.4)

and the corresponding inviscid p-system{
vt − ux = 0,
ut + p(v)x = 0,

(1.5)

the vanishing viscosity limit for the Cauchy problem has been studied by several
researchers. In [7] DiPerna uses the method of compensated compactness and estab-
lishes a.e. convergence of admissible solutions (uε, vε) of (1.4) to an admissible solution
of (1.5), provided that (uε, vε) is uniformly L∞ bounded and vε is uniform bounded
away from zero. However, this uniform boundedness is difficult to verify in general,
and the abstract analysis in [7] gets little information on the qualitative nature of
the viscous solutions. In [14] Hoff and Liu investigate the inviscid limit problem for
(1.4) in the case that the underlying inviscid flow is a single weak shockwave, and they
show that solutions of the compressible Navier–Stokes equations with shock data exist
and converge to the inviscid shocks, as viscosity vanishes, uniformly away from the
shocks. Based on [9, 14], Xin in [30] shows that the solution to the Cauchy problem
for the system (1.4) with weak centered rarefaction wave data exists for all time and
converges to the weak centered rarefaction wave solution of the corresponding Euler
equations, as the viscosity tends to zero, uniformly away from the initial disconti-
nuity. Moreover, for a given centered rarefaction wave to the Euler equations with
finite strength, he constructs a viscous solution to the compressible Navier–Stokes
system with initial data depending on the viscosity, such that the viscous solution
approaches the centered rarefaction wave as the viscosity goes to zero at the rate
| ln ε|ε1/4 uniformly for all time away from t = 0. In the vanishing viscosity limit, the
Prandtl boundary layers (characteristic boundaries) are studied for the multidimen-
sional linearized compressible Navier–Stokes equations by using asymptotic analysis
in [31, 32, 29], while the boundary layer stability in the case of noncharacteristic
boundaries and one spatial dimension is discussed in [26, 23]. We mention that there
is extensive literature on the vanishing artificial viscosity limit for hyperbolic systems
of conservation laws; see, for example, [7, 8, 6, 9, 18, 17, 33, 10, 25, 3, 11, 12, 1],
also cf. the monographs [2, 5, 24] and the references therein. We also mention that
the convergence of the 1-d Broadwell model and the relaxation limit of a rate-type
viscoelastic system to the isentropic Euler equations with centered rarefaction wave
initial data are studied in [28, 15], respectively.

Our aim in this paper is to study the relation between the solution (uε, vε, eε)(x, t)
of the Navier–Stokes equations for a compressible heat-conducting fluid (1.1) and the
solution (u, v, e)(x, t) of the corresponding inviscid Euler equations:⎧⎪⎪⎨

⎪⎪⎩
vt − ux = 0,
ut + px = 0,(
e +

u2

2

)
t
+ (up)x = 0

(1.6)
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with the initial data

(u, v, e)(x, 0) = (ũ0, ṽ0, ẽ0)(x), x ∈ R,(1.7)

satisfying

lim
x→±∞

(ũ0, ṽ0, ẽ0)(x) = (u±, v±, e±)(1.8)

with the same constant states (u±, v±, e±) as in (1.3).
It is convenient to work with the equations for the entropy s and the absolute

temperature θ. The second law of thermodynamics asserts that

θds = de + pdv.

We assume, as is customary in thermodynamics, that given any two of the thermody-
namics variables ρ, e, θ, s, and p, we can obtain the remaining three variables. If we
choose (v, θ) as independent variables and write (p, e, s) = (p, e, s)(v, θ), we deduce
that

sv(v, θ) = pθ(v, θ), sθ(v, θ) =
eθ(v, θ)

θ
, ev(v, θ) = θpθ(v, θ) − p(v, θ).

Then, a straightforward calculation gives

st = κ
( θx
vθ

)
x

+ κ
θ2
x

vθ2
+ ε

u2
x

vθ
,(1.9)

θt +
θpθ(v, θ)

eθ(v, θ)
ux =

κ

eθ(v, θ)

(θx
v

)
x

+
ε

eθ(v, θ)

u2
x

v
.(1.10)

We may also choose (v, s) as independent variables and write

p = p(v, s), θ = θ(v, s).

Thus, instead of (1.1), we shall study the system (1.1)1, (1.1)2, and (1.9), or (1.1)1, (1.1)2,
and (1.10). Namely, we shall consider⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt − ux = 0,

ut + p(v, s)x = ε
(ux

v

)
x
,

st = κ
( θx
vθ

)
x

+ κ
θ2
x

vθ2
+ ε

u2
x

vθ
,

(1.11)

with initial data

(u, v, s)(x, 0) = (u0, v0, s0)(x) =

{
(u−, v−, s−), x < 0,

(u+, v+, s+), x > 0,
(1.12)

where u±, v± and s± are the constant states. The corresponding inviscid Euler equa-
tions read as ⎧⎨

⎩
vt − ux = 0,
ut + p(v, s)x = 0,
st = 0.

(1.13)
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We assume in this paper that the pressure p is a smooth function of its arguments
satisfying

pv(v, s) < 0 < pvv(v, s) for v > 0.(1.14)

Notice that the condition (1.14) assures that the system (1.13) has characteristic
speeds

λ1 = −
√
−pv, λ2 = 0, λ3 =

√
−pv,

and there are two families of rarefaction waves for the Euler equations (1.13). For
illustration, we describe only the 1-rarefaction waves, and thus assume s+ = s− ≡ s.
The case for the 3-rarefaction waves can be dealt with similarly.

Suppose the end states (u±, v±, s) can be connected by 1-rarefaction waves. The
centered 1-rarefaction wave connecting (u−, v−, s) to (u+, v+, s) is the self-similar
solution (u, v, s)(x, t) = (ur, vr, sr)(x/t) of (1.13) defined by (see, e.g., [27, 4])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sr(ξ) = s,

ur(ξ) = u− +

∫ vr(ξ)

v−

λ1(z, s)dz,

λ1(v
r, s)(x, t) increasing in x, λ1(v

r, s)(x, t) = −
√
−pv(vr(x/t), s),

(1.15)

which is uniquely determined by the system (1.13) and the rarefaction wave initial
data

(u, v, s)|t=0 ≡ (ur
0, v

r
0, s

r
0)(x) =

{
(u−, v−, s), x < 0,

(u+, v+, s), x > 0.
(1.16)

For the internal energy e(v, θ) and the viscosity and heat-conductivity coefficients ε, κ,
we assume that for some constant C > 0,{

eθ(v, θ) > 0 for v, θ > 0,

κ = O(ε) as ε → 0, κ(ε)/ε ≥ C > 0 ∀ε > 0.
(1.17)

From the kinetic theory, the viscosity and heat-conductivity should be in the same
order. In this sense, the assumption κ = O(ε) in (1.17) is reasonable.

For the sake of convenience, throughout this paper we denote

α = |u+ − u−| + |v+ − v−|.

In this paper, we prove that the solution of system (1.11) with the centered
rarefaction wave initial data (1.16) of small strength α exists for all time and converges
to the centered rarefaction wave of the Euler equation (1.13) as ε → 0 uniformly away
from the initial discontinuity. More precisely, the main result of this paper is stated
in the following theorem.

Theorem 1.1. Let the constant states (u±, v±, s) be connected by a centered
1-rarefaction wave (ur(xt ), v

r(xt ), s
r(xt )) defined by (1.15). Assume that (1.14) and

(1.17) hold. Then, for α small enough, the compressible Navier–Stokes equations
(1.11) with the rarefaction wave initial data (1.16) have a global piecewise smooth
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solution (uε(x, t), vε(x, t), sε(x, t)), such that the following hold:

(i) uε, θε are continuous for t > 0, vε and uε
x, v

ε
x, θ

ε
x are uniformly Hölder contin-

uous in the set x < 0, t ≥ τ and x > 0, t ≥ τ for any τ > 0; uε
t, u

ε
xx, v

ε
xt, θ

ε
t , θ

ε
xx are

Hölder continuous on compact set (x, t), x �= 0, t > 0. Moreover, the jumps in vε at
x = 0 satisfy

|[vε(0, t)]| ≤ C1 exp (−C2t/ε),

and so the other jumps, where C1, C2 are positive constants independent of t and ε,
and [ · ] denotes jumps in what follows.

(ii) The solution (uε, vε, sε) converges to the centered rarefaction wave (ur, vr, sr)
as ε → 0 uniformly away from t = 0; i.e., for any positive h, we have

lim
ε→0

sup
x∈R,t>h

∣∣∣(uε(x, t), vε(x, t), sε(x, t)) −
(
ur

(x
t

)
, vr

(x
t

)
, sr

(x
t

)) ∣∣∣ = 0.

(iii) For any fixed viscosity ε > 0, the solution (uε, vε, sε) approaches the centered
rarefaction wave (ur, vr, sr) uniformly as time goes to infinity; i.e.,

lim
t→∞

sup
x∈R1

∣∣∣(uε(x, t), vε(x, t), sε(x, t)) −
(
ur

(x
t

)
, vr

(x
t

)
, sr

(x
t

)) ∣∣∣ = 0.

Remark 1.1. (i) The exponential decay with respect to t of the jumps in vε also
remains valid for [uε

x] and [θεx].

(ii) The smallness of α is needed in (2.11) in section 2 to make ‖ϕ0y‖± small (cf.
Remark 2.1).

To prove Theorem 1.1 and to overcome the difficulties induced by nonisentropy of
the flow, we shall adapt and modify the arguments in [30, 13, 22]. Namely, we first use
a natural scaling argument to reduce the proof to the nonlinear time-asymptotic sta-
bility analysis of rarefaction waves for the compressible Navier–Stokes equation (1.11)
under nonsmooth initial perturbations. Then, observing that the approximation of
the smooth rarefaction waves to the rarefaction wave of Euler equation depends on
both the strength and the initial perturbation, we exploit the smoothing property
induced by the parabolic parts in (1.12) and the smallness of α, and employ delicate
energy estimates and carefully control jumps to obtain the theorem.

We point out here that in view of Theorem 1.1, an initial jump discontinuity
at x = 0 can be allowed in (1.2). The evolution of this jump discontinuity is an
important aspect in our analysis. It has been shown in [13] that the discontinuity
evolution follows a curve ẋ = −[u]/[v] in the x-t plane, and the jump discontinuity
in v, ux and θx decays exponentially in time, while the discontinuity in u and θ is
smoothed out at positive time; see [13] for details. We shall exploit this fact in the
proof of Theorem 1.1.

In section 2 we reformulate the problem and give the proof of Theorem 1.1, while
section 3 is dedicated to the derivation of a priori estimates used in section 2.

Throughout this paper, we use the following notation:

R
− := (−∞, 0), R

+ := (0,∞), ‖ · ‖ ≡ ‖ · ‖L2(R), ‖ · ‖Lp ≡ ‖ · ‖Lp(R),

‖ · ‖2
± ≡ ‖ · ‖2

L2(R−) + ‖ · ‖2
L2(R+),

∫
±
·dy ≡

∫ 0

−∞
·dy +

∫ ∞

0

·dy.
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2. Reformulation and the proof of Theorem 1.1. In this section, we will
reduce the proof of Theorem 1.1 to the nonlinear time-asymptotic stability analysis
of rarefaction waves for the system (1.11) under nonsmooth perturbations.

First, we derive some necessary estimates on the rarefaction waves of the Euler
equations (1.13) based on the inviscid Burgers equation, in particular, we construct
an explicit smooth 1-rarefaction wave which well approximates a given centered 1-
rarefaction wave. We start with the Riemann problem for the Burgers equation:⎧⎨

⎩ wt +
(w2

2

)
x

= 0,

w(x, 0) = wr
0(x),

(2.1)

where wr
0(x) is given by

wr
0(x) =

{
w−, x < 0,
w+, x > 0.

If w− < w+, then the problem (2.1) has the centered rarefaction wave solution
wr(x, t) = wr(x/t) given by

wr(x, t) =

⎧⎨
⎩

w−, x/t ≤ w−,
x/t, w− ≤ x/t ≤ w+,
w+, x/t ≥ w+.

To construct a smooth rarefaction wave solution of the Burgers equation which ap-
proximates the centered rarefaction wave, we set for δ > 0,

wδ(x) = w(δx) =
w+ + w−

2
+

(w+ − w−)

2
tanh(δx)

and for each δ > 0, we solve the following initial value problem:⎧⎨
⎩ wt +

(w2

2

)
x

= 0,

w(x, 0) = wδ(x).

(2.2)

Next, we state certain properties that will be used later (see [30, 22] for a proof).
Lemma 2.1. For each δ > 0, the problem (2.2) has a unique global smooth solution

wr
δ(x, t), such that the following hold:

(i) w− < wr
δ(x, t) < w+, ∂xw

r
δ(x, t) > 0 for x ∈ R, t ≥ 0, δ > 0.

(ii) For any 1 ≤ p ≤ ∞, there is a constant C(p) depending only on p, such that

‖∂xwr
δ(·, t)‖Lp ≤ C(p) min{(w+ − w−)δ1−1/p, (w+ − w−)1/pt−1+1/p},

‖∂2
xw

r
δ(·, t)‖Lp ≤ C(p) min

{
(w+ − w−)δ2−1/p, δ1−1/p 1

t

}
,

‖∂3
xw

r
δ(·, t)‖Lp ≤ C(p) min

{
(w+ − w−)δ3−1/p, δ2−1/p 1

t

}
.

(iii)

lim
t→+∞

sup
x∈R

|wr
δ(x, t) − wr(x, t)| = 0.
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Now, set w± = λ1(v±, s), and we define V (x, t), U(x, t), S(x, t),Θ(x, t), the smooth
approximation of (vr, ur, sr, θr), by

λ1(V (x, t), s) = wr
δ(x, t), U(x, t) = u± +

∫ V (x,t)

v±

√
−pv(z, s)dz,

S(x, t) = s, Θ(x, t) = θ(V (x, t), s).

Then, it is not difficult to see that V (x, t), U(x, t), S(x, t),Θ(x, t) satisfy⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vt − Ux = 0,

Ut + p(V,Θ)x = 0,

St(V,Θ) = 0,

Θt +
Θpθ(V,Θ)

eθ
Ux = 0,

(2.3)

and due to Lemma 2.1, the following lemma holds for V,U, S,Θ.
Lemma 2.2. The functions V (x, t), U(x, t), S(x, t), and Θ(x, t) constructed above

satisfy the following:
(i) Vt = Ux > 0 for all x ∈ R, t ≥ 0.
(ii) For any 1 ≤ p ≤ ∞, there is a positive constant C(p) depending only on p,

such that

‖(Vx, Ux,Θx)(·, t)‖Lp ≤ C(p) min{αδ1−1/p, α1/pt−1+1/p},
‖(Vxx, Uxx,Θxx)(·, t)‖Lp ≤ C(p) min{αδ2−1/p, δ1−1/pt−1},
‖(Vxxx, Uxxx,Θxxx)(·, t)‖Lp ≤ C(p) min{αδ3−1/p, δ2−1/pt−1}.

(iii)

lim
t→∞

sup
x∈R

|(V,U, S,Θ)(t, x) − (vr, ur, sr, θr)(t, x)| = 0.

(iv)

|(Vt, Ut,Θt)(x, t)| ≤ C|(Vx, Ux,Θx)(x, t)|.

Consequently, from Lemmas 2.1 and 2.2, it follows that (U, V,Θ)(x, t) converges
to (ur, vr, θr)(x, t) as t → ∞.

Now, we reformulate the problem by a natural scaling. Due to the scale invariance
of the Riemann problem (1.13), (1.16), we rescale the Cauchy problem (1.1)1, (1.1)2
and (1.10) by

y = x/ε, τ = t/ε, ε > 0

to obtain ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vτ − uy = 0,

uτ + py(v, θ) =
(uy

v

)
y
,

θτ +
θpθ(v, θ)

eθ(v, θ)
uy =

μ

eθ(v, θ)

(θy
v

)
y

+
1

eθ(v, θ)

u2
y

v

(2.4)
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with initial data

(u, v, θ)(y, 0) = (u0, v0, θ0)(y), y ∈ R,(2.5)

where μ = κ/ε and by virtue of the assumptions (1.17),

μ ≤ μ ≤ μ uniformly in ε > 0 for some positive constants μ, μ.

And in the case of the rarefaction wave initial data (1.16), the initial data (2.5) are

(u0, v0, θ0)(y) =

{
(u−, v−, θ−), x < 0,

(u+, v+, θ+), x > 0.
(2.6)

If there exists a unique global solution (u, v, θ)(y, τ) to the problem (2.4), (2.5)
with the same regularity as stated in Theorem 1.1, then the solution (uε, vε, θε)(x, t)
to the problem (1.1)1, (1.1)2, (1.10), and (1.12) is given by

(uε, vε, θε)(x, t) = (u, v, θ)(x/ε, t/ε).(2.7)

Hence, it follows that Theorem 1.1 can be proved if one can show

lim
τ→∞

sup
y∈R

∣∣∣(u, v, θ)(y, τ) − (ur, vr, θr)
(y
τ

)∣∣∣ = 0,(2.8)

where (ur, vr, θr)(y/τ) = (ur, vr, θr)(x/t) is the centered 1-rarefaction wave solution
defined by (1.15). Thus, the proof of Theorem 1.1 is reduced to showing that the
centered rarefaction wave is a time-asymptotic state for the solution of (2.4) with
discontinuous initial data (2.6); this will be a consequence of the following (more
general) stability theorem.

Theorem 2.3. Let (ur, vr, θr)(y/τ) be the centered 1-rarefaction wave as in
Theorem 1.1. Consider the Cauchy problem for (2.4), (2.5), where (u0, v0, θ0) and its
derivatives are sufficiently smooth away from y = 0, but up to y = 0 with a simple
jump discontinuity at y = 0. Assume that

(u0 − u±, v0 − v±, θ0 − θ±) ∈ L2(R±), v0y ∈ L2(R−) ∩ L2(R+).

Then, there is a positive constant η0, such that if

‖(u0 − u±, v0 − v±, θ0 − θ±)‖L2(R±) + ‖v0y‖± + α ≤ η0,

then the Cauchy problem (2.4), (2.5) has a unique global solution (u, v, θ)(y, τ) in the
same function class as in Theorem 1.1. Moreover,

lim
τ→∞

sup
y∈R

∣∣∣(u, v, θ)(y, τ) − (ur, vr, θr)
(y
τ

)∣∣∣ = 0.

Theorem 2.3 looks like nonlinear stability of centered rarefaction waves for the
compressible Navier–Stokes equations; see, e.g., [16, 20, 21, 19, 22]. The main differ-
ence is that for the nonlinear stability of centered rarefaction waves, initial perturba-
tion is smooth, while here one has to deal with initial perturbation with discontinuities,
the time evolution of which has to be controlled properly. But, some ideas from the
study of nonlinear stability can be borrowed here.
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The proof of Theorem 2.3 is broken up into several steps. We start with the obser-
vation that by making use of the smooth rarefaction wave (U, V,Θ)(y, τ) constructed
above (e.g., one may take δ = 1), one can decompose the solution (u, v, θ)(y, τ) of
(2.4), (2.5) into

(ϕ,ψ, φ)(y, τ) = (v − V, u− U, θ − Θ)(y, τ), ξ(y, τ) = s(y, τ) − s.

Substituting the above decomposition into (2.4), (2.5), we obtain the system for the
functions ϕ,ψ, φ, ξ:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕτ − ψy = 0,

ψτ +
(
p(v, θ) − p(V,Θ)

)
y

=
(uy

v

)
y
,

φτ +
θpθ(v, θ)

eθ(v, θ)
ψy +

(
θpθ(v, θ)

eθ(v, θ)
− Θpθ(V,Θ)

eθ(V,Θ)

)
Uy =

1

eθ(v, θ)

(
μ

(
θy
v

)
y

+
u2
y

v

)
,

ξτ = μ

(
θy
vθ

)
y

+ μ
θ2
y

vθ2
+

u2
y

vθ

(2.9)

with initial data

(ϕ,ψ, φ, ξ)(y, 0) = (ϕ0, ψ0, φ0, ξ0) ≡ (v0 − V0, u0 − U0, θ0 − Θ0, s0 − s),(2.10)

where (ϕ0, ψ0, φ0, ξ0) and its derivatives are sufficiently smooth away from y = 0 but
up to y = 0, and (ϕ0, ψ0, φ0, ξ0) ∈ L2(R), ϕ0y ∈ L2(R−) ∩ L2(R+).

We shall show that the Cauchy problem (2.9), (2.10) possesses a unique global
solution (ϕ,ψ, φ, ξ)(y, τ) in the same function class as for (uε, vε, θε) in Theorem 1.1.
Moreover, (ϕ,ψ, φ) goes to zero uniformly as τ → ∞. This convergence then yields
Theorem 2.3 due to Lemmas 2.1 and 2.2.

Proposition 2.4. There exists a positive constant η0, such that if

N2(0) := ‖(ϕ0, ψ0, φ0)‖2 + ‖ϕ0y‖2
± + α ≤ η0,(2.11)

then the Cauchy problem (2.9), (2.10) has a unique global solution (ϕ,ψ, φ)(y, τ) in the
same function class as for (uε, vε, θε)(x, t) in Theorem 1.1, satisfying the following:

(i)

sup
τ≥0

(‖(ϕ,ψ, φ)(τ)‖2 + ‖ϕy(τ)‖2
±) +

∫ ∞

0

‖(ϕy, ψy, φy)(τ)‖2
±dτ ≤ C{N2(0) + δ1/4}.

(ii) For any τ0 > 0, there is a constant C(τ0) > 0, such that

sup
τ≥τ0

(‖(ψy, φy)(τ)‖2
± + ‖(ψyy, φyy)(τ)‖2

±) +

∫ ∞

τ0

‖(ψyy, ψyτ , φyy, φyτ )(τ)‖2
±dτ

≤ C(τ0){N2(0) + δ1/4}.

(iii) The jump discontinuity of ϕ(y, τ) at y = 0 is bounded from above by∣∣[ϕ](τ)
∣∣ ≤ C1 exp{−C2τ} ∀ τ ∈ (0,∞).

Here C,C1, C2 are positive constants independent of τ .
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Remark 2.1. It is not difficult to see that for the rarefaction wave initial data
(1.16), the smallness of ‖(ϕ0, ψ0, φ0)‖ in the condition (2.11) is satisfied provided that
δ is appropriately large but without smallness of α, while the smallness of ‖ϕ0y‖±
holds provided that for fixed δ, α is small enough.

Proof. To show Proposition 2.4, we combine the local existence and regularity
result in [13] with an a priori energy estimate based on the nature of the underlying
rarefaction wave. First, we state the following local existence, the proof of which can
be found in [13].

Lemma 2.5 (see Hoff [13]). Suppose that N(0) is suitably small so that there
exist two positive constants v and v with v ≤ v1

0(y) ≤ v for all y ∈ R. Then, there is
a constant T > 0, such that the Cauchy problem (2.9), (2.10) has a solution (ϕ,ψ, φ)
on R × [0, T ] in the same function class as for (uε, vε, θε) in Theorem 1.1. Moreover,
ϕ,ψ, φ satisfies the following:

(i) There exists a positive constant C, such that

sup
τ≥0

(‖(ϕ,ψ, φ)(τ)‖2 + ‖ϕy(τ)‖2
±) +

∫ T

0

‖(ϕy, ψy, φy)(τ)‖2
±dτ ≤ C{N2(0) + δ1/4}.

(ii) There is a positive constant C, such that

sup
0≤τ≤T

(‖(ψy, φy)(τ)‖2
± + ‖(ψyy, φyy)(τ)‖2

±) +

∫ T

τ0

‖(ψyy, ψyτ , φyy, φyτ )(τ)‖2
±dτ

≤ C{N2(0) + δ1/4}.

(iii) There are constants C1, C2 > 0 independent of T , such that

|[p(v, e)]| =
∣∣∣[uy

v

]∣∣∣ ≤ C1 exp{−C2τ}.

By virtue of Lemma 2.5 and the continuation in time of the local solution, we
see that to complete the proof of Proposition 2.4, it suffices to prove the following a
priori estimate, the proof of which will be postponed to the next section.

Proposition 2.6 (a priori estimate). Let the assumptions in Lemma 2.5 be
satisfied. Assume that the Cauchy problem (2.9), (2.10) has a solution (ϕ,ψ, φ)(y, τ)
on R × [0, τ ] for some τ > 0 in the same function class as in Lemma 2.5. Denote

N2(τ0, τ) := sup
τ0≤s≤τ

{‖(ϕ,ψ, φ)(τ)‖2 + ‖ϕy(τ)‖2
±}, 0 ≤ τ0 ≤ τ.

Then, there are positive constants η1 and C independent of τ1, such that for each fixed
τ0, if

N2(τ0, τ1) ≤ η1,

then the following estimates hold:

N2(τ0, τ1) +

∫ τ1

τ0

‖(ϕy, ψy, φy)(τ)‖2
±dτ ≤ C{‖(ϕ,ψ, φ)(τ0)‖2 + ‖ϕy(τ0)‖2

± + δ1/4},

sup
0≤τ≤T

‖(ψy, φy)(τ)‖2
± +

∫ τ1

τ0

‖(ψyy, φyy)‖2
±dτ

≤ C{‖(ϕ,ψ, φ)(τ0)‖2
± + ‖(ϕy, ψy, φy)(τ0)‖2

± + δ1/4}.
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Proof of Theorem 2.3. By the systems (2.3) and (2.9), Lemma 2.2, and the
Cauchy–Schwarz and Sobolev inequalities, we easily find that∫ ∞

0

‖(ϕt, ψt, φt)(τ)‖2
L∞dτ < ∞,

which together with Proposition 2.4 yields limτ→∞ supy |(ϕ(y, τ), ψ(y, τ), φ(y, τ))| →
0. Hence, in view of Lemma 2.2, we have proved Theorem 2.3.

3. Uniform a priori estimates. In this section we derive the key a priori esti-
mates given in Proposition 2.6. First, we introduce the normalized entropy η(v, u, s,
V, U, S) around (V,U, S):

η(v, u, s, V, U, S) : =
(
e(v, θ) +

u2

2

)
−
(
e(V,Θ) +

U2

2

)
−{−p(V,Θ)(v − V ) + U(u− U) + Θ(s− S)},

where we have used the fact that ev(v, s) = −p(v, θ), es(v, s) = 0.
An easy computation implies that η satisfies the following equation:

ητ (v, u, s, V, U, S) + {(p(v, θ) − p(V,Θ)ψ)}y +
(
Θ
ψ2
y

vθ
+ μΘ

φ2
y

vθ2

)
+ {p(v, s) − p(V, s) − pv(V, s)ψ − ps(V, s)ξ}Uy

=
(ψψy

v
+ μ

φφy

vθ

)
y

+
(
− Uyψφy

v2
+ 2

Uyφψy

vθ
− μ

Θφϕy

v2θ
+ μ

Θyφφy

vθ2

)

+
(Uxxψ

v
+ μ

Θyyφ

vθ

)
+
(
− VyUyψ

v2
+

U2
yφ

vθ
− μ

VyΘyφ

v2θ

)
.(3.1)

Employing (3.1), one has the following lemma.
Lemma 3.1. Suppose that the assumptions of Proposition 2.6 hold. Then,

‖(ϕ,ψ, φ)(τ)‖2 +

∫ τ

τ0

(‖
√
Vτ (ϕ, φ)(τ̂)‖2 + ‖(ψy, φy)(τ̂)‖2

±)dτ̂

≤ C
{
‖(ϕ,ψ, φ)(τ0)‖2 + δ1/4 + N(τ0, τ)2/3

∫ τ

τ0

‖ϕy(τ̂)‖2
±dτ̂

}
.(3.2)

Proof. Integrating (3.1) with respect to τ and y, we get

‖(ϕ,ψ, φ)(τ)‖2+

∫ τ

τ0

(‖
√
Vτ (ϕ, φ)‖2+‖(ψy, φy)‖2

±)(τ̂)dτ̂ ≤ C

{
‖(ϕ,ψ, φ)(τ0)‖2+

j=4∑
j=1

Rj

}
,

(3.3)

where

R1 =

∫ τ

τ0

∫
±

{
− (p(v, θ) − p(V,Θ)ψ)y +

(ψψy

v
+ μ

φφy

vθ

)
y

}
(y, τ̂)dydτ̂ ,

R2 =

∫ τ

τ0

∫
±

(|ψUyy| + |φΘyy|)(y, τ̂)dydτ̂ ,

R3 =

∫ τ

τ0

∫
±

(|Uyψϕy| + |Uyψyφ| + |Θyϕyφ| + |φφyΘy|)(y, τ̂)dydτ̂ ,

R4 =

∫ τ

τ0

∫
±

(|VyUyψ| + |U2
yφ| + |φΘyVy|)(y, τ̂)dydτ̂ .
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Here we have used the assumption (1.17), the smallness of N(τ0, τ) such that v ≤ v ≤ v
and θ ≤ θ ≤ θ for some positive constants v, v, θ, θ, the convexity of p(v, s) with respect
to v and s, and the equivalence of |(ϕ,ψ, ξ)|2 to |(ϕ,ψ, φ)|2.

Recalling the definition of N(τ, τ0) and applying Lemma 2.2, for given α, Rj can
be estimated as follows:

R1 =

∫ τ

τ0

{[
− p(v, θ) + p(V,Θ) +

ψy

v

]
ψ +

[φφy

vθ

]}
(τ̂)dτ̂ = 0,

R2 ≤ C

∫ τ

τ0

‖(ψ, φ)(τ̂)‖1/2‖(ψy, φy)(τ̂)‖1/2‖Uyy(τ̂)‖L1dτ̂

≤ C

∫ τ

τ0

{
N(τ0, τ)‖(φy, ψy)(τ̂)‖2 + ‖Uyy(τ̂)‖4/3

L1

}
dτ̂

≤ C
{
N(τ0, τ)

∫ τ

τ0

‖(φy, ψy)(τ̂)‖2dτ̂ + δ1/4
}
,

R4 ≤ C

∫ τ

τ0

‖(ψ, φ)(τ̂)‖1/2‖(ψy, φy)(τ̂)‖1/2‖Uy(τ̂)‖2dτ̂

≤ C

∫ τ

τ0

{
N(τ0, τ)‖(φy, ψy)(τ̂)‖2 + ‖Uy(τ̂)‖8/3

}
dτ̂

≤ C
{
N(τ0, τ)

∫ τ

τ0

‖(φy, ψy)(τ̂)‖2dτ̂ + δ1/4
}
,

and

R3 ≤ C

∫ τ

τ0

‖(ψ, φ, ϕ)(τ̂)‖1/2‖(ψy, φy, ϕy)(τ̂)‖3/2‖Uy(τ̂)‖dτ̂

≤ C

∫ τ

τ0

{
N(τ0, τ)2/3‖(φy, ψy, ϕy)(τ̂)‖2 + ‖Uy(τ̂)‖4

}
dτ̂

≤ C
{
N(τ0, τ)2/3

∫ τ

τ0

‖(φy, ψy)(τ̂)‖2dτ̂ + δ1/4
}
,

where we have used the Sobolev inequality and the following inequality:∫ τ

τ0

‖∂i
xU(τ̂)‖a+b

Lp dτ̂ ≤ sup
r∈[τ0,τ ]

‖∂i
xU(τ̂)‖aLp

∫ τ

τ0

‖∂i
xU(τ̂)‖bLpdτ̂

≤ Cδ(i−1/p)a

∫ τ

τ0

‖∂i
xU(τ̂)‖bLpdτ̂ .

Substituting the above estimates for Rj (j = 1, . . . , 4) into (3.3), we obtain (3.2).
This completes the proof.

We now proceed to derive bounds for the term
∫ τ

τ0
‖ϕx(τ̂)‖2

±dτ̂ , and we have the
following lemma.

Lemma 3.2. Suppose that the assumptions of Proposition 2.6 hold. Then,

‖ϕy(τ)‖2
± +

∫ τ

τ0

‖ϕy(τ̂)‖2
±dτ̂ ≤ C

{
‖(ϕy, ψ)(τ0)‖2 + ‖ψ(τ)‖2

±

+

∫ τ

τ0

(
‖(ψy, φy)(τ̂)‖2

± + ‖
√
Vτ (τ̂)(ϕ, φ)(τ̂)‖2

±

)
dτ̂ + δ

}
.(3.4)
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Proof. By (2.9), we easily find that

(1

2

(ϕy

v

)2

− ϕy

v
ψ
)
τ
− pv(v, θ)

ϕ2
y

v
−
(ψ2

y

v
+

pθϕyφy

v

)
+
(ψψy

v

)
y

=
{
Vy(pv(v, θ) − pv(V,Θ))

ϕy

v
+ Θy(pθ(v, θ) − pθ(V,Θ))

ϕy

v

+
Uyψϕy

v2 − Vyψψy/v2

}
+

Vyψyϕy

v3
− Uyyϕy

v2
+

VyUyϕy

v3
.(3.5)

Integrating (3.5) with respect to y, τ over (τ0, τ) × R, we infer

‖ϕy(τ)‖2
± +

∫ τ

τ0

‖ϕy(τ̂)‖2
±dτ̂ ≤ C

{
‖(ϕy, ψ)(τ0)‖2 + ‖ψ(τ)‖2

+

∫ τ

τ0

(
‖(ψy, φy)‖2

± + ‖
√
Vt(ϕ, φ)‖2

±

)
(τ̂)dτ̂ +

j=7∑
j=5

Rj

}
,(3.6)

with

R5 = −
∫ τ

τ0

∫
±

(ψψy

v

)
y
dτ̂ , R6 =

∫ τ

τ0

∫
±

(|ψUyϕy| + |Vyψψy|)(y, τ̂)dydτ̂ ,

R7 =

∫ τ

τ0

∫
±

(|ψyVyϕy| + |Uyyϕy| + |UyVyϕy|)(y, τ̂)dydτ̂ ,

where R5, R6, R7 can be bounded as follows, using Sobolev’s imbedding theorem and
Lemma 2.5(iii):

R5 =

∫ τ

τ0

[ψψy

v

]
dτ̂ =

∫ τ

τ0

ψ
[ψy

v

]
dτ̂ ≤

∫ τ

τ0

‖ψ‖1/2‖ψy‖1/2
±

[uy

v

]
dτ̂

≤ 1

4

∫ τ

τ0

‖ψy‖2
±dτ̂ + C sup

τ0≤s≤τ
‖ψ(s)‖2/3

∣∣∣[ϕ(τ0)]
∣∣∣4/3 ∫ τ

τ0

exp
(
− 4

3
C3(τ̂ − τ0)

)
dτ̂

≤ 1

4

∫ τ

τ0

‖ψy‖2
±dτ̂ +

1

3
sup

τ0≤s≤τ
‖ψ(s)‖2 + C{‖(ϕ(τ0)‖2 + ‖ϕy(τ0)‖2)},

R6 ≤ C

∫ τ

τ0

‖ψ(τ̂)‖1/2‖ψy(τ̂)‖1/2‖Uy(τ̂)‖ ‖(ϕy, ψy)(τ̂)‖dτ̂

≤ C
{
N(τ0, τ)2/3

∫ τ

τ0

‖(ϕy, ψy)(τ̂)‖2dτ̂ +

∫ τ

τ0

‖Uy(τ̂)‖4dτ̂
}

≤ C
{
N(τ0, τ)2/3

∫ τ

τ0

‖(ϕy, ψy)(τ̂)‖2dτ̂ + δ1/4
}
,

R7 ≤ Cα

∫ τ

τ0

‖ϕy‖±‖ψy‖±dτ̂ +

∫ τ

τ0

(‖Uyy‖ ‖ϕy‖± + ‖Vy‖L4‖Uy‖L4‖ϕy‖±)dτ̂

≤ 1

2

∫ τ

τ0

‖ϕy(τ̂)‖2
±dτ̂ + C

∫ τ

τ0

(‖ψy‖2
± + ‖Uy‖4

L4 + ‖Vy‖4
L4 + ‖Uyy‖2)dτ̂

≤ 1

2

∫ τ

τ0

‖ϕy(τ̂)‖2dτ̂ + C
{∫ τ

τ0

‖ψy(τ̂)‖2dτ̂ + δ1/4
}
.
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Inserting the estimates for Rj (j = 5, 6, 7) into (3.6), we arrive at

‖ϕy(τ)‖2
± +

∫ τ

τ0

‖ϕy(τ̂)‖2
±dτ̂ ≤ C

{
‖(ϕy, ψ)(τ0)‖2

± + ‖ψ(τ)‖2

+

∫ τ

τ0

(‖(ψy, φy)(τ̂)‖2
± + ‖

√
Vτ (ϕ, φ)(τ̂)‖2)dτ̂ + δ1/4

}
.(3.7)

Finally, combining Lemma 3.1 with Lemma 3.2, we conclude that

‖(ϕ,ψ, φ, ϕy)(τ)‖2 +

∫ τ

τ0

(
‖
√

Vτ (τ̂)(ϕ, φ)(τ̂)‖2 + ‖(ϕy, ψy, φy)(τ̂)‖2
±

)
dτ̂

≤ C(‖(ϕ,ψ, φ)(τ0)‖2 + ‖ϕy(τ0)‖2
± + δ1/4).(3.8)

Comparing with the standard energy estimate for the compressible Navier–Stokes
equations, we refer (3.8) to the basic energy estimate.

Next, we proceed to estimate higher order derivatives of ψ, φ in the space
L∞(τ0, τ ;L2(R±)).

Lemma 3.3. Suppose that the assumptions of Proposition 2.6 hold. Then,

‖ψy(τ)‖2
± +

∫ τ

τ0

‖ψyy(τ)‖2
±dτ ≤ C(‖ψy(τ0)‖± + ‖(ϕ,ψ, φ)(τ0)‖2 + δ1/4).(3.9)

Proof. Multiplying the second equation of (2.9) by −ψyy, one obtains(ψ2
y

2

)
τ

+
ψ2
yy

v
− (ψτψy)y = (pv(v, θ)ϕy + pθ(v, θ)φy)ψyy +

ϕyψyψyy

v2

+ Vy{pv(v, θ) − pv(V,Θ)}ψyy + Θy{pθ(v, θ) − pθ(V,Θ)}ψxx

+
Vyψyψyy

v2
+

Uyϕyψyy

v2
− Uyyψyy

v
+

VyUyψyy

v2
,(3.10)

which, by integrating with respect to y and τ , leads to

‖ψy(τ)‖2
± +

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ ≤ ‖ψy(τ0)‖2

± +

∫ τ

τ0

∫
±

(ψτψy)ydydτ̂

+C
{∫ τ

τ0

(
‖(ϕy, ψy, φy)(τ̂)‖2

± + ‖
√
Vt(ϕ, φ)(τ̂)‖2

)
dτ̂

+

∫ τ

τ0

∫
±

(
|ϕyψyψyy| + |Vyψyψyy| + |Uyϕyψyy|

+|ψyy|(|Uyy| + |U2
y |)

)
dydτ̂

}
.(3.11)

The terms on the right-hand side of (3.11) can be bounded as follows:∫ τ

τ0

∫
±

(ψτψy)ydydτ̂ = [ψψy]|ττ0 −
∫ τ

τ0

ψ[ψy]τdτ̂ = ψ[ψy]|ττ0 −
∫ τ

τ0

ψ[ψy]τdτ̂

≤ 1

8

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ + C

∫ τ

τ0

(‖ϕ‖2 + ‖ψ‖2 + ‖ψy‖2
±)(τ̂)dτ̂ ,

where we have used the fact that the jump [uy] decays exponentially in τ (cf. the
estimate of R5 in the proof of Lemma 3.2); and∫ τ

τ0

∫
±
|(ϕyψyψyy)(y, τ̂)|dxdτ̂ ≤ C

∫ τ

τ0

‖ϕy(τ̂)‖±‖ψy(τ̂)‖1/2
± ‖ψyy(·, τ̂)‖3/2

± dτ̂

≤ 1

8

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ + CN(τ0, τ)

∫ τ

τ0

‖ψy(τ̂)‖2
±dτ̂ ;



382 SONG JIANG, GUOXI NI, AND WENJUN SUN∫ τ

τ0

∫
±
|ψyy(y, τ̂)|(|Vyψy| + |Uyϕy|)(y, τ̂)dydτ̂

≤ 1

8

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ + Cδ

∫ τ

τ0

‖(ϕy, ψy)(τ̂)‖±dτ̂ ;

and ∫ τ

τ0

∫
±
|(ψyy(y, τ))|(|Uyy| + |Uy|2)(y, τ)dydτ

≤ 1

8

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ + C

∫ τ

τ0

(‖Uyy‖2 + ‖Uy‖4
L4)(τ̂)dτ̂

≤ 1

8

∫ τ

τ0

‖ψyy(τ̂)‖2
±dτ̂ + Cδ1/4.

Substituting the above estimates into (3.10), we obtain (3.9).
Similarly, we can bound the derivatives of φ as follows.
Lemma 3.4. Assume that the assumptions of Proposition 2.6 hold. Then,

‖φy(τ)‖2
± +

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ ≤ C(‖(ϕ,ψ, φ)(τ0)‖2 + ||φy(τ0)‖2

± + δ1/4).(3.12)

Proof. Multiplying the third equation of (2.9) by −φyy, then integrating with
respect to y and τ , and utilizing (3.7) and (3.8), we deduce that

‖φy(τ)‖2 +

∫ τ

τ0

‖φyy(τ̂)‖2dτ̂ ≤ ‖φy(τ0)‖2 +

∫ τ

τ0

‖ψy(τ̂)‖2dτ̂

+

∫ τ

τ0

∫
±

(φτφy)ydτ̂ + C
{∫ τ

τ0

∫
±

(
|φyy|(|ϕyφy| + |ψ2

y|)

+|Uyφyy|(|φ| + |ϕ|) + |φyy|(|Vyφy| + |Θyϕy|

+|Uyψx|) + |φyy|(|Uyy| + |U2
y |)

)
(y, τ̂)dydτ̂

}
,(3.13)

where the right-hand side can be estimated as follows:∫ τ

τ0

∫
±

(φτφy)ydydτ̂ = [φφy]
∣∣∣τ
τ0

−
∫ τ

τ0

φ[φy]τ = φ[φy]
∣∣∣τ
τ0

−
∫ τ

τ0

φ[φy]τ

≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + C

∫ τ

τ0

(‖ψ‖2 + ‖φ‖2 + ||φy‖2
±)(τ̂)dτ̂ ;

∫ τ

τ0

∫
±
|(ϕyφyφyy)(y, τ̂)|dydτ̂ ≤ C

∫ τ

τ0

‖ϕy(τ̂)‖±‖φy(τ̂)‖1/2
± ‖φyy(τ̂)‖3/2

± dτ̂

≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + CN(τ0, τ)

∫ τ

τ0

‖φy(τ̂)‖2
±dτ̂ ;

∫ τ

τ0

∫
±
|(ψ2

yφyy)(y, τ̂)|dydτ̂ ≤ C

∫ τ

τ0

‖ψy(τ̂)‖3/2
± ‖ψyy(τ̂)‖1/2

± ‖φyy(τ̂)‖±dτ̂

≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + CN(τ0, τ)

∫ τ

τ0

(‖ψyy(τ̂)‖2
± + ‖ψy(τ̂)‖2

±)dτ̂ ;
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τ0

∫
±
|Uyφyy|(|ϕ| + |φ|)(y, τ̂)dydτ̂

≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + Cδ

∫ τ

τ0

‖
√
Vτ (ϕ, φ)(τ̂)‖dτ̂ ;

∫ τ

τ0

∫
±
|φyy|(|Vyφy| + |Θyϕy| + |Uyψy|)(y, τ̂)dydτ̂

≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + Cδ

∫ τ

τ0

‖(ϕy, ψy, φy)(τ̂)‖±dτ̂

and ∫ τ

τ0

∫
±
|φyy|(|Uyy| + |U2

y |)(y, τ̂)dydτ̂ ≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂

+C

∫ τ

τ0

(‖Uyy‖2 + ‖Uy‖4
L4)(τ̂)dτ̂ ≤ 1

16

∫ τ

τ0

‖φyy(τ̂)‖2
±dτ̂ + Cδ1/4.

Substitution of the above estimates into (3.13) gives Lemma 3.4 immediately.
Now, combining Lemmas 3.1–3.4, we obtain Proposition 2.6.
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CONCENTRATION OF GINZBURG–LANDAU ENERGIES WITH
SUPERCRITICAL GROWTH∗
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Abstract. We study the asymptotic behavior of energies of Ginzburg–Landau type, for maps
from R

n+k into R
k, and when the growth exponent p is strictly larger than k. We prove a compactness

and Γ-convergence result, with respect to a suitable topology on the Jacobians, seen as n-dimensional
currents. The limit energy is defined on the class of n-integral boundaries M , and its density involves
a family of optimal profile constants depending locally on the multiplicity of M .
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1. Introduction. The investigation of phase transition and concentration phe-
nomena from a variational point of view involves functionals of the kind

Eε(u) :=

∫
Ω

|∇u|p +
1

εp
W (u), u ∈ W 1,p(Ω; Rk),(1.1)

where n ≥ 0 and k ≥ 1 are given integers, Ω is a bounded regular domain in R
n+k,

p > 1 is a real exponent, and W is a nonnegative continuous potential on R
k, vanishing

only on the unit sphere Sk−1. A rigorous mathematical analysis of the asymptotic
behavior of Eε as the positive parameter ε tends to zero began in the 1970s with
the celebrated paper by Modica and Mortola [30]. They proved that, taking p = 2,
n ≥ 0, and k = 1 (so that W is null at −1 and +1), the minima of Eε on the class
of functions with prescribed mean converge to a constant times the area of a minimal
surface of dimension n. The multiplicative constant is determined by an “optimal
profile problem,” which selects the 1-dimensional transition of lowest cost between
the two wells of the potential. The basic physical motivation was the Cahn–Hilliard
model for phase transition of immiscible fluids [8], and the technique adopted to attack
the problem was the Γ-convergence introduced by De Giorgi and Franzoni in [10]. For
an outline of the proof of the Modica–Mortola theorem close in spirit to the aims of
the present work, and for the numerous later extensions by different authors, we refer
the reader to the survey paper [1] and enclosed references. Therein the reader may
also find a quick introduction to Γ-convergence, whose general theory and applications
are developed in [6, 9].

The analogous problem in the vector-valued case involves in its simplest form
the Ginzburg–Landau energies obtained by taking n = 0 and k = p = 2 in (1.1)
(so that W is null on S1). In this case, the physical background is related to phase
transition models for superconductors [17] or superfluids [18]. A detailed study of
the asymptotic behavior of minimizers of Ginzburg–Landau energies on the class of

∗Received by the editors May 19, 2004; accepted for publication (in revised form) June 26, 2005;
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http://www.siam.org/journals/sima/38-2/44398.html
†Dipartimento di Matematica “F. Enrigues,” Università degli Studi di Milano, Via Saldini 50,
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functions with prescribed boundary datum g ∈ C∞(∂Ω;S1) has been carried out by
Bethuel, Brezis, and Hélein; see the monograph [5]. Roughly, when the degree of g
is nonzero, energy concentration occurs near a finite number of isolated points—the
so-called Ginzburg–Landau vortices. Moreover, all singularities have degree 1, and
they tend to repel each other. These results have been obtained essentially through
PDE methods for the Euler–Lagrange equation of Eε, combined with some complex
analysis devices.

A more variational approach allows one to deal with energies of the type (1.1) in
any space dimensions n ≥ 0 and k ≥ 2, and taking p = k. The asymptotic behavior
as ε → 0 of such functionals Eε has been studied in a recent paper by Alberti, Baldo,
and Orlandi [3], and independently (for k = 2) by Jerrard and Soner [26]. When
the boundary datum has a topological singularity, the energy of minimizers turns out
to be of order | log ε| and concentrates near a surface of dimension n in Ω. A good
topology which allows for the detection of energy concentration is a suitable flat norm
FΩ for the Jacobians Juε of uε; indeed, using a suitable Hodge-type operator between
k-covectors and n-vectors, the k-forms Juε may be identified with generalized oriented
n-surfaces, or more precisely, with n-dimensional integral boundaries �Juε in the sense
of currents. So, within the general setting of currents theory, the behavior of uε can
be described in a rigorous way by means of a compactness and Γ-convergence result
[3, Theorem 1.1]: with a suitable Dirichlet condition, the minima of Eε converge to
a dimensional constant times the area measure of a minimizing n-current. We also
refer the reader to [4, 7, 15, 19, 20, 22, 24, 27, 28, 29, 31] and the references therein
for related concentration, compactness, and lower bound results.

In this paper, we study the variational convergence of the functionals Eε in (1.1)
still for arbitrary n ≥ 0 and k ≥ 2, but now for p strictly larger than k. We stress
that, while in the scalar case k = 1 the choice of p is essentially not relevant for the
problem, in the vector case k ≥ 2 the choice p = k is in some sense “critical.” Indeed,
for every p > 1, the Γ-limit of Eε in L1 is equal to

∫
Ω
|∇u|p for u ∈ W 1,p(Ω, Sk−1), and

+∞ otherwise. Now, the trace operator maps W 1,p(Ω, Sk−1) onto W 1− 1
p ,p(∂Ω, Sk−1)

if and only if p < k (see, e.g., [21]). Thus, for p < k, imposing any Dirichlet boundary
datum does not produce energy concentration (i.e., the energy of minimizers remains
bounded). On the other hand, in the supercritical case p > k, for suitable boundary
data the energy of minimizers turns out to be of order εk−p. In particular, the
appropriate sequence of rescaled functionals to be considered in order to determine a
meaningful Γ-limit is obtained by multiplying the functionals Eε in (1.1) by εp−k. In
this paper, the Γ-limit of εp−kEε is determined in the absence of boundary conditions;
however, by suitable modifications, our main result (cf. Theorem 1.1 below) can be
extended in order to include Dirichlet boundary data; see [11].

Though it seems to have no particular physical interpretation, from a purely
mathematical point of view the problem in the case p > k reveals some interesting
features, different from the case p = k. The main new difficulties concern the influence
of the potential W on energy concentration, and the consequent effects on the form
of the Γ-limit. This phenomenon can be observed by looking at the behavior of a
so-called recovery sequence, namely, a sequence {uε} which satisfies condition (ii) in
Theorem 1.1 below when p > k (respectively, the analogous condition (ii) in Theorem
1.1 of [3] when p = k). Indeed, when p = k we see that a zone carrying a vanishing
energy is located between the limit integral boundary M and the set where Eε(uε)
are of order | log ε|; therefore, the shape of the potential does not modify the Γ-limit.
On the contrary, when p > k, there is a whole neighborhood of M where Eε(uε) are of
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order εk−p. As a consequence, the amount of energy concentration is governed by an
auxiliary variational problem, which involves the potential and depends locally on the
integer multiplicity of M ; so we have to deal with a whole family of “optimal profile
constants” τd for d varying in Z. Their role is in some respect analogous to the one
played by the constant τ which appears in the Γ-limit of Eε in the scalar case: in terms
of the unscaled energy

∫
Rn |∇u|p + W (u), when k = 1, τ represents the minimal cost

for a transition between the two wells of the potential, whereas when k ≥ 2, τd rep-
resents the minimal cost for a singularity of degree d. However, though the situation
reveals a close resemblance to the scalar case, it is considerably more complicated,
not only because τd varies with d, but also because, for fixed d, it is quite delicate to
determine the class of admissible functions in the variational problem which defines
τd. Actually, in order to obtain the Γ-lim sup inequality, all the competitors should
have the same “trace at infinity,” whereas, in order to prove the Γ-lim inf inequality,
they should satisfy the strictly weaker condition of having just the same “degree at in-
finity.” Fortunately this dichotomy, which is one of the most intriguing aspects of the
problem, is only apparent: in fact the two involved variational problems turn out to
have the same infimum, so that no gap occurs between the Γ-limsup and the Γ-liminf.

Our main result reads as follows. For the definition of the constants τd, d ∈ Z,
we refer the reader to section 4; moreover, we denote by αk the Lebesgue measure of
the unit ball in R

k.
Theorem 1.1. Let n ≥ 0, k ≥ 2, and p > k. For ε > 0, let Fε := εp−kEε, Eε

being the functionals defined in (1.1). Assume that the positive continuous potential
W vanishes only on Sk−1 and satisfies the growth conditions

lim inf
|y|→1

W (y)

(1 − |y|)p/(p−k+1)
> 0 and lim inf

|y|→+∞

W (y)

|y|p > 0.(1.2)

Then the following statements hold:
(i) Compactness and Γ-lim inf inequality. Whenever supε Fε(uε) < +∞, up to

subsequences we have FΩ(�Juε − αkM) → 0, where M is an n-dimensional integral
boundary in Ω with multiplicity σ, and

lim inf
ε

Fε(uε) ≥
∫
M

τσ(x) dHn(x).(1.3)

(ii) Γ-lim sup inequality. For every n-dimensional integral boundary M in Ω
with multiplicity σ, there exists a sequence {uε} ⊂ W 1,p(Ω; Rk) such that FΩ(�Juε −
αkM) → 0 and

lim sup
ε

Fε(uε) ≤
∫
M

τσ(x) dHn(x).(1.4)

We point out that a deeper understanding of the infimum problems which define
the constants τd might allow us to clarify whether the dependence of τd on d is linear,
and hence to establish whether the Γ-limit given by Theorem 1.1 is a multiple of the
area. However, we feel that this is a challenging task. Indeed, while the admissible
fields in the variational problems defining τd satisfy just a global degree condition, to
understand the way the infima τd depend on d one should obtain some information
on the local degree of minimizing sequences. (Actually, one should know how concen-
trated or spread out the subsets of R

k where the global degree is attained are.) An
adequate technique to derive this local information from a global degree seems to be
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somehow missing. Still for n = 0, one may also try to locate the singularities: it could
be of some interest to determine whether their behavior differs in some aspect from
that of Ginzburg–Landau vortices for p = k.

Let us briefly describe how the contents are organized. Section 2 is conceived so
as to make the paper self-contained: we summarize the basic notation and prelimi-
naries, omitting all proofs and details, for which we indicate suitable references. In
section 3, we give a proof of the compactness statement in Theorem 1.1 (i), which
turns out to be simpler than the corresponding result in [3]; essentially, we use the
deformation theorem and the uniform boundedness in mass for a suitably defined no-
tion of projected modified Jacobians. Section 4 is entirely devoted to the study of the
optimal profile constants τd. In particular, we give “weak” and “strong” definitions
of τd, a priori different from each other, and we show that they coincide. In section
5, we prove the Γ-liminf inequality, first for n = 0, by exploiting the weak definition
of τd, and then for n > 0, by means of a slicing technique. Finally, in section 6, we
prove the Γ-limsup inequality, using as a key tool an existence result for maps with
prescribed singularities given in [2], combined with the strong definition of τd.

2. Preliminaries.

2.1. Notation. Throughout the paper, sets and functions are assumed to be
Borel measurable, and, when no ambiguity may arise, we omit the indication of the
measure in integrals. We adopt the letters K and C for constants that are, respec-
tively, universal (i.e., depend only on the parameters p, k, and n and possibly on the
potential W ) and not universal. In general, we do not use indices, so that K and C
may take different values even within the same line. Moreover, we adopt the following
list of standard symbols.

Bd
r the open ball in R

d with center the origin and radius r
Sd−1 the unit sphere in R

d

Ld the Lebesgue measure on R
d

Hd the d-dimensional Hausdorff measure
δ(P ) the Dirac mass at the point P
μ A the restriction of the measure μ to the set A
αd the Lebesgue measure of Bd

1

A ⊂⊂ B the set A is compactly contained into the set B
χA the characteristic function of the set A
dist(x,A) the distance of the point x from the set A

A the cardinality of the finite set A
· the Euclidean scalar product
| | the Euclidean norm
f 	 g lim(|f |/|g|) vanishes
osc(f,E) the oscillation of f ∈ C0(A;B) in the set E ⊆ A
Lip(loc)(A;B) the space of (locally) Lipschitz functions f : A → B

Lipf the Lipschitz constant of f ∈ Lip(A;B)(
Lp

(loc)(A;B), ‖ ‖p,A
)

the space of (locally) Lebesgue functions f : A → B(
W 1,p

(loc)(A;B), ‖ ‖1,p,A

)
the space of (locally) Sobolev functions f : A → B

From now on, we always assume that p > k ≥ 2 (while n ≥ 0) and that Ω is
an open bounded domain in R

n+k with a Lipschitz boundary. Given A ⊂ Ω and
u ∈ W 1,p(A; Rk), we set

Fε(u,A) :=

∫
A

eε(u), eε(u) := εp−k|∇u|p +
1

εk
W (u).
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Finally, for convenience we fix a positive function ψ on [0,+∞) which vanishes only
at 1 and satisfies ψ(|y|) ≤ W (y) for every y ∈ R

k.

2.2. Currents. For every integer h ∈ {0, . . . , n + k}, we denote by Λh(Rn+k)
and Λh(Rn+k), respectively, the spaces of h-vectors and h-covectors in R

n+k, endowed
with the standard notion of duality product ·, wedge product ∧, and Euclidean norm
| |. An h-vector or covector is called simple if it can be represented as the wedge
product of h-vectors. Recalling that an h-form on Ω is a map from Ω into Λh(Rn+k),
we set Dh(Ω) as the class of all smooth h-forms with compact support in Ω. By the
pairing between vectors and covectors, the dual of Dh(Ω) may be identified with the
space Dh(Ω) of h-currents over Ω, namely, distributions with values into Λh(Rn+k). In
particular, when a current T is a (locally) finite measure with values into Λh(Rn+k),
we say that it has (locally) finite mass. In this case, we denote by |T | the variation
of the measure T , by ‖T‖ := |T |(Ω) the total variation of T , and by ‖T‖A = |T |(A)
the mass of T in the open set A ⊂ Ω; furthermore, we call sptT the support of the
measure T .

Let us draw our attention to some special classes of currents with locally finite
mass. When M ⊆ Ω is an oriented h-dimensional manifold at least of class C1,
we denote by [[M ]] the h-current which applied to an h-form ω gives its integral
over M in the classical sense of differential geometry. More generally, when M ⊆
Ω is an h-rectifiable set (namely, it can be covered by countably many h-surfaces
of class C1 up to an Hh-negligible set) endowed with an orientation ξ (namely, a
mapping which associates with Hh-a.e. x ∈ M a simple unitary h-vector spanning the
approximate tangent space to M at x) and a multiplicity σ (namely, a real function
locally integrable with respect to Hh M), we set (M, ξ, σ) to be the current defined
by

(M, ξ, σ)(ω) :=

∫
M

σ(ω · ξ) dHh ∀ω ∈ Dh(Ω).(2.1)

With some abuse of notation, when dealing with a current (M, ξ, σ), we often denote
it just by M . If a current can be represented as in (2.1) for some integer-valued
multiplicity σ, we call it an h-rectifiable current. A current (M, ξ, σ) is said to be
a real polyhedral current if M is a sum of finitely many h-simplexes, with ξ and σ
constant on each of them; in case σ is also integer-valued, M is called an integral
polyhedral current.

For h ≥ 1, the boundary of an h-current T is the (h − 1)-current defined by the
identity ∂T (ω) := T (dω), dω being the differential of the (h−1)-form ω. In particular,
by the Stokes theorem, ∂[[M ]] = [[∂M ]]; notice also that, if T is a boundary, namely, it
is the boundary of some current, then ∂T = 0. A current T is called a normal current
if both T and ∂T have locally finite mass and an integral current if both T and ∂T
are rectifiable.

We also need to introduce the push forward and the flat norm of currents. Given
a linear map L : R

n+k → R
m, the pull back of an h-covector w ∈ Λh(Rm) by L is the

h-covector L�w ∈ Λh(Rn+k) defined by L�w · (v1 ∧ · · · ∧ vh) := w · (Lv1 ∧ · · · ∧ Lvh)
for every v1, . . . , vh ∈ R

n+k. Accordingly, if Ω′ is an open set of R
m, given a smooth

map f : Ω → Ω′, the pull back of an h-form ω ∈ Dh(Ω′) is the h-form f �ω ∈ Dh(Ω)
defined by f �ω(x) := (Df(x))�ω(f(x)). The push forward of an h-current T ∈ Dh(Ω)
is the h-current f�T ∈ Dh(Ω′) defined through the duality f�T (ω) = T (f �ω) for every
ω ∈ Dh(Ω′). Whenever T has compact support, the push forward and the boundary
operator commute; that is, ∂(f�T ) = f�(∂T ). If in addition T has locally finite mass,
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the variation measures of T and f�T are related by the inequality

|f�T |(A) ≤ (Lipf)h |T |(f−1(A)) ∀A open ⊂ Ω.(2.2)

Given T ∈ Dh(Ω), we shall denote by FΩ(T ) the following flat norm (see [3]):

FΩ(T ) :=

{
inf{‖S‖ : S ∈ Dh+1(Ω), T = ∂S} if T is a boundary,

+∞ otherwise.

We point out that FΩ is strictly related to the usual flat norm FΩ for integral currents,
as defined in [13, section 4.1.24]. In particular, if Si → S in the flat norm FΩ, we
have FΩ(∂Si − ∂S) → 0, which in turn implies ∂Si → ∂S in the dual of forms of class
C1

0 ; see [3] for more details.
For a broader description of the elements of currents theory sketched above, we

refer the reader to [13, 16, 30].

2.3. Jacobians. Given a smooth map u : Ω → R
k, its Jacobian is the k-form

defined on Ω by

Ju := u�(dy) = du1 ∧ · · · ∧ duk,(2.3)

where dy = dy1 ∧ · · · ∧ dyk is the standard volume form on R
k, and the 1-form dui

is the differential of the ith component of u. As long as u is of class W 1,k(Ω; Rk),
(2.3) makes sense and defines a continuous operator u �→ Ju from W 1,k(Ω; Rk) into
L1(Ω; Λk(Rn+k)). Moreover, Ju may be represented as

∑
α det∇αu(x)dxα, where the

sum is extended over all k-multi-indices α = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n+k,
∇αu is the (k × k)-matrix with columns ∇i1u, . . . ,∇iku, and dxα is the k-covector
dxi1 ∧ · · · ∧ dxik .

For a more geometric interpretation of the Jacobian, it is convenient to consider,
instead of the k-form Ju, the n-current �Ju, obtained via the following identification
� of k-vectors and n-covectors. Given a multi-index α of order k, �dxα is the n-vector
sgn(α̂, α)eα̂, where α̂ = (j1, . . . , jn) is the set of indices not contained in α, eα̂ is the
n-vector ej1 ∧ · · · ∧ ejn , and sgn(α̂, α) is the sign of the permutation (α̂, α). Then
� extends in a natural way to an operator bringing k-forms into n-currents. Such
an operator transforms differentials into boundaries, as one can check that, for every
ω ∈ Dk(Ω), there holds �(dω) = (−1)n∂(�ω). Now observe that

Ju =
1

k
d(u�ω0),(2.4)

where, denoting by d̂yi the wedge product of all dyj with j �= i, ω0 is the k-form

ω0(y) :=
∑
i

(−1)i−1yid̂yi.(2.5)

In view of (2.4), Ju is always a differential, which implies that �Ju is always a bound-
ary. Further, by (2.4) and the definition of flat norm FΩ given in section 2.2, we
deduce that

FΩ(�Ju) ≤ ‖u‖∞,Ω‖∇u‖k−1
k−1,Ω.(2.6)

Finally, let us stress that (2.4) makes sense (differently from (2.3)) even for functions

u : Ω → R
k of class L∞

loc ∩ W 1,k−1
loc , provided the right-hand side is interpreted as a

distribution. Mappings u for which such a distribution turns out to be a measure
have been called functions with bounded k-variation and were investigated in [25], to
which we refer for a more detailed account of the Jacobians theory.
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2.4. Degree. Let u be a continuous map between two oriented h-manifolds M
and N in R

n+k, with h = 1, . . . , n + k, M compact, and ∂N = ∅. Given y ∈ N \
u(∂M), we denote by deg(u,M,N, y) the Brouwer degree of u at y. For its general
definition and main properties, we refer the reader to [14, 22]. Let us just recall that,
if u is of class C1 and y is a regular value for u, then deg(u,M,N, y) is the algebraic
sum of the number of inverse images x ∈ u−1(y), each one counted with a plus or
minus sign according to whether the linear operator ∇u(x) is orientation-preserving
or orientation-reversing. When ∂M = ∅ and N is connected, deg(u,M,N, y) turns
out to be independent of y; in this case, it will be denoted by deg(u,M,N), or by
deg(u,M) if h = k − 1 and N = Sk−1.

We shall heavily exploit the behavior of the degree under continuous homotopy:
by Hopf’s theorem [22, Chapter 5, Theorem 1.10], two functions u and v from a
(k−1)-dimensional compact manifold M without boundary with values into Sk−1 are
in the same homotopy class if and only if deg(u,M) = deg(v,M). Also, we shall use
the following remark, whose proof is elementary and may be found, e.g., in [2, section
2.10]: if a function u from an open subset M of R

k into R
k maps ∂M into Sk−1, then

deg(u,M,Rk, y) equals deg(u, ∂M) for y ∈ Bk
1 and 0 for y ∈ R

k \Bk
1 .

2.5. Area and coarea formulae. For completeness, we recall the following
simple versions of the area and coarea formulae which will be often used in the paper.
Let E ⊂ R

k, and f : R
k → R. For every function u ∈ W 1,p(E; Rk) (p > k) and every

Lipschitz function g : R
k → R, we have (see, respectively, [16, section 3.1.5] and [12,

section 3.4]) ∫
E

f(u)|Ju(x)| =

∫
Rk

f(y) 
{u−1(y) ∩ E} dLk,(2.7) ∫
E

f(x)|∇g(x)| =

∫
R

dt

∫
g−1(t)∩E

f dHk−1.(2.8)

3. Compactness. The starting point in proving the compactness statement in
Theorem 1.1 (i) is the following key inequality:

Fε(u,A) ≥ K

∫
A

W (u)1−k/p|Ju|.(3.1)

It is obtained simply by applying first Young’s inequality a + b ≥ Kaλb1−λ (with
a = εp−k|∇u|p, b = ε−kW (u), and λ = k/p) and then the algebraic inequality |∇u|k ≥
|Ju|. Thanks to (3.1), we can gain compactness without using the lower bound proved
by Jerrard in [24], which instead is fundamental in the case p = k. Actually, given
a sequence of functions {uε} with equibounded energies, by applying (3.1) we can
deduce a uniform bound in mass not for the very Jacobians of uε but for suitably
defined “modified Jacobians.” Let us introduce them, together with some additional
tools and notation.

3.1. Modified Jacobians, grids, and projection maps. Let ρ : [0,+∞) →
[0,+∞) be a smooth kernel such that ρ(t) = 0 for t ≥ 1/3 and

∫
Bk

1/3

ρ(|y|) = αk. For

every smooth function u : Ω → R
k, we call the modified Jacobian of u the current

J ′u := u�(ρ(|y|) dy) = ρ(|u|)Ju. Thus, the basic distinguishing feature of J ′u with
respect to Ju is that the support of J ′u does not intersect the set of points x ∈ Ω
where |u(x)| ≥ 1/2.

Given l > 0 and x0 ∈ R
n+k, we call the grid of step l and center x0 the union

G = Gl(x0) of all closed cubes of the form x0 + lz + [0, l]n+k for z varying in Z
n.
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(We often omit the center or even the step, and we simply write Gl or G.) For
h = 1, . . . , n + k, we call h-cells of G the h-dimensional faces of the cubes of G, and
h-skeleton of G their union, which we denote by Rh. In particular, by saying that
an open set A is delimited by G, we mean that ∂A ⊂ Rn+k−1. We indicate by G′

the dual grid of G = Gl(x0), namely, G′ := Gl
(
x0 + (l/2, . . . , l/2)

)
, and by R′

h the
h-skeleton of G′. For every h-cell Q of G, we denote by Q′ the unique (n+ k− h)-cell
of G′ which intersects G. When dealing with a sequence of grids Gε, Rε,h will denote
the corresponding h-skeletons.

Let a grid of step l and a bounded open set V in R
n+k be given. We denote by

Vd the closed d-neighborhood of V , with d := 2
√
n + k l being twice the diameter of

the cubes in G. Then a suitable version [3, Lemma 3.8] of the Federer–Fleming defor-
mation theorem [32, section 29] ensures the existence of a locally Lipschitz projection
map Φ : R

n+k \Rk−1 → R′
n such that the following retraction property holds: for any

n-current T in R
n+k with finite mass, such that

sptT ⊂ R
k \Rk−1 and (spt∂T ) ∩ Vd = ∅,(3.2)

the push forward Φ�T is a well-defined current in R
n+k satisfying

sptΦ�T ⊂ R′
n and spt∂(Φ�T ) ∩ V = ∅,(3.3)

‖Φ�T‖ ≤ K‖T‖,(3.4)

FV (T − Φ�T ) ≤ Kln+1

∫
Vd

d|T |(x)

[dist(x,Rk−1)]n
.(3.5)

If in addition T = [[M ]] is the current associated with a smooth n-surface M , then
for every k-cell Q of G such that M is transversal to Q and Q′ intersects V , the
multiplicity of Φ�T on Q′ is a constant integer. It agrees, up to a sign depending
on the orientations of Q and Q′, with the intersection number of M and Q (see [22,
section 5.2]).

Observe now that, if u is a function smooth in a neighborhood W of Vd, with
|u| ≥ 1/2 on Rk−1 ∩W , then the current T obtained by extending �J ′u to zero out
of W fulfills both assumptions in (3.2). Therefore, its push forward Φ�T satisfies
conditions (3.3), (3.4), and (3.5); in particular, it agrees in V with a real polyhedral
boundary. Moreover, applying first the above-mentioned statement on the multiplicity
of Φ�[[M ]] to the currents associated with the level sets of u and then the coarea
formula, one may compute the multiplicity of Φ�(�J

′u) on an n-cell Q′ of G′ which
intersects V . It equals up to a sign αk deg(u/|u|, ∂Q) (where αk come out from the
integral constraint satisfied by the kernel ρ; see [3, Lemma 3.9] for a complete proof).

Proposition 3.1. Let a sequence of smooth maps {uε} with supε Fε(uε) < +∞,
and open sets U , V , and W with U ⊂⊂ V ⊂⊂ W ⊂⊂ Ω be given. Then the following
statements hold:

(i) Boundedness of modified Jacobians. We have supε ‖ � J ′uε‖Ω < +∞.
(ii) Compactness of projected modified Jacobians. We can find a sequence of

grids Gε of infinitesimal step l(ε) � ε, such that |uε| converge uniformly to 1 on
Rε,k−1 ∩ W ; moreover, if Φε are the retraction maps associated with Gε as above,
we have supε ‖(Φε)�(�J

′uε)‖V < +∞, and we can extract a subsequence such that
FU [(Φε)�(�J

′uε) − αkM ] → 0, where M is a n-dimensional integral boundary with
finite mass in U .

(iii) Flat asymptotical equivalence. The sequences of currents {�Juε}, {�J ′uε},
and {(Φε)�(�J

′uε)} is asymptotically equivalent in the flat norm over U .
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From the previous proposition, it is easy to deduce the following.
Proof of the compactness statement in Theorem 1.1 (i). First, we take an open

set Ω′ ⊃⊃ Ω, and we extend uε to ũε on Ω′ so that the energies remain equibounded,
i.e., supε Fε(ũε,Ω

′) < +∞. This can be made by reflection around ∂Ω; cf. Remark
8.2 of [3]. Next we observe that, by density, it is not restrictive to assume that uε

are smooth. Then, it is enough to apply Proposition 3.1, with Ω replaced by Ω′ and
U replaced by Ω: by (ii), up to subsequences there exists an n-dimensional integral
boundary M with finite mass in Ω, such that FΩ[(Φε)�(�J

′uε) − αkM ] → 0; by (iii),
we have also FΩ(�Juε − αkM) → 0.

The remainder of this section is devoted to the proof of Proposition 3.1. We need
two preliminary lemmas, which will be repeatedly used in later sections as well. They
are quite close to some technical results presented in [3, section 8].

Lemma 3.2. Given a nonnegative function v ∈ L1(Ω), a positive finite measure
μ in Ω, and a positive parameter l, we can position a grid G of step l so that both the
following inequalities are satisfied;

ln+1

∫
Rk−1∩Ω

v ≤ K

∫
Ω

v,(3.6)

ln
∫

Ω

dμ(x)

[dist(x,Rk−1)]n
≤ Kμ(Ω).(3.7)

Proof. If the grid Gl is centered at x0, the left-hand sides of (3.6) and (3.7) are
functions of x0, say, respectively, f1(x0) and f2(x0). Let us compute the integral
means of fi(x0) over Ql := [0, l]n+k for i = 1, 2.

We denote by I the family of all subsets I of {1, . . . , n+ k} with 
I = k− 1. For
I ∈ I, I = {i1, . . . , ik−1}, we let Rk−1(I) be the union of the (k − 1)-cells of Gl(x0)
which are parallel to the space spanned by the subset {ei1 , . . . , eik−1

} of the canonical
basis {e1, . . . , en+k} of R

n+k; also, we let Ql(I) be the set of points x0 ∈ Ql whose
coordinates x0i1 , . . . , x0ik−1

equal zero. We have

−
∫
Ql

f1(x0) =
∑
I∈I

−
∫
Ql

ln+1

∫
Rk−1(I)∩Ω

v =
∑
I∈I

−
∫
Ql(I)

ln+1

∫
Rk−1(I)∩Ω

v

=
∑
I∈I

∫
Ql(I)

∫
Rk−1(I)∩Ω

v =

(
n + k
k − 1

)∫
Ω

v =: K1

∫
Ω

v.

Here the second equality holds since, for I = {i1, . . . , ik−1}, the set Rk−1(I) ∩ Ω does
not depend on the coordinates x0i1 , . . . , x0ik−1

of x0, while the fourth equality follows
from Fubini’s theorem and the computation of 
I.

Denoting by R the (k− 1)-skeleton of the grid with step 1 centered at the origin,
we have

−
∫
Ql

f2(x0) = −
∫
Ql

ln
∫

Ω

dμ(x)

[ldist(l−1(x− x0), R)]n
dLn+k(x0)

=

∫
Ω

−
∫
Ql

dLn+k(x0)

[dist(l−1(x− x0), R)]n
dμ(x)

=

[
−
∫
Q1

dLn+k(y)

[dist(y,R)]n

]
μ(Ω) =: K2μ(Ω),

where in the last line K2 is a universal constant because the integral between square
brackets is finite (see, e.g., [3, Lemma 8.3]).
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Now, fix K > K1 + K2, and set E1 := {x0 ∈ Ql : f1(x0) > K
∫
Ω
v}, E2 := {x0 ∈

Ql : f2(x0) > Kμ(Ω)}. Using the above computations, we infer that Ln+k(Ei) ≤
(Ki/K)ln+k for i = 1, 2. So Ln+k(E1 ∪E2) < ln+k; hence the complement of E1 ∪E2

in Ql is nonempty.
Lemma 3.3. Let u ∈ W 1,p(Ω; Rk), and let Q ⊂ Ω be a (k − 1)-cell of a grid of

step l. If ψ is defined as in the end of section 2.1, for every ε > 0 there holds

−
∫
Q

ψ(|u|) ≤ Kεkl−k−n

{
ln+1

∫
Q

eε(u)

}
.(3.8)

Moreover, if we fix λ > (k − 1)/p, and Ψ is a primitive of ψ(1−λ)/λp, we have

osc(Ψ(|u|), Q)λp ≤ Kεk−λplλp−k−n

{
ln+1

∫
Q

eε(u)

}
.(3.9)

Proof. Inequality (3.8) is straightforward by taking into account that ψ(|u|) ≤
εkeε(u). To prove (3.9), since λp > k− 1, we may apply the Morrey–Sobolev embed-
ding theorem to obtain

osc(Ψ(|u|), Q)λp ≤ Klλp[1−(k−1)/λp]

∫
Q

|∇(Ψ(|u|))|λp.(3.10)

By Young’s inequality and the definition of Ψ, we also have

εk−λp

∫
Q

eε(u) ≥ K

∫
Q

|∇u|λpψ(|u|)1−λ ≥ K

∫
Q

|∇(Ψ(|u|))|λp.(3.11)

Combining (3.10) and (3.11), we obtain (3.9).
We are now in a position to give the following proof.
Proof of Proposition 3.1. (i) Let K > 0 be chosen so that ψ(t)1−k/p ≥ Kρ(t) for

all t ∈ [0,+∞). Then (3.1) yields Fε(uε) ≥ K‖ � J ′uε‖Ω, and the statement follows
from the assumption supε Fε(uε) < +∞.

(ii) Let us define l(ε) := εα, with 0 < α < 1/(n + 1). By Lemma 3.2, the
assumption supε Fε(uε) < +∞, and assertion (i) is already proved. For every fixed ε
we may position a grid Gε of step l(ε) so that both conditions below hold:

sup
ε

{
l(ε)n+1

∫
Rε,k−1∩Ω

eε(uε)

}
< +∞,(3.12)

sup
ε

{
l(ε)n
∫

Ω

d | � J ′uε|(x)

[dist(x,Rε,k−1)]n

}
< +∞.(3.13)

We claim that |uε| → 1 uniformly on Rε,k−1 ∩W . To prove such a claim, we choose
λ and Ψ as in the statement of Lemma 3.3, and we denote by Q a generic (k− 1)-cell
of Rε,k−1 entirely contained in Ω. Since ψ vanishes only at 1 and Ψ is continuous and
strictly increasing, it is enough to show that

−
∫
Q

ψ(|uε|) → 0 and osc (Ψ(|uε|), Q) → 0 uniformly in Q.(3.14)

By Lemma 3.3, (3.12), and the choice of l(ε), we have

−
∫
Q

ψ(|uε|) ≤ Cεkl(ε)−k−n = Cεk−α(k+n),

osc (Ψ(|uε|), Q)λp ≤ Cεk−λpl(ε)λp−k−n = Cεk−λp+α(λp−k−n).
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Therefore, the first condition in (3.14) is fulfilled, because α < k/(k + n). As for the
second condition in (3.14), it is satisfied provided λ < (k + α(α − 1)−1n)/p. This
latter inequality turns out to be compatible (thanks to the choice α) with the one
already imposed on λ (namely, λ > (k − 1)/p). Thus (3.14) is proved.

Now, since the functions uε are smooth on W with |uε| → 1 on Rε,k−1 ∩W , for
ε small enough the currents obtained by extending to zero �J ′uε out of W satisfy
both conditions in (3.2) (indeed, for ε small enough, |uε| ≥ 1/2 on Rε,k−1 ∩ W
and, if d = 2

√
n + k l(ε), Vd is compactly contained in W ). Therefore, using (3.3),

(3.4), and assertion (i) (already proved), we deduce that {(Φε)�(�J
′uε)} is a sequence

of polyhedral boundaries in V , with uniformly bounded masses and multiplicities
in αkZ (cf. section 3.1). As U ⊂⊂ V , by an adaptation of the Federer–Fleming
closure theorem (see [3, Proposition 2.8]), we can extract a subsequence such that
FU [(Φε)�(�J

′uε) − αkM ] → 0, where M is an n-dimensional integral boundary with
finite mass in U .

(iii) The asymptotical equivalence between {�Juε} and {�J ′uε} follows from the
assumption supε Fε(uε) < +∞, together with the following estimate, holding for all
functions u smooth on U :

FU (�Ju− �J ′u) ≤ KεFε(u, U).(3.15)

To show (3.15), observe first that kρ(|y|) dy is the differential of the (k − 1)-form

ω′ := σ(|y|)ω0(y), where σ(t) := kt−k
∫ t
0
ρ(s)sk−1 ds and ω0 is the (k−1)-form defined

in (2.5). So there holds

�Ju− �J ′u = (−1)n
1

k
∂[�u�(ω0 − ω′)].(3.16)

Moreover, the difference between the forms ω0 and ω′ satisfies the estimate

|ω0(y) − ω′(y)| ≤ K|1 − σ(|y|)| |y| ≤ K||y| − 1| ≤ KW (y)(p−k+1)/p,(3.17)

where the second inequality follows from the identity σ(t) = t−k for t ≥ 1/3, and the
third inequality holds due to the growth assumptions (1.2) on W .

Now, using the definition of flat norm together with (3.16), estimate (3.17), and
Hölder’s inequality, we infer

FU (�Ju− �J ′u) ≤ K‖ � u�(ω0 − ω′)‖U ≤ K

∫
U

|ω0(u) − ω′(u)||∇u|k−1

≤ K

∫
U

W (u)(p−k+1)/p|∇u|k−1

≤ K

{∫
U

W (u)

}(p−k+1)/p{∫
U

|∇u|p
}(k−1)/p

≤ K
{
εkFε(u, U)

}(p−k+1)/p{
εk−pFε(u, U)

}(k−1)/p

= KεFε(u, U).

Thus (3.15) is proved, and it remains to show the asymptotical equivalence between
{�J ′uε} and {(Φε)�(�J

′uε)}. Since the currents obtained by extending to zero �J ′uε

out of W satisfy (3.5), and the grids Gε verify (3.13), we have

FU

(
� J ′uε − (Φε)�(�J

′uε)
)
≤ Kl(ε)

{
l(ε)n
∫

Ω

d | � J ′uε|(x)

[dist(x,Rε,k−1)]n

}
→ 0.
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4. Optimal profile constants. Throughout this section, we assume that n = 0
(so, in particular, all functions in W 1,p(Ω,Rk) are continuous by the Sobolev embed-
ding theorem). Our goal is to introduce the family of constants τd which intervene in
Theorem 1.1, and to state their main properties. We proceed according to the follow-
ing plan. First, we give the strong definition of τd, prescribing the trace at infinity
(cf. Definition 4.1), and we prove that τd is strictly positive for all d �= 0. Next, we
show that all functions u with finite energy on R

k admit a suitably defined notion of
degree at infinity, and we introduce the corresponding relaxed definition of optimal
profile constant τd (cf. Definition 4.8). Finally, we prove that τd and τd coincide and,
as a consequence, that τd is a subadditive function of d.

Definition 4.1. For every d ∈ Z, let φd be a fixed Lipschitz map from the sphere
Sk−1 into itself of degree d. We say that a function u ∈ W 1,p

loc (Rk; Rk) has trace φd at
infinity, and we write tr(u,∞) = φd if there exists r > 0 such that u(x) = φd(x/|x|)
for all x with |x| ≥ r. Then we set

τd := inf
{
F1(u,R

k) : u ∈ W 1,p
loc (Rk; Rk) such that tr(u,∞) = φd

}
.(4.1)

Remark 4.2. It is straightforward to check that the energy F1(u,R
k) is finite for

all functions u ∈ W 1,p
loc (Rk; Rk) having trace φd at infinity.

Proposition 4.3. There exists a positive constant c, independent of d, such that
τd ≥ c|d| for every d ∈ Z.

Proof. Let u ∈ W 1,p
loc (Rk; Rk) with u(x) = φd(x/|x|) for |x| ≥ r. Using (3.1) and

the area formula (2.7), we get

F1(u,R
k) ≥ K

∫
Rk

W (u)1−k/p|Ju| ≥ K

∫
Bk

r

W (u)1−k/p|Ju|

= K

∫
Rk

W (y)1−k/p
 {u−1(y) ∩Bk
r }

≥ K

∫
Rk

W (y)1−k/p|deg(u,Bk
r ,R

k, y)| = K|d|
∫
Bk

1

W (y)1−k/p,

where the last equality holds because u(∂Bk
r ) ⊆ Sk−1 (cf. section 2.4).

Definition 4.4. Let a function u ∈ C0(Rk; Rk) be given. We say that a value
y ∈ R

k is not attained by u at infinity if there exists r = r(y) > 0 such that y �∈
u(Rk \Bk

r ). In this case, we can set

deg(u,∞, y) := deg

(
u− y

|u− y| , ∂B
k
r

)
∀r ≥ r(y),

since the right-hand side of the above definition does not depend on r ≥ r(y).
Lemma 4.5. Let F1(u, R

k) < +∞. Then the following hold:
(i) For all α > 0, Bk

α contains some value not attained by u at infinity.
(ii) There exists a sequence of radii {rn}, with limn rn = +∞, such that

lim
n

{
rn

∫
∂Bk

rn

e1(u)

}
= 0 and lim

n

{
sup
∂Bk

rn

||u| − 1|
}

= 0.(4.2)

(iii) For any two values y1, y2 ∈ Bk
1 not attained by u at infinity, there holds

deg(u,∞, y1) = deg(u,∞, y2).
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Before proving the above lemma, we add a related definition and remark which
will be useful in what follows.

Definition 4.6. Let F1(u,R
k) < +∞. Then, we call the degree at infinity of

u—and denote it by deg(u,∞)—the quantity deg(u,∞, y) for any value y ∈ Bk
1 not

attained by u at infinity. Indeed, such a value exists in view of Lemma 4.5 (i), and it
does not depend on the choice of y ∈ Bk

1 in view of Lemma 4.5 (iii).
Remark 4.7. (i) Let F1(u, R

k) < +∞. For every δ > 0, we may find a radius R
(arbitrarily large) such that

R

∫
∂Bk

R

e1(u) < δ ,
∣∣|u| − 1

∣∣ < δ on ∂Bk
R , deg

(
u

|u| , ∂B
k
R

)
= deg(u,∞).(4.3)

Indeed, by Lemma 4.5 we can select a value y ∈ Bk
1−2δ and an arbitrarily large radius

R such that y �∈ u(Rk \ BR) and the first two conditions in (4.3) are satisfied. Then
also the third one is fulfilled, as

deg

(
u

|u| , ∂B
k
R

)
= deg

(
u− y

|u− y| , ∂B
k
R

)
= deg(u,∞, y) = deg(u,∞).

(ii) Let F1(u, R
k) < +∞, and assume in addition that |u| ≥ 1/2 on ∂Qn for a

sequence of cubes Qn centered at the origin, whose sides diverge as n → +∞. Then,
by arguing in a similar way as in the item (i) above, one obtains that deg(u,∞) =
deg(u/|u|, ∂Qn) for n large enough.

Proof of Lemma 4.5. (i) Let α > 0. By the assumption F1(u, R
k) < +∞ and

(3.1), we may choose r = r(α) large enough so that∫
Rk\Bk

r

W (u)1−k/p|Ju| <
∫
Bk

α

W (y)1−k/p.(4.4)

Since by the area formula (2.7) the left-hand side of (4.4) is larger than or equal to∫
Bk

α
[W (y)1−k/p 


{
u−1(y) ∩ (Rk \Bk

r )}], we deduce that 

{
u−1(y)∩(Rk \Bk

r )
}

cannot

be strictly positive for all y ∈ Bk
α.

(ii) By the assumption F1(u,R
k) < +∞, a contradiction argument readily yields

the existence of a sequence of radii {rn}, with limn rn = +∞, satisfying the first
equality in (4.2). Let us show that this sequence also fulfills the second condition in
(4.2). Choose λ and Ψ as in Lemma 3.4, and notice that such a lemma still holds
(with the very same proof) when u belongs to W 1,p

loc (Rk; Rk) and the (k− 1)-cell Q of
size l is replaced by ∂Bk

l . Then inequalities (3.8) and (3.9), applied with n = 0 and
ε = 1, give

−
∫
∂Bk

rn

ψ(|u|) ≤ K r−k
n

{
rn

∫
∂Bk

rn

e1(u)

}
,

osc(Ψ(|u|), ∂Bk
rn)λp ≤ K rλp−k

n

{
rn

∫
∂Bk

rn

e1(u)

}
.

We conclude by taking λ ≤ k/p and arguing as in the proof of Proposition 3.1.
(iii) Let y1, y2 ∈ Bk

1 be two values not attained by u at infinity, and let r1, r2
be the corresponding radii such that yi �∈ u(Rk \ Bk

ri) for i = 1, 2. Since |yi| < 1,
by assertion (ii) (already proved), we may find a radius r > max{r1, r2} such that



398 N. DESENZANI AND I. FRAGALÀ

|u(x)| > max{|y1|, |y2|} for all x ∈ ∂Bk
r . Therefore,

deg(u,∞, y1) = deg

(
u(x) − y1

|u(x) − y1|
, ∂Bk

r

)
= deg

(
u(x) − y2

|u(x) − y2|
, ∂Bk

r

)
= deg(u,∞, y2).

Definition 4.8. For every d ∈ Z, we set

τd := inf
{
F1(u, R

k) : u ∈ W 1,p
loc (Rk; Rk) such that deg(u,∞) = d

}
.(4.5)

Proposition 4.9. For every d ∈ Z, the constants τd and τd defined, respectively,
by (4.1) and (4.5) coincide. In particular, τd equals τ−d, and it is independent of the
choice of φd.

Proof. We introduce an auxiliary quantity τ ′d defined by

τ ′d := inf
{
F1(u,R

k) : u ∈ W 1,p
loc (Rk; Rk) such that ∃ r > 0 with

|u(x)| = 1 on R
k \Bk

r and deg(u, ∂Bk
r ) = d ∀r ≥ r

}
.

(4.6)

Denoting, respectively, by Ad, A′
d, and Ad the classes of admissible functions in the

right-hand sides of (4.1), (4.6), and (4.5), there holds Ad ⊂ A′
d ⊂ Ad. Therefore,

τd ≥ τ ′d ≥ τd. We can then achieve the proof in two steps by showing first that
τd ≤ τ ′d and then that τ ′d ≤ τd.

Step 1. To prove that τd ≤ τ ′d, let us show that, for any given u ∈ A′
d with

F1(u,R
k) < +∞ and for any ε > 0, there exists v ∈ Ad such that

F1(v,R
k) ≤ F1(u,R

k) + ε.(4.7)

Let r > 0 be such that |u(x)| = 1 on R
k \ Bk

r and deg(u, ∂Bk
r ) = d for all r ≥ r. For

any r1 ≥ r, the continuous mapping gr1 : Sk−1 → Sk−1 defined by gr1(y) := u(r1y)
has degree d. Therefore, we may find a Lipschitz homotopy ϕ : Sk−1 × [0, 1] → Sk−1

such that ϕ(·, 0) = gr1(·) and ϕ(·, 1) = φd(·). For r2 > r1, let λ : [r1, r2] → [0, 1] be
an affine function with λ(r1) = 0 and λ(r2) = 1. We set

v(x) :=

⎧⎪⎨
⎪⎩
u(x) if |x| ≤ r1,

ϕ
(

x
|x| , λ(|x|)

)
if r1 ≤ |x| ≤ r2,

φd

(
x
|x|
)

if |x| ≥ r2.

Clearly, v ∈ Ad, and we claim that (4.7) is fulfilled provided r1 and r2 are suitably
chosen. Indeed, we have

F1(v,R
k) − F1(u,R

k) = F1(v,R
k \Bk

r2)︸ ︷︷ ︸
I

+F1(v,B
k
r2 \B

k
r1)︸ ︷︷ ︸

II

−F1(u,R
k \Bk

r1)︸ ︷︷ ︸
III

.

Term I is infinitesimal when r2 → +∞, as F1(v,R
k) < +∞ (cf. Remark 4.2). Sim-

ilarly, term III is infinitesimal when r1 → +∞ by the assumption F1(u,R
k) < +∞.

As for term II, we have II =
∫
Bk

r2
\Bk

r1

|∇v|p, and

|∇v(x)| ≤
{

sup
Sk−1×[0,1]

|∇ϕ|
}{ (k − 1)1/2

|x| +
1

r2 − r1

}
∀x ∈ Bk

r2 \B
k
r1 .
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Then, if we choose r2 = r1(1 + r−α
1 ), with 0 < α < (p− k)/(p− 1), term II turns out

to be infinitesimal when r1 → +∞, because∫
Bk

r2
\Bk

r1

1

|x|p = Krk−p
1

[
1 − (1 + r−α

1 )k−p
]
∼ rk−p−α

1 ,

∫
Bk

r2
\Bk

r1

1

(r2 − r1)p
= Kr

k+(α−1)p
1

[
(1 + r−α

1 )k − 1
]
∼ r

k−p+α(p−1)
1 .

Step 2. To prove that τ ′d ≤ τd, let us show that, for any given u ∈ Ad with
F1(u,R

k) < +∞, and for any ε > 0, there exists v ∈ A′
d such that (4.7) holds. For

a fixed δ > 0, we can choose R > 0 arbitrarily large such that conditions (4.3) in
Remark 4.7 (i) hold. Let α : Sk−1 × [R,+∞) → R be defined by

α(y, t) :=

{
1 + (t−R)sgn

(
1 − |u(Ry)|

)
if 0 ≤ t−R ≤

∣∣|u(Ry)|−1 − 1
∣∣,

|u(Ry)|−1 if t−R ≥
∣∣|u(Ry)|−1 − 1

∣∣,
and set

v(x) :=

{
u(x) if |x| ≤ R,

α
(

x
|x| , |x|
)
u
(
R x

|x|
)

if |x| ≥ R.

Notice that v(x) = |u(Rx/|x|)|−1u(Rx/|x|) for all x with |x| ≥ R′ := R + supy∈Sk−1∣∣|u(Ry)|−1 − 1
∣∣, and hence v ∈ A′

d. We claim that v fulfills (4.7) provided δ and R
are chosen, respectively, sufficiently small and sufficiently large. Indeed, we have

F1(v,R
k) − F1(u,R

k) =

∫
Rk\Bk

R

|∇v|p

︸ ︷︷ ︸
I

+

∫
Bk

R′\Bk
R

W (v)

︸ ︷︷ ︸
II

−F1(u,R
k \Bk

R)︸ ︷︷ ︸
III

.

Term III is infinitesimal as R → +∞ since F1(u,R
k) < +∞. Term II is infinitesimal

as δ → 0. Indeed, by the second condition in (4.3) the difference (R′ − R) becomes
arbitrarily small as δ → 0, so that the measure of the integration domain in II is
infinitesimal with δ (and clearly the integrand remains bounded, because |v(x)| ≤
(1 + R′ −R)(1 + δ) for all x ∈ Bk

R′ \Bk
R). Concerning term I, for |x| ≥ R we have

|∇v(x)| ≤ K

{
|α| |∇u

∣∣ R
|x| + |u| |αy|

1

|x| + |u| |αt|
}

;(4.8)

here and below, α and its derivatives are computed at (x/|x|, |x|), while u and its
gradient are computed at Rx/|x|. Now, for a suitable constant Cδ which depends on
δ but remains bounded as δ → 0, there holds

|α| ≤ Cδ, |u| ≤ Cδ, |αy| ≤ CδR|∇u|.(4.9)

From (4.8) and (4.9), we infer that

|∇v| ≤ Cδ

{
|∇u| R|x| + |αt|

}
.

Taking into account that αt(y, t) vanishes for t ≥ R′, and that, by the first condition
in (4.3), ∫

Rk\Bk
R

∣∣∣∣∇u

(
R

x

|x|

)∣∣∣∣
p
Rp

|x|p = KR

∫
∂Bk

R

|∇u|p ≤ Kδ,
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we deduce that term I is infinitesimal as δ → 0.
Finally, the last assertion in the statement follows immediately from the definition

of τ̄d.
Proposition 4.10. The function Z � d �→ τd ∈ [0,+∞) is subadditive.
Proof. By Proposition 4.9, it is enough to prove that, for fixed integers d1 and

d2, τd1+d2
≤ τd1

+ τd2
. Moreover, by the same proposition we know that τdi

are
independent of the choice of the trace functions φdi

. Hence, we may assume with no
loss of generality that there exists a fixed vector y0 ∈ Sk−1 such that φd1

(y) = y0

for y in the hemisphere Sk−1 ∩ {yk ≥ 0} and φd2(y) = y0 for y in the hemisphere
Sk−1 ∩ {yk ≤ 0} (here and in the remainder of the proof, we denote by yk the
kth component of a vector y ∈ R

k). Then, if Ad and Ad denote, respectively, the
classes of admissible functions in (4.1) and (4.5), it suffices to construct, for any given
pair (u1, u2) ∈ Ad1 × Ad2 with F1(ui,R

k) < +∞, a function v ∈ Ad1+d2 such that
F1(v,R

k) = F1(u1,R
k) + F1(u2,R

k). Choose r > max{r1, r2}, with ri satisfying
ui(x) = φdi

(x/|x|) when |x| ≥ ri. Then set Pr := (0, . . . , 0, r), and define v by

v(x) :=

{
u1(x + Pr) if xk ≤ 0,

u2(x− Pr) if xk > 0.

Since u1(x) = y0 on {xk ≥ r} and u2(x) = y0 on {xk ≤ −r}, it is straightforward
that F1(v,R

k) = F1(u1,R
k) + F1(u2,R

k). It remains to check that v ∈ Ad1+d2
. By

construction, there holds

v(x) =

{
φd1

(
x+Pr

|x+Pr|
)

on {|x + Pr| ≥ r1} ∩ {xk ≤ 0},
φd2

(
x−Pr

|x−Pr|
)

on {|x− Pr| ≥ r2} ∩ {xk > 0}

(in particular, v(x) = y0 on {|x + Pr| ≥ r1} ∩ {|x − Pr| ≥ r2} ∩ {|xk| ≤ r}). So,
if we consider a cube Q centered at the origin, with sides larger than 4r, we have
|v| = 1 on ∂Q and deg(v, ∂Q) = d1 + d2. In view of Remark 4.7 (ii), we conclude that
deg(v,∞) = d1 + d2.

5. Γ-lim inf inequality.

5.1. Case n = 0. The reason why we first deal with such a case relies basically
on the following scaling property, enjoyed by the functionals Fε for n = 0, as it is
easily checked by a change of variables:

F1

(
u(εx),

A

ε

)
= Fε(u(x), A).(5.1)

Thanks to (5.1), we can exploit the family of optimal profile constants introduced
in section 4 in order to prove the following version of the Γ-lim inf inequality in
Theorem 1.1 (i). Until otherwise specified, we keep the assumption n = 0 without
any further mention.

Theorem 5.1. Let {uε} ⊂ W 1,p(Ω; Rk) be a sequence such that FΩ(�Juε −
αkM) → 0 as ε → 0, where M =

∑m
i=1 σ

iδ(xi) is a 0-dimensional integral boundary
(with σi ∈ Z and xi ∈ Ω). Then lim infε Fε(uε) ≥

∑m
i=1 τσi .

The proof of Theorem 5.1 given below may be outlined as follows. We consider
the sequence of grids Gε of step l(ε) � ε constructed in Proposition 3.1, and we use
(5.1) in order to scale the functionals Fε over those cubes of the grids where the degree
is located. Then, since the size of the scaled cubes diverges as ε → 0, we need as a
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fundamental ingredient the following estimate for the energy F1 over enlarging cubes,
whose proof is postponed.

Proposition 5.2. Let Qr := [−r, r]k, and let ur ∈ W 1,p(Qr; R
k) satisfy the

following assumptions:

sup
r

F1(ur, Qr) < +∞,(5.2)

sup
r

{
r

∫
∂Qr

e1(ur)

}
< +∞,(5.3)

|ur| ≥ 1/2 on ∂Qr,(5.4)

deg

(
ur

|ur|
, ∂Qr

)
= d.(5.5)

Then lim infr→+∞ F1(ur, Qr) ≥ τd.
Proof of Theorem 5.1. We may assume with no loss of generality that uε are

smooth and that lim infε Fε(uε) = limε Fε(uε) < +∞. Given open sets U , V , and W ,
with U ⊂⊂ V ⊂⊂ W ⊂⊂ Ω, we take a sequence of grids Gε as in Proposition 3.1, and
we denote by Qj

ε for j = 1, . . . , N(ε) those cubes of Gε whose centers xj
ε belong to U ;

for ε small enough, such cubes are entirely contained in Ω. If we equip Qj
ε with the

canonical orientation inherited by R
k, the restrictions of the currents (Φε)�(�J

′uε) to
U may be written in the form

(Φε)�(�J
′uε) U = αk

N(ε)∑
j=1

σj
εδ(x

j
ε),(5.6)

where σj
ε = deg(uε/|uε|, ∂Qj

ε). Since the currents (Φε)�(�J
′uε) are uniformly bounded

in mass over U , and the coefficients σj
ε are integers, we deduce that the sum in (5.6)

can be actually extended over j ∈ {1, . . . , N} for some N independent of ε; moreover,
up to subsequences there exist integers σ1

0 , . . . , σ
N
0 such that σj

ε ≡ σj
0 for ε small

enough. Using (5.1), we have

lim inf
ε

Fε(uε) ≥
N∑
j=1

lim inf
ε

F1

(
uε(εx + xj

ε),
Qj

ε

ε
− xj

ε

)
.(5.7)

Set r = r(ε) := l(ε)/ε (so that {r(ε)} diverges as ε → 0 because l(ε) � ε), and fix an
index j ∈ {1, . . . , N}. We have (Qj

ε/ε)−xj
ε = [−r, r]k, and we claim that the sequence

ur(x) := uε(εx+xj
ε) satisfies all the hypotheses of Proposition 5.2. Indeed, (5.2) holds

by (5.7) and the assumption limε Fε(uε) < +∞. By the initial choice of the grid, (5.3)
is satisfied (due to (3.12) in the proof of Proposition 3.1), and (5.4) holds for r large
enough. Moreover, still for r large enough, we know that deg(ur/|ur|, ∂Qr) = σj

0.
Thus, we may invoke Proposition 5.2 to obtain

N∑
j=1

lim inf
ε

F1

(
uε(εx + xj

ε),
Qj

ε

ε
− xj

ε

)
≥

N∑
j=1

τσj
0
.(5.8)

Now observe that, since U is compact, up to subsequences there exist points x1
0, . . . ,

xN
0 ∈ U such that limε x

j
ε = xj

0 for j = 1, . . . , N . Let {x1, . . . , xh} := {x1, . . . , xm}∩U
(with h ≤ m). Since by Proposition 3.1 (iii) FU ((Φε)�(�J

′uε)−αkM) → 0, we neces-

sarily have xj
0 ∈ {x1, . . . , xh} for all j = 1, . . . , N , and, setting Ji := {j ∈ {1, . . . , N} :
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xj
0 = xi}, there holds

∑
j∈Ji

σj
0 = σi for all i = 1, . . . , h. Then Proposition 4.10 yields

N∑
j=1

τσj
0

=

h∑
i=1

∑
j∈Ji

τσj
0
≥

h∑
i=1

τ∑
j∈Ji

σj
0

=

h∑
i=1

τσi .(5.9)

The thesis follows from (5.7), (5.8), and (5.9) by taking into account the arbitrariness
of U .

We now turn to the proof of Proposition 5.2. What makes it delicate is the
lack of compactness of condition (5.5), as the boundary of Qr, where the degree is
prescribed, is moving to infinity. To overcome this difficulty, we first need to suitably
extend ur on a cube Qη larger than Qr (for technical reasons which will be clear
in the proof of Proposition 5.2); then, we build a sequence of grids, of fixed step ρ
independent of r, such that the functions ur remain in modulus sufficiently far from
zero on their (k − 1)-skeletons; see Lemma 5.3 below. These grids play a crucial
role in the proof of Proposition 5.2, since they allow one to individuate for every r
a finite number of cubes which carry the degree. Such cubes can be gathered into
some separate “clusters,” which possibly go to infinity with r but move away from
each other. The scope is “catching” such clusters one by one, in order to recover a
condition of prescribed degree at infinity. The concluding argument will be again the
subadditivity of τd proved in section 4.

Lemma 5.3. Let Qr = [−r, r]k, and let ur ∈ W 1,p(Qr; R
k) satisfy assumptions

(5.2), (5.3), and (5.4). For every r, choose η = η(r) so that η(r) > r, and η(r)/r → 1
as r → +∞. Then we may construct extensions uη of ur to Qη = [−η, η]k with the
following properties:

|uη| ≥
1

2
on ∂Qη,(5.10)

lim
r→+∞

F1(uη, Qη \Qr) = 0.(5.11)

Further, if ρ > 0 is sufficiently large, we may position a sequence of grids Gρ
r of fixed

step ρ (independent of r) such that

|uη| ≥ 1/2 on Rr,k−1 ∩Qη,(5.12)

deg

(
uη

|uη|
, ∂(Qi

r ∩ (Qη \Qr))

)
= 0 for r large enough,(5.13)

sup
r

∑
i

∣∣∣∣ deg

(
uη

|uη|
, ∂(Qi

r ∩Qη)

) ∣∣∣∣ < +∞,(5.14)

where in (5.12) Rr,k−1 denotes the (k− 1)-skeleton of Gρ
r , in (5.13) Qi

r is any cube of
Gρ
r which intersects Qη \Qr, and in (5.14) the sum is extended over all the cubes Qi

r

of Gρ
r which intersect Qη.
Proof. Thanks to assumptions (5.3) and (5.4) and to the hypothesis on the asymp-

totic behavior of η(r) for r → +∞, extensions uη of ur to Qη satisfying (5.10) and
(5.11) can be constructed essentially by projection on ∂Qr (we omit the explicit com-
putations which are tedious but not difficult).

If ur satisfy in addition assumption (5.2), due to property (5.11) we also have
supr F1(uη, Qη) < +∞. Then, by inequality (3.6) in Lemma 3.2 (applied with n = 0),
for any ρ > 0 we may position a sequence of grids Gρ

r of step ρ so that ρ
∫
Rr,k−1∩Qη

e1(uη)

≤ C, where C is a positive constant independent of r and ρ. We claim that if ρ is
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large enough, such a sequence of grids fulfills (5.12), (5.13), and (5.14). To obtain
(5.12) it is enough to show that, for λ and Ψ as in Lemma 3.3, and denoting by Q a
generic (k − 1)-cell of Rr,k−1, the functions uη satisfy

lim
ρ→+∞

−
∫
Q∩Qη

ψ(|uη|) = 0 and lim
ρ→+∞

osc(Ψ(|uη|), Q ∩Qη) = 0

(uniformly in r and Q).

These equalities can be verified (provided λ < k/p), in a similar way as already done
in Proposition 3.1 and Lemma 4.5. So we avoid repeating the proof, and we pass to
show (5.13) and (5.14). Since limr F1(uη, Qη \Qr) = 0 and supr F1(uη, Qη) < +∞, it
suffices to prove that

∑
i

∣∣∣∣ deg

(
uη

|uη|
, ∂(Qi

r ∩ (Qη \Qr))

) ∣∣∣∣ ≤ KF1(uη, Qη \Qr),(5.15)

∑
i

∣∣∣∣ deg

(
uη

|uη|
, ∂(Qi

r ∩Qη)

) ∣∣∣∣ ≤ KF1(uη, Qη),(5.16)

where the sums are extended, respectively, over the indices i such that Qi
r intersects

Qη \Qr and Qη. (We stress that the degrees in the left-hand sides of (5.15) and (5.16)
are well defined by (5.4), (5.10), and (5.12).) We prove only (5.15), omitting the proof
of (5.16) which runs in the exact same way. Set for brevity P i

r := Qi
r ∩ (Qη \ Qr)

whenever such a set is nonempty. Using (3.1) and the area formula (2.7), we get∫
Qη\Qr

e1(uη) ≥ K

∫
Qη\Qr

W 1−k/p(uη)|Juη|

= K
∑
i

∫
P i

r

W 1−k/p(uη)|Juη|

= K
∑
i

∫
Rk

W 1−k/p(y) 
 {u−1
η (y) ∩ P i

r}

≥ K
∑
i

∫
Bk

1/2

W 1−k/p(y) |deg(uη, P
i
r ,R

k, y)|.

(5.17)

For every i, since uη ∈ C0(P
i

r; R
k) and |uη| ≥ 1/2 on ∂P i

r , we may find a continuous

homotopy ϕ(x, t) : P
i

r × [0, 1] → R
k such that ϕ(·, 0) = uη(·), ϕ(·, 1) = wη(·) with

wη = uη/|uη| on ∂P i
r , and ϕ(·, t) ≥ 1/2 on ∂P i

r for all t ∈ [0, 1]. Therefore, for all
y ∈ Bk

1/2, we have

deg(uη, P
i
r ,R

k, y) = deg(wη, P
i
r ,R

k, y) = deg(wη, ∂P
i
r) = deg(uη/|uη|, ∂P i

r),

where the first equality is due to the homotopy invariance of the degree (cf. [14,
Theorem 2.3]) and the second equality holds because wη(∂P

i
r) ⊆ Sk−1 (cf. section 2.4).

Replacing the above identity in the last line of (5.17), we get (5.15).
Proof of Proposition 5.2. Let η = η(r) satisfy the assumptions of Lemma 5.3 and

the additional condition limr→+∞
(
η(r) − r

)
= +∞. For such η(r), let uη and Gρ

r

be, respectively, extensions of ur to Qη and grids of step ρ as in the statement of
Lemma 5.3. By (5.11), it is enough to show that lim inf F1(uη, Qη) ≥ τd.
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For any cube Qi
r of Gρ

r which intersects Qη, we set dir := deg(uη/|uη|, ∂(Qi
r∩Qη)).

By (5.14), there exists a finite number N (independent of r) of cubes Qi
r such that

dir �= 0, and we have supr

∑N
i=1 |dir| < +∞. Hence, up to subsequences, dir ≡ di, with

di independent of r for i = 1, . . . , N .
By (5.13), for all i = 1, . . . , N and r large enough, it must be Qi

r ∩ Qr �= ∅,
Qi

r ⊂ Qη, and di = deg(ur/|ur|, ∂(Qi
r ∩Qr)). Then, by (5.5), we have

∑N
i=1 d

i = d.
Now, in order to “follow” the location of the cubes Qi

r as r → +∞, let us introduce
an equivalence relation on the set of indices {1, . . . , N}. For i = 1, . . . , N , let xi

r denote
the center of Qi

r. We say that i is equivalent to j if supr |xi
r − xj

r| < +∞. Possibly
passing to subsequences, we may assume that, whenever i and j are not equivalent,
there holds limr |xi

r − xj
r| = +∞. Then, we can associate to each equivalence class [i]

a sequence of sets E
[i]
r , each one contained in Qη and delimited by Gρ

r , enjoying the
following properties:

for every r, E[i]
r ∩ E[j]

r = ∅ whenever [i] �= [j];(5.18)

for every r, E[i]
r contains Qj

r if and only if j ∈ [i];(5.19)

for any j ∈ [i], there holds
⋃
r

(E[i]
r − xj

r) = R
k.(5.20)

Notice in particular that it is possible to satisfy (5.20) thanks to the assumption
limr→+∞ (η(r) − r) = +∞, which ensures that limr→+∞ dist(xj

r, ∂Qη) = +∞.

Notice also that if d
[i]
r denotes the degree of uη/|uη| on ∂E

[i]
r , by (5.19) d

[i]
r is just

the sum of all the dj such that j ∈ [i]. In particular, d
[i]
r =: d[i] is independent of r,

and we have

∑
[i]

d[i] =
∑
[i]

(∑
j∈[i]

dj
)

=

N∑
j=1

dj = d.(5.21)

We can now begin to estimate the energy of uη on Qη. By (5.18), we have

lim inf
r

F1(uη, Qη) ≥
∑
[i]

lim inf
r

F1(uη, E
[i]
r ) =
∑
[i]

lim inf
r

F1

(
uη(x + xi

r), E
[i]
r − xi

r

)
,

where for every class [i] we have chosen a representative i, which will stay fixed in the
remainder of the proof. Taking (5.20) into account, we infer that, up to subsequences,
there exist functions ui ∈ W 1,p

loc (Rk; Rk) such that uη(x + xi
r) → ui(x) weakly in

W 1,p
loc (Rk; Rk), and strongly in L∞

loc(R
k,Rk). Since, for any open set A, F1(·, A) is

weakly lower semicontinuous on W 1,p(A; Rk), we have

lim inf
r

F1

(
uη(x + xi

r), E
[i]
r − xi

r) ≥ sup
A⊂⊂Rk

lim inf
r

F1

(
uη(x + xi

r), A) ≥ F1(u
i,Rk).

Hence, lim infr F1(uη, Qη) ≥
∑

[i] F1(u
i,Rk). Suppose for a moment that we know

that deg(ui,∞) = d[i]. Then, using Definition 4.8, Propositions 4.9 and 4.10, and
(5.21), we get ∑

[i]

F1(u
i,Rk) ≥

∑
[i]

τd[i] =
∑
[i]

τd[i] ≥ τ∑
[i]

d[i] = τd,

and Proposition 5.2 is proved.
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In order to compute deg(ui,∞), we first observe that Gρ
r −xi

r is a grid independent
of r that we may denote by Gρ (indeed, it has fixed step ρ and it is centered at the
origin). In view of (5.19), we may find a fixed cube Q[i], independent of r, centered at
the origin and delimited by Gρ, with the following crucial property: for every r, Q[i]

contains (Qj
r−xi

r) if and only if j ∈ [i]. Then, we take a sequence of cubes Q
[i]
n , whose

sides diverge as n → +∞, all centered at the origin, delimited by Gρ, and containing

Q[i]. For fixed n and r large enough, we have Q
[i]
n ⊆ E

[i]
r − xi

r; hence Q
[i]
n contains

(Qj
r − xi

r) if and only if j ∈ [i], which implies deg
(
uη(x + xi

r)/|uη(x + xi
r)|, ∂Q

[i]
n

)
=

d[i]. Passing to the limit as r → +∞ gives deg(ui, ∂Q
[i]
n ) = d[i]. Finally, letting

n → +∞ and recalling Remark 4.7 (ii), we obtain deg(ui,∞) = d[i] as required.

5.2. Case n > 0. In order to obtain the proof of the Γ-lim inf inequality in
Theorem 1.1 (i) when n > 0, we may exploit Theorem 5.1 by using a slicing technique.
For this purpose, we need to recall some basic facts about the slices of currents by
projections: they are collected in section 5.3 below. For more details on these topics
and their proofs, we refer the reader to [13, sections 4.3.1 and 4.3.2] or [16, section
2.2.5].

5.3. Slicing currents by projections. Fix an arbitrary orthonormal basis
{e1, . . . , en, en+1, . . . , en+k} for R

n+k. We set R
n
y := span{e1, . . . , en} and R

k
z :=

span{en+1, . . . , en+k}. Given any point x ∈ R
n+k, we identify it with a pair (y, z) ∈

R
n
y ×R

k
z , by writing yi = x · ei for 1 ≤ i ≤ n and zi = x · ei for n+ 1 ≤ i ≤ n+ k. We

let dy = dy1 ∧ . . . dyn be the standard volume form on R
n
y , and we denote by P �(dy)

its pull back by the orthogonal projection P : R
n+k → R

n
y .

If T is a normal m-current on R
n+k, with m ≥ n, we denote by T P �(dy)

the (m − n)-current defined by the identity T P �(dy)(ω) := T
(
P �(dy) ∧ ω

)
for all

ω ∈ Dm−n(Rn+k). Then, for y ∈ R
n
y , the slices of T by P in y are (m − n)-currents

{〈T, P, y〉}y characterized by the following integral representation identity:

T P �(dy)(ω) =

∫
Rn

y

〈T, P, y〉(ω) dHn(y) ∀ω ∈ Dm−n(Rn+k).(5.22)

In case T is rectifiable with integer multiplicity, the same holds for 〈T, P, y〉 for Hn-
a.e. y ∈ R

n
y . Moreover, the support, the boundary, and the mass of 〈T, P, y〉 satisfy,

respectively,

spt〈T, P, y〉 ⊂ P−1(y) ∩ sptT,(5.23)

∂〈T, P, y〉 = (−1)n〈∂T, P, y〉 (if m > n),(5.24) ∫
Rn

y

‖〈T, P, y〉‖ dHn(y) ≤ ‖T‖.(5.25)

Finally let us stress that, in the case m = n with which we shall be mainly concerned,
T P �(dy) is just a signed measure. In particular, the slices {〈T, P, y〉}y may be
seen through (5.22) as the disintegration of the measure T P �(dy) with respect to
Hn

R
n
y (see, e.g., [16, section 1.1.5]).

We can now proceed to establish some features about the behavior under the
slicing of the Jacobians and of the flat norm. In the next two lemmas, we keep the
notation adopted above, decomposing R

n+k as R
n
y × R

k
z , and indicating by P the

projector from R
n+k onto R

n
y .
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Lemma 5.4. Let a cube Q = Q′×Q′′ ⊂ R
n
y×R

k
z and a smooth function u : Q → R

k

be given. For y ∈ Q′, define uy : Q′′ → R
k by uy(z) := u(y, z). Then, for every test

function ω ∈ D(Q), there holds

〈�Ju, P, y〉(ω) = �Juy(ω(y, ·)) for Hn-a.e. y ∈ Q′.(5.26)

Proof. Recall that, by definition, �Juy is the absolutely continuous measure on Q′′

with density det∇zu(y, z), where ∇z denotes partial differentiation with respect to the
components zn+1, . . . , zn+k of x. On the other hand, we have �Ju =

∑
α det∇αu(x)�

dxα, where the sum is extended over all k-multi-indices α = (i1, . . . , ik) with 1 ≤ i1 <
· · · < ik ≤ n+ k, ∇αu is the (k× k)-matrix with columns ∇i1u, . . . ,∇iku, and dxα is
the k-covector dxi1 ∧· · ·∧dxik . In particular, we observe that �dxα ·P �(dy) equals 1 if
α = (n+ 1, . . . , n+ k), and 0 otherwise. Therefore, for every test function ω ∈ D(Q),
we have

(�Ju P �(dy))(ω) = �Ju(ωP �(dy)) =
∑
α

∫
Q

ω(x) det∇αu(x) � dxα · P �(dy)

=

∫
Q

ω(y, z) det∇zu(y, z) =

∫
Q′

�Juy(ω(y, ·)) dHn(y),

where in the last equality we have applied Fubini’s theorem. Hence, recalling the
disintegration identity (5.22), we deduce the validity of (5.26).

Lemma 5.5. Let {Tε} be a sequence of boundaries in Dn(Ω), with FΩ(Tε) → 0.
Then, possibly passing to a subsequence, there holds

FP−1(y)∩Ω(〈Tε, P, y〉) → 0 for Hn-a.e. y.

Proof. By the definition of flat norm, there exists a sequence of currents {Sε} ⊂
Dn+1(Ω) such that Tε = ∂Sε, and ‖Sε‖ ≤ FΩ(Tε) + ε. By (5.24), it holds that
∂〈Sε, P, y〉 = (−1)n〈Tε, P, y〉 for Hn-a.e. y. Recalling (5.23) and applying again the
definition of a flat norm, we infer that

FP−1(y)∩Ω(〈Tε, P, y〉) ≤ ‖〈Sε, P, y〉‖ for Hn-a.e. y.

Since ‖Sε‖ → 0, by (5.25) we can pass to a subsequence (not relabeled) such that
‖〈Sε, P, y〉‖ → 0 for Hn-a.e. y, and the statement follows.

Given an n-dimensional integral current M = (M, ξ, σ), let M̂ be the current
obtained by just changing the multiplicity of M from σ(x) into τσ(x), namely,

M = (M, ξ, σ) ⇒ M̂ := (M, ξ, τσ).(5.27)

We are ready to give the following proof.
Proof of the Γ-lim inf inequality in Theorem 1.1 (i). Let {uε} and M = (M, ξ, σ)

be as in the assumptions; it is not restrictive to suppose in addition that uε are smooth.
With the notation introduced at the beginning of this section, decompose R

n+k as
R

n
y × R

k
z , and let P denote the orthogonal projection from R

n+k onto R
n
y . Then, for

the n-current M̂ defined according to (5.27), consider the signed measure M̂ P �(dy).
Also, let Q be a closed cube contained into Ω. We claim that the following inequality
holds true and implies (1.3):

lim inf
ε

Fε(uε, Q) ≥ |M̂ P �(dy)|(Q).(5.28)
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Let us first show how (1.3) follows from (5.28) and then turn back to the proof of
(5.28). Assume that (5.28) is satisfied. Then, it continues to hold if the cube Q is
replaced by an arbitrary open set A ⊂⊂ Ω. Indeed, by the Vitali covering theorem,
we can find a collection {Qi} of pairwise disjoint closed cubes which cover A up to a

|M̂ P �(dy)|-negligible set. We then have

lim inf
ε

Fε(uε, A) ≥
∑
i

lim inf
ε

Fε(uε, Qi) ≥
∑
i

|M̂ P �(dy)|(Qi)= |M̂ P �(dy)|(A).

Recalling that the basis {e1, . . . , en+k} chosen at the beginning of this section was
arbitrary, we infer that, for any simple unit w ∈ Λn(Rn+k), there holds

lim inf
ε

Fε(uε, A) ≥
∫
A∩M

τσ(x)w · ξ(x) dHn(x).(5.29)

Applying (5.29) to finitely many pairwise disjoint open sets Ai ⊂⊂ Ω and simple unit
n-covectors wi, and then summing over i, we get

lim inf
ε

Fε(uε) ≥
∑
i

∫
Ai∩M

τσ(x)wi · ξ(x) dHn(x).(5.30)

Finally, the supremum of the right-hand side of (5.30) over all possible choices of Ai

and wi furnishes the total mass of the variation measure |M̂ |, that is,
∫
M

τσ(x) dHn(x).
We have thus obtained (1.3). It remains to prove (5.28).

We write Q as Q′ × Q′′ ⊂ R
n
y × R

k
z . For y ∈ Q′, similarly as in Lemma 5.4, we

define uy
ε on Q′′ by uy

ε(z) := uε(y, z). We pass to a subsequence (not relabeled) such
that lim infε Fε(uε, Q) = limε Fε(uε, Q) and, using Lemma 5.5,

FP−1(y)∩Ω(〈�Juε, P, y〉 − 〈M,P, y〉) → 0 for Hn-a.e. y.(5.31)

For the sake of clarity, in the remainder of the proof we denote by Gε the functionals
Fε when n = 0. We have

lim
ε

Fε(uε, Q) ≥ lim inf
ε

∫
Q′

Gε(u
y
ε , Q

′′) dHn ≥
∫
Q′

lim inf
ε

Gε(u
y
ε , Q

′′) dHn,(5.32)

where the first inequality holds since |∇uy
ε(z)| ≤ |∇uε(y, z)|, and the second one is just

the Fatou lemma. Now, we want to apply Theorem 5.1 in order to estimate from below
the last integral in (5.32). For Hn-a.e. y ∈ Q′, we may identify �Juy

ε with 〈�Juε, P, y〉
according to (5.26) in Lemma 5.4. Hence, writing the slices 〈M,P, y〉 under the form∑

i σ(y, zi)δ(y, zi), we deduce from (5.31) that FQ′′
(
�Juy

ε −
∑

i σ(y, zi)δ(y, zi)
)
→ 0

(for a finite collection of points zi = zi(y) ∈ Q′′). Then Theorem 5.1 yields

lim inf
ε

Gε(u
y
ε , Q

′′) ≥
∑
i

τσ(y,zi) = 〈M̂, P, y〉(Q′′) for Hn-a.e. y ∈ Q′.(5.33)

Integrating (5.33) over Q′, it follows from (5.32) that

lim
ε

Fε(uε, Q) ≥
∫
Q′
〈M̂, P, y〉(Q′′) dHn(y) = |M̂ P �(dy)|(Q).
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6. Γ-lim sup inequality. The proof of the Γ-lim sup inequality in Theorem 1.1
will be achieved in two steps. The first one consists in reducing our attention to
proving the statement when the limit boundary M is polyhedral. This goal is obtained
by means of the ad hoc density result stated in Proposition 6.1 below (which is an
adaptation of Proposition 8.6 in [3]), combined with a standard diagonal argument.
For convenience, given an n-dimensional integral current M = (M, ξ, σ), and an Hn-

measurable set A in R
n+k, we consider the modified current M̂ defined by (5.27), and

we introduce the energy E(M,A) given by

E(M,A) := |M̂ |(A) =

∫
M∩A

τσ(x) dHn(x).

Proposition 6.1. For every n-dimensional integral boundary M in Ω, there ex-
ists a sequence {Mi} of n-dimensional polyhedral boundaries in Ω such that |Mi|(∂Ω) =
0, FΩ(Mi −M) → 0, and E(Mi,Ω) → E(M,Ω).

Proof. First, we remark that M agrees in Ω with the boundary of an integral
(n+1)-current N , with compact support K, such that |∂N |(∂Ω) = 0; see Proposition
8.6 (i) in [3]. This implies, in particular, that E(M,∂Ω) = 0 (indeed, by Proposition
4.10, E(M,A) is controlled by the total variation of M over A; namely, there exists
a positive constant C, independent of M and A, such that E(M,A) ≤ C |M |(A)).
By the strong approximation theorem (see, e.g., [13, sections 4.2.20 and 4.2.21]),
for every ε > 0, there exist an integral polyhedral current P and a diffeomorphism
f : R

n+k → R
n+k such that

|f(x) − x| < ε ∀x ∈ R
n+k, Lip(f) < 1 + ε, Lip(f−1) < 1 + ε,(6.1)

‖P − f�N‖ + ‖∂P − ∂f�N‖ < ε,(6.2)

FK(P −N) < o(1),(6.3)

where FK is the usual flat norm for integral currents over the compact set K [32,
section 31], and o(1) denotes an infinitesimal as ε → 0. We deduce that

E(∂P − f�M,Ω) ≤ C |∂P − f�M |(Ω) < ε,(6.4)

where the first inequality follows from the definition of E using Proposition 4.10,
while the second one is a consequence of (6.2). On the other hand, if Ωε denotes the
ε-neighborhood of Ω, we have

E(f�M,Ω) ≤ (Lipf)nE(M,f−1(Ω)) ≤ (1 + ε)n E(M,Ωε) = E(M,Ω) + o(1),(6.5)

where the first inequality follows from (2.2) and the identity f̂�M = f�M̂ ; in the
second inequality we have used (6.1), while the third equality is consequence of the
null energy condition on the boundary E(M,∂Ω) = 0. In a similar way, one has

E(M,Ω) ≤ E(f�M,Ω) + o(1).(6.6)

By (6.3), (6.4), (6.5), and (6.6), we may find a sequence {Pi} of integral polyhedral
currents such that FΩ(∂Pi − M) → 0 and E(∂Pi,Ω) → E(M,Ω). The proof is then
achieved by setting Mi = ∂Pi, after possibly translating the currents Pi so that they
also satisfy the additional condition |∂Pi|(∂Ω) = 0 (which can always be done thanks
to Fubini’s theorem).

Let us turn to the second and main step in the proof of the Γ-lim sup inequality.
We assume from now on that M agrees in Ω with the boundary of a polyhedral
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(n+1)-current N , with |∂N |(∂Ω) = 0. Our goal is to exhibit a recovery sequence {uε}
satisfying (1.4). We denote by S the union of all (n − 1)-simplexes of N . Moreover,
given an n-face F of ∂N , we identify the n-plane spanned by F with R

n, and we write
x ∈ R

n+k as x = (y, z) ∈ R
n × R

k; then, for δ, γ > 0, we set

U(F, δ, γ) :=
{
x = (y, z) : y ∈ F and |z| < min{δ, γ dist(y, ∂F )}

}
.

A crucial ingredient in the construction of the sequence {uε} is the following exis-
tence result for Sk−1-valued functions with prescribed singularities proved in [2]: one
can construct a map u ∈ W 1,k−1

loc (Rn+k;Sk−1) ∩ Liploc(R
n+k \ (M ∪ S); Rk) such that

�Ju = αkM , and

|∇u(x)| ≤ C

dist(x,M ∪ S)
.(6.7)

Moreover, one can ask that, for every n-face F of ∂N , and for some δ, γ > 0,

u(x) = φσ

(
z

|z|

)
∀x = (y, z) ∈ U(F, δ, γ),(6.8)

where σ is the multiplicity of ∂N on F , and φσ : Sk−1 → Sk−1 is a prescribed map
of degree σ. Condition (6.8) leads in a natural way to Definition 4.1 of the constant
τσ. So, we fix h ∈ N and, according to (4.1), we consider for every σ ∈ Z a function
ψσ ∈ W 1,p

loc (Rk; Rk) with

tr(ψσ,∞) = φσ and F1(ψσ,R
k) < τσ +

1

h
.(6.9)

The idea is to glue together the trace conditions in (6.8) and (6.9), and to this aim
we need a careful choice of some parameters. Precisely, we take δ = δ(ε) and a
fixed γ > 0 such that (6.8) holds and ε 	 δ(ε) 	 εk/(k+1). Moreover, we put

r = r(ε) := δ(ε)
√

1 + γ−2. Then we set Sε :=
{
x ∈ R

n+k : dist(x, S) < r(ε)
}
,

and Uε :=
⋃

i U(Fi, δ, γ), where the union is extended over all the n-faces Fi of ∂N
(with the convention that, whenever i �= j, Fi ∩ Fj is either empty or a common face
between Fi and Fj).

We are now ready to construct a recovery sequence {uε}, whose energy concen-
trates in a transition zone near M , precisely in Ω∩ (Uε \Sε). This kind of qualitative
behavior is shared with the scalar case p > k = 1, and it is in contrast with the
Ginzburg–Landau case p = k > 1, when the set of energy concentration around M
has a “circular crown” shaped section (compare the proof of Proposition 6.2 below,
respectively, with section 3.5 in [1] and with Lemma 4.2 in [3]).

Proposition 6.2. Assume that M is the restriction to Ω of a polyhedral boundary
∂N , with |∂N |(∂Ω) = 0, and adopt the notation fixed above. Set

vε(x) =

{
u(x) if x /∈ Uε,

ψσi

(
δz

εgi(y)

)
if x = (y, z) ∈ U(Fi, δ, γ),

where σi is the multiplicity of ∂N on Fi, and gi(y) := min{δ, γ dist(y, ∂Fi)}.
Then, if uε(x) := min

{
dist(x, S)/r, 1

}
vε(x), we have FΩ(�Juε−αkM) → 0, and

the Γ-lim sup inequality (1.4) is satisfied.
Proof. First we observe that, by (6.8), (6.9), and the assumption ε 	 δ(ε),

for ε small enough both u(x) and ψσi

(
δz/εgi(y)

)
equal φσi

(z/|z|) for x = (y, z) ∈
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∂U(Fi, δ, γ). Notice also that uε are equibounded in L∞(Ω; Rk); therefore, by the
choice of u and inequality (2.6), we have FΩ(�Juε − αkM) → 0 provided

∫
Ω
|∇uε −

∇u|k−1 → 0. Let us introduce the following subdomains of Ω:

V 1
ε = Ω ∩ (Uε \ Sε), V 2

ε = Ω \ (Sε ∪ Uε),

V 3
ε = Ω ∩ (Sε \ Uε), V 4

ε = Ω ∩ Sε ∩ Uε.

For i = 1, . . . , 4, we are going to estimate separately on each V i
ε the energy amount

of uε and their W 1,k−1-convergence.
• On V 1

ε , uε(x) equals ψσi(z/ε) for all x = (y, z) ∈ U(Fi, δ, γ). Moreover, the
projection of V 1

ε ∩ U(Fi, δ, γ) on the affine plane spanned by Fi is contained into
Fi ∩ Ωδ, Ωδ being the closed δ-neighborhood of Ω. Below, for the sake of clarity, we
indicate by Gε (respectively, G1) the functionals Fε (respectively, F1) when n = 0.

Energy estimate. Using (5.1) and (6.9), we get

Fε(uε, V
1
ε ) =
∑
i

Fε

(
ψσi

(
z

ε

)
, Ω ∩ (U(Fi, δ, γ) \ Sε)

)

≤
∑
i

Hn(Fi ∩ Ωδ)Gε

(
ψσi

(
z

ε

)
, |z| < δ

)

=
∑
i

Hn(Fi ∩ Ωδ)G1

(
ψσi

(z), |z| < δ

ε

)

≤
∑
i

Hn(Fi ∩ Ωδ)(τσi
+ 1/h).

W 1,k−1-convergence. By the Hölder inequality and the assumption δ(ε) 	 εk/(k+1),
we have ∫

V 1
ε

|∇uε|k−1 ≤
∑
i

Hn(Fi ∩ Ωδ)

∫
|z|<δ

ε−k+1
∣∣∣∇ψσi

(z
ε

)∣∣∣k−1

dHk(z)

=
∑
i

Hn(Fi ∩ Ωδ)

∫
|z|<δ/ε

ε|∇ψσi(z)|k−1 dHk(z)

≤ Cε

(
δ

ε

)k(1− k−1
p

)
	 Cε1− k(p−k+1)

(k+1)p → 0.

• On V 2
ε , uε(x) = u(x). We remark that there exists some positive constant C

independent of ε such that outside Uε (so in particular for x ∈ V 2
ε ), there holds

dist(x,M ∪ S) ≥ Cdist(x, S).(6.10)

Energy estimate. Recalling that u takes values into Sk−1, and using (6.7), (6.10),
the coarea formula (2.8) (with D := sup{dist(x, S) : x ∈ Ω}), and the assumption
r(ε) ∼ δ(ε) � ε, we get

Fε(uε, V
2
ε ) = εp−k

∫
V 2
ε

|∇u|p ≤ Cεp−k

∫
Ω\Sε

1

dist(x, S)p

≤ Cεp−k

∫ D

r

1

tp
Hn+k−1

({
x ∈ R

n+k : dist(x, S) = t}
)
dt

≤ Cεp−k
(
D−p+k+1 − r−p+k+1) → 0.
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W 1,k−1-convergence. We trivially have
∫
V 2
ε
|∇uε −∇u|k−1 ≡ 0.

• On V 3
ε , uε(x) = r−1 dist(x, S)u(x). Then, since (6.10) holds on V 3

ε , we have

|∇uε(x)| ≤ Cr−1 ∀x ∈ V 3
ε .(6.11)

Energy estimate. We have Fε(uε, V
3
ε ) = I + II, where, using inequality (6.11) and

the assumption r(ε) ∼ δ(ε), with ε 	 δ(ε) 	 εk/k+1,

I = εp−k

∫
V 3
ε

|∇uε|p ≤ Cεp−kr−p+k+1 → 0,

II = ε−k

∫
V 3
ε

W
(
r−1dist(x, S)u

)
≤ Cε−krk+1 → 0.

W 1,k−1-convergence. Again by (6.11), we obtain
∫
V 3
ε
|∇uε|k−1 ≤ Cr2 → 0.

• On V 4
ε , uε(x) = r−1dist(x, S)ψσi

(
δz/εgi(y)

)
for all x = (y, z) ∈ U(Fi, δ, γ).

For x = (y, z) ∈ V 4
ε , one can check that dist(x, S) ≤ Cdist(y, S), and∣∣∣∣∇

(
ψσi

(
δz

εgi(y)

))∣∣∣∣ ≤ Cδ

εgi(y)

∣∣∣∣∇ψσi

(
δz

εgi(y)

)∣∣∣∣ if x = (y, z) ∈ U(Fi, δ, γ).

It follows that, on V 4
ε ∩ U(Fi, δ, γ), |∇uε| satisfy the inequality

|∇uε(x)| ≤ C

{
1

r
+

dist(y, S)

r

δ

εgi(y)

∣∣∣∣∇ψσi

(
δz

εgi(y)

)∣∣∣∣
}
.(6.12)

Energy estimate. Using (6.12), we have Fε(uε, V
4
ε ) ≤ C(I + II) + III, with

I =

∫
V 4
ε

εp−kr−p ≤ Cεp−kr−p+k+1 → 0,

II =
∑
i

∫
U(Fi,δ,γ)∩Sε∩Ω

εp−kr−pdist(y, S)p
(

δ

εgi(y)

)p∣∣∣∣∇ψσi

(
δz

εgi(y)

)∣∣∣∣
p

≤
∑
i

{∫
Rk

|∇ψσi
|p
} ∫

Fi∩Sε∩Ωδ

εp−kr−p dist(y, S)p
(

δ

εgi(y)

)p−k

dHn(y)

≤ C
∑
i

∫
Fi∩Sε∩Ωδ

dist(y, S)pδ−k

gi(y)p−k
dHn(y) ≤ C

∑
i

Hn(Fi ∩ Sε ∩ Ωδ) → 0,

III =

∫
V 4
ε

ε−kW (uε) ≤ Cε−krk+1 → 0.

W 1,k−1-convergence. Using again (6.12), we have
∫
V 4
ε
|∇uε|k−1 ≤ C(I + II), with

I =

∫
V 4
ε

r−k+1 ≤ Cr2 → 0,

II =
∑
i

∫
U(Fi,δ,γ)∩Sε∩Ω

r−k+1 dist(y, S)k−1

(
δ

εgi(y)

)k−1∣∣∣∣∇ψσi

(
δz

εgi(y)

)∣∣∣∣
k−1

≤ C
∑
i

{∫
|z|<δ/ε

|∇ψσi |k−1

} ∫
Fi∩Sε∩Ωδ

r−k+1 dist(y, S)k−1 εgi(y)

δ
dHn(y)

≤ Cε
(δ
ε

)k(1− k−1
p )∑

i

Hn(Fi ∩ Sε ∩ Ωδ) 	 Cε1− k(p−k+1)
(k+1)p → 0.
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By the estimates obtained on V i
ε for i = 1, . . . , 4, one has

∫
Ω
|∇uε −∇u|k−1 → 0, and

lim sup
ε

Fε(uε) ≤ lim sup
ε

∑
i

Hn(Fi ∩ Ωδ)(τσi + 1/h)

= lim sup
ε

{∫
∂N∩Ωδ

τσ(x) dHn(x) + (1/h)Hn(∂N ∩ Ωδ)

}

=

∫
M∩Ω

τσ(x) dHn(x) + C/h,

The statement follows from the assumption |M |(∂Ω) = 0, and letting h → +∞.
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Abstract. We give results for the Γ-limit of a scaled elastic energy of a film as the thickness
h > 0 converges to zero. The elastic energy density models materials with multiple phases or variants
and is thus nonconvex. The model includes an interfacial energy that allows sharp interfaces between
the phases and variants and is proportional to the total variation of the deformation gradient.
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1. Introduction. Thin films of martensitic crystals are the subject of increasing
scientific and technological interest [6, 14, 20]. Dimensionally reduced models that
replace the three-dimensional (3-D) bulk energy with a two-dimensional (2-D) thin
film energy can make the design of applications more tractable and the computation
of the deformation more efficient. New challenges arise in the derivation of thin film
energies for martensitic crystals since the presence of multiple phases and variants
requires that the elastic energy density be nonconvex [4, 23, 27] and since an interfacial
energy that allows sharp interfaces is often useful for accurate modeling [10, 11, 12].
Related work on the general problem of rigorously deriving dimensionally reduced
energy functionals has been given in [1, 3, 6, 15, 17, 25, 28].

We present results for the Γ-limit [7, 24] of the scaled elastic energy of a thin film
with deformation ũ : Ωh → R

3 defined on a reference domain of thickness h > 0 given
by Ωh = S × (−h/2, h/2) for S ⊂ R

2 and subject to boundary conditions

ũ(x1, x2, x3) = y0(x1, x2) + b0(x1, x2)x3 for (x1, x2, x3) ∈ γ × (−h/2, h/2)(1.1)

so the film adheres on a part of its lateral boundary given by

γ × (−h/2, h/2) ⊂ ∂S × (−h/2, h/2).

The elastic energy of the film is given by

Eh(ũ) = κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx,(1.2)

where the term κ
∫
Ωh

|D(∇ũ)| for κ > 0 models the interfacial energy between phases

and variants (the total variation of the deformation gradient is precisely defined in
section 2), and the term

∫
Ωh

φ(∇ũ(x), x) dx models the elastic energy of the film.
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Since we are interested in modeling and computing the deformation of thin films that
undergo structural phase transformation, the energy density, φ(F, x), is generally a
nonconvex function of the deformation gradient, F ∈ R

3×3. The explicit dependence of
the energy density, φ(F, x), on x ∈ Ωh allows the modeling of alloys with compositional
fluctuation [11, 12, 14, 19]. We rescale the deformations ũ : Ωh → R

3 to deformations
on a fixed domain of thickness one, u : Ω1 → R

3, by

u(z1, z2, z3) = ũ(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1,

and we determine and analyze the Γ-limit of the rescaled energy

E(h)
1 (u) =

1

h
Eh(ũ)

subject to rescaled boundary conditions

u(z1, z2, z3) = y0(z1, z2) + b0(z1, z2)hz3 for (z1, z2, z3) ∈ γ × (−1/2, 1/2).(1.3)

We analyze the Γ-limit of E(h)
1 (u) with respect to two related definitions of con-

vergence for deformations. For the first definition, we prove that the Γ-limit of E(h)
1 (u)

is given by

E(0)(y, b) = κ

[∫
S

|D(∇y|
√

2 b)| +
√

2

∫
γ

|b− b0|
]

+

∫
S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ(1.4)

for y : S → R
3 such that y = y0 on γ ⊂ ∂S and b : S → R

3. The matrix-valued func-
tion (∇y|b) : S → R

3×3 in the thin film limit (1.4) models the thin film deformation
gradient. We also identify (ẑ, 0) ∈ R

3 with ẑ ∈ S. For the second definition, we prove

that the Γ-limit of E(h)
1 (u) is given by

E(0)
1 (u) =

{
min
b

E(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise,

where uM is the deformation of the midplane, uM (z1, z2) = u(z1, z2, 0). For both
definitions of convergence of deformations, we give compactness results and show

that the uniform coerciveness of the energy functionals E(h)
1 (u) allows us to prove that

subsequences of energy-minimizing deformations of E(h)
1 (u) converge to minimizers of

the Γ-limit as h → 0.
We have used the thin film energy (1.4) to compute the quasi-static evolution

of a martensitic thin film subject to a varying temperature field [8, 9]. In these
computations, we use continuation methods for which the film need only be in a
local minimum. We think that the results in this paper, especially the Γ-convergence
described in Theorem 5.3, justify the use of the thin film energy (1.4) in this context
because the result (5.10) guarantees that any admissible (y, b) defined on S can be
used to construct an admissible ũh defined on Ωh that is a “smoothed” version of the
deformation

y(x1, x2) + b(x1, x2)x3 for (x1, x2, x3) ∈ Ωh,

such that E(0)(y, b) is approximated by 1
hEh(ũh).

The energy density, φ(F, x), in models for crystals which undergo a structural
phase transformation is not quasi-convex [4, 5, 21, 22, 23, 26, 27]. The Γ-limit with
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respect to weak W 1,p convergence of a scaled elastic energy that does not include
interfacial energy will generally thus involve the quasi-convexification of the elastic
energy density [7, 15]. However, the interfacial energy κ

∫
Ωh

|D(∇ũ)| in our model
allows us to obtain sequences of deformations with gradients that converge strongly
and use the strong continuity of the scaled elastic energy h−1

∫
Ωh

φ(∇ũ(x), x) dx. A

related result has been obtained in [6] for a diffuse interfacial energy κ
∫
Ωh

|∇2ũ|2 dx.
The loading of a martensitic thin film can be computed by using the Γ-limit of

the energy

Êh(ũ) = κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx−
∫
∂Ωh

(Tn) · ũ

= κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx−
∫

Ωh

T · ∇ũ,

(1.5)

where the dead load is Tn for a constant T ∈ R
3×3 at points on the boundary ∂Ωh

with unit exterior normal vector n. The Γ-limit is shown in this paper to be

Ê(0)
1 (u) =

{
min
b

Ê(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise,

with

Ê(0)(y, b) = κ

∫
S

|D(∇y|
√

2 b)| +
∫
S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ −
∫
S

T · (∇y|b).

In section 2, we recall the total variation of functions of bounded variation and
give a few needed properties. In section 3, we describe the assumed properties of the
elastic energy density, and in section 4 we recall the definition of Γ-convergence. The
main results and analysis for the Γ-limit of the film model with Dirichlet boundary
conditions are given in section 5, and the main results and analysis for the Γ-limit of
the film model with loading boundary conditions are given in section 6.

Our results in this paper extend the analysis given in [10] by proving the Γ-
convergence of the scaled energy functional for the adhering boundary condition (1.1).
We also extend the class of energy densities, φ(F, x), to allow compositional variation,
and we extend the class of boundary conditions that can be analyzed by giving results
for the Γ-limit of the scaled energy functional with dead loads (1.5).

2. Functions of bounded variation. We will assume that S ⊂ R
2 is a bounded

domain with a Lipschitz continuous boundary, ∂S, and denote the reference undis-
torted configuration of the thin film of the martensitic material by Ωh, 0 < h ≤ 1,
where

Ωh = S × (−h/2, h/2).

The deformations of the thin film are given by functions ũ : Ωh → R
3 with gradient

∇ũ : Ωh → R
3×3. We use the notation ũi,j = ∂ũi/∂xj , and we denote the columns of

∇ũ by ũ,i, i = 1, 2, 3. The “planar” gradient of ũ, denoted by ∇P ũ : Ωh → R
3×2, has

columns given by ũ,1 and ũ,2.

Given an open set Ω ⊂ R
3 and a function v ∈ L1(Ω; R), we define the total
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variation of v [16, 18] by∫
Ω

|Dv| = sup

{∫
Ω

∑
k=1,2,3

v(x)ψk,k(x) dx :

ψ ∈ C∞
0 (Ω; R3), |ψ(x)| ≤ 1 for all x ∈ Ω

}

and say v ∈ BV (Ω) if
∫
Ω
|Dv| < +∞. We recall that C∞

0 (Ω; R3) denotes the space of
infinitely differentiable functions compactly supported in Ω, whose range is R

3, and
we note that |ψ(x)| denotes the usual Euclidean norm, that is, the square root of the
sum of the squares of all the components of ψ(x).

For a matrix-valued function v ∈ L1(Ω; Rm×p), we define

∫
Ω

|Dv| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2,3

∫
Ω

vij(x)ψijk,k(x) dx :

ψ ∈ C∞
0 (Ω; Rm×p×3), |ψ(x)| ≤ 1 for all x ∈ Ω

}(2.1)

and say v ∈ BV (Ω) if
∫
Ω
|Dv| < +∞. We again assume that |ψ(x)| denotes the square

root of the sum of the squares of all the components of ψ(x), which is often called the
Frobenius norm. Finally, we define the “planar” variation

∫
Ω

|DP v| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2

∫
Ω

vij(x)ψijk,k(x) dx :

ψ ∈ C∞
0 (Ω; Rm×p×2), |ψ(x)| ≤ 1 for all x ∈ Ω

}
.

For a matrix-valued function v ∈ L1(S; Rm×p) we similarly define

∫
S

|Dv| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2

∫
S

vij(x)ψijk,k(x) dx :

ψ ∈ C∞
0 (S; Rm×p×2), |ψ(x)| ≤ 1 for all x ∈ S

}
.

We remark that if v ∈ BV (Ω1) is independent of z3, then, abusing the notation
slightly, we have ∫

Ω1

|Dv| =

∫
Ω1

|DP v| =

∫
S

|Dv|.

The notation BVq(Ω) will denote the space BV (Ω) ∩ Lq(Ω).
For A ∈ R

m×p and B ∈ R
m×q, we denote by (A|B) ∈ R

m×(p+q) the matrix
whose first p columns are those of A and whose last q columns are those of B. For
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v ∈ L1(Ω1; R
m×p) and b ∈ L1(Ω1; R

m), we will use the identity∫
Ω1

|D(v|
√

2b)| =

∫
Ω1

|D(v|b|b)|.(2.2)

We will use the following extension of the classical result on the lower semiconti-
nuity of the BV seminorm [16, 18] to functions with fixed trace [10].

Theorem 2.1. If wj , bj ∈ BV (Ω1) for j ∈ N and w, b ∈ BV (Ω1) satisfy

lim
j→∞

‖wj − w‖L1(Ω1) = 0 and lim
j→∞

‖bj − b‖L1(Ω1) = 0,

and bj = b0 on Γ1 = γ × (− 1
2 ,

1
2 ) for fixed b0 ∈ BV (Ω1), then∫

Ω1

|DP (w|
√

2 b)| +
√

2

∫
Γ1

|b− b0| ≤ lim inf
j→∞

∫
Ω1

|DP (wj |
√

2 bj)|.

We will also use the following extension of the classical result on the approximation
by smooth functions in the BV seminorm [16, 18] to functions with fixed trace [10].

Theorem 2.2. Let 1 ≤ q < +∞, let b0 ∈ W 1,q(S) be such that ∇b0 ∈ BV (S), let
b ∈ BVq(S), and let w ∈ BV (S). Then there exists a family {bε : ε > 0} ⊂ W 1,q(S)
with ∇bε ∈ BV (S) such that bε = b0 on γ for every ε > 0, and

lim
ε→0

‖bε − b‖Lq(S) = 0,

lim
ε→0

∫
S

|D(w|
√

2 bε)| =

∫
S

|D(w|
√

2 b)| +
√

2

∫
γ

|b− b0|.

3. The elastic energy density φ. We will assume that the energy density
φ : R

3×3 × Ω1 → R satisfies the Carathéodory condition [24]:
1. φ(F, ẑ, z3) is continuous in (F, z3) ∈ R

3×3 × (−1/2, 1/2) for almost every
ẑ ∈ S,

2. φ(F, ẑ, z3) is measurable in ẑ ∈ S for every (F, z3) ∈ R
3×3 × (−1/2, 1/2),

and satisfies the growth condition

c1|F |p − c2 ≤ φ(F, z) ≤ c3(|F |p + 1) for all F ∈ R
3×3 and z ∈ Ω1,(3.1)

where c1, c2, and c3 are fixed positive constants and 3 < p < +∞.
We can obtain this energy density φ from a free energy density φ̂(F, θ, c), where

θ(z) is a given temperature and c(z) is a given order parameter such as alloy compo-

sition, by φ(F, z) = φ̂(F, θ(z), c(z)). In what follows, we will usually not denote the
explicit dependence of φ on z. Notice that φ is bounded below and its absolute value
satisfies the growth property

|φ(F, z)| ≤ c3|F |p + max{c2, c3} for all F ∈ R
3×3 and z ∈ Ω1.

4. The Γ-limit. We now give a definition of Γ-convergence [3, 7, 24] that allows
the domain Ã of the approximating functionals Fh to be different than the domain
A of the Γ-limit F .

Definition 4.1. Let A and Ã be spaces such that the convergence of elements
of Ã to an element of A is defined. We say that the family of functionals {Fh : Ã →
R ∪ {+∞} for h > 0} Γ-converges to F : A → R ∪ {+∞} as h → 0 if the following
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two conditions are satisfied:
Lower bound: given any u ∈ A and any family {uh ∈ Ã : h > 0} such that uh → u

as h → 0, we have

F(u) ≤ lim inf
h→0

Fh(uh);

Upper bound: given any u ∈ A, there exists a family {uh ∈ Ã : h > 0} such that
uh → u as h → 0 and

F(u) ≥ lim sup
h→0

Fh(uh),

or equivalently, in view of the lower bound above,

F(u) = lim
h→0

Fh(uh).

We note that the first condition above (Lower bound) guarantees that F is below
the Γ-limit (if it exists), and the second condition (Upper bound) guarantees that F
is above the Γ-limit (if it exists). If F satisfies both conditions, then F is the Γ-limit.

5. Γ-limit of the film model with Dirichlet boundary conditions. In this
section, we assume that the film adheres to a rigid material on its lateral surface

Γh = γ × (−h/2, h/2),

where we assume that γ = ∅ is a finite union of connected C1,1 open subsets of ∂S.
Let y0, b0 ∈ W 1,p(S; R3) be such that ∇y0,∇b0 ∈ BV (S) and define the boundary
condition

ũ0(x1, x2, x3) = y0(x1, x2) + b0(x1, x2)x3 for (x1, x2, x3) ∈ Ωh.(5.1)

We then define the space Ah of admissible deformations of the domain Ωh by

Ah =
{
ũ ∈ W 1,p(Ωh; R3) : ∇ũ ∈ BV (Ωh), ũ = ũ0 on Γh

}
.

We note that due to the growth condition (3.1), we have that

Ah =
{
ũ : Ωh → R

3 : Eh(ũ) < +∞, ũ = ũ0 on Γh

}
.

Also, since p > 3, it follows from the Sobolev embedding theorem [2] that Ah ⊂ C(Ω̄h).
This ensures that there is no tear in the deformed configurations ũ(Ωh) for ũ ∈ Ah.

We are interested in studying the thin film limit of the energies

Eh(ũ) = κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx, ũ ∈ Ah,(5.2)

where the constant κ > 0 is a measure of interfacial energy per unit area. We rescale
the deformations ũ : Ωh → R

3 to deformations on a fixed domain of thickness one,
u : Ω1 → R

3, via

u(z1, z2, z3) = ũ(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1,(5.3)

and we then study the Γ-convergence as h → 0 of the rescaled energy

E(h)
1 (u) =

1

h
Eh(ũ)(5.4)
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for u defined in the space of admissible deformations

A1 =
{
u ∈ W 1,p(Ω1; R

3) : ∇u ∈ BV (Ω1), u = u0 on Γ1

}
,

where u0 is defined by (5.1) and (5.3) to be

u0(z1, z2, z3) = y0(z1, z2) + b0(z1, z2)hz3 for (z1, z2, z3) ∈ Ω1.

We will first define a topology for the convergence of uh ∈ A1 to (y, b) ∈ A0,
where

A0 = {(y, b) ∈ W 1,p(S; R3) × Lp(S; R3) : ∇y, b ∈ BV (S), y = y0 on γ},(5.5)

and we will then show that the Γ-limit of E(h)
1 is given by E(0), where

E(0)(y, b) = κ

[∫
S

|D(∇y|
√

2 b)| +
√

2

∫
γ

|b− b0|
]

+

∫
S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ.(5.6)

Here we use Definition 4.1 with A = A1 and Ã = A0. We note that above and in
what follows we will often use the notation∫

S

φ(∇y|b) =

∫
S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ.

In a second approach, we will set A = Ã = A1 with the topology on the space

A1 given by weak W 1,p convergence, and we will prove that a related functional E(0)
1

is the Γ-limit of E(h)
1 as h → 0. The relation between E(0) and E(0)

1 will become clear.

We now consider the Γ-convergence of E(h)
1 to E(0) as h → 0. We start by introduc-

ing a notion of the convergence of 3-D deformations {uh} ⊂ A1 to a 2-D deformation
(y, b) ∈ A0 as h → 0.

Definition 5.1. We shall say that a family {uh ∈ A1 : h > 0} converges to
(y, b) ∈ A0 if the following conditions are satisfied for ŷ(z1, z2, z3) = y(z1, z2) and

b̂(z1, z2, z3) = b(z1, z2):

uh ⇀ ŷ in W 1,p(Ω1; R
3) and h−1uh,3 ⇀ b̂ in Lp(Ω1; R

3)

uh → ŷ in W 1,1(Ω1; R
3) and h−1uh,3 → b̂ in L1(Ω1; R

3)

}
as h → 0.

We shall use this definition of convergence when proving the Γ-convergence of the

functionals E(h)
1 to E(0) since it allows the compactness property of Lemma 5.2 for

sequences of deformations

{uhn ∈ A1 : n = 1, . . . , and hn → 0 as n → ∞}

with uniformly bounded energy E(hn)
1 (uhn

) ≤ C for all n ≥ 1. This compactness

property can then be used with the Γ-convergence of the functionals E(h)
1 to E(0) to

give a proof of the convergence of minimizers of E(h)
1 to minimizers of the Γ-limit E(0)

(see Corollary 5.4 following the proof of Theorem 5.3). We will see from the proof of

Theorem 5.3 that E(0) is also the Γ-limit of E(h)
1 if we use the strong convergence

uh → ŷ in W 1,p(Ω1; R
3) and h−1uh,3 → b̂ in Lp(Ω1; R

3)
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in Definition 5.1, but we do not have a compactness property for this topology since
BV (Ω1) is not compactly embedded in Lp(Ω1) if p ≥ 3

2 [18].
Lemma 5.2. Suppose that {uhn ∈ A1 : n = 1, . . . and hn → 0 as n → ∞} is a

sequence of deformations with uniformly bounded energy E(hn)
1 (uhn

) ≤ C for all n ≥ 1.
Then there exists a further subsequence, also denoted by {uhn ∈ A1 : n = 1, . . . }, and
(y, b) ∈ A0 such that {uhn ∈ A1 : n = 1, . . . } converges to (y, b) ∈ A0 in the sense of
Definition 5.1. We may take a further subsequence such that the convergence is also
almost everywhere in Ω1.

Proof. We have from the definition of the total variation for matrix valued func-
tions (2.1) that

1

hn

∫
Ωhn

|D(∇ũhn
)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn
)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn)i,jψij3,3

+
∑

i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn)i,3ψi3k,k +

∑
i=1,2,3

∫
Ω1

hn
−2(uhn)i,3ψi33,3 :

ψ ∈ C∞
0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}
.

(5.7)

Since E(hn)
1 (uhn) ≤ C for all n ≥ 1, we have by the growth condition (3.1) that

‖uhn‖W 1,p(Ω1;R3) ≤ C, ‖h−1
n uhn,3‖Lp(Ω1;R3) ≤ C,(5.8)

and we have by (5.7) that∫
Ω1

|D(∇uhn
)| ≤ C,

∫
Ω1

|D(h−1
n uhn,3)| ≤ C,

sup

{ ∑
i=1,2,3

∫
Ω1

h−2
n (uhn

)i,3ψi33,3 :

ψ ∈ C∞
0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}
≤ C

(5.9)

for all n ≥ 1. It then follows from the compactness of the BV spaces [18] and the
trace theorem [2] that there exists û ∈ W 1,p(Ω1; R

3) such that ∇û ∈ BV (Ω1) and

û = y0 on γ × (− 1
2 ,

1
2 ) and that there exists b̂ ∈ BVp(Ω1) such that for a further

subsequence of {uhn}, not relabeled, we have that

uhn ⇀ û in W 1,p(Ω1; R
3) and h−1

n uhn,3 ⇀ b̂ in Lp(Ω1; R
3)

uhn → û in W 1,1(Ω1; R
3) and h−1

n uhn,3 → b̂ in L1(Ω1; R
3)

}
as n → ∞,

and the convergence is also almost everywhere in Ω1. In addition, from (5.8) and (5.9)

it follows that û and b̂ are independent of z3, so we can set y(z1, z2) = û(z1, z2, z3)

and b(z1, z2) = b̂(z1, z2, z3) to prove the lemma.
We have the following Γ-convergence theorem.
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Theorem 5.3. The functional E(0) : A0 → R is the Γ-limit of the functionals

E(h)
1 : A1 → R with respect to the convergence from Definition 5.1; that is,

Lower bound: given any (y, b) ∈ A0 and any family {uh ∈ A1 : h > 0} that
converges to (y, b), we have

E(0)(y, b) ≤ lim inf
h→0

E(h)
1 (uh);

Upper bound: given any (y, b) ∈ A0, there exists a family {uh ∈ A1 : h > 0} that
converges to (y, b) such that

E(0)(y, b) ≥ lim sup
h→0

E(h)
1 (uh),

or equivalently, in view of the lower bound above,

E(0)(y, b) = lim
h→0

E(h)
1 (uh).(5.10)

Proof (lower bound). To prove the lower bound, let (y, b) ∈ A0 and let {uh ∈
A1 : h > 0} converge to (y, b) in the sense of Definition 5.1. Consider a subsequence
{uhn}∞n=1 such that

lim
n→∞

E(hn)
1 (uhn) = lim inf

h→0
E(h)
1 (uh)

and such that ∇Puhn → ∇P ŷ and h−1
n uhn,3 → b̂ almost everywhere in Ω1 as n → ∞.

It follows from the identity (2.2) and

∫
Ω

vi,jψij3,3 =

∫
Ω

vi,3ψij3,j for all v ∈ W 1,1(Ω; R3) and ψij3 ∈ C∞
0 (Ω)

that ∫
Ω1

|DP (∇Puhn |
√

2h−1
n uhn,3)|

=

∫
Ω1

|DP (∇Puhn
|h−1

n uhn,3|h−1
n uhn,3)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn)i,jψijk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn)i,3ψij3,j

+
∑

i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn)i,3ψi3k,k :

ψ ∈ C∞
0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

≤ sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn)i,jψijk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn)i,jψij3,3
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+
∑

i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn

)i,3ψi3k,k +
∑

i=1,2,3

∫
Ω1

hn
−2(uhn

)i,3ψi33,3 :

ψ ∈ C∞
0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

=
1

hn

∫
Ωhn

|D(∇ũhn
)|.

(5.11)

So, by using Theorem 2.1 on (5.11) and Fatou’s lemma to control the φ term, we
obtain that

E(0)(y, b) = κ

[∫
Ω1

∣∣∣DP (∇P ŷ|
√

2 b̂)
∣∣∣ +

√
2

∫
Γ1

|b̂− b0|
]

+

∫
Ω1

φ(∇P ŷ|b̂, ẑ, 0) dz

≤ lim inf
n→∞

E(hn)
1 (uhn)

= lim
n→∞

E(hn)
1 (uhn

)

= lim inf
h→0

E(h)
1 (uh),

and this establishes the first part of the theorem. We note that above and in what
follows we use the convention z = (ẑ, z3) for ẑ ∈ S and z3 ∈ (−1/2, 1/2).

Upper bound. To prove the upper bound, we would like to consider deformations
of the form y(z1, z2) + hz3b(z1, z2); however, such deformations do not belong to
A1 because b does not belong to W 1,p(S; R3) and ∇b does not belong to BV (S).
We can overcome this problem by using Theorem 2.2: since b0 ∈ W 1,p(S; R3) and
∇b0 ∈ BV (S), there exists a family of functions bε ∈ W 1,p(S; R3) with ∇bε ∈ BV (S)
such that bε = b0 on γ for every ε > 0, bε → b almost everywhere in S and in Lp(S)
as ε → 0, and

lim
ε→0

∫
S

|D(∇y|
√

2 bε)| =

∫
S

|D(∇y|
√

2 b)| +
√

2

∫
γ

|b− b0|.(5.12)

We construct the functions

uε
h(z1, z2, z3) = y(z1, z2) + hz3bε(z1, z2) ∈ A1 for 0 < h ≤ 1.

Now ∇Pu
ε
h = ∇P y+hz3∇P bε → ∇P y in Lp(Ω1) and almost everywhere in Ω1 as h → 0,

so we can obtain by using the growth condition (3.1) for φ, the Carathéodory property
of φ given in section 3, and the dominated convergence theorem that

1

h

∫
Ωh

φ(∇ũε
h(x), x) dx =

∫
Ω1

φ(∇Pu
ε
h|h−1uε

h,3, ẑ, hz3) dz

=

∫
Ω1

φ(∇Pu
ε
h|bε, ẑ, hz3) dz →

∫
Ω1

φ(∇P y|bε, ẑ, 0) dz

as h → 0. By the same argument,∫
Ω1

φ(∇P y|bε, ẑ, 0) dz =

∫
S

φ(∇y|bε) →
∫
S

φ(∇y|b) as ε → 0,

so

lim
ε→0

lim
h→0

1

h

∫
Ωh

φ(∇ũε
h(x), x) dx =

∫
S

φ(∇y|b).(5.13)



424 PAVEL BĚLÍK AND MITCHELL LUSKIN

We now have since bε is independent of z3 that

1

h

∫
Ωh

|D(ũε
h)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uε
h)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

h−1(uε
h)i,3ψij3,j

+
∑

i=1,2,3
k=1,2

∫
Ω1

h−1(uε
h)i,3ψi3k,k +

∑
i=1,2,3

∫
Ω1

h−2(uε
h)i,3ψi33,3 :

ψ ∈ C∞
0 (Ω), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uε
h)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

bεψij3,j

+
∑

i=1,2,3
k=1,2

∫
Ω1

bεψi3k,k : ψ ∈ C∞
0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

=

∫
Ω1

∣∣∣DP (∇Pu
ε
h|
√

2 bε)
∣∣∣ .

(5.14)

Since ∇bε ∈ BV (S) and y and bε are independent of z3, we have that

lim
h→0

∫
Ω1

∣∣∣DP (∇Pu
ε
h|
√

2 bε)
∣∣∣

= lim
h→0

∫
Ω1

|DP (∇P (y + hz3bε)|
√

2 bε)| =

∫
S

|D(∇y|
√

2 bε)|.
(5.15)

It then follows from (5.14), (5.15), and (5.12) that

lim
ε→0

lim
h→0

1

h

∫
Ωh

|D(ũε
h)| = lim

ε→0
lim
h→0

∫
Ω1

|DP (∇Pu
ε
h|
√

2bε)|

=

∫
S

|D(∇y|
√

2 b)| +
√

2

∫
γ

|b− b0|.
(5.16)

We can then conclude from (5.13) and (5.16) that

lim
ε→0

lim
h→0

E(h)
1 (uε

h) = E(0)(y, b).(5.17)

We note that in view of (5.17), it is clear that for any η > 0 there exists ε > 0 and
h0 > 0 such that

|E(h)
1 (uε

h) − E(0)(y, b)| < η for all 0 < h ≤ h0.

Corollary 5.4. For every sequence {uh ∈ A1 : h → 0} of minimizers of

E(h)
1 , there exists a subsequence {uhn

∈ A1 : n = 1, . . . and hn → 0 as n → ∞}
and a minimizer (y, b) ∈ A0 of E(0) such that {uhn

∈ A1 : n = 1, . . . } converges to
(y, b) ∈ A0 in the sense of Definition 5.1.
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Proof. We first note that E(h)
1 (u0) is bounded independent of h > 0. We can thus

prove the existence of minimizers, uh ∈ A1, of the functional E(h)
1 for fixed h > 0 by

using the bounds (5.8) and (5.9), the compactness and lower-semicontinuity of the
BV spaces [18], and Fatou’s lemma.

Since E(h)
1 (u0) is bounded independent of h > 0, we have the uniform bound

E(h)
1 (uh) ≤ E(h)

1 (u0) ≤ C.

We let {uhn ∈ A1 : n = 1, . . . and hn → 0 as n → ∞} be a subsequence such that

lim
n→∞

E(hn)
1 (uhn

) = lim inf
h→0

E(h)
1 (uh).

We can conclude from Lemma 5.2 that there exists a further subsequence (not rela-
beled), {uhn ∈ A1 : n = 1, . . . and hn → 0 as n → ∞}, and (y, b) ∈ A0 such that
{uhn

∈ A1 : n = 1, . . . } converges to (y, b) ∈ A0 in the sense of Definition 5.1. It
follows from the lower bound in Theorem 5.3 that

E(0)(y, b) ≤ lim
n→∞

E(hn)
1 (uhn

) = lim inf
h→0

E(h)
1 (uh).

Since uh ∈ A1 are minimizers of E(h)
1 , we can conclude from the upper bound in

Theorem 5.3 that lim suph→0 E
(h)
1 (uh) ≤ E(0)(y, b), so limh→0 E(h)

1 (uh) exists and

E(0)(y, b) = lim
h→0

E(h)
1 (uh).

We can now conclude from the upper bound in Theorem 5.3 that (y, b) ∈ A0 is a
minimizer of E(0).

We next address the question of Γ-convergence of E(h)
1 with respect to the weak

convergence in A1. We start by considering the problem of minimizing E(0)(y, b) with
respect to b.

Lemma 5.5. Let y ∈ W 1,p(S; R3) be such that ∇y ∈ BV (S) and y = y0 on γ.
Then

inf
b∈BVp(S;R3)

E(0)(y, b) = inf
b∈BVp(S;R3)
b=b0 on γ

E(0)(y, b).(5.18)

Proof. It is clear that the left-hand side is less than or equal to the right-hand
side since the infimum is taken over a larger space.

To show the opposite inequality, it is enough to show that for any b ∈ BVp(S; R3)
the energy E(0)(y, b) can be arbitrarily closely approximated by energies E(0)(y, b) with
b ∈ BVp(S; R3) such that b = b0 on γ. However, this follows by applying Theorem 2.2
with q = p and showing that the elastic energy term

∫
S
φ(∇y|bε) again converges to∫

S
φ(∇y|b) as in the proof of the second part of Theorem 5.3.
We next have that the infimum on the left-hand side of (5.18) in Lemma 5.5 is

attained for any y.
Lemma 5.6. Let y ∈ W 1,p(S; R3) be such that ∇y ∈ BV (S) and y = y0 on γ.

Then there exists a function b̃ ∈ BVp(S; R3) such that

E(0)(y, b̃) = inf
b∈BVp(S;R3)

E(0)(y, b).
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Proof. Since E(0) is bounded below, we can consider a minimizing sequence
{bj}∞j=1 ⊂ BVp(S; R3); in view of Lemma 5.5, we can also assume that bj = b0 on γ

for all j ∈ N. Since the variations of the bj and their Lp-norms (and thus also the L1-
norms) lie in a compact subset of R, we can use the compactness of BV (S; R3) [18] and
retrieve a subsequence, not relabeled, which converges to a function b̃ ∈ BVp(S; R3)
strongly in L1(S; R3), weakly in Lp(S; R3), and almost everywhere in S. In addition,
by applying Theorem 2.1, we have∫

S

|D(∇y|
√

2 b̃)| +
√

2

∫
γ

|b̃− b0| ≤ lim inf
j→∞

∫
S

|D(∇y|
√

2 bj)|.

Similarly, applying Fatou’s lemma to φ(∇y|bj) gives∫
S

φ(∇y|b̃) ≤ lim inf
j→∞

∫
S

φ(∇y|bj),

and therefore

E(0)(y, b̃) ≤ lim inf
j→∞

E(0)(y, bj)

= inf
b∈BVp(S;R3)

E(0)(y, b).

We are now in the position to find the Γ-limit of the functionals E(h)
1 = 1

h Eh(ũ).
Given a continuous u ∈ A1, we can define the deformation of the midplane

uM (z1, z2) = u(z1, z2, 0)

and a functional

E(0)
1 (u) =

{
min

b∈BVp(S;R3)
E(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise.

In what follows, C will denote a generic positive constant independent of h, which
can change from line to line.

Theorem 5.7. The functional E(0)
1 : A1 → R ∪ {+∞} is the Γ-limit of the

functionals E(h)
1 : A1 → R as h → 0 with respect to the weak W 1,p(Ω1; R

3) convergence
in A1; that is,
Lower bound: given any u ∈ A1 and any family {uh ∈ A1 : h > 0} such that

uh ⇀ u in W 1,p(Ω1; R
3) as h → 0, we have

E(0)
1 (u) ≤ lim inf

h→0
E(h)
1 (uh);

Upper bound: given any u ∈ A1, there exists a family {uh ∈ A1 : h > 0} such that
uh ⇀ u in W 1,p(Ω1; R

3) as h → 0 and

E(0)
1 (u) ≥ lim sup

h→0
E(h)
1 (uh),

or equivalently, in view of the lower bound above,

E(0)
1 (u) = lim

h→0
E(h)
1 (uh).
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Proof (lower bound). Let u ∈ A1 and let {uh : h > 0} ⊂ A1 be such that uh ⇀ u

in W 1,p(Ω1) as h → 0. If lim infh→0 E(h)
1 (uh) = +∞, then

E(0)
1 (u) ≤ lim inf

h→0
E(h)
1 (uh)

is trivially satisfied.

On the other hand, if lim infh→0 E(h)
1 (uh) < +∞, then we can first consider a

subsequence {uhn}∞n=1 such that

lim
n→∞

E(hn)
1 (uhn

) = lim inf
h→0

E(h)
1 (uh).

Since then E(hn)
1 (uhn) ≤ C for all n ≥ 1, we have by Lemma 5.2 that there exists

b ∈ BVp(Ω1; R
3) such that for a further subsequence of {uhn

}, not relabeled, we have
that

uhn ⇀ u in W 1,p(Ω1; R
3) and h−1

n uhn,3 ⇀ b in Lp(Ω1; R
3)

uhn → u in W 1,1(Ω1; R
3) and h−1

n uhn,3 → b in L1(Ω1; R
3)

}
as n → ∞,

and the convergence is also almost everywhere in Ω1. It also follows from Lemma 5.2

that u and b are independent of z3. Therefore, by the definition of E(0)
1 (u), we have

for uM (z1, z2) = u(z1, z2, 0) and bM (z1, z2) = b(z1, z2, 0) that

E(0)
1 (u) ≤ E(0)(uM , bM ).(5.19)

Using (5.11), Theorem 2.1, and Fatou’s lemma to control the φ term, we have that

E(0)(uM , bM ) = κ

[∫
Ω1

|DP (∇Pu|
√

2 b)| +
√

2

∫
Γ1

|b− b0|
]

+

∫
Ω1

φ(∇Pu|b, ẑ, 0) dẑ

≤ lim inf
n→∞

E(hn)
1 (uhn)

= lim
n→∞

E(hn)
1 (uhn)

= lim inf
h→0

E(h)
1 (uh).

Combining the above result with (5.19) completes the first part of the proof.

Upper bound. If u ∈ A1 is not independent of z3, then E(0)
1 (u) = +∞ and

E(0)
1 (u) ≥ lim sup

h→0
E(h)
1 (uh)

holds for any family {uh ∈ A1 : h > 0} such that uh ⇀ u in W 1,p(Ω1) as h → 0.
On the other hand, if u,3 = 0 a.e. in Ω1, then by Lemma 5.6 there exists b̃ ∈

BVp(S; R3) such that E(0)
1 (u) = E(0)(uM , b̃). Using the upper bound of Theorem 5.3,

there exists a family {uh ∈ A1 : h > 0} such that

uh ⇀ u in W 1,p(Ω1) as h → 0

and

lim
h→0

E(h)
1 (uh) = E(0)(uM , b̃)

= E(0)
1 (u).
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We note that the family {uh ∈ A1 : h > 0} constructed for the upper bound
in Theorem 5.7 actually converges strongly; that is, uh → u in W 1,p(Ω1) as h → 0.

We thus have that the functional E(0)
1 : A1 → R ∪ {+∞} is also the Γ-limit of

the functionals E(h)
1 : A1 → R as h → 0 with respect to the strong W 1,p(Ω1; R

3)
convergence in A1.

We can obtain the following result on the convergence of minimizers of E(h)
1 to

minimizers of E(0)
1 by an argument analogous to that of Corollary 5.4.

Corollary 5.8. For every sequence {uh ∈ A1 : h → 0} of minimizers of E(h)
1 ,

there exists a subsequence {uhn ∈ A1 : n = 1, . . . and hn → 0 as n → ∞} and a

minimizer u ∈ A1 of E(0)
1 such that {uhn ∈ A1 : n = 1, . . . } converges to u ∈ A1 with

respect to weak W 1,p(Ω1; R
3) convergence in A1.

6. Γ-limit of the dead-loaded film model. We now assume that the film is
subject to a dead load Tn on its boundary, ∂Ωh, with unit exterior normal n, where
T ∈ R

3×3 is independent of x ∈ Ωh. In this case, the energy of the three-dimensional
thin film is given by

Êh(ũ) = κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx−
∫
∂Ωh

(Tn) · ũ

= κ

∫
Ωh

|D(∇ũ)| +
∫

Ωh

φ(∇ũ(x), x) dx−
∫

Ωh

T · ∇ũ.

If the elastic energy density φ satisfies the growth condition (3.1), then we can define

φ̂(F, x) = φ(F, x) − T · F

and φ̂ still satisfies (3.1) for some different positive constants, which we still denote
by c1, c2, and c3.

In this case, we define the space Âh of admissible deformations of the domain Ωh

by

Âh =

{
ũ ∈ W 1,p(Ωh; R3) : ∇ũ ∈ BV (Ωh),

∫
Ωh

ũ = 0

}
.

The energies of the deformations ũ ∈ Âh of films are again given by (5.2) with φ(F )
replaced by φ(F ) − T · F. As before, due to the growth condition (3.1), we have

Âh =

{
ũ : Ωh → R

3 : Êh(ũ) < +∞,

∫
Ωh

ũ = 0

}
⊂ C(Ω̂h).

The proof of the convergence to a Γ-limit for the problem of the dead-loaded film
is similar to the proof for the film constrained on part of the boundary. We start

with the rescaled energy Ê(h)
1 : Â1 → R (defined by (5.2)–(5.4)), where the space of

admissible deformations, Â1, is defined by

Â1 =

{
u ∈ W 1,p(Ω1; R

3) : ∇u ∈ BV (Ω1),

∫
Ω1

u = 0

}
.

We then show that the Γ-limit of Ê(h)
1 : Â1 → R is given by

Ê(0)(y, b) = κ

∫
S

|D(∇y|
√

2 b)| +
∫
S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ −
∫
S

T · (∇y|b) for (y, b) ∈ Â0,
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where the space of admissible deformations is given by

Â0 =

{
(y, b) ∈ W 1,p(S; R3) × Lp(S; R3) : ∇y, b ∈ BV (S),

∫
S

y = 0

}
.

The proof of the following compactness result for sequences

{uhn ∈ Â1 : n = 1, . . . and hn → 0 as n → ∞}

is analogous to that of Lemma 5.2.
Lemma 6.1. Suppose that {uhn ∈ Â1 : n = 1, . . . and hn → 0 as n → ∞} is a

sequence of deformations with uniformly bounded energy Ê(hn)
1 (uhn) ≤ C for all n ≥ 1.

Then there exists a further subsequence, also denoted by {uhn ∈ Â1 : n = 1, . . . }, and
(y, b) ∈ Â0 such that {uhn ∈ Â1 : n = 1, . . . } converges to (y, b) ∈ Â0 in the sense of
Definition 5.1 (with the spaces A1 and A0 replaced by Â1 and Â0, respectively). We
may take a further subsequence such that the convergence is also almost everywhere
in Ω1.

We have the following Γ-convergence theorem.
Theorem 6.2. The functional Ê(0) : Â0 → R is the Γ-limit of the functionals

Ê(h)
1 : Â1 → R with respect to the convergence from Definition 5.1.

Proof (lower bound). Let (y, b) ∈ Â0 and let {uh ∈ Â1 : h > 0} converge to (y, b)
in the sense of Definition 5.1. Consider a subsequence {uhn

}∞n=1 such that

lim
n→∞

Ê(hn)
1 (uhn

) = lim inf
h→0

Ê(h)
1 (uh)

and such that ∇Puhn
→ ∇P ŷ and h−1

n uhn,3 → b̂ almost everywhere in Ω1 as n → ∞.
Using (5.11), the lower semicontinuity of the total variation, and Fatou’s lemma to
control the φ term, we have that

Ê(0)(y, b) = κ

∫
Ω1

|DP (∇P ŷ|
√

2 b̂)| +
∫

Ω1

φ(∇P ŷ|b̂, ẑ, 0) dz −
∫
S

T · (∇P ŷ|b̂)

≤ lim inf
n→∞

Ê(hn)
1 (uhn

)

= lim
n→∞

Ê(hn)
1 (uhn)

= lim inf
h→0

Ê(h)
1 (uh),

which establishes the first part of the theorem.
Upper bound. To prove the upper bound, one should again consider deformations

of the form y(z1, z2) +hz3b(z1, z2); as before, such deformations do not belong to Â1,
because b does not belong to W 1,p(S; R3). However, we can find a family of functions
bε ∈ C∞(Ŝ; R3) ⊂ W 1,p(S; R3) such that bε → b almost everywhere in S and in Lp(S)
as ε → 0 [13], and

lim
ε→0

∫
S

|D(∇y|
√

2 bε)| =

∫
S

|D(∇y|
√

2 b)|.(6.1)

Consider now the functions

wε
h(z1, z2, z3) = y(z1, z2) + hz3bε(z1, z2)hz3 ∈ A1 for 0 < h ≤ 1,



430 PAVEL BĚLÍK AND MITCHELL LUSKIN

and their mean-zero translations

uε
h = wε

h − 1

|Ω1|

∫
Ω1

wε
h dz ∈ Â1.

We can now apply the same argument as in the proof of the upper bound in Theorem
5.3 to conclude that

lim
ε→0

lim
h→0

Ê(h)
1 (uε

h) = Ê(0)(y, b),

from which it is clear that for any η > 0 there exist ε > 0 and h0 > 0 such that

|Ê(h)
1 (uε

h) − Ê(0)(y, b)| < η for all 0 < h ≤ h0.

We can obtain a result on the convergence of minimizers of E(h)
1 (u) to minimizers

of E(0)(y, b) by an argument analogous to that of Corollary 5.8.

The Γ-limit of Ê(h)
1 : Â1 → R can again be obtained by minimizing out b in the

energy Ê(0)(y, b). The existence of a minimizing b̃ can be shown by using the direct
method of the calculus of variations as in Lemma 5.6.

Lemma 6.3. Let y ∈ W 1,p(S; R3) be such that ∇y ∈ BV (S) and
∫
S
y = 0. Then

there exists a function b̃ ∈ BVp(S; R3) such that

Ê(0)(y, b̃) = inf
b∈BVp(S;R3)

Ê(0)(y, b).

Proof. Since Ê(0) is bounded below, we can consider a minimizing sequence
{bj}∞j=1 ⊂ BVp(S; R3). Since the variations of the bj and their Lp-norms (and thus

also the L1-norms) lie in a compact subset of R, we can use the compactness of
BV (S; R3) and retrieve a subsequence, not relabeled, which converges to a function
b̃ ∈ BVp(S; R3) strongly in L1(S; R3), weakly in Lp(S; R3), and almost everywhere in
S. From the lower semicontinuity of the total variation, we have∫

S

|D(∇y|
√

2 b̃| ≤ lim inf
j→∞

∫
S

|D(∇y|
√

2 bj |.

Similarly, applying Fatou’s lemma to φ(∇y|bj) gives∫
S

[
φ(∇y|b̃) − T · (∇y|b̃)

]
≤ lim inf

j→∞

∫
S

[φ(∇y|bj) − T · (∇y|bj)] ,

and therefore

Ê(0)(y, b̃) ≤ lim inf
j→∞

Ê(0)(y, bj)

= inf
b∈BVp(S;R3)

Ê(0)(y, b̃).

Next, we define a functional

Ê(0)
1 (u) =

{
min

b∈BVp(S;R3)
Ê(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise.
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Theorem 6.4. The functional Ê(0)
1 : Â1 → R ∪ {+∞} is the Γ-limit of the

functionals Ê(h)
1 : Â1 → R as h → 0 with respect to the weak W 1,p(Ω1; R

3) convergence

in Â1.
Proof (lower bound). The proof is similar to the proof of Theorem 5.7. Let

u ∈ Â1 and let {uh : h > 0} ⊂ Â1 be such that uh ⇀ u in W 1,p(Ω1) as h → 0. If

lim infh→0 Ê(h)
1 (uh) = +∞, then

Ê(0)
1 (u) ≤ lim inf

h→0
Ê(h)
1 (uh)

is trivially satisfied.

On the other hand, if lim infh→0 Ê(h)
1 (uh) < +∞, then we can first consider a

subsequence {uhn}∞n=1 ⊂ Â1 such that

lim
n→∞

Ê(hn)
1 (uhn) = lim inf

h→0
Ê(h)
1 (uh).

Since then Ê(hn)
1 (uhn) ≤ C for all n ≥ 1, we have by Lemma 6.1 that there exists

b ∈ BVp(Ω1; R
3) such that for a further subsequence of {uhn}, not relabeled, we have

that

uhn
⇀ u in W 1,p(Ω1; R

3) and h−1
n uhn,3 ⇀ b in Lp(Ω1; R

3)

uhn → u in W 1,1(Ω1; R
3) and h−1

n uhn,3 → b in L1(Ω1; R
3)

}
as n → ∞,

and the convergence is also almost everywhere in Ω1. It also follows from Lemma 6.1
that u and b are independent of z3. Therefore, we have for uM (z1, z2) = u(z1, z2, 0)
and bM (z1, z2) = b(z1, z2, 0) that

Ê(0)
1 (u) ≤ Ê(0)(uM , bM ).(6.2)

Using (5.11), the lower semicontinuity of the total variation, and Fatou’s lemma to
control the φ term, we have that

Ê(0)(uM , bM ) = κ

∫
Ω1

|DP (∇Pu|
√

2 b)| +
∫

Ω1

φ(∇Pu|b, ẑ, 0) dz −
∫

Ω1

T · (∇Pu|b)

≤ lim inf
n→∞

Ê(hn)
1 (uhn

)

= lim
n→∞

Ê(hn)
1 (uhn)

= lim inf
h→0

Ê(h)
1 (uh).

Combining the above result with (6.2) completes the first part of the proof.

Upper bound. If u ∈ Â1 is not independent of z3, then Ê(0)
1 (u) = +∞; taking

uh = u for all h > 0 produces a family in Â1 such that limh→0 Ê(h)
1 (uh) = Ê(0)

1 (u) =
+∞.

On the other hand, if u,3 = 0 almost everywhere in Ω1, then by Lemma 6.3 there

exists b̃ ∈ BVp(S; R3) such that Ê(0)
1 (u) = Ê(0)(uM , b̃). Using the upper bound of

Theorem 6.2, there exists a family {uh ∈ Â1 : h > 0} such that

uh ⇀ u in W 1,p(Ω1) as h → 0
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and

lim
h→0

Ê(h)
1 (uh) = Ê(0)(uM , b̃)

= Ê(0)
1 (u).

We note that we can obtain a result on the convergence of minimizers of E(h)
1 to

minimizers of E(0)
1 by an argument analogous to that of Corollary 5.8.
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[12] P. Běĺık and M. Luskin, Computational modeling of softening in a structural phase transfor-

mation, Multiscale Model. Simul., 3 (2004), pp. 764–781.
[13] E. Casas, K. Kunisch, and C. Pola, Regularization by functions of bounded variation and

applications to image enhancement, Appl. Math. Optim., 40 (1999), pp. 229–257.
[14] J. W. Dong, J. Q. Xie, J. Lu, C. Adelmann, C. J. Palmstrøm, J. Cui, Q. Pan, T. W.

Shield, R. D. James, and S. McKernan, Shape memory and ferromagnetic shape memory
effects in single-crystal Ni2MnGa thin films, J. Appl. Phys., 95 (2004), pp. 2593–2600.

[15] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear
three-dimensional elasticity, J. Math. Pures Appl. (9), 73 (1995), pp. 549–578.

[16] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC
Press, Boca Raton, FL, 1992.

[17] I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for
thin films, J. Reine Angew. Math, 505 (1998), pp. 173–202.

[18] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel,
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[21] M. Kruž́ık, Numerical approach to double well problems, SIAM J. Numer. Anal., 35 (1998),

pp. 1833–1849.
[22] B. Li, Finite element analysis of a class of stress-free martensitic microstructures, Math.

Comp., 72 (2003), pp. 1675–1688 (electronic).
[23] M. Luskin, On the computation of crystalline microstructure, Acta Numer., 5 (1996), pp. 191–

257.
[24] G. Dal Maso, An introduction to Γ-convergence, Birkhäuser Boston, Boston, 1993.
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STABLE DETERMINATION OF THE SURFACE IMPEDANCE OF
AN OBSTACLE BY FAR FIELD MEASUREMENTS∗
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Abstract. We deal with the inverse scattering problem of determining the surface impedance
of a partially coated obstacle. We prove a stability estimate of logarithmic type for the impedance
term by the far field measurements.
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1. Introduction. We consider the scattering of an acoustic incident time-harmonic
plane wave, at a given wave number k > 0 and at a given incident direction ω ∈ S

2, by
an obstacle D ⊂ R

3 partially coated by a material with surface impedance λ. Such a
problem is modeled by the following mixed boundary value problem for the Helmholtz
equation: ⎧⎪⎨

⎪⎩
Δu + k2u = 0 in R

3 \D,
u = 0 on ΓD,
∂u

∂ν
+ iλ(x)u = 0 on ΓI ,

(1.1)

where u = us+exp (ikx · ω) is the total field, which is given as the sum of the scattered
wave us and the incident plane waves exp (ikx · ω), and where ΓI , ΓD are two open
and connected portions of the boundary ∂D such that ∂D = ΓI ∪ ΓD.

Moreover, the scattered field us is required to satisfy the so-called Sommerfeld
radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = ‖x‖.(1.2)

It is well known that the scattered field us has the following asymptotic behavior:

us(x) =
exp (ikr)

r

{
u∞(x̂) + O

(
1

r

)}
(1.3)

as r tends to ∞, uniformly with respect to x̂ = x
‖x‖ and where u∞ is the so-called far

field pattern of the scattered wave (see, for instance, [11]).
The inverse scattering problem that we examine here consists in the determination

of the surface impedance λ(x) by the knowledge of the far field pattern, provided some
suitable a priori assumptions on the impedance are made.

Such a problem, in two dimensions, has been recently studied by Cakoni and
Colton in [7]. The authors have provided a variational method for the determination of
the essential supremum of the surface impedance when the far field data are available.

∗Received by the editors May 13, 2005; accepted for publication (in revised form) January 10,
2006; published electronically May 12, 2006. This work was supported in part by MIUR grant
2004011204.
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In this paper, we shall deal with the stability issue; namely, we will prove a
stability estimate of logarithmic type for the surface impedance by the far field mea-
surements under some a priori mild assumptions on the impedance itself.

Let us point out that a stability result for this type of problem has been proved in
[15] by Labreuche under the assumption of an analytic boundary. The new feature of
the present paper consists in a reduced assumption on the regularity of the boundary;
namely, we shall assume that ΓI is a C1,1 portion of ∂D. Thus it turns out that the
argument of analytic extension used in [15] cannot be applied.

The stable recovering of the surface impedance needs some a priori mild assump-
tions on the impedance itself. The additional a priori information that we require on
the unknown surface impedance λ is an a priori bound on its Lipschitz continuity;
that is, we assume that for a given positive constant Λ, the following holds:

‖λ‖C0,1(ΓI) � Λ.(1.4)

Moreover, we prescribe the following uniform lower bound:

λ(x) � λ0 for every x ∈ ΓI ,(1.5)

where λ0 is a given positive constant.
In order to treat the inverse scattering problem we first need to analyze the direct

one. In section 3, indeed, following the arguments of potential theory developed in
[8], we observe that the direct scattering problem is well posed (see Lemma 3.1).
The proof relies on the fact that the mixed boundary value problem (1.1) can be
reformulated as a system of boundary integral equations. Moreover, we prove (see
Theorem 3.2) that the solution and its first order derivatives are Hölder continuous
in a neighborhood of the portion ΓI , where the impedance takes place. The proof is
based on Moser’s iteration technique. Finally in Corollary 3.3, we obtain a uniform
lower bound for the total field u on sets away from the obstacle.

In section 4, we deal with the inverse scattering problem. The underlying ideas
and the main tools that lead to the stability result can be outlined as follows:

(i) As the first step we evaluate how much the error on the far field can affect
the values of the field near the scatterer.

(ii) In the second step we are concerned with a stability estimate of the field at
the boundary in terms of the near field.

(iii) Finally, as the last step, we obtain a stability result for the impedance λ by
the estimate of the field at the boundary.

Let us start the analysis of section 4 by illustrating the arguments introduced in step
(iii) of the above list.

By the impedance condition in (1.1) we can formally compute λ as

λ(x) =
i

u(x)

∂u(x)

∂ν(x)
.(1.6)

Since u may vanish in some points of ΓI , it follows that the quotient in (1.6) may be
undetermined. In this respect, we found it necessary to evaluate the local vanishing
rate of the solution on the boundary. To establish such a control we shall make use
of quantitative estimates of unique continuation. We first obtain, in Lemma 4.5, a
volume doubling inequality at the boundary, namely∫

ΓI,2ρ(x0)

|u|2 � const.

∫
ΓI,ρ(x0)

|u|2,(1.7)
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where ΓI,ρ(x0) and ΓI,2ρ(x0) are the portions of the balls centered at the boundary
point x0 of radius ρ and 2ρ, respectively, contained in R

3 \D (see (2.10) for a precise
definition).

In order to obtain the formula in (1.7), we have adapted the arguments developed
in [2] for the more general setting of complex valued solutions which is required by
the boundary value problem (1.1).

A further difficulty in dealing with such arguments is due to the fact that the
techniques used in [2] apply to a homogeneous Neumann boundary condition. We
overcome such a difficulty by performing a suitable change of the independent variable
(see Proposition 4.3) that fits our problem under the assumptions required in [2].
Moreover, well-known stability estimates for the Cauchy problem [18] allow us to
reformulate the volume doubling inequality at the boundary, deriving in Theorem 4.6
a new one on the boundary, that is, a surface doubling inequality∫

ΔI,2ρ(x0)

|u|2 � const.

∫
ΔI,ρ(x0)

|u|2,(1.8)

where ΔI,ρ(x0) and ΔI,2ρ(x0) are the portions of the boundary of ΓI,ρ(x0) and
ΓI,2ρ(x0), respectively, which have nonempty intersection with ∂D (see (2.11) for
a precise definition).

The surface doubling inequality allows us to apply the theory of Muckenhoupt
weights [9], which, in particular, implies the existence of some exponent p > 1 such

that |u|− 2
p−1 is integrable on an inner portion of ΓI ; see Corollary 4.7. This integra-

bility property, as well as the Hölder continuity of the normal derivative, justifies the

computation made in (1.6) in the L
2

p−1 sense.
Let us carry over our analysis by discussing the evaluation introduced in step (i).

Such an evaluation, introduced by Isakov [13, 14] and then developed by Bushuyev
[6], concerns a stability estimate for the near field in terms of the measurements of
the far field (see Lemma 4.1). It means that if u1 and u2 are two acoustic fields
corresponding to impedances λ1 and λ2 such that their scattering amplitudes, u1,∞
and u2,∞, respectively, are close, i.e.,

‖u1,∞ − u2,∞‖L2(∂B1(0)) � ε,(1.9)

then u1 and u2 satisfy

‖u1 − u2‖L2(BR1+1(0)\BR1
(0)) � const. εα(ε),(1.10)

where R1 > 0 is a suitable radius such that BR1(0) ⊃ D and α(ε) is the function
introduced in (4.2).

As the last step of this treatment we provide the stability estimate introduced
in (ii). The proof is based on arguments of quantitative unique continuation, as the
three spheres inequality, and leads to the following estimate:

‖u1 − u2‖C1(Γρ
I ) � const.| log (‖u1 − u2‖−1

L2(BR1+1(0)\BR1
(0)))|

−2θ,(1.11)

where θ > 0 and Γρ
I is a given inner portion of ΓI (see (2.9) for a precise definition).

By combining the stability estimates listed in (i) and (ii), we obtain a stability
result for the total field at the boundary in terms of the measurements of the far field
(see Theorem 4.2).
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Finally, as a consequence of Theorem 4.2 and Corollary 4.7, let us formulate the
main result of the present paper, which consists in a stability estimate of the surface
impedance by the far field measurements (see Theorem 2.1). Assuming that (1.9)
holds, we have shown that the impedances λ1, λ2 agree up to an error∣∣ log(ε)

∣∣−θ
.(1.12)

2. Main assumptions and results.

2.1. Main hypothesis and notation. Assumptions on the domain.
We shall assume throughout that D is a bounded domain in R

3, such that diamD � d,
with Lipschitz boundary ∂D with constants r0,M . More precisely, for every x0 ∈ ∂D,
there exists a rigid transformation of coordinates under which

D ∩Br0(x0) = {(x′, x3) : x3 > γ(x′)},(2.1)

where x ∈ R
3, and x = (x′, x3), with x′ ∈ R

2, x3 ∈ R, and

γ : B′
r0(x0) ⊂ R

2 → R

satisfying γ(0) = 0 and

‖γ‖C0,1(B′
r0

(x0)) � Mr0,

where for every integer k � 1 and for every multi-index 0 � |β| � k we denote

‖γ‖Ck,1(B′
r0

(z0))
=

k∑
j=0

r0
j
∑
|β|=j

‖Dβγ‖L∞(B′
r0

(z0))
(2.2)

+ r0
k+1

∑
|β|=k

sup
x,y∈B

′
r0

(z0)

x�=y

|Dβγ(x) −Dβγ(y)|
|x− y|

and B′
r0(x0) denotes a ball in R

2. Moreover, we assume that the portion of the
boundary ΓI is contained in a surface SI , which is C1,1 smooth with constants r0,M .
More precisely, for any x0 ∈ SI , we have that up to a rigid change of coordinates,

SI ∩Br0(x0) = {(x′, x3) : x3 = ϕI(x
′)},(2.3)

where

ϕI : B′
r0(z0) ⊂ R

2 → R(2.4)

is a C1,1 function satisfying ϕI(0) = |∇ϕI(0)| = 0 and

‖ϕI‖C1,1(B′
r0

(z0)) � Mr0.(2.5)

For the sake of simplicity we shall assume that 0 ∈ D.
Fixing R > d, ρ ∈ (0, r0), and x0 ∈ ΓI , let us define the following sets:

D+ = R
3 \D,(2.6)

D+
R = BR(0) ∩D+,(2.7)

D+
R,ρ = {x ∈ D+

R : dist(x,ΓD) > ρ},(2.8)

Γρ
I = ∂D+

R,ρ ∩ ΓI ,(2.9)

ΓI,ρ(x0) = Bρ(x0) \D,(2.10)

ΔI,ρ(x0) = ΓI,ρ(x0) ∩ ∂D.(2.11)
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A priori information on the impedance term. We assume that the impedance
coefficient λ belongs to C0,1(ΓI ,R) and is such that (1.5) and (1.4) hold for given pos-
itive constants λ0,Λ.

From now on we shall refer to the a priori data as the following set of quantities:
d, r0,M, λ0,Λ, k, ω.

In what follows we shall denote with η(t) a positive increasing function defined
on (0,+∞), which satisfies

η(t) � C| log(t)|−θ for every 0 < t < 1,(2.12)

where C > 0, θ > 0 are constants depending on the a priori data only.

2.2. The main result.
Theorem 2.1 (stability for λ). Let ui, i = 1, 2, be the weak solutions to the

problem (1.1) with λ = λi and u∞ = ui,∞, respectively. There exists a constant
ε0 > 0 depending on the a priori data only, such that if for some ε, 0 < ε < ε0, we
have

‖u1,∞ − u2,∞‖L2(∂B1(0)) � ε,(2.13)

then

‖λ1 − λ2‖L∞(Γ
r0
I ) � η(ε).(2.14)

3. The direct scattering problem. Let us introduce the space

H1
loc(D

+) = {v ∈ D∗(D+) : v|D+
R
∈ H1(D+

R) for every R > 0 such that D ⊂ BR(0)},

where D∗(D+) is the space of distribution on D+.
A weak solution to the problem (1.1) is a function u = exp (ikω · x) + us, where

us ∈ H1
loc(D

+) is a weak solution to the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δus + k2us = 0 in D+,
us = − exp (ikω · x) on ΓD,
∂us

∂ν
+ iλ(x)us = − ∂

∂ν
exp (ikω · x) − iλ(x) exp (ikω · x) on ΓI ,

lim
r→∞r

(
∂us

∂r
(rx̂) − ikus(rx̂)

)
= 0 uniformly in x̂,

(3.1)

where ν is the inward unit normal to D.
Lemma 3.1 (well-posedness). The problem (3.1) has one and only one weak

solution us. Moreover, for every R > d, there exists a constant CR > 0 depending on
the a priori data and R only, such that the following holds:

‖us‖H1(D+
R) � CR.(3.2)

Proof. For the proof we refer to [8, Theorem 2.5], in which the authors show,
among various results, that the exterior mixed boundary value problem (3.1) can be
reformulated as a 2 × 2 system of boundary integral equations. In [8], Theorem 2.5
has been proved in two dimensions for a constant λ; however, it can be verified that
the same techniques can be carried over in three dimensions (see, for instance, [10])
and with λ = λ(x) ∈ C0,1(ΓI).
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Theorem 3.2 (C1,α regularity at the boundary). Let u be the weak solution to
(1.1); then there exists a constant α, 0 < α < 1, such that for every R > d and
ρ ∈ (0, r0), u ∈ C1,α(D+

R,ρ). Moreover, there exists a constant CR,ρ > 0 depending on
the a priori data, R, and ρ only, such that

‖u‖C1,α(D+
R,ρ) � CR,ρ.(3.3)

Proof. The proof mainly relies on the standard iteration techniques due to Moser
(see, for instance, [12]) as well as well-known regularity bounds for the Neumann
problem (see, for instance, [3, p. 667]). For the details of the proof we refer the reader
to [17].

Corollary 3.3 (lower bound). Let u be the weak solution to (1.1); then there
exists a radius R0 > 0 depending on the a priori data only, such that

|u(x)| > 1

2
for every x, |x| > R0.(3.4)

Proof. Let us choose R = 4d+ 4r0. By Theorem 3.2 it follows that there exists a
constant C > 0 depending on the a priori data only, such that

‖u‖
C1,α

(
D+

2R,
r0
2

) � C.(3.5)

By Green’s formula for the scattered wave us (see, for instance, [11, p. 18]), we
have that

us(x) =

∫
∂BR(0)

(
us(y)

∂φ(x, y)

∂ν(y)
− ∂us(y)

∂ν(y)
φ(x, y)

)
ds(y), |x| > R,(3.6)

where

φ(x, y) =
1

4π

exp (ik|x− y|)
|x− y| , x �= y,

is the fundamental solution to the Helmholtz equation in R
3.

Thus, by (3.6) and by (3.5) it follows that

|us| < 1

2
for every x, |x| > R0,(3.7)

with R0 = (k + 1)8R3C + 2R. The thesis follows, observing that |u| � 1 − |us|.
4. The inverse scattering problem.
Lemma 4.1 (from the far field to the near field). Let ui, ui,∞, i = 1, 2, be as in

Theorem 2.1. Suppose that for some ε, 0 < ε < 1, (2.13) holds; then there exist a
radius R1 > 0 and a constant C > 0, depending on the a priori data only, such that

‖u1 − u2‖L2(BR1+1(0)\BR1
(0)) � Cεα(ε),(4.1)

where α(ε) is defined as

α(ε) =
1

1 + log(log(ε−1) + e)
.(4.2)

Proof. Let us choose R = 4d+4r0 and let us denote by us
i , i = 1, 2, the scattered

wave of the problem (1.1) with λ = λi, respectively. By (3.5) it follows that

‖us
1 − us

2‖L2(∂BR(0)) � C,(4.3)

where C > 0 is a constant depending on the a priori data only.
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Hence choosing R1 = 16d + 16r0, the thesis follows by the argument in [14] (see
also [6]).

Theorem 4.2 (stability at the boundary). Let ui, ui,∞, i = 1, 2, be as in Theo-
rem 2.1. We have that there exists ε0 > 0 depending on the a priori data only, such
that if for some ε, 0 < ε < ε0, (2.13) holds, then for every ρ ∈ (0, r0) we have

‖u1 − u2‖C1(Γρ
I ) � η(ε),(4.4)

where η is given by (2.12), with a constant C > 0 depending on the a priori data and
ρ only.

Proof. By the Lipschitz regularity of the boundary ∂D, it follows that for every
point Q ∈ ∂D, there exists a rigid transformation of coordinates under which we have
Q = 0 and the finite cone

C =

{
x : |x| < r0,

x · ξ
|x| > cos θ

}

with axis in the direction ξ and width 2θ, where θ = arctan 1
M , is such that C ⊂ D+.

Let Q be a point such that Q ∈ Γr0
I and let Q0 be a point lying on the axis ξ of

the cone with vertex in Q = 0 such that d0 = dist(Q0, 0) < r0
2 .

Let us define R2 = 2R1 + 2, where R1 is the radius introduced in the statement
of Lemma 4.1. Proceeding as in Lieberman [16], we consider a regularized distance

d̃ from the boundary of ∂D such that d̃ ∈ C2(D+
R2

) ∩ C0,1(D+
R2

) (see also [4, Lemma
5.2]).

Let us define for every ρ > 0

Dρ = {x ∈ D+
R2

: dist(x, ∂D) > ρ},(4.5)

D̃ρ = {x ∈ D+
R2

: d̃(x) > ρ}.(4.6)

It follows that there exists a, 0 < a � 1, depending on M only such that for every ρ,
0 < ρ � ar0, D̃

ρ is connected with boundary of class C1 and

c̃1ρ � dist(x, ∂D) � c̃2ρ for every x ∈ ∂D̃ρ,(4.7)

where c̃1, c̃2 are positive constants depending on M only. By (4.7) we deduce that

Dc̃2ρ ⊂ D̃ρ ⊂ Dc̃1ρ.

Let us now define ρ0 = min{ 1
16 ,

r0
4 sin θ} and let P be a point in the annulus

BR1+1(0) \BR1(0), such that B4ρ0(P ) ⊂ BR1+1(0) \BR1(0). Furthermore, let γ be a

path in D̃
ρ0
c̃1 joining P to Q0 and let us define {yi}, i = 0, . . . , s, as follows: y0 = Q0,

yi+1 = γ(ti), where ti = max{t such that |γ(t)−yi| = 2ρ0} if |P−yi| > 2ρ0; otherwise
let i = s and stop the process.

Let us introduce the function U ∈ H1
loc(D

+) defined as

U(x) = u1(x) − u2(x).(4.8)

Thus, by the three spheres inequality for elliptic systems with Laplacian principal
part (see [5, Theorem 3.1]), we infer that

∫
B3ρ0 (y0)

|U |2 � C

(∫
Bρ0 (y0)

|U |2
)τ

·
(∫

B4ρ0 (y0)

|U |2
)1−τ

,(4.9)

where C > 0, 0 < τ < 1 are constants depending on the a priori data only.
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Let us observe that B4ρ0
(y0) ⊂ D+

R2
and Bρ0

(y0) ⊂ B3ρ0
(y1). Thus by (4.9) and

by Lemma 3.1 we deduce that

∫
Bρ0

(y0)

|U |2 � C

(∫
B3ρ0

(y1)

|U |2
)τ

· C1−τ .

An iterated application of the three spheres inequality leads to

∫
Bρ0

(y0)

|U |2 �
(∫

Bρ0 (ys)

|U |2
)τs

· C1−τs

.

Finally, since Bρ(ys) ⊂ BR1+1(0) \BR1(0), by (4.1) we obtain that∫
Bρ0 (y0)

|U |2 � C
{
εα(ε)

}τs

.

We shall construct a chain of balls Bρk
(Qk) centered on the axis of the cone, pairwise

tangent to one another and all contained in the cone

C′ =

{
x : |x| < r0,

x · ξ
|x| > cos θ′

}
,

where θ′ = arcsin
(
ρ0

d0

)
. Let Bρ0

(Q0) be the first of them; the rest are defined by
induction such that

Qk+1 = Qk − (1 + μ)ρkξ,

ρk+1 = μρk,

dk+1 = μdk,

μ =
1 − sin θ′

1 + sin θ′
.

Hence, with this choice, we have ρk = μkρ0 and Bρk+1
(Qk+1) ⊂ B3ρk

(Qk).
Considering the following estimate obtained by a repeated application of the three

spheres inequality, we have that

‖U‖L2(Bρk
(Qk)) � ‖U‖τL2(Bρk−1

(Qk−1))
‖U‖1−τ

L2(B4ρl−1
(Qk−1))

� C‖U‖τk

L2(Bρ0 (Q0))
� C

{[
εα(ε)

]τs}τk

.(4.10)

For every r, 0 < r < d0, let k(r) be the smallest positive integer such that dk � r;
then, since dk = μkd0, it follows that

| log( r
d0

)|
logμ

� k(r) �
| log( r

d0
)|

logμ
+ 1,(4.11)

and by (4.10) we deduce that

‖U‖L2(Bρk(r)(Qk(r))) � C
{[

εα(ε)
]τs}τk(r)

.(4.12)
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Let x̄ ∈ Γ
ρ
2

I with ρ ∈ (0, r0) and let x ∈ B ρk(r)−1
2

(Qk(r)−1). By Theorem 3.2 it

follows that

|U(x̄)| � |U(x)| + Cρ|x− x̄|α � |U(x)| + Cρ

(
2

μ
r

)α

,

where Cρ > 0 is a constant depending on the a priori data and ρ only.
Integrating this inequality over B ρk(r)−1

2

(Qk(r)−1), we have that

|U(x̄)|2 � 2

ω3(
ρk−1

2 )
3

∫
B ρk(r)−1

2

(
Qk(r)−1

) |U(x)|2dx + 2C2
ρ

(
4r2

μ2

)α

.(4.13)

Since k(r) is the smallest integer such that dk � r, then dk−1 > r and thus (4.13)
yields

|U(x̄)|2 � C(
r sin θ′

)3
∫
Bρk(r)−1

(Qk(r)−1)

|U(x)|2dx + Cρr
2α.

By (4.12) we deduce that

|U(x̄)|2 � C

r3

{[
εα(ε)

]τs}τk(r)−1

+ Cρr
2α.(4.14)

Moreover, Theorem 3.2 also provides that∣∣∣∣∂U(x̄)

∂ν

∣∣∣∣ �
∣∣∣∣∂U(x)

∂ν

∣∣∣∣ + Cρ

(
2

μ
r

)α

.

The Caccioppoli inequality and the same arguments that lead to (4.14) yield

∣∣∣∣∂U(x̄)

∂ν

∣∣∣∣
2

� C

r5

{[
εα(ε)

]τs}τk(r)−1

+ Cρr
2α.(4.15)

The choice in (4.11) guarantees that

τk(r)−1 �
(

r

d0

)ν

,(4.16)

where ν = − log
(

1
μ

)
log τ . Hence inserting (4.16) into (4.14) and (4.15) and minimiz-

ing their right-hand sides with respect to r, we deduce that

‖U(x̄)‖
L∞(Γ

ρ
2
I )

� Cρ

(
log (ε−α(ε))

)− 2α
ν+2 ,(4.17) ∥∥∥∥∂U(x̄)

∂ν

∥∥∥∥
L∞(Γ

ρ
2
I )

� Cρ

(
log (ε−α(ε))

)− 2α
ν+2 ,(4.18)

where Cρ > 0 is a constant depending on the a priori data and ρ only.
By an interpolation inequality and (3.2) we have

‖∇t(U)‖L∞(Γ1,ρ) � cρ‖U‖βL∞(Γ1,
ρ
2
)Cρ

1−β ,



IMPEDANCE STABILITY 443

where β = α
α+1 and cρ > 0 depends on the a priori data and ρ only. After straight-

forward calculations and by a possible replacing of ε0 with a smaller one depending
on the a priori data only, we have that

‖u1 − u2‖C1(Γ1,ρ) ≤ Cρ| log (ε)|−
2αβ
ν+2 for every ε, 0 < ε < ε0.(4.19)

Thus the thesis follows, replacing in (2.12) C with Cρ and θ with 2αβ
ν+2 .

Proposition 4.3. There exists a radius r1 > 0 depending on the a priori data
only, such that for every x0 ∈ Γr0

I , the problem

(4.20)

{
Δψ + k2ψ = 0 in ΓI,r1(x0),
∂ψ

∂ν
+ iλ(x)ψ = 0 on ΔI,r1(x0)

admits a solution ψ ∈ H1(ΓI,r1(x0)) satisfying

|ψ(x)| � 1 for every x ∈ ΓI,r1(x0).(4.21)

Moreover, there exists a constant ψ̄ > 0 depending on the a priori data only, such
that for every x0 ∈ Γr0

I ,

‖ψ‖C1(ΓI,r1
(x0)) � ψ̄.(4.22)

Proof. Let us consider a point x0 ∈ Γr0
I . After a translation we may assume that

x0 = 0 and, fixing local coordinates, we can represent the boundary as a graph of a
C1,1 function. Namely, we have that

D+ ∩Br0(0) = {(x′, x3) ∈ Br0(0) : x3 < ϕI(x
′)},(4.23)

where ϕI is the C1,1 function satisfying (2.4) and (2.5).
Let Φ ∈ C1,1(B r0

4M
,R3) be the map defined as

Φ(y′, y3) = (y′, y3 + ϕI(y
′)).(4.24)

We have that there exist θ1, θ2, θ1 > 1 > θ2 > 0, constants depending on M and r0
only, such that for every r ∈ (0, r0

4M ), it follows that

ΓI,θ2r(0) ⊂ Φ(B−
r (0)) ⊂ ΓI,θ1r(0),(4.25)

where B−
r (0) = {y ∈ R

3 : |y| < r, y3 < 0}, and furthermore we have

|det DΦ | = 1.(4.26)

The inverse map Φ−1 ∈ C1,1(ΓI,r0(0),R3) and is defined by

Φ−1(x′, x3) = (x′, x3 − ϕI(x
′)).(4.27)

Denoting

σ(y) = (σi,j(y))
3
i,j=1 = (DΦ−1)(Φ(y)) · (DΦ−1)T (Φ(y)),(4.28)

λ′(y) = λ(Φ(y)),(4.29)
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λ0
′ = λ′(0),(4.30)

where λ is the function introduced in (1.5), we have that

σ(0) = I,(4.31)

‖σi,j‖C0,1(ΓI,r0
) � Σ for i, j = 1, 2, 3,(4.32)

1

2
|ξ|2 � σ(y)ξ · ξ � C1|ξ|2 for every y ∈ B−

(
r0
4M )

(0) and every ξ ∈ R
3,(4.33)

‖λ′‖C0,1(B′
r0
4M

(0)) � Λ′,(4.34)

where Σ > 0, C1 > 0, and Λ′ > 0 are constants depending on M, r0, and Λ only.
Claim 4.4. There exist a radius r2, 0 < r2 < r0

4M , and a solution ψ′ ∈
H1(B−

r2(0)) to the problem

(4.35)

{
div(σ∇ψ′) + k2ψ′ = 0 in B−

r2(0),
σ∇ψ′ · ν′ + iλ′ψ′ = 0 on B′

r2(0),

where ν′ = (0, 0, 1) such that |ψ′| � 1 in B−
r2(0).

Proof of Claim 4.4. We look for a radius r2 > 0 and for a solution of the form
ψ′ = ψ0 − s such that ψ0 ∈ H1(B−

r2(0)) is a weak solution to the problem

(4.36)

{
Δψ0 + k2ψ0 = 0 in B−

r2(0),
∂ψ0

∂ν
+ iλ0

′ψ0 = 0 on B′
r2(0),

satisfying |ψ0| � 2 in B−
r2(0).

Furthermore, s ∈ H1(B−
r2(0)) is a weak solution to the problem

(4.37)

⎧⎨
⎩

div(σ∇s) + k2s = div((σ − I)∇ψ0) in B−
r2(0),

σ∇s · ν + iλ′s = (σ − I)∇ψ0 · ν + i(λ′ − λ0
′)ψ0 on B′

r2(0),
s = 0 on |y| = r2,

such that s(y) = O(|y|2) near the origin.
We can construct ψ0 explicitly as follows:

ψ0(y1, y2, y3) = 8 cosh
(
|λ0

′2 − k2| 12 y1

)[
sin

(
λ0

′y3

)
+ i cos

(
λ0

′y3

)]
if k2 < λ0

′2,

ψ0(y1, y2, y3) = 8 cos
(
|k2 − λ0

′2| 12 y1

)[
sin

(
λ0

′y3

)
+ i cos

(
λ0

′y3

)]
if k2 > λ0

′2,

ψ0(y1, y2, y3) = 8 sin
(
λ0

′y3

)
+ i8 cos

(
λ0

′y3

)
if k2 = λ0

′2.

Denoting r̃ = π
4 min{|k2 − λ0

′2|−
1
2 , (λ0

′)−1}, it follows, by straightforward calcula-

tions, that ψ0 ∈ H1(B−
r̃ (0)) is a weak solution of (4.36) with r2 = r̃ and |ψ0| � 2 in

B−
r̃ (0).

Let us now look for a solution s to the problem (4.37).
Fixing r ∈ (0, r0

8M ), let us define the space

H1
0−(B−

r (0)) = {η ∈ H1(B−
r (0)) such that η(y) = 0 on |y| = r},(4.38)
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endowed with the usual ‖ · ‖H1
0 (B−

r (0)) norm. Let us introduce the bilinear form

A : H1
0−(B−

r (0)) ×H1
0−(B−

r (0)) → C(4.39)

such that

A(η1, η2) =

∫
B−

r (0)

σ∇η1 · ∇η̄2 −
∫
B−

r (0)

k2η1η̄2 −
∫
B′

r(0)

iλ′η1η̄2(4.40)

and the functional

F : H1
0−(B−

r (0)) → C(4.41)

such that

F (η) =

∫
B−

r (0)

(σ − I)∇ψ0 · ∇η̄ + i

∫
B′

r(0)

(λ′ − λ0
′)ψ0η̄ .(4.42)

It immediately follows that A and F are continuous on H1
0−(B−

r (0)) as a bilinear form
and a functional, respectively.

Moreover, by standard arguments we can infer that there exists a radius r3 > 0,
depending on the a priori data only, such that for every r ∈ (0, r3), the bilinear form
A is coercive on H1

0−(B−
r (0)). Hence by the Lax–Milgram theorem we deduce that

for every r ∈ (0, r3), there exists a unique solution s ∈ H1
0−(B−

r (0)) to the problem
(4.37).

By the coercitivity of A, we have that

1

4

∫
B−

r (0)

|∇s|2 �
∣∣∣∣
∫
B−

r (0)

(σ − I)∇ψ0 · ∇s̄

∣∣∣∣ +

∣∣∣∣
∫
B′

r(0)

(λ′ − λ0
′)ψ0s̄

∣∣∣∣.(4.43)

By the Schwartz inequality, (4.31), and (4.32), we have that∣∣∣∣
∫
B−

r (0)

(σ − I)∇ψ0 · ∇s̄

∣∣∣∣ � 16Σr2

∫
B−

r (0)

|∇ψ0|2 +
1

16

∫
B−

r (0)

|∇s|2.(4.44)

By (4.30), (4.34), and a trace inequality it follows that∣∣∣∣
∫
B′

r(0)

(λ′ − λ0
′)ψ0s̄

∣∣∣∣ � c22r
416Λ′

∫
B−

r (0)

|∇ψ0|2 +
1

16
r

∫
B−

r (0)

|∇s|2.(4.45)

Hence inserting (4.44) and (4.45) into (4.43) we obtain that

1

8

∫
B−

r (0)

|∇s|2 � (16Σ + c2216Λ′)r2

∫
B−

r (0)

|∇ψ0|2.(4.46)

We have that

1

8

∫
B−

r (0)

|∇s|2 � 4

3
π(16Σ + c2116Λ′)r5Q,(4.47)

where Q = supB−
r0
8M

(0) |∇ψ0|2. By standard estimates for solutions of elliptic equations

(see, for instance, [12, Chap. 8]) and observing that Q > 0 depends on the a priori
data only, we can infer that for every r ∈ (0, r3

2 )

‖s‖L∞(B−
r (0)) � c4r

2,

where c4 > 0 is a constant depending on the a priori data only.
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Hence the claim follows, choosing r2 = min{r̃, r3
2 , 1√

c4
}.

Let us notice that choosing r1 = θ2r2 and ψ(x′, x3) = ψ′(Φ−1(x′, x3)), we have
that ψ ∈ H1(ΓI,r1(0)) is a weak solution to the problem (4.20) and is such that
|ψ| � 1 in ΓI,r1(0). We conclude the proof observing that (4.22) follows with the
same argument as in Theorem 3.2.

Lemma 4.5 (volume doubling inequality). Let u be the solution to the problem
(1.1); then there exists a radius r̄ > 0, such that for every x0 ∈ Γr0

I the following
holds: ∫

ΓI,βr

|u|2 � CβK

∫
ΓI,r

|u|2(4.48)

for every r, β such that β > 1 and 0 < βr < r̄, where C > 0,K > 0 are constants
depending on the a priori data only.

Proof. Let x0 ∈ Γr0
I and let r1 and ψ be, respectively, the radius and the function,

introduced in Proposition 4.3. Denoting

z =
u

ψ
,(4.49)

it follows that z ∈ H1(ΓI,r1(x0)) is a weak solution to the problem

(4.50)

⎧⎪⎨
⎪⎩

Δz + 2
∇ψ

ψ
· ∇z = 0 in ΓI,r1(x0),

∂z

∂ν
= 0 on ΔI,r1(x0).

Proceeding as in Proposition 4.3, we may assume that, up to a rigid transformation of
coordinates, x0 = 0 and, by local coordinates, we can locally represent the boundary
as a graph of a C1,1 function as in (4.23).

Following [2, Theorem 0.8] (see also [4, Proposition 3.5]), we have that there exists
a map Ψ ∈ C1,1(Bρ2(0),R3) such that

Ψ(Bρ2
(0)) ⊂ Bρ1

(0),(4.51)

Ψ(y′, 0) = (y′, ϕI(y
′)) for every y′ ∈ B′

ρ2
(0),(4.52)

ΓI, ρ2
⊂ Ψ(B−

ρ (0)) ⊂ ΓI,c1ρ for every ρ ∈ (0, ρ2),(4.53)

1

8
� |detDΨ| � c2,(4.54)

where ρ1, 0 < ρ1 < r0, ρ2 > 0, c1 > 0, and c2 > 0 are constants depending on r0,M,
and Λ only. Denoting

A(y) = |detDΨ(y)|(DΨ−1)(Ψ(y))(DΨ−1)T (Ψ(y)),(4.55)

B(y) = 2|detDΨ(y)|(DΨ−1)(Ψ(y))
∇ψ(Ψ(y))

ψ(Ψ(y))
,(4.56)
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it follows that v(y) = z(Ψ(y)) ∈ H1(B−
ρ2

(0)) is a weak solution to the problem

(4.57)

{
div(A∇v) + B∇v = 0 in B−

ρ2
(0),

A(y′, 0)∇v · ν′ = 0 on B′
ρ2

(0).

Hence we are under the assumptions of Theorem 1.3 in [2] and thus we can infer
that there exists a radius ρ3, 0 < ρ3 < ρ2, depending on the a priori data only, such
that ∫

B−
βρ(0)

|v|2 � cβK

∫
B−

ρ (0)

|v|2(4.58)

for every ρ, β such that β > 1 and 0 < βρ � ρ3, where c > 0 is constant depending on
the a priori data only, and K > 0 depends on the a priori data and increasingly on

N(ρ3) =

∫
B−

ρ3
(0)

ρ2
3|∇v|2 + |v|2∫

B−
ρ3

(0)
|v|2 .(4.59)

By (4.53) and (4.58), it follows that for every r and β > 1 such that 0 < r <
βr < ρ3

2 , ∫
ΓI,βr

|z|2 � C(2βc1)
K

∫
ΓI,r(0)

|z|2.(4.60)

Finally the last inequality, (4.21), and (4.22) imply that∫
ΓI,βr

|u|2 � C(β)K
∫

ΓI,r(0)

|u|2,(4.61)

where C > 0,K > 0 are constants depending on a priori data and on N(ρ3) only.
Thus the lemma follows with

r̄ =
ρ3

2
.(4.62)

It remains only to majorize the quantity (4.59) by a constant depending on the a
priori data only. Let us observe that by (4.53), (4.21), (4.22), and (3.3), we have∫

B−
ρ3

(0)

|∇v|2 + |v|2 � C,(4.63)

where C > 0 is a constant depending on a priori data only.
On the other hand, we have that, choosing P0 = M

8
√

1+M2ρ3
ν and ρ4 = 1

32
M√

1+M2
ρ3,

where ν is the outer unit normal to D at 0, it follows that Bρ4(P0) ⊂ ΓI,
ρ3
2

(0).

Thus, by (4.53) and (4.22) it follows that∫
B−

ρ3
(0)

|v|2 � C

∫
Γ
I,

ρ3
2

(0)

|u|2 � C

∫
Bρ4

(P0)

|u|2,(4.64)

where C > 0 is a constant depending on the a priori data only.
Let us consider a point Q ∈ R

3 \D+
2R0

such that

B4ρ4(Q) ⊂ R
3 \D+

2R0
,(4.65)
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where R0 is the radius introduced in Corollary 3.3. Proceeding as in the proof of
Theorem 4.2, we cover a path joining P0 to Q by a chain of balls of radius ρ4 pairwise
tangent to each other. Hence, by an iterated use of the three spheres inequality, we
have that the following holds:

‖u‖L2(Bρ4(P0)) � C,(4.66)

where C > 0 is a constant depending on a priori data only. Hence, by (4.63) and
(4.66), we can majorize N(ρ3) by a constant depending on the a priori data only and
thus the lemma follows.

Theorem 4.6 (surface doubling inequality). Let u be the solution to the problem
(1.1); then there exists a constant C > 0 depending on the a priori data only, such
that for every x0 ∈ Γr0

I and for every r ∈ (0, r̄
4 ), the following holds:∫

ΔI,2r(x0)

|u|2dσ � C

∫
ΔI,r(x0)

|u|2dσ.(4.67)

Proof. Let x0 ∈ Γr0
I and let z ∈ H1(ΓI,r1(x0)) and r̄ be, respectively, the solution

to the problem (4.50) defined by (4.49) and the radius introduced in (4.62). By a
regularity estimate at the boundary (see, for instance, [4, p. 777]), we have that, for
any r ∈ (0, r̄

4 ), the following holds:

∫
ΔI,r(x0)

|∇tz|2 � C

(
1

r

∫
ΓI,2r(x0)

|∇z|2
)1−γ (

1

r2

∫
ΔI,r(x0)

|z|2
)γ

,(4.68)

where C > 0 and 0 < γ < 1 are constants depending on the a priori data only and
∇tz represents the tangential gradient.

Moreover, by a well-known estimate of stability for the Cauchy problem (see, for
instance, [18]), we have that

∫
ΓI, r

2
(x0)

|z|2� Cr

(∫
ΔI,r(x0)

|z|2 + r2

∫
ΔI,r(x0)

|∇tz|2
)1−δ

(4.69)

·
(∫

ΔI,r(x0)

|z|2 + r2

∫
ΔI,r(x0)

|∇tz|2 + r

∫
ΓI,r(x0)

|∇z|2
)δ

,

where C > 0 and 0 < δ < 1 are constants depending on the a priori data only.
Hence by the Young inequality, (4.68), and (4.69), we obtain∫

ΓI, r
2
(x0)

|z|2 � Cr

ε
γ2+1−γ
γ(1−γ)

∫
ΔI,r(x0)

|z|2 + Cεr2

∫
ΓI,2r(x0)

|∇z|2,

where C > 0 is a constant depending on the a priori data only. By the Caccioppoli
inequality, (4.21), and (4.22) we can infer that∫

ΓI, r
2
(x0)

|u|2 � Cr

ε
γ2+1−γ
γ(1−γ)

∫
ΔI,2r(x0)

|u|2 + Cε

∫
ΓI,8r(x0)

|u|2,

where C > 0 is a constant depending on the a priori data only.
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By (4.48) it follows that∫
ΓI, r

2
(x0)

|u|2 � Cr

ε
γ2+1−γ
γ(1−γ)

∫
ΔI,r(x0)

|u|2 + C(8)Kε

∫
ΓI, r

2
(x0)

|u|2,(4.70)

where C > 0 is a constant depending on the a priori data only.
Hence, choosing ε in (4.70) such that ε = 1

2C(8)K
and applying again (4.48) on

the left-hand side of (4.70), we obtain that∫
ΓI,2r(x0)

|u|2 � Cr

∫
ΔI,r(x0)

|u|2,(4.71)

where C > 0 is a constant depending on the a priori data only.
Moreover, by a standard Dirichlet trace inequality, we have that∫

ΔI,2r(x0)

|u|2 � C

∫
ΔI,r(x0)

|u|2,(4.72)

where C > 0 is a constant depending on the a priori data only.
Corollary 4.7 (Ap property on the boundary). Let u be the solution to the

problem (1.1); then there exist constants p > 1, A > 0 depending on the a priori data
only, such that for every x0 ∈ Γr0

I and every r ∈ (0, r̄
4 ), the following holds:(

1

|ΔI,r(x0)|

∫
ΔI,r(x0)

|u|2dσ
)(

1

|ΔI,r(x0)|

∫
ΔI,r(x0)

|u|− 2
p−1 dσ

)p−1

� A.(4.73)

Proof. Let x0 ∈ Γr0
I and let r ∈ (0, r̄

4 ); then by a trace inequality (see, for instance,
[1, Chap. 5]), it follows that

‖u‖L4(ΔI,r(x0)) � C‖u‖H1(ΓI,r(x0)),(4.74)

where C > 0 is a constant depending on the a priori data only. By the Caccioppoli
inequality and the doubling inequality (4.48) we deduce that

‖u‖L4(ΔI,r(x0)) � C

r
‖u‖L2(ΓI,r(x0)),(4.75)

where C > 0 is a constant depending on the a priori data only. Combining (4.71) and
(4.75) we have that

‖u‖L4(ΔI,r(x0)) � C√
r
‖u‖L2(ΔI,2r(x0)),(4.76)

where C > 0 is a constant depending on the a priori data only. Thus by the doubling
inequality (4.67) we have that

‖u‖L4(ΔI,r(x0)) � C√
r
‖u‖L2(ΔI,r(x0)).(4.77)

Hence, we infer that for every r ∈ (0, r̄
4 ) and every x0 ∈ Γr0

I , the following holds:

(
1

r2

∫
ΔI,r

|u|4
) 1

4

�
(
C

r2

∫
ΔI,r

|u|2
) 1

2

,

obtaining a reverse Hölder inequality.
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The result in [9] assures the existence of some p > 1 and A > 0 depending on the
a priori data only such that (4.73) holds.

Proof of Theorem 2.1. Let x0 be a point in Γr0
I . Let us pick r = r̄

8 , where r̄ is the
radius introduced in (4.62). Thus by (4.71) with u = u2 it follows that∫

ΔI, r̄
8
(x0)

|u2|2dσ � C

∫
ΓI, r̄

16
(x0)

|u2|2dx,(4.78)

where C > 0 is a constant depending on the a priori data only.
Let P0 and ρ4 > 0 be, respectively a point and a radius, such that Bρ4(P0) ⊂

ΓI, r̄
16 (x0). By rephrasing the argument leading to (4.66) we deduce by (4.78) that∫

ΔI, r̄
8
(x0)

|u2|2dσ � C,(4.79)

where C > 0 is a constant depending on the a priori data only.
Combining (4.73) and (4.79), we have that for every x0 ∈ Γr0

I the following holds:(∫
ΔI, r̄

8
(x0)

|u2|−
2

p−1 dσ

)p−1

� C,(4.80)

where C > 0 is a constant depending on the a priori data only.
Let us now consider x ∈ ΔI, r̄8

(x0); then by Theorem 4.2 and (1.4) we have that
if 0 < ε < ε0, the following holds:

|λ1(x) − λ2(x)| � (Λ + 1)η(ε)
1

|u2(x)| .(4.81)

Hence denoting δ = 2
p−1 and combining (4.81) and (4.80), we deduce that

(∫
ΔI, r̄

8
(x0)

|λ1(x) − λ2(x)|δ
) 1

δ

� η(ε).(4.82)

By the a priori bound (1.4), we can infer that

‖λ1(x) − λ2(x)‖L2(ΔI, r̄
8
(x0))

� (2Λ)1−
δ
2

(∫
ΔI, r̄

8
(x0)

|λ1(x) − λ2(x)|δ
) 1

2

.(4.83)

Hence, by a possible further replacement of the constants C, θ in (2.12), we can
infer that the last inequality and (4.82) yield

‖λ1(x) − λ2(x)‖L2(ΔI, r̄
8
(x0))

� η(ε).(4.84)

By an interpolation inequality (see, for instance, [4, p. 777]), we have that

‖λ1 − λ2‖L∞(ΔI, r̄
8
(x0))

� C‖λ1 − λ2‖
1
2

L2(ΔI, r̄
8
(x0))

‖λ1 − λ2‖
1
2

C0,1(ΔI, r̄
8
(x0))

,(4.85)

where C > 0 is a constant depending on the a priori data only. Hence by (1.4) and
combining (4.84) with (4.85), we obtain, by a possible further replacement of the
constants C, θ in (2.12), that

‖λ1 − λ2‖L∞(ΔI, r̄
8
(x0))

� η(ε).(4.86)
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Let us cover Γr0
I with the sets ΔI, r̄8

(xj), j = 1, . . . , J , with xj ∈ Γr0
I .

Let i be an index such that

‖λ1 − λ2‖L∞(ΔI, r̄
8
(xi)

) = ‖λ1 − λ2‖L∞(Γ
r0
I ).(4.87)

Thus, by a further possible replacement of the constant C, θ in (2.12), we deduce
(2.14) from (4.87) and (4.86) with x0 = xi.
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A UNIQUENESS CRITERION FOR THE SIGNORINI PROBLEM
WITH COULOMB FRICTION∗

YVES RENARD†

Abstract. The purpose of this paper is to study the solutions to the Signorini problem with
Coulomb friction (the so-called Coulomb problem). Some optimal a priori estimates are given, and
a uniqueness criterion is exhibited. Recently, nonuniqueness examples have been presented in the
continuous framework. It is proved, here, that if a solution satisfies a certain hypothesis on the
tangential displacement and if the friction coefficient is small enough, it is the unique solution to
the problem. In particular, this result can be useful for the search of multisolutions to the Coulomb
problem because it eliminates a lot of uniqueness situations.

Key words. unilateral contact, Coulomb friction, uniqueness of solution

AMS subject classifications. 35J85, 74M10
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Introduction. The so-called Signorini problem with Coulomb friction (or simply
the Coulomb problem) has been introduced by Duvaut and Lions [4]. It does not
exactly represent the equilibrium of a solid which encounters an obstacle because
when the equilibrium is reached (or any steady state solution) the friction condition
is no longer an irregular law. The aim of this problem is in fact to be very close to a
time semidiscretization of an evolutionary problem by an implicit scheme. The fact
that several solutions could coexist in an implicit scheme (independently of the size of
the time step) may be an indication that the evolutionary problem has a dynamical
bifurcation.

The first existence results for this problem were obtained by Nečas, Jarušek, and
Haslinger in [15] for a two-dimensional elastic strip, assuming that the coefficient
of friction is small enough and using a shifting technique previously introduced by
Fichera and later applied to more general domains by Jarušek [11]. Eck and Jarušek
[5] give a different proof using a penalization method. We emphasize that most results
on existence for frictional problems involve a condition of smallness for the friction
coefficient (and a compact support on Γ

C
).

Recently, examples of nonunique solutions have been given by Hild in [7] and [8]
for a large friction coefficient. As far as we know, for a fixed geometry, it is still an
open question whether or not there is uniqueness of the solution for a sufficiently small
friction coefficient. In the finite element approximation framework, the presence of
bifurcation has been studied in [9].

The present paper gives the first (partial) result of uniqueness of a solution to the
Coulomb problem. The summary is the following. Section 1 introduces strong and
weak formulations of the Coulomb problem. Section 2 gives optimal estimates on the
solutions. In particular, a comparison is made with the solution to the frictionless
contact problem. Section 3 gives an additional estimate for the Tresca problem, i.e.,
the problem with a given friction threshold. And finally, section 4 gives the partial

∗Received by the editors July 13, 2005; accepted for publication (in revised form) January 11,
2006; published electronically May 12, 2006.
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Fig. 1. Elastic body Ω in frictional contact.

uniqueness result. It is proved in Proposition 5 for bidimensional problems and a
friction coefficient less than one that there is no multisolution with one of the solutions
having a tangential displacement with a constant sign. The major result is given by
Proposition 6 using the notion of a multiplier in a pair of Sobolev spaces.

1. The Signorini problem with Coulomb friction. Let Ω ⊂ R
d (d = 2 or 3)

be a bounded Lipschitz domain representing the reference configuration of a linearly
elastic body.

It is assumed that this body is submitted to a Neumann condition on a part of its
boundary Γ

N
, to a Dirichlet condition on another part Γ

D
, and to a unilateral contact

with static Coulomb friction condition on the rest of the boundary Γ
C

between the
body and a flat rigid foundation (see Figure 1). This latter part Γ

C
is supposed to

be of nonzero interior in the boundary ∂Ω of Ω. The problem consists in finding the
displacement field u(t, x) satisfying

− div σ(u) = f in Ω,(1)

σ(u) = Aε(u) in Ω,(2)

σ(u)n = F on Γ
N
,(3)

u = 0 on Γ
D
,(4)

where σ(u) is the stress tensor, ε(u) is the linearized strain tensor, n is the outward
unit normal to Ω on ∂Ω, F and f are the given external loads, and A is the elastic
coefficient tensor which satisfies classical conditions of symmetry and ellipticity.

On Γ
C
, it is usual to decompose the displacement and the stress vector in normal

and tangential components as follows:

u
N

= u·n, u
T

= u− u
N

n,

σ
N

(u) = (σ(u)n)·n, σ
T
(u) = σ(u)n − σ

N
(u)n.

To give a clear sense to this decomposition, we assume Γ
C

to have the C1 regular-
ity. The unilateral contact condition is expressed by the following complementary
condition:

u
N
≤ g, σ

N
(u) ≤ 0, (u

N
− g)σ

N
(u) = 0,(5)

where g is the normal gap between the elastic solid and the rigid foundation in refer-
ence configuration (see Figure 2).
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Fig. 2. Normal gap between the elastic solid Ω and the rigid foundation.

Denoting by F ≥ 0 the friction coefficient, the static Coulomb friction condition
reads as follows:

if u
T

= 0, then |σ
T
(u)| ≤ −Fσ

N
(u),(6)

if u
T
�= 0, then σ

T
(u) = Fσ

N
(u)

u
T

|u
T
| .(7)

The friction force satisfies the so-called maximum dissipation principle

−σ
T
(u)·u

T
= sup

μ
T

∈Rd−1

|μ
T

|≤−Fσ
N

(u)

(−μ
T
·u

T
).(8)

1.1. Classical weak formulation. We present here the classical weak formu-
lation proposed by Duvaut [3] and Duvaut and Lions [4]. Let us introduce the Hilbert
spaces

V = {v ∈ H1(Ω; Rd), v = 0 on Γ
D
},

X = {v|
Γ
C

: v ∈ V } ⊂ H1/2(Γ
C
; Rd),

X
N

= {v
N|

Γ
C

: v ∈ V }, X
T

= {v
T |

Γ
C

: v ∈ V },

and their topological dual spaces V ′, X ′, X ′
N

, and X ′
T
. It is assumed that Γ

C
is suffi-

ciently smooth such that X
N
⊂ H1/2(Γ

C
), X

T
⊂ H1/2(Γ

C
; Rd−1), X ′

N
⊂ H−1/2(Γ

C
),

and X ′
T
⊂ H−1/2(Γ

C
; Rd−1).

Classically, H1/2(Γ
C
) is the space of the restriction on Γ

C
of traces on ∂Ω of

functions of H1(Ω), and H−1/2(Γ
C
) is the dual space of H1/2

00
(Γ

C
), which is the space

of the restrictions on Γ
C

of functions of H1/2(∂Ω) vanishing outside Γ
C
. We refer to

[1] and [12] for a detailed presentation of trace operators.
Now, the set of admissible displacements is defined as

K = {v ∈ V, v
N
≤ g a.e. on Γ

C
}.(9)

The maps

a(u, v) =

∫
Ω

Aε(u) : ε(v)dx,

l(v) =

∫
Ω

f ·vdx +

∫
Γ
N

F ·vdΓ,

j(Fλ
N
, v

T
) = −〈Fλ

N
, |v

T
|〉

X′
N

,X
N
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represent the virtual work of elastic forces, the external load, and the “virtual work”
of friction forces, respectively. Standard hypotheses are as follows:

a(·, ·) is a bilinear symmetric V-elliptic and continuous form on V × V :(10)

∃ α > 0, ∃ M > 0, a(u, u) ≥ α‖u‖2
V
, a(u, v) ≤ M‖u‖

V
‖v‖

V
∀u, v ∈ V,

l(·) is a linear continuous form on V ; i.e., ∃ L > 0, |l(v)| ≤ L‖v‖
V
∀v ∈ V,(11)

g ∈ X
N
,(12)

F ∈ MX
N

is a nonnegative multiplier in X
N
.(13)

The latter condition ensures that j(Fλ
N
, v

T
) is linear continuous on λ

N
and

convex lower semicontinuous on v
T

when λ
N

is a nonpositive element of X ′
N

(see, for
instance, [2]). To satisfy condition (10), it is necessary that Γ

D
is of nonzero interior

in the boundary of Ω and that the elastic coefficient tensor is uniformly elliptic (see
[4]).

We refer to Maz’ya and Shaposhnikova [14] for the theory of multipliers. The set
MX

N
denotes the space of multipliers from X

N
into X

N
, i.e., the space of function

f : Γ
C
−→ R of finite norm

‖f‖
MX

N
= sup

v
N

∈X
N

v
N

�=0

‖fv
N
‖

X
N

‖v
N
‖

X
N

.

This is the norm of the linear mapping X
N

 v �−→ (fv) ∈ X
N

. Of course, if
F is a constant on Γ

C
, one has ‖F‖

MX
N

= F . From the fact that Ω is supposed to

be a bounded Lipschitz domain and Γ
C

is supposed to have the C1 regularity, it is
possible to deduce that for d = 2 the space H1/2+ε(Γ

C
) is continuously included in

MX
N

for any ε > 0, and for d = 3 the space H1(Γ
C
)∩L∞(Γ

C
) is included in MX

N
,

continuously for the norm ‖f‖
H1(Γ

C
)
+ ‖f‖

L∞(Γ
C

)
(see [14]). In particular, the space

of Lipschitz continuous functions is continuously included in MX
N

.
Condition (10) implies in particular that a(·, ·) is a scalar product on V and that

the associated norm

‖v‖a = (a(v, v))1/2

is equivalent to the usual norm of V :
√
α‖v‖

V
≤ ‖v‖a ≤

√
M‖v‖

V
∀v ∈ V.

The continuity constant of l(·) can also be given with respect to: ‖ · ‖a:
∃ La > 0, |l(v)| ≤ La‖v‖a ∀v ∈ V.

Constants L and La can be chosen such that
√
αLa ≤ L ≤

√
MLa.

The classical weak formulation of problem (1)–(7) is given by⎧⎨
⎩

Find u ∈ K satisfying

a(u, v − u) + j(Fσ
N

(u), v
T
) − j(Fσ

N
(u), u

T
) ≥ l(v − u) ∀ v ∈ K.

(14)

The major difficulty about (14) is due to the coupling between the friction thresh-
old and the contact pressure σ

N
(u). The consequence is that this problem does not

represent a variational inequality, in the sense that it cannot be derived from an
optimization problem.
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1.2. Neumann to Dirichlet operator. In this section, the Neumann to Dirich-
let operator on Γ

C
is introduced together with its basic properties. This will allow to

restrict the contact and friction problem to Γ
C

and obtain useful estimates.
Let λ = (λ

N
, λ

T
) ∈ X ′; then, under hypotheses (10) and (11), the solution u to

⎧⎨
⎩

Find u ∈ V satisfying

a(u, v) = l(v) + 〈λ, v〉
X′,X

∀ v ∈ V
(15)

is unique (see [4]). So it is possible to define the operator

E : X ′ −→ X

λ �−→ u|
Γ
C

.

This operator is affine and continuous. Moreover, it is invertible and its inverse is

continuous. It is possible to express E
−1

as follows: For w ∈ X, let u be the solution
to the Dirichlet problem

⎧⎨
⎩

Find u ∈ V satisfying u|
Γ
C

= w and

a(u, v) = l(v) ∀ v ∈ V, v|
Γ
C

= 0;

(16)

then E
−1

(w) is equal to λ ∈ X ′ defined by

〈λ, v〉X′,X = a(u, v) − l(v) ∀ v ∈ V.

In a weak sense, one has the relation E
−1

(u) = σ(u)n on Γ
C
. Now, under hypotheses

(10) and (11) one has

‖E(λ1) − E(λ2)‖
X
≤ C2

1

α
‖λ1 − λ2‖

X′ ,(17)

where C1 is the continuity constant of the trace operator on Γ
C

and α is the coercivity
constant of the bilinear form a(·, ·). One can verify it as follows. Let λ1 and λ2 be
given in X ′

T
and let u1, u2 be the corresponding solutions to (15); then

α‖u1 − u2‖2
V

≤ a(u1 − u2, u1 − u2) = 〈λ1 − λ2, u1 − u2〉
X′,X

≤ C1‖λ1 − λ2‖
X′ ‖u1 − u2‖

V

(18)

and, consequently,

‖u1 − u2‖
V
≤ C1

α
‖λ1 − λ2‖

X′ .(19)

Conversely, one has

‖E−1
(u1) − E

−1
(u2)‖

X′ ≤ MC2
2‖u1 − u2‖

X
,(20)

where M is the continuity constant of a(·, ·) and C2 > 0 is the continuity constant
of the homogeneous Dirichlet problem corresponding to (16) (i.e., with l(v) ≡ 0 and
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C2 = sup v∈X
v �=0

‖w‖
V

‖v‖
X

, where w|Γ
C

= v and a(w, z) = 0 ∀z ∈ V ). This latter estimate

can be performed as follows:

‖E−1
(u1) − E

−1
(u2)‖

X′ = sup
v∈X
v �=0

〈E−1
(u1) − E

−1
(u2), v〉

X′,X

‖v‖
X

= sup
v∈X
v �=0

⎛
⎝ inf

{w∈V :w|Γ
C

=v}

a(u1 − u2, w)

‖v‖
X

⎞
⎠

≤ Mγ‖u1 − u2‖
V
,(21)

where γ = sup v∈X
v �=0

inf
{w∈V :w|Γ

C

=v}
‖w‖

V

‖v‖
X

is the continuity constant of the homoge-

neous Poisson problem with respect to a Dirichlet condition on Γ
C
. Using γ ≤ C2,

this gives (20).
It is also possible to define the following norms on Γ

C
relative to a(·, ·):

‖v‖a,Γ
C

= inf
w∈V, w|Γ

C

=v

‖w‖a,

‖λ‖−a,Γ
C

= sup
v∈X
v �=0

〈λ, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈V
v �=0

〈λ, v〉
X′,X

‖v‖a
.

These are equivalent, respectively, to the norms in X and X ′:
√
α

C1
‖v‖

X
≤ ‖v‖a,Γ

C
≤

√
Mγ‖v‖

X
,

1√
Mγ

‖λ‖
X′ ≤ ‖λ‖−a,Γ

C
≤ C1√

α
‖λ‖

X′ .

With these norms, the estimates are straightforward since the following lemma holds.
Lemma 1. Let λ1 and λ2 be two elements of X ′ and let u1 = E(λ1), u2 = E(λ2);

then under hypotheses (10) and (11) one has

‖u1 − u2‖a,Γ
C

= ‖u1 − u2‖a = ‖λ1 − λ2‖−a,Γ
C
.

Proof. On the one hand, one has

‖u1 − u2‖2
a,Γ

C
= inf

w∈V

w|Γc

=u1−u2

‖w‖2
a = ‖u1 − u2‖2

a,

because u1 − u2 is the minimum of 1
2‖w‖2

a under the constraint w|ΓC

= u1 − u2. This
implies

‖u1 − u2‖2
a,Γ

C
= a(u1 − u2, u1 − u2) = 〈λ1 − λ2, u1 − u2〉

X′,X

≤ ‖λ1 − λ2‖−a,Γ
C
‖u1 − u2‖a,Γ

C
,

and finally

‖u1 − u2‖a,Γ
C
≤ ‖λ1 − λ2‖−a,Γ

C
.
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On the other hand, one has

‖λ1 − λ2‖−a,Γ
C

= sup
v∈X
v �=0

〈λ1 − λ2, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈X
v �=0

inf
w∈V

w|ΓC

=v

a(u1 − u2, w)

‖v‖a,Γ
C

,

≤ sup
v∈X
v �=0

inf
w∈V

w|ΓC

=v

‖u1 − u2‖a‖w‖a
‖v‖a,Γ

C

= ‖u1 − u2‖a = ‖u1 − u2‖a,Γ
C
,

which ends the proof of the lemma.

1.3. Direct weak inclusion formulation. Let

K
N

= {v
N
∈ X

N
: v

N
≤ 0 a.e. on Γ

C
}

be the (translated) set of admissible normal displacements on Γ
C
. The normal cone

in X ′
N

to K
N

at v
N
∈ X

N
is defined as

NK
N

(v
N

) = {μ
N
∈ X ′

N
: 〈μ

N
, w

N
− v

N
〉
X′

N
,X

N

≤ 0 ∀w
N
∈ K

N
}.

In particular, NK
N

(v
N

) = ∅ if v
N

/∈ K
N

. The subgradient of j(Fλ
N
, u

T
) with respect

to the second variable is given by

∂2j(Fλ
N
, u

T
) = {μ

T
∈ X ′

T
: j(Fλ

N
, v

T
)

≥ j(Fλ
N
, u

T
) + 〈μ

T
, v

T
− u

T
〉
X′

T
,X

T

∀v
T
∈ X

T
}.

With this notation, problem (14) is equivalent to the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−λ
N
∈ NK

N
(u

N
− g) in X ′

N
,

−λ
T
∈ ∂2j(Fλ

N
, u

T
) in X ′

T
.

(22)

More details on this equivalence can be found in [13].
Remark 1. Inclusion −λ

N
∈ NK

N
(u

N
− g) is equivalent to the complementarity

relations

u
N
≤ g, 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ K

N
, 〈λ

N
, u

N
− g〉

X′
N

,X
N

= 0,

which is the weak formulation of the strong complementarity relations (5) for the
contact conditions. Similarly, the second inclusion −λ

T
∈ ∂2j(Fλ

N
, u

T
) represents

the friction condition.

1.4. Hybrid weak inclusion formulation. We will now consider the sets of
admissible stresses. The set of admissible normal stresses on Γ

C
can be defined as

Λ
N

= {λ
N
∈ X ′

N
: 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ K

N
}.
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This is the opposite of K∗
N

, the polar cone to K
N

. The set of admissible tangential
stresses on Γ

C
can be defined as

Λ
T
(Fλ

N
) = {λ

T
∈ X ′

T
: −〈λ

T
, w

T
〉
X′

T
,X

T

+ 〈Fλ
N
, |w

T
|〉

X′
N

,X
N

≤ 0 ∀w
T
∈ X

T
}.

With this, problem (14) is equivalent to the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−(u
N
− g) ∈ NΛ

N
(λ

N
) in X

N
,

−u
T
∈ NΛ

T
(Fλ

N
)(λT

) in X
T
,

(23)

where the two inclusions can be replaced by inequalities as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

λ
N
∈ Λ

N
, 〈μ

N
− λ

N
, u

N
− g〉

X′
N

,X
N

≥ 0 ∀μ
N
∈ Λ

N
,

λ
T
∈ Λ

T
(Fλ

N
), 〈μ

T
− λ

T
, u

T
〉
X′

T
,X

T

≥ 0 ∀μ
T
∈ Λ

T
(Fλ

N
).

(24)

Remark 2. The inclusion −u
T

∈ NΛ
T

(Fλ
N

)(λT
) implies the complementarity

relation

〈λ
T
, u

T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

and the weak maximum dissipation principle

−〈λ
T
, u

T
〉
X′

T
,X

T

= sup
μ
T
∈Λ

T
(Fλ

N
)

〈−μ
T
, u

T
〉
X′

T
,X

T

,

which is the weak formulation of (8).

2. Optimal a priori estimates on the solutions to the Coulomb problem.
For the sake of simplicity, a vanishing contact gap (g ≡ 0) will be considered in the
following.

Remark 3. In the case of a nonvanishing gap, it is possible to find ug ∈ V such

that ug|
Γ
C

= gn, and then w = u− ug is solution to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find w ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

a(w, v) = l(v) − a(ug, v) + 〈λ
N
, w

N
〉
X′

N
,X

N

+ 〈λ
T
, w

T
〉
X′

T
,X

T

,

−w
N
∈ NΛ

N
(λ

N
) in X

N
,

−w
T
∈ NΛ

T
(Fλ

N
)(λT

) in X
T
,

(25)

i.e., a contact problem without gap but with a modified source term.



460 YVES RENARD

Following Remarks 1 and 2, a solution (u, λ) to problem (22) (i.e., a solution u
to problem (14)) satisfies the complementarity relations

〈λ
N
, u

N
〉
X′

N
,X

N

= 0,

〈λ
T
, u

T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

.

This implies

〈λ, u〉
X′,X

≤ 0,

which expresses the dissipativity of contact and friction conditions. The first conse-
quence of this is that solutions to problem (14) can be bounded independently of the
friction coefficient.

Proposition 1. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let (u, λ) be a solution to problem (22), which means that u is a solution
to problem (14); then

‖u‖a ≤ La, ‖λ‖−a,Γ
C
≤ La,

‖u‖
V
≤ L

α
, ‖λ‖

X′ ≤ Lγ

√
M

α
.

Proof. One has

‖u‖2
a = a(u, u) = l(u) + 〈λ, u〉

X′,X
≤ La‖u‖a,

which states the first estimates. The estimate on ‖λ‖−a,Γ
C

can be performed using

the intermediary solution uN to the following problem with a homogeneous Neumann
condition on Γ

C
:

a(uN , v) = l(v) ∀v ∈ V.(26)

Since ‖uN ‖a ≤ La for the same reason as for u, and using Lemma 1, one has

‖λ− 0‖2
−a,Γ

C
= a(u− uN , u− uN ) = 〈λ, u− uN 〉

X′,X
≤ −〈λ, uN 〉

X′,X
≤ La‖λ‖−a,Γ

C
.

The two last estimates can be stated thanks to equivalence of norms introduced in
section 1.1.

It is possible to compare ‖u‖a to the corresponding norm of the solution uc to
the Signorini problem without friction defined as follows:⎧⎨

⎩
Find uc ∈ K satisfying

a(uc, v − uc) ≥ l(v − uc) ∀ v ∈ K.
(27)

It is well known that under hypotheses (10) and (11), this problem has a unique
solution (see [12]).

Proposition 2. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let u be a solution to problem (14), let uc be the unique solution to problem (27),
and let uN be the solution to problem (26); then

‖u‖a ≤ ‖uc‖a ≤ ‖uN ‖a.
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Proof. One has

a(uN , uN ) = l(uN ), a(uc, uc) = l(uc), a(u, u) = l(u) + 〈λ
T
, u

T
〉
X′

T
,X

T

.

Since uc is the solution to the Signorini problem without friction, it minimizes over K
the energy functional 1

2a(v, v)−l(v). The solution uN minimizes this energy functional
over V . Thus, since u ∈ K, one has

1

2
a(uN , uN ) − l(uN ) ≤ 1

2
a(uc, uc) − l(uc) ≤ 1

2
a(u, u) − l(u),

and the following relations allow one to conclude that

a(uc, uc) − a(uN , uN ) = l(uc − uN ),

a(u, u) − a(uc, uc) = l(u− uc) + 〈λ
T
, u

T
〉
X′

T
,X

T

because then

1

2
a(uc, uc) − 1

2
a(uN , uN ) ≤ 0,

1

2
a(u, u) ≤ 1

2
a(uc, uc) + 〈Fλ

N
, |u

T
|〉

X′
N

,X
N

≤ 1

2
a(uc, uc).

It is also possible to estimate how far from uc is a solution u to problem (14). Let
us introduce the following norms on Γ

C
. For v ∈ X let us define

‖v
T
‖a,Γ

C
= inf

w∈V
w

T
=v

T

‖w‖a = inf
z∈X

z
T

=v
T

‖z‖a,Γ
C
,

‖v
N
‖a,Γ

C
= inf

w∈V
w

N
=v

N

‖w‖a = inf
z∈X

z
N

=v
N

‖v‖a,Γ
C
.

One has

‖v
T
‖a,Γ

C
≤ ‖v‖a,Γ

C
, ‖v

N
‖a,Γ

C
≤ ‖v‖a,Γ

C
.

Now, for λ ∈ X ′, let us define

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

= sup
v∈X
v �=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v‖a,Γ
C

,

‖λ
N
‖−a,Γ

C
= sup

v
N

∈X
N

v
N

�=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v
N
‖a,Γ

C

= sup
v∈X
v �=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v‖a,Γ
C

.

Then, the following equivalences of norms are immediate:

√
α

C1
‖v

N
‖

X
N

≤ ‖v
N
‖a,Γ

C
≤ γ

√
M‖v

N
‖

X
N
,

√
α

C1
‖v

T
‖

X
T
≤ ‖v

T
‖a,Γ

C
≤ γ

√
M‖v

T
‖

X
T
,
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1

γ
√
M

‖λ
N
‖

X′
N

≤ ‖λ
N
‖−a,Γ

C
≤ C1√

α
‖λ

N
‖

X′
N

,

1

γ
√
M

‖λ
T
‖

X′
T

≤ ‖λ
T
‖−a,Γ

C
≤ C1√

α
‖λ

T
‖

X′
T

.

And the following result can be easily deduced.
Lemma 2. There exists C3 > 0 such that for all λ ∈ X ′

‖λ
T
‖−a,Γ

C
≤ C3‖λ‖−a,Γ

C
, ‖λ

N
‖−a,Γ

C
≤ C3‖λ‖−a,Γ

C
.

This also allows us to define an equivalent norm on MX
N

given for F ∈ MX
N

by

‖F‖a = sup
v
N

∈X
N

v
N

�=0

‖Fv
N
‖a,Γ

C

‖v
N
‖a,Γ

C

,

which satisfies

√
α

C1γ
√
M

‖F‖a ≤ ‖F‖
MX

N
≤ C1γ

√
M√

α
‖F‖a.

With these definitions, the following result holds.
Lemma 3. There exists C4 > 0 such that

‖F|v
T
| ‖a,Γ

C
≤ C4‖F‖a‖vT

‖a,Γ
C

∀v
T
∈ X

T
.

Proof. One has

‖F|v
T
| ‖a,Γ

C
≤ ‖F‖a‖ |v

T
| ‖a,Γ

C
.

Moreover, it is known (see [1]) that the norm ‖ · ‖
X

N
is equivalent to the norm

‖v
N
‖2
1/2,Γ

C
= ‖v

N
‖2

L2(Γ
C

)
+

∫
Γ
C

∫
Γ
C

|v
N

(x) − v
N

(y)|2

|x− y|d
dxdy,

and it is easy to verify that ‖ |v
T
| ‖1/2,Γ

C
≤ ‖v

T
‖1/2,Γ

C
for any v

T
∈ X

T
. Thus, the

result can be deduced from the previously presented equivalences of norms.
Of course the tangential stress on Γ

C
corresponding to uc is vanishing. The

tangential stress corresponding to u can be estimated as follows. As λ
T
∈ Λ

T
(Fλ

N
),

one has

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

≤ sup
v
T

∈X
T

v
T

�=0

−〈Fλ
N
, |v

T
|〉

X′
N

,X
N

‖v
T
‖a,Γ

C

≤ C4‖F‖a‖λN
‖−a,Γ

C
.

Now, with the result of Proposition 1 this means that

‖λ
T
‖−a,Γ

C
≤ LaC3C4‖F‖a,(28)

and the following result holds.
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Fig. 3. Admissibility zone for ‖u‖a.

Proposition 3. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let u be a solution to problem (14) and let uc be the solution to problem (27);
then

‖uc − u‖a ≤ LaC3C4‖F‖a,

‖uc − u‖
V
≤ LC3C4

α
‖F‖a.

Proof. With λ ∈ X ′ and λc ∈ X ′ the corresponding stresses on Γ
C
, because

−λc
N

∈ NK
N

(uc
N

) and −λ
N

∈ NK
N

(u
N
− g) and because of the fact that NK

N
is a

monotone set-valued map, one has

〈λc
N
− λ

N
, uc

N
− u

N
〉
X′

N
,X

N

≤ 0.

Now, ‖uc − u‖a can be estimated as follows:

‖uc − u‖2
a

= a(uc − u, uc − u) = 〈λc − λ, uc − u〉
X′,X

≤ ‖λ
T
‖−a,Γ

C
‖uc − u‖a,

which gives the result taking into account (28).
The latter result implies that if problem (14) has several solutions, then they are

in a ball of radius LaC3C4‖F‖a centered around uc. In particular, if u1 and u2 are
two solutions to problem (14), one has ‖u1−u2‖a ≤ 2LaC3C4‖F‖a. This is illustrated
by Figure 3.

Remark 4. For a friction coefficient F constant on Γ
C
, the graph in Figure 3

can be more precise for F = ‖F‖a small, since, from the proof of Proposition 2 and
the continuity result given by the latter proposition, one can deduce ‖u‖2

a ≤ ‖uc‖2
a +

F〈λc
N
, |uc

T
|〉

X′
N

,X
N

at least if 〈λc
N
, |uc

T
|〉

X′
N

,X
N

< 0. Of course, if 〈λc
N
, |uc

T
|〉

X′
N

,X
N

= 0,

the solution uc to the Signorini problem without friction is also a solution to the
Coulomb problem for any friction coefficient.

3. Elementary estimates on the Tresca problem. What is usually called
the Tresca problem is the friction problem with a given friction threshold. Let θ ∈ X ′

N

be given. Then it can be formulated as follows:⎧⎨
⎩

Find u ∈ K satisfying

a(u, v − u) + j(θ, v
T
) − j(θ, u

T
) ≥ l(v − u) ∀ v ∈ K.

(29)
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It is well known that under standard hypotheses (10), (11), and (13), this problem
has a unique solution (see [12]) which minimizes the functional 1

2a(u, u)+j(θ, u)−l(u).
In fact, it is not difficult to verify that all the estimates given in the previous

section for the solutions to the Coulomb problem are still valid for the solution to the
Tresca problem. Moreover, the solution to the Tresca problem continuously depends
on the friction threshold θ. This result is stated in the following lemma.

Lemma 4. Assuming hypotheses (10), (11), and (13) are satisfied, if u1, u2 are the
solutions to problem (29) for a friction threshold θ1 ∈ Λ

N
and θ2 ∈ Λ

N
, respectively,

then there exists a constant C5 > 0 independent of θ1 and θ2 such that the following
estimate holds:

‖u1 − u2‖2
a ≤ C5‖θ1 − θ2‖−a,Γ

C
.

Proof. One has

a(u1, u2 − u1) − l(u2 − u1) + j(θ1, u2) − j(θ1, u1) ≥ 0,

a(u2, u1 − u2) − l(u1 − u2) + j(θ2, u1) − j(θ2, u2) ≥ 0,

which implies

‖u1 − u2‖2
a ≤ 〈θ1 − θ2, |u1

T
| − |u2

T
|〉
X′

N
,X

N

,

which gives the estimate using Proposition 1 (in fact, C5 ≤ 2C4La).
Remark 5. It does not seem possible to establish a Lipschitz continuity with

respect to the friction threshold θ. Such a result would automatically imply the
uniqueness of the solution to the Coulomb problem for a sufficiently small friction
coefficient.

4. A uniqueness criterion. Hild in [7, 8] exhibits some multisolutions for the
Coulomb problem on triangular domains. These solutions have been obtained for a
large friction coefficient (F > 1) and for a tangential displacement having a constant
sign. For the moment, it seems that no multisolution has been exhibited for an
arbitrary small friction coefficient in the continuous case, although such a result exists
for finite element approximation in [6], albeit for a variable geometry. As far as
we know, no uniqueness result has been proved even for a sufficiently small friction
coefficient. The result presented here is a partial uniqueness result, which determines
some cases where it is possible to say that a particular solution of the Coulomb
problem is in fact the unique solution. A contrario, this result can be used to search
multisolutions for an arbitrary small friction coefficient, by the fact that it eliminates a
lot of situations. The partial uniqueness results we present in this section are deduced
from the estimate given by the following lemma.

Lemma 5. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡ 0, if u1

and u2 are two solutions to problem (14) and λ1 and λ2 are the corresponding contact
stresses on Γ

C
, then one has the following estimate:

‖u1 − u2‖2
a = ‖λ1 − λ2‖2

−a,Γ
C
≤ 〈ζ − λ2

T
, u1

T
− u2

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ1
N
, u2

T
).

Proof. One has

‖u1−u2‖2
a = ‖λ1−λ2‖2

−a,Γ
C

= 〈λ1
N
− λ2

N
, u1

N
− u2

N
〉
X′

N
,X

N

+〈λ1
T
− λ2

T
, u1

T
− u2

T
〉
X′

T
,X

T

.
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Because NK
N

is a monotone set-valued map, one has 〈λ1
N
− λ2

N
, u1

N
− u2

N
〉
X′

N
,X

N

≤ 0.

Thus

‖u1 − u2‖2
a ≤ 〈(λ1

T
− ζ) + (ζ − λ2

T
), u1

T
− u2

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ1
N
, u2

T
).

But ∂2j(Fλ
N
, u

T
) is also a monotone set-valued map with respect to its second vari-

able, which implies the result (and also the fact that ‖u1−u2‖2
a ≤ infζ∈−∂2j(Fλ1

N
,u2

T
) ‖ζ−

λ2
T
‖−a,Γ

C
).

An immediate consequence of this lemma is the following result for a vanishing
tangential displacement.

Proposition 4. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡
0, if u is a solution to problem (14) such that u

T
= 0 a.e. on Γ

C
and if C3C4‖F‖a < 1,

then u is the unique solution to problem (14).
Proof. Let us assume that u is another solution to problem (14). Then from

Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
),

but, because u
T

= 0 and due to the complementarity relations 〈λ
T
, u

T
〉
X′

T
,X

T

=

〈Fλ
N
, |u

T
|〉

X′
N

,X
N

and 〈ζ, u
T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

, it implies using Lemma 3

that

‖u− u‖2
a ≤ 〈F(λ

N
− λ

N
), |u

T
|〉

X′
N

,X
N

≤ C3C4‖F‖a‖λ− λ‖−a,Γ
C
‖u

T
− u

T
‖2
a,Γ

C

≤ C3C4‖F‖a‖u− u‖2
a,

which concludes the proof.
In the case d = 2, it is possible to give a result to a solution having a tangential

displacement with a constant sign on Γ
C
. We will say that a tangential displacement

u
T
∈ X

T
is strictly positive if 〈μ

T
, u

T
〉
X′

T
,X

T

> 0 for all μ
T
∈ X ′

T
such that μ

T
≥ 0

(i.e., 〈μ
T
, v

T
〉
X′

T
,X

T

≥ 0 for all v
T
∈ X

T
, v

T
≥ 0, a.e. on Γ

C
) and μ

T
�= 0.

Proposition 5. Assuming hypotheses (10), (11), and (13) are satisfied, g ≡ 0,
and d = 2, if u is a solution to problem (14) such that u

T
> 0 and C3‖F‖a < 1, then

u is the unique solution to problem (14) (when F is constant over Γ
C
, the condition

reduces to C3F < 1).
Proof. Let us assume that u is another solution to problem (14), with λ

N
and λ

T

the corresponding contact stresses on Γ
C
. Then from Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Because u
T
> 0, one has λ

T
= Fλ

N
and −∂2j(Fλ

N
, u

T
) contains Fλ

N
. Thus, taking

ζ = Fλ
N

, one obtains

‖u−u‖2
a ≤ 〈F(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ ‖λ−λ‖−a,Γ
C
‖F(u−u)‖a ≤ ‖F‖a‖u−u‖2

a,

which implies u = u when ‖F‖a < 1.
Of course, the same reasoning is valid for u

T
< 0.
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Fig. 4. Example of tangential displacement uT and a possible corresponding multiplier ξ for
d = 2.

Let us now define the space of multipliers M(X
T

→ X
N

) of the functions ξ :
Γ

C
→ R

d such that ξ ·n = 0 a.e. on Γ
C

and such that the following two equivalent
norms are finite:

‖ξ‖
M(X

T
→X

N
)
= sup

v
T

∈X
T

v
T

�=0

‖ξ ·v
T
‖

X
N

‖v
T
‖

X
T

and ‖ξ‖a = sup
v
T

∈X
T

v
T

�=0

‖ξ ·v
T
‖a,Γ

C

‖v
T
‖a,Γ

C

.

Because Γ
C

is assumed to have the C1 regularity, M(X
T

→ X
N

) is isomorphic to
(MX

N
)d−1.

It is possible to give a more general result assuming that λ
T

= Fλ
N
ξ, with

ξ ∈ M(X
T
→ X

N
). It is easy to see that this implies that |ξ| ≤ 1 a.e. on the support

of λ
N

and, more precisely, that ξ ∈ Dir
T
(u

T
) a.e. on the support of λ

N
, where Dir

T
(.)

is the subderivative of the convex map R
d  x �−→ |xT |. This means that it is

reasonable to assume that ξ ∈ Dir
T
(u

T
) a.e. on Γ

C
.

Proposition 6. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡
0, if u is a solution to problem (14) such that λ

T
= Fλ

N
ξ, with ξ ∈ M(X

T
→ X

N
),

ξ ∈ Dir
T
(u

T
) a.e. on Γ

C
, and C3‖F‖a‖ξ‖a < 1, then u is the unique solution to

problem (14).
Proof. Let us assume that u is another solution to problem (14), with λ

N
and λ

T

the corresponding contact stresses on Γ
C
. Then from Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Then, a possible choice is ζ = Fλ
N
ξ, which, together with the fact that ‖Fξ‖a ≤

‖F‖a‖ξ‖a, gives

‖u− u‖2
a ≤ 〈Fξ(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ C3‖F‖a‖ξ‖a‖λ− λ‖−a,Γ
C
‖u− u‖a

≤ C3‖F‖a‖ξ‖a‖u− u‖2
a,

which implies u = u when C3‖F‖a‖ξ‖a < 1.
Remark 6. Using equivalences of norms, one can deduce that a more restrictive

condition than C3‖F‖a‖ξ‖a < 1 is the condition ‖F‖
MX

N
‖ξ‖

M(X
T

→X
N

)
<

√
α

C1C3γ
√
M

.

As illustrated in Figure 4, for d = 2, the multiplier ξ has to vary from −1 to +1
each time the sign of the tangential displacement changes from negative to positive.
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The set M(X
T
→ X

N
) does not contain any multiplier having a discontinuity of the

first kind. This implies that in order to satisfy the assumptions of Proposition 6
the tangential displacement of the solution u cannot pass from a negative value to a
positive value, being zero on only a single point of Γ

C
.

Perspectives. As far as we know, the result given by Propositions 4, 5, and 6 are
the first results dealing with the uniqueness of the solution to the Coulomb problem
without considering a regularization of the contact or the friction law. In the future,
it may be interesting to investigate the following open problems.

Is it possible to prove that, for a sufficiently regular domain and a sufficiently
regular loading, a solution of the Coulomb problem is necessarily such that λ

T
= Fλ

N
ξ

with ξ ∈ M(X
T

→ X
N

)? This could be a way to prove a uniqueness result for a
sufficiently small friction coefficient and regular loadings.

The more the tangential displacement u
T

oscillates around 0 (i.e., the more u
T

changes its sign for d = 2), the more the multiplier ξ varies and thus the greater
‖ξ‖

M(X
T

→X
N

)
is. Does it mean that a multisolution for an arbitrary small friction

coefficient and a fixed geometry has to be searched with very oscillating tangential
displacement (necessarily for all the solutions)?

Finally, the convergence of finite element methods in the uniqueness framework
given by Proposition 6 will be presented in [10].
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SCALING OF THE ENERGY FOR THIN MARTENSITIC FILMS∗

NIRMALENDU CHAUDHURI† AND STEFAN MÜLLER‡

Abstract. We study the scaling behavior of thin martensitic films. Specifically we consider an
elastic energy with two SO(3) invariant wells which are strongly incompatible in the sense of Matos
and Šverák, but whose two-dimensional projections may be compatible. We show that in a thin
film of thickness h the energy per unit height scales like h. This scaling lies in between the classical
membrane theory (where the energy per unit height is of order 1) and the Kirchhoff bending theory,
which corresponds to a scaling of h2.
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1. Introduction.

1.1. Main result. We study the scaling of the elastic energy for a thin film
made of a multiphase material. Specifically we consider the cylindrical domain

Ωh := S ×
(
−h

2
,
h

2

)
⊂ R

3,(1)

an elastic deformation

v : Ωh → R
3,(2)

and its energy (per unit height)

Eh(v) :=
1

h

∫
Ωh

W (∇v(x))dx.(3)

We suppose that the stored energy density W , which is defined on the space M
3×3 of

3 × 3 matrices, is nonnegative and vanishes exactly on the set

K := SO(3) ∪ SO(3)H, detH > 0,(4)

which consists of two copies of the group SO(3) = {F ∈ M
3×3 : FTF = Id3,detF =

1} of rotations, corresponding to two preferred crystalline configurations or phases
(see (7)–(9) and (10) below for the full list of assumptions on W ). We are interested
in low-energy deformations, and these are characterized by the fact that ∇v is close
to K, except possibly on a set of small measure.

Bhattacharya and James [5] made the crucial observation that for a number of
interesting materials the low-energy states are very different in three-dimensional
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(bulk) samples and in the thin film limit. If Id3 represents the austenite (high-
temperature) phase and H represents one of the martensitic phases, then these are
usually incompatible in bulk; in particular, there are no nontrivial zero energy states.
By contrast, the limiting thin film membrane energy

Imembrane :=

∫
S

Wmembrane(∇′v) dx′, where x′ = (x1, x2), ∇′ := (∂1, ∂2),(5)

which, roughly speaking, is the Γ-limit of Eh (see section 1.2 for a more detailed dis-
cussion), admits many nontrivial zero energy states, including lamellar arrangements
of the two phases, as well as more complicated, e.g., tent-like, structures; see [5].
This drastic difference in the behavior stems from the fact that the three-dimensional
compatibility requires the existence of an invariant plane (i.e., Id3 and RH have to
agree on a plane, for some R ∈ SO(3)), while two-dimensional compatibility requires
only an invariant line (in the film plane), i.e., one needs a vector v in the film plane
such that v = RHv. Suppose such a vector v exists. Then in a film of small, but
finite, thickness h the juxtaposition of the deformation gradients Id3 and RH (along
a line in direction v) leads to a mismatch of the deformations of order h. Separating
the two regions by a strip of width proportional to h, one sees easily that there exist
three-dimensional deformations v(h) which have a nontrivial thin film limit and whose
energy is bounded from above by Ch.

Our main result that this scaling is optimal. To state the result precisely it is
convenient to introduce the rescaling y(x) := v(x1, x2, hx3) and the notation Ω :=
Ω1 = S × (−1/2, 1/2). Then y : Ω → R

3. As above, we write ∇′y = (y, 1, y, 2) =
y, 1 ⊗ e1 + y, 2 ⊗ e2 for the gradient in the plane, where ⊗ denotes the tensor product,
and ∇hy = (y, 1, y, 2,

1
hy, 3). Thus the elastic energy per unit height is given by

Ih(y) := Eh(v) =

∫
Ω

W (∇hy)dx .(6)

We assume that W is Borel measurable and satisfies

W is C2 in a neighborhood of K = SO(3) ∪ SO(3)H,(7)

W is frame indifferent: W (F ) = W (RF ) for all R ∈ K ,(8)

W (F ) ≥ Cdist2(F ,K), C > 0, and W (F ) = 0 if F ∈ K .(9)

We suppose that the two wells are strongly incompatible in the sense of Matos [21]
and Šverák [30]. By polar decomposition we may suppose that H is symmetric. Hence
H is diagonal in an orthonormal basis (v1, v2, v3), with eigenvalues λ1, λ2, λ3. From
now on we suppose that the film has been cut so that v3 is the film normal. Thus,
after a suitable rotation, we may suppose that H is diagonal in the standard basis
(e1, e2, e3). The strong incompatibility condition reads

3∑
i=1

(1 − λi)

(
1 − detH

λi

)
> 0.(10)

The above Matos–Šverák [30] condition is stronger than the usual rank-one incom-
patibility condition. By O(2, 3) we denote the set of linear isometries from R

2 to R
3,
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i.e., the set of all 3× 2 matrices F with FTF = Id2. It is easy to see that the convex
hull conv O(2, 3) of O(2, 3) is given by matrices with FTF ≤ Id2 (in the sense of sym-
metric matrices), i.e., by all linear maps with Lipschitz constant less than or equal to
1. Let H̃ := diag(λ1, λ2) be the two-dimensional projection of H. Then H̃ is com-
patible with the identity if one eigenvalue is bigger than (or equal to) 1 and the other
eigenvalue is less than (or equal to) 1. An example for two-dimensional compatibility
and three-dimensional strong incompatibility is given by the choice H = (λ, μ, μ) with
λ < 1 < μ and (λ− 1)(3μ + 1) + 2(μ− 1) > 0.

Theorem 1. Suppose that W satisfies the conditions (7)–(9) and (10). Consider
a sequence y(h) which satisfies

1

h
Ih(y(h)) ≤ C for all 0 < h < h0.(11)

Then, as h → 0, there exists a subsequence (not relabeled) such that y(h) ⇀ y
W 1,2(Ω,R3) (weakly) and y is independent of x3.

Moreover, ∇′y ∈ conv O(2, 3) or ∇′y H̃−1 ∈ conv O(2, 3) a.e. in S. In other
words, L2(S \ E1 ∪ E2) = 0, where

E1 := {x′ ∈ S : (∇′y(x′))T (∇′y(x′)) ≤ Id2},
E2 := {x′ ∈ S : H̃−T (∇′y(x′))T (∇′y(x′))H̃−1 ≤ Id2}.

In addition we have

lim inf
h→0

1

h
Ih(y(h))

≥ C inf{H1(S ∩ ∂∗E) : E has finite perimeter E ⊂ E1, S \ E ⊂ E2}.(12)

Remarks 1. Note that the sets E1 and E2 need not be disjoint.
2. The situation is complicated by the fact that in the thin film limit microstruc-

ture (i.e., fine scale oscillation of the deformation gradient) can arise from two different
sources: phase mixtures and loss of compactness in thin films due to the crumbling
under compression, which already occurs in single phase materials (see (17) below).
It is due to the crumbling that one can only assure that the limiting deformation gra-
dient is in the convex hull of O(2, 3) (or O(2, 3)H) rather than O(2, 3) itself. Even for
single phase materials crumbling can only be excluded if one has the much stronger
energy bound Ih(y(h)) ≤ Ch2 (see [12, section 5]).

3. Estimate (12) assures that the scaling proportional to h is optimal if the limit
involves a nontrivial phase mixture. Indeed if (1/h)Ih(y(h)) → 0, then one can choose
either E1 = S or E2 = S (up to a nullset); i.e., the corresponding limiting y can
already be reached by a single phase material (see next subsection).

4. If the two-dimensional projections of the wells are incompatible, then either
λ1 < 1 and λ2 < 1 or λ1 > 1 and λ2 > 1. It suffices to consider the former case. Then
E1 ⊃ E2. Thus we have ∇′y ∈ convO(2, 3) a.e., whenever (11) holds. Conversely, if
∇′y ∈ convO(2, 3), then by a recent result of Conti and Maggi [9] there exist maps
y(h) ⇀ y in W 1,2 such that h−1Ih(y(h)) → 0; see the next subsection. Thus for
two-dimensional incompatible wells the admissible limiting deformations can always
be reached by using a single well and crumbling.

5. The scaling Ih ∼ h is an unconventional one in terms of classical membrane
and plate theories; it lies in between the scaling for membranes (Ih ∼ 1) and Kirchhoff
plates (Ih ∼ h2); see the next subsection for details.



SCALING FOR MARTENSITIC FILMS 471

6. The Γ-limit of the scaled functionals (1/h)Ih is not known. One difficulty
is that, in contrast to many other situations, one cannot expect the Γ-limit to be
independent of the boundary conditions. Thus many of the usual cut-and-paste ar-
guments do not apply; see the next subsection for further comments. For rods the
corresponding Γ-limit is known; see [22].

1.2. Mathematical context. To put the result above in context, we very briefly
review the theory of thin film limits for a single phase material, i.e., for energy func-
tions W which satisfy the coercivity condition

W (F ) ≥ C dist2(F, SO(3)), C > 0,(13)

instead of (9) (for a more extended review with further references, see [14]).
The derivation of lower dimensional theories of elasticity from the three-dimensional

theory has a very long and distinguished history which dates back to the beginning of
elasticity theory. Rigorous results, starting from nonlinear elasticity, however, have
only been obtained since the early 90s, beginning with the work of LeDret and Raoult
[18, 19]. They showed, under an additional growth hypothesis on W from above, that
the Γ-limit (with respect to strong L2 convergence in W 1,2(Ω,R3)) of the functionals
Ih exists and is given by

Imembrane :=

{ ∫
S
Wmembrane(∇′v) dx′ if v,3 = 0,

∞ else.
(14)

The membrane energy can be computed in two steps. First one minimizes out the
derivatives in the third component (corresponding to the third column of F ) and
defines the energy W2 on 3 × 2 matrices by

W2(G) = min{W (G + b⊗ e3) : b ∈ R
3}.(15)

Then Wmembrane is given as the quasi-convex hull of W2, i.e., by minimizing out over
all possible fine-scale oscillations:

Wmembrane(G) := inf

{∫
(0,1)2

W2(G + ∇′ϕ) dx′ : ϕ ∈ C∞
0 ((0, 1)2; R3)

}
.(16)

For a single well material (i.e., if W vanishes on SO(3) and satisfies (13)) the reduced
energy W2 vanishes on O(2, 3) and

Wmembrane(G) = 0 ⇔ G ∈ convO(2, 3)(17)

(the convex, quasi-convex, and rank-one convex hull of O(2, 3) agree). Thus the
membrane energy is fully degenerate for compressions, which agrees with the physical
intuition that a membrane can withstand only tension but not compression. Based
on this intuition a so-called tension field theory for membranes has been used in the
engineering literature for a long time [32, 28]. Pipkin [25, 26] has shown that tension-
field theory arises naturally as a consequence of relaxation and quasi-convexification.

We leave for a moment the case of single phase materials to mention that the
limit considered by Bhattacharya and James [5] is slightly different from that stud-
ied by LeDret and Raoult. Bhattacharya and James added a regularizing higher
gradient perturbation κ2|∇2v|2 to the integrand in (3) and (after the usual rescaling
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y(x1, x2, x3) = v(x1, x2, hx3)) pass to the limit h → 0 for fixed κ > 0. They thus ob-
tain a limiting two-dimensional energy which involves W2(∇′y) (plus a higher gradient
contribution involving κ) rather than Wmembrane(∇′y). If one takes the limit κ → 0 in
the Bhattacharya–James limiting energy, then one recovers (14). Shu [29] has shown
that one also obtains (14) if one considers a κ(h) with limh→0 κ(h) = 0; in fact, he
gives a detailed analysis of a variety of multiparameter limits related to the scale of
material heterogeneities in the tangential and normal directions (corresponding, e.g.,
to polycrystals or multilayers).

Let us now return to single phase materials, i.e., those for which W vanishes on
SO(3) and satisfies (13). For those materials it has recently become possible to study
also the Γ-limit of the rescaled functionals h−βIh and to derive a full hierarchy of
plate theories. For β = 2 one obtains Kirchhoff’s geometrically nonlinear bending
theory [11, 12, 23, 24]. This theory imposes the isometry constraint ∇′y ∈ O(2, 3),
and the energy is given by a quadratic expression in the curvature, more precisely in
the second fundamental form A = −(∇′)2y · ν, where ν := y,1 ∧ y,2 is the normal to
the deformed surface. For β = 4 one obtains the von Kárman plate theory [13]; in
fact, the full range of exponents β ≥ 2 is now understood [14].

In contrast, relatively little is known in the range 0 < β < 2. Conti [8] has
recently shown that for 0 < β < 1 the Γ-limit of

1

hβ

[
Ih(y) −

∫
Ω

hβf(x′) · y(x) dx

]
(18)

is given by

J(y) =

{
−
∫
S
f · y dx′ if y,3 = 0, ∇′y ∈ convO(2, 3),

∞ else.
(19)

The range 1 ≤ β < 2 is largely unexplored in terms of rigorous analysis. In
the context of delamination and blistering of thin films [15] one is lead to the study
of compressive Dirichlet boundary conditions such as y(h)(x′, x3) = (λx′, hx3) on
∂S × I, with 0 ≤ λ < 1. If this boundary condition is imposed, one can show that
ch ≤ inf Ih(y(h)) ≤ Ch, with c > 0; see [4] (as well as [17, 3] for related work). For
the extension to anisotropic boundary compression, see [8]. The Γ-limit of h−1Ih is
not known.

If instead of Dirichlet boundary conditions we assume only that y(h) ⇀ (λx′, 0) in
W 1,2, then much less is known. Venkataramani has constructed maps with periodic
boundary conditions whose energy scales like h5/3 [31]. His construction shows that for
λ = 0 one can achieve an energy bound Ch5/3. Conti and Maggi [9] have generalized
this construction to a much larger class of limit maps. They have also shown that
every short map (i.e., every map satisfying (∇′y)T∇′y ≤ Id2) can be approximated in
L∞ (and weakly in W 1,2) by maps yh with energy bounded by Ch5/3−ε. The scaling
exponent h5/3 has been suggested in the physics literature on crumbling as a natural
exponent based on a formal scaling argument and an assumed equipartition of bending
and stretching energy [20, 10] (see also [2, 6]; for complex folding patterns at free
boundaries and their potential relevance for certain growth models in biology, see as
well [27, 1]). For a single ridge with well-defined boundary conditions Venkataramini
recently showed that the energy scales indeed like h5/3 [31].

2. Proof of the lower bound. The key ingredient in the proof is the following
rigidity result.
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Theorem 2 (see [7, Theorem 2]). Let Ω ⊂ R
n be a bounded Lipschitz domain,

n ≥ 2 and K := SO(n) ∪ SO(n)H, where H = diag(λ1, · · ·λn), λi > 0, such that∑n
i=1(1 − λi) (1 − detH/λi) > 0. There exists a positive constant C(Ω, H) with the

following property. For each u ∈ W 1,2(Ω,Rn) there is an associated R := R(u,Ω) ∈ K
such that

‖∇u−R‖L2(Ω) ≤ C(Ω, H) ‖dist(∇u ,K )‖L2(Ω) .(20)

The above rigidity estimate is proved in [7], but for the convenience of the readers
we give a brief outline of the proof. Suppose ‖dist(∇u ,K )‖L2(Ω) is small. Consider a
smooth uniformly convex function F on M

3×3 with quadratic growth whose gradient
∇F is the cofactor map when restricted to the set K (such a function exists; see
[21]). We then decompose a given Sobolev function u into a part w which satisfies
the nonlinear elliptic system of PDEs div∇F (∇w) = 0 with w = u on the boundary
∂Ω. Then w satisfies the standard W 2,2

loc estimate. Exploiting that ∇(F −det) = 0 on
K and the uniform monotonicity of ∇F , one can easily prove that the W 1,2 norm of
the remainder u−w is small. By a separation lemma (Lemma 2.4, [7]) and a careful
covering argument we prove that ∇w cannot oscillate too much between the wells
SO(n) and SO(n)H. This shows that ∇w is L2-close to a single well. Finally the
rigidity estimate for a single well energy [12] yields (20).

We note that the inequality (20) is invariant under uniform scaling and translation
of the domain; i.e., the same value of C serves for λΩ + c, and the rescaled function
λv((x− c)/λ) may be associated with the same choice of R ∈ K.

Proof of Theorem 1. Suppose first that S = (0, 1)2 and h = 1/N , N ∈ N. Divide
S into squares Sa,h of side h with center at a., i.e.,

Sa,h := a +

(
−h

2
,
h

2

)2

, a ∈ Z
2
h, Zh :=

{
h

2
,
3h

2
, . . . , 1 − h

2

}
.(21)

Then S = ∪Sa,h, up to a set of measure zero. Let us define, v(h) : Ωh → R
3 by

v(h)(x1, x2, hx3) := y(h)(x1, x2, x3) for all x = (x1, x2, x3) ∈ Ω := Ω1. Now we apply
the rigidity Theorem 3 for v(h) for the domain Sa,h ×

(
−h

2 ,
h
2

)
to obtain a constant

C > 0 (independent of a and h), and Rh
a ∈ K = SO(3) ∪ SO(3)H, such that∫

Sa,h×(−h
2 ,h2 )

|∇v(h)(z) −Rh
a |2dz ≤ C

∫
Sa,h×(−h

2 ,h2 )
dist2(∇v(h)(z),K)dz.(22)

This yields∫
Sa,h×(− 1

2 ,
1
2 )

|∇hy
(h)(x) −Rh

a |2dx ≤ C

∫
Sa,h×(− 1

2 ,
1
2 )

dist2(∇hy
(h),K)dx,(23)

where, as before, ∇hy
(h) :=

(
∇′y(h), 1

hy, 3
)
.

Define the piecewise constant map Rh : S → K by Rh := Rh
a in Sa,h. Summing

(23) over all Sa,h and using (9) and (11), we obtain∫
S×(− 1

2 ,
1
2 )

|∇hy
(h)(x) −Rh(x′)|2dx ≤ C

∫
S×(− 1

2 ,
1
2 )

dist2(∇hy
(h)(x),K)dx

≤ C h .(24)



474 NIRMALENDU CHAUDHURI AND STEFAN MÜLLER

Thus ⎧⎨
⎩

∇hy
(h) −Rh→ 0 strongly in L2(Ω,M3×3),
∇hy

(h)⇀ (∇′y, b) weakly in L2(Ω,M3×3),
Rh⇀ R weakly in L2(S,M3×3).

(25)

From (25) we have R = (∇′y, b), and hence y is independent of x3.
Let ε > 0 be sufficiently small. We divide the family of squares Sa,h into three

different groups Ai, i = 0, 1, 2, in the following manner:

a ∈ A0 if and only if

∫
Sa,h×I

W (∇hy
(h)(x))dx ≥ ε h2,(26)

where I :=
(
− 1

2 ,
1
2

)
. If a /∈ A0, Theorem 2 yields

1

h2

∫
Sa,h×I

|∇hy
(h)(x) −Rh

a |2dx ≤ C

h2

∫
Sa,h×I

W (∇hy
(h)(x))dx ≤ Cε .(27)

Now define

a ∈ A1 if and only if (27) holds for Rh
a ∈ SO(3) ,(28)

a ∈ A2 if and only if (27) holds for Rh
a ∈ SO(3)H .(29)

Clearly A1 ∩ A2 = ∅. Thus the sets

Ωh
i := intft(∪a∈Ai S̄a,h),(30)

i = 0, 1, 2, are disjoint and cover S.
Note also that the area of the set Ωh

0 is bounded by Ch in view of (11). We now
would like to estimate the length of the boundary ∂Ωh

1 . Clearly this boundary consists
of a union of vertical and horizontal segments of lengths h. The main observation is
that each such boundary segment must also be in the boundary of one of the squares
in Ωh

0 (see Lemma 3 below). Then a simple counting argument yields that the length
of ∂Ωh

1 is bounded by a constant independent of h.
To state the argument precisely we introduce the following notation. Let e± :=

(0,±1) and ẽ± = (±1, 0). Then the boundary ∂Sa,h of the square Sa,h consists of four
segments, namely the top and bottom boundaries ∂e±Sa,h := a+

(
−h

2 ,
h
2

)
×
{
±h

2

}
and

the left and right boundaries ∂ẽ±Sa,h := a+
{
±h

2

}
×
(
−h

2 ,
h
2

)
. Let us denote the line

segment of the boundary of ∂Sa,h in the direction of the vector e ∈ {(±1, 0), (0,±1)}
by ∂eSa,h. Thus the boundary of Ωh

1 is the union of the line segments ∂eSa,h ⊂ ∂Sa,h

for Sa,h ⊂ Ωh
1 such that ∂eSa,h ∩ Ωh

1 = ∅. In other words,

∂Ωh
1 =

⋃
a∈A1

∂eSa,h∩Ωh
1=∅

∂eSa,h .(31)

Lemma 3. Let a ∈ A1 and ∂eSa,h ⊂ ∂Ωh
1 \ ∂S for some e ∈ {(±1, 0), (0,±1)}.

Then Sb,h ⊂ Ωh
0 for b := a + h e.

Proof of Lemma 3. Since ∂eSa,h ⊂ ∂Ωh
1 \ ∂S, the square Sb,h belongs to S.

Suppose b /∈ A0 and apply Theorem 2 to the domain (Sa,h ∪ Sb,h) ×
(
−h

2 ,
h
2

)
to
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obtain a constant C > 0 (independent of h, a, and b) and a matrix Rh
ab such that

1

h2

∫
(Sa,h ∪Sb,h)×(− 1

2 ,
1
2 )

|∇hy
(h) −Rh

ab|2dx ≤ C

h2

∫
(Sa,h ∪Sb,h)×(− 1

2 ,
1
2 )

W (∇hy
(h)) dx

≤ 2C ε .(32)

Since Sa,h ⊂ Ωh
1 , there exists Rh

a ∈ SO(3) such that

1

h2

∫
Sa,h×(− 1

2 ,
1
2 )

|∇hy
(h) −Rh

a |2dx ≤ C ε .(33)

Therefore (32) and (33) yield |Rh
ab − Rh

a | ≤ 4Cε. Similarly there exist Rh
b ∈ SO(3)H

such that |Rh
ab −Rh

b | ≤ 4Cε. We thus obtain a contradiction if ε is chosen sufficiently
small, and the proof of the lemma is finished.

Proof of Theorem 1 (continued). Let a ∈ A1, and ∂eSa,h ⊂ ∂Ωh
1 \ ∂S, for some e.

Then by Lemma 3, the square adjacent to the side ∂eSa,h is in Ωh
0 . There can be at

most four edges ∂eSa,h ⊂ ∂Ωh
1 \ ∂S, touching a single square in Ωh

0 . Thus from (31),
(26), and (11) we obtain

H1(∂Ωh
1 \ ∂S) =

∑
a∈A1

∂eSa,h⊂∂Ωh
1 \∂S

H1(∂eSa,h)

= h card
{
a ∈ A1 : ∂eSa,h ⊂ ∂Ωh

1 \ ∂S
}

≤ 4h cardA0

≤ 4h
1

h2ε
Ih(y(h))

≤ C ,(34)

where “card” stands for the cardinality of a set. Hence χΩh
1

is bounded in BV (S),
functions of bounded variation on S (see Example 1.4 in [16]), and passing to a

subsequence, we get χΩh
1

∗
⇀ χE in BV (S). Therefore by the lower semicontinuity and

compactness theorems for BV functions (Theorems 1.9 and 1.19, respectively, in [16])
we obtain

Per(E) =

∫
S

|∇χE | ≤ lim inf
h→0

∫
S

|∇χΩh
1
| = lim inf

h→0
H1(∂Ωh

1\∂S) ≤ C lim inf
h→0

1

h
Ih(y(h)) ,

and χΩh
1
→ χE strongly in L1(S).

Furthermore, it follows from (9) that dist2(F, SO(3)) ≤ C(W (F )+1). Using (11),
we deduce that

∫
Nh

dist2(∇hy
(h), SO(3)) dx → 0 whenever L3(Nh) → 0.(35)

Since the map X �→ dist(X,M) is convex, whenever M is a convex set, standard
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convexity and lower semicontinuity arguments yield (with I := (−1/2, 1/2))∫
Ω

χE×I dist2(∇′y, convO(2, 3))dx ≤ lim inf
h→0

∫
Ω

χE×I dist2(∇′y(h), convO(2, 3))dx

≤ lim inf
h→0

∫
Ω

χE×I dist2(∇hy
(h), SO(3))dx

≤ lim inf
h→0

∫
Ω

χΩh
1×I dist2(∇hy

(h), SO(3))dx

≤ lim inf
h→0

∑
a∈A1

∫
Sa,h×I

|∇hy
(h) −Rh

a |2dx

≤ C lim inf
h→0

∑
a∈A1

∫
Sa,h×I

W (∇hy
(h))dx

≤ C lim inf
h→0

Ih(y(h))

= 0,(36)

where we used (35) to obtain the third inequality. Hence ∇′y ∈ convO(2, 3) a.e. in
E. Since L2(Ωh

0 ) = h2 cardA0 ≤ 1
ε I

h(y(h)) → 0 as h → 0 we have

χΩh
2

= 1 − χΩh
0
− χΩh

1
→ (1 − χE) strongly in L1(S) .

Applying the above arguments with ∇′y replaced by (∇′y)H̃−1 and χE×I replaced
by 1−χE×I , we conclude similarly that (∇′y)H̃−1 ∈ convO(2, 3) a.e. in S \E. Thus
E ⊂ E1, S \ E ⊂ E2, and

Per(E) ≤ C lim inf
1

h
Ih(y(h)) .

This finishes the proof for S being the unit square and 1/h ∈ N. For a general
bounded open set S the assertion follows similarly by first considering the subset Sh

which consists of the union of all squares Sa,h that are contained in S.
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A GENERALIZED DYNAMICAL APPROACH TO THE LARGE
TIME BEHAVIOR OF SOLUTIONS OF HAMILTON–JACOBI

EQUATIONS∗

ANDREA DAVINI† AND ANTONIO SICONOLFI‡

Abstract. We consider the Hamilton–Jacobi equation

∂tu + H(x,Du) = 0 in (0,+∞) × T
N ,

where T
N is the flat N -dimensional torus, and the Hamiltonian H(x, p) is assumed continuous in

x and strictly convex and coercive in p. We study the large time behavior of solutions, and we
identify the limit through a Lax-type formula. Some convergence results are also given for H solely
convex. Our qualitative method is based on the analysis of the dynamical properties of the Aubry
set, performed in the spirit of [A. Fathi and A. Siconolfi, Calc. Var. Partial Differential Equations,
22 (2005), pp. 185–228]. This can be viewed as a generalization of the techniques used in [A. Fathi,
C. R. Acad. Sci. Paris Ser. I Math., 327 (1998), pp. 267–270] and [J. M. Roquejoffre, J. Math. Pures
Appl. (9), 80 (2001), pp. 85–104]. Analogous results have been obtained in [G. Barles and P. E.
Souganidis, SIAM J. Math. Anal., 31 (2000), pp. 925–939] using PDE methods.
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1. Introduction. This paper is about the large time behavior of the equation

∂tu + H(x,Du) = 0

in the flat torus T
N. Here and in what follows, (sub-, super-) solutions are meant in

the viscosity sense (see [2, 3, 14]).
The subject has been extensively investigated, first in [16], and subsequently in

[11], [4], [18]. It is therefore well understood that, under suitable assumptions on H,

u(t, x) + ct

converges uniformly, for t diverging positively, to a solution v of the stationary equa-
tion

H(x,Dφ) = c in T
N,

where c is the so-called critical value of the Hamiltonian, i.e., given by

c = min{a : H(x,Dφ) = a has a subsolution}.

This is also the unique value of a for which H(x,Dφ) = a admits a solution on the
whole torus; see [15], [13]. Any (sub) solution of the previous equation with a = c
will be called critical in what follows.
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This problem has been attacked, in the quoted literature, either by means of
dynamical techniques or by using viscosity solutions methods.

The dynamical approach, which can be found in [11], [18] (see also [8], [12] for
a general introduction on the subject), requires strong regularity assumptions on the
Hamiltonian (C2-regularity, strict convexity, and superlinearity at infinity in the sec-
ond variable), since it is based on the analysis of the associated Hamiltonian flow. The
latter is related to the solution u through the Lax–Oleinik formula. As first pointed
out in [11], a crucial role is played by the Aubry set, which consists of accumulation
points of the flow and is invariant.

The weakening of the conditions on H has a theoretical relevance and is also an
important issue for the applications, since, for instance, the Hamiltonians appearing
in control theory are not smooth.

A significant step in this direction has been performed in [4] by means of pure
PDE methods. The authors were able to prove the convergence, assuming that H
is only continuous and satisfies a coercivity condition. Moreover, they require the
Hamiltonian to fulfill a convexity-type inequality, which includes also some nonconvex
functions, but not all strictly convex Hamiltonians.

The main contribution of the present paper is to employ generalized dynamical
methods to achieve the above convergence result in the presence of weak regularity of
H, which is taken continuous, strictly convex, and coercive.

Our procedure yields, even in the continuous case, deeper insight into the conver-
gence phenomenon as well as remarkably simple proofs which avoid any technicality.

The core of our argument is the discovery of some distinguished curves on the
torus along which the difference between u and any critical subsolution φ enjoys a
monotonicity property. This is a generalization of something already proved in [18]
for curves of the Hamiltonian flow lying on the Aubry set. The crux is that, of course,
no Hamiltonian flow can be generally defined in our setting.

We overcome this difficulty following the ideas of [13], where some aspects of the
Aubry–Mather theory are extended to continuous quasi-convex Hamiltonians. Using
a nonsymmetric semidistance, denoted by S, suitably related to the c-sublevel set of
the Hamiltonian, it is possible to define a generalized (projected) Aubry set, say A,
and some relevant properties, holding for the classical Aubry set when H is C2, are
recovered.

Under the additional assumption that H is Lipschitz continuous with respect
to x, it is proved in [13], for instance, that a multivalued dynamics can be defined
on A. We take a further step here by showing that, even for continuous H, some
dynamical properties are encoded in the structure of the Aubry set. We prove indeed
that through any point of A there passes a curve η defined on R and satisfying

S(η(t1), η(t2)) =

∫ t2

t1

(L(η, η̇) + c) ds = −S(η(t2), η(t1)) for any t1, t2 ∈ R,

where L is the Lagrangian function related to H. These are precisely the curves,
called critical, satisfying the monotonicity property previously mentioned.

Beside this, we get the convergence result by exploiting, as in [18], the relaxed
semilimits theory and a generalization of the fact, proved in [13], that all critical
subsolutions are differentiable on A and have the same gradient.
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An advantage of our method is that we can single out the point where the strict
convexity condition on H—or, to be more precise, the C1-regularity of L, which is an
equivalent condition—is employed (see Lemma 5.2). More precisely, such a property
allows us to estimate how the line integral of the Lagrangian on a critical curve varies
under suitable perturbation of the parametrization; see also Remark 5.8. This is a
crucial step since it is well known, as shown in an example in [4], that the simple
convexity of H does not ensure, in general, the convergence phenomenon.

However, we can prove that the mere convexity is actually enough when the
equilibrium points form a uniqueness set for the critical equation. This accounts for
the fact that a small perturbation, in a convex Hamiltonian, can produce a passage
from a convergence to a nonconvergence situation; see Example 5.10. This generalizes
the results of [16], where the Hamiltonian is taken only convex, as well.

We are furthermore able to identify the limit function v through a representation
formula, which involves u(0, ·), the Aubry set, and the semidistance S. It is the
critical solution coinciding on A with the maximal critical subsolution not exceeding
u(0, ·). This should be compared to the formula given in [11] for Hamiltonians of class
C2 using the Peierls barrier. Our formula has been exploited in [19] to perform a
numerical approximation of the Aubry set.

The paper is organized as follows. In section 2 some preliminary material is
collected, including definitions of the semidistance S and the generalized Aubry set,
as well as some properties of the critical solutions and of the Lax–Oleinik semigroup.
In section 3 we introduce, through a representation formula, a distinguished critical
solution, which will be proved to be the limit of u(t, x) + ct for t → +∞. Section 4 is
devoted to studying the dynamical properties of the Aubry set and singling out a class
of special curves covering A. The main results are finally proved in section 5. In the
appendix we show that the usual integral representation formula for the Lax–Oleinik
semigroup holds also in the case when H is coercive, but not necessarily superlinear at
infinity, and so the Lagrangian L is possibly infinite valued at some points of T

N×R
N.

2. Assumptions and preliminary results. We write below a list of symbols
used throughout this paper.

N an integer number.
BR(x0) the closed ball in R

N centered at x0 of radius R.
BR the closed ball in R

N centered at 0 of radius R.
〈 · , · 〉 the scalar product in R

N.
| · | the Euclidean norm in R

N.
R+ the set of nonnegative real numbers.
T
N the N -dimensional flat torus.

C(TN ) the space of real-valued continuous functions on T
N.

Lip(TN ) the space of real-valued Lipschitz-continuous functions on T
N.

A subset of R
k is called negligible if its k-dimensional Lebesgue measure is equal to

zero. We say that a property holds almost everywhere (a.e.) on R
k if it holds up to

a negligible subset of R
k. Given a measurable function ϕ : T

N → R, its L∞-norm on
T
N will be denoted by ‖ϕ‖∞. We will write ϕn ⇒ ϕ on T

N to mean that the sequence
of functions (ϕn)n uniformly converges to ϕ on T

N.
By modulus we mean a nondecreasing function from R+ to R+, vanishing and

continuous at 0. Given a closed convex subset Z of R
k, and p0 ∈ Z, we define

the normal cone of Z at p0, in symbols NZ(p0), as the set {q ∈ R
N : 〈q, p0〉 =

maxp∈Z〈q, p〉}.
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We endow the flat torus T
N with the Riemannian metric induced by the Euclidean

metric on R
N. We recall that T

N can be viewed as the quotient space R
N/Z

N, obtained
by identifying all points x, y ∈ R

N such that x− y ∈ Z
N.

With the term curve, without any further specification, we refer to a Lipschitz-
continuous function from some given interval [a, b] to T

N. The space of all such curves
is denoted by Lip([a, b],TN ), while Lipx,y([a, b],T

N ) stands for the family of curves γ

joining x to y, i.e., such that γ(a) = x and γ(b) = y, for any fixed x, y in T
N. We

denote by W 1,1([a, b],TN ) the space of absolutely continuous curves defined in [a, b].
Given a curve γ defined on some interval [a, b], a curve γ′ defined on [a′, b′] will be
called a reparametrization of γ if there exists an order preserving Lipschitz-continuous
map f : [a′, b′] → [a, b] surjective and such that γ′ = γ ◦ f . The Euclidean length of a
curve γ is denoted by �(γ).

Unless otherwise specified, the term (sub-, super-) solution of some PDE is un-
derstood in the viscosity sense. Given a continuous function g defined in R

k and
x0 ∈ R

k, we denote by D+g(x0) (resp., D−g(x0)) the superdifferential (resp., the
subdifferential) of g at x0, i.e., the (possibly empty) set made up of the differen-
tials of the viscosity test functions from above (resp., from below) to g at x0. Note
that, in the case when g is convex, D−g coincides with the usual subdifferential of
convex analysis. When g is defined on R

m × R
k and (x0, p0) ∈ R

m × R
k, we will

denote by D−
p g(x0, p0) the subdifferential of the function g(x0, ·) at p0. For a function

g : R
k → (−∞,+∞], we denote by dom(g) its effective domain, i.e., the subset of R

k

where g is finite valued.
We deal with a Hamiltonian H, defined on the cotangent bundle T ∗

T
N, identified

with T
N× R

N, and satisfying the following set of assumptions:
(H1) H : T

N× R
N → R is continuous;

(H2) p �→ H(x, p) is convex on R
N for any x ∈ T

N;
(H3) lim|p|→+∞(infx∈TN H(x, p)) = +∞;
(H4) the set of minimizers of p �→ H(x, p) has empty interior for any x ∈ T

N.
To obtain our general convergence result (see in particular Proposition 5.3, which

will constitute a crucial step for that), we will, moreover, assume the following:
(H2)′ p �→ H(x, p) is strictly convex on R

N for any x ∈ T
N.

Notice that condition (H4) is certainly satisfied when (H2)′ holds true, since, in this
case, the set of minimizers of H(x, ·) reduces to a point for any x ∈ T

N.
Remark 2.1. Exploiting the subdifferentiability properties of the function p �→

H(x, p), for any fixed x, we see that the Lipschitz constant of such a function in BR,
for any R > 0, can be estimated, uniformly with respect to x, in terms of R and of
max{H(x, p) : (x, p) ∈ T

N×B2R}; see, e.g., [17, Proposition 2.2.6].
Remark 2.2. The problem we are dealing with can be equivalently formulated in

R
N, instead of T

N, with Z
N-periodicity conditions.

We consider the family of Hamilton–Jacobi equations

H(x,Dφ) = a on T
N,(1)

with a real parameter, and set

c := inf {a ∈ R : (1) has a subsolution} .
This is called the critical value of the Hamiltonian H and is characterized by the
property of being the unique value for a such that (1) admits (at least) one solution
(see, e.g., [15], [13]). A solution (resp., supersolution, subsolution) of

H(x,Dφ) = c in T
N(2)
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will be called critical in what follows. Thanks to hypothesis (H3), all subsolutions of
(1) are Lipschitz continuous. Moreover, by the convexity assumption, there is com-
plete equivalence between the notions of (viscosity) subsolution and a.e. subsolution
(see [2]).

Following [13], we carry out the study of properties of subsolutions to (1) by
means of the semidistances Sa defined on T

N× T
N, for a ≥ c, as follows:

Sa(x, y) = inf

{∫ 1

0

σa(γ(s), γ̇(s)) ds : γ ∈ Lipx,y([0, 1],TN )

}
,(3)

where σa(x, q) is the support function of the a-sublevel of H, namely

σa(x, q) := sup {〈q, p〉 : H(x, p) ≤ a } .(4)

The function σa(x, q) is convex in q and upper semicontinuous in x (and even contin-
uous in all points x, where the set {p ∈ R

N : H(x, p) ≤ a } has a nonempty interior
or reduces to a point), while Sa satisfies the following properties:

Sa(x, y) ≤ Sa(x, z) + Sa(z, y),

Sa(x, y) ≤ ba|x− y|

for all x, y, z ∈ T
N and for some positive constant ba. The following properties hold

(see [13]).
Proposition 2.3. Given a ≥ c, we have that
(i) for any y ∈ T

N, the functions Sa(y, ·) and −Sa(·, y) are both subsolutions of
(1);

(ii) a function φ is a subsolution of (1) if and only if

φ(x) − φ(y) ≤ Sa(y, x) for all x, y ∈ T
N.

To ease notation, in what follows we will write S, σ in place of Sc, σc, respectively.
In the analysis of the behavior of critical subsolutions, a special role is played

by a set A, which has been called in [13] the (projected) Aubry set, defined as the
collection of points y ∈ T

N such that

inf

{∫ 1

0

σ(γ, γ̇) ds : γ ∈ Lipy,y([0, 1],TN ), �(γ) ≥ δ

}
= 0 for some δ > 0,

or, equivalently (cf. [13, Lemma 5.1]),

inf

{∫ 1

0

σ(γ, γ̇) ds : γ ∈ Lipy,y([0, 1],TN ), �(γ) ≥ δ

}
= 0 for any δ > 0.

The set A is closed and nonempty (cf. [13, Corollaries 5.7 and 5.9]). In the next
theorem we outline the main properties linking A to (2) (see [13]).

Theorem 2.4.

(i) If φ and w are a subsolution and a supersolution of (2), respectively, and
φ ≤ w on A, then φ ≤ w on T

N. In particular, if two solutions of (2)
coincide on A, then they coincide on T

N.
(ii) If w0 is a function defined on C ⊂ A such that

w0(x) − w0(y) ≤ S(y, x) for every x, y ∈ C,
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then the function

w(x) := min
y∈C

(
w0(y) + S(y, x)

)
(5)

is the maximal critical subsolution of (2) equaling w0 on C, and a critical
solution as well.

(iii) If we furthermore set C = A in (5), then w is the unique critical solution
equaling w0 on A.

We call y ∈ T
N an equilibrium point if minp H(y, p) = c. The collection of all such

points will be denoted by E . The set E is a (possibly empty) closed subset of A (cf. [13,
Lemma 5.2]). This property depends on the fact that the c-sublevel {p : H(y, p) ≤ c}
is nonvoid and has an empty interior when y ∈ E (the latter is a consequence of (H4),
and this is actually the unique point where such a condition is used). It is apparent
that c ≥ maxx∈TN minp∈RN H(x, p); we point out that E is nonempty if and only if
the previous formula holds with an equality. In this case, E is made up of the points
x where the maximum is attained.

Let us now focus our attention on the Cauchy problem{
∂tu + H(x,Du) = 0 in (0,+∞) × T

N,
u(0, x) = u0(x) on T

N,
(6)

where u0 is a continuous initial datum. The following result holds (see, e.g., [6]).
Theorem 2.5. Assume H satisfies assumptions (H1), (H2), (H3), (H4). Then

the Cauchy problem (6) admits a unique uniformly continuous solution u(t, x) on
R+ × T

N, for any u0 ∈ C(TN ). If, moreover, the initial datum u0 ∈ Lip(TN ), then
u(t, x) is Lipschitz continuous on R+ × T

N and satisfies

‖Du‖∞ ≤ M, ‖∂tu‖∞ ≤ ess sup{|H| : |p| ≤ M }

for any positive constant M such that

M > ‖Du0‖∞, inf {H : |p| > M } > sup {|H| : |p| ≤ ‖Du0‖∞ }.(7)

In view of the previous theorem, we can define, for any t > 0, a nonlinear operator
S(t) on C(TN ) by setting S(t)φ := u(t, ·) for every φ ∈ C(TN ), where u(t, x) denotes
the unique solution of the Cauchy problem (6) with u0 = φ. The family of operators(
S(t)

)
t>0

forms a semigroup, whose main properties are summarized below.
Proposition 2.6.

(i) (Semigroup property.) For any t, s > 0 we have S(t + s) = S(t)◦S(s).
(ii) (Monotonicity property.) For every φ, ψ ∈ C(TN ) and each t > 0 we have

φ ≤ ψ ⇒ S(t)φ ≤ S(t)ψ.

(iii) For any a ∈ R and φ ∈ C(TN ), we have S(t)(φ + a) = S(t)φ + a.
(iv) (Nonexpansiveness.) For each t > 0, the map S(t) is nonexpansive, i.e.,

‖S(t)φ− S(t)ψ‖∞ ≤ ‖φ− ψ‖∞ for every φ, ψ ∈ C(TN ).

(v) For every φ ∈ C(TN ), we have limt→0 S(t)φ = φ.
We define the Fenchel transform L : T

N× R
N → (−∞,+∞] of H via

L(x, q) := sup
p∈RN

{〈p, q〉 −H(x, p)} .(8)
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The function L is called the Lagrangian related to the Hamiltonian H. We record for
later use the following properties.

Proposition 2.7. Let H satisfy assumptions (H1), (H2), (H3). Then the fol-
lowing properties hold for the Lagrangian L:

(i) L(x, q) is lower semicontinuous on T
N × R

N, and convex in q for any fixed
x ∈ T

N.
(ii) L is continuous on int(domL) =: Ω.

If, in addition, H satisfies (H2)′ then
(iii) for every (x, q) ∈ Ω, L is differentiable with respect to q, and (x, q) �→

DqL(x, q) is continuous on Ω.
(iv) if (x, q) is such that the supremum in the definition of L(x, q) is a maximum,

then (x, q) belongs to Ω.
We refer to the appendix for the proof.
Each operator S(t) can be represented through the integral formula

(9)(
S(t)φ

)
(x) = inf

{
φ(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds : γ ∈ W 1,1([0, t],TN ), γ(t) = x

}

for any φ ∈ C(TN ). The family of operators
(
S(t)

)
t>0

is called the Lax–Oleinik
semigroup.

Remark 2.8. When φ ∈ Lip(TN ) and L is finite valued, the validity of (9) can
be seen, for instance, by combining [10, Theorem 1.1] with Theorem 2.5. This is the
case when H is uniformly superlinear in p. The infimum in (9) is then a minimum
by classical results of the calculus of variations (see, e.g., [5]), and all minimizers are
Lipschitz continuous (cf. [1] for some results on this topic).

We present in the appendix a proof of (9) for φ ∈ C(TN ) and general L, possibly
infinite valued in some subset of T

N × R
N, and we show the existence of minimizers

in this case too.
We will use the following Tonelli-type semicontinuity theorem (see, e.g., [5, The-

orem 3.6]) in the proof of Propositions 4.12 and A.6.
Theorem 2.9. Let J be a bounded interval of R, and let F : R

N × R
N →

(−∞,+∞] be a function satisfying the following conditions:
(i) F is lower semicontinuous;
(ii) F (x, ·) is convex on R

N for every x ∈ R
N;

(iii) F is bounded from below by a constant.
Then the functional

F(γ) :=

∫
J

F (γ(s), γ̇(s)) ds

is sequentially weakly lower semicontinuous in W 1,1(J,RN ); i.e., if (γk)k converges
weakly in W 1,1(J,RN ) to γ, then

F(γ) ≤ lim inf
k→+∞

F(γk).(10)

Equivalently, we can say that (10) holds if (γk)k converges uniformly to γ and the
measures νk(E) :=

∫
E
|γ̇k|ds are equiabsolutely continuous on J with respect to the

Lebesgue measure.



LARGE TIME BEHAVIOR OF SOLUTIONS OF H–J EQUATIONS 485

3. A distinguished critical solution. Before attacking the convergence prob-
lem, we try to guess what the asymptotic limit of S(t)u0 + ct should be. We start by
providing a Lax-type formula which involves the initial datum u0, the Aubry set, and
the semidistance S, and we show that this defines a critical solution, more precisely,
the solution whose trace on A coincides with that of the maximal critical subsolution
not exceeding u0. This formula furthermore generalizes the formula given in (5).

Theorem 3.1. Let w0 : T
N → R be any function bounded from below. Set

v(x) := inf
y∈A

(
S(y, x) + inf

z∈TN
(w0(z) + S(z, y))

)
for every x ∈ T

N.(11)

Then
(i) infy∈TN (S(y, ·) + w0(y)) =: v0 is the maximal critical subsolution not exceed-

ing w0 on T
N.

(ii) the function v is the critical solution equaling v0 on A.
(iii) if the inequality w0(y) − w0(x) ≤ S(x, y) holds for all x, y ∈ T

N, then v =
miny∈A(w0(y) + S(y, ·)) on T

N, and v0 = w0 on A.
We show separately, in the next lemma, the relevant fact on which the proof of

Theorem 3.1 relies.
Lemma 3.2. Let C be a subset of T

N and w0 : C → R be any function bounded
from below. Then

w(x) := inf
z∈C

(
w0(z) + S(z, x)

)
is the maximal subsolution of (2) not exceeding w0 on C. The function w is, moreover,
a critical solution in T

N \ C and in the whole T
N whenever C ⊂ A.

Proof. It is easy to check, exploiting the very definition of w, that w ≤ w0 on C
and w(x)−w(y) ≤ S(y, x) for every x, y ∈ T

N. The latter inequality implies that w is
a critical subsolution by Proposition 2.3. If φ is any critical subsolution with φ ≤ w0

on C then, taking into account that φ(x)−φ(y) ≤ S(y, x) for every x, y ∈ T
N, we get

φ(x) ≤ min
z∈C

(
φ(z) + S(z, x)

)
≤ w(x) for every x ∈ T

N,

which gives the maximality of w. Such a property also implies that w is a supersolution
of (2) in T

N \ C through a standard argument (see, e.g., the proof of Proposition 3.2
in [13]). If furthermore C ⊂ A, then by Theorem 2.4(ii) w = minz∈C

(
w(z)+S(z, x)

)
,

and so it is a critical solution in T
N.

Proof of Theorem 3.1. Item (i) comes directly from Lemma 3.2 with C = T
N;

(ii) is therefore a consequence of Theorem 2.4(iii). Item (iii) can be finally deduced
from Theorem 2.4(ii).

The proof that the function given in formula (11), with w0 = u0, actually coincides
with the asymptotic limit of S(t)u0 + ct is, of course, the main goal of our analysis,
and will be attained in the subsequent sections. The remainder of the present one is
devoted, instead, to some preliminary remarks which give support to our guess and
cast some light on our further analysis.

We start by noticing that, given a solution w of (2) and a general initial datum
u0 ∈ C(TN ), there exist, since T

N is compact, some constants α, β such that

w + α ≤ u0 ≤ w + β on T
N.

This implies, in view of the relation S(t)w = w− ct, which holds for every t > 0, and
the monotonicity property of the semigroup

(
S(t)

)
t>0

,

w + α− ct ≤ S(t)u0 ≤ w + β − ct on TN
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for any t > 0, or, in other words,

w + α ≤ S(t)u0 + ct ≤ w + β on T
N.(12)

Since the family of functions
(
S(t)u0 + ct

)
t>0

is equicontinuous (in view of Theo-

rem 2.5), and equibounded thanks to (12), we can define the relaxed semilimits,

u(x) = lim sup
t→+∞

∗ (S(t)u0) (x) + ct := sup

{
lim sup
n→+∞

(S(tn)u0) (xn) + ctn

}
,(13)

u(x) = lim inf
t→+∞∗ (S(t)u0) (x) + ct := inf

{
lim inf
n→+∞

(S(tn)u0) (xn) + ctn

}
,(14)

where the supremum and the infimum in (13) and (14), respectively, are taken for all
sequences (xn)n converging to x and all diverging sequences (tn)n. Moreover, thanks
to the uniform continuity of the function (S(t)u0) (x) on R+ × T

N (cf. Theorem 2.5),
the sequences (xn)n may be chosen identically equal to x, so that the following iden-
tities hold true:

u(x) = sup {ψ(x) : ψ ∈ ωS(u0) } ,
u(x) = inf {ψ(x) : ψ ∈ ωS(u0) } ,

where

ωS(u0) :=

{
ψ ∈ C(TN ) : ψ = lim

n→+∞
S(tn)u0 + ctn for some diverging sequence (tn)n

}
.

We have the following theorem (cf. proof of Theorem 1 in [16]).
Theorem 3.3. The functions u and u defined by (13) and (14) are a subsolution

and a supersolution of (2), respectively.
We proceed to establish the asymptotic convergence of S(t)u0 +ct to the function

v given in (11) with w0 = u0, provided u0 is a critical sub- or supersolution.
Theorem 3.4. Let u0 ∈ C(TN ) be either a subsolution or a supersolution of

(2). Then S(t)u0 + ct uniformly converges, as t goes to +∞, to the critical solution v
defined by (11) with w0 = u0.

Proof. Let us first assume u0 to be a subsolution of (2). By Theorem 3.1(iii), v
is the maximal critical subsolution satisfying v = u0 on A, and hence v ≥ u0 on T

N.
As u0 − ct and v − ct are a subsolution and a supersolution of (2), respectively, the
comparison principle yields

u0 − ct ≤ S(t)u0 ≤ v − ct on T
N,

and consequently, since v = u0 on A, we get

u0 = S(t)u0 + ct = v on A

for every t > 0. It follows that v = u = u on A, and we finally deduce from
Theorem 2.4(i) that v = u = u on T

N. This proves the assertion when u0 is a critical
subsolution.

Let us now assume u0 to be a supersolution of (2). Let v0 be the maximal critical
subsolution not exceeding u0 on T

N, i.e.,

v0 = min
y∈TN

(S(y, ·) + u0(y)) .
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The maximality of v0, combined with the fact that u0 is a critical supersolution,
implies that v0 is a critical solution as well, so that the identity v = v0 on T

N holds
true. Arguing as in the first part of the proof, we therefore obtain

v ≤ S(t)u0 + ct ≤ u0 on T
N

for every t > 0. This entails v ≤ u ≤ u ≤ u0 on T
N. From the fact that u is a

critical subsolution, and from the maximality property of v0 = v, we get u ≤ v, and
so v = u = u on T

N.
We deduce the following from Theorem 3.4.
Proposition 3.5. Assume u0 ∈ C(TN ), and let v be the function defined by

(11) with w0 = u0. Then the relaxed semilimits u and u, defined by (13) and (14),
respectively, satisfy

v(x) ≤ u(x) ≤ u(x) for every x ∈ T
N.(15)

Proof. Set v0 = miny∈TN (S(y, ·) + u0(y)). It is apparent that v0 ≤ u0 on T
N, and

hence, by the monotonicity property of the semigroup (S(t))t>0, we obtain S(t)v0 +
ct ≤ S(t)u0 + ct on T

N, and (15) follows in view of Theorems 3.4 and 3.1.
Proposition 3.5, Theorem 2.4, and the facts that v is a critical solution and u

a critical subsolution imply that the convergence result we aim at is proved as soon
as the equality v = u is obtained on A. This suggests, in the end, that what really
matters in our analysis is the asymptotic behavior of S(t)u0 + ct on A.

4. Dynamical properties of the projected Aubry set. Here we define a
family of curves, called critical, fully covering the Aubry set, which will play an
important role in the convergence result of the next section. We will furthermore in-
vestigate the behavior of critical subsolutions on such curves. Throughout the section,
conditions (H1), (H2), (H3), (H4) are assumed.

Definition 4.1. A curve γ defined on an interval J is called critical if

S(γ(t1), γ(t2)) =

∫ t2

t1

(L(γ, γ̇) + c) ds = −S(γ(t2), γ(t1))

for every t1, t2 in J with t2 ≥ t1.
Lemma 4.2. Any critical curve is contained in the Aubry set.
Proof. Let γ be a critical curve, which we first assume to be nonconstant, defined

in some interval J . Given t1, t2 in J with t2 ≥ t1 and γ(t1) = γ(t2), we can find two
sequences of curves γ1

n ∈ Lipγ(t1),γ(t2)([0, 1],TN ) and γ2
n ∈ Lipγ(t2),γ(t1)([0, 1],TN ),

which approximate the semidistance S of their end points up to 1/n, for any n. The
cycles γn, obtained by juxtaposition of γ1

n and γ2
n and change of parametrization to

[0, 1], are of length �(γn) ≥ 2|γ(t2) − γ(t1)| and satisfy, by Definition 4.1,

lim
n

∫ 1

0

σ(γn(s), γ̇n(s)) ds = 0,

which shows that γ(t1), γ(t2) are in A. If, on the contrary, the support of γ is reduced
to a point, say x0, we find ∫

J

(L(x0, 0) + c) ds = 0,

which implies x0 ∈ E ⊂ A.
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A further step in the analysis is carried out by picking up a special parametrization
for curves on the torus. To do this, we use the Lagrangian function related to H.

Definition 4.3. A curve γ defined on an interval J is said to have a Lagrangian
parametrization if

L(γ(t), γ̇(t)) + c = σ(γ(t), γ̇(t)) for a.e. t ∈ J .(16)

The definition of the semidistance S and the inequality L(x, q) ≥ σ(x, q) − c,
which holds for every x and q, imply the following.

Proposition 4.4. Any critical curve has a Lagrangian parametrization.
More generally, the following reparametrization proposition holds.
Proposition 4.5. Any curve of finite length and with closure of the support dis-

joint from E admits a Lagrangian reparametrization defined on some compact interval
[0, T ].

Proof. The first step is to show the existence of an upper semicontinuous (resp.,
lower semicontinuous) function λ(x, q) (resp., λ(x, q)) defined in (TN\E)× (RN\ {0})
such that the equality

L(x, λ(x, q)q) = λ(x, q)σ(x, q) − c(17)

and the similar one obtained by replacing λ(·, ·) by λ(·, ·) hold true.
Given (x, q) ∈ (TN \ E) × (RN \ {0}), and denoting {p : H(x, p) ≤ c} by Z, we

have that q ∈ NZ(p0) for some p0 with H(x, p0) = c, and therefore

λq ∈ D−
p H(x, p0) for some λ > 0(18)

in view of Theorem 23.7 of [17]. Consequently the set of nonnegative λ satisfying
(17) in place of λ(x, q), denoted by F (x, q), is nonempty; see Theorem A.2. It is,
moreover, a compact subset of (0,+∞). We see, in fact, that, for λ large, relation (18)
is impossible, when H(x, p0) = c, since Z is compact and H(x, ·) is locally Lipschitz
continuous. This shows that F (x, q) is bounded from above. It is also closed thanks
to the continuity of σ(x, ·) and L(x, ·), and to the inequality

L(x, λq) ≥ σ(x, λq) − c for every λ ≥ 0.

Moreover, 0 ∈ F (x, q) because x ∈ E , and consequently L(x, 0) = −minp H(x, p) <
−c. We then define

λ(x, q) = max
F (x,q)

λ, λ(x, q) = min
F (x,q)

λ,

and we see that these functions, for (x, q) varying in (TN \ E)× (RN \ {0}), are upper
semicontinuous and lower semicontinuous, respectively. In particular,

0 < inf
(x,q)∈C

λ(x, q) ≤ sup
(x,q)∈C

λ(x, q) < +∞(19)

for every compact set C contained in (TN \ E) × (RN \ {0}).
The assertion is now obtained, arguing as in [13, Proposition 7.4]. We give the

proof for the reader’s convenience. Let γ be a curve as in the statement. We may



LARGE TIME BEHAVIOR OF SOLUTIONS OF H–J EQUATIONS 489

assume that it is parametrized by arc-length on [0, �(γ)], with �(γ) > 0. Set

λ (ς) := λ (γ(ς), γ̇(ς)) for a.e. ς ∈ (0, �(γ))

and

T :=

∫ �(γ)

0

1

λ (ς)
dς.

Such a quantity is finite and positive, thanks to the measurable character of λ(·) and
to (19) with C := γ

(
[0, �(γ)]

)
× {p : |p| = 1}. We will now prove the existence of a

curve γ, in [0, T ], which is a Lagrangian reparametrization of γ. To this aim, let us
define

f(s) :=

∫ s

0

1

λ (ς)
dς for any s ∈ [0, �(γ)],

and set ϕ := (f)−1 on [0, T ]. As

ϕ̇(τ) = λ(ϕ(τ)) for a.e. τ ∈ [0, T ],

we immediately derive that ϕ is an order preserving bi-Lipschitz diffeomorphism.
Letting γ := γ◦ϕ, we get

γ̇ (·) := λ(ϕ (·)) γ̇(ϕ (·)) a.e. on [0, T ],

and the conclusion follows at once by the definition of λ(·).
Remark 4.6. A notion of Lagrangian parametrization can be given at any level

a > c by replacing in (16) c and σ with a and σa, respectively. Proposition 4.5 can
be accordingly generalized, providing Lagrangian reparametrizations for any curve,
without the requirement of an empty intersection with E . Such a restriction comes,
in fact, from the necessity of avoiding that a p0 satisfying H(x0, p0) = c, for some x0,
be a minimizer of p �→ H(x0, p). This possibility is actually ruled out for a p0 with
H(x0, p0) = a when a > c.

Exploiting the previous remark, we can provide, in a sense, a generalization of
Proposition 4.5. This result will be used in the proof of Proposition 5.5.

Lemma 4.7. Let γ ∈ Lip([0, 1],TN ). For any T > 0 we set

[γ]T := { ξ ∈ Lip([0, T ],TN ) : ξ is a reparametrization of γ }.

Then ∫ 1

0

σ(γ, γ̇) ds = inf

{∫ T

0

(
L(ξ, ξ̇) + c

)
ds : ξ ∈ [γ]T , T > 0

}
.(20)

Proof. It is apparent that the left-hand term of (20) is not greater than the
right-hand term. To prove the converse inequality, we select a decreasing sequence
(δn)n with δn ↓ 0. Since σ(x, q) = infn σc+δn(x, q) for every (x, q) ∈ T

N × R
N, by the

monotone convergence theorem we get∫ 1

0

σ(γ, γ̇) ds = inf
n

∫ 1

0

σc+δn(γ, γ̇) ds.(21)
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Taking into account Remark 4.6, we have a Lagrangian reparametrization γn of γ at
level a = c + δn, for any n, defined in some interval [0, Tn], with Tn > 0, such that∫ 1

0

σc+δn(γ, γ̇) ds =

∫ Tn

0

σc+δn(γn, γ̇n) ds =

∫ Tn

0

(L(γn, γ̇n) + c + δn) ds

≥
∫ Tn

0

(L(γn, γ̇n) + c) ds.

The assertion therefore follows from (21).
The main result we aim at, in this section, is the following.
Theorem 4.8. Through any point of A there passes a critical curve defined on

the whole R.
We start with a lemma, then prove a local version of Theorem 4.8, and thereafter

get the full result by using Zorn’s lemma.
Lemma 4.9. There exists a real number R > 0 such that

{q ∈ R
N : L(x, q) + c = σ(x, q) for some x ∈ T

N } ⊆ BR.

Proof. We can take R as the Lipschitz constant of the function p �→ H(x, p) for
x ∈ T

N and p satisfying H(x, p) = c. To see that this quantity is actually well defined,
note that the condition on (x, p) singles out a compact set in T

N× R
N in view of the

coercivity assumption (H3), and take into account Remark 2.1.
If q ∈ R

N, x0 ∈ T
N are such that L(x0, q) + c = σ(x0, q), then q ∈ D−

p H(x0, p0)
for some p0 with H(x0, p0) = c, and so |q| ≤ R.

Lemma 4.10. For any y ∈ A, there exists δ ∈ (0,+∞] and a critical curve η
which is defined in (−δ, δ) and satisfies η(0) = y.

Proof. If y ∈ E , we simply set η(t) = y for every t ∈ R. By the definition of
equilibrium point, we have

L(y, 0) + c = max
p∈RN

−H(x, p) + c = 0(22)

for every t ∈ R, which shows that η is indeed a critical curve. If y ∈ A\ E , we exploit
Lemma 9.4 of [13] to see that there exists a curve γ contained in A, and defined in
some neighborhood J of t = 0, such that γ(0) = y and

S(γ(t1), γ(t2)) =

∫ t2

t1

σ(γ, γ̇) ds = −S(γ(t2), γ(t1))

for every t1, t2 ∈ J with t2 > t1. Note that this result does not require the Lipschitz
continuity of H in x, which was assumed in that paper, and therefore holds also in
our present setting.

Because of the local character of the construction, we can assume that γ stays
away from E . We thus consider a Lagrangian reparametrization of γ, which does exist
in view of Proposition 4.5, to get the required curve.

Proposition 4.11. Let y ∈ A. Then there exists a critical curve η defined on R

with η(0) = y.
Proof. In view of Lemma 4.10, we may assume that y ∈ A \ E . We denote by C

the set of pairs (T, η), where T ∈ (0,+∞], and η is a critical curve defined on (−T, T )
and equaling y at 0. We give an order relation in C by defining

(T, η) � (T ′, η′) if T ≤ T ′ and η′|(−T,T ) = η.
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The set C is nonempty by Lemma 4.10. To prove that C is inductively ordered,
we take a nonempty chain {(Ti, ηi)}, with i in some set of indices I, and observe that
an upper bound (T̂ , η̂) ∈ C can be defined through

T̂ := sup
i

Ti and η̂(t) := ηi(t) if t ∈ (−Ti, Ti) for every i ∈ I.

Zorn’s lemma provides the existence of a maximal element (Ty, ηy) in C. We claim
that Ty = +∞. If, in fact, this were not the case, and Ty < +∞, then the curve ηy
would have a limit (belonging to A) for t going to ±Ty, in view of Lemma 4.9. It would
then be possible to extend ηy to some interval (−Ty − δ, Ty + δ) for a suitable δ > 0
by applying Lemma 4.10 to these limit points. This would violate the maximality of
(Ty, ηy).

We denote by K the family of all maximal critical curves, and by K(y) the subset
of K made up of those equaling y at t = 0, for each y ∈ A.

We proceed to prove a compactness property for K.
Proposition 4.12. K is a compact metric space with respect to the local uniform

convergence on R.
Proof. Let (ηk)k be a sequence in K. The curves ηk are uniformly bounded by

the compactness of T
N, and equi-Lipschitz continuous by Lemma 4.9, and hence we

can apply the Ascoli–Arzelà theorem to infer the existence of a subsequence (not
relabeled) which converges locally uniformly to some curve η defined on R. The limit
curve η is contained in A, as the Aubry set is closed, and clearly satisfies

S(η(t1), η(t2)) = −S(η(t2), η(t1))(23)

for every t1, t2 in R. If, in addition, t2 > t1, we have

S(ηk(t1), ηk(t2)) =

∫ t2

t1

(L(ηk(s), η̇k(s)) + c) ds

for every k, and we therefore deduce, thanks to Theorem 2.9,

S(η(t1), η(t2)) = lim
k→+∞

∫ t2

t1

(L(ηk(s), η̇k(s)) + c) ds ≥
∫ t2

t1

(L(η(s), η̇(s)) + c) ds.

Since the converse inequality is apparent, we get in the end

S(η(t1), η(t2)) =

∫ t2

t1

(L(η(s), η̇(s)) + c) ds.(24)

Relations (23), (24) show that η ∈ K.
Given η ∈ K, we denote by ω(η) the set of its ω-limits, i.e., of the points x0

satisfying

x0 = lim
k

η(sk) with sk → +∞ as k → +∞.(25)

We deduce from Proposition 4.12 that through any point x0 of ω(η) there passes a
critical curve entirely lying in ω(η). If, in fact, (25) holds, then {η(sk + ·)}k converges
locally uniformly, up to a subsequence, to a curve γ, which equals x0 at 0, and is
contained in ω(η).
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Remark 4.13. We can describe more precisely ω(η) if the sequence sk, appearing
in (25), is increasing and such that sk+1 − sk converges to a finite limit, necessarily
nonnegative, say T , and {η(sk + ·)}k converges locally uniformly to a curve γ.

In this case, ω(η) coincides with the support of γ, which is a cycle of period T
because of the relations

γ(t + T ) = lim
k

η(sk + T + t) = lim
k

η(sk+1 + t) = γ(t),

which hold for any t. If, in fact, y0 := limn η(tn) belongs to ω(η), with (tn)n a diverging
sequence, then we can select, for any n, an index kn ∈ N satisfying skn

≤ tn < skn+1.
The sequence tn−skn is therefore bounded and thus convergent, up to a subsequence,
to some t0 ∈ [0, T ]. It then follows that y0 = γ(t0).

If in particular T = 0, then γ reduces to a point, which must be the support of a
critical curve, and consequently belongs to E .

We know from [13] that, if H is Lipschitz continuous in x, all critical subsolutions
are strictly differentiable at any point of the Aubry set and have the same derivative.
This implies that they coincide, up to an additive constant, on every rectifiable subset
of A. These results are based upon some semiconcavity estimates which, in turn,
depend essentially on the Lipschitz character of the Hamiltonian in x that we do not
have here. We can nevertheless find something similar in our setting by looking at
the behavior of the critical subsolutions on curves of K.

Theorem 4.14. Let η ∈ K. Then all critical subsolutions coincide on η(R), up
to an additive constant. There exists, in addition, a negligible set Σ ⊂ R such that,
for any critical subsolution φ, the map φ◦η is differentiable on R \ Σ and satisfies

d

dt
(φ◦ η) (t0) = σ(η(t0), η̇(t0)) whenever t0 ∈ R \ Σ.(26)

We show first an auxiliary lemma, on which the proof of Theorem 4.14 is based.
Proposition 4.15. Let η ∈ K. Then there exists a negligible set Σ ⊂ R such

that the functions η(·), S(η(t0), η(·)) and −S(η(·), η(t0)) are differentiable at any t0
in R \ Σ, and

d

dt
S(η(t0), η(t))

∣∣∣
t=t0

= − d

dt
S(η(t), η(t0))

∣∣∣
t=t0

= σ(η(t0), η̇(t0)).(27)

Proof. Let Σ be a negligible subset of R such that every t0 ∈ R\Σ is a differentia-
bility point for η(·) and a Lebesgue point for the function σ(η(·), η̇(·)). The existence
of such a set is guaranteed by Rademacher and Lebesgue differentiability theorems.
As the curve η is critical, we have

S(η(t0), η(t))

t− t0
=

1

t− t0

∫ t

t0

σ(η(s), η̇(s)) ds for every t > t0.

Since t0 is a Lebesgue point of σ(η(·), η̇(·)), we derive

lim
t→t0+

S(η(t0), η(t))

t− t0
= σ(η(t0), η̇(t0))

for every t0 ∈ R \ Σ. A similar limit relation for t → t0
− can be deduced analo-

gously.
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Proof of Theorem 4.14. Let Σ and φ be the subset of R given by Proposition 4.15
and a critical subsolution, respectively. By Proposition 2.3, we have

−S(η(t), η(t0)) ≤ φ(η(t)) − φ(η(t0)) ≤ S(η(t0), η(t)) for every t, t0 ∈ R,

and hence we get (26), for t0 ∈ R \ Σ, in view of Proposition 4.15. This fully proves
the assertion.

We point out two consequences of the previous theorem that we use in the next
section and judge to be of independent interest as well.

Proposition 4.16. Two critical subsolutions coinciding on M :=
⋃

η∈K ω (η)
must also coincide on A.

Proof. Let φ1, φ2 be two critical subsolutions coinciding on M. Take y and η in
A and in K(y), respectively. Let (tn)n be a diverging sequence such that limn η(tn) =
x ∈ M. As S(y, ·) is a critical subsolution (cf. Proposition 2.3), Theorem 4.14 yields

φi(y) = φi(η(0)) − S(y, η(0)) = φi(η(tn)) − S(y, η(tn))

for every n ∈ N, i ∈ {1, 2}. Sending n to +∞, we get

φ1(y) = lim
n→+∞

φ1(η(tn)) − S(y, η(tn)) = φ1(x) − S(y, x) = φ2(x) − S(y, x)

= lim
n→+∞

φ2(η(tn)) − S(y, η(tn)) = φ2(y),

whence we get the assertion since y is an arbitrary point of A.
Remark 4.17. As the curve η(t) := y, for every t ∈ R, is critical whenever y ∈ E ,

it is apparent from the definitions that the set E is always contained in M.
Proposition 4.18. The set M is a uniqueness set for (2); i.e., two solutions of

(2) coinciding on M coincide on the whole torus too.
Proof. The assertion comes from the previous proposition and from the property

that A is a uniqueness set for (2), as established in Theorem 2.4.

5. Convergence to steady states. We are now ready to prove our main con-
vergence result. Throughout this section we will assume, without loss of generality,
c = 0. We also assume that H satisfies conditions (H1), (H2)′, (H3). We recall that
u0 ∈ C(TN ) is the initial datum of the Cauchy problem (6) and that ωS(u0) denotes
the family of the uniform limits of S(tn)u0 for some diverging sequence (tn)n. We
start by establishing some monotonicity properties for the function S(t)ψ − φ on the
curves of K, where ψ is any continuous function and φ any critical subsolution. The
next result is analogous to Lemma 3.1 in [18].

Proposition 5.1. Let η ∈ K. Then the map t �→
(
S(t)ψ

)
(η(t)) − φ(η(t)) is

nonincreasing on R+ for any ψ ∈ C(TN ) and any critical subsolution φ.
Proof. Let t1, t2 in R+ with t2 ≥ t1. Taking into account Theorem 4.14 and the

integral representation formula for the Lax–Oleinik semigroup, we get

(
S(t2)ψ

)
(η(t2)) −

(
S(t1)ψ

)
(η(t1)) ≤

∫ t2

t1

L(η(s), η̇(s)) ds = φ(η(t2)) − φ(η(t1)),

which proves the assertion.
We proceed to prove that a strict monotonicity property actually holds on the

critical curves under appropriate assumptions. This result relies on a lemma, which
we demonstrate first and which estimates the modification of the line integral of
the Lagrangian on a critical curve when the Lagrangian parametrization is suitably



494 ANDREA DAVINI AND ANTONIO SICONOLFI

perturbed. As already pointed out in the introduction, we emphasize that, for this,
we essentially use the differentiability of L in q and the continuity of DqL(x, q) in
int(domL), a property that is equivalent, for a continuous Hamiltonian, to the strict
convexity of H in the second variable (cf. [7]). These results are key tools for the
forthcoming convergence theorem.

Lemma 5.2. There is a modulus ω(·) such that, if η is any curve in K and λ is
suitably close to 1, we have

∫ t2

t1

L(ηλ, η̇λ) ds ≤ S(ηλ(t1), ηλ(t2)) + |λ− 1|ω(|λ− 1|)(t2 − t1)

for every t1, t2 with t2 > t1, where ηλ(t) := η(λt) for all t ∈ R.
Proof. We claim that K := {(x, q) ∈ A × R

N : L(x, q) = σ(x, q) } is a compact
subset of int(domL). It is in fact closed by the lower and upper semicontinuity of
L and σ, respectively, bounded by Lemma 4.9, and contained in int(domL) thanks
to Proposition 2.7(iv). There thus exists δ > 0 such that the set Kδ := {(x, λq) :
(x, q) ∈ K, |λ− 1| ≤ δ } is compactly contained in int(domL).

Let us now fix λ in (1 − δ, 1 + δ) and denote by θ a continuity modulus for the
function (x, q) �→ DqL(x, q) in Kδ. For a.e. s ∈ R we have

(η(λs), η̇(λs)) ∈ K,(28)

〈Dq L(η(λs), η̇(λs)), η̇(λs)〉 = σ(η(λs), η̇(λs)),(29)

where the first relation comes from the very definition of critical curve, and the second
one holds in view of Theorem A.2. Let s be such that (28) and (29) hold. The
application of the mean value theorem to the function μ �→ L(η(λs), μη(λs)) in the
interval with end points 1 and λ yields

L(η(λs), λ η̇(λs)) − L(η(λs), η̇(λs)) = (λ− 1)〈Dq L(η(λs), μ0 η̇(λs)), η̇(λs)〉,

where μ0 is a suitable constant between λ and 1. By using (28), (29), and the definition
of θ(·), we derive from this identity

L(η(λs), λ η̇(λs)) ≤ λσ(η(λs), η̇(λs)) + R|λ− 1| θ(|λ− 1|R),

where R is the positive constant provided by Lemma 4.9. We now exploit the previous
estimate and the fact that η is a critical curve to get for any t1, t2 in R with t2 > t1∫ t2

t1

L(ηλ, η̇λ) ds =

∫ t2

t1

L(η(λs), λη̇(λs)) ds

≤
∫ t2

t1

λσ(η(λs), η̇(λs)) ds + (t2 − t1)|λ− 1|R θ(R |λ− 1|)

= S(ηλ(t1), ηλ(t2)) + (t2 − t1)|λ− 1|R θ(R |λ− 1|).

The proof is complete.
Proposition 5.3. Let η ∈ K, ψ ∈ C(TN ), and φ be a critical subsolution. Let

us assume D+
(
(ψ−φ)◦η

)
(0)\{0} = ∅ (recall that D+ indicates the superdifferential);

then

(S(t)ψ) (η(t)) − φ(η(t)) < ψ(η(0)) − φ(η(0)) for every t > 0.(30)
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Proof. We fix t > 0. Inequality (30) will be proved for φ := −S(·, η(t)), which is
enough to get the full result, in view of Theorem 4.14. We also assume, without loss
of generality in view of Proposition 2.6(iii), that ψ(η(0)) − φ(η(0)) = 0. We are thus
lead to show that the left-hand term of (30) is strictly negative. To this aim, we take
into account the integral formula for the Lax–Oleinik semigroup, given in section 2,
to get, for λ close to 1 and ηλ defined as in Lemma 5.2,

(S(t)ψ) (η(t)) − φ(η(t)) = (S(t)ψ) (η(t)) ≤
∫ t/λ

(1/λ−1)t

L(ηλ, η̇λ) ds + ψ
(
η((1 − λ)t)

)
,

whence, by Lemma 5.2,

(S(t)ψ) (η(t)) − φ(η(t)) ≤ ψ
(
η((1 − λ)t)

)
− φ

(
η((1 − λ)t)

)
+ t|λ− 1|ω(|λ− 1|).

If m = 0 is an element of D+
(
(ψ − φ)◦η

)
(0), we therefore have

(S(t)ψ) (η(t)) − φ(η(t)) ≤ m
(
(1 − λ)t

)
+ o

(
(1 − λ)t

)
+ t|λ− 1|ω(|λ− 1|),

where o(·) satisfies limλ→1
o((1−λ)t)

1−λ = 0. A suitable choice of λ close to 1 makes the
left-hand term of the previous formula strictly negative, and consequently proves the
assertion, for the arbitrariness of t.

We combine the information gathered in Propositions 5.1 and 5.3 with some
properties of the Lax–Oleinik semigroup to get the following.

Proposition 5.4. Let φ be a critical subsolution, and let ψ ∈ ωS(u0). For any
x0 ∈ M there exists a curve γ ∈ K(x0) such that the function t �→ ψ(γ(t)) − φ(γ(t))
is constant on R.

Proof. Let (sk)k and (tk)k be two diverging sequences, η a curve of K such that
x0 = limk η(sk), and ψ the uniform limit of S(tk)u0 in T

N. We can assume that the
curve γ, defined by γ(t) = limk η(t + sk), for any t, is the local uniform limit of the
sequence η(sk + ·) in R, and so γ ∈ K. We assume, in addition, that tk − sk → +∞,
as k → +∞, and that S(tk − sk)u0 uniformly converges to some ψ1 ∈ ωS(u0). The
nonexpansiveness of the Lax–Oleinik semigroup implies

‖S(tk)u0 − S(sk)ψ1‖∞ = ‖S(sk + tk − sk)u0 − S(sk)ψ1‖∞ ≤ ‖S(tk − sk)u0 − ψ1‖∞,

which entails S(sk)ψ1 ⇒ ψ in T
N. We know from Proposition 5.1 that the function

s �→ (S(s)ψ1) (η(s)) − φ(η(s))

is nonincreasing in R+, and hence it admits a limit, denoted by l, as s → +∞. Such
a limit is furthermore finite, since it is greater than or equal to −‖u − φ‖∞. Given
t > 0, we have

l = lim
k→+∞

(S(sk + t)ψ1) (η(sk + t)) − φ(η(sk + t)) = (S(t)ψ) (γ(t)) − φ(γ(t)).

The function t �→ (S(t)ψ) (γ(t)) − φ(γ(t)) is therefore constant on R+. From this
we deduce, by applying Proposition 5.3 to the curve γ(s + ·) ∈ K, for any fixed s,
that D+

(
(ψ − φ)◦γ

)
(s) \ {0} = ∅ for any s ∈ R. This implies that ψ − φ is constant

on γ.
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The previous proposition shows that any function ψ in ωS(u0) coincides, on any
given critical curve γ lying in M, with some critical subsolution φ. Such a critical
subsolution may a priori depend on the curve γ and on ψ. We proceed to show that,
on the contrary, φ is uniquely determined and coincides with the function v defined
by (11), putting u0 in place of w0. In force of Proposition 5.4, it will be enough to
prove the following fact.

Proposition 5.5. Given η ∈ K, ψ ∈ ωS(u0), ε > 0, there exists τ ∈ R such that

|v(η(τ)) − ψ(η(τ))| < ε,

where v is the critical solution defined by (11) with w0 = u0.
Proof. Since the curve η is contained in A, and in view of Theorem 3.1(ii), we

have

v(η(0)) = min
z∈TN

(
u0(z) + S(z, η(0))

)
,

and hence v(η(0)) = u0(z0) + S(z0, η(0)), for some z0 ∈ T
N. We choose a curve

γ ∈ Lipz0,η(0)([0, 1],TN ) such that

v(η(0)) + ε/2 = u0(z0) + S(z0, η(0)) + ε/2 > u0(z0) +

∫ 1

0

σ(γ, γ̇) ds.

We thereafter take into account Lemma 4.7 and the integral representation formula
for the Lax–Oleinik semigroup to get

v(η(0)) + ε/2 > u0(z0) +

∫ T

0

L(γT , γ̇T ) ds ≥
(
S(T )u0

)
(η(0)),

where γT is a suitable reparametrization of γ on [0, T ], for some T > 0. Now letting
(τn)n be a diverging sequence with S(τn)u0 ⇒ ψ, we have

‖S(τn)u0 − ψ‖∞ < ε/2 and τn − T > 0 for n sufficiently large.

Pick such an n and set τ = τn − T , and then use the above inequalities and
Theorem 4.14 to obtain

ψ(η(τ)) − ε/2 <
(
S(τn)u0

)
(η(τ)) =

(
S(τ)S(T )u0

)
(η(τ))

≤
(
S(T )u0

)
(η(0)) +

∫ τ

0

L(η, η̇) ds

< ε/2 + v(η(0)) +

∫ τ

0

L(η, η̇) ds = ε/2 + v(η(τ)).

This gives the assertion since ψ(η(τ)) − v(η(τ)) ≥ 0 by Proposition 3.5.
We directly derive the following theorem from Propositions 5.4 and 5.5.
Theorem 5.6. Any function in ωS(u0) coincides with v on M, where v is the

critical subsolution defined by (11), with u0 in place of w0.
We finally prove our main result.
Theorem 5.7. Let H satisfy conditions (H1), (H2)′, (H3) and u0 ∈ C(TN ).

Then S(t)u0 uniformly converges to v on T
N as t goes to +∞, where v is the critical

solution given by formula (11) with w0 = u0.
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Proof. Theorem 5.6 implies that v and u coincide on M; therefore they coincide
on A thanks to Proposition 4.16. The comparison principle given in Theorem 2.4
hence tells us that u ≤ v on the whole torus, since u is a critical subsolution and v is
a critical solution. The assertion is at last obtained thanks to Proposition 3.5.

Remark 5.8. We stress that the only place in the present section (actually, in the
whole paper) where the strict convexity assumption is directly employed is Lemma 5.2.
More precisely, it uses the global continuity of DqL(x, q) in int(domL), a property that
is equivalent to the strict convexity of H in p, as previously noted. As a matter of fact,
we do not exploit such a condition in its full strength. The existence of a continuity
modulus for DqL(x, q) in a neighborhood of the image of the map t �→ (η, η̇), for each
η ∈ K, might be sufficient.

Since the stationary curve γ(·) = y belongs to K whenever y ∈ E , Proposi-
tion 5.5—which has been proved without exploiting the strict convexity assumption
(H2)′—directly implies that any function of ωS(u0) coincides with v on E . Hence,
whenever E is a uniqueness set for the critical equation (2), the argument of Theo-
rem 5.7 gives the convergence result, bypassing Proposition 5.4, which instead relies
on Lemma 5.2. This happens, for instance, when M = E . We can therefore state the
following.

Theorem 5.9. Let H satisfy conditions (H1), (H2), (H3), (H4) and u0 ∈ C(TN ).
Then any function in ωS(u0) coincides with v on E, where v is the critical subsolution
defined by (11), with u0 in place of w0. In particular, S(t)u0 uniformly converges
to v on T

N, as t goes to +∞, when M = E, and, more generally, whenever E is a
uniqueness set for the critical equation (2).

Note that the previous theorem includes the results of [16], where the Hamiltonian
under investigation was assumed only convex and with the Aubry set consisting of
equilibria.

The next one-dimensional example deals with a family of Hamiltonians, depending
on a parameter α ∈ R, which satisfy assumptions (H1), (H2), (H3), (H4). It is
shown that a suitable initial datum for the time-dependent equation can be selected
in such a way that the convergence to a steady state does not take place whenever the
Hamiltonian under consideration does not satisfy the assumptions of Theorem 5.9. It
can be viewed as a development of the example given in [4, section 5].

Example 5.10. Consider the Z-periodic Hamiltonian

H(x, p) = |p| − f(x)

defined in R (cf. Remark 2.2), where f is a continuous periodic potential with f ≡ 0,
f ≥ 0, and minR f = 0. The effective Hamiltonian H(α), i.e., the critical value of
H(x, p + α), is given, for any α ∈ R, by

H(α) = max

{
0, |α| −

∫ 1

0

f ds

}
;

see [15]. It is not difficult to check that, for α ∈ H
−1

(0), the set of equilibria E(α),
relative to H(x, p + α), coincides with f−1(0) and is a uniqueness set for the corre-
sponding critical equation, while A(α) = M(α) = R and E(α) = ∅ as soon as α lies
outside the flat part.

Given α ∈ H
−1

(0), we define in [0,+∞) × R the function

w(t, x) = u0(x− sgnα t) + sgnα

∫ x

0

f ds−
(

sgnα

∫ 1

0

f ds

)
x,
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where sgn indicates the sign function, and u0 is a C1 nonconstant periodic function
satisfying

sgn

{
u′

0(x) + sgnα

(
|α| −

∫ 1

0

f ds

)}
= sgnα for all x ∈ R.(31)

Note that relation (31) implies

sgn

(
u′

0(x) + sgnα f(y) − sgnα

∫ 1

0

f ds + α

)
= sgnα for all x, y ∈ R,(32)

as f is nonnegative. The function w(t, ·) is periodic in R for any t, as easily seen. By
taking into account (32), a direct calculation shows that

∂tw(t, x) + |∂xw(t, x) + α| − f(x) − |α| +
∫ 1

0

f ds = 0

for every (t, x) ∈ (0,+∞) × R. Hence, w is a periodic C1-solution of the time-
dependent equation

∂tu + H(x, ∂xu + α) −H(α) = 0 in (0,+∞) × R,

but it does not converge to any steady state for t → +∞. Note that H is not strictly
convex in the second argument and that E(α) = ∅.

Such a construction is clearly not possible when α ∈ H
−1

(0), or, in other words,

when |α| ≤
∫ 1

0
f ds, because condition (31) implies, in this case, that u′

0 does not
change sign on R, in contrast with u0 being nonconstant and periodic.

Appendix. We consider a Hamiltonian H : T
N × R

N → R satisfying conditions
(H1), (H2), (H3), and we denote by L : T

N × R
N → (−∞,+∞] the corresponding

Lagrangian defined through the Fenchel transform (8). As H is assumed coercive but
not superlinear, the Lagrangian L is not finite valued in general. Our aim is to give
first a proof of Proposition 2.7, and afterward to show the validity of the integral
representation formula (9) for the Lax–Oleinik semigroup. We start by recalling some
basic facts of convex analysis, and by giving a characterization of the interior of
dom(L), where dom(L) := {(x, q) ∈ T

N× R
N : L(x, q) < +∞}.

Theorem A.1. Let f : R
N → (−∞,+∞] be a convex function with f ≡ +∞.

Then D−f(q) is a nonempty bounded set if and only if q ∈ int(domf), and it is empty
for q ∈ domf .

We refer to [17, Theorem 23.4] for a proof. Note that L(x, ·) turns out to be convex
and lower semicontinuous on R

N, as supremum of continuous convex functions, for
any x ∈ T

N. Moreover, L(x, ·) ≡ +∞ (cf. [17, Theorem 12.2]). We have (cf. [17,
Theorem 23.5]) the following.

Theorem A.2. Let x ∈ T
N and p, q ∈ R

N. The following conditions are equiva-
lent:

(a) H(x, p) + L(x, q) ≤ 〈p, q〉;
(b) H(x, p) + L(x, q) = 〈p, q〉;
(c) q ∈ D−

p H(x, p);
(d) the function 〈 · , q〉 − L(x, ·) achieves its maximum at p;
(e) p ∈ D−

q L(x, q);
(f) the function 〈p, · 〉 − L(x, ·) achieves its maximum at q.
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Theorem A.3.

(i) For any x ∈ T
N, dom(L(x, ·)) has a nonempty interior.

(ii) int(domL) =
⋃

x∈TN{x} × int(domL(x, ·)).
Proof. According to Corollary 13.4.2 in [17], the assertion in (i) holds true if and

only if there are no lines along which H(x, ·) is (finite and) affine. Such a condition
is actually a consequence of the coercivity assumption (H3).

To ease notation, let us temporarily denote by Ω̃ the set on the right-hand side
of the equality in item (ii). It is apparent that int(domL) ⊂ Ω̃.

To prove the converse inclusion, we assume by contradiction the existence of
(x0, q0) ∈ Ω̃\ int(domL). According to Theorem A.1, this implies that D−

q L(x0, q0) is
nonempty and bounded, and, moreover, that there is a sequence ((xn, qn))n converging
to (x0, q0), with D−

q L(xn, qn) either empty or unbounded. In any case, we may find
a sequence (pn)n such that |pn| → +∞ and

〈p0, qn〉 −H(xn, p0) ≤ 〈pn, qn〉 −H(xn, pn),(33)

where p0 is any fixed element of D−
q L(x0, q0). Since the function p �→ 〈p, qn〉 −

H(xn, qn) is concave for any n ∈ N, we see that (33) is still satisfied by putting
any convex combination of pn and p0 in place of pn; in particular it holds for some
sequence (pn)n with |pn − p0| = r, where r is an arbitrarily chosen positive constant.
Up to subsequences, we can assume that (pn)n converges to some p. Sending n to
+∞, we obtain

L(x0, q0) = 〈p0, q0〉 −H(x0, p0) ≤ 〈p, q0〉 −H(x0, p),

which implies that p ∈ D−
q L(x0, q0) by Theorem A.2. This is in contrast to D−

q L(x0, q0)
being bounded because |p− p0| = r and r is arbitrarily large.

The argument used for the proof of item (ii) in the previous theorem also gives
the following corollary (cf. Remark 2.1).

Corollary A.4. The set-valued map (x, q) �→ D−
q L(x, q) is locally uniformly

bounded in int(domL).
Proof of Proposition 2.7. (i) The lower semicontinuous and convex character of L

has already been pointed out at the beginning of the appendix.
(ii) By item (i), we need only show that L is upper semicontinuous in Ω. Hence,

let (x0, q0) ∈ Ω be the limit of some sequence ((xn, qn))n contained in Ω. Given
pn ∈ D−

q L(xn, qn), we have that (pn)n is bounded by Corollary A.4, and so convergent,
up to a subsequence, to some p0. Thanks to Theorem A.2 we know that

L(xn, qn) = 〈pn, qn〉 −H(xn, pn),

and by sending n to infinity we get

lim sup
n→+∞

L(xn, qn) = lim
n→+∞

〈pn, qn〉 −H(xn, pn) = 〈p0, q0〉 −H(x0, p0) ≤ L(x0, q0),

which proves the claim.
(iii) Fix x ∈ T

N. The C1-regularity of the function L(x, ·) in int(domL(x, ·)) is
equivalent to the strict convexity of H(x, ·) on R

N (cf. [7]). In particular,

L(x, q) = 〈DqL(x, q), q〉 −H(x,DqL(x, q)) for all (x, q) ∈ Ω,

and p = DqL(x, q) is the unique maximizer of the function 〈 · , q〉 − H(x, ·). To
prove the continuity of DpL(x, q) in Ω, it suffices to show, by Corollary A.4, that
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(xn, qn) → (x0, q0) in Ω and DqL(xn, qn) → p in R
N imply p = DqL(x0, q0). This

actually follows from the continuity of L in Ω, since we can pass to the limit in the
equality L(xn, qn) = 〈DqL(xn, qn), qn〉 − H(xn, DqL(xn, qn)) to obtain L(x0, q0) =
〈p, q0〉 −H(x0, p), which gives p = DpL(x0, q0) by our previous remarks.

(iv) If the set of maximizers of p �→ 〈p, q〉−H(x, p) is nonempty, then it reduces to
a singleton by the strict convexity of H with respect to p. The assertion thus follows
from Theorems A.1 and A.3(ii).

Let us now define, for each n ∈ N,

Hn(x, p) := H(x, p) + max{|p|2 − n2, 0} for every (x, p) ∈ T
N× R

N,

and denote by Ln the Fenchel transform of Hn. Note that (Hn)n is a decreasing
sequence of superlinear Hamiltonians, satisfying assumptions (H1), (H2), (H3), uni-
formly converging to H on compact subsets of T

N × R
N. This, in turn, implies that

(Ln)n is an increasing sequence of Lagrangians, defined and continuous on T
N× R

N,
converging pointwise to L on T

N × R
N, and uniformly superlinear at infinity in q, as

well (see, e.g., [7]).
Theorem A.5. The representation formula (9) holds for every φ ∈ C(TN ),

t > 0.
The proof of the theorem is based on a Γ-convergence result (cf. [9]) that we

show first. For this, we employ a classical sequential weak compactness criterion in
W 1,1 (see, for instance, Theorem 2.13 of [5]), which is in turn a consequence of the
Dunford–Pettis theorem (cf. Theorem 2.11 in [5]).

Proposition A.6. For any fixed x ∈ TN and t > 0, denote by Xt(x) the space

{γ ∈ W 1,1([0, t],TN ), γ(t) = x}

endowed with the strong topology of L1([0, t],TN ). For any φ ∈ C(TN ), let us set

L
t(γ) := φ(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds,

L
t
n(γ) := φ(γ(0)) +

∫ t

0

Ln(γ(s), γ̇(s)) ds.

Then the functionals L
t
n Γ-converge to L

t on Xt(x). Moreover,

min
γ∈Xt(x)

L
t(γ) = lim

n→+∞
min

γ∈Xt(x)
L
t
n(γ).

Proof. We first set

Θ(t) := inf
x∈TN

(
inf
|q|≥t

L1(x, q)

)
for every t ≥ 0

and observe that

lim
t→+∞

Θ(t)

t
= +∞, Θ(|q|) ≤ Ln(x, q) ≤ L(x, q)(34)

for any n ∈ N and (x, q) ∈ T
N×R

N. We claim that the functionals L
t
n and L

t are lower
semicontinuous on Xt(x). In fact, any sequence (γn)n in Xt(x) with limn L

t(γn) <

+∞ also satisfies supn

∫ t

0
Θ(γ̇n) ds < +∞ by (34), and this in turn implies that (γn)n

is weakly convergent in W 1,1([0, t],TN ), up to subsequences (cf. Theorem 2.13 of [5]).
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This shows the sequential lower semicontinuity of L
t in Xt(x), in view of Theorem 2.9;

the lower semicontinuity follows as Xt(x) is a metric space. The same argument gives
the claim for each L

t
n.

The Γ-convergence result is then assured by [9, Proposition 5.4], since (Lt
n)n is, in

addition, an increasing sequence of functionals converging pointwise to L
t on Xt(x).

To prove the asserted convergence of the minima, we remark that the set

Kt(x) :=

{
γ ∈ Xt(x) :

∫ t

0

Θ(|γ̇|) ds ≤ ‖φ‖∞ + k t

}
,

with k := supy∈TN L(y, 0), is sequentially weakly compact in W 1,1([0, t],TN ), and
hence compact in Xt(x) because the weak convergence implies the uniform conver-
gence (cf. [5, Theorem 2.13]). Notice also that

∫ t

0

Θ(|γ̇x|) ds ≤ L
t
n(γx) ≤ L

t(γx) ≤ ‖φ‖∞ + k t

for any n, where γx denotes the curve in Xt(x) constantly equal to x. Consequently
Kt(x) is nonempty and

inf{L
t
n(γ) : γ ∈ Xt(x) } = min{L

t
n(γ) : γ ∈ Kt(x)}

for each n, so the assertion follows in view of [9, Theorem 7.4].
Proof of Theorem A.5. We first notice that it is enough to show the assertion for

φ ∈ Lip(TN ). The general case of a continuous initial datum may in fact be recovered
by density, thanks to the nonexpansiveness property of the Lax–Oleinik semigroup.

We denote by Sn(t) the semigroup associated with the Cauchy problem (6), with
Hn in place of H. Since φ ∈ Lip(TN ), we have by Theorem 2.5

S(t)φ = Sn(t)φ(35)

for n sufficiently large. By Remark 2.8 each Sn(t)φ admits an integral representation
of the form (9), with Ln in place of L. This fact can be equivalently expressed, using
the symbols introduced in Proposition A.6, by(

Sn(t)φ
)
(x) = min

γ∈Xt(x)
L
t
n(γ)

for every x ∈ T
N and t > 0. In view of Proposition A.6, the assertion follows by

sending n to +∞ in (35).
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COARSENING RATES FOR A DROPLET MODEL: RIGOROUS
UPPER BOUNDS∗

FELIX OTTO† , TOBIAS RUMP† , AND DEJAN SLEPČEV‡

Abstract. Certain liquids on solid substrates form a configuration of droplets connected by a
precursor layer. This configuration coarsens: The average droplet size grows while the number of
droplets decreases and the characteristic distance between them increases. We study this type of
coarsening behavior in a model given by an evolution equation for the film height on an n-dimensional
substrate. Heuristic arguments based on the asymptotic analysis of Glasner and Witelski [Phys.
Rev. E, 67 (2003), p. 016302, Phys. D., 209 (2005), pp. 80–104] and numerical simulations suggest a
statistically self-similar behavior characterized by a single exponent which determines the coarsening
rate. In this paper, we establish rigorously an upper bound on the coarsening rate in a time-averaged
sense. We use the fact that the evolution is a gradient flow, i.e., a steepest descent in an energy
landscape. Coarse information on the geometry of the energy landscape serves to obtain coarse
information on the dynamics. This robust method was proposed in [R. V. Kohn and F. Otto,
Comm. Math. Phys., 229 (2002), pp. 375–395]. Our main analytical contribution is an interpolation
inequality involving the Wasserstein distance, which characterizes the coarse shape of the energy
landscape. The upper bound we obtain is in agreement with heuristic arguments and numerical
simulations.

Key words. thin film equation, Wasserstein distance, coarsening
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1. Introduction.

1.1. Statement of the result. Thin layers of viscous liquid are well described
by the lubrication approximation, which capitalizes on the separation of horizontal and
vertical length scales. It yields a single equation for the time-dependent film height
h = h(x, t) > 0, [20]. We now introduce this equation in its nondimensionalized form.

Let Q ⊂ R
n parametrize the substrate. We consider smooth solutions h : (0,∞)×

Q → [0,∞) of

(1.1) ∂th−∇ ·
(
M(h)∇

(
∂E

∂h

))
= 0 in (0,∞) ×Q.

Here, ∂E
∂h denotes the L2-gradient of the energy functional with respect to h. The

total energy E is given by

(1.2) E(h) =

∫
1

2
|∇h|2 + U(h) dx,

where the gradient term describes the linearized contribution of the liquid-air surface
energy, while U models the intermolecular forces between the substrate and the film;
see section 1.3. We shall always write

∫
for

∫
Q

.
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1

1 h

U

Fig. 1. The intermolecular potential U combines repulsive and attractive forces.

Qualitatively, the potential U is of the form sketched in Figure 1. We normalize
U so that U(∞) − minU = 1 and argmin U = 1. The well-known Lennard–Jones
potential [9] corresponds to U(h) = 1

3h
−8 − 4

3h
−2 + 1, but other potentials are also

physically relevant [24]. In fact, the exact expression for the potential is often not
essential; as in [2, 6, 7], our results hold for a large class of potentials.

Bertozzi, Grün, and Witelski [2] studied (1.1) for potentials of the form U(h) =
h−q − h−p, 0 < p < q on a bounded one-dimensional substrate. If q ≥ 2—that is,
if the potential blew up at zero fast enough—boundedness of the energy was used to
show that solutions with positive initial data stay positive for all time. That implied
that the equation has unique, classical solutions for given initial data.

In our model (1.1), we consider the linear mobility function

(1.3) M(h) = h.

Let us clearly state that the appropriate mobility function for a liquid film governed
by the Stokes equations with no-slip boundary condition at the substrate would be
M(h) = h3. In case of boundary conditions which allow a finite slip (Navier condition),
the mobility would be M(h) = h2 provided that film heights are small compared to the
slip length; see [16, 17, 20]. The mobility function (1.3) is appropriate for a liquid film
governed by the Darcy equation, as in a porous medium (n = 2) or a Hele–Shaw cell
(n = 1). From the applied point of view, M(h) = h is thus a rather artificial choice.
It is motivated both by a technical and a conceptual consideration: The technical
consideration is that only for M(h) = h is the induced distance in the gradient flow
structure (see Appendix B) known explicitly. The conceptual consideration is that
for other mobilities the coarse-grained slope of the energy landscape (see section 2)
overestimates the heuristically derived coarsening rates: The “collision pathways” (see
section 1.3) in the energy landscape are shortcuts not taken by the actual dynamics.
Hence the straightforward application of our method would yield suboptimal results
for mobilities other than (1.3), even though we believe that the coarsening rate for
M(h) = h3 is the same as for M(h) = h.

In view of (1.2) and (1.3), (1.1) turns into

(1.4a) ∂th + ∇ · (h∇ (Δh− U ′(h))) = 0 in (0,∞) ×Q.

As suitable boundary conditions, we take equilibrium and no-flux boundary condi-
tions:

(1.4b) ν · ∇h = ν · ∇
(
∂E

∂h

)
= 0 on (0,∞) × ∂Q.
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Fig. 2. Plots of numerically computed height of the liquid on a two-dimensional substrate at
two different times.

These boundary conditions ensure that the total mass
∫
h dx is conserved and that

the total energy E(h) decreases over time:

d

dt

∫
h dx = 0,

d

dt
E = −

∫
h
∣∣∣∇(

∂E

∂h

) ∣∣∣2 dx ≤ 0.

A glance at the energy functional E, and U in particular, reveals that there is a
characteristic scale for x and h, both normalized to order one. We are interested in
very large systems, i.e.,

Q = (0,Λ)n with Λ � 1.

We focus on initial data which are within the unstable range,

h ≈ const with U ′′(h) < 0,

and whose height is of the order of the precursor layer, i.e.,

h ∼ 1.

Our numerical simulations reveal the generic behavior of the evolution. After an
initial stage, a configuration of well-defined droplets connected by a precursor layer of
height h ≈ 1 = argmin U emerges. From then onward, the large droplets grow at the
expense of the small ones via mass exchange through the precursor layer. Eventually,
the smaller droplets disappear. Figure 2 shows a typical evolution of the film height.
In a sufficiently large system, this coarsening process seems statistically self-similar.
It is driven by the reduction of total energy E. Our main result gives a lower bound
on the rate by which the energy decreases.

We shall see that E not only is a Lyapunov functional for (1.4), but that (1.4) can,
in fact, be interpreted as a gradient flow of (1.2); see Appendix B. For our analysis,
we need a measure of the distance in the configuration space, i.e., a way to express
how far two droplet configurations h0, h1 are. It is natural to take the distance which
is given by the gradient flow structure. As motivated in Appendix B, that distance is
the Wasserstein distance W(h0, h1):

(1.5)

W(h0, h1)
2 := inf

{∫∫
|x− y|2dπ(x, y)

∣∣∣ ∫
dπ(·, y) = h0,

∫
dπ(x, ·) = h1

}
.
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The so-called transportation plan, π, is a measure on the product space Q×Q. It is
admissible if its projections to first and second coordinates are measures with densities
h0 and h1, respectively. The transportation cost is measured by the squared Euclidean
distance |x− y|2. For properties of W, see section 7.1 in [32].

We are now in a position to formulate our result.
Theorem 1. Let U satisfy

(1.6)
U(h) ≥ 0 on (0,∞),
U(h) ≥ 1 on (2,∞).

Let h be a smooth solution of (1.4), which has the same total volume as a constant
layer of thickness 3:

(1.7)

∫
h dx =

∫
h∗ dx, h∗ ≡ 3.

Then for σ ∈ (1, 3n+2
n ),

(1.8)

∫ T

0

(
Λ−nE(h(t))

)σ
dt �

∫ T

0

(t−
n

3n+2 )σ dt,

provided T � (Λ−n
2 W(h∗, h(0)))

3n+2
n+1 and Λ−nE(h(0))  1.

For the precise meaning of the notation “�” and “�” we refer to Remark 1
in section 2. The result states that the energy per volume cannot decrease faster
than t−

n
3n+2 . For further interpretation of the result in terms of the droplet config-

uration we refer to section 1.4. The assumption Λ−nE(h(0))  1 of small energy
densities encodes that h(0) energetically behaves as a configuration of droplets con-
nected by a precursor layer of height argmin U = 1; see Figure 2. This means that
we “start the clock” once the system has entered such a regime. The assumption

T �
(
Λ−n

2 W(h∗, h(0))
) 3n+2

n+1 , on the other hand, ensures that the initial data h(0)
are not too far from a constant film thickness. The values 1, 2, and 3 in (1.6) and
(1.7) are set purely for convenience. In particular, given a potential satisfying (1.6),
any constant layer of thickness above 2 is admissible. However, the constants in the
estimates would depend on the thickness.

The framework for proving lower bounds on energy decay was introduced by
Kohn and Otto [10] for the constant-mobility and the degenerate-mobility Cahn–
Hilliard equation. The basic idea is to use the gradient flow structure of (1.4). A
gradient flow structure is determined by the energy functional E and a (Riemannian)
geometry of the state space (the space of all droplet configurations h). The metric
tensor encodes the relevant dissipation mechanism, see Appendix B. Following [10],
we use coarse information on the geometry of the energy landscape to derive coarse
information on the gradient flow dynamics. The coarse information on geometry is the
rate at which E can decrease as a function of the distance to a reference configuration
h∗, where the function is given by a power law with the “geometric exponent” α; see
Figure 3. On the other hand, the coarse information on dynamics limits how fast E
can decrease as a function of time, where the function is given by a power law with
the “dynamic exponent” γ. Proposition 1 in section 2 relates the dynamic exponent
γ to the geometric exponent α.

Let us point out that studying lower bounds on the coarsening rate is a more
complicated question. In fact, there are solutions which do not coarsen at all; for
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h∗

E

d(h∗, h)−α

h ∈ (M, g)

Fig. 3. The energy E(h) is bounded below by the distance between h and the reference state h∗.

example, the unstable, periodic steady states. Hence a lower bound can hold only in
some generic sense—a statement for all trajectories cannot hold. We do not address
this issue.

Other applications of the method proposed in [10] can be found in the literature.
In [3], coarsening in off-critical mixtures within the Mullins–Sekerka evolution is stud-
ied. The authors of [4] and [5] study the coarsening behavior in mean-field models of
phase transitions and in a phase-field model that deals with both temperature and
phase fields. In [11] and [12], rigorous bounds on coarsening rates are proven for an
epitaxial growth model and for models of multicomponent phase separation.

1.2. Outline. The following subsections provide background information: In
section 1.3, we describe the underlying physical processes. Heuristics, which further
interpret the result in Theorem 1, are presented in section 1.4. Formal asymptotics,
e.g., done for the one-dimensional case in [6], are briefly reviewed in section 1.5. In
section 1.6, we present our numerical experiments which support that the power law
bounds we obtain are optimal for n = 1 and n = 2. The proof of Theorem 1 does not
depend on the results presented in these subsections.

In section 2, we review the abstract framework, which exploits the gradient flow
structure to obtain a bound on the energy, proposed in [10], and give modified proofs
of the main results. Our main contribution is the interpolation inequality, which is
essential for the framework. From the mathematical point of view, it is an extension
of the one established in [3]. We rigorously state and prove the inequality in section
3. Section 4 provides the proof of the main result. Appendix A contains the analysis
of stationary droplets, while Appendix B explains the gradient flow structure of the
thin-film equation. The Wasserstein metric, as the induced distance, is introduced
heuristically.

1.3. Physics. The statics are determined by capillarity (the surface tension be-
tween liquid and vapor) and the short range forces between the film and the solid
substrate. These intermolecular forces are the combination of a very short-range re-
pulsive (Born-type) force and a moderately short-range attractive (van der Waals)
force. Their competition stabilizes a precursor layer of well-defined height, which
covers the entire substrate. In particular, our choice of U with argmin U = 1 yields
a precursor layer of height ≈ 1. On a more mesoscopic level, the liquid is partially
wetting: It allows for equilibrium droplets of a well-defined apparent (i.e., mesoscopic)
contact angle. The apparent nonzero contact angle arises from the competition be-
tween the short range forces and capillarity.
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Intermolecular forces of the form discussed above are relevant for a range of
liquids: polymers [1, 26, 27, 28, 29, 33], liquid crystal films and liquid metals [8, 31],
evaporating films [19], and others.

The dynamics is driven by the reduction of total energy (capillary and inter-
molecular). The reduction of energy is limited by viscous friction. This dissipation
mechanism is rather pronounced in the thin liquid film. This means that inertial
effects are negligible and the dynamics is determined by a quasi-stationary balance of
thermodynamic driving and viscous frictional forces. Notice that the presence of the
precursor layer removes the singularity of the moving contact line which arises from
the no-slip boundary condition.

We think of the initial condition as a flat film of height sufficiently large with
respect to the equilibrium height of the precursor layer. More precisely, we think of a
perturbation of this configuration; due to the intermolecular forces, sufficiently long-
wavelength perturbations grow. In analogy with spinodal decomposition of binary
mixtures (as described by the Cahn–Hilliard equation) this process is often referred to
as spinodal dewetting. The liquid film almost ruptures and holes (with film thickness
of the precursor layer) surrounded by a network of ridges form. This initial process
may have various morphologies [1, 30]. As time passes, the ridges break up and relax
into droplets sitting on the precursor layer. In this paper, we are not concerned with
this initial stage of droplet formation.

We are interested in the late-stage coarsening behavior. A configuration of well-
separated droplets connected by a precursor layer coarsens in time; see Figure 2. We
have in mind a scenario with clearly separated time scales: The time scale of the
coarsening process is slow compared to the scale on which the droplets relax into
equilibrium shape. Hence the configuration is essentially described by the radius and
the position of the center of mass of the individual droplets. These quantities evolve
slowly. This is sometimes called quasi-static evolution or quasi-stationary motion.

The coarsening process can be mediated by two mechanisms: collapse or collision.
Collapse relies on mass exchange between the droplets through the precursor layer. In
this scenario, the large droplets grow at the expense of the small ones which eventually
collapse. This is a particular instance of Ostwald ripening. The basic difference with
respect to the traditional Ostwald ripening for binary mixtures (as described by the
late stages of the Cahn–Hilliard equation with strongly off-critical initial data; see for
instance [18] for the two-dimensional case) lies in the mixed dimensionality: Ripening
of droplets on an n-dimensional substrate is (n+1)-dimensional with respect to mass
and energy, but n-dimensional when it comes to the kinetics.

We now address collision: As do the particles in traditional Ostwald ripening, the
droplets drift. The difference with respect to traditional Ostwald ripening lies in the
fact that droplets are much more mobile than particles (since the mobility strongly
depends on height). In [6], it has been argued that on a one-dimensional substrate,
this effect may lead to collision and thus to “accidental” coarsening.

Unlike for the initial instability and subsequent dewetting, there are few experi-
mental studies of coarsening in liquid films. The only long-time results we are aware
of are studies of coarsening for certain polymers [14, 15].

1.4. Dynamical scaling: Heuristics. Numerical simulations suggest that the
coarsening, although rather complex in detail, has a simple statistical behavior (see
section 1.6). In particular, the time-dependence of averaged quantities, like the aver-
age distance L between droplets, in sufficiently large systems appears to be a power
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1

L

H

x

R

h

Fig. 4. Droplet configuration on one-dimensional substrate. The typical length scales H, R,
and L are not independent; cf. (1.10) and (1.11).

law:

L ∼ tβ .

We are interested in understanding the mechanisms which determine the characteristic
exponent β. In order to discern what information about β is contained in the energy
bound (1.8), we first analyze and relate the length scales present in the problem.
We consider configurations of well-separated, equilibrium-shaped droplets with fixed
average height greater than the height of the precursor layer. The typical averaged
length scales are the typical distance L, the height H, and radius R of a droplet.
Figure 4 sketches a typical droplet configuration we have in mind.

From this point of view, we infer the following scaling relations:
(i) On a mesoscopic level, the potential U acts as the characteristic function of

{h > 1}. Thus the individual droplets are governed by the mesoscopic energy

E(h) =

∫
1
2 |∇h|2 dx + vol ({h > 1}),

which enforces an apparent equilibrium contact angle of

(1.9) 1
2 |∇h|2 = 1 on ∂{h > 1};

see Appendix A. Notice that (1.9) implies that the average height H and the average
radius R of the droplets scale the same:

(1.10) H ∼ R.

(ii) We infer from mass conservation, i.e.,

Λ−n

∫
h dx ∼ 1,

and

Λ−n

∫
h dx ∼

(
number density

of droplets

)
×
(

volume of
individual droplet

)
∼ L−n × HRn

(1.10)∼ L−n × Rn+1,

that R and L are related by

(1.11) L ∼ R
n+1
n .
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Now let us explain why a lower bound on the energy heuristically yields an upper
bound on the average droplet distance L. Indeed, the energy density (i.e., the energy
per system volume) is related to L via

Λ−nE ∼
(

number density
of droplets

)
×
(

energy of
individual droplet

)
(1.10)∼ L−n ×Rn

(1.11)∼ L− n
n+1 .(1.12)

Thus a lower bound on E heuristically yields an upper bound on L. The energy bound
(that we show in a time-averaged form in Theorem 1)

Λ−nE � t−
n

3n+2

in view of (1.12) heuristically amounts to the upper bound

(1.13) β ≤ n + 1

3n + 2
=

{
2
5 for n = 1,
3
8 for n = 2.

Based on numerical and heuristic predictions (which are solid for n = 1 and some-
what less so for n = 2) this bound is optimal (up to logarithmic correction in two
dimensions). In the nonphysical case of n ≥ 3, we do not expect the bound to be
optimal.

1.5. Formal asymptotics. The coarsening process on one-dimensional sub-
strates was analytically studied by Glasner and Witelski [6, 7] for physically relevant
mobility h3. Based on the quasi-static assumption, they derive a system of coupled
ODEs for droplet pressures {Pi} (which are in one-to-one correspondence to their ra-
dius) and droplet positions {Xi}. Using the scale separation H ∼ R  L they argue
heuristically that

L ∼ t
2
5 .

Their numerical experiments confirm this scaling. Furthermore, Glasner and Witel-
ski show that in certain regimes both collapse and collision of droplets are possible
mechanisms of coarsening.

We verified that their heuristics extends to our mobility M(h) = h and yields the
same scaling. It is a particularity of the mobility M(h) = h3 that both processes,
collapse and collision, yield the same exponent (modulo a logarithm). For M(h) = h,
however, collapse is eventually the faster process.

A back-of-the-envelope argument for two-dimensional substrates based on the
collapse scenario suggests that

L ∼ t
3
8

(modulo a logarithm specific to the fundamental solution of a Laplace equation in two
dimensions; see [18]). The importance of collisions, as it depends on M(h), is not yet
well understood, in our opinion, despite the investigation of droplet mobility in [25].

Our analysis does not rely on a derivation of a reduced model based on a quasi-
static assumption. Likewise, it does not presuppose that coarsening is simple on a
statistical level.



UPPER BOUNDS ON COARSENING RATES 511

1.6. Numerics. To gain some understanding of the coarsening dynamics we
carried out several numerical experiments. Let us first address the discretization of
the thin-film equation (1.4). To solve (1.4) in one and two dimensions we use a
modification of the discretization of a Cahn–Hilliard-type equation proposed in [21].
This discretization approach is guided by two features of the model (1.4):

(i) The total mass
∫
h is preserved due to the continuity equation

(1.14) ∂th + ∇ · J = 0,

where J = −h∇
(
∂E
∂h

)
.

(ii) The energy E is a Lyapunov functional:

d

dt
E = −

∫
1

h
|J |2 ≤ 0.

We use a semi-implicit time discretization (explicit in the mobility). Since the
time-discrete equation is nonlinear we apply a single Newton step:

hk+1 − hk − τ∇ ·
[
hk∇

(
∂2E

∂h2
(hk)(hk+1 − hk) +

∂E

∂h
(hk)

)]
= 0.

By introducing the flux J ,

hk+1 = hk − τ∇ · Jk+1,

we obtain a symmetric problem[
1

hk
id − τ∇

(
∂2E

∂h2
(hk)

)
∇·

]
Jk+1 = −∇

(
∂E

∂h
(hk)

)
.

We use a finite difference scheme for the fourth-order problem and solve the linear
system by the conjugate gradient method, preconditioned by the constant coefficient

operator id − τ∇(∂
2E

∂h2 (1))∇·, which we invert by FFT.
Now we turn to the numerical experiments. We use the potential

U(h) = 2h−3 − 3h−2 + 1,

which was used in [6, 19], and take as initial data

h(t = 0) = h∗ + perturbation,

where we choose h∗ ≡ 2, which is in the concave part of U but still of the order of the
precursor layer thickness. System sizes are chosen Λ = 10000 for n = 1 and Λ = 1000
for n = 2.

Figure 5 shows a logarithmic plot of the energy density of the configurations
versus time both in one and two dimension. Furthermore, we measure the droplets;
see Figure 6. Note that the data is averaged over ten runs.

Our numerical experiments reveal the scaling exponent β = 2
5 for n = 1 (see

Figure 6, left), since the number density Λ−nN scales like L−n. This exponent is
equal to the upper bound we obtained in (1.13). Experiments for n = 2 (see Figure
6, right) suggest a faster decrease of the number density than for n = 1, as predicted.
The coarsening exponent is in agreement with the bound (1.13) but appears to be
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Fig. 5. Energy density of droplet configuration for n = 1 (left) and for n = 2 (right) versus time.
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Fig. 6. Number of droplets for n = 1 (left) and for n = 2 (right) versus time.

slightly different than the bound itself. Let us comment on this apparent discrepancy.
The heuristics in section 1.4 are based on the assumption that

Λ−nE
(1.12)∼ L− n

n+1

∼
(
Λ−nN

) 1
n+1 .

We therefore monitor the system averaged quantity

Λ−nE
(
Λ−nN

)− 1
n+1

over time. For an infinite system this number should reach an asymptotic value if
coarsening is statistically self-similar. Figure 7 shows that for n = 2 the numerical
simulations have barely reached an asymptotic state. Hence for n = 2 a numerical
confirmation of the optimality of our result would require much larger time horizons
and thus much larger system sizes.
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Fig. 7. The system averaged quantity Λ−nE
(
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)− 1
n+1 for n = 1 (left) and for n = 2

(right) versus time.

2. Abstract framework: From geometry to dynamics. In this section we
show how coarse information on the geometry of the energy landscape (see Figure 3)
leads to coarse information on the gradient flow dynamics. Proposition 1 relates the
dynamic exponent γ to the geometric exponent α:

γ =
α

α + 2
.

This insight is essentially from [10]. We give a somewhat different presentation here
and include the modified proofs for the convenience of the reader. For the clarity of
presentation, we adopt an abstract framework: Let M be a manifold endowed with
a metric tensor g and a function E. We denote by d the induced distance on the
Riemannian manifold (M, g).

Proposition 1 (see [10]). Let h∗ ∈ M. Let h : R+ → M be a solution of

(2.1) ∂th = −gradE(h),

and h(0) = h0.
Assume that for some α > 0 the interpolation inequality

(2.2) E(h)d(h, h∗)α ≥ 1 for all h ∈ M with E(h) ≤ 1

holds. Then for σ ∈ (1, 1 + 2
α )

(2.3)

∫ T

0

E(h(t))σ dt �
∫ T

0

(t−
α

α+2 )σ dt

provided T � d(h0, h
∗)α+2 and E(h(0)) ≤ 1.

Remark 1. The notation � and � stands for the following.
For all σ ∈ (1, 1 + 2

α ) there exists a constant C = C(α, σ) such that for all δ > 0
∃Cδ = C(α, σ, δ),

(2.4)

∫ T

0

E(h(t))σ dt ≥ (1 − δ)C

∫ T

0

(t−
α

α+2 )σ dt

provided T ≥ Cδd(h0, h
∗)α+2.

Remark 2. It is not true that (2.1) and (2.2) imply the pointwise estimate

(2.5) E(t) � t−
α

α+2 .
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Indeed, let M = R+, h∗ = 0, and h(0) = 1. For a given b � 1 let Eb be equal to
h−α outside the interval (1, b) and let it be linear on [1, b] so that Eb is continuous:

Eb(h) :=

{
1 + b−α−1

b−1 (h− 1) on [1, b],

h−α otherwise.

Then

∂th = −dEb

dh
(h(t)) = −b−α − 1

b− 1

as long as h(t) ≤ b. Hence

h(t) = 1 − b−α − 1

b− 1
t

and thus h(tb) = b for tb := (b−1)2

1−b−α . Therefore

Eb(h(tb))

t
− α

α+2

b

=
(b− 1)

2α
α+2

bα(1 − b−α)
α

α+2
≤ 2b−

α2

α+2 → 0

as b → ∞.
Remark 3. The range for 1 < σ < 1 + 2

α is (almost) optimal.
The example above can be used to show that for 0 < σ < 1 the statement cannot

hold. An elementary (but lengthy) calculation shows that for T = b2+α−η, with
0 < η < α(1 − σ), ∫ T

0

(Eb(h(t)))σdt ∼ b2+α(1−σ)−η,

∫ T

0

t−
ασ
α+2 dt ∼ b2+α(1−σ)−η+ αση

α+2 .

Thus inequality (2.3) cannot hold when 0 < σ < 1. The case σ = 1 remains open.
The proof we present for σ > 1 does not extend to σ = 1 since the constant C in (2.4)
vanishes as σ approaches 1; see (2.12).

For σ = 1 + 2
α the statement would hold if the lower bound 0 in the integrals

was replaced by 1. This follows from the continuity of the functionals with respect
to σ and from the fact that constant C is bounded away from 0 as σ approaches
1 + 2

α ; see (2.12). The range σ > 1 + 2
α is not of interest, since the integral from 1 to

infinity of the right-hand side is finite, and hence the inequality (2.3) would contain
no information on the decay rate of E.

We now consider an arbitrary but fixed trajectory h(t) of (2.1). The following
lemma restricts the rate at which the distance d(h, h∗) between h(t) and any fixed
h∗ ∈ M can change. We set for convenience

E(t) := E(h(t)),

D(t) := d(h(t), h∗).

Lemma 1. Let h be a solution of (2.1) and h∗ ∈ M.
Then

(2.6)
∣∣ d
dtD(t)

∣∣2 ≤ − d
dtE(t).
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Proof of Lemma 1. The triangle inequality and the definition of d imply for any
δ ∈ R ∣∣∣∣1δ (D(t + δ) −D(t))

∣∣∣∣ ≤ 1

δ
d(h(t + δ), h(t))

≤ 1

δ

∫ 1

0

√
gh(t+sδ)(∂th(t + sδ)δ, ∂th(t + sδ)δ) ds

=

∫ 1

0

√
gh(t+sδ)(∂th(t + sδ), ∂th(t + sδ)) ds.

Hence we obtain in the limit δ → 0∣∣∣∣ ddtD(t)

∣∣∣∣ ≤
√
gh(t)(∂th(t), ∂th(t)).

Furthermore

d
dtE(t) = gh(t)(gradE(t), ∂th(t))

(2.1)
= −gh(t)(∂th(t), ∂th(t)),

so that we conclude ∣∣ d
dtD(t)

∣∣2 ≤ − d
dtE(t).

Proof of Proposition 1. Since E is a monotone function of time, D(t) can be
viewed as a function of E(t). To distinguish the argument of this function from the
actual value of the energy we write D = D(e). Hence (2.6) turns into

(2.7) 1 ≥
(
dD

de

)2

|Ė|.

Multiplying (2.7) by E(t)σ and integrating in t yield

(2.8)

∫ T

0

E(t)σ dt ≥
∫ T

0

E(t)σ
(
dD

de

)2

|Ė| dt =

∫ E0

ET

eσ
(
dD

de

)2

de,

where we have set E0 = E(0) and ET = E(T ).
From the Cauchy–Schwarz inequality we obtain

(∫ E0

ET

eσ
(
dD

de

)2

de

∫ E0

ET

e−σ de

) 1
2

≥
∣∣∣∣∣
∫ E0

ET

dD

de
de

∣∣∣∣∣ = |D0 −DT |,

where we define D0 = D(0) and DT = D(T ). Substituting in (2.8) and integrating∫ E0

ET
e−σ de = (σ − 1)−1

(
E1−σ

T − E1−σ
0

)
implies

∫ T

0

E(t)σ dt ≥ (σ − 1)
(
E1−σ

T − E1−σ
0

)−1
(D0 −DT )2

≥ (σ − 1)Eσ−1
T (D0 −DT )2.(2.9)

Here we have used the assumption σ > 1. We rewrite the right-hand side of (2.9) as

(σ − 1)E
σ−1− 2

α

T (ETD
α
T )

2
α (1 − D0

DT
)2
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and apply the interpolation inequality (2.2), so that

(2.10)

∫ T

0

E(t)σ dt ≥ (σ − 1)E
σ−1− 2

α

T (1 − D0

DT
)2.

Set for abbreviation

f(T ) :=

∫ T

0

E(t)σ dt.

Then (2.10) turns into

f(T ) ≥ (σ − 1)f ′(T )(σ−1− 2
α )/σ(1 − D0

DT
)2

= (σ − 1)f ′(T )
σα−α−2

σα (1 − D0

DT
)2,

or equivalently,

f(T )
σα

α+2−σα f ′(T ) ≥
(
(σ − 1)(1 − D0

DT
)2
) σα

α+2−σα

provided σ < 1 + 2
α . Note that

f(T )
σα

α+2−σα f ′(T ) =
d

dt

(
f(T )

σα
α+2−σα+1

σα
α+2−σα + 1

)
=

d

dt

(
f(T )

α+2
α+2−σα

α+2
α+2−σα

)
.

Then we get by integration in time

(2.11) f(T ) ≥ (σ − 1)
σα
α+2

(
α+2

α+2−σα

)1−σ α
α+2

(1 − D0

DT
)2

σα
α+2 T 1−σ α

α+2 .

When T is such that D0

DT
≤ 1 − (1 − δ)

α+2
2σα =: ε(δ), (2.11) yields

f(T ) ≥ C(α, σ)(1 − δ) T 1−σ α
α+2

with

(2.12) C(α, σ) := (σ − 1)
σα
α+2

(
α+2

α+2−σα

)1−σ α
α+2

.

For the case D0

DT
> ε(δ) the interpolation inequality yields

Eσ
T > ε(δ)σαD−σα

0 .

Since the energy decreases in time this inequality holds for all t ≤ T , so that∫ T

0

E(t)σ dt ≥ ε(δ)σαD−σα
0 T = ε(δ)σαD−σα

0 T σ α
α+2 T 1−σ α

α+2 .

Hence

f(T ) ≥ (1 − δ)C(α, σ) T 1−σ α
α+2

provided T ≥ C(α, σ)
α+2
σα ε(δ)−α−2 Dα+2

0 , which proves (2.4).
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1 2 3 4
0

1

2

3

4

5

α

σ

σ
opt

Fig. 8. Permitted values of σ (grey region) as a function of α. The dotted line σopt := 1 + 1
α

indicates the values of σ for which the coefficient in (2.3) is optimal.

Remark 4. The coefficient C is optimal for σ = 1 + 1
α ; see Figure 8.

To see that the coefficient is optimal for σ = 1+ 1
α , consider in one dimension the

energy E(h) := h−α. Obviously this energy obeys the interpolation inequality (2.2)
for h∗ = 0. The gradient flow of E with h0 = 0 is given by

h(t) = (α(α + 2)t)
1

α+2 .

Hence

E(h(t)) = h(t)−α = (α(α + 2)t)−
α

α+2

and furthermore ∫ T

0

E(t)σ dt = (α(α + 2))−σ α
α+2 α+2

α+2−σα T 1−σ α
α+2 .

The coefficient coincides with the coefficient in (2.11) provided σ = 1 + 1
α .

3. An interpolation inequality. From section 2 and Appendix B we learn that
relating the energy (1.2) and the induced distance (1.5) by an interpolation inequality
of the form (1.12) provides a main ingredient for the proof of a lower bound on the
energy. In view of Proposition 1, the geometric exponent α determines the dynamic
exponent γ. As mentioned before, we fix h∗ ≡ 3 to focus on ideas. Proposition 2
shows that the geometric exponent is α = n

n+1 .

Proposition 2. There exists a constant C > 0 depending only on n such that

Λ−nE(h)
(
Λ−n

2 W(h, 3)
) n

n+1 ≥ 1
C provided E(h) ≤ 1

C , Λ ≥ C.

Before giving the rigorous proof, let us motivate the result. The exponent α = n
n+1

can be heuristically inferred from the following argument:

(i) From (1.12) we have

Λ−n E ∼ L− n
n+1 .
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Fig. 9. Scaling of W(h, 3).

(ii) From the definition (1.5) of the Wasserstein distance W we obtain the scaling

Λ−nW(h, 3)2 ∼ Λ−n

∫∫
|x− y|2 dπ(x, y)

∼ Λ−n × L2

∫∫
dπ(x, y)

∼ Λ−n × L2 ×
∫

3 dx

∼ L2,

(see Figure 9); that is,

(3.1) Λ−n
2 W(h, 3) ∼ L.

These two scaling relations yield

Λ−nE
(
Λ−n

2 W(h, 3)
) n

n+1 ∼ L− n
n+1 × L

n
n+1 ∼ 1.

We turn to the rigorous proof of Proposition 2. Set

(3.2) R := (Λ−nE(h))−1 and h̃ := (h− 2)+.

Note that the definition of R is motivated by the scaling (1.11) and (1.12). The proof
is done in several lemmas.

(i) Lemma 2 shows that the average droplet height H scales like the average
droplet radius in accordance with (1.10). The radius is expressed in terms of the
energy; cf. (3.2).

(ii) Lemma 3, applied to h̃, shows that most of the droplet mass lies in a “small”
set in the sense that the volume of the thickened set is controlled.

(iii) Lemmas 2 and 3 imply Lemma 4, which shows that the typical droplet

distance L scales like R
n+1
n , as suggested by the heuristic arguments in (1.11).

(iv) Finally, Lemma 5 reveals that for sufficiently distant droplets the volume-
averaged Wasserstein distance between h and the average height scales like L in
accordance with (3.1).

Lemma 2.

(i) The typical droplet height H is at least of order R in the sense that

(3.3)

∫
{h̃>H}

h̃ dx ≥ 1
2

∫
h̃ dx for H = R

2 .



UPPER BOUNDS ON COARSENING RATES 519

(ii) The typical droplet radius is at least of the order R in the sense that

(3.4) R

∫
|∇h̃| dx ≤

∫
h̃ dx.

Proof. We first notice that h ≤ h̃ + 2 implies∫
h dx ≤

∫
h̃ dx + 2

3

∫
3 dx

(1.7)
=

∫
h̃ dx + 2

3

∫
h dx,

so that

(3.5)

∫
h̃ dx ≥ 1

3

∫
h dx.

Next we notice that

Λ−nE(h)
(1.7)
= 3∫

h dx

∫
1
2 |∇h|2 + U(h) dx

(1.6)

≥ 3∫
h dx

vol ({h > 2}),

so that by (3.2)

(3.6) vol ({h > 2}) ≤ 1
3R

∫
h dx.

This implies ∫
{h̃≤H}

h̃ dx =

∫
{2<h≤H+2}

(h− 2) dx

≤ H vol ({h > 2})
(3.6)

≤ H
3R

∫
h dx

(3.5)

≤ H
R

∫
h̃ dx.

Hence we obtain (3.3):∫
{h̃>H}

h̃ dx =

∫
h̃ dx−

∫
{h̃≤H}

h̃ dx ≥
(
1 − H

R

) ∫
h̃ dx.

This motivates the choice of H.
Now we turn to (3.4):∫

|∇h̃| dx =

∫
{h>2}

|∇h| dx

(1.6)

≤
∫

|∇h|
√
U(h) dx

≤
∫

1
2 |∇h|2 + U(h) dx

(1.7)
=

∫
h dx
3Λn

∫
1
2 |∇h|2 + U(h) dx

(3.5)

≤ Λ−nE(h)

∫
h̃ dx.
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According to (3.2) this turns into

R

∫
|∇h̃| dx ≤

∫
h̃ dx.

The next lemma is strongly inspired by [3, Lemma 2.1].
Lemma 3. Let R ≤ Λ. Assume g : (0,Λ)n → [0,∞)

(i) has height H in the sense that

(3.7)

∫
{g≥H}

g dx ≥ 1
2

∫
g dx

(ii) and radius R in the sense that

(3.8) R

∫
|∇g| dx ≤

∫
g dx.

Then there exists a set AR ⊂ {g ≥ H}
(i) which contains substantial mass in the sense that∫

AR

g dx ≥ 1
4

∫
g dx

(ii) and is small in the sense that the volume of the thickened sets

Ad
R := {x ∈ (0,Λ)n | dist(x,AR) < d}

is controlled by

vol (Ad
R) ≤ 3n2n+1

(
1 + 4 d

R

)n 1
H

∫
g dx for all d > 0.

Proof. Extend g : [0,Λ]n → R to g : R
n → R such that

(i) [0,Λ]n � [−Λ,Λ]n by even reflection and
(ii) [−Λ,Λ]n � R

n by periodic continuation.
Set for convenience A := {g ≥ H}. Define

(3.9) AR :=

{
x ∈ A

∣∣∣∣
∫
B(x,R8 )

g dy ≥ H
2 vol

(
B

(
x,

R

8

))}
.

With the help of the convolution of g,

gR(x) :=
1

vol (B(x, R
8 ))

∫
B(x,R8 )

g dy,

AR can be written as AR = {x ∈ A | gR(x) ≥ H
2 }.

We use the standard estimate∫
(−Λ,Λ)n

|g − gR| dx ≤ R
8

∫
(−Λ,Λ)n

|∇g| dx
(3.8)

≤ 1
8

∫
(−Λ,Λ)n

g dx.

Since the integrands are even functions this yields

(3.10)

∫
|g − gR| dx ≤ 1

8

∫
g dx.
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We now define A := A ∩ (0,Λ)n and AR := AR ∩ (0,Λ)n. Then we have

g ≥ H ≥ 2gR on A−AR

and thus

g ≤ 2(g − gR) on A−AR.

Therefore

(3.11)

∫
A−AR

g dx ≤ 2

∫
A−AR

(g − gR) dx ≤ 2

∫
|g − gR| dx

(3.10)

≤ 1
4

∫
g dx.

Notice that by assumption (3.7),
∫
A
g dx ≥ 1

2

∫
g dx. Hence∫

g dx ≤ 2

∫
A

g dx

≤ 2

(∫
AR

g dx +

∫
A−AR

g dx

)
(3.11)

≤ 2

∫
AR

g dx + 1
2

∫
g dx,

which yields the first assertion.
Let J ⊂ AR be maximal with the property

(3.12)
{
B(x, R

8 )
}
x∈J

are disjoint.

Then necessarily

(3.13) AR ⊂
⋃
x∈J

B(x, R
4 ).

Thus

#J vol (B(0, R
8 )) =

∑
x∈J

vol (B(x, R
8 ))

(3.9)

≤ 2
H

∑
x∈J

∫
B(x,R8 )

g dx

(3.12)

≤ 2
H

∫
(−Λ,2Λ)n

g dx

= 3n 2
H

∫
g dx.(3.14)

Here we used the assumption R ≤ Λ.
Now (3.13) implies Ad

R ⊂
⋃

x∈J B(x, R
4 + d), so that

vol (Ad
R) ≤ #J vol (B(0, R

4 + d))

=
vol (B(0, R

4 + d))

vol (B(0, R
8 ))

#J vol (B(0, R
8 ))

(3.14)

≤ 3n( 8
R (R4 + d))n 2

H

∫
g dx

= 3n2n+1(1 + 4 d
R )n 1

H

∫
g dx,

which proves the second assertion.
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Lemma 4. Let Λ ≥ R ≥ 3n28n. Then the typical droplet distance L is at least of
the order R

n+1
n in the following sense: There exists a set AR ⊂ R

n such that

(i)

(3.15)

∫
AR

h dx ≥ 1
12

∫
h dx

and
(ii)

(3.16) 3 vol (AL
R) ≤ 3

4

∫
AR

h dx for L = 3−12−10R
n+1
n .

Proof. According to Lemma 3 there exists a set AR such that

(3.17)

∫
AR

h̃ dx ≥ 1
4

∫
h̃ dx,

which by (3.5) turns into (3.15), and

(3.18) vol (AL
R) ≤ 3n2n+1

(
1 + 4L

R

)n 1
H

∫
h̃ dx.

By the definition of H and R in Lemma 2, (3.18) gives rise to

vol (AL
R) ≤ 3n2n+2

(
1 + 4L

R

)n 1
R

∫
h̃ dx

(3.17)

≤ 3n2n+4
(
1 + 4L

R

)n 1
R

∫
AR

h̃ dx

≤ 3n2n+4
(
1 + 4L

R

)n 1
R

∫
AR

h dx.

Now L in (3.16) is defined such that

3n2n+4
(
1 + 4L

R

)n 1
R ≤ 1

4

provided R ≥ 3n28n. Hence the inequality turns into

3 vol (AL
R) ≤ 3

4

∫
AR

h dx.

Lemma 5. Let h : Q → [0,∞) with h∗ := Λ−n
∫
h(x) dx and letA ⊂ R

n and
L > 0 be given with

(3.19) h∗ vol ({dist(·, A) < L}) ≤ 3
4

∫
A

h(x) dx.

Then

W(h, h∗)2 ≥ 1
4L

2

∫
A

h(x) dx.
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Proof. Set for abbreviation AL := {dist(., A) < L}. Let π be any admissible
transportation plan in the definition of W. We conclude that∫

Rn×Rn

|x− y|2 dπ(x, y) ≥
∫
A×(Rn−AL)

|x− y|2 dπ(x, y)

≥ L2π(A× (Rn −AL))

≥ L2(π(A× R
n) − π(Rn ×AL))

= L2

(∫
A

h dx−
∫
AL

h∗ dx

)

= L2

(∫
A

h dx− h∗ vol (AL)

)
(3.19)

≥ 1
4L

2

∫
A

h dx.

Proof of Proposition 2. According to Lemma 5 (applied to h∗ = 3 and A = AR)
it follows from Lemma 4 for the L defined in (3.16) that

W(h, 3)2 ≥ 1
4L

2

∫
AR

h dx
(3.15)

≥ 1
48L

2

∫
h dx.

In view of (1.7), this turns into

Λ−nW(h, 3)2 ≥ 2−4L2.

In view of the definition (3.2) of R and the definition (3.16) of L this yields

Λ−nE(h)
(
Λ−n

2 W(h, 3)
) n

n+1 ≥ R−1(2−4L2)
n

2(n+1)

= R−1(3−22−24R2n+1
n )

n
2(n+1)

= 3−
n

n+1 2−
12n
n+1 .

4. Proof of Theorem 1. We cannot apply Proposition 1 right away since the ar-
gument for the (infinite-dimensional) gradient flow structure introduced in Appendix
B is formal. An inspection of the proof of Proposition 1 reveals that it is only neces-
sary to find a substitute for Lemma 1. In fact, one can directly prove the equivalent
of Lemma 1 for the Wasserstein metric as defined in (1.5) and a smooth solution of
(1.4).

Lemma 6. Let h be a smooth solution of (1.4). Then

(4.1)

∣∣∣∣ ddtW(3, h(t))

∣∣∣∣
2

≤
(
− d

dt
E(t)

)
.

Proof. We follow [22].
Note that

d

dt
E(t) = −

∫
h

∣∣∣∣∇∂E

∂h

∣∣∣∣
2

dx.

It thus is sufficient to establish the inequality

(4.2)

∣∣∣∣ ddtW(3, h(t))

∣∣∣∣
2

≤
∫

h|u|2 dx
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for the transport equation

(4.3) ∂th + ∇ · (hu) = 0.

Due to the triangle inequality we only need to show

(4.4) lim
δ→0

1

δ
W(ht, ht+δ) ≤

√∫
ht|ut|2 dx.

Here, the indices t and t + δ denote the time argument of h and u.

First we show that ht+δ is the push-forward of ht under the flow map Φδ generated
by ut+δ, i.e.,

(4.5) ∂δΦδ = ut+δ ◦ Φδ, Φ0 = id.

Note that by the push-forward one understands that

(4.6)

∫
ζ ht+δ dx =

∫
(ζ ◦ Φδ) ht dx for all ζ ∈ C0

0 (Rn).

For given ζ define ζδ := ζ ◦ Φ−1
δ ; ζδ satisfies

∂δζδ + ut+δ · ∇ζδ = 0.

Furthermore, recall that ht+δ solves the transport equation

∂δht+δ + ∇ · (ht+δut+δ) = 0.

Hence we obtain

d

dδ

∫
ζδ ht+δ dδ =

∫
(∂δζδ ht+δ + ∂δht+δ ζδ) dx = 0,

which proves (4.6).

Next we define a product measure πδ by

dπδ(x, y) = dht(x) δ[y = Φδ(x)].

According to (4.6), πδ defines an admissible transportation plan in the sense of the
definition of W. Thus we get by definition

1

δ
W(ht, ht+δ) ≤

√∫
1

δ2
|x− Φδ(x)|2ht(x) dx.

We obtain from the definition (4.5) of the flow map that 1
δ2 |x − Φδ(x)|2 converges

pointwise to |ut|2. The dominated convergence theorem yields

lim
δ→0

∫
1

δ2
|x− Φδ(x)|2ht(x) dx =

∫
ht|ut|2 dx,

which establishes (4.4).
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Appendix A. Stationary droplet shape.
In this section, we analyze the shape of a stationary droplet. For this purpose we

consider a single droplet with prescribed mass V > 0 on top of the precursor layer of
equilibrium thickness h ≡ 1 on an n-dimensional substrate. We are interested in the
stationary droplet shape on a mesoscopic scale. Hence we focus on the mesoscopic
energy

(A.1) E =

∫
1
2 |∇h|2 dx + vol ({h > 1})

(see section 1.4) for all h, which fulfill the mass constraint

(A.2)

∫
(h− 1)+ dx = V.

Since the precursor layer of height h ≡ 1 has no contribution to the energy E, we
shift h by −1 and consider the problem

(A.3) minimize

∫
1
2 |∇h|2 dx + vol ({h > 0}) subject to

∫
h dx = V.

For convenience, we keep the notation h for the shifted film height.
Proposition 3. Let V ≥ 0. Then there exists a constant H > 0 depending on

V such that

(A.4) h̄(x) = − 1
2H |x|2 + H on B(0,

√
2H)

is the unique (up to translations) minimizer of problem (A.3).
Proof. We proceed in three steps.

(i) Any minimizer h̄ of (A.3) is radially symmetric and monotonically decreas-
ing.

(ii) Any minimizer h̄ satisfies

(A.5) −Δh̄ = const in {h̄ > 0}.

(iii) A unique (up to translations) minimizer h̄ exists and satisfies

(A.6) 1
2 |∇h̄|2 = 1 on ∂{h̄ > 0}.

Argument for (i): The proof is based on the symmetric decreasing rearrangement
h# of the function h. It is well-known [13, Lemma 7.17] that∫

|∇h#|2 dx ≤
∫

|∇h|2 dx

with equality if and only if h is radially symmetric and monotone decreasing. Fur-
thermore, the second contribution to the energy is conserved:

vol ({h# > 0}) = vol ({h > 0}).

Argument for (ii): The first variation of E yields∫
(−Δh) δh dx = 0
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for all variation δh with∫
δh dx = 0 and supp δh ⊂ {h > 0}.

Hence we obtain (A.5).
Argument for (iii): From (1) and (2), we deduce that any minimizer centered at

the origin must be of the form

(A.7) h(x) = −A|x|2 + H on B(0,
√

H/A).

Note that the family of candidates is invariant under the volume-conserving homo-
thetic variation:

hλ(x) = λ−nh
(x
λ

)
.

Then the first variation of E in λ at λ = 1 yields that at a critical point h̄

(A.8) (n + 2)

∫
1
2 |∇h̄|2 dx = n vol ({h̄ > 0}).

Note that the critical point is in fact a minimum since the function

λ �→ E(hλ) = λ−(n+2)

∫
1
2 |∇h̄|2 dx + λn vol ({h̄ > 0})

is convex. We compute∫
{h̄>0}

1
2 |∇h̄|2 dx = 2

n+2ωnA
2(
√
H/A)n+2

and

vol ({h̄ > 0}) = 1
nωn(

√
H/A)n,

where ωn denotes the (n − 1)-dimensional measure of S
n−1. Thus we obtain from

(A.8) that for the minimizer h̄ A is determined by

(A.9) 2AH = 1.

Hence at ∂{h̄ > 0}, where |x|2 = H/A,

|∇h̄|2 = 2,

which proves (3). Furthermore, we obtain from (A.7) and (A.9) that

h̄(x) = − 1
2H |x|2 + H on B(0,

√
2H).

Remark 5. Proposition 3 reveals the scaling (1.10)

H ∼ R,

since the radius of the droplet is given by
√

2H.
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Appendix B. The gradient flow structure.
In this section, we specify in which sense the evolution (1.4) is a gradient flow of

E defined in (1.2). This heuristic section serves purely as a motivation which guides
our analysis. The rigorous result is independent of this section.

The mathematical structure required for a gradient flow,

(B.1) ∂th = −gradE(h),

is determined by a smooth function M � h �→ E(h) on a Riemannian manifold (M, g).
A trajectory [0,∞) � t �→ h(t) ∈ M of (B.1) is characterized by the fact that for any
tangent vector field [0,∞) � t �→ δh(t) ∈ Th(t)M, one has

(B.2) gh(t) (∂th(t), δh(t)) +
〈
diffEh(t), δh(t)

〉
= 0 for all t � 0.

In our case M corresponds to the space of all possible film heights which take the
overall mass constraint into account:

M =

{
h ≥ 0

∣∣∣ ∫
h(x) dx =

∫
3 dx

}
.

The metric tensor encodes the limiting dissipation mechanism by (viscous) friction.
Given the continuity equation ∂th + ∇ · (hu) = 0 for the film height h ≥ 0 by a
(vertically averaged horizontal) velocity field u ∈ R

n, the rate of energy dissipation
by friction is given by

∫
h |u|2 dx in the case of Darcy-type friction. (It would be∫

1
h |u|2 dx for Stokes friction with no-slip boundary conditions.) The (quadratic part

of) the metric tensor is given by

(B.3) gh(δh, δh) = inf
u

{∫
h|u|2 dx

∣∣∣ δh + ∇ · (hu) = 0

}
.

For the sake of simplicity, we do not state the boundary conditions such as ν ·u = 0 on
∂Q. The squared size, gh(δh, δh), of an infinitesimal perturbation δh is the minimal
rate of energy dissipation by friction which is necessary to generate δh.

Writing down the Euler–Lagrange equation for (B.3) yields the following repre-
sentation in terms of the velocity potential ϕ:

gh(δh, δh) =

∫
h|∇ϕ|2 dx, where δh + ∇ · (h∇ϕ) = 0.

By polarization, this yields

(B.4) gh(δh1, δh2) =

∫
h∇ϕ1 · ∇ϕ2 dx,

where the functions ϕi are defined by

δhi + ∇ · (h∇ϕi) = 0.

It is easy to check that indeed (1.4) is the gradient flow of (1.2) in the sense of (B.2)
with respect to the metric tensor (B.4) defined on M.

Any Riemannian manifold (M, g) is endowed with a natural distance function d
between two points h0 and h1 by means of minimizing the action of curves from h0

to h1. In view of the definition of the metric tensor (B.3), d turns into

d(h0, h1)
2 = inf

(h,u)

{∫ 1

0

∫
h|u|2 dxds

∣∣∣ ∂sh + ∇ · (hu) = 0,

{
h(0, ·) = h0

h(1, ·) = h1

}}
.

It is shown in [23] that d, in fact, coincides with the Wasserstein distance W defined
in (1.5).
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WAVELETS WITH SHORT SUPPORT∗

BIN HAN† AND ZUOWEI SHEN‡

Abstract. This paper is to construct Riesz wavelets with short support. Riesz wavelets with
short support are the objective of interest in both theory and application. In theory, it is known that
a B-spline of order m has the shortest support among all compactly supported refinable functions
with the same regularity. However, it remained open whether a Riesz wavelet with the shortest
support and m vanishing moments can be constructed from the multiresolution analysis generated
by the B-spline of order m. In various applications, a Riesz wavelet with a short support, a high order
of regularity, and vanishing moments is often desirable in signal and image processing, since they
have a good time frequency localization and approximation property, as well as fast algorithms. This
paper presents a theory for the construction of Riesz wavelets with short support and gives various
examples. In particular, from the multiresolution analysis whose underlying refinable function is the
B-spline of order m, we are able to construct the shortest supported Riesz wavelet with m vanishing
moments. The support of the wavelet functions can be made even shorter by reducing their orders
of vanishing moments. The study here also provides a new insight into the structures of the spline
tight frame systems constructed in [A. Ron and Z. Shen, J. Funct. Anal., 148 (1997), pp. 408–447,
I. Daubechies, B. Han, A. Ron, and Z. Shen, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1–
46, B. Han and Q. Mo, Proc. Amer. Math. Soc., 132 (2004), pp. 77–86] and bi-frame systems in
[I. Daubechies, B. Han, A. Ron, and Z. Shen, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1–46,
I. Daubechies and B. Han, Constr. Approx., 20 (2004), pp. 325–352].

Key words. Riesz wavelet bases, B-spline functions, wavelet frames

AMS subject classifications. 42C40, 41A15, 41A05

DOI. 10.1137/S0036141003438374

1. Introduction. The objective of this paper is to design Riesz wavelets with
short support from a multiresolution analysis. We start with some basic notions and
definitions. A function φ is refinable if it satisfies the refinement equation

φ = 2
∑
k∈Z

a(k)φ(2 · −k),(1.1)

where a : Z �→ C is a sequence on Z, called the refinement mask for φ.
By �2(Z) we denote the set of all sequences u : Z �→ C such that

‖u‖�2(Z) :=

(∑
k∈Z

|u(k)|2
)1/2

< ∞.

The Fourier series û of a sequence u in �2(Z) is defined as

û(ξ) :=
∑
k∈Z

u(k)e−ikξ, ξ ∈ R,(1.2)
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where i is the imaginary unit such that i2 = −1. Similarly, the Fourier transform of
a function f ∈ L1(R) is defined as

f̂(ξ) :=

∫
R

f(t)e−iξt dt, ξ ∈ R,

which can be extended naturally to functions in L2(R) and tempered distributions.
Now, refinement equation (1.1) can be rewritten, in terms of the Fourier transform,
as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2), a.e. ξ ∈ R.

Using the above definition, one extends the concept of refinable functions to that of
refinable distributions. Throughout the paper we assume that φ̂(0) �= 0 and â(0) = 1.
We also call â a refinement mask for convenience.

For a given compactly supported refinable function φ ∈ L2(R), define V0 to be
the smallest closed subspace of L2(R) generated by φ(·−k), k ∈ Z. Then V0 is a shift
(integer translate) invariant subspace of L2(R). Let Vj := {f(2j ·) : f ∈ V0}, for j ∈ Z.
Then the sequence of subspaces Vj , j ∈ Z, forms a multiresolution analysis (MRA)
in L2(R), which is generated by φ, i.e., (i) Vj ⊂ Vj+1, j ∈ Z; (ii) ∪j∈ZVj = L2(R)
and ∩j∈ZVj = {0} (see, e.g., [1] and [15]). In this paper, a function ψ ∈ V1 (or more
precisely, ψ ∈ V1\V0) is called an MRA-based wavelet function, or simply a wavelet,
derived from the MRA {Vj}j∈Z.

In this paper, we are interested in finding a function ψ such that the wavelet
system

X(ψ) := {ψj,k := 2j/2ψ(2j · −k) : j, k ∈ Z}

forms a Riesz basis for L2(R). The set X(ψ) is called the wavelet system generated
by ψ. Recall that the system X(ψ) is a Riesz basis of L2(R) if the linear span of
X(ψ) is dense in L2(R) and X(ψ) is a Riesz sequence; that is, there exist two positive
constants C1 and C2 such that

C1‖{cj,k}‖�2(Z2) �

∥∥∥∥∥∥
∑
j∈Z

∑
k∈Z

cj,kψj,k

∥∥∥∥∥∥
L2(R)

� C2‖{cj,k}‖�2(Z2)

∀ {cj,k}j,k∈Z ∈ �2(Z
2).

(1.3)

If X(ψ) is a Riesz basis of L2(R), then ψ is called a Riesz wavelet. To construct
a compactly supported MRA-based Riesz wavelet ψ, one starts with a compactly
supported refinable function φ with stable shifts. Recall that the shifts of a function
φ are stable if {φ(· − k) : k ∈ Z} is a Riesz sequence; that is, there exist two
positive constants C1 and C2 such that C1‖{ck}‖�2(Z) � ‖

∑
k∈Z

ckφ(· − k)‖L2(R) �
C2‖{ck}‖�2(Z) for all {ck}k∈Z ∈ �2(Z). Then a compactly supported Riesz wavelet ψ
is obtained by selecting some desirable finitely supported sequence b that is called a
wavelet mask or a high-pass filter in the language of engineering. With the wavelet
mask b, the wavelet function ψ is obtained from b and the refinable function φ via

ψ = 2
∑
k∈Z

b(k)φ(2 · −k), or equivalently, ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2).(1.4)
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When {φ(· − k) : k ∈ Z} forms an orthonormal system, a natural choice of b is

b(k) = (−1)k−1a(1 − k), k ∈ Z.

Its Fourier series can be written as

b̂(ξ) = e−iξâ(ξ + π).(1.5)

Then it is well known that the wavelet system X(ψ) forms an orthonormal basis of
L2(R). The wavelet function ψ has the same length of support as that of the corre-
sponding refinable function φ. Thus, once a compactly supported refinable function
φ whose shifts form an orthonormal system is given, the corresponding orthonormal
wavelet ψ can be obtained easily. Hence, the major task and difficulty in construct-
ing compactly supported dyadic orthonormal wavelets in dimension one are to design
refinement masks whose corresponding refinable functions have the required smooth-
ness order and whose shifts form an orthonormal system. This was discussed in detail
in [6].

On the other hand, compactly supported refinable functions whose shifts form
a Riesz sequence are much easier to get. One such class of refinable functions are
B-splines.

The B-spline function of order m (m ∈ N), denoted by Bm, can be obtained via
the following recursive formula: B1 = χ[0,1], the characteristic function of the interval
[0, 1], and

Bm(x) :=

∫ 1

0

Bm−1(x− t) dt, x ∈ R, m ∈ N.(1.6)

The B-spline function Bm ∈ Cm−2(R) is a function of piecewise polynomials of degree
less than m, vanishes outside the interval [0,m] and is symmetric about the point m/2,
that is, Bm(m−x) = Bm(x) for all x ∈ R. It is well known that the B-spline function
Bm is a refinable function satisfying the refinement equation

B̂m(2ξ) =
(1 + e−iξ

2

)m

B̂m(ξ), ξ ∈ R.(1.7)

When m = 1, the shifts of B1 form an orthonormal basis of the shift invariant space
V0 generated by B1. The shifts of Bm, m > 1, form a Riesz, but not an orthonormal,
basis of the shift invariant space V0 generated by Bm. When m is even, Bm(· −m/2)
is symmetric about the origin with the refinement mask

â(ξ) = cos2m(ξ/2).

While compactly supported refinable functions with stable shifts are easier to ob-
tain, the construction of compactly supported Riesz wavelets from an MRA generated
by a B-spline of order m is not straightforward. A compactly supported Riesz wavelet
ψ from the MRA generated by Bm was first constructed in [3]. While X(ψ) forms a
Riesz basis of L2(R) and the system keeps the orthogonality between different dilation
levels, the support of the prewavelet ψ in [3] is [0, 2m−1] (therefore, almost two times
that of Bm) and ψ has m vanishing moments. Recently, [16] derived a Riesz wavelet
ψ from Bm such that the Riesz wavelet system X(ψ) forms a Riesz basis of L2(R).
When ψ is required to have m vanishing moments, the construction of [16] gives the
prewavelet of [3] and hence its support is [0, 2m−1]; efforts are made in [16] to shorten
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the support of the Riesz wavelets at the cost of a reduced order of vanishing moments
of the Riesz wavelets. For example, the support of the Riesz wavelet ψ can be reduced
to [0,m] when m is odd (or [0,m+1] when m is even) with 1 or 2 vanishing moments.
It is a bit surprising to us that there are no discussions in the literature whether the
natural choice of a function,

ψ := 2
∑
k∈Z

b(k)Bm(2 · −k)(1.8)

with

b(k) = (−1)k−1a(1 − k), k ∈ Z,(1.9)

where â(ξ) = 2−m(1+e−iξ)m is the refinement mask of Bm, is a Riesz wavelet. There
are several other motivations that lead to the discussions here. First, the mask defined
in (1.9) works for the case m = 1. It is clear that when m = 1, the corresponding
wavelet function ψ is the Haar wavelet. Hence, X(ψ) is an orthonormal basis of L2(R).
In fact, it works for an arbitrary compactly supported refinable function whose shifts
form an orthonormal system. It is natural to ask whether the function ψ in (1.8) with
the wavelet mask defined in (1.9) is a Riesz wavelet. Second, ψ in (1.8) has the same
length of support as that of Bm. Further, as will be shown in section 2, in some sense,
ψ is the shortest supported Riesz wavelet of regularity m − 1/2 with m vanishing
moments. Recall that a function ψ has m vanishing moments if

ψ̂(j)(0) = 0 ∀ j = 0, . . . ,m− 1,

where ψ̂(j) denotes the jth derivative of ψ̂. This means that it has good time frequency
localization and can lead to efficient algorithms in applications. One of the main
objectives of this paper is to prove that the system X(ψ), where ψ is defined in (1.8),
forms a Riesz basis of L2(R), which will be established in section 2. The spline-based
Riesz wavelets in this paper with short support and high vanishing moments may
be of interest in wavelet-based numerical algorithms, since the wavelet functions are
piecewise polynomials, while it is well known that most other wavelets do not have
explicit analytic forms.

In many applications, it is not only important to have Riesz wavelets with short
support, but also desirable to have short supported Riesz wavelets with a small condi-
tion number, namely, a small ratio of the upper and lower Riesz bounds in (1.3). The
condition number of the spline Riesz wavelet suggested here cannot be smaller than
that of the system {Bm(· − k) : k ∈ Z}. However, it is well known that the condition
number of the system {Bm(· − k) : k ∈ Z} increases as m goes to ∞. In this regard,
it is of interest to construct Riesz wavelets with short support, which are as close as
possible to some orthonormal wavelets or tight frame wavelets, for a given order of
regularity or vanishing moments. Such wavelet systems will then have small condition
numbers. This is of interest and importance in various applications, although it is
not a topic addressed in this paper.

The general theory needed for this paper is given in section 3. The theory also
provides a new insight into the systematic constructions of the tight frame systems
from the B-spline of order m by using the unitary extension principle of [20] and
the oblique extension principle of [9]. In those constructions, for a given Bm, a set
Ψ := {ψ1, . . . , ψL} of functions is obtained so that the system

X(Ψ) := {ψ�
j,k := 2j/2ψ�(2j · −k) : � = 1, . . . , L and j, k ∈ Z}



534 BIN HAN AND ZUOWEI SHEN

forms a tight frame for L2(R). That is,

f =

L∑
�=1

∑
j∈Z

∑
k∈Z

〈f, ψ�
j,k〉ψ�

j,k ∀ f ∈ L2(R).

The system X(Ψ) is a redundant system. However, we discover from the study here
that in all spline constructions, there exists a function ψ ∈ Ψ such that X(ψ) (in
some cases X(ψ(· − 1/2)) forms a Riesz basis for L2(R). This finding roughly says
that one of the functions in the set Ψ already can generate a Riesz basis for L2(R),
while the other functions in Ψ are there just to either improve the condition number
determined by the upper and lower frame bounds or provide a better dual system.

More generally, a system X(ψ) is Bessel in L2(R) if there exists a positive constant
C such that ∑

j∈Z

∑
k∈Z

|〈f, ψj,k〉|2 � C‖f‖2 ∀ f ∈ L2(R).(1.10)

A system X(ψ) is Bessel if both functions
∑

k∈Z
|ψ̂(· + 2πk)| and

∑
j∈Z

|ψ̂(2j ·)|
are in L∞(R) (see [22, Corollary 15]). This will hold whenever ψ has a sufficient
smoothness order. For example, it is known [11, Propositions 2.6 and 3.5] that if, for

some ε > 0, there exists a positive constant C such that |ψ̂(ξ)| � C(1+ |ξ|)−1/2−ε and

|ψ̂(ξ)| � C|ξ|ε for all ξ ∈ R, then the corresponding system X(ψ) is Bessel in L2(R).
It is clear that for a finite set Ψ, X(Ψ) is Bessel if and only if X(ψ) is Bessel for each
ψ ∈ Ψ.

A system X(Ψ) with Ψ = {ψ1, . . . , ψL} is a frame for L2(R) if there exist positive
constants C1 and C2 such that

C1‖f‖2 �
L∑

�=1

∑
j∈Z

∑
k∈Z

|〈f, ψ�
j,k〉|2 � C2‖f‖2 ∀ f ∈ L2(R).(1.11)

Let Ψ := {ψ1, . . . , ψL} and Ψ̃ := {ψ̃1, . . . , ψ̃L} be two sets of functions in L2(R). We
say that (X(Ψ), X(Ψ̃)) is a pair of bi-frames in L2(R) if each of X(Ψ) and X(Ψ̃) is
Bessel in L2(R), and if X(Ψ) and X(Ψ̃) satisfy

〈f, g〉 =

L∑
�=1

∑
j∈Z

∑
k∈Z

〈f, ψ̃�
j,k〉〈ψ�

j,k, g〉 ∀ f, g ∈ L2(R),(1.12)

where 〈f, g〉 :=
∫

R
f(t)g(t) dt. If (1.12) holds with ψ̃� = ψ� for all � = 1, . . . , L, then

X(Ψ) is a tight wavelet frame in L2(R).

A similar phenomenon also can be found for pairs of bi-frames constructed from
B-splines in [9, 8]. All of these phenomena will be discussed in detail in section 4.
More examples of Riesz wavelets with short support will be given in the last section.
Some of our examples are even from nonspline refinable functions.

2. Riesz spline wavelet bases with short support. In order to show that
the system X(ψ) with ψ defined in (1.8) forms a Riesz basis for L2(R), we need the
following lemma that is a special case of Corollary 3.3.
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Lemma 2.1. Let a be a finitely supported refinement mask for a compactly sup-
ported refinable function φ ∈ L2(R) with â(0) = 1 and â(π) = 0 such that φ̂(0) �= 0
and â can be factorized into the form

â(ξ) =
(1 + e−iξ

2

)m

Â(ξ),

where Â is the Fourier series of a finitely supported sequence A with Â(π) �= 0.
Suppose that

|â(ξ)|2 + |â(ξ + π)|2 �= 0 ∀ ξ ∈ R.

Define

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ)

and

ˆ̃A(ξ) :=
Â(ξ)

|â(ξ)|2 + |â(ξ + π)|2 .

Assume that

ρA := inf
n∈N

‖Ân‖1/n
L∞(R) < 2m−1/2 and ρÃ := inf

n∈N

‖̂̃An‖1/n
L∞(R) < 2m−1/2,

where Ân(ξ) := Â(2n−1ξ) · · · Â(2ξ)Â(ξ) and ̂̃An(ξ) := ˆ̃A(2n−1ξ) · · · ˆ̃A(2ξ) ˆ̃A(ξ). Then
X(ψ) is a Riesz basis for L2(R).

Recall that a function f is in the Sobolev space W β(R) if∫
|f̂(ξ)|2(1 + |ξ|2)βdξ < ∞.

We say that f has the regularity α if f ∈ W β(R) for all β < α. It is well known
that the B-spline Bm of order m has the regularity m− 1/2. A compactly supported
function φ satisfies the Strang–Fix condition of order m if

φ̂(0) �= 0 and φ̂(j)(2πk) = 0 ∀ j = 0, 1, . . . ,m− 1, k ∈ Z\{0}.

Applying Lemma 2.1 to the B-spline functions, we obtain the following result.
Theorem 2.2. Let Bm be the B-spline function of order m with the refinement

mask

â(ξ) = 2−m(1 + e−iξ)m.

Define

ψ̂(2ξ) = 2−me−iξ(1 − eiξ)mB̂m(ξ).(2.1)

Then the following hold:
(i) The function ψ has the regularity m− 1/2 and has m vanishing moments. It

is either symmetric or antisymmetric satisfying ψ = (−1)mψ(1 − ·) and it is
supported on the interval [1/2 −m/2, 1/2 + m/2].
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(ii) X(ψ) forms a Riesz basis for L2(R).
(iii) Among all wavelets (redundant or nonredundant) which have m vanishing

moments and are based on an MRA whose underlying refinable function has
the regularity m− 1/2, the Riesz wavelet ψ has the shortest support.

Proof. Conclusion (i) follows directly from the properties of B-splines and the
definition of ψ.

For (ii), we apply Lemma 2.1. First, it is easy to check that |â(ξ)|2+|â(ξ+π)|2 �= 0
for all ξ ∈ R. Since Â in Lemma 2.1 is 1, clearly, ρA = 1 < 2m−1/2 for all m ∈ N.

The corresponding ˆ̃A in Lemma 2.1 is

ˆ̃A(ξ) =
1

|â(ξ)|2 + |â(ξ + π)|2 =
1

cos2m(ξ/2) + sin2m(ξ/2)
.

To prove that ρÃ < 2m−1/2, we observe that the function fm(x) := xm + (1 − x)m

decreases on [0, 1/2] and increases on [1/2, 1] by f ′
m(x) = m[xm−1 − (1 − x)m−1].

Consequently, we have fm(x) � f(1/2) = 21−m for all x ∈ [0, 1] and m ∈ N. Since
ˆ̃A(ξ) = [f(cos2(ξ/2))]−1, we conclude that ρÃ � ‖ ˆ̃A‖L∞(R) � [f(1/2)]−1 = 2m−1 <

2m−1/2. By Lemma 2.1, X(ψ) is a Riesz wavelet basis for L2(R).
For (iii), since the corresponding refinable function φ has the regularity m−1/2, φ

must satisfy the Strang–Fix condition of order m (see [19, 14]). Hence, φ must be the
convolution of Bm with some function/distribution (see [18, Theorem 3.7]). Hence,
Bm has the shortest support among all refinable functions of the regularity m− 1/2.

For any given MRA-based wavelet with m vanishing moments, since the refinable
function φ satisfies φ̂(0) �= 0, the wavelet mask must have the factor

(1 − eiξ

2

)m

.

This says that in order to have m vanishing moments, the wavelet mask cannot be

shorter than (1−eiξ

2 )m. Altogether, we conclude that ψ defined in (2.1) has the shortest
support among all wavelets (redundant or nonredundant) which have m vanishing
moments and are based on an MRA whose underlying refinable function has the
regularity m− 1/2.

Since it is rare to be able to derive a wavelet of regularity m−1/2 from a multires-
olution whose underlying refinable function has the regularity smaller than m− 1/2,
(iii) in the above theorem essentially says that ψ defined in (2.1) is the shortest sup-
ported MRA-based wavelet having the regularity m− 1/2 and m vanishing moments.

Example 2.3. Let m = 2. Then by (2.1), ψ = 1
2B2(2 ·−1)−B2(2·)+ 1

2B2(2 ·+1).
By Theorem 2.2, X(ψ) is a Riesz basis for L2(R). The Riesz wavelet ψ has 2 vanishing
moments and the regularity 3/2. See Figure 1 for the graphs of the functions B2

and ψ.
Example 2.4. Let m = 3. Then by (2.1), ψ = 1

4B3(2 · −1) − 3
4B3(2·) + 3

4B3(2 ·
+1) − 1

4B3(2 · +2). By Theorem 2.2, X(ψ) is a Riesz basis for L2(R). The Riesz
wavelet ψ has 3 vanishing moments and the regularity 5/2. See Figure 2 for the
graphs of the functions B3 and ψ.

3. Biorthogonal wavelets with infinite masks. In this section, we give a
general form of Lemma 2.1. This not only leads to a proof of Lemma 2.1, but also
leads to a result in a more general setting. This further allows us to connect the
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Fig. 1. The graph of the B-spline B2 (top) and the graph of the wavelet function ψ (bottom)
in Example 2.3. The Riesz wavelet ψ has 2 vanishing moments and the regularity 3/2. The wavelet
system X(ψ) is a Riesz basis for L2(R).

discussions here to the spline tight frame wavelet systems given in [20, 9, 12] and
bi-frame systems in [9, 8], as we will discuss in section 4.

We start with some basic notions. Recall that a function f on R has polynomial
decay if

(1 + | · |)jf ∈ L∞(R) ∀ j ∈ N

and has exponential decay if there exists a positive number β such that

eβ|·|f ∈ L∞(R).

If a function f has polynomial decay or exponential decay, then clearly f ∈ Lp(R) for
all 1 � p � ∞.

Similarly, a sequence a on Z has polynomial decay if∑
k∈Z

(1 + |k|)j |a(k)| < ∞ ∀ j ∈ N,

or equivalently, supk∈Z
(1 + |k|)j |a(k)| < ∞ for all j ∈ N. It is easy to see that a

sequence a has polynomial decay if and only if â ∈ C∞(R).
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Fig. 2. The graph of the B-spline B3 (top) and the graph of the function ψ (bottom) in
Example 2.4. The function ψ has 3 vanishing moments and the regularity 5/2. The wavelet system
X(ψ) is a Riesz basis for L2(R).

For a sequence u on Z and a function f on R, we define

∇u := u− u(· − 1) and ∇f := f − f(· − 1).(3.1)

In general, ∇mu =
∑m

k=0(−1)k m!
k!(m−k)!u(· − k).

The following lemma is similar to [10, Theorem 3.6] and will be needed later.

Lemma 3.1. Let f ∈ L2(R) be a function with polynomial decay and let m be an
arbitrary given positive integer. Then the following statements are equivalent:

(i) f̂ (j)(2πk) = 0 for all k ∈ Z and j = 0, . . . ,m− 1.
(ii) The identity f = ∇mh holds where

h :=

∞∑
k=0

(k + m− 1)!

k!(m− 1)!
f(· − k)(3.2)

has polynomial decay. In particular, h is in L2(R).

Proof. Assume that (i) holds. It is easy to see that (i) is equivalent to
∑

k∈Z
kjf(·−

k) = 0 for all j = 0, . . . ,m − 1. Let h be the function as given in (3.2). Since f has
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polynomial decay, it is easy to see that h is well defined on R. Note that

∇h = h− h(· − 1)

=

∞∑
k=0

(k + m− 1)!

k!(m− 1)!
f(· − k) −

∞∑
k=1

(k + m− 2)!

(k − 1)!(m− 1)!
f(· − k)

= f +
∞∑
k=1

[
(k + m− 1)!

k!(m− 1)!
− (k + m− 2)!

(k − 1)!(m− 1)!

]
f(· − k)

= f +

∞∑
k=1

(k + m− 2)!

k!(m− 2)!
f(· − k)

=

∞∑
k=0

(k + m− 2)!

k!(m− 2)!
f(· − k).

Hence, ∇mh = f by induction on m. Next, we show that h has polynomial decay.
Since f has polynomial decay, there exist positive constants C�, � ∈ N, such that

|f(t)| � C�(1 + |t|)−� ∀ t ∈ R.

Let t � 0 and j ∈ N. Then

(1 + |t|)j |h(t)| �
∞∑
k=0

∣∣∣∣ (k + m− 1) · · · (k + 1)

(m− 1)!

∣∣∣∣ |f(t− k)|(1 + |t|)j

� C�

∞∑
k=0

(k + m− 1)m

(m− 1)!
(1 + |t− k|)−�(1 + |t|)j

� C�

∞∑
k=0

mm(k + 1)m

(m− 1)!
(1 + |t| + k)−�(1 + |t|)j

� C�
mm

(m− 1)!

∞∑
k=0

(1 + |t| + k)m+j−�

� C�
mm

(m− 1)!

∞∑
k=0

(1 + k)m+j−�,

which is finite whenever � > m + j + 1. (Note here that one always can choose such
an � by the definition of the polynomial decay of f .) For t > 0, we first note that

(k + m− 1)!

k!
= (k + m− 1) · · · (k + 1)

(when m = 1, by convention it takes value 1) is a polynomial of degree m− 1 for the
variable k. Then (i) asserts that

0 =

−1∑
k=−∞

(k + m− 1) · · · (k + 1)

(m− 1)!
f(· − k) +

∞∑
k=0

(k + m− 1) · · · (k + 1)

(m− 1)!
f(· − k).

Hence,

h = −
−1∑

k=−∞

(k + m− 1) · · · (k + 1)

(m− 1)!
f(· − k).
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By a similar argument applying to the above identity, we conclude that h must have
polynomial decay for t > 0.

Assume that (ii) holds. This implies that f̂(ξ) = (1− e−iξ)mĥ(ξ), which gives (i).
This completes the proof.

By δ we denote the Dirac sequence on Z such that δ(0) = 1 and δ(k) = 0 for all
k ∈ Z\{0}. The bracket product of two functions f and g in L2(R) is defined to be
(see [13])

[f, g](ξ) :=
∑
k∈Z

f(ξ + 2πk)g(ξ + 2πk), ξ ∈ R.(3.3)

It is well known that 〈f(· − k), g〉 = δ(k) for all k ∈ Z if and only if [f̂ , ĝ] = 1.
Assume that (X(Ψ), X(Ψ̃)) is a pair of bi-frames. If the system (X(Ψ), X(Ψ̃))

further satisfies 〈ψ�
j,k, ψ

�′

j′,k′〉 = δ(� − �′)δ(j − j′)δ(k − k′) for all �, �′ = 1, . . . , L and

j, j′, k, k′ ∈ Z, then (X(Ψ), X(Ψ̃)) forms a pair of biorthogonal wavelet bases in L2(R).
Clearly, if (X(Ψ), X(Ψ̃)) forms a pair of biorthogonal wavelet bases in L2(R), then
both systems X(Ψ) and X(Ψ̃) form a Riesz wavelet basis in L2(R) (see, e.g., [21]).

With Lemma 3.1, we prove the following result on biorthogonal wavelets with
infinite masks.

Theorem 3.2. Let a and b be two sequences on Z satisfying the following two
conditions:

(i) There are positive integers m and m̃ such that â(ξ) = ( 1+e−iξ

2 )mÂ(ξ) and

b̂(ξ) = ( 1−eiξ

2 )m̃B̂(ξ), where A and B are sequences on Z with polynomial

decay satisfying Â(0) = 1 and B̂(π) �= 0.

(ii) The function d̂(ξ) := â(ξ)b̂(ξ+π)− â(ξ+π)b̂(ξ) does not vanish for all ξ ∈ R.
Let

ˆ̃a(ξ) :=

(
1 + e−iξ

2

)m̃
ˆ̃A(ξ), where ˆ̃A(ξ) :=

B̂(ξ + π)

d̂(ξ)
, and

ˆ̃
b(ξ) := − â(ξ + π)

d̂(ξ)
.

(3.4)

Define

φ̂(ξ) :=

∞∏
j=1

â(2−jξ) and
ˆ̃
φ(ξ) :=

∞∏
j=1

ˆ̃a(2−jξ),

ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2) and
ˆ̃
ψ(ξ) :=

ˆ̃
b(ξ/2)

ˆ̃
φ(ξ/2).

Assume that

lim sup
n→∞

‖An‖1/n
�2(Z) < 2m−1/2 and lim sup

n→∞
‖Ãn‖1/n

�2(Z) < 2m̃−1/2,(3.5)

where

Ân(ξ) := Â(2n−1ξ) · · · Â(2ξ)Â(ξ) and ̂̃An(ξ) := ˆ̃A(2n−1ξ) · · · ˆ̃A(2ξ) ˆ̃A(ξ).(3.6)

Then all the functions φ, φ̃, ψ, ψ̃ belong to L2(R) satisfying

〈φ, φ̃(· − k)〉 = 〈ψ, ψ̃(· − k)〉 = δ(k),

〈φ, ψ̃(· − k)〉 = 〈ψ, φ̃(· − k)〉 = 0 ∀ k ∈ Z.
(3.7)
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If we further assume that

(iii) [φ̂, φ̂] ∈ L∞(R) and [
ˆ̃
φ,

ˆ̃
φ] ∈ L∞(R),

(iv) X(ψ) and X(ψ̃) are Bessel in L2(R),
then (X(ψ), X(ψ̃)) forms a pair of biorthogonal wavelet bases in L2(R). In particular,
X(ψ) is a Riesz basis of L2(R).

Proof. The essential part of the proof is to show that the corresponding cascade
algorithms to obtain φ and φ̃ as defined below converge in L2(R). We shall use some
ideas here from the proof of [10, Theorem 4.3], which deals with convergence of vector
cascade algorithms in Sobolev spaces. We use the compactly supported orthonormal
refinable function η that has a support [0, 2 max(m, m̃) + 1] (see [7]) satisfying

η̂(0) = 1, η̂(j)(2πk) = 0 ∀ k ∈ Z\{0} and j = 0, . . . ,max(m, m̃)(3.8)

to obtain the initial seed in the cascade algorithm. Since η and its shifts form an
orthonormal system, [η̂, η̂] = 1, it can be easily verified that (η̂η̂)(j)(0) = δ(j) for all
j = 0, . . . , 2 max(m, m̃). Since ˆ̃a(0) = η̂(0) = 1, by [10, Lemmas 2.2 and 3.4], there
exists a finitely supported sequence c on Z such that

ĉ(0) = 1, 2−j(ˆ̃aĉη̂)(j)(0) = (ĉη̂)(j)(0) ∀ j = 0, . . . ,max(m, m̃)(3.9)

and ĉ(ξ) �= 0 for all ξ ∈ R. In fact, as shown in [10, Lemmas 2.2 and 3.4], the
values ĉ(j)(0), j = 1, . . . ,max(m, m̃) are uniquely determined by the system of linear
equations given in (3.9).

Now, pick the initial seeds φ0 and φ̃0 by φ̂0(ξ) := η̂(ξ)/ĉ(ξ) and
̂̃
φ0(ξ) := ĉ(ξ)η̂(ξ).

Since the sequence c is finitely supported and ĉ(ξ) �= 0 for all ξ ∈ R, we see that

φ0, φ̃0 ∈ L2(R) have exponential decay. Moreover, it is easy to check that [φ̂0,
̂̃
φ0] =

[η̂/ĉ, η̂ĉ] = [η̂, η̂] = 1. The corresponding cascade operators Qa and Qã defined by a
and ã are

Qaf := 2
∑
k∈Z

a(k)f(2 · −k) and Qãf := 2
∑
k∈Z

ã(k)f(2 · −k), f ∈ L2(R).

(3.10)

Let g := Qaφ0 − φ0 and g̃ = Qãφ̃0 − φ̃0. Then

ĝ(ξ) = â(ξ/2)φ̂0(ξ/2) − φ̂0(ξ) = â(ξ/2)η̂(ξ/2)/ĉ(ξ/2) − η̂(ξ)/ĉ(ξ)(3.11)

and

ˆ̃g(ξ) = ˆ̃a(ξ/2)
̂̃
φ0(ξ/2) − ̂̃

φ0(ξ) = ˆ̃a(ξ/2)ĉ(ξ/2)η̂(ξ/2) − ĉ(ξ)η̂(ξ).(3.12)

Since a and ã have polynomial decay, by the fact that the function η is compactly
supported, it follows from (3.11) and (3.12) that both g and g̃ have polynomial decay.

Next, we prove that

ĝ(j)(2πk) = 0 ∀ j = 0, . . . ,m− 1 and k ∈ Z(3.13)

and

ˆ̃g
(j)

(2πk) = 0 ∀ j = 0, . . . , m̃− 1 and k ∈ Z.(3.14)
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First, when k ∈ 2Z\{0}, applying (3.8), we obtain ĝ(j)(2πk) = ˆ̃g
(j)

(2πk) = 0 for all
j = 0, . . . ,max(m, m̃). Second, when k ∈ 2Z+1, since â(ξ) = 2−m(1+e−iξ)mÂ(ξ) and

ˆ̃a(ξ) = 2−m̃(1+e−iξ)m̃ ˆ̃A(ξ), it is easy to see that ĝ(j)(2πk) = 0 for all j = 0, . . . ,m−1

and ˆ̃g
(j)

(2πk) = 0 for all j = 0, . . . , m̃− 1.
Hence, in order to prove (3.13) and (3.14), it suffices to prove the case k = 0. For

(3.14), applying (3.9), one obtains that

ˆ̃g
(j)

(0) = [ˆ̃a(·/2)ĉ(·/2)η̂(·/2) − ĉη̂](j)(0)

= 2−j [ˆ̃aĉη̂](j)(0) − [ĉη̂](j)(0) = 0 ∀ j = 0, . . . ,max(m, m̃).
(3.15)

This gives (3.14).
Next, we prove (3.13). It follows from the definition of ã that

â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) = 1.

This, together with

â(ξ) = 2−m(1 + e−iξ)mÂ(ξ), and ˆ̃a(ξ) = 2−m̃(1 + e−iξ)m̃ ˆ̃A(ξ),

leads to

â(ξ)ˆ̃a(ξ) = 1 + O(|ξ|m+m̃−1) as ξ → 0

and

â(ξ) = (ˆ̃a(ξ))−1 + O(|ξ|m+m̃−1).

Hence, as ξ → 0,

ĝ(ξ) = â(ξ/2)η̂(ξ/2)/ĉ(ξ/2) − η̂(ξ)/ĉ(ξ)

= η̂(ξ/2)η̂(ξ/2) (ˆ̃a(ξ/2)η̂(ξ/2)ĉ(ξ/2))−1 − η̂(ξ)η̂(ξ) (ĉ(ξ)η̂(ξ))−1 + O(|ξ|m+m̃−1)

= (ˆ̃a(ξ/2)η̂(ξ/2)ĉ(ξ/2))−1 − (ĉ(ξ)η̂(ξ))−1 + O(|ξ|max(m,m̃))

= (ˆ̃a(ξ/2)η̂(ξ/2)ĉ(ξ/2))−1(ĉ(ξ)η̂(ξ))−1
[
ĉ(ξ)η̂(ξ) − ˆ̃a(ξ/2)ĉ(ξ/2)η̂(ξ/2)

]
+ O(|ξ|max(m,m̃))

= (ˆ̃a(ξ/2)η̂(ξ/2)ĉ(ξ/2))−1(ĉ(ξ)η̂(ξ))−1ˆ̃g(ξ) + O(|ξ|max(m,m̃))

= O(|ξ|max(m,m̃)).

The third equality follows from |η̂(ξ)|2 = 1 + O(|ξ|max(m,m̃)), and the last equality
holds by (3.15). Therefore, (3.13) holds.

With (3.13) and (3.14), Lemma 3.1 says that there exist two functions h, h̃ ∈
L2(R) with polynomial decay such that g = ∇mh and g̃ = ∇m̃h̃.

Let fn := Qn
aφ0 and f̃n := Qn

ã φ̃0. Then their Fourier transforms are

f̂n(ξ) = φ̂0(2
−nξ)

n∏
j=1

â(2−jξ) and
̂̃
fn(ξ) =

̂̃
φ0(2

−nξ)

n∏
j=1

ˆ̃a(2−jξ).
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One can prove inductively that

fn+1 − fn = Qn
ag = 2n

∑
k∈Z

an(k)[∇mh](2n · −k) = 2n
∑
k∈Z

[∇man](k)h(2n · −k)

(3.16)

and

f̃n+1 − f̃n = Qn
ã g̃ = 2n

∑
k∈Z

ãn(k)[∇m̃h̃](2n · −k) = 2n
∑
k∈Z

[∇m̃ãn](k)h̃(2n · −k),

(3.17)

where ân(ξ) := â(2n−1ξ) · · · â(2ξ)â(ξ) and ̂̃an(ξ) := ˆ̃a(2n−1ξ) · · · ˆ̃a(2ξ)ˆ̃a(ξ).
Since both h and h̃ are L2(R) functions with polynomial decay, we conclude that

both [ĥ, ĥ] and [
ˆ̃
h,

ˆ̃
h] are in L∞(R). Hence, identities (3.16) and (3.17) imply that

there exists a positive constant C such that, for all n ∈ N,

‖fn+1 − fn‖L2(R) � C2n/2‖∇man‖�2(Z) and

‖f̃n+1 − f̃n‖L2(R) � C2n/2‖∇m̃ãn‖�2(Z).
(3.18)

Since

∇̂man(ξ) = (1 − e−iξ)mân(ξ) = 2−mn(1 − e−i2nξ)mÂn(ξ)

and

∇̂m̃ãn(ξ) = (1 − e−iξ)m̃̂̃an(ξ) = 2−m̃n(1 − e−i2nξ)m̃ ̂̃An(ξ),

we have

‖∇man‖�2(Z) � 2m−mn‖An‖�2(Z), and ‖∇m̃ãn‖�2(Z) � 2m̃−m̃n‖Ãn‖�2(Z).

However, (3.5) says that there exist two positive constants ρ with 0 < ρ < 1 and C1

such that

‖An‖�2(Z) � C1ρ
n2(m−1/2)n and ‖Ãn‖�2(Z) � C1ρ

n2(m̃−1/2)n ∀ n ∈ N.(3.19)

Therefore, we deduce from (3.18) that

‖fn+1 − fn‖L2(R) � 2mCC1ρ
n and ‖f̃n+1 − f̃n‖L2(R) � 2m̃CC1ρ

n ∀ n ∈ N.

Since 0 < ρ < 1, both {fn}n∈N and {f̃n}n∈N are Cauchy sequences in L2(R).

Since â(0) = 1 and b̂(π) �= 0, we have ˆ̃a(0) = 1. Hence, limn→∞ f̂n(ξ) = φ̂(ξ)

and limn→∞
̂̃
fn(ξ) =

ˆ̃
φ(ξ) for ξ ∈ R. This leads to limn→∞ ‖fn − φ‖L2(R) = 0 and

limn→∞ ‖f̃n − φ̃‖L2(R) = 0, since both {fn}n∈N and {f̃n}n∈N are Cauchy sequences in
L2(R).

Next, we prove that [φ̂,
ˆ̃
φ] = 1. It is clear that [f̂0,

̂̃
f0] = [φ̂0,

̂̃
φ0] = 1. Using

â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) = 1, one can prove inductively that [f̂n,
̂̃
fn] = 1 for all

n ∈ N. Finally, since limn→∞ ‖fn − φ‖L2(R) = 0 and limn→∞ ‖f̃n − φ̃‖L2(R) = 0, we

must have [φ̂,
ˆ̃
φ] = 1. Therefore, (φ, φ̃) is a pair of refinable functions whose shifts

form a pair of biorthogonal systems.
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We further note that by the definition of ã and b̃, it is easy to verify that

[
â(ξ) â(ξ + π)

b̂(ξ) b̂(ξ + π)

][ˆ̃a(ξ) ˆ̃a(ξ + π)
ˆ̃
b(ξ)

ˆ̃
b(ξ + π)

]T

=

[
1 0
0 1

]
.(3.20)

With all these relations, (3.7) and the rest of the conclusions of this theorem follow
directly from a standard argument in wavelet analysis on biorthogonal wavelets (see
[5, 7, 21].

In the above proof, the assumption that both the sequences A and B have poly-
nomial decay is used only to apply Lemma 3.1 and to show that [ĥ, ĥ] ∈ L∞(R) and

[
ˆ̃
h,

ˆ̃
h] ∈ L∞(R). Checking the proof of Lemma 3.1, we see that such polynomial decay

condition on both A and B can be further weakened.
As a direct consequence of Theorem 3.2, we have the following result.
Corollary 3.3. Let sequences a and b be given in Theorem 3.2, and sequences

ã, b̃, A, and Ã and functions φ, φ̃, ψ, ψ̃ be defined as in Theorem 3.2. Define

ρA := inf
n∈N

‖Ân‖1/n
L∞(R) and ρÃ := inf

n∈N

‖̂̃An‖1/n
L∞(R),(3.21)

where An and Ãn are defined in (3.6). Then for any ε > 0, there exists a positive
constant C such that

max(|φ̂(ξ)|, |ψ̂(ξ)|) � C(1 + |ξ|)−m+ε+log2 ρA ∀ ξ ∈ R(3.22)

and

max(|ˆ̃φ(ξ)|, | ˆ̃ψ(ξ)|) � C(1 + |ξ|)−m̃+ε+log2 ρÃ ∀ ξ ∈ R.(3.23)

Consequently, if ρA < 2m−1/2 and ρÃ < 2m̃−1/2, then (X(ψ), X(ψ̃)) forms a pair of
biorthogonal wavelet bases in L2(R). In particular, X(ψ) is a Riesz basis of L2(R).

Proof. The proof of (3.22) and (3.23) follows from the proof of [7, Lemmas 7.1.1
and 7.1.2]. Note that

lim sup
n→∞

‖An‖1/n
�2(Z) � lim sup

n→∞
‖Ân‖1/n

L∞(R) = inf
n∈N

‖Ân‖1/n
L∞(R)

by ‖An‖�2(Z) � ‖Ân‖L∞(R). Therefore, if ρA < 2m−1/2 and ρÃ < 2m̃−1/2, then it
follows from (3.22) and (3.23) that there exist ε > 0 and C > 0 such that

max(|φ̂(ξ)|, |ψ̂(ξ)|, |ˆ̃φ(ξ)|, | ˆ̃ψ(ξ)|) � C(1 + |ξ|)−1/2−ε

and max(|ψ̂(ξ)|, | ˆ̃ψ(ξ)|) � C|ξ|ε for all ξ ∈ R. Therefore, by [11, Propositions 2.6

and 3.5], both X(ψ) and X(ψ̃) are Bessel. Moreover, it is evident that [φ̂, φ̂] ∈ L∞(R)

and [
ˆ̃
φ,

ˆ̃
φ] ∈ L∞(R). The proof is completed by Theorem 3.2.

For a refinement mask a, define b as

b̂(ξ) = e−iξâ(ξ + π).

Then

d̂(ξ) := â(ξ)b̂(ξ + π) − â(ξ + π)b̂(ξ) = e−i(ξ+π)(|â(ξ)|2 + |â(ξ + π)|2).(3.24)
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Further, the masks ã and b̃ defined in (3.4) take the following form:

ˆ̃a(ξ) =
â(ξ)

|â(ξ)|2 + |â(ξ + π)|2 and
ˆ̃
b(ξ) =

e−iξâ(ξ + π)

|â(ξ)|2 + |â(ξ + π)|2 .(3.25)

Now, it is clear that Lemma 2.1 becomes a special case of Corollary 3.3. The mask
for the B-spline of order m is â(ξ) = 2−m(1 + e−iξ)m. It follows from (3.24) that

d̂(ξ) = e−i(ξ+π)[cos2m(ξ/2) + sin2m(ξ/2)] �= 0 for all ξ ∈ R.
The following result is a direct consequence and a slight modification of Theo-

rem 3.2.
Corollary 3.4. Under the same notations and conditions as in Theorem 3.2,

for any finitely supported sequence c on Z such that ĉ(ξ) �= 0 for all ξ ∈ R, we redefine
the functions ψ and ψ̃ in Theorem 3.2 by

ψ̂(ξ) := ĉ(ξ)b̂(ξ/2)φ̂(ξ/2) and
ˆ̃
ψ(ξ) :=

ˆ̃
b(ξ/2)

ˆ̃
φ(ξ/2)/ĉ(ξ).

Then all the claims in Theorem 3.2 hold.

Proof. Denote b̂new := ĉ(2·)b̂ and
ˆ̃
b
new

=
ˆ̃
b/ĉ(2·). To apply Theorem 3.2, one

observes that

d̂new(ξ) := â(ξ)b̂new(ξ + π) − â(ξ + π)b̂new(ξ)

= ĉ(2ξ)[â(ξ)b̂(ξ + π) − â(ξ + π)b̂(ξ)] �= 0 ∀ ξ ∈ R.

It is easy to see that (3.20) holds with b̂ and
ˆ̃
b being replaced by b̂new and

ˆ̃
b
new

,
respectively. The rest of the proof follows directly from Theorem 3.2.

Remark. As shown in section 2, Riesz spline wavelets ψ, constructed using Theo-
rem 3.2 and its corollaries, have, in some sense, the shortest support for a given order
of smoothness and vanishing moments. However, its dual wavelet systems normally
are not compactly supported and have low smoothness orders. Hence, Riesz wavelets
constructed here may be used only in applications where either the reconstruction
algorithm or the decomposition algorithm is not required. For example, it only needs
the decomposition algorithm in some applications of signal analysis and classification.
On the other hand, in other applications such as image compression, while the decom-
position can be done offline, reconstruction has to be done online. The short supported
reconstruction filter is essential, for example, in computer graphics and numerical al-
gorithms. Furthermore, a fast reconstruction algorithm can be derived by adding a
system X(ψ(· − 1/2)) to X(ψ) to generate a frame system and by using a compactly
supported smooth dual wavelet system of the frame system X(ψ) ∪ X(ψ(· − 1/2)).
The detailed discussion is given at the end of the next section.

4. Connections of Riesz wavelets to spline frame systems. The study
here on Riesz wavelets also provides a better understanding of the structure of spline
tight frame wavelet systems in [20] and [9, 12] by using the unitary extension principle
of [20] and the oblique extension principle of [9] as we shall discuss in this section.

We first briefly describe the constructions of MRA-based tight frames by using
the oblique extension principle in [9], where details can be found. For a given refinable
function φ, with a refinement mask a, one first chooses a 2π-periodic trigonometric
polynomial Θ with Θ(0) = 1, called a fundamental function of the tight frame system,
according to the approximation order of the refinable function φ and the required
approximation order of the tight frame expansion (this is directly related to the order
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of the vanishing moments of frame wavelets). Suppose that a fundamental function
Θ can be chosen so that it satisfies (i) Θ(ξ) � 0 for all ξ ∈ R, and (ii)

H(ξ) := Θ(ξ) − Θ(2ξ)[|â(ξ)|2 + |â(ξ + π)|2] � 0 ∀ ξ ∈ R.(4.1)

The three wavelet masks are then

b̂1(ξ) := eiξθ(2ξ)â(ξ + π), b̂2(ξ) :=

√
2

2
h(ξ), and b̂3(ξ) :=

√
2

2
eiξh(ξ),

where θ and h are the square roots of Θ and H, respectively; that is, θ(ξ)θ(ξ) = Θ(ξ)
and h(ξ)h(ξ) = H(ξ).

Define the frame wavelet set Ψ := {ψ1, ψ2, ψ3} by

ψ̂�(ξ) := b̂�(ξ/2)φ̂(ξ/2), � = 1, 2, 3.(4.2)

Then it was proven in [9] that the system X(Ψ) forms a tight frame system of L2(R)
by using the oblique extension principle (see [9, Proposition 1.11]).

One can reduce the number of frame wavelets to two by defining

b̂1(ξ) := eiξθ(2ξ)â(ξ + π), b̂2(ξ) := â(ξ)h(2ξ).

Then it was proven in [9] that the X(Ψ) with Ψ := {ψ1, ψ2} defined by

ψ̂�(ξ) = b̂�(ξ/2)φ̂(ξ/2), � = 1, 2(4.3)

is again a tight frame wavelet system in L2(R). Note that ψ1 in (4.2) is the same
function as ψ1 in (4.3).

The construction of spline tight frame systems given in [9] starts with the MRA
generated by a B-spline Bm with refinement mask â(ξ) = 2−m(1 + e−iξ)m. The
fundamental function Θ can be chosen according to the needs of the approximation
order of the truncated wavelet system; it satisfies Θ(ξ) > 0 for all ξ ∈ R, and (4.1).
An explicit form of Θ is given in [9, Lemma 3.4]. With Θ, â, and H, it is easy to
obtain the functions defined in (4.2) and (4.3), whose corresponding wavelet systems
form spline tight frame systems of L2(R). In this case, setting ĉ(ξ) = eiξθ(ξ) in
Corollary 3.4 and applying Theorem 2.2, one can show easily that X(ψ1) is a Riesz
basis for L2(R), where ψ1 is defined in either (4.2) or (4.3).

In both spline function sets defined in (4.2) and (4.3), the first function ψ1 is
already able to generate a Riesz basis of L2(R), i.e., X(ψ1) is a Riesz basis of L2(R),
which is an even stronger statement than that X(ψ1) is a frame of L2(R). The first
role of X(ψ2) and X(ψ3) in (4.2) and X(ψ2) in (4.3) is to reduce the condition number
determined by the upper and lower frame bounds of X(Ψ) to be one, so that the whole
system X(Ψ) becomes a tight frame. The second role of other functions in both (4.2)
and (4.3) is to give better dual systems. As we remarked before, the (unique) function
corresponding to the biorthogonal dual of the system X(ψ1) normally has low order of
smoothness with infinite support. With the help of ψ2 and ψ3 in system (4.2) and ψ2

in the system (4.3), the whole system X(Ψ) in both cases becomes a tight frame that
is a self-dual system. All these are obtained at the cost of changing a nonredundant
system X(ψ1) to a redundant system X(Ψ).

We further note that since the wavelet mask b2 in (4.3) vanishes at both 0 and π,

therefore [ψ̂2, ψ̂2](0) = 0. Since ψ2 in (4.3) is compactly supported, ψ2 and its shifts
cannot form a Riesz system. This concludes that X(ψ2) is not a Riesz basis of L2(R).
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The spline tight frame systems constructed above may not be symmetric since
the square root of Θ may not be symmetric. This weak point was overcome in [12]
by an elegant and careful choice of a symmetric θ such that θ2 = Θ is the required
fundamental function satisfying (4.1). Let h be a square root of H and set

b̂1(ξ) := e−iξθ(2ξ)â(ξ + π),

b̂2(ξ) := â(ξ)[h(2ξ) + h(2ξ)]/2,

b̂3(ξ) := â(ξ)[h(2ξ) − h(2ξ)]/2.

Define

ψ̂�(ξ) := b̂�(ξ/2)φ̂(ξ/2), � = 1, 2, 3.(4.4)

Then X(Ψ) with Ψ := {ψ1, ψ2, ψ3} being defined in (4.4) forms a tight frame
system in L2(R) and all the functions ψ1, ψ2, ψ3 are either symmetric or antisymmetric
(see [12] for details). Similarly, X(ψ1) is a Riesz basis for L2(R), but both X(ψ2) and
X(ψ3) cannot be a Riesz basis of L2(R).

Next, we discuss the spline wavelet system given in [20] via the unitary extension
principle of [20]. We discuss the construction from B-splines with an even order. The
other case can be discussed similarly. Let φ be the centered B-spline of order 2m.
Then its refinement mask is â(ξ) := cos2m(ξ/2). We define 2m wavelet masks by

b̂�(ξ) := i2m+�

√
(2m)!

�!(2m− �)!
sin�(ξ/2) cos2m−�(ξ/2), � = 1, . . . , 2m.

Then it was shown in [20] that the 2m functions, Ψ = {ψ1, . . . , ψ2m}, defined by

ψ̂�(ξ) := b̂�(ξ/2)φ̂(ξ/2), � = 1, . . . , 2m,(4.5)

form a tight frame system of L2(R) by using the unitary extension principle ([20,
Corollary 6.7]).

Consider the function ψ := ψ2m(· − 1/2). Then ψ is the function derived from
an MRA generated by the centered B-spline φ with the refinement mask â(ξ) :=
cos2m(ξ/2). The corresponding wavelet mask of ψ is

b̂(ξ) = e−iξ sin2m(ξ/2) = e−iξâ(ξ + π).

Hence, X(ψ) forms a Riesz basis of L2(R) by Theorem 2.2. Since all the other masks

b̂�, 1 � � < 2m, vanish at both 0 and π, a similar discussion as above shows that
X(ψ�), 1 � � < 2m, cannot be a Riesz basis of L2(R).

Here are some remarks on the two extension principles mentioned above; the in-
terested reader can find more details in [20, 9, 2]. Both the unitary extension principle
of [20] and the oblique extension principle of [9] are derived from the characterization
of MRA-based frames given in [20] (also see [11]). The unitary extension principle
leads to the first set of the examples of compactly supported spline tight frames de-
fined in (4.5). As pointed out in [9], the approximation order (see [9] for definitions)
of the truncated tight frame expansion of X(Ψ), where Ψ is defined in (4.5), cannot
be over 2. The attempt to derive spline tight frame systems whose truncated expan-
sions have a better approximation order leads to the oblique extension principle of [9],
which is a generalization of the unitary extension principle. This leads to a systematic
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construction of spline tight wavelet frame systems whose truncated expansion has an
arbitrary preassigned approximation order. Functions defined in (4.2) and (4.3) are
examples of constructions given in [9]. In a similar fashion, [2] obtained the oblique
extension principle independently by an attempt to improve the vanishing moments
of the functions obtained from the unitary extension principle of [20].

In the rest of this section, we discuss some relations between Riesz wavelet bases
constructed in this paper and bi-frames constructed in [8, 9]. In order to do so, let us
recall a result from [8, Corollary 3.4] (also see [9]). Let φ be a compactly supported

refinable function in L2(R) with a finitely supported mask a and φ̂(0) �= 0. For any
finitely supported sequence b on Z such that

b̂(0) = 0 and lim
ξ→π

â(ξ)

b̂(ξ)
= 0,(4.6)

define ψ̂(2ξ) = b̂(ξ)φ̂(ξ); then X({ψ,ψ(· − 1/2)}) forms a wavelet frame in L2(R).
Moreover, there exists {ψ̃1, ψ̃2} of compactly supported functions, which are derived
via the mixed oblique extension principle (see [9]) from an MRA generated by an
arbitrarily chosen compactly supported refinable function φ̃ ∈ L2(R) whose mask
contains the factor (1+ e−iξ)�, where � is the smallest integer that is greater than the

multiplicity of zeros of b̂(ξ) at ξ = 0 such that (X({ψ,ψ(· − 1/2)}), X({ψ̃1, ψ̃2})) is a
pair of bi-frames in L2(R). Since such a pair of bi-frames is MRA-based and all the
wavelet masks are finitely supported, a fast frame transform (see [9]) associated with
the bi-frames for both decomposition and reconstruction of functions is available.

Now let us discuss some relations between Riesz wavelet bases and bi-frames. Let
φ ∈ L2(R) be a compactly supported refinable function with φ̂(0) �= 0 and a finitely
supported mask a such that â(0) = 1 and â(π) = 0. Let b be a finitely supported
sequence on Z such that X(ψ) is a Riesz basis for L2(R), where ψ is defined to be

ψ̂(2ξ) = b̂(ξ)φ̂(ξ). For example, such a wavelet mask b and a function ψ may be
chosen as in Theorem 3.2. In particular, when φ is a B-spline of order m, the wavelet
mask b can be chosen to be

e−iξ
(1 − eiξ

2

)m

.

Since X(ψ) is a Riesz basis for L2(R), the compactly supported function ψ must satisfy

ψ̂(0) = 0 and [ψ̂, ψ̂](0) �= 0. Since φ̂(0) �= 0 and ψ̂(0) = 0, it follows from the definition

ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2) that b̂(0) = 0. On the other hand, we must have b̂(π) �= 0 since

otherwise b̂(0) = b̂(π) = 0 implies [ψ̂, ψ̂](0) = 0, which is a contradiction. Now by
â(π) = 0, it is evident that the wavelet mask b must satisfy the conditions in (4.6). It
follows from our discussion above (see [8, Corollary 3.4]) that X({ψ,ψ(· − 1/2)}) is a
wavelet frame. Note that X({ψ,ψ(·−1/2)}) = X(ψ)∪X(ψ(·−1/2)) with X(ψ) being
a Riesz basis. Moreover, there exists a set {ψ̃1, ψ̃2} of compactly supported smooth
L2 functions which are derived via the mixed oblique extension principle (see [9])
from an MRA generated by an arbitrarily chosen smooth refinable function such that
(X({ψ,ψ(· − 1/2)}), X({ψ̃1, ψ̃2})) forms a pair of bi-frames. For this MRA based bi-
frame pair, one can derive fast decomposition and reconstruction algorithms as given
in [9].

On the other hand, since X(ψ) is a Riesz basis, it has a unique Riesz dual basis,
say X(ψ̃). But the unique Riesz dual wavelet ψ̃, as indicated by Theorem 3.2, is not
compactly supported and has a low order of smoothness. This indicates that X(ψ),
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being a Riesz basis, does not imply that the decomposition (analysis) operator must
have an inverse in a function space other than the space L2(R) that is of interest to
us in this paper, since its dual wavelet may have lower smoothness. Furthermore,
though the decomposition operator may have an inverse in the function space, it may
not have a fast reconstruction algorithm due to the slow decay of the dual masks with
infinite support. However, the above discussions show that by introducing redundancy
into a Riesz wavelet basis X(ψ), one can obtain a compactly supported dual frame
system which has the same smoothness (in some case, it can be extended to a tight
frame wavelet system). Hence, the frame decomposition operator can be invertible in
various function spaces, and a fast decomposition and reconstruction algorithm can
be obtained based on the compactly supported dual frame.

The following example illustrates some of the above discussions. The reader is
referred to [8, 9] for more details on bi-frames.

Example 4.1. Let B3 be the B-spline function of order 3. The refinement mask
for the refinable function B3 is â(ξ) = 2−3(1 + e−iξ)3. Define ψ = 1

4B3(2 · −1) −
3
4B3(2·) + 3

4B3(2 · +1) − 1
4B3(2 · +2), that is, ψ̂(2ξ) = 2−3e−iξ(1 − eiξ)3B̂3(ξ). By

Theorem 2.2, X(ψ) is a Riesz basis for L2(R). The function ψ has 3 vanishing moments
and the regularity 5/2. By Theorem 2.2, its unique Riesz dual basis X(ψ̃) must have
a noncompactly supported generator ψ̃. However, the frame system X(ψ) ∪X(ψ(· −
1/2)) can have a compactly supported smooth dual frame as defined below. We choose
φ̃ = B3. Let b̃1 and b̃2 be two finitely supported sequences on Z given by

b̂1(ξ) :=
(z − 1)3

1920

[
13 (z−6 + z2) + 78 (z−5 + z) + 356 (z−4 + 1)

+ 1226 (z−3 + z−1) + 2334 z−2
]
,

b̂2(ξ) :=
(z − 1)3

960

[
39 (z−4 + z2) + 234 (z−3 + z) + 613 (z−2 + 1) + 948z−1

]
,

where z := e−iξ. Define the dual wavelet functions ψ̃1 and ψ̃2 by

̂̃
ψ1(ξ) =

̂̃
b1(ξ/2)B̂3(ξ/2),

̂̃
ψ2(ξ) =

̂̃
b2(ξ/2)B̂3(ξ/2).

Then it has been proved in [8, 9] that (X({ψ,ψ(· − 1/2)}), X({ψ̃1, ψ̃2})) is a pair
of bi-frames in L2(R). Note that both ψ̃1 and ψ̃2 are compactly supported and
antisymmetric. Moreover, they have the regularity 5/2 and 3 vanishing moments.
See Figure 3 for the graphs of all the functions ψ, ψ̃1 and ψ̃2.

5. Other examples of Riesz wavelets with short support. In this section,
we first show that one can further greatly shorten the support of the Riesz spline
wavelets with the same order of smoothness given in section 2 by reducing the order
of vanishing moments of the wavelets. The second part gives examples which are
derived from interpolatory refinable functions.

Theorem 5.1. Let Bm be the B-spline function of order m. For any integer
m̃ such that m̃ � m log6(8/3) (note that log6(8/3) ≈ 0.5474) and m̃ + m is an even

integer, define ψ̂(2ξ) := eiξ(m−m̃−2)/2( 1−eiξ

2 )m̃B̂m(ξ). Then X(ψ) is a Riesz wavelet
basis in L2(R).

Proof. We use Corollary 3.3. For this, we first note that the refinement mask of the

spline Bm is â(ξ) = ( 1+e−iξ

2 )mÂ(ξ) with Â(ξ) = 1. Let b̂(ξ) := eiξ(m−m̃−2)/2( 1−eiξ

2 )m̃
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Fig. 3. The graphs of the functions ψ and ψ(· − 1/2) (top row) and the graphs of the dual
functions ψ̃1 and ψ̃2 (bottom row) in Example 4.1. All the functions ψ, ψ(· − 1/2), ψ̃1 and ψ̃2

have 3 vanishing moments and the regularity 5/2. The system X(ψ) is a Riesz basis for L2(R) and
(X({ψ,ψ(· − 1/2)}), X({ψ̃1, ψ̃2})) is a pair of bi-frames derived from the B-spline function B3 of
order 3.

and define ψ̂(2ξ) = b̂(ξ)B̂m(ξ). Then

d̂(ξ) := â(ξ)b̂(ξ + π) − â(ξ + π)b̂(ξ)

= e−iξ(−1)(m−m̃−2)/2[cosm+m̃(ξ/2) + sinm+m̃(ξ/2)] �= 0.
(5.1)

The mask ˆ̃a in Theorem 3.2 is

ˆ̃a(ξ) =

(
1 + e−iξ

2

)m̃
ˆ̃A(ξ) with ˆ̃A(ξ) :=

e−iξ(m−m̃)/2

cosm+m̃(ξ/2) + sinm+m̃(ξ/2)
.

Consider fn(x) := xn + (1 − x)n, 0 � x � 1, and n ∈ N. Since f ′
n(x) = n[xn−1 − (1 −

x)n−1], fn decreases on [0, 1/2] and increases on [1/2, 1]. Therefore, fn(x) � fn(1/2)
for all x ∈ [0, 1].

Since fn decreases on [0, 1/4], we have

fn((2x− 1)2)fn(x) � fn(1/2)fn(x) � fn(1/2)fn(1/4) ∀ x ∈ [0, 1/4].

On the other hand, since the map x �→ (2x− 1)2 maps the interval [1/4, 1/2] onto the
interval [0, 1/4], we have

fn((2x− 1)2)fn(x) � fn(1/4)fn(x) � fn(1/2)fn(1/4) ∀ x ∈ [1/4, 1/2].
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By the symmetry of fn on [0, 1], we conclude that

fn((2x− 1)2)fn(x) � fn(1/2)fn(1/4) = 21−n(4−n + 3n4−n)

> 21−3n3n ∀ x ∈ [0, 1], n ∈ N.

Now, since m + m̃ is an even integer, we observe that for all ξ ∈ R,

| ˆ̃A(2ξ) ˆ̃A(ξ)| =
[
f(m+m̃)/2((2 cos2(ξ) − 1)2)f(m+m̃)/2(cos2(ξ/2))

]−1

< 23(m+m̃)/2−13−(m+m̃)/2.

Since 23(m+m̃)/2−13−(m+m̃)/2 � 22m̃−1 for all m̃ � m log6(8/3), we conclude that
ρÃ < 2m̃−1/2 for all m̃ � m log6(8/3). It is clear that ρA = 1 < 2m−1/2. Hence, X(ψ)
is a Riesz basis for L2(R) by Corollary 3.3.

The assumption that m + m̃ is an even integer in Theorem 5.1 is used only to
guarantee that (5.1) holds. A more refined analysis can be employed in Theorem 5.1 to

show that ρÃ � (4/3)(m+m̃)/2 by estimating ˆ̃A3. Therefore, m̃ > m log3(4/3) + log3 2
is enough and log3(4/3) ≈ 0.26186.

Example 5.2. Let m = 4 and m̃ = 2. Define b̂(ξ) = (1 − eiξ)2/4 and ψ̂(2ξ) =

b̂(ξ)B̂4(ξ). Since m+m̃ = 6 is an even number and m̃ > m log3(4/3)+log3 2 ≈ 1.6784,
X(ψ) is a Riesz basis for L2(R). The function ψ has 2 vanishing moments and the
regularity 7/2. See Figure 4 for the graphs of the functions B4 and ψ.

In the following, we consider a continuous refinable function φ that satisfies the
condition φ(k) = δ(k), k ∈ Z. Such a refinable function is called an interpolatory
refinable function. Clearly, the centered piecewise linear B-spline B2 is interpolatory.
However, the higher order B-splines are not interpolatory. Smooth interpolatory
refinable functions can be obtained by a convolution of a B-spline with a distribution.
More precisely, for any positive integer m, the mask a given by

â(ξ) = cos2m(ξ/2)Pm(sin2(ξ/2)),(5.2)

where

Pm(x) :=

m−1∑
j=0

(m− 1 + j)!

j!(m− 1)!
xj , x ∈ R,(5.3)

defines an interpolatory refinable function φ with the refinement mask a in (5.2).
This set of masks for interpolatory refinable functions was provided in [6]. Each

of them is the autocorrelation of a refinement mask of some refinable function whose
shifts form an orthonormal system. Interpolatory masks were constructed first, then
the masks of the compactly supported orthonormal refinable functions were obtained
as a square root of â in [6]. More details about this construction can be found in
[6, 7].

Theorem 5.3. Let m be a positive integer. Let φ be the interpolatory refinable
function with the mask a defined in (5.2). Define ψ̂(2ξ) = e−iξâ(ξ + π)φ̂(ξ). Then
X(ψ) is a Riesz basis in L2(R).

Proof. To apply Lemma 2.1, we first note that

â(ξ) = 2−2m(1 + e−iξ)2mÂ(ξ) with Â(ξ) := eimξPm(sin2(ξ/2)),
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Fig. 4. The graph of the spline B4 (top) and the graph of the function ψ (bottom) in Exam-
ple 5.2. The function ψ has 2 vanishing moments and the regularity 7/2. The system X(ψ) is a
Riesz basis for L2(R).

and

ˆ̃A(ξ) =
Â(ξ)

|â(ξ)|2 + |â(ξ + π)|2 .

Then [7, Lemmas 7.1.7 and 7.1.8] say that ρA � Pm(3/4) � 3m−1 for all m ∈ N

(see [7, p. 226]). Therefore, ρA � 3m−1 < 22m−1/2 for all m ∈ N.
Since the mask of any interpolatory refinable function must satisfy

â(ξ) + â(ξ + π) = 1, ξ ∈ R,

we have |â(ξ)|2 + |â(ξ + π)|2 � 1/2 for all ξ ∈ R. Thus, | ˆ̃A| � 2|Â|. This leads to

ρÃ � 2ρA � 2 × 3m−1 < 22m−1/2 ∀ m ∈ N.

Hence, X(ψ) is a Riesz basis for L2(R) by Lemma 2.1.
Example 5.4. Let φ be the interpolatory refinable function with the mask â(ξ) =

1
2 + 9

16 cos(ξ) − 1
16 cos(3ξ), that is, the mask a is given in (5.2) with m = 2. Define

b̂(ξ) = e−iξâ(ξ + π) and ψ̂(2ξ) = b̂(ξ)φ̂(ξ). By Theorem 5.3, X(ψ) is a Riesz wavelet
basis for L2(R). The function ψ has 4 vanishing moments and the regularity 2.44077.
See Figure 5 for graphs of the interpolatory refinable function φ and the function ψ.
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Fig. 5. The graph of the interpolatory refinable function φ (top) and the graph of the function
ψ (bottom) in Example 5.4. The function ψ has 4 vanishing moments and the regularity 2.44077.
The system X(ψ) is a Riesz basis for L2(R).

The support of the function in Theorem 5.3 can be further shortened by reducing
the order of vanishing moments as shown in the next result.

Theorem 5.5. Let m be a positive integer. Let φ be the interpolatory refinable

function with the mask a given in (5.2). Define ψ̂(2ξ) = (1−eiξ

2 )2φ̂(ξ). Then X(ψ) is
a Riesz basis for L2(R).

Proof. We apply Corollary 3.3. For this, we note that

â(ξ) = 2−2m(1 + e−iξ)2mÂ(ξ) with Â(ξ) := eimξPm(sin2(ξ/2)),

b̂(ξ) := (1 − eiξ)2/4,

and

d̂(ξ) = eiξ[cos2m+2(ξ/2)Pm(sin2(ξ/2))+sin2m+2(ξ/2)Pm(cos2(ξ/2))] �= 0 ∀ ξ ∈ R.

Then ˆ̃a(ξ) = 2−2(1 + e−iξ)2 ˆ̃A(ξ) with

ˆ̃A(ξ) :=
eiξ

cos2m+2(ξ/2)Pm(sin2(ξ/2)) + sin2m+2(ξ/2)Pm(cos2(ξ/2))
.

To apply Corollary 3.3, it remains to estimate ˆ̃A. We note that for positive
numbers a1, a2, a3, a4, it is easy to verify that a1

a2
� a3

a4
implies a1

a2
� a1+a3

a2+a4
� a3

a4
.
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Since Pm(x) =
∑m−1

j=0 cjx
j , where cj := (m−1+j)!

j!(m−1)! > 0, it follows from

c0
c0

� c1(1 − x)

c1x
� · · · � cm−1(1 − x)m−1

cm−1xm−1
=

(1 − x)m−1

xm−1
, x ∈ (0, 1/2],

that

Pm(1 − x)

Pm(x)
� (1 − x)m−1

xm−1
� (1 − x)m

xm
∀ x ∈ (0, 1/2].

In other words, we have xmPm(1− x) � (1− x)mPm(x) for all x ∈ [0, 1/2]. Thus, we
deduce that

(1 − x− x)xmPm(1 − x) � (1 − x− x)(1 − x)mPm(x) ∀ x ∈ [0, 1/2],

which is equivalent to

(1 − x)xmPm(1 − x) − xm+1Pm(1 − x) � (1 − x)m+1Pm(x) − x(1 − x)mPm(x)

∀ x ∈ [0, 1/2].

Hence,

(1 − x)xmPm(1 − x) + x(1 − x)mPm(x) � xm+1Pm(1 − x) + (1 − x)m+1Pm(x)

∀ x ∈ [0, 1/2].

Note that xmPm(1−x) + (1−x)mPm(x) = 1 for all x ∈ [0, 1/2]. For any x ∈ [0, 1/2],
we have

1 = (1 − x + x)[xmPm(1 − x) + (1 − x)mPm(x)]

= [(1 − x)xmPm(1 − x) + x(1 − x)mPm(x)] + [xm+1Pm(1 − x) + (1 − x)m+1Pm(x)]

� 2[xm+1Pm(1 − x) + (1 − x)m+1Pm(x)].

Consequently, by symmetry, we deduce that

xm+1Pm(1 − x) + (1 − x)m+1Pm(x) � 1/2 ∀ x ∈ [0, 1].

Using the above inequality and taking x = cos2(ξ/2), we have

| ˆ̃A(ξ)| = [xm+1Pm(1 − x) + (1 − x)m+1Pm(x)]−1 � 2 ∀ ξ ∈ R.

It follows from the definition of ρÃ that ρÃ � 2 < 22−1/2. Hence, X(ψ) must be a
Riesz basis for L2(R) by Corollary 3.3.

Example 5.6. Let φ be the interpolatory refinable function with the mask â(ξ) =
1
2 + 9

16 cos(ξ) − 1
16 cos(3ξ), that is, the mask a is given in (5.2) with m = 2. Define

b̂(ξ) = (1 − eiξ)2/4 and ψ̂(2ξ) = b̂(ξ)φ̂(ξ). By Theorem 5.5, X(ψ) is a Riesz wavelet
basis for L2(R). The function ψ has 2 vanishing moments and the regularity 2.44077.
See Figure 6 for graphs of the interpolatory refinable function φ and the function ψ.
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NEUMANN PROBLEMS FOR QUASI-LINEAR PARABOLIC
SYSTEMS MODELING POLYDISPERSE SUSPENSIONS∗
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Abstract. We discuss the well-posedness of a class of Neumann problems for n×n quasi-linear
parabolic systems arising from models of sedimentation of polydisperse suspensions in engineering
applications. This class of initial-boundary value problems includes the standard (zero-flux) Neu-
mann condition in the limit as a positive perturbation parameter θ goes to 0. We call, in general, the
problem associated with θ ≥ 0 the θ-flux Neumann problem. The Neumann boundary conditions,
although natural and usually convenient for integration by parts, are nonlinear and couple the dif-
ferent components of the system. An important aspect of our analysis is a time stepping procedure
that considers linear boundary conditions for each time step in order to circumvent the difficulties
arising from the nonlinear coupling in the original boundary conditions. We prove the well-posedness
of the θ-flux Neumann problems for θ > 0 and obtain a solution of the standard (zero-flux) Neumann
problem as the limit for θ → 0 of solutions of the θ-flux Neumann problems. Concerning applica-
tions, the analysis developed here supports a new model for the settling of polydisperse suspensions
forming compressible sediments.
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1. Introduction. We consider the initial-boundary value problem for certain
quasi-linear parabolic systems of the (upper triangular) form

∂tui + ∂xfi(u) =

n∑
j=i

∂x
(
Bij(u)∂xuj

)
, i = 1, . . . , n,(1.1)

where u = (u1, . . . , un)T and (x, t) ∈ Q := (−1, 1) × (0, T ). We consider the initial
condition

u(x, 0) = u0(x), x ∈ Ω := (−1, 1),(1.2)

where u0 = (u01, . . . , u0n)T is a function on Ω for which regularity assumptions are
made below. The so-called θ-flux Neumann boundary conditions are given by

fi(u) −
n∑

j=i

Bij(u)
(
∂xuj ± θ(uj − u±

j (t))
)

= 0, x = ±1, i = 1, . . . , n.(1.3)
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Here, θ > 0 and u± = (u±
1 , . . . , u

±
n )T are functions on (0, T ) for which regularity

assumptions are also stated below. In matrix form, (1.1) and (1.3) read

∂tu + ∂xf(u) = ∂x
(
B(u)∂xu

)
, (x, t) ∈ Q,(1.4)

f(u) −B(u)
(
∂xu± θ(u− u±(t))

)
= 0, x = ±1, 0 < t < T,(1.5)

where we denote f(u) = (f1(u), . . . , fn(u))T and B(u) = (Bij(u))ni,j=1. We impose
the parabolicity condition

Bii(u) ≥ ν > 0, u ∈ Δ, i = 1, . . . , n,(1.6)

and assume that the matrix B(u) is upper triangular, i.e.,

Bij(u) ≡ 0 if i > j.(1.7)

When θ → 0, condition (1.3) reduces to the standard (zero-flux) Neumann bound-
ary condition given by

fi(u) −
n∑

j=i

Bij(u)∂xuj = 0, x = ±1, t ∈ (0, T ), i = 1, . . . , n.(1.8)

We assume that the functions fi(u) and Bij(u) are smooth on the set

Δ :=
{
u ∈ R

n : u1 ≥ 0, . . . , un ≥ 0, u1 + · · · + un ≤ 1
}

(1.9)

and that

u0(x) ∈ Δ, u±(t) ∈ Δ for all x ∈ Ω, t ∈ (0, T ).(1.10)

More precisely, we assume

fi,
∂fi
∂uj

, Bij ,
∂Bij

∂uk
,

∂2Bij

∂uk∂ul
∈ Hβ(Δ), β ∈ (0, 1),(1.11)

where Hβ(Δ) is the space of Hölder continuous functions (with Hölder exponent β)
defined on Δ.

Our interest in problem (1.1), (1.2), (1.8) comes from a mathematical model for
the sedimentation of polydisperse suspensions in engineering applications. This model
will be further analyzed in this paper. Guided by this model, we assume the following
conditions, which are relevant for the invariance of Δ:

fi|ui=0 = 0, i = 1, . . . , n; (f1 + · · · + fn)
∣∣
u1+···+un=1

= 0,(1.12) ⎧⎪⎨
⎪⎩
{Bij

∣∣
ui=0

= μi δij , i, j = 1, . . . , n,

B11

∣∣
u1+···+un=1

= (B12 + B22)
∣∣
u1+···+un=1

= · · · =
∑n

j=1 Bjn

∣∣
u1+···+un=1

,

(1.13)

where δij = 0 for i �= j, δii = 1, and the μi are positive functions defined over the
hyperplanes ui = 0.

We denote by Hk+β([a, b]) the space of the functions on the closed interval
[a, b] whose derivatives up to kth order are Hölder continuous with exponent β. By
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Hα,α/2(Q̄) we denote the space of Hölder continuous functions on Q̄ associated with
the norm

|u|(α)
Q := sup

Q̄

|u(x, t)| + sup
x1,x2∈Ω, t∈[0,T ]

|u(x1, t) − u(x2, t)|
|x1 − x2|α

+ sup
x∈Ω, t1,t2∈[0,T ]

|u(x, t1) − u(x, t2)|
|t1 − t2|α/2

.

Let H2+α,1+α/2(Q) be the space of the functions on Q whose first and second x-
derivatives and the t-derivative belong to Hα,α/2(K) for any compact set K ⊆ Q. For
simplicity, we also write, e.g., v ∈ Hα,α/2(K) for a vector function v = (v1, . . . , vn)T

if all components of v belong to Hα,α/2.
The following theorem states our main result concerning the θ-flux Neumann

problem (1.1)–(1.3).
Theorem 1.1. Let θ > 0 be fixed. Assume that

u0 ∈ H2+β([−1, 1]), u± ∈ H1+β([0, T ]),(1.14)

and that the compatibility conditions

fi
(
u0(±1)

)
−

n∑
j=i

Bij

(
u0(±1)

)(
∂xu0j(±1) ± θ(u0j(±1) − u±

j (0))
)

= 0,

i = 1, . . . , n,

(1.15)

are satisfied. Furthermore, suppose that f(u), B(u), u0, u
± satisfy (1.6), (1.7), and

(1.10)–(1.13). Then, problem (1.1)–(1.3) has a unique classical solution u such that
u ∈ H2+β,1+β/2(Q) and (1.1) is satisfied on Q, u, ux ∈ Hα,α/2(Q̄) for some 0 < α ≤
β, and conditions (1.2), (1.5) are satisfied in the usual sense of continuous functions.
Moreover, u(x, t) ∈ Δ for (x, t) ∈ Q̄.

We also state here our main result for the limit problem (1.1), (1.2), (1.8).
Theorem 1.2. Let f(u) and B(u) be as in Theorem 1.1. Assume u0 ∈ L2(Ω).

Then problem (1.1), (1.2), (1.8) has a solution u(x, t) in the sense that u satisfies
(1.1) in the classical sense in Q, u satisfies (1.2) in the sense that u(·, t) → u0(·) in
L2(Ω) as t → 0, and the boundary condition (1.8) is satisfied in the sense that

lim
h→0

1

h

∫
Ωh±

∫ T

0

(
B(u)ux − f(u)

)
χ(t) dt dx = 0 for all χ ∈ L2(0, T ),(1.16)

where Ωh+ := (1 − h, 1) and Ωh− := (−1,−1 + h). Moreover, u(x, t) ∈ Δ for (x, t) ∈
Q̄.

1.1. Brief outline of the proofs of Theorems 1.1 and 1.2. We briefly
outline the proofs of Theorems 1.1 and 1.2. Concerning Theorem 1.1, we first consider
the approximate problems for ε > 0,

∂tui + ∂xfi(u) =

n∑
j=i

∂x
(
Bij(u)∂xuj

)
+ ε

(
1

n
− ui

)
, i = 1, . . . , n,(1.17)

u(x, 0) = u0ε(x) := (1 − ε)u0(x) +
ε

2n
e, x ∈ Ω, e := (1, . . . , 1)T,(1.18)

fi(u) −
n∑

j=i

Bij(u)
(
∂xuj ± θ(uj − u±

εj(t))
)

= 0, x = ±1, i = 1, . . . , n,(1.19)
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where we define

u±
ε := (1 − ε)u± +

ε

2n
e.

The importance of introducing the perturbed problem (1.17)–(1.19) is related to
the verification of the positive invariance of the region Δ. Indeed, the latter will
follow from conditions (1.12) and (1.13) by proceeding as in [6] and [10]. The new
point here is the argument on the boundary, which, as in [10], evaluates the sign
of the space derivative given by the boundary condition (1.19) by using (1.12) and
(1.13). Once we prove the invariance of Δ, for the subsequent analysis in the time
stepping procedure we may assume f(u) and B(u) to be defined conveniently outside
Δ in order to guarantee the a priori uniform boundedness of the solutions of the step
problems; e.g., we may assume f(u) = 0 and B(u) = ν Id outside a bounded open set
containing Δ, where Id is the identity matrix.

Because of the nonlinear coupling in the boundary condition (1.19), the proof
of Theorem 1.1 requires a time stepping procedure. This consists of linearizing the
boundary condition in each step and thus obtaining the solution for each of the re-
sulting problems. The initial-boundary value problem in the kth step with initial time
t = kΔt, for k ≥ 1, is given by (1.17) plus the value of the solution of the (k − 1)th
step as initial condition, i.e.,

u(x, kΔt) = u[k−1](x, kΔt− 0), x ∈ Ω,(1.20)

and the boundary condition

∂xu± θ
(
u− u±

ε (t)
)

= B
(
u[k−1]

)−1
f
(
u[k−1]

)∣∣
x=±1, t=kΔt−0

, t > kΔt,(1.21)

where by u[k] we denote the solution of the kth step problem. Let us call the problem
just described the kth step problem (1.17), (1.20), (1.21). For k = 0, we may define the
0th step problem (1.17), (1.20), (1.21) as above, agreeing to define u[−1](x, 0) = u0(x).
Since the initial condition (1.20) and the boundary condition (1.21) may not satisfy the
appropriate compatibility conditions, it is not possible to guarantee the well-posedness
of (1.17), (1.20), (1.21). Nevertheless, a solution can always be obtained as the limit
of solutions of well-posed problems obtained through a small regularization of those
initial and boundary conditions enforcing the compatibility conditions. The well-
posedness of the regularized kth step problem (1.17), (1.20), (1.21) is proved exactly
in the same way as that of the similar problem in [10]. We recall that [10] follows
the basic strategy of [13], whose main point is the application of the Leray–Schauder
fixed point theorem, combined with bottom to top recursive a priori estimates similar
to the procedure in [1]. Actually, the most important point in [10] is related to the
regularity at the boundary. In general, in order to prove such regularity (see, e.g.,
[13]), we need to assume a certain smoothness of the coefficients of the second order
terms with respect to one of the independent variables, x, t, which is not possible when
dealing with system (1.17) since, although we assume that B(u) is upper triangular,
we do not assume that the Bij depend only on uk for k ≥ i; rather, they can depend
on all components of u. To surmount this difficulty, we use the idea introduced in
[10], which is to use the good sign of the boundary term resulting from integration by
parts in the crucial estimates.

We then define uΔ(x, t) in Q by assuming T = NΔt and setting uΔ(x, t) :=
u[k](x, t) for (x, t) ∈ Ω × [kΔt, (k + 1)Δt), k = 0, 1, . . . , N . Looking carefully at



NEUMANN PROBLEMS FOR QUASI-LINEAR PARABOLIC SYSTEMS 561

the a priori estimates obtained for the kth step problem (1.17), (1.20), (1.21), k =
0, 1, . . . , N , we show that it is possible to combine the first three, which imply that
uΔ ∈ Hβ,β/2(Q̄) for some β ∈ (0, 1) with the Hölder norm bounded by a constant
independent of ε and Δt, and that for some c > 0, also independent of ε and Δt,∫

Q

(∣∣uΔ
xx

∣∣2 +
∣∣uΔ

x

∣∣4 +
∣∣uΔ

t

∣∣2) dx dt ≤ c.(1.22)

The uniform boundedness of the Hölder norm of uΔ in Hβ,β/2(Q̄) provides the
compactness of the sequence {uΔ} in Hα,α/2(Q̄) for any 0 < α < β, and so we may
make Δt → 0 and extract a subsequence uΔ′

converging to a certain uε in Hα,α/2(Q̄)
for each ε > 0. The limit uε will then satisfy an integral identity which is a weak
formulation for problem (1.17)–(1.19). Using this integral identity and the estimate
obtained from (1.22) we show that uε is in fact the unique smooth solution of (1.17)–
(1.19).

Finally, we make ε → 0 using the relative compactness guaranteed by the regular-
ity of uε, which is uniform with respect to ε. It then follows that any vector function
which is the limit of a converging subsequence of solutions of problem (1.17)–(1.19) is
a classical solution of problem (1.1)–(1.3). Uniqueness follows in a standard way by
taking the difference of the equations for any two solutions, multiplying each equa-
tion resulting from the difference of the corresponding components by the difference
of these components, integrating over Ω, using integration by parts, and making esti-
mates in a bottom-to-top iterative way.

As for Theorem 1.2, we obtain its proof by compactness, taking the limit as θ → 0
of a subsequence of solutions of (1.1)–(1.3) and proving that the limit function verifies
the required properties. As for the uniqueness, no method for proving it is yet known
for the class of regularity to which the solution obtained in this limit process belongs,
in which we miss boundedness of the first space derivative up to the boundary.

Correlated works besides [9, 10] include the following. In the above mentioned
book [13], the theory developed for linear and quasi-linear equations is applied to
quasi-linear systems of type (1.1) (in the multidimensional case) where the nonlinear
diffusion matrix is a scalar multiple of the identity matrix. We also mention the
results of Amann [1] which require fi = fi(ui, . . . , un) and Bij = Bij(ui, . . . , un),
1 ≤ i ≤ j ≤ n, besides (1.6) and the upper-triangularity of B(u), and which assume
uniform boundedness of a certain Hölder norm of the local solution in order to extend
the local solution to all times t > 0.

1.2. Brief description of the contents. This paper is organized as follows.
In section 2, we prove positive invariance of Δ for problem (1.17)–(1.19). In section 3,
we describe our time stepping procedure and obtain a priori estimates in the space of
Hölder continuous functions for the solution of each time step problem. The Leray–
Schauder fixed point theorem is applied in section 4 in order to prove existence of
solutions for the time step problems. We also discuss the independence of some
crucial estimates with respect to the time step Δt and the parameter enforcing the
compatibility conditions at each time step. In section 5, we conclude the proof of
Theorem 1.1 and also give the proof of Theorem 1.2. Finally, in section 6, we derive a
model for polydisperse suspensions that improves an earlier model considered in [3],
which can be cast, by a change of dependent variables, into a form which satisfies,
after the addition of artificial viscosity, the assumptions of Theorem 1.1.
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2. Invariance of the physical domain Δ. In this section we prove the positive
invariance of Δ under the flow of the solution operator for problem (1.17)–(1.19). More
precisely, we have the following result.

Lemma 2.1. Let the hypotheses of Theorem 1.1 hold. Then, if u(x, t) is a classical
solution of problem (1.17)–(1.19) in Q̄, we have u(x, t) ∈ Δ for all (x, t) ∈ Q̄.

Proof. We argue by contradiction. Thus, assume that there is (x, t) ∈ Q̄ such
that u(x, t) /∈ Δ. Let

t0 := inf{ t ∈ [0, T ] : u(x, t) /∈ Δ}.

Since u0 ∈ int Δ, we have t0 > 0. Let x0 ∈ [−1, 1] be such that u(x0, t0) ∈ ∂Δ.
Hence, we have ui(x0, t0) = 0, for some i = 1, . . . , n + 1, where we define un+1 :=
1 − u1 − · · · − un. We discuss separately two different cases: (i) x0 ∈ (−1, 1); (ii)
x0 = ±1. Let us consider first case (i). In this case, for some i ∈ {1, . . . , n + 1}, ui

assumes its minimum value in the region [−1, 1] × [0, t0] at (x0, t0), and so we must
have

uit(x0, t0) ≤ 0, uix(x0, t0) = 0, uixx(x0, t0) ≥ 0.(2.1)

Now, in light of (1.12) and (1.13) we may easily verify that at (x0, t0), the ith equation
from (1.17) reduces to

uit + λiuix = (μiuix)x + εli(ui),(2.2)

where λi and μi are scalar functions of u, μi > 0 by (1.6), li(ui) := ( 1
n − ui) if

i ∈ {1, . . . , n}, ln+1(un+1) = un+1, and the equation for un+1 is obtained from the n
equations of (1.17) in an obvious manner by summation. Hence, by (2.1) we arrive at
a contradiction since the left-hand side of (2.2) is nonpositive, while the right-hand
side is positive. We now consider case (ii) and assume without loss of generality that
x0 = −1. Let i ∈ {1, . . . , n + 1} be such that ui(−1, t0) = 0. Applying (1.12) and
(1.13) to (1.19), we obtain that

uix(−1, t0) < 0,(2.3)

where, again, the equation for i = n+1 is obtained from (1.19) in an obvious manner.
Now, (2.3) gives a contradiction since ui(x, t0) ≥ 0 for all x ∈ [−1, 1]. For x0 = 1 we
obtain a contradiction in a similar way.

In view of the above result, we may assume fi(u) and Bij(u) to be defined as
smooth functions for all u ∈ R

n in such a way that fi(u) ≡ 0 and Bij(u) = νI for
u /∈ U , where U ⊆ R

n is a bounded open cube with faces parallel to the coordinate
axes satisfying Δ ⊆ U . This extension will be needed in what follows, since the
invariance of Δ will not hold, in general, for the approximate solutions constructed
by our time stepping procedure.

3. A time stepping approximation.

3.1. Initial-boundary value problem on short time intervals. In this sec-
tion we construct approximate solutions of (1.17)–(1.19), defining them in a recursive
way for time intervals [kΔt, (k + 1)Δt), k = 0, . . . , N − 1, with T = NΔt. Our one-
parameter approximate solution uΔ(x, t) is a solution of the initial-boundary value
problems, which are defined recursively for (x, t) ∈ Qk := [−1, 1] × [kΔt, (k + 1)Δt)
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and consist of (1.17) with initial and boundary conditions given by

uΔ(x, kΔt) = uΔ(x, kΔt− 0), x ∈ Ω,(3.1)

∂xu± θ
(
u− u±

ε (t)
)

=
[
B(uΔ(kΔt− 0))−1f(uΔ(kΔt− 0))

]
x=±1

, t > kΔt,(3.2)

for k = 1, . . . , N − 1, while, for k = 0, we set

uΔ(x, 0) = u0ε(x), x ∈ Ω,(3.3)

∂xu± θ
(
u− u±

ε (t)
)

= B(u0ε(±1))−1f(u0ε(±1)), t > 0.(3.4)

We remark that the solutions of (1.17), (3.1), (3.2) will in general not be smooth at the
corner points (±1, kΔt), k = 1, . . . , N − 1, since the initial and boundary conditions
at each time step, for t = kΔt, may not be compatible. Nevertheless, we will show
that they can be defined in such a way that they are Hölder continuous in Q̄, smooth
in Q̄ \ {(±1, kΔt) : k = 1, . . . , N − 1}, and that (1.1) is satisfied in the classical sense
in the interior of Q, while (3.1) and (3.2) are satisfied pointwise except at those corner
points. The corresponding problem for k = 0, that is, (1.17), (3.3), (3.4), is well-posed
since here the compatibility conditions at the points (±1, 0) hold by assumption.

3.2. The kth step problem. Here we discuss the solution of the kth step
problem (1.17), (3.1), (3.2), k ≥ 1. The case k = 0 is treated similarly but does not
require regularization of the initial data to enforce compatibility, since this already
holds by assumption. As already mentioned, the solution of (1.17), (3.1), (3.2) is
obtained as a limit of solutions of regularized problems given by (1.17) with the same
boundary condition (3.2) and an initial condition obtained through a regularization
of (3.1) in such a way that the new initial condition is compatible with (3.2) at the
corners (±1, kΔt). Thus, let ζδ ∈ C0(Ω) be such that ζδ is even, ζδ(x) = 1 for
−1 + δ ≤ x ≤ 1 − δ, ζδ(x) = 0 for 1 − δ

3 < |x| ≤ 1, and ζδ is nonincreasing in [0, 1]
with |ζ ′δ(x)| ≤ 2δ−1. We may define regularized initial data by

uΔ
δ (x, kΔt) = ζδ(x)uΔ(x, kΔt− 0) +

(
1 − ζδ(x)

)(
γ−
k,δ χ[−1,0)(x) + γ+

k,δ χ[0,1](x)
)
,

(3.5)

where, as usual, χA denotes the indicator function of the set A and

γ±
k,δ = u±

ε (kΔt) ± 1

θ

[
B
(
uΔ(x, kΔt− 0)

)−1
f
(
uΔ(x, kΔt− 0)

)]
x=±1

.(3.6)

The well-posedness of the regularized kth problem (1.17), (3.2), (3.5) is proved in
[10] for the case when n = 2. The same result for general n is a straightforward
consequence for the case when n = 2. From the results in [10], we easily deduce
that the solution of (1.17), (3.2), (3.5) is bounded in H2+β,1+β/2(K), where K is any
compact set contained in Q̄k\{(−1, kΔt), (1, kΔt)} and Qk := Ω×(kΔt, kΔt+T ), with
β ∈ (0, 1) and the corresponding bound depending, in general, on f,B, T, and K, but
independent of δ, for δ sufficiently small. The latter is clear since the regularization in
(3.5) is visible only for points in a small neighborhood of the corner points (±1, kΔt)
which will not intersect K if δ is small enough.

Using well-known compactness properties of spaces of Hölder continuous functions
we easily obtain a solution of (1.17), (3.1), (3.2) as the limit of a subsequence of the
solutions to (1.17), (3.2), (3.5). The solution of (1.17), (3.1), (3.2) obtained in this
way is not known to belong to a class of well-posedness with respect to this problem
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since we do not know whether its space derivative is bounded in the whole domain
Qk. On closer inspection we choose one such solution, and call it u[k].

The following estimate for the solution of the kth step problem (1.17), (3.1), (3.2)
is an immediate consequence of the assumptions on f and B stated in section 2.

Lemma 3.1. The estimate

∥∥u[k]
∥∥
L∞(Qk)

≤ c(3.7)

holds for some constant c = c(θ) > 0, depending on θ but independent of ε, Δt,
and k.

Proof. By assumption we have f(u) = 0 and B(u) = νI if u /∈ U , where U is a
bounded open cube centered at the origin and containing Δ. Let Ũ ⊃ U be another
bounded open cube with faces parallel to the coordinate and such that

inf
u∈F̃

t∈(0,T )

|u− u±(t)| > 1

θ
sup
u∈U

|B(u)−1f(u)|(3.8)

for any face F̃ of Ũ . The solution of the k-regularized problem (1.17), (3.2), (3.5)
satisfies (3.7) by reasoning similar to that of the proof of Lemma 2.1, with a constant
c determined only by Ũ , and so depending on θ, because of (3.8), but independent of
ε,Δt, k, and δ. Hence, (3.7) also holds for u[k] since it is a pointwise limit of solutions
to (1.17), (3.2), (3.5) as δ → 0.

We collect in the following lemma the a priori integral estimates for the solution
of (1.17), (3.1), (3.2) whose bounds may be taken independent of ε, Δt, and k.

Lemma 3.2. The solution of (1.17), (3.1), (3.2), u[k] satisfies

∫
Ω

∣∣u[k](t)
∣∣2 dx ≤ c,

∫ kΔt+τ

kΔt

∫
Ω

∣∣u[k]
x

∣∣2 dx dt ≤ cτ, 0 < τ ≤ T.(3.9)

Moreover, there exists β ∈ (0, 1), independent of ε, Δt, and k, such that u[k] ∈
Hβ,β/2(Q̄k), with Qk = Ω × (kΔt, kΔt + T ), and

(3.10)

∫
Ω

∣∣u[k]
x (kΔt + τ)

∣∣2 dx + c

∫ kΔt+τ

kΔt

∫
Ω

(∣∣u[k]
xx

∣∣2 +
∣∣u[k]

x

∣∣4 +
∣∣u[k]

t

∣∣2) dx dt
≤ c′

(
τ +

∫ kΔt+τ

kΔt

∫
Ω

∣∣u[k]
x

∣∣2 dx dt
)

+

∫
Ω

∣∣u[k]
x (kΔt)

∣∣2 dx.
The constants c and c′ above are independent of ε,Δt, k.

Proof. It suffices to consider the case when n = 2. In this case, the lemma follows
from Lemmas 2.2, 2.3, 2.4, and 2.5 of [10].

As mentioned above, we define the approximate solution for the problem (1.17)–
(1.19), uΔ(x, t), by setting

uΔ(x, t) = u[k](x, t)

for (x, t) ∈ [−1, 1] × [kΔt, (k + 1)Δt), k = 0, 1, . . . , N − 1.
(3.11)

As a corollary of Lemmas 3.1 and 3.2 we immediately obtain the following lemma.
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Lemma 3.3. The following estimates hold for a constant c > 0 independent of ε
and Δt:

‖uΔ‖L∞(Q) ≤ c,(3.12)

‖uΔ‖Hβ,β/2(Q̄) ≤ c,(3.13) ∫
Q

∣∣uΔ
x

∣∣2 dx dt ≤ c,(3.14) ∫
Q

(∣∣uΔ
xx

∣∣2 +
∣∣uΔ

x

∣∣4 +
∣∣uΔ

t

∣∣2) dx dt ≤ c.(3.15)

Moreover, for all ϕ ∈ C0(R × (−∞, T )) we have∫
Q

(
uΔϕt + f(uΔ)ϕx −B(uΔ)uΔ

x ϕx

)
dx dt +

∫
Ω

u0ε(x)ϕ(x, 0) dx

= ±
∫
{±1}×(0,T )

(
(f(uΔ([t/Δt] Δt)) − f(uΔ))

−
(
B(uΔ([t/Δt] Δt)) −B(uΔ)

)
uΔ
x

)
ϕ(±1, t) dt

± θ

∫
{±1}×(0,T )

B(uΔ)(uΔ − u±
ε (t))ϕ(±1, t) dt.

(3.16)

Proof. The first two estimates follow directly from Lemmas 3.1 and 3.2, while the
last two also follow from these lemmas by summing up from k = 0 to k = N − 1 the
inequalities (3.9) and (3.10), respectively, with τ = Δt. As for (3.16), we first observe
that uΔ satisfies (1.17) in Q, the boundary condition (3.2), for t ∈ [kΔt, (k + 1)Δt),
k = 0, 1, . . . , N − 1, and the initial condition (3.4), for t = 0. Hence, (3.16) follows by
multiplying (1.17) by ϕ, integrating over Q, and using integration by parts.

4. Convergence of the approximate solutions. In this section we discuss
the convergence of the approximate solutions uΔ(x, t). From (3.13) in Lemma 3.3 we
see that the family {uΔ} is compact in Hα,α/2(Q̄) for any 0 < α < β. Hence, we may
extract a subsequence uΔ′

converging to some uε in Hα,α/2(Q̄) as Δt → 0. Also from
Lemma 3.3 we deduce that uε satisfies

‖uε‖L∞(Q) ≤ c,(4.1)

‖uε‖Hβ,β/2(Q̄) ≤ c,(4.2) ∫
Q

|uε
x|2 dx dt ≤ c,(4.3) ∫

Q

(
|uε

xx|2 + |uε
x|4 + |uε

t |2
)
dx dt ≤ c,(4.4)

and, for any ϕ ∈ C0(R × (−∞, T )),∫
Q

(
uεϕt + f(uε)ϕx −B(uε)uε

xϕx

)
dx dt +

∫
Ω

u0ε(x)ϕ(x, 0) dx

= ±θ

∫
{±1}×(0,T )

B(uε)(uε − u±
ε (t))ϕ(±1, t) dt.

(4.5)
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5. Conclusion of the proofs of Theorems 1.1 and 1.2.
Conclusion of the proof of Theorem 1.1. Estimates (4.1)–(4.5) allow for the ap-

plication of Lemmas 2.7, 2.8, and 2.9 of [10] (these lemmas are stated for n = 2, but
they are obviously also valid for general n) to conclude that

uε
x ∈ Hα,α/2(Q̄) and |uε

x|(α) ≤ c(5.1)

for some α ∈ (0, 1) and c > 0 independent of ε. Hence, uε is a classical solution of
(1.17)–(1.19), and by Lemma 2.1,

uε(x, t) ∈ Δ for all (x, t) ∈ Q̄.(5.2)

Making ε → 0, using well-known compactness arguments in spaces of Hölder continu-
ous functions, we may extract a subsequence uε′ converging in Hγ,γ/2(Q̄), 0 < γ < α,
to some u satisfying u, ux ∈ Hα,α/2(Q̄) and u(x, t) ∈ Q̄ for all (x, t) ∈ Q̄, which is a
classical solution of (1.1), (1.2), (1.3). Clearly, we have

u(x, t) ∈ Δ for all (x, t) ∈ Q̄.(5.3)

Uniqueness of u in the class of such solutions is proved by the standard arguments
already mentioned in section 1.

Conclusion of the proof of Theorem 1.2. Let uθ denote the solution of (1.1), (1.2),
(1.3) obtained above. Given any compact subset K ⊆ Q we have

uθ ∈ H2+α,1+α/2(K) and ‖uθ‖H2+α,1+α/2(K) ≤ c(5.4)

for some α ∈ (0, 1) and c = c(K) > 0 independent of θ. Moreover, we also have that
uθ satisfies (5.3) and

‖uθ
x‖L2(Q) ≤ c(5.5)

for some c > 0 also independent of θ. Hence, we may make θ → 0 and extract a
subsequence uθ′

converging in L1(Q) to a certain function u ∈ H2+α,1+α/2(Q), which
satisfies (1.1) in Q. By (5.5) we may choose uθ′

so that uθ′

x ⇀ ux in the weak topology
of L2(Q). It satisfies∫

Q

(
uϕt + f(u)ϕx −B(u)uxϕx

)
dx dt +

∫
Ω

u0(x)ϕ(x, 0) dx = 0(5.6)

for all ϕ ∈ C∞
0 (R×(−∞, T )), which follows from (4.5) by making first ε → 0 and then

θ → 0, and using the above mentioned convergences. Now, (1.16) follows easily from
(5.6) by choosing ϕ = χ(t)ζh(x), with χ ∈ C1

0 ((0, T )), 0 < h < 1/2, and ζh(x) = 1 for
x ∈ [−1 + h, 1 − h], ζh(x) = h−1(1 + x) for x ∈ [−1,−1 + h), and ζh(x) = h−1(1 − x)
for x ∈ (1 − h, 1], and making h → 0. Finally, it also satisfies (1.2) in the sense that

lim
t→0

∫
Ω

∣∣u(x, t) − u0(x)
∣∣2 dx = 0.(5.7)

Indeed, from (5.6) we easily deduce

lim
t→0

∫
Ω

(
u(x, t) − u0(x)

)
ζ(x) dx = 0(5.8)
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for all ζ ∈ C1
0 (R). On the other hand, also from (5.6) we deduce the energy estimate

in a standard way (see, e.g., [13, Chapter III, section 2]),

∫
Ω

|u(x, t)|2 dx +
ν

2

∫ t

0

∫
Ω

|ux(x, s)|2 dx ds ≤
∫

Ω

|u0(x)|2 + c

∫ t

0

∫
Ω

|u(x, s)|2 dx ds,

from which it follows that

lim sup
t→0

∫
Ω

|u(x, t)|2 dx ≤
∫

Ω

|u0(x)|2 dx.(5.9)

On the other hand, from (5.8) and convexity (see, e.g., [17]), we deduce

lim inf
t→0

∫
Ω

|u(x, t)|2 dx ≥
∫

Ω

|u0(x)|2 dx.(5.10)

Now, (5.8), (5.9), and (5.10) imply, as expected, (5.7).

6. Sedimentation of polydisperse suspensions.

6.1. Balance equations and model assumptions. Our interest in the initial-
boundary value problem (1.1), (1.2), (1.8) is motivated by a model of gravity sedimen-
tation of polydisperse suspensions that form compressible sediments. After a change
of variables, which ensures an upper triangular form, this model provides the coef-
ficient functions f1(u), . . . , fn(u) and (Bij(u))i,j=1,...,n. It is a variant of the model
introduced in [3] and will be briefly derived here.

We consider small solid particles belonging to n different species having sizes
d1 ≥ d2 ≥ · · · ≥ dn and densities �1, . . . , �n, where di �= dj or �i �= �j for i �= j,
1 ≤ i, j ≤ n, which are dispersed in a viscous fluid of density �f and viscosity μf . We
consider the solids and the fluid as n + 1 superimposed continuous phases, and start
from the multidimensional mass and linear momentum balances

∂tφi + ∇ · (φivi) = 0, i = 1, . . . , n; ∂tφ−∇ ·
(
(1 − φ)vf

)
= 0,(6.1)

where Φ := (φ1, . . . , φn) is the vector of the local volume fractions of the solid phases,
φ := φ1 + · · · + φn is the total solids volume fraction, and v1, . . . ,vn and vf are
the solids and fluid phase velocities, respectively. Summation over all mass balances
implies ∇ · q = 0, where q := φ1v1 + · · · + φnvn + (1 − φ)vf is the volume average
mixture velocity. Introducing the relative velocities (or slip velocities) ui := vi − vf

for i = 1, . . . , n, we obtain q = φ1u1 + · · · + φnun + vf and

vi = ui + vf = ui + q − (φ1u1 + · · · + φnun), i = 1, . . . , n.

The momentum balance equations for the n solid species and the fluid are

�iφi(∂tvi + (vi · ∇)vi) = ∇ · Ti − �iφigk + mi, i = 1, . . . , n,(6.2)

�f(1 − φ)(∂tvf + (vf · ∇)vf) = ∇ · Tf − �f(1 − φ)gk + mf ,(6.3)

where mi is the interaction force per unit volume between solid species i and the fluid
and mf = −(m1+· · ·+mn). Interaction forces due to solid-solid contacts are assumed
to be negligible compared with the solid-fluid transfer of momentum [5]. Moreover,
Ti denotes the stress tensor of solids phase i, i = 1, . . . , n, Tf that of the fluid, g is
the acceleration of gravity, and k is the upwards directed unit vector.
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We assume that the stress tensors of the solid and fluid phases take the respective
forms Ti = −piI+TE

i , i = 1, . . . , n, and Tf = −pfI+TE
f , where pi denotes the phase

pressure of particle species i, pf that of the fluid, I denotes the identity tensor, and
TE

i and TE
f are the extra (or viscous) stress tensors of particle species i and the fluid,

respectively. Since viscous effects due to the motion of the mixture are not considered
to be dominant for our analysis, we neglect the viscous stress tensors.

The theoretical phase pressures p1, . . . , pn and pf are now expressed in terms of
the pore pressure p and the effective solids stress σe, which can be measured. As in [3],
we assume that σe is a known material-specific function of φ, which satisfies

σe(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
σ′
e(φ) :=

dσe(φ)

dφ

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
(6.4)

where φc is the critical concentration at which the solid particles touch each other.
In this paper, the relationship between the theoretical pressures p1, . . . , pn and pf

and the experimental variables p and σe(φ) slightly differs from the one given in [3].
In that paper, it is argued that the portions of the total pressure p1 + · · ·+ pn + pf =
φp + σe(φ) can be assigned to species i and to the fluid by

pi = φi

(
p + σe(φ)/φ

)
, i = 1, . . . , n; pf = (1 − φ)p.(6.5)

In this work, we do not fix p1, . . . , pn and pf as volume quantities, as expressed
by (6.5); rather, the gradient of the pressure of each phase is specified as a surface
quantity. Thus, the gradients of the solid and fluid phase pressures introduced by the
stress tensors in (6.2) and (6.3) are replaced by the respective expressions

∇pi = φi

(
∇p + ∇σe(φ)/φ

)
and ∇pf = (1 − φ)∇p.(6.6)

Our preference for (6.6) (instead of (6.5)) is in part motivated by the discussion of
sediment diffusivity in section 7.5 of [3], where (6.5) is used. In fact, the numerical
examples of [3] (see also [2]) show a strong differential relative movement of solid
species within the sediment, which is driven by a diffusive term involving the gradient
∇(φi/φ). In particular, as is shown in [3], this term leads to a—probably unrealistic—
equidistribution of the solid species within the sediment at steady state. The model
analyzed herein is nearly the same as that of [3], but it does not include that particular
term, and is expected to predict more realistic results.

We emphasize herein that a polydisperse sedimentation model based on (6.6) is
supported by mathematical analysis, while a detailed quantitative (numerical) com-
parison with the predictions generated by using (6.5) is not within the scope of this
paper. From an experimental point of view, both alternatives (6.5) and (6.6) are
discussed in the literature. Both variants have been scrutinized [21] and considered
in parallel [15], and (6.6) is postulated a priori, for example, in [16]. This ambiguity
is still an unresolved issue, as is emphasized in [18].

Our analysis is valid only for the case of (6.6). In fact, based on (6.5), the final
solid momentum balances would include the additional term ∇((φi/φ)σe(φ)), which
in turn later appears in the “Darcy-type law” expression for the slip velocity (6.10)
as −(σe(φ)/φi)∇(φi/φ). Even in the diffusive flux term, the gradient of φi remains
and precludes recasting the diffusion matrix into an upper-triangular matrix by a
change of variables. This particular form is, however, essential for our treatment.
The introduction of φ = φ1 + · · ·+φn as a new variable requires an extra equation for
φ, which can be generated by summing the equations for φ1, . . . , φn. If (6.5) is used,
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then the resulting equation will involve all variables φ1, . . . , φn, φ, while starting from
(6.6), the resulting equation depends on φ only.

Under the present assumptions, and in particular neglecting the viscous stress
tensors, the momentum balances for the solid and fluid phases become

φi�i
(
∂tvi + (vi · ∇)vi

)
= mi − �iφigk − φi∇p− φi

φ
∇σe(φ),

(1 − φ)�f

(
∂tvf + (vf · ∇)vf

)
= mf − �f(1 − φ)gk − (1 − φ)∇p.

(6.7)

As a result of a dimensional analysis [3, 5] and due to the reduction to one
space dimension, the left-hand sides in (6.7) can be neglected. After applying this
simplification, summation of all equations in (6.7) yields the momentum balance of
the suspension

0 = −�(Φ)gk −∇p−∇σe(φ),(6.8)

where �(Φ) := φ1�1 + · · ·+φn�n +(1−φ)�f is the local density of the mixture. Next,
we insert ∇p of the suspension momentum balance (6.8) into a solids momentum
balance and assume the proportionality mi = (λi(Φ))−1ui for i = 1, . . . , n, where the
mobilities λ1(Φ), . . . , λn(Φ) are given by [3]

λi(Φ) =
d2
i Ṽ (φ)

18μfφi
, i = 1, . . . , n,(6.9)

where μf is the dynamic viscosity of the pure fluid and Ṽ (φ) is a hindered settling
factor. This yields the Darcy-type law

ui = λi(Φ)φi

((
�i − �(Φ)

)
gk − 1 − φ

φ
σ′
e(φ)∇φ

)
(6.10)

for i = 1, . . . , n. Wherever φ ≤ φc, the solid effective stress σ′
e(φ) vanishes, and (6.10)

may be viewed as a generalization of Stokes’ law, while for φ > φc, it represents
a version of Darcy’s law. The hindered settling factor Ṽ (φ) is assumed to satisfy
Ṽ (0) = 1 and Ṽ (1) = 0 and can, e.g., be chosen as [14] Ṽ (φ) = (1 − φ)N−2 for
0 < φ ≤ 1 with N > 2, and Ṽ (φ) = 0 otherwise.

In one space dimension, the volume average velocity q vanishes for batch settling
in a closed vessel. Then, the only equations that actually need to be solved are the
continuity equations ∂tφi + (φivi)x = 0, i = 1, . . . , n, which now assume the form

∂tφi + ∂xf̃i(Φ) =

n∑
j=1

∂x
(
B̃ij(Φ)∂xφj

)
, i = 1, . . . , n,(6.11)

with the functions

f̃i(Φ) = φi

(
d2
i

(
�i − �(Φ)

)
− S̃(Φ)

)
V (φ), i = 1, . . . , n,(6.12)

where, for convenience, we define

V (φ) :=
Ṽ (φ)

18μf
, S̃(Φ) :=

n∑
k=1

φkd
2
k

(
�k − �(Φ)

)
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and use the regularized diffusion matrix

B̃ij := δijν + B̂i(Φ), i, j = 1, . . . , n,(6.13)

where ν > 0 is a viscous regularization parameter, and we define

B̂i(Φ) := φi

(
d2
i −

N∑
k=1

φkd
2
k

)(
1 − φ

φ
σ′

e(φ)

)
V (φ), i = 1, . . . , n.(6.14)

Finally, we mention that a very similar model for polydisperse sedimentation,
which equally gives rise to a parabolic system of type (6.11), was proposed and solved
numerically in a recent paper by Watson, Barker, and Robins [20]. Summarizing the
approaches of [3, 8, 20], one may view the initial-boundary value problem studied
herein as a generic model for polydisperse sedimentation.

Remark. The diffusion constant ν > 0 represents the hydrodynamic diffusion of
the solids phases. This phenomenon is based on the observation that in reality, solid
particles at a given concentration vector Φ do not settle at precisely the same velocity.
A detailed account of this variability is given in section 7.4 of [3], but its main effect
(as compared to nondiffusive models, e.g., those studied in [3, 4, 5]) is a blurring of
otherwise sharp concentration discontinuities. This effect can be most easily modeled
by the simple diffusion constant introduced here. In fact, Esipov [8] proposes a similar
diffusive model that is approximated by constant diffusivities. The identification of
nonlinear but positive diffusion functions accounting for hydrodynamic diffusion is,
however, a topic of current research; see, e.g., [5, 7, 11, 12, 19] and the references cited
in these papers.

6.2. Initial and boundary conditions. We consider batch settling of a sus-
pension with a given initial composition Φ0(x) in a closed cylindrical vessel, where
the height of the suspension column has been normalized to 2 and x ∈ [−1, 1] is the
corresponding downwards-decreasing depth variable. Thus, we prescribe the initial
condition

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ0
n(x)

)T ∈ Δ̃, x ∈ [−1, 1],(6.15)

where

Δ̃ :=
{
Φ ∈ R

n : φ1 ≥ 0, . . . , φn ≥ 0, φ1 + · · · + φn ≤ 1
}

(6.16)

is the phase space of the original variables. At x = −1, the suspension surface is
located and at x = 1 the vessel bottom is located. Both levels give rise to zero-flux
boundary conditions, which means that all solids fluxes through x = −1 and x = 1
vanish:

(φivi)|x=−1 = (φivi)|x=1 = 0, i = 1, . . . , n.(6.17)

Equations (6.11) represent the solids continuity equations; therefore

φivi = f̃i(Φ) −
n∑

m=1

B̃im(Φ)∂xφm, i = 1, . . . , n,(6.18)

and the boundary conditions (6.17) can be written as the zero-flux or Neumann bound-
ary conditions (

f̃i(Φ) −
n∑

m=1

B̃im(Φ)∂xφm

)∣∣∣∣
x=±1

= 0.(6.19)



NEUMANN PROBLEMS FOR QUASI-LINEAR PARABOLIC SYSTEMS 571

Thus, (6.11), (6.15), (6.19) is the relevant initial-boundary value problem in our
application.

6.3. Transformation to upper-triangular form. The analysis of sections 1–
5 applies to our model if we change variables such that the resulting diffusion matrix
becomes upper triangular. To this end, we rewrite the model in terms of the new
variables u = (u1, . . . , un)T defined by

u1 := φ1, . . . , un−1 := φn−1, un := 1 − φ = 1 − (φ1 + · · · + φn).(6.20)

The phase space Δ is then as defined in (1.9). With a slight abuse of notation, let us
define

�(u) = �(Φ) := u1(�1 − �n) + · · · + un−1(�n−1 − �n) + (1 − un)�n + un�f

and S(u) = S̃(Φ). Noting that the quantity 1 − φ satisfies the equation

∂t(1 − φ) − ∂x

(
n∑

i=1

f̃i(Φ)

)
= −∂x

{
ν

n∑
i=1

∂xφi +

n∑
i=1

B̂i(Φ)

(
n∑

m=1

∂xφm

)}

= ν∂2
x(1 − φ) + ∂x

([
n∑

i=1

B̂i(Φ)

]
∂x(1 − φ)

)
,

(6.21)

we then obtain, after the change of variables (6.20),

fi(u) = ui

(
d2
i (�i − �(u)) − S(u)

)
V (1 − un), i = 1, . . . , n− 1,

fn(u) = −unS(u)V (1 − un),
(6.22)

where

S(u) :=

n−1∑
i=1

uid
2
i

(
�i − �(u)

)
+
(
1 − (u1 + · · · + un))d2

n(�n − �(u)
)
.

We easily see that (1.12) is satisfied. Defining

d2(u) :=

n∑
i=1

φid
2
i =

(
1 − (u1 + · · · + un)

)
d2
n +

n−1∑
i=1

uid
2
i ,

in view of (6.21) and

∂tφi + ∂xf̃i(Φ) = ∂x

(
ν∂xφi − B̂in(Φ)∂x(1 − φ)

)
, i = 1, . . . , n− 1,(6.23)

we see that the new diffusion matrix (Bij)1≤i,j≤n is given by

Bii = ν, i = 1, . . . , n− 1,

Bin = −ui(d
2
i − d2(u))

un

1 − un
σ′
e(1 − un)V (1 − un), i = 1, . . . , n− 1,

Bnn = ν + d2(u)
u2
n

1 − un
σ′
e(1 − un)V (1 − un),

(6.24)

and Bij = 0 otherwise. Note that the matrix has nonzero entries on its diagonal
and in its last column only (as a special case of a triangular matrix). Satisfaction of
conditions (1.13) can easily be verified.
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The original problem is recast in the new variables, which means that we refer
to system (1.1) with the flux vector f and the matrix B given by (6.22) and (6.24),
respectively, and use the initial datum

u(x, 0) = u0(x) :=
(
φ0

1(x), . . . , φ0
n−1(x), 1 − (φ0

1(x) + · · · + φ0
n(x))

)T ∈ Δ, x ∈ Ω,

where φ0
1(x), . . . , φ0

n(x) are the initial solids concentrations. Finally, it is easy to check
from (6.19) and (6.21) that for the variables u1, . . . , un, the boundary conditions are
again the Neumann (zero-flux) conditions

(
fi(u) −

n∑
m=1

Bim(u)∂xum

)∣∣∣∣
x=±1

= 0.(6.25)
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LOCALIZED TIGHT FRAMES ON SPHERES∗

F. J. NARCOWICH† , P. PETRUSHEV‡ , AND J. D. WARD†

Abstract. In this paper we wish to present a new class of tight frames on the sphere. These
frames have excellent pointwise localization and approximation properties. These properties are
based on pointwise localization of kernels arising in the spectral calculus for certain self-adjoint
operators, and on a positive-weight quadrature formula for the sphere that the authors have recently
developed. Improved bounds on the weights in this formula are another by-product of our analysis.
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1. Introduction. Frames were introduced in the 1950s by Duffin and Schaeffer
[4] to represent functions via over-complete sets. Let H be a Hilbert space with norm
‖ · ‖ and inner product 〈·, ·〉. In that case, a set {ψj}j∈J is a frame if there are
constants c, C > 0 such that for all f ∈ H

c‖f‖2 ≤
∑
j∈J

|〈f, ψj〉|2 ≤ C‖f‖2.

The smallest C and largest c are called upper and lower frame bounds. If C = c, we
say the frame is tight. If C = c = 1, then the frame is normalized, and if in addition
‖ψj‖ = 1 for all j, then the frame is an orthonormal basis.

Frames, including tight ones, arise naturally in wavelet analysis on R
n when

continuous wavelet transforms are discretized. They provide a redundancy that helps
reduce the effect of noise in data, and they have been constructed, studied, and
employed extensively in both theoretical and applied problems [1, 2, 6, 7, 10, 12].

Tight frames are similar in many respects to orthonormal wavelet bases; decom-
posing and synthesizing a signal or image from known data are tasks carried out with
the same set of functions, the ones in the frame or in the basis. A feature that makes
one frame preferable to another is simultaneous localization of the frame functions in
both space and frequency. Frames with this feature have been successfully developed
in R

n [1, 2].
On S

n, the n-dimensional unit sphere in R
n+1, various types of both wavelets and

frames have been constructed and used; see [8, 13, 16, 21] for references and more
discussion. Tight, well-localized frames are another matter.

The purpose of this paper is to construct and study a class of well-localized, com-
putationally implementable, tight frames on S

n. Central to this construction is a key
result of this paper, Theorem 3.5. This result concerns pointwise localization for a
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family of kernels for certain operators on S
n; the family depends on a parameter and

localization increases as the parameter becomes small. The frame functions, which
are compactly supported in the frequency domain, are constructed from such ker-
nels. This construction has an interesting connection to wavelet masks, which we will
point out below. Another application of our localization result, one that is essential to
turning the frame functions into a tight frame—that is, a hierarchical, multiresolution
setting—is an improved positive-weight quadrature formula for S

n, where the weights
have known bounds. This quadrature formula is used for discretization purposes. In
addition to Theorem 3.5, the main results of this paper are Proposition 5.1, Theo-
rem 5.2, and Corollary 5.3. The first of these concerns the approximation power of
the frames, the second shows that the frames are tight, and the third shows that the
frame functions have excellent spatial localization.

The frame functions and quadrature formula are of interest in their own right. In
particular, they can be used in the construction and characterization of many of the
classical Banach spaces, including Lp(Sn), Besov spaces, and Triebel–Lizorkin spaces
[18]. We mention also that the operator-theoretic approach that we use here may
provide a foundation for extending our results to other Riemannian manifolds.

Strategy. The best way to view our method for constructing frames is to take
an operator-theoretic approach. Let Eλ be the (right-continuous) spectral family for
an unbounded, nonnegative, self-adjoint operator L defined on a Hilbert space H.
Thus, L =

∫∞
0− λdEλ. On the sphere S

n, this will be related to the square root of
the Laplace–Beltrami operator shifted by a constant. For now, that connection isn’t
required.

We wish to decompose the spectral family in a way reminiscent of the decompo-
sition of frequency space used by Meyer [10, 12] in connection with the construction
of his wavelets. For this, we need a function a ∈ C(R), with support in [12 , 2], and
satisfying |a(t)|2 + |a(2t)|2 ≡ 1 on [12 , 1]. Such a function can be easily constructed
out of an orthogonal wavelet mask m0 [2, section 8.3]. In fact, if m0(ξ) ∈ Ck+1, then
a(t) := m0(π log2(t)) on [12 , 2], and 0 otherwise, is a Ck function that satisfies the
appropriate criteria.

Define b ∈ C(R) by

b(t) :=

{
1, t ≤ 1,

a(t)ã(t), t > 1.
(1)

Using the properties of a we see that
∑J

j=−∞ |a(t/2j)|2 = b(t/2J) if t > 0 and is 0 if
t ≤ 0. Integrating both sides above with respect to dEλ and using the spectral calculus
for L, we obtain

∑J
j=−∞ a(L/2j)a(L/2j)∗ = b(L/2J) − E0. Define the operators,

Aj = a(L/2j),(2)

BJ := b(L/2J),(3)

and note that the relationship derived above becomes
∑J

j=−∞ AjA
∗
j = BJ − E0. Fi-

nally, it is easy to show that the strong limit of BJ as J → ∞ is I, the identity. Taking
limits above then yields

∑∞
j=−∞ AjA

∗
j = I − E0.

We now can use this identity to define decomposition and reconstruction operators
for f ∈ H, which are, respectively,

f → wj = A∗
jf and f = E0f +

∞∑
j=−∞

Ajwj .
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Proposition 1.1. For any a ∈ C(R) satisfying the conditions above, the operator
frame that we have constructed is tight in the sense that

‖f‖2 = ‖E0f‖2 +

∞∑
j=−∞

‖A∗
jf‖2.

In addition, we have that 〈wj , wj′〉 = 0 for |j − j′| ≥ 2, where wj = A∗
jf .

Proof. This follows immediately from the decomposition and reconstruction for-
mulas above, the properties of a and of the spectral family.

Note that the decomposition arrived at above is nearly orthogonal. The level j
decomposition wj is not orthogonal to wj±1, but it is orthogonal to the decomposition
at all other levels.

As we pointed out above, when we deal with the sphere S
n, we will take L

proportional to Ln :=
√
λ2
n − ΔSn , where λn := n−1

2 . Notation and background
pertinent to this operator, spherical harmonics, and related topics can be found in
section 2.1.

In section 2.2, we show that with this choice of L the decomposition operator A∗
j

is given in terms of a kernel Aj(ξ ·η), ξ, η ∈ S
n, which is a polynomial in ξ ·η. Using the

addition theorem for spherical harmonics, one can see that the level j decomposition
wj(η) = 〈f(ξ), Aj(ξ · η)〉Sn is a finite sum of spherical harmonics.

In the reconstruction phase, we need to find Ajwj(ω) = 〈wj(η), Aj(ω · η)〉Sn . The
integrand in this inner product is also a finite sum of spherical harmonics. At this
point, the order of the spherical harmonics is such that we can compute the integral
exactly using a quadrature formula introduced in [14, 15] and, in section 4, developed
into the tool we need here. The point is that the frame functions have the form
ψj,ξ(η) =

√
cj,ξAj(η · ξ), where the cj,ξ and ξ ∈ Xj are weights and nodes for the

quadrature formula appropriate to level j. The details are given in section 5.
What makes these frame functions special is that they have excellent pointwise

localization properties. These properties follow from the results on pointwise local-
ization of certain kernels, given in section 3.

2. Near-orthogonal spectral decomposition for S
n.

2.1. Background and notation for S
n.

Centers and decompositions of S
n. Let X be a finite set of distinct points in

S
n; we will call these the centers. There are several important quantities associated

with this set: the mesh norm, hX = supy∈Sn infξ∈X d(ξ, y), where d(·, ·) is the geodesic

distance between points on the sphere; the separation radius, qX = 1
2 minξ �=ξ′ d(ξ, ξ

′) ;
and the mesh ratio, ρX := hX/qX ≥ 1.

For ρ ≥ 1, let Fρ = Fρ(S
n) be the family of all sets of centers X with ρX ≤ ρ ;

we will say that the family Fρ is ρ-uniform. Unless confusion would arise, we will not
indicate S

n, and just use Fρ to designate a family. The specific sphere S
n will be clear

from the context. We will also say that a set of centers X is ρ-uniform if X ∈ Fρ.
It is possible to show that for every ρ ≥ 2 there exist nonempty ρ-uniform families
for any S

n and that they contain sets of centers X for which hX becomes arbitrarily
small. The result is stated below. For a proof of the facts mentioned here as well as
further discussion, see [19, section 2].

Proposition 2.1 (see [19, Proposition 2.1]). Let ρ ≥ 2 and let Fρ be the
corresponding ρ-uniform family. Then, there exists a sequence of sets Xk ∈ Fρ,
k = 0, 1, . . . , such that the sequence is nested, Xk ⊂ Xk+1, and such that at each step
the mesh norms satisfy 1

4hXk
< hXk+1

≤ 1
2hXk

.
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We will need to consider a decomposition of S
n into a finite number of nonover-

lapping, connected regions Rξ, each containing an interior point ξ that will serve for
function evaluations as well as labeling. For example, if X is the Voronoi tessellation
for a set of centers X, then we may take Rξ to be the region associated with ξ ∈ X. In
any case, we will let X be the set of the ξ’s used for labels and X = {Rξ ⊂ S

n | ξ ∈ X}.
In addition, let ‖X‖ = maxξ∈X{diam(Rξ)}. Du, Gunzburger, and Ju [3] construct a
very interesting Voronoi tessellation in which ξ ∈ X is the centroid of Rξ ∈ X .

Spherical harmonics. We turn to the situation in which the underlying Hilbert
space is H = L2(Sn), with dμ being the usual measure on the n-sphere. Throughout
the paper, we will let λn := n−1

2 and {Y�,m : 	 = 0, 1, . . . ,m = 1 . . . dn� } be the usual
orthonormal set of spherical harmonics [17, 24] associated with S

n, where for n ≥ 2,

dn� =
	 + λn

λn

(
	 + n− 2

	

)
�→∞∼ 	n−1

λn(n− 2)!
.(4)

Denote by H� the span of the spherical harmonics with fixed order 	, and let ΠL =⊕L
�=0 H� be the span of all spherical harmonics of order at most L. The orthogonal

projection P� onto H� is given by

P�f =

dn
�∑

m=1

〈f, Y�,m〉Y�,m.(5)

Using the addition formula for spherical harmonics, one can write the kernel for this
projection as

P�(ξ, η) =

dn
�∑

m=1

Y�,m(ξ)Y�,m(η) =
	 + λn

λnωn
P

(λn)
� (ξ · η),(6)

where λn = n−1
2 and P

(λn)
� is the ultraspherical polynomial of order λn and degree 	.

We regard S
n as being the unit sphere in R

n+1, and we let the quantity ξ · η denote
the usual “dot” product for R

n+1.
On the sphere, an operator K with a kernel of the form K(ξ · η) can be written

as a convolution on S
n; that is, Kf = K ∗ f , where

K ∗ f(ξ) =

∫
Sn

K(ξ · η)f(η)dμ(η).

Because of the form of the convolution, these operators commute with rotations.
Depending on the properties of the kernel, one may (and will!) apply these operators
to spaces other than L2(Sn).

The spherical harmonic Y�,m is an eigenfunction corresponding to the eigenvalue
−	(	 + n− 1) = λ2

n − (	 + λn)2 for Laplace–Beltrami operator ΔSn on S
n. It follows

that 	 + λn is an eigenvalue corresponding to the eigenfunctions Y�,m ,m = 1 . . . dn� ,
of the pseudodifferential operator

Ln :=
√

λ2
n − ΔSn =

∞∑
�=0

(	 + λn)P�.(7)

2.2. Operator frames and their kernels on S
n. We now turn to the oper-

ators Aj defined in (2), when the underlying Hilbert space is H = L2(Sn) and L is
proportional to the self-adjoint operator Ln given by (7). It is convenient to normalize
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the Ln’s when n ≥ 2 so that the lowest eigenvalue in the spectrum is in the interval
[1, 2). To do that, let jn = log2�λn� for n ≥ 2 and let j1 = 0. We will work with
L → 2−jnLn. Thus, Aj = a(2−j−jnLn), where the properties of a ∈ C(R) are discussed
in section 1. The spectral measure for 2−jnLn is dEλ =

∑∞
�=0 P�δ

(
λ− 2−jn(	 + λn)

)
,

where the P�’s are the projections defined in (5) and have kernels given in (6). We
can write the Aj ’s in kernel form:

Aj(ξ · η) =

{ 1
π

∑∞
�=1 a(2

−j	) cos(	θ), n = 1, ξ · η = cos θ,∑∞
�=0 a

(
�+λn

2j+jn

)
�+λn

λnωn
P

(λn)
� (ξ · η), n ≥ 2, jn = �log2(λn)�.

(8)

The operator BJ = b(2−J−jnLn), with b defined in (1), has the kernel

BJ(ξ · η) =

{ 1
2π b(0) + 1

π

∑∞
�=1 b(2

−J	) cos(	θ), n = 1, ξ · η = cos θ∑∞
�=0 b

(
�+λn

2J+jn

)
�+λn

λnωn
P

(λn)
� (ξ · η), n ≥ 2, jn = �log2(λn)�.

(9)

Taking into account the support of a, when n ≥ 2 in these operators it is easy to see
that BJ =

∑J
j=0 AjA

∗
j . For n = 1, the projection P0 enters and BJ = P0+

∑J
j=0 AjA

∗
j .

We will study and establish various properties of operator kernels similar to these
in section 3. In section 5 we will discuss how these give rise to tight frames on S

n and
discuss approximation properties of these frames.

3. Localization of kernels on S
n. We want to study the localization properties

of operator kernels related to the Laplace–Beltrami operator ΔSn on the sphere. As
we did earlier, let Ln :=

√
λ2
n − ΔSn and let κ(t) ∈ Ck(R), with k ≥ max{2, n − 1},

be even and satisfy

|κ(r)(t)| ≤ Cκ(1 + |t|)r−α for all t ∈ R, r = 0, . . . , k,(10)

where α > n + k and Cκ > 0 are fixed constants. We remark that all compactly
supported, even Ck functions satisfy (10), as do even functions in the Schwartz class
S. Even functions in S satisfy (10) for arbitrarily large k and α. Define the family of
operators

Kε,n := κ(εLn) =

∞∑
�=0

κ(ε(	 + λn))P�, 0 < ε ≤ 1,

along with the associated family of kernels

Kε,n(ξ · η︸︷︷︸
cos θ

) :=

{ 1
2πκ(0) + 1

π

∑∞
�=1 κ(ε	) cos 	θ, n = 1,∑∞

�=0 κ(ε(	 + λn)) �+λn

λnωn
P

(λn)
� (cos θ), n ≥ 2,

(11)

where cos θ = ξ · η and 0 < ε ≤ 1.
Our aim in this section is to obtain uniform bounds on the kernel Kε(ξ · η) for

small ε, with the bounds being explicitly dependent on ε.
The simple estimates given below in section 3.1 on the terms in the series used to

define the kernels Kε,n confirm that, under mild conditions, these series are uniformly
convergent. Let n ≥ 2. Consider the ultraspherical identity [25, (4.7.14)] with λ = λn,
d
dxP

(λn)
� (x) = 2λnP

(λn+1)
�−1 (x). Since λn + 1 = λn+2 and ωn = λn+2ωn+2/π, we have,

for 	 ≥ 1,

d

dx

{(
	 + λn

λnωn

)
P

(λn)
� (x)

}
= 2π

(
	− 1 + λn+2

λn+2ωn+2

)
P

(λn+2)
�−1 (x).
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Multiply both sides by κ(ε(	+λn)) and sum on 	 from 1 to ∞. Adjust the summation

index on the right side and on the left use d
dxP

(λn)
0 (x) = 0 to arrive at the identity

below, which holds even when n = 1:

d

dx
Kε,n(x) = 2πKε,n+2(x).(12)

3.1. Convergence issues and an L∞ estimate on Kε,n. The series defining
the kernels are uniformly and absolutely convergent, by the M -test. This is easy to
see for n = 1. For n ≥ 2, start with the bound [25, (4.7.3) and (7.33.1)]

|P (λn)
� (cos θ)| ≤

(
	 + n− 2

	

)
= P

(λn)
� (1),(13)

and note that

	 + λn

λn

(
	 + n− 2

	

)
≤ 2

(
	 + n− 1

	

)
≤ 2(1 + 	)n−1.

From this and the assumptions on κ(t), the terms in the series satisfy the bound

|κ(ε(	 + λn))|	 + λn

λnωn

∣∣P (λn)
� (cos θ)

∣∣ ≤ 2Cκ(1 + 	)n−1

ωn(1 + ε(	 + λn))α
≤ 2Cκε

−(n−1)

ωn(1 + ε	)α−n+1
,

which suffices for the M -test, since α > n + k ≥ n + 2 implies the series on the right
above is convergent. Note that the estimate holds even when n = 1, provided the
terms on the right are properly adjusted.

It is easy to take this a step further and obtain an estimate on ‖Kε,n‖∞, which
we will need later on anyway.

Proposition 3.1. If κ satisfies (10), then

‖Kε,n‖∞ ≤ 3Cκ

ωn
ε−n.(14)

Proof. From the series definition of the kernel and the estimate on each term, we
get this chain of inequalities:

‖Kε,n‖∞ ≤
∞∑
�=0

2Cκε
−(n−1)

ωn(1 + ε	)α−n+1

≤ 2Cκε
−(n−1)

ωn
+

∫ ∞

0

2Cκε
−(n−1)du

ωn(1 + εu)α−n+1

≤ 2Cκε
−n

ωn

(
ε +

1

α− n

)

Using ε ≤ 1 and α− n > k ≥ 2 in the previous inequality and simplifying, we obtain
(14).

3.2. Integral representations. We now wish to obtain integral representations
for the kernels Kε(cos θ). We begin with the Dirichlet–Mehler integral representation
for the Gegenbauer polynomials [5, p. 177],

P
(λ)
� (cos θ) =

2λΓ(λ + 1
2 )Γ(	 + 2λ)√

π	!Γ(λ)Γ(2λ)(sin θ)2λ−1

∫ π

θ

cos
(
(	 + λ)ϕ− λπ

)
(cos θ − cosϕ)1−λ

dϕ,
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which holds for any real λ > 0. We will take λ = λn = n−1
2 , with n ≥ 2 throughout

this section. Multiply both sides of the previous equation by �+λn

λnωn
and then simplify

to get

	 + λn

λnωn
P

(λn)
� (cos θ) =

γn(	 + λn)(	 + n− 2)!

	!(sin θ)n−2

∫ π

θ

cos
(
(	 + λn)ϕ− λnπ

)
(cos θ − cosϕ)1−λn

dϕ,(15)

where

γn :=
2λnΓ(λn + 1

2 )√
πλnωnΓ(λn)Γ(2λn)

.(16)

Using the expression on the right in (15) in the series definition of Kε,n, we get this
representation:

Kε,n(cos θ) =
γn

(sin θ)n−2

∫ π

θ

Cε,n(ϕ)

(cos θ − cosϕ)1−λn
dϕ,(17)

where Cε,n is given by the series

Cε,n(ϕ)

:=

∞∑
�=0

κ(ε(	 + λn))
(	 + λn)(	 + n− 2)!

	!

{
sin(λnπ) sin(	 + λn)ϕ, n even,
cos(λnπ) cos(	 + λn)ϕ, n odd.

(18)

We want to put this series in a more convenient form. To begin, the factor
(�+λn)(�+n−2)!

�! is the product (	 + λn)(	 + n − 2)(	 + n − 3) · · · (	 + 1), which can be
rewritten as

(	 + λn)(	 + n− 2)!

	!
=

	n−1
2 
∏

r=1

(
(	 + λn)2 − (λn − r)2

)
×
{

	 + λn, even,
1, odd.

From this, we see that if we define the degree n− 1 polynomial

Qn−1(z) :=

	n−1
2 
∏

r=1

(
z2 − (λn − r)2

)
×
{

z sin(λnπ), n even,
cos(λnπ), n odd,

(19)

then we have that

Cε,n(ϕ) =

∞∑
�=0

κ(ε(	 + λn))Qn−1(	 + λn)

{
sin(	 + λn)ϕ, n even,
cos(	 + λn)ϕ, n odd.

(20)

We want to make a few observations about the polynomial Qn−1. First, by direct
calculation we have that Qn−1(−z) = (−1)n−1Qn−1(z), so that Qn−1 is an even
function for odd n and an odd function for even n. Second, the zeros of Qn−1 are
located at ±(λn − r) for r = 1, . . . , �n−1

2 �. This means that the function

g(t) := κ(εt)Qn−1(t)

{
sin(tϕ), n even,
cos(tϕ), n odd,

is even in t and has its zeros at t = ±(λn − r) for r = 1 . . . , �λn�. In addition, we
have defined g above so that from (20) we have Cε,n(ϕ) =

∑∞
�=0 g(	 + λn).
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We want to apply the Poisson summation formula (PSF),

∑
μ∈Z

f(μ) =
∑
ν∈Z

f̂(2πν), f̂(ω) =

∫
R

f(t)e−iωtdt,

which holds for “nice” f , to f(t) = g(t + λn). Using the evenness of g and what we
said about its zeros, we see that the left side of the PSF becomes

∑
μ∈Z

g(μ + λn) = 2

∞∑
�=0

g(	 + λn) = 2Cε,n(ϕ).

Employing elementary properties of the Fourier transform, we can show that

f̂(ω) = eiλnω ĝ(ω) = ε−1eiλnωQn−1(i
d
dω )κ̂(ϕ+ω

ε ),

and so the right side of the PSF is∑
ν∈Z

f̂(2πν) = ε−1
∑
ν∈Z

e2πνiλnQn−1(i
d
dω )κ̂(ϕ+ω

ε )|ω=2πν

= ε−1
∑
ν∈Z

(−1)(n−1)νQn−1(i
d
dϕ )κ̂(ϕ+2πν

ε ).

Equating the two sides of the PSF and dividing by 2, we arrive at the following result.
Proposition 3.2. If κ satisfies (10), then for n ≥ 2 (17) holds with Cε,n given

by

Cε,n(ϕ) = (2ε)−1
∑
ν∈Z

(−1)(n−1)νQn−1(i
d
dϕ )κ̂(ϕ+2πν

ε ).(21)

In addition, for the n = 1 case we have

Kε,1(cos θ) = (2πε)−1
∑
ν∈Z

κ̂( θ+2πν
ε ).(22)

3.3. Estimates on Cε,n. We need to obtain bounds on the kernels Cε,n from
the previous section. The key to obtaining these bounds is this result.

Lemma 3.3. Let κ satisfy (10). If 0 ≤ j ≤ n−1 and 0 ≤ r ≤ k are integers, then
dr

dtr {tjκ} ∈ L1 and |ω|r|κ̂(j)(ω)| ≤ ‖ dr

dtr

{
tjκ

}
‖L1 .

Proof. Since κ ∈ Ck, the derivative dr

dtr

{
tjκ

}
is a linear combination of terms of

the form tpκ(q), each of which is bounded by a multiple of (1+ |t|)p+q−α. This is in L1

because α− p− q > α− (n− 1)− k > 1. This allows us to apply standard properties

of the Fourier transform to obtain the formula (−i)r+jωrκ̂(j)(ω) = ̂dr

dtr {tjκ}, which
immediately implies the inequality.

Consider the function
(
ϕ+ω
ε

)r
Qn−1(i

d
dϕ )κ̂(ϕ+ω

ε )=
∑n−1

j=0 ε−jqj,n
(
ϕ+ω
ε

)r
κ̂(j)(ϕ+ω

ε ),

where Qn−1(z) =
∑n−1

j=0 qj,nz
j is defined in (19). From Lemma 3.3, we have that

∣∣∣(ϕ+ω
ε

)r
Qn−1(i

d
dϕ )κ̂(ϕ+ω

ε )
∣∣∣ ≤

∑n−1
j=0 ε−j |qj,n| ‖ dr

dtr

{
tjκ

}
‖L1

≤ Bn,k,κε
−(n−1),
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where

Bn,k,κ :=

⎛
⎝n−1∑

j=0

|qn,j |

⎞
⎠ max

j<n, r≤k
‖ dr

dtr

{
tjκ

}
‖L1 .(23)

Adding the inequalities for r = 0 and r = k and manipulating the result, we get that∣∣∣Qn−1(i
d
dϕ )κ̂(ϕ+ω

ε )
∣∣∣ ≤ 2Bn,k,κε

−(n−1)

1 +
∣∣ϕ+ω

ε

∣∣k .

We can use this inequality in conjunction with the series for Cε,n in (21) to arrive at
the bound

|Cε,n(ϕ)| ≤ (2ε)−1
∑
ν∈Z

2Bn,k,κε
−(n−1)

1 +
∣∣ϕ+2πν

ε

∣∣k =
∑
ν∈Z

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ,(24)

which holds for all ϕ ∈ R and 0 < ε ≤ 1. If we restrict ϕ to be in the interval [0, π],
then the dominant term in the series on the right comes from ν = 0. The other
terms are each bounded above by Bn,k,κε

k−n((2|ν| − 1)π)−k. Summing them and
then estimating the resulting series by an integral gives us

∑
ν∈Z,ν �=0

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ≤ Bn,k,κε
k−nπ−k 2k − 1

k − 1
.

Multiply top and bottom on the left above by 1 +
(
ϕ
ε

)k
and use 0 ≤ ϕ ≤ π and k ≥ 2

to get

∑
ν∈Z,ν �=0

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ≤ 6Bn,k,κε
−n

1 +
(
ϕ
ε

)k .

Combining this bound with that from (24) yields the result below.
Proposition 3.4. Let κ satisfy (10), with k ≥ 2 and n ≥ 2. If 0 ≤ ϕ ≤ π, then

the kernel Cε,n defined in (18) satisfies the bound

|Cε,n(ϕ)| ≤ 7Bn,k,κε
−n

1 +
(
ϕ
ε

)k .(25)

In addition, for the case n = 1, we have

|Kε,1(cos θ)| ≤ 7B1,k,κε
−1

1 +
(
θ
ε

)k .(26)

Proof. Only the second inequality requires comment. The proof we gave works
for the n = 1 case because it has the form given in (22), which is essentially the same
as that for the Cε,n’s.

3.4. Estimates on Kε,n. We now turn to obtaining explicit bounds on the
ΨDO kernels Kε,n similar to the bound on Kε,1 in (26). From the integral represen-
tation in (17) and the bound on Cε,n, we have that

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ)n−2

∫ π

θ

(cos θ − cosϕ)
n−3

2 dϕ

1 +
(
ϕ
ε

)k .(27)
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The two values of θ that present difficulties are θ = 0 and θ = π. The form of the
inequality above is adequate for the θ = 0 case, but needs to be reformulated for the
θ = π case. To do that, we begin by denoting the angle supplementary to an angle
α by α̃, so throughout this section we will let θ̃ = π − θ and ϕ̃ = π − ϕ. Changing
variables in the integral on the right above and using sin α̃ = sinα and cos α̃ = − cosα,
we have the following reformulation of (27):

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ̃)n−2

∫ θ̃

0

(cos ϕ̃− cos θ̃)
n−3

2 dϕ̃

1 +
(

π−ϕ̃
ε

)k .(28)

The next step is to bound both of these integrals. Recall the sum-to-product
identity, cosα − cosβ ≡ 2 sin α+β

2 sin β−α
2 , which holds for all α and β. Assuming

that π ≥ β > α ≥ π/2 and using the fact that sin t
t is decreasing for 0 ≤ t ≤ π, we

have that

6 < 8
sin(3π/4)

3π/4

sin(π/4)

π/4
≤ cosα− cosβ

β2 − α2
= 8

sin α+β
2

α+β
2

sin β−α
2

β−α
2

≤ 8,

and so

(
cosα− cosβ

β2 − α2

)n−3
2

≤ 2
3(n−3)

2 ×
{ 2√

3
, n = 2,

1, n ≥ 3
≤ 2 · 2

3(n−3)
2 .(29)

Assume that ε ≤ θ ≤ π/2, and apply (29) to (27) to get the following chain of
inequalities:

|Kε,n(cos θ)| ≤ 14 · 2 3(n−3)
2 Bn,k,κγnε

−n

(sin θ)n−2

∫ π

θ

(θ2 − ϕ2)
n−3

2 dϕ

1 +
(
ϕ
ε

)k
≤ 14 · 2

3(n−3)
2 Bn,k,κγnε

−n

(
θ

sin θ

)n−2 ∫ π/θ

1

(t2 − 1)
n−3

2 dt

1 + (θ/ε)ktk

≤ 14 · 2 3(n−3)
2 Bn,k,κγnε

−n(π/2)n−2

( θε )k

∫ ∞

1

(t2 − 1)
n−3

2 dt

tk
.

Use 2(θ/ε)k ≥ 1+ (θ/ε)k, change variables of integration from t → 1/t, and note that
because k ≥ max{2, n − 1} ≥ n − 1, the resulting integral on the right is bounded

above by
∫ 1

0
(1 − t2)

n−3
2 dt = 2n−3Γ(λn)2/Γ(2λn) [26, p. 255]. After simplifying, we

arrive at this estimate:

|Kε,n(cos θ)| ≤ 14 · 2 3(n−3)
2 πn−2Bn,k,κγnΓ(λn)2/Γ(2λn)

1 + ( θε )k
ε−n.

The messy quantity in the numerator can be simplified considerably. This requires
employing the definition of γn in (16), the formula for ωn, the familiar properties of the
Γ-function, along with the less familiar duplication formula [26, p. 240],

√
πΓ(2z) =

22z−1Γ(z)Γ(z + 1
2 ), and manipulating the expressions involved. The result is that

2
3(n−3)

2 πn−2γnΓ(λn)2/Γ(2λn) =
ωn−1

4
√
π

, ωn−1 =
2π

n
2

Γ(n2 )
.
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Thus we can rewrite the previous inequality, which holds for ε ≤ θ ≤ π/2, as

|Kε,n(cos θ)| ≤ 7ωn−1Bn,k,κ

2
√
π(1 + ( θε )k)

ε−n.

If we now apply (29) to (28), with 0 ≤ θ̃ ≤ π/2 (or, equivalently, π/2 ≤ θ ≤ π),
then

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ̃)n−2

∫ θ̃

0

(θ̃2 − ϕ̃2)
n−3

2 dϕ̃

1 +
(

π−ϕ̃
ε

)k
≤ 14 · 2 3(n−3)

2 Bn,k,κγnε
−n

(1 +
(
θ
ε

)k
)(sin θ̃)n−2

∫ θ̃

0

(θ̃2 − ϕ̃2)
n−3

2 dϕ̃.

Carrying out manipulations analogous to those for the previous case, we obtain

|Kε,n(cos θ)| ≤ 7ωn−1Bn,k,κ

4
√
π(1 + ( θε )k)

ε−n.

The final case concerns 0 ≤ θ ≤ ε. For such θ, we have, from the L∞ bound in
(14), that

|Kε,n(cos θ)| ≤ 3Cκ

ωn
ε−n ≤ 3Cκ

ωn

(
1 + ( θε )k

1 + ( θε )k

)
ε−n ≤ 6Cκ

ωn(1 + ( θε )k)
ε−n,

which, when combined with (22) for n = 1, gives us the main result of this section.
Theorem 3.5. Let κ satisfy (10), with k ≥ max{2, n − 1}. If 0 ≤ θ ≤ π, then

the kernel Kε,n satisfies the bound

|Kε,n(cos θ)| ≤ βn,k,κ

1 + ( θε )k
ε−n,(30)

where

βn,k,κ :=

{
7B1,k,κ if n = 1,

max
{

6Cκ

ωn
,

7ωn−1Bn,k,κ

2
√
π

}
if n ≥ 2.

(31)

We conclude this section with an application of this theorem to obtaining a bound
on the L1 norm of Kε,n(ξ ·η), with η fixed. By the Funk–Hecke formula [17, Theorem
6], this norm is given by∫

Sn

|Kε,n(ξ · η)|dμ(ξ) = ωn−1

∫ π

0

|Kε,n(cos θ)| sinn−1 θ dθ,

which is of course independent of η. For that reason we will drop any reference to η
and denote the norm by ‖Kε,n‖1. Here is the bound we want.

Corollary 3.6. Let n ≥ 1. If κ satisfies (10), with k > max{2, n}, then

‖Kε,n‖1 ≤ 2ωn−1βn,k,κ.
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Proof. By Theorem 3.5 and the remarks above, we have

‖Kε,n‖1 ≤ ωn−1

∫ π

0

|Kε,n(cos θ)| sinn−1 θ dθ ≤ βn,k,κωn−1ε
−n

∫ π

0

sinn−1 θ dθ

1 + ( θε )k
.

The integral on the right side above can be estimated this way:∫ π

0

sinn−1 θ dθ

1 + ( θε )k
< εn

∫ π/ε

0

tn−1dt

1 + tk

< εn
{∫ 1

0

tn−1dt +

∫ ∞

1

dt

tk+1−n

}
< 2εn.

The corollary then follows immediately from the estimate.

3.5. Operator properties of Kε,n. We now turn to the operator properties of
Kε,n. Our first result is calculating the norm of the map of Kε,n : Lp → Lq. After
that we will prove a lemma showing that for certain κ the operator Kε,n will be a
reproducing kernel on ΠL. We will close the section with a result showing that for
such κ and ε ≤ (L+ λn)−1 the norm of f −Kε,nf is comparable to the distance from
f to ΠL in appropriate norms.

Theorem 3.7. If κ satisfies (10), with k > max{2, n}, then, for all 1 ≤ p ≤ ∞
and 1 ≤ q ≤ ∞, the operator Kε,n : Lp(Sn) → Lq(Sn) is bounded and its norm satisfies

‖Kε,n‖p,q ≤ 2ωn−1βn,k,κ(4ωn−1ε
n)−( 1

p−
1
q )+ ,

where βn,k,κ is defined in (31) and (x)+ = x for x > 0 and (x)+ = 0 otherwise.
Proof. The operators are all of the form Kε,n ∗ f and so, for the (p, q) pairs (1, 1),

(∞,∞), (∞, 1), all satisfy ‖Kε,n ∗ f‖q ≤ ‖Kε,n‖1‖f‖p. By the Riesz–Thorin theorem
[28, p. 95] and Corollary 3.6, we then have for 1 ≤ q ≤ p ≤ ∞

‖Kε,n‖p,q ≤ ‖Kε,n‖1 ≤ 2ωn−1βn,k,κ.

For the pair (1,∞), we have ‖Kε,n ∗ f‖∞ ≤ ‖Kε,n‖∞‖f‖1. By (14) and (31), we have
‖Kε,n‖∞ ≤ 1

2βn,k,κε
−n, and so ‖Kε,n ∗ f‖∞ ≤ 1

2βn,k,κε
−n‖f‖1. Apply the Riesz–

Thorin theorem to the pairs (p, q), where 1
p = (1 − t)α + t and 1

q = (1 − t)α, where

0 < t < 1 and 0 < α < 1, ( 1
α ,

1
α ) and (1,∞) to get

‖Kε,n‖p,q ≤ (2βn,k,κωn−1)
1−t

(
1

2
βn,k,κε

−n

)t

= 2ωn−1βn,k,κ(4ωn−1ε
n)−t.

Since 1
p = (1 − t)α + t = 1

q + t, t = 1
p − 1

q . Thus, for q > p, we have

‖Kε,n‖p,q ≤ 2ωn−1βn,k,κ(4ωn−1ε
n)−( 1

p−
1
q ).

Putting the last inequality together with that for q ≤ p yields the result.
The following lemma is obvious.
Lemma 3.8. Let L > 0 be an integer and let 0 < ε ≤ (L + λn)−1. If κ satisfies

(10), with k ≥ max{2, n−1}, and if κ(t) ≡ 1 on [0, 1], then Kε,n(ξ ·η) is a reproducing
kernel on ΠL, the space of spherical harmonics having degree at most L.

Remark 3.9. Let L > 0 be an integer. If we choose ε so that L = �ε−1 − λn�,
then by combining the previous theorem and lemma we get a familiar result about

harmonic polynomials: If S ∈ ΠL, then ‖S‖q ≤ CnL
n( 1

p−
1
q )+‖S‖p.
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We let EL(f)p denote the distance of f ∈ Lp(Sn) to ΠL, i.e.,

EL(f)p := inf
S∈ΠL

‖f − S‖p.(32)

Corollary 3.10. Let κ satisfy (10), with k > max{2, n}, and in addition
suppose κ(t) ≡ 1 on [0, 1]. If f ∈ Lp(Sn), 1 ≤ p ≤ ∞, and ε ≤ (L + λn)−1,
then

‖f −Kε,n ∗ f‖p ≤ (1 + 2ωn−1βn,k,κ)EL(f)p.(33)

Also, for 1 ≤ p < ∞ or, if p = ∞, for f ∈ C(Sn), we have limε↓0 Kε,n ∗ f = f.
Proof. By Lemma 3.8, then Kε,n ∗ S = S if S ∈ ΠL. It follows that f −

Kε,n ∗ f = (I + Kε)(f − S). From this and Theorem 3.7, we have that ‖f − Kε,n ∗
f‖p ≤ (1 + 2ωn−1βn,k,κ)‖f − S‖p . Taking the infimum over all S ∈ ΠL yields (33).
That limε↓0 Kε,n ∗ f = f follows from (33) together with the fact that the spherical
harmonics are dense in Lp for 1 ≤ p < ∞ and in C(Sn) in the usual L∞ norm [24,
section IV.2].

The estimate in (33) is useful for obtaining rates of approximation, simply because
rates of approximation by spherical harmonics are well known for many classes of
functions; see, for example, Rustamov [23]. For further discussion, see the remarks
following Proposition 5.1.

4. Quadrature on S
n. To do the discretizations required to construct tight

spherical frames in section 5, we need a strengthened version of the quadrature formula
given in [14, 15]. There are two reasons for this. First, the earlier quadrature formula
applies to a partition of S

n that is restricted. Second, it utilizes a set of centers that
is not a general set of scattered points, but rather a set that has been “culled” from
one. Our aim is to use the results obtained in section 3 to produce an improved
positive-weight quadrature formula that avoids these restrictions. Indeed, out of this
will also come strengthened versions of the inequalities derived in [14].

4.1. Marcinkiewicz–Zygmund inequalities. In this section we wish to give
Marcinkiewicz–Zygmund type inequalities. These inequalities provide equivalences
between norms defined through integrals and discrete norms stemming from sampled
points and certain weights. Here, instead of polynomials, we will work with functions
of the form Kε,n ∗ f for f ∈ L1(Sn).

The place to start is with a decomposition of the sphere into a finite number of
nonoverlapping, connected regions Rξ, each containing an interior point ξ that will
serve for function evaluations as well as labeling. For example, given a set of centers
X, one can form the corresponding Voronoi tessellation, and then take Rξ to be the
region associated with ξ ∈ X. In any case, we will let X be the set of the ξ’s used for
labels and X = {Rξ ⊂ S

n | ξ ∈ X}. In addition, let ‖X‖ = maxξ∈X{diam(Rξ)}.
The quantity that we wish to estimate first is the magnitude of the difference

between the continuous and discrete norms for g = Kε,n ∗ f ,

EX :=
∣∣‖g‖1 −

∑
ξ∈X

|g(ξ)|μ(Rξ)
∣∣,

where we assume that f ∈ L1(Sn). It is straightforward to show that

EX ≤
∑
ξ∈X

∫
Rξ

|g(η) − g(ξ)|dμ(η) ≤ sup
ζ∈Sn

Fε,X (ζ)‖f‖1 ,
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where Fε,X (ζ) :=
∑

ξ∈X

∫
Rξ

∣∣Kε,n(η · ζ)−Kε,n(ξ · ζ)
∣∣dμ(η), which is the quantity we

need to estimate.
Choose ζ to be the north pole of S

n and let θ be the colatitude in spherical
coordinates; set θη = cos−1(η · ζ) and θξ = cos−1(ξ · ζ). Denote by θ+

ξ and θ−ξ ,
respectively, the high and low values for θ over Rξ. Using (12) for the derivative of
Kε,n, we can write Fε,X (ζ) as

Fε,X (ζ) = 2π
∑
ξ∈X

∫
Rξ

∣∣∣∣
∫ θη

θζ

Kε,n+2(cos t) sin tdt

∣∣∣∣dμ(η)

≤ 2π
∑
ξ∈X

μ(Rξ)

∫ θ+
ξ

θ−
ξ

|Kε,n+2(cos t)| sin t dt.

Divide S
n into M = �π/‖X‖� equal bands in which (m − 1)π/M ≤ θ ≤ mπ/M ,

m = 1, . . . ,M . To avoid trivial situations and simplify later inequalities, we will
assume that M ≥ 3. Call these bands B1, . . . , BM . Each Rξ can have nontrivial
intersection with at most two adjacent bands, because diam(Rξ) ≤ ‖X‖ ≤ π/M . So
if Rξ ⊂ Bm ∪ Bm+1, then (m − 1)π/M ≤ θ−ξ ≤ θ+

ξ ≤ (m + 1)π/M . In addition, the
sum of the contributions from all Rξ ⊂ Bm ∪Bm+1 is bounded above by the quantity

Im := 2πμ(Bm ∪Bm+1)

∫ m+1
M π

m−1
M π

|Kε,n+2(cos t)| sin t dt,

where μ(Bm ∪Bm+1) = ωn−1

∫ m+1
M π

m−1
M π

sinn−1 t dt. It follows that Fε,X (ζ) ≤
∑M−1

m=1 Im.

From Theorem 3.5, if we assume k ≥ n + 2 > max{2, n + 1} and if we use various
linear approximations to the sine, we have

Im ≤ 2πωn−1βn+2,k,κε
−n−2

∫ m+1
M π

m−1
M π

tn−1dt

∫ m+1
M π

m−1
M π

t

1 + ( t
ε )

k
dt.(34)

For 2 ≤ m ≤ M − 1, we can bound the first integral by 2π
M

(
m+1
M π

)n−1
. In the second

integral, we divide and multiply the integrand by tn−1, and replace the tn−1 in the
denominator by its lowest value. The result is that∫ m+1

M π

m−1
M π

t

1 + ( t
ε )

k
dt ≤

(
M

(m− 1)π

)n−1 ∫ m+1
M π

m−1
M π

tn

1 + ( t
ε )

k
dt.

Putting these two bounds together yields

Im ≤ 4π2

M
ωn−1βn+2,k,κε

−n−2

(
m + 1

m− 1

)n−1

︸ ︷︷ ︸
≤3n−1

∫ m+1
M π

m−1
M π

tn

1 + ( t
ε )

k
dt.

Summing both sides from m = 2 to M−1, taking account of intervals appearing twice
in the sum, and doing some obvious manipulations, we obtain

M−1∑
m=2

Im <
8π23n−1ωn−1

Mε
βn+2,k,κ

∫ π
ε

π
Mε

tn

1 + tk
dt

<
8π23n−1ωn−1

Mε
βn+2,k,κ

∫ ∞

0

tn

1 + tk
dt︸ ︷︷ ︸

≤3/2

<
4π23nωn−1

Mε
βn+2,k,κ.
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We now need to estimate I1. From (34) we have

I1 ≤ n−1ωn−1(2π/M)n
∫ 2π

M

0

βn+2,k,κε
−n−2

1 + ( t
ε )

k
tdt <

ωn−1

2n

(
2π

Mε

)n+2

βn+2,k,κ.

We arrive at the estimate

Fε,X (ζ) ≤ 2πωn−1βn+2,k,κ
2π

Mε

{
1

2n

(
2π

Mε

)n+1

+ 3n

}
.

To finish up, we want to put our inequalities in terms of the ratio ‖X‖/ε. Since we
have assumed that M ≥ 3, we have that π/M ≤ 4

3‖X‖. Using this in the previous
inequality and simplifying, we arrive at

Fε,X (ζ) < 16π · 3n−1ωn−1βn+2,k,κ
‖X‖
ε

{
1 +

3

2n

(
8‖X‖

9ε

)n+1
}
.

We remark that if ‖X‖ ≤ ε ≤ 1, then the assumption that M ≥ 3 is automatically
fulfilled. In addition, the right side of the inequality above is independent of ζ, so it
holds for the left replaced by supζ∈Sn Fε,X (ζ). Finally, the inequality itself simplifies
considerably. We collect all these observations in the result below.

Proposition 4.1. Let κ satisfy (10) with k ≥ n + 2, and for f ∈ L1(Sn) let
g = Kε,n ∗ f . If X is the decomposition of S

n described above and if ‖X‖ ≤ ε ≤ 1,
then ∣∣∣∣‖g‖1 −

∑
ξ∈X

|g(ξ)|μ(Rξ)

∣∣∣∣ ≤ 16π · 3nωn−1βn+2,k,κ
‖X‖
ε

‖f‖1.(35)

This result leads immediately to a version of the Marcinkiewicz–Zygmund in-
equalities for S

n. This result extends an earlier result proved in [14, Theorem 3.1]. As
we noted at the start of the section, the earlier result held only for restricted classes
of decompositions.

Theorem 4.2. Let L > 0 be an integer and let δ ∈ (0, 1). If X is the decompo-
sition of S

n described above and S ∈ ΠL, then there exists a constant sn ≥ 1, which
depends only on n, such that

(1 − δ)‖S‖1 ≤
∑
ξ∈X

|S(ξ)|μ(Rξ) ≤ (1 + δ)‖S‖1(36)

holds whenever ‖X‖ ≤ δs−1
n (L + λn)−1.

Proof. Let κ satisfy (10), with k ≥ n + 2. In addition, require κ(t) ≡ 1 for
t ∈ [0, 1]. Choose ε = (L + λn)−1. By Lemma 3.8, S = Kε,n ∗ S, and so if we take
f = S and ‖X‖ ≤ ε = (L + λn)−1 ≤ 1 in Proposition 4.1, then g = Kε,n ∗ S = S
there. Manipulating the resulting expression in (35) then gives us

s̃n := sup

∣∣‖S‖1 −
∑

ξ∈X |S(ξ)|μ(Rξ)
∣∣

(L + λn)‖X‖‖S‖1
≤ 16π · 3nωn−1βn+2,k,κ ,

where the supremum is over all X and L > 0 such that ‖X‖ ≤ (L+λn)−1 and clearly
depends only on n. Now, let

sn := max{1, s̃n} ≤ max{1, 16π · 3nωn−1βn+2,k,κ}.(37)

If we further restrict ‖X‖ so that ‖X‖ ≤ δs−1
n (L + λn)−1, then (36) follows.
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4.2. Positive-weight quadrature for S
n. Our aim is to extend the quadrature

formula in [14, Theorem 4.1] to more general sets of centers and decompositions than
the restricted class covered there. Even more important for us here is obtaining
upper and lower bounds on the positive weights. For the restricted case covered in
[14], upper bounds were given in [15], but nothing was said about lower bounds, which
we need for constructing tight-frames on S

n.

There is an important map associated with ΠL and the decomposition X and the
corresponding finite set X. Let |X| be the cardinality of X. We define the sampling
map, TX : ΠL → R

|X|, by TXS := (S(ξ))ξ∈X . From Theorem 4.2, it follows that if
‖X‖ ≤ δs−1

n (L + λn)−1 holds and if TXS = 0, we have that ‖S‖1 = 0 and, hence,
S ≡ 0. The sampling map, which is linear, is therefore injective. Moreover, if we let
the subspace VL = TXΠL ⊂ R

|X|, then the inverse map T−1
X : VL → ΠL is of course

linear. Also, we will let SX = (S(ξ))ξ∈X .

Since our interest here is in weights for quadrature, we start with the linear
functional Φ : ΠL → R given by

Φ(S) :=

∫
Sn

S(η)dμ(η), S ∈ ΠL.

Let ΦX(SX) = Φ(T−1
X (SX)) = Φ(S). If SX ≥ 0, then |S(ξ)| = S(ξ) for ξ ∈ X, and so

from (36) we have that

∣∣Φ(S) −
∑
ξ∈X

S(ξ)μ(Rξ)
∣∣ ≤ ∣∣‖S‖1 −

∑
ξ∈X

S(ξ)μ(Rξ)
∣∣ ≤ δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ),

provided only that ‖X‖ ≤ δs−1
n (L + λn)−1. For any δ < 1

2 , this implies that

1 − 2δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ) ≤ Φ(S) ≤ 1

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ).

From this, we see that the linear functional

ΨX(SX) := ΦX(SX) − 1 − 2δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ)(38)

is positive on the cone 0 ≤ SX ∈ VL, which itself is contained in the positive cone of
R

|X|.

There are two facts we will take account of. The first is that the positive cone of
VL is contained in the positive cone of R

|X|. The second is that the vector (1)ξ∈X ,
which is in both cones, is an interior point of the positive cone of R

|X|. By the Krein–
Rutman theorem [9], there exists a positive linear functional Ψ̃X that extends ΨX to

all R
|X|. Consequently, there exist weights αξ ≥ 0 such that Ψ̃X(x) =

∑
ξ∈X αξxξ.

Using this and ΦX(SX) = Φ(S) in (38), we obtain

Φ(S) =
∑
ξ∈X

cξS(ξ), cξ := aξ +
1 − 2δ

1 − δ
μ(Rξ), aξ ≥ 0.(39)

This is of course a positive-weight quadrature formula on S
n, with weights bounded

below by 1−2δ
1−δ μ(Rξ).
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We want to get upper bounds as well. To do that, we let L′ = �L
2 � and fix ξ0 ∈ X.

If S ∈ ΠL′ , then S2 is in ΠL. The quadrature formula (39) then implies that

‖S‖2
2 = Φ(S2) =

∑
ξ∈X

cξ(S(ξ))2 ≥ cξ0(S(ξ0))
2.

Choose S(η) =
∑L′

�=0

∑dn
�

m=1 Y�,m(η)Y�,m(ξ0) =
∑L′

�=0
�+λn

ωnλn
P

(λn)
� (ξ0 · η), which is real

valued. Using the orthogonality of the Y�,m’s, one can show that ‖S‖2
2 = S(ξ0) =∑L′

�=0
�+λn

ωnλn

(
�+n−2

�

)
. From the previous inequality, (13) and (4), and the fact that

dim ΠL′ = dn+1
L′ [17, p. 4], we get cξ0 ≤ ωn/d

n+1
L′ , where L′ := �L/2�. We summarize

these results below.
Theorem 4.3. Adopt the notation of Theorem 4.2. In particular, sn is given

by (37) and depends only on n. For any 0 < δ < 1
2 and any integer L > 0, if

‖X‖ ≤ δs−1
n (L + λn)−1, then there exist positive weights cξ, ξ ∈ X, such that the

quadrature formula ∫
Sn

f(η)dμ(η)
.
=
∑
ξ∈X

cξf(ξ)(40)

is exact for spherical harmonics in ΠL. Also, the weights satisfy the bounds

1 − 2δ

1 − δ
μ(Rξ) ≤ cξ ≤ ωn

dn+1
L′

, L′ = �L/2�.(41)

The theorem just proved starts with L and puts conditions on the decomposition
X . The centers in X play a secondary role, serving as labels for regions in X and as
evaluation points in the quadrature formula.

It’s useful to turn this around and have the centers X play the primary role. To
do that, we need to make the assumption that we are considering only ρ-uniform
X; that is, for some fixed ρ we assume that the mesh ratio hX/qX = ρX ≤ ρ. We
will take the X = XV to be the Voronoi decomposition associated with X. For this
decomposition, we have hX ≤ ‖XV ‖. Also, since the smallest distance between two
points in X is 2qX , every Rξ ∈ XV contains a spherical cap with center ξ and radius
qX ≥ hX/ρ ; hence, μ(Rξ) ≥ ωn−1(2/π)n−1ρ−nhn

X/n. Applying Theorem 4.3, we
arrive at this result.

Corollary 4.4. Adopt the notation of Theorem 4.3 and let X be a ρ-uniform
set of centers. If hX ≤ δs−1

n (L + λn)−1, then the quadrature formula (40) holds with
weights satisfying

ωn−1(2/π)n−1

(
1 − 2δ

1 − δ

)
ρ−nhn

X ≤ cξ ≤ ωn

dn+1
L′

, L′ = �L/2�.(42)

Set δ = 1/4. To get a better idea of how the weights are bounded in terms of

h = hX or L, note that by (4) we have dn+1
L′ ∼ (L/2)n

λn+1(n−1)! . In addition, if we take L as

large as possible, but still consistent with the condition that hX ≤ δs−1
n (L + λn)−1,

then L ∼ h−1. In that case, we see that

cξ = O{hn} = O{L−n},(43)

where the constants hidden by O are dependent only on the dimension n.
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So far we have only addressed the existence of positive weights, along with bounds
on them. In fact, the existence of such weights implies the feasibility of solving a
quadratic programming problem that produces weights minimizing

∑
ξ∈X c2ξ , subject

to constraints. Thus it is possible to numerically compute the weights. For more
details, see [14, section 4.3].

5. Tight frames on S
n. In this section, we discuss three important features of

the operator frames on S
n introduced earlier in section 2.2. The first is the approx-

imation power of these frames in various spaces. The second is how to turn them
into tight frames for S

n. This requires discretizing them using the quadrature results
from the previous section. The third and final feature is their excellent localization
properties.

We will turn to discussing the approximation power of these operator frames,
after a brief word about notation. Throughout this section, the operators Aj and BJ

are their kernels Aj and BJ , which are defined in section 2.2. The function b(t) is
defined in (1). We assume that the function a(t), whose properties are discussed in
section 1, is in Ck(R).

Proposition 5.1. Let k > max{n, 2}, and let b be defined by (1), with a ∈ Ck(R).
If f ∈ Lp(Sn), 1 ≤ p ≤ ∞, and if L > 0 is an integer such that 2−J−jn ≤ (L+λn)−1,
then

‖f − BJf‖p ≤ Cb,k,nEL(f)p, EL(f)p := distLp(f,ΠL).(44)

Also, for 1 ≤ p < ∞ or, if p = ∞, for f ∈ C(Sn), we have limJ→∞ BJf = f .
Proof. Apply Corollary 3.10 with κ = b, k as above, and ε = 2−J−jn .
The proposition implies that BJf approximates f to within an error comparable

to EL(f)p, which is that for the best approximation to f from ΠL in Lp. Much work
[11, 20, 22, 23, 27] has been done on estimating this error for various smoothness
classes and spaces. This work allows us to obtain rates of approximation when f has
additional smoothness requirements. A typical result [11] is this: If f ∈ Lp(Sn), with
‖f‖p = 1, belongs to a smoothness class Wα

p (Sn), which is analogous to a Sobolev

space, then EL(f)p ∼ L−α. Choosing f similarly and taking L ∼ 2J , we get a
corresponding result for our case: ‖f − BJf‖p ∼ 2−αJ .

We now turn to constructing tight frames on S
n. The quadrature formulas from

section 4.2 will play a pivotal role in their construction; we will also require a se-
quence of sets of centers to use in conjunction with them. Let ρ ≥ 2 be fixed. By
Proposition 2.1, we can find a sequence of sets of centers {Xj ∈ Fρ}∞j=0 such that Xj

is nested and such that the mesh norm hj := hXj halves going from j to j + 1; that
is, hj+1 ≤ hj/2. In what follows, assume that the Xj ’s form such a sequence.

Recall that on S
n, the frame transform f → wj = Ã∗

jf takes the form wj(η) =
A∗
jf(η) = 〈f(ζ), Aj(ζ · η)〉L2(Sn). Because Aj(ζ · η) is a spherical polynomial with

degree less than 2j+jn+1, the function wj(η) is a spherical polynomial of degree less
than 2j+jn+1. In the reconstruction formula this then contributes the term

Ajwj(ω) =

∫
Sn

Aj(ω · η)wj(η)dμ(η).

The product Aj(ω ·η)wj(η) is a spherical polynomial having degree less than 2j+jn+1+
2j+jn+1 = 2j+jn+2.

We can integrate this exactly using the quadrature formula (40), with L =
2j+jn+2. First of all, the condition on the mesh norm h in both Theorem 4.3
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and Corollary 4.4 is that h ≤ δs−1
n (L + λn)−1, where δ ∈ (0, 1/2) is arbitrary.

Choose δ = 1/4 to be definite. For n = 1 (the circle), we have λ1 = 0 and
j1 = 0, and the condition is h ≤ δs−1

1 2−j−2 = s−1
1 2−j−4. For n ≥ 2, note that

2j+jn+2 + λn ≤ 2j+2�λn� + λn < 2j+3λn. The condition for n ≥ 2 is then fulfilled if
h ≤ δ(λnsn)−12−j−3 = (λnsn)−12−j−5. It is clear that these conditions can be met
by using the sets Xj .

Let the quadrature weight corresponding to the center ξ ∈ Xj be denoted by cj,ξ,
so that

Ajwj(ω) =
∑
ξ∈Xj

cj,ξAj(ξ · ω)wj(ω) =
∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ,(45)

where

ψj,ξ(η) :=
√
cj,ξAj(η · ξ), ξ ∈ Xj ,(46)

is the analysis frame function at level j. The frame function ψj,ξ is computable:
Aj is known and, as we noted at the end of section 4.2, the weights can be found
numerically. We can now prove this result.

Theorem 5.2. Let k > max{n, 2}, and let Aj be the kernel in (8), with a ∈
Ck(R). If f ∈ C(Sn) or, for 1 ≤ p < ∞, if f ∈ Lp(Sn), then

f =

∞∑
j=0

∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ,

with convergence being in the appropriate space. In addition, if f ∈ L2(Sn), the frame
{ψj,ξ}j∈Z+,ξ∈Xj is tight:

‖f‖2 =

{
1
2π |〈f, 1〉|2 +

∑∞
j=0

∑
ξ∈Xj

|〈f, ψj,ξ〉|2, n = 1,∑∞
j=0

∑
ξ∈Xj

|〈f, ψj,ξ〉|2, n ≥ 2.

Finally, the frame functions have vanishing moments that increase with j, and are
orthogonal on nonadjacent levels.

Proof. From (9) and (45), for n ≥ 2 we get BJf =
∑J

j=0

∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ.
By Proposition 5.1 this converges to f in all of the spaces mentioned. To prove
that the frame is tight, just observe that for f ∈ L2(Sn), we have 〈BJf, f〉 =∑J

j=0

∑
ξ∈Xj

∣∣〈f, ψj,ξ〉
∣∣2. Taking the limit as J → ∞ then yields the equation for

‖f‖2. The statement concerning vanishing moments follows from the structure of the
Aj ’s, and the orthogonality between nonadjacent levels is proved in Proposition 1.1.
The n = 1 case has a projection P0 in BJ , where P0 projects onto the constants. The
effect of this is to add a term to the series for ‖f‖2.

Our last result concerns the localization properties of the frame function defined
by (46).

Corollary 5.3. Let k > max{n, 2} and let ψj,ξ be given by (46). If θ :=
cos−1(η · ξ), then for all θ ∈ [0, π] there are constants C and C ′, which depend on k,
n, and a, such that these hold:

|ψj,ξ(η)| ≤
2n(j+jn)/2 C

1 + (2j+jn θ)k
and |BJ(η · ξ)| ≤ 2n(J+jn) C ′

1 + (2J+jn θ)k
.
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Proof. Use Theorem 3.5, with κ = b and ε = 2−J−jn , to bound BJ(ξ · η), and
again, with κ = a and ε = 2−j−jn , to bound Aj(η · ξ). Next, use L = 2j+jn+2 in (43)
to see that cξ = O{2−(j+jn)n}, where the constants depend only on n. To bound ψj,ξ,
use the bounds on Aj and cξ in (46).
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[22] S. Pawelke, Über die Approximationsordnung bei Kugelfunktionen und algebraischen Poly-
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MODELS FOR TRAFFIC FLOW∗
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Abstract. This paper deals with a model for traffic flow based on a system of conservation laws
[A. Aw and M. Rascle, SIAM J. Appl. Math., 60 (2000), pp. 916–938]. We construct a solution
of the Riemann problem at an arbitrary junction of a road network. Our construction provides a
solution of the full system. In particular, all moments are conserved.
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1. Introduction. Macroscopic modeling of vehicular traffic started with the
work of Lighthill and Whitham (LWR) [25]. Since then there has been intense discus-
sion and research; see [26, 10, 2, 19, 21, 22, 6, 24] and the references therein. Today,
fluid dynamic models for traffic flow are appropriate for describing traffic phenomena
such as congestion and stop-and-go waves [18, 14, 20]. The case of road networks
based on the LWR model has been considered in particular in [17, 5, 16]. Recently
in [12], Garavello and Piccoli considered a road network based on the Aw–Rascle
(AR) model [2] of traffic flow. Here, in contrast to [12], we propose a modeling of the
junctions conserving the mass and the pseudo-“momentum” ρv w. We will discuss
below further differences between the two modelings.

We consider a finite directed graph as a model for a road network with unidi-
rectional flow. Each road i = 1, . . . , I is modeled by an interval Ii := [ai, bi] ⊂ R

possibly with ai = −∞ or bi = ∞. Each vertex of the graph corresponds to a junc-
tion. For a fixed junction k the set δ−k contains all road indices i which are incoming
roads, so that ∀i ∈ δ−k : bi = k. Similarly, δ+

k denotes the indices of outgoing roads:
∀j ∈ δ+

k : aj = k. We skip the index k whenever the situation is clear.
The evolution of ρi(x, t) and vi(x, t) on each road i is given by the AR model [2]

∂tρi + ∂x(ρivi) = 0,(1.1a)

∂t(ρiwi) + ∂x(ρiviwi) = 0,(1.1b)

wi = vi + pi(ρi),(1.1c)

where for each i, ρ �→ pi(ρ) is a known function (“traffic pressure”) with the following
properties:

∀ρ : ρp′′i (ρ) + 2p′i(ρ) > 0 and pi(ρ) ∼ ργ near ρ = 0(1.2)
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and where γ > 0. The conservative form of (1.1) is

∂t

(
ρi
yi

)
+ ∂x

(
yi − ρipi(ρi)
(yi − ρipi(ρi))yi/ρi

)
= 0,

where yi = ρiwi = ρ(vi + pi(ρi)). Since wi and vi are related by (1.1), we choose to
describe solutions in terms of ρi and ρivi. For a motivation and a complete discussion
of these equations we refer to section 2 and [2], respectively.

We consider weak solutions of the network problem as in [17]: Let a set i =
1, . . . , I of smooth functions φi : [0,+∞] × Ii → R

2 having compact support in
Ii = [ai, bi], which are “smooth” across each junction k, be given, i.e.,

φi(bi) = φj(aj) ∀i ∈ δ−k , ∀j ∈ δ+
k .(1.3)

Then a set of functions

Ui = (ρi, ρivi), i = 1, . . . , I,(1.4)

is called a weak solution of (1.1) if and only if equations (1.5) hold for all families of
test functions {φi}i∈I with the property (1.3).

I∑
i=1

∫ ∞

0

∫ bi

ai

(
ρi
ρiwi

)
· ∂tφi +

(
ρivi
ρiviwi

)
· ∂xφidxdt

−
∫ bi

ai

(
ρi,0
ρi,0wi,0

)
· φi(x, 0)dx = 0,(1.5a)

wi(x, t) = vi(x, t) + p†i (ρi(x, t)).(1.5b)

Here, Ui,0(x) = (ρi,0(x), (ρi,0vi,0)(x)) are the initial data. The functions p†i (·) are

initially unknown. The explicit form of each p†i depends on the initial data and the

type of junction. Near any junction k the function p†i is equal to pi for all incoming
roads. The same is true for all outgoing roads of the junction if there is only one
incoming road. This is discussed in sections 3 and 4. In section 6 we discuss the case
where p†i 	= pi and give arguments for the necessity of introducing p†i . At this point let

us just note that in the general case p†i depends on a mixture of the incoming flows.

In the case of a single junction we derive from (1.5a), (1.5b) the Rankine–Hugoniot
conditions for piecewise smooth solutions:

∑
i∈δ−

(ρivi)(b
−
i , t) =

∑
i∈δ+

(ρivi)(a
+
i , t),(1.6a)

∑
i∈δ−

(ρiviwi)(b
−
i , t) =

∑
i∈δ+

(ρiviwi)(a
+
i , t).(1.6b)

Properties (1.6a) and (1.6b) correspond to conservation of mass and of (pseudo-)
“momentum.” We remark that the solution constructed in [12] does not conserve
the (pseudo-)“momentum” (see Proposition 2.3 in [12]) and therefore is not a weak
solution in the sense of (1.5a), (1.6a), and (1.6b).
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In the next section we discuss the construction of weak solutions in the sense of
(1.5) for initial data constant on each road:

(ρi,0, ρi,0vi,0) = Ui,0 = consti.(1.7)

We consider a single junction. We look for solutions to Riemann problems on
each road i as if the road were extended to ]−∞,∞[:

∂t

(
ρi
ρiwi

)
+ ∂x

(
ρivi
ρiviwi

)
= 0, Ui(x, 0) =

(
U− x < x0

U+ x > x0

)
.(1.8)

Depending on the road, only one of the Riemann data is defined for t = 0:

If i ∈ δ− : U− = Ui,0 , x0 = bi and if i ∈ δ+ : U+ = Ui,0 , x0 = ai.(1.9)

We construct an (entropy) solution to (1.5) such that all generated waves have non-
positive (i ∈ δ−) or nonnegative (i ∈ δ+) speed. Moreover, the solutions satisfy
conditions (1.6a) and (1.6b).

We have to impose additional conditions [12] to obtain a unique solution. First,
the flux ρv is nonnegative. Next, it has to be distributed according to a priori given
ratios; see sections 3 to 7 for further details. Finally, we require that the total flux be
maximized subject to the other conditions.

The paper is organized as follows. In section 2 we discuss the general properties of
the Riemann problem for (1.1). First, we construct the demand and supply functions,
which are necessary to determine the flux at the junction. Refer to [23, 8, 9] for the
presentation of supply and demand functions for first-order models. Next, we define
admissible states on each road at the junction and finally we construct all intermediate
states in the solution of (1.1).

In section 3 we consider the easiest possible situation, namely, two roads connected
by a junction. In section 4 we extend the results to a junction with one incoming and
two outgoing roads. For the results on two incoming and one outgoing road we need
a description of the mixture of flows on the outgoing road. Therefore we briefly
revisit the main results of [1] and [3] in section 5. In section 6 we solve the case of
two incoming and two outgoing roads and define homogenized flow. In section 7 we
consider the general case of an intersection with an arbitrary number of incoming and
outgoing roads.

2. Preliminary discussion. The conservative variables are ρi and yi := ρiwi.
We assume ∀i : 0 ≤ ρi ≤ ρmax = 1 and ∀i : 0 ≤ vi ≤ vmax = 1. Furthermore, we set

Ui := (ρi, ρivi), U := (ρ, ρv)(2.1)

and we skip the subindex i at ρi and vi whenever the intention is clear. The sys-
tem (1.1) is strictly hyperbolic if ρi > 0 for all i. The eigenvalues are

λ1,i(U) = v − ρp′i(ρ) and λ2,i(U) = v.(2.2)

The right eigenvectors corresponding to λ1,i and λ2,i are

r1,i =

(
1

−p′i(ρ)

)
and r2,i =

(
1
0

)
.

Let ∇ denote the gradient with respect to (ρ, v). We recall that k is called a genuinely
nonlinear characteristic family if ∇λk,i(ρ, v) · rk,i(ρ, v) 	= 0 ∀(ρ, v). Depending on
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the initial data, the associated waves are rarefaction or shock waves. If ∇λk,i(ρ, v) ·
rk,i(ρ, v) = 0 ∀(ρ, v), then k is called a linearly degenerated characteristic family and
the associated waves are contact discontinuities. We refer to Definitions 7.2.1 and
7.5.1 in [7] for more details.

Here, k = 1 is a genuinely nonlinear and k = 2 is a linearly degenerated charac-
teristic family for all roads i. Moreover, the 1-shock and 1-rarefaction curves coincide
and we have a 2-contact discontinuity; see [2]. For each road i the Riemann invariants
are

wi(U) = v + pi(ρ) and vi(U) = v.(2.3)

Let us be more specific about the physical interpretation of w and p(·). Other
descriptions than (2.3) could be envisioned. In particular, the additive role of pi(·) in
wi (as in the Payne–Whitham model [26]) is not essential. It was introduced in [2] for
“historical” reasons, but it has a drawback: The associated individual fundamental
diagram (see Figure 1 below) implies a zero speed at a maximal (jam) traffic density
which is different for each category of car-driver pairs, i.e., each pairing (wi, pi). We
keep the above expression (2.3) throughout the paper for the sake of simplicity. As
noted in [3], the only crucial property of wi is that it is a Lagrangian marker. As an
example assume that on each road i, the (pseudo-)pressure is pi(ρ) := vmax − Vi(ρ),
where, e.g., vmax is the maximal speed on all roads and Vi(ρ) is an equilibrium speed
on road i. Therefore, the function U := (ρ, v) → wi(U) = v + pi(ρ) describes the
distance to equilibrium. The “momentum” equation tells us that each value w is a
Lagrangian property, such as a label or a color. Hence, when passing from road i to
another road j, each driver will preserve its “color.” In other words, he will keep the
same value w, which will now satisfy

wj(U) = w = wi(U).

This simple observation will be essential in what follows. In particular, it will lead to
a very natural homogenization problem in section 6.

The classical description by first-order models is just a particular case of our
second-order model. It corresponds to setting all the w’s equal to the same constant.
So our description can be drastically simplified when no sophisticated information is
needed.

We return to the mathematical description. Usually, we draw the level curves of
the Riemann invariants (in short the Riemann invariants) in the (ρ, ρv) plane. An
example of the curves is depicted in Figure 1. There is a one-to-one correspondence
to the (ρ, y) plane; see [2].

For an arbitrary fixed i we discuss the shape of the Riemann invariants in the
(ρ, ρv) plane and characterize important points.

The Riemann invariant {vi(U) = c} is a straight line with slope c passing through
the origin. Consider the curve {w(U) := wi(U) = c}, where c ∈ R denotes a constant.
By assumption (1.2) on p := pi this curve is strictly concave and passes through the
origin. Furthermore, if c > 0, then the curve {w(U) = c} lies in the first quadrant of
the (ρ, ρv) plane for ρ between 0 and a maximal value ρ̄ ∈ ]0, 1]. The maximal value
ρ̄ depends on c and p(·). Due to the strict concavity there exists a unique point (i.e.,
the “sonic point”) σ(w, c) with 0 < σ(w, c) ≤ 1, depending on c and the function p(·).
The point σ(w, c) maximizes the flux ρv on {w(U) = c}.

The total flux has to be conserved through an intersection. Therefore, we in-
troduce the functions r(ρ;w, c) and u(ρ;w, c) below. Assume c > 0. Then for all
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Fig. 1. Riemann invariants in the (ρ, ρv) plane.

ρ ∈ [0, ρ̄] there exists a unique v such that w((ρ, ρv)) = c. Moreover, there exists a
unique pair (r, u) such that

w(r, r u) = w(ρ, ρ v),(2.4a)

r u = ρ v,(2.4b)

r 	= ρ except for ρ = σ(w, c).(2.4c)

In other words (ρ, v) and (r, u) correspond to the same flux and the same level curve
of w; see Figure 2 for an example. Hence, for each curve {w(U) = c} with c > 0 there
exist two unique functions ρ → r(ρ;w, c) and ρ → u(ρ;w, c) satisfying (2.4) for all
ρ ∈ [0, ρ̄].

Next, we describe the construction of the demand and supply functions for a given
curve {w(U) = c}, c ≥ 0. As in the case of first-order models, e.g., [23], in the (ρ, ρv)
plane, the demand function d(ρ;w, c) is an extension of the nondecreasing part of the
curve {w(U) = c} for ρ ≥ 0, whereas the supply function s(ρ;w, c) is an extension of
the nonincreasing part of the curve {w(U) = c} and ρ ≥ 0; see Figures 2 and 3 for
examples.

Now we consider the Riemann problem (1.8) for a given incoming road i ∈ δ−.
Hence, only the initial datum U− = Ui,0 is given. We want to determine all “admis-
sible” states U+: A state U+ is called “admissible” if and only if either the waves of
the solution to (1.8) with initial data (U−, U+) have negative speed or the solution
is constant (U+ = U−). As in [17] we neglect waves of zero speed (stationary waves).
Later on U+ will be an intermediate state in the solution Ui(·, ·) on the incoming road
i for the full Riemann problem at the junction, i.e., Ui(x0−, t) = U+.

Proposition 2.1. Let U− = (ρ−, ρ−v−) 	= (0, 0) be the initial value on an
incoming road i. Let the 1-curve through U− be wi(U) = v + pi(ρ) = w− with w− :=
wi(U

−). Then the “admissible” states U+ = (ρ+, ρ+v+) for the Riemann problem
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Fig. 2. Demand function for given w(U) = v + p(ρ) = const. Additionally, σ(w, c) and the
position of a sample point (ρ, ρ v) and the corresponding (r, r u) are shown.
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Fig. 3. Supply function for a given w(U) = v + p(ρ) = const.

must belong to that curve; i.e., wi(U
+) = w− and ρ+v+ ≥ 0. Depending on U− we

distinguish two cases:

1. ρ− < σ(wi, w
−) : U+ is admissible if and only if ρ+ > r(ρ−;wi, w

−) or if
U+ ≡ U−.

2. ρ− ≥ σ(wi, w
−) : U+ is admissible if and only if σ(wi, w

−) ≤ ρ+ ≤ 1.

If U− = (0, 0), then the admissible state is U+ ≡ U−.
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In all cases the maximal possible flux associated with any admissible state U+ is
d(ρ−;w,w−) with w = wi.

Proof. For U− 	= (0, 0) the 2-contact discontinuities are waves with speed v− > 0.
Hence, we only have to discuss 1-shock or 1-rarefaction waves. Following [2], a left
state U− can be connected to a right state U+ by a 1-shock if and only if ρ+ > ρ−.
The shock speed is then given by the slope of the chord U−U+. A left state U− can
be connected to a right state U+ by a 1-rarefaction wave if and only if ρ+ < ρ−. Note
that in the (ρ, ρv) plane the slope of the tangent to the curve {wi(U) = c} at a point
U is the characteristic speed λ1(U).

By the discussion in the previous section there exists a state U∗ with ρ∗ =
r(ρ−;wi, w

−) and v∗ = u(ρ−;wi, w
−), such that wi(U

∗) = w−. Furthermore, the
chord U−U∗ has a zero slope. Hence, we have a 1-rarefaction wave for all states U+

with σ(wi, w
−) ≤ ρ+ ≤ ρ−, and a 1-shock for ρ+ ≥ ρ−.

In both cases the associated flux is not greater than the demand d(ρ−;w,w−).

Finally, if ρ+ > 0, then U− = (0, 0) can be connected to U+ by a 2-contact
discontinuity, which has either positive speed or zero speed; cf. Case 5 in [2]. Hence,
only U+ ≡ (0, 0) is admissible.

Next, we consider the Riemann problem (1.8) for a given outgoing road i ∈ δ+,
a function w(U) := v + pi(ρ), and a nonnegative constant c. Later on, c will of course
depend on the initial states on the incoming roads (!); see sections 3 to 7. We look
for “admissible” states U−, i.e., all the states such that the waves of the solution have
a positive speed or such that the solution is a constant. Again, we exclude the case
of stationary waves. As in the previous case, U− will be an intermediate state in the
solution on the outgoing road i for the full Riemann problem at the junction. Now
Ui(x0+, t) = U− will hold.

Proposition 2.2. Consider a state U+ 	= (0, 0) and the level curve of the first
Riemann invariant {w(U) = c} with an arbitrary nonnegative constant c.

Let U† = (ρ†, ρ†v†) be the point of intersection, if it exists, of the two Riemann
invariants {v(U) = v+} and {w(U) = c} with ρ > 0 and v > 0.

Then the “admissible” states U− for the Riemann problem satisfying w(U−) = c
and ρ−v− ≥ 0 are given by two cases:

1. ρ† ≤ σ(w, c) : U− is admissible if and only if 0 ≤ ρ− ≤ σ(w, c).
2. ρ† > σ(w, c) : U− is admissible if and only if 0 ≤ ρ− < r(ρ†;w, c) or if

U− ≡ U†.

Note that the set of admissible states U− depends on the existence of the point U†.
Now assume that either U+ = (0, 0) or there is no such point U† with ρ†, v† > 0. Then
we set U† = (0, 0) and as in Case 1, U− is admissible if and only if 0 ≤ ρ− ≤ σ(w, c).

In all cases the maximal possible flux associated with any “admissible” state U−

is s(ρ†;w, c).

Proof. Due to the range of the eigenvalues we can connect a left state U− to an
intermediate state U† by a 1-shock or a 1-rarefaction wave of positive speed. Then
U† can be connected to U+ by a 2-contact discontinuity.

If U† exists, it is well defined, since the curves {w(U) = c} and {v(U) = v+}
have a unique intersection point such that ρ > 0, ρv > 0. If there is no point U† with
ρ, v > 0, then the curves have a unique intersection point at (0, 0).

Using the same kind of argument as in Proposition 2.1, we see that either the
1-shock or the 1-rarefaction waves connecting U− and U† have a positive speed or the
solution is constant.
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Next, if ρ+ = 0, we set U† = U+ and can connect to U− by waves of the first
family only; cf. Case 4 in [2].

Combining these two results, we obtain the following proposition.
Proposition 2.3. Consider an incoming (resp., outgoing) road i, an initial

datum U− := Ui,0 (resp., U+ := Ui,0), and an arbitrary flux q0 ≥ 0. Let w(U) :=
v + pi(ρ) and c := w(Ui,0). Assume

q0 ≤ d(ρi,0;w, c) (resp., q0 ≤ s(ρi,0;w, c)).

By Propositions 2.1 and 2.2, there exists a unique state U+ (resp., U−), such that
the corresponding Riemann problem (1.8) admits a solution such that w(U+) = c and
ρ+v+ = q0 (resp., w(U+) = c and ρ+v+ = q0) and either all the waves have negative
(resp., positive) speed, or the solution is a constant on the corresponding road.

The reader is advised to pay attention to the notation. In the full solution to the
Riemann problem at a junction we will have

for i ∈ δ− : U+
i = Ui(x0−, t) and for i ∈ δ+ : U−

i = Ui(x0+, t).(2.5)

Unfortunately, it seems hard to avoid this possibly misleading notation. Moreover,
the state referred to here as U+ will itself be an intermediate state called U†, defined
as in Proposition 2.2.

To summarize, Proposition 2.3 describes the set of “admissible” states for the
Riemann data on incoming and outgoing roads. We will refer to Proposition 2.3
regarding these states, which will be intermediate states in the solution of the full
problem, satisfying (1.6a) and (1.6b). We now turn to the study of the first case.

3. One incoming and one outgoing road. The simplest possible network
contains two roads connected by a junction, i.e., one road with two different road
conditions.

Proposition 3.1. Consider two roads i = 1, 2 with a1 = −∞, b1 = a2, and
b2 = ∞ and initial data Ui,0 = (ρi,0, ρi,0vi,0), i = 1, 2 constant.

Then there exists a unique solution Ui(x, t) of the Riemann problem at the junc-
tion (1.8) and (1.9) with the properties (1) and (2). We refer to equation (3.2) and to
the end of the proof for a description of the structure of this solution.

(1) Ui(x, t) is a weak solution of the network problem (1.5a)–(1.5b), where p†i ≡
pi, i = 1, 2, as given in (1.1). Furthermore (1.6a)–(1.6b) are satisfied, and
ρi(x, t)vi(x, t) ≥ 0, i = 1, 2.

(2) The flux (ρ1v1)(b
−
1 , t) is maximal at the interface, subject to the above condi-

tions.
Proof. Let U−

1 := U1,0, U
+
2 := U2,0, and wi(U) = v + pi(ρ) for i = 1, 2. As

described in section 2 we construct the demand function for the incoming road

d(ρ) := d(ρ;w1, w1(U
−
1 )),

and the supply function for the outgoing road

s(ρ) := s(ρ;w2, w1(U
−
1 )).(3.1)

Note that the supply function is an extension of the nonincreasing part of the curve
{w2(U) =w1(U

−
1 )}. The expression (3.1) of the supply function s(·) involves the

function w2 and the value w1(U
−
1 ), since the cars which are initially on road 1 and

have moved onto road 2 have kept their Lagrangian “color” w1(U
−
1 ).
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By Proposition 2.2 we obtain U†
2 either as the intersection of the curves {v2(U) =

v+
2 } and {w2(U) = w1(U

−
1 )} or by U†

2 = (0, 0). Then we solve the maximization
problem

max q1 subject to

0 ≤ q1 ≤ d(ρ−1 ),

0 ≤ q1 ≤ s(ρ†2).

Denote by q̃ the point where the maximum is attained. Of course the above is equiv-
alent to q̃ = min{d(ρ−1 ), s(ρ†2)}, but we will need the general form later.

Now, as in Proposition 2.3 there exist U+
1 and U−

2 such that ρ+
1 v

+
1 = ρ−2 v

−
2 = q̃.

Knowing the states U+
1 and U−

2 , we solve the two Riemann problems to obtain
weak entropy solutions U1(x, t) and U2(x, t):

i = 1, 2 : ∂t

[
ρi
vi

]
+ ∂x

[
ρivi

ρiviwi

]
= 0,(3.2a)

i = 1 : U1(x, 0) =

[
U−

1 ≡ U1,0 x < b1
U+

1 x ≥ b1

]
,(3.2b)

i = 2 : U2(x, 0) =

[
U−

2 x ≤ a2

U+
2 ≡ U2,0 x > a2

]
.(3.2c)

Each solution consists of at most two waves: a 1-rarefaction or a 1-shock wave asso-
ciated with the first eigenvalue, followed by a 2-contact discontinuity associated with
the second eigenvalue.

The conditions (1.6a)–(1.6b) are satisfied since

q̃ = ρ+
1 v

+
1 = ρ−2 v

−
2

and

w1(U
+
1 ) = w1(U

−
1 ) = w2(U

−
2 ) = w2(U

†
2 ).

An example of a solution in the (x, t) plane is depicted in Figure 4.

4. One incoming and two outgoing roads. We now consider the case of one
incoming and two outgoing roads. We cannot expect to obtain a unique solution
without imposing additional assumptions on the distribution of the flux among the
outgoing roads. One could impose an optimization criterion, such as maximizing the
total flux at the interface [17, 5].

Here, we impose the proportions (α and (1− α)) of cars which go from road 1 to
roads 2 and 3. This condition was first introduced in [5] for the first-order LWR model
and in [12] for the AR model. In the case of first-order models, the car distribution
at junctions has also been studied in [23, 8] and many other works.

Proposition 4.1. Consider three roads i = 1, 2, 3 with a1 = −∞, b1 = a2 = a3,
and b2 = b3 = ∞ and constant initial data Ui,0 = (ρi,0, ρi,0vi,0), i = 1, 2, 3. Let
0 ≤ α ≤ 1 be given.

Then there exists a unique solution Ui(x, t), i = 1, 2, 3, of the Riemann problem
at the junction (1.8) and (1.9) with the following properties (1) and (2). A description
of its structure can be found at the end of the proof.

(1) Ui(x, t) is a weak solution of the network problem (1.5a)–(1.5b), wherein p†i ≡
pi for all i = 1, 2, 3.
Furthermore (1.6a)–(1.6b) are satisfied, and ρi(x, t)vi(x, t) ≥ 0, i = 1, 2, 3.
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2−cd 

Fig. 4. Possible solution to the Riemann problems of road 1 (left) and road 2 (right). 1−s/1−r
stands for the 1-shock or 1-rarefaction wave connecting the left and right states. Similarly, 2-cd
denotes the 2-contact discontinuity.

(2) For all t > 0 the flux is distributed in proportions α and 1− α between roads
2 and 3:

α(ρ1v1)(b
−
1 , t) = (ρ2v2)(a

+
2 , t),(4.1a)

(1 − α)(ρ1v1)(b
−
1 , t) = (ρ3v3)(a

+
3 , t).(4.1b)

(3) The flux (ρ1v1)(b
−
1 , t) is maximal at the interface, subject to the above condi-

tions.

Proof. Let U−
1 = U1,0, U

+
i = Ui,0, i = 2, 3, and for i = 1, 2, 3 let wi(U) :=

v + pi(ρ). As in section 2 we construct the demand function

d(ρ) := d(ρ;w1, w1(U
−
1 ))

and the two supply functions

s2(ρ) := s(ρ;w2, w1(U
−
1 )), s3(ρ) := s(ρ;w3, w1(U

−
1 )).

For i = 2, 3 we obtain the points U†
i as the intersection of {v(U) = v+

i } with {wi(U) =

w1(U
−
1 )} or as U†

i = (0, 0); cf. Proposition 2.2. We solve the maximization problem

max q1 subject to(4.2a)

0 ≤ q1 ≤ d(ρ−1 ),(4.2b)

0 ≤ αq1 ≤ s2(ρ
†
2),(4.2c)

0 ≤ (1 − α)q1 ≤ s3(ρ
†
3).(4.2d)
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Denote by q̃ the point where the maximum is attained. Of course the above is equiv-
alent to q̃ = min{d(ρ−1 ), s2(ρ

†
2)/α, s3(ρ

†
3)/(1 − α)}. By Proposition 2.3 we conclude

that

∃U+
1 such that ρ+

1 v
+
1 = q̃, w1(U

+
1 ) = w1(U

−
1 ),(4.3a)

∃U−
2 such that ρ−2 v

−
2 = αq̃, w2(U

−
2 ) = w1(U

−
1 ),(4.3b)

and ∃U−
3 such that ρ−3 v

−
3 = (1 − α)q̃, w3(U

−
3 ) = w1(U

−
1 ).(4.3c)

Clearly, the conditions (1.6a)–(1.6b) and (4.1a)–(4.1b) are satisfied by (4.3). Again,
each solution Ui(x, t) consists of a juxtaposition of rarefaction or shock waves associ-
ated with the first eigenvalue and a contact discontinuity associated with the second
eigenvalue of (1.1). The construction is similar to (3.2) in Proposition (3.1). In the
limit cases α = 0 or α = 1 we are exactly in the setting of Proposition 3.1.

Before studying the more surprising case of two incoming and one outgoing roads
in section 6, we must recall a few basic facts on the Lagrangian version of the model
and the corresponding homogenized system.

The reader is advised to take a look at the first part of section 5 and then move
to section 6. The second part of section 5 deals with details on the homogenization
and can be read after section 6.

5. The Lagrangian model and its homogenized version. The Lagrangian
formulation is introduced in [1]. A formal derivation is given in [28] and a mathe-
matical study in [13]. The homogenization of this system is studied in [3]. Proofs of
statements below can be found in the above references.

Consider a single road with pi := p. Then it turns out that the weak entropy
solutions of

ρt + (ρv)x = 0, (ρw)t + (ρvw)x = 0, w = v + p(ρ)

correspond to the weak entropy solutions of the equivalent system in (mass) La-
grangian coordinates (X, t):

τt − vX = 0, wt = 0, w = v + P (τ),(5.1)

with τ := 1/ρ, P (τ) := p(ρ). Here, X is the Lagrangian (mass) coordinate, defined by
∂xX = ρ and ∂tX = −ρ v. The existence of X(·, ·) follows from the mass conservation
equation. For some unspecified t0, X(x, t0) :=

∫ x

0
ρ(y, t0) dy, where we implicitly

define ρ as the dimensionless density, i.e., the fraction of space occupied by the cars;
see [1]. Therefore X is the position of each car if all cars are parked “nose to tail.”

As in [1] consider two different approximations of the system (5.1):
(i) the fully discrete solution of (5.1) constructed with the Godunov scheme, with

space and time steps ΔX and Δt;
(ii) the semidiscrete approximation, namely the (infinite) system of ODEs

∂t

[
τj
wj

]
−
[vj+1−vj

ΔX
0

]
= 0,

where ΔX is the length of a car (fixed for simplicity). It is easy to see that this system
can be rewritten in the form

ẋj = vj , ẇj = 0 with τj = (xj+1 − xj)/ΔX, wj = vj + P (τj).(5.2)
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In other words, the semidiscretization of (5.1) is exactly the “follow-the-leader
model” [15].

The rigorous results of convergence in [1, 13] are as follows:
(a) When ΔX and Δt tend to zero with a fixed ratio and satisfy the CFL stability

condition, a subsequence of the fully discrete (Godunov) solution converges to a weak
entropy solution of (5.1). This limit is viewed as a coarse graining limit, i.e., a
“zooming” with the same ratio in X and t (“hyperbolic scaling”).

(b) Next, when Δt tends to zero, with ΔX fixed, the Godunov solution converges
to the unique solution of the microscopic follow-the-leader model (FLM) system.

(c) Finally, when ΔX tends to zero, this microscopic FLM solution converges to
a weak entropy solution to (5.1).

These results were essentially based on uniform a priori BV-estimates (estimates
on the total variation) for the Godunov solution. Indeed, this Lagrangian scheme
preserves the total variation of the two Riemann invariants if the initial data are
BV-functions.

The case of initial data with large oscillations in w, i.e., oscillations in the charac-
teristics of car-driver pairs, is studied in [3]. Oscillations in w also generate oscillations
in τ. Note that oscillations in v would be unrealistic (and dangerous!) and would be
immediately cancelled by the genuinely nonlinear eigenvalue λ1.

In the above mentioned (hyperbolic) “zooming,” the oscillations in w are wilder
and wilder as the zoom parameter goes to 0. Therefore, the corresponding sequence
of functions converges only weakly to some limit. The above results can be extended,
and uniqueness can be proved in this more general setting. The modification in-
volves a homogenized relation between v, w, and τ , which uses the language of Young
measures; see [27, 4, 11].

Let us briefly recall a few basic facts on Young measures, adapted to our context.
The reader is advised to take a look at the practical example given in section 6.

We introduce a (Lagrangian) grid (Xj) and define Uj = (τj , wj) and UΔX(X, t) :=∑
j Uj(t)χj(X), where χj is the characteristic function on Ij := (Xj−1/2, Xj+1/2). For

any ΔX > 0, let U0
j = (τ0

j , w
0
j ) be uniformly bounded for all j, and let U0

ΔX(X) :=∑
j U

0
j χj(X) be the corresponding sequence of piecewise constant initial data. Of

course, this sequence is uniformly bounded in L∞ when ΔX → 0.
Therefore [27, 4], there exist a subsequence, still denoted by U0

ΔX(·), and a family
of probability measures νX,t in the (v, w) plane, depending on X, such that the weak-∗
limit of any continuous function F (v0

ΔX , w0
ΔX) is equal a.e. to

〈νX,t, F (v, w)〉 :=

∫
F (v, w) dνX,t(v, w).(5.3)

Since the sequence (vΔX) does not oscillate, the same subsequence converges pointwise
to some strong limit v∗(X, t). Hence, (5.3) can be rewritten as

〈νX,t, F (v, w)〉 = 〈μX , F (v∗(X, t), w)〉 :=

∫
F (v∗(X, t), w) dμX(w),

where the probability measures μX describe the weak limit of all functions in the
single variable w. Therefore μ depends on X but not on t.

The main result in [3] can be stated as follows.
Proposition 5.1. (i) Under the above assumptions, the (sub)sequence of weak

entropy solutions corresponding to the above (sub)sequence converges in L∞ weak-∗
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to the unique weak “entropy” solution U∗ = (τ∗, w∗) of the homogenized problem

∂tτ
∗ − ∂Xv∗ = 0, ∂tw

∗ = 0.(5.4)

(ii) Furthermore, (vΔX) converges almost everywhere, and the limit state can be
characterized as

τ∗(X, t) =

∫
P−1(w − v∗(X, t))dμX(w),(5.5a)

w∗(X, t) = w∗(X, 0) =

∫
wdμX(w),(5.5b)

where μX is the Young measure associated with the sequence (wΔX).
Moreover, there is a similar result of homogenization for a multiclass FLM, similar

to (5.2), with oscillating data wj . We again refer to [3] for more details. Proposition
6.1 in the next section deals with a practical example of the above result.

6. Two incoming and one outgoing road. As in section 4, we need an ad-
ditional assumption to obtain a unique solution at the junction. We introduce a
“mixture rule,” which describes how cars of the incoming road mix when they enter
the outgoing road. One of the most natural assumptions is an equal priority rule:
The cars of both incoming roads enter the outgoing road alternately.

Note that other assumptions on the mixture of cars are also possible. The discus-
sion below remains valid with obvious changes according to different mixture rules.

Proposition 6.1. Consider three roads i = 1, 2, 3 with a1 = a2 = −∞, b1 =
b2 = a3, and b3 = ∞ and constant initial data Ui,0 = (ρi,0ρi,0vi,0), i = 1, 2, 3.

Then there exists a unique solution Ui(x, t), i = 1, 2, 3, of the Riemann problem
at the junction (1.8) and (1.9) with the following properties.

(1) Ui(x, t) is a weak solution of the network problem (1.5a)–(1.5b), where p†i ≡ pi
for the incoming roads i = 1, 2.
For the outgoing road i = 3, we obtain two different expressions for p†3, de-
pending on the position (x, t):
(a) In the triangle {(x, t) : a3 ≤ x ≤ a3 + v3,0t} of the x− t plane, we con-

sider the homogenized solution described below. Therefore, p†i (·) := p∗i (·)
is given by (6.3)–(6.6). This solution depends on the applied mixture
principle, the initial data on U1,0, U2,0, and the road conditions p3. The
triangle is bounded at any fixed time t > 0 by x = a3 and x = a3 + tv3,0.

(b) In the remaining part of the outgoing road we have p†3 ≡ p3.
(2) The equations (1.6a)–(1.6b) are satisfied, with ρi(x, t)vi(x, t) ≥ 0 , 1 ≤ i ≤ 3.

In particular U3(a
+
3 , t) satisfies

w†
3(U3(a

+
3 , t)) := w∗

3(U3(a
+
3 , t)) := v3(a

+
3 , t) + p∗3(ρ3(a

+
3 , t)) = w̄,

where w̄ is the homogenized value:

w̄ :=
1

2
(w1(U1,0) + w2(U2,0)) .(6.1)

(3) The two incoming fluxes are equal (equal priority rule), and the total flux
2(ρ1v1)(b

−
1 , t) = 2(ρ2v2)(b

−
2 , t) = (ρ3v3)(a

+
3 , t) is maximal subject to the other

conditions.



608 M. HERTY AND M. RASCLE

Before giving the proof of this result, let us motivate the definition of (6.1) and
the necessity of dealing with a function p∗3. Consider the discrete FLM (5.2), with
oscillating wj = vj + P (τj):

∂t

[
τj
wj

]
−
[vj+1−vj

ΔX
0

]
= 0.

More precisely, consider a microscopic situation on the outgoing road 3. As in the
introduction of this section, assume that the cars coming from each incoming road
pass the junction in an alternating way.

Although w was constant on each of the roads 1 and 2, the outgoing flow is
obviously oscillating. In fact, in Lagrangian coordinates,

w0
j =

[
w1 j even
w2 j odd

]
,

where the constants w1 and w2 are given by the two incoming flows. The correspond-
ing function P on the outgoing road is the function P3(τ) := p3(1/τ). Then the
piecewise constant approximation wΔX alternately takes the two values w1 and w2.
Consequently, for any continuous function F ,

F (wΔX) ⇀∗ (F (w))∗ :=
1

2
(F (w1) + F (w2)) =

∫
F (w)dμX(w),

where μX :=
1

2
(δw1

+ δw2
) .(6.2)

The value of w has to be given by (6.1), since one car out of two comes from each road
1 or 2 (think of black and white cars producing a grey homogenized flow) and since
any Lagrangian interval of length ΔX contains one car. Recall that we assumed that
all cars have the same length. This assumption could be relaxed, and the formulas
would be modified in an obvious way.

Therefore, in the limit ΔX → 0, the cars passing through the junction have
the average property associated with the Young measure μX in (6.2). By section 5,
the corresponding homogenized solution is the unique weak entropy solution of (5.4),
where τ∗ is given by (5.5a), i.e., here by

τ∗(X, t) =
1

2
(P−1

3 (w1 − v∗(X, t)) + P−1
3 (w2 − v∗(X, t))),(6.3)

which (by monotonicity of P3) defines a one-to-one relation between v := v∗(X, t)
and τ := τ∗(X, t).

We choose to rewrite (6.3) in the form

v = w − P ∗
3 (τ), w := w̄,(6.4)

where w̄ is given by (6.1). In other words, we define P ∗
3 so that, for each τ = τ∗,

the value v = v∗ defined by (6.4) is the unique solution of (6.3) to the unknown
v. This (convenient) notation could be misleading for an arbitrary value w. Indeed,
the homogenized relation between v and τ depends on μX ; see (5.5a). Therefore, it
depends on the local proportions of cars coming from each incoming road. In other
words, (6.4) would be wrong for any value w 	= w̄. However, as we see below, on the
relevant portion of road 3, the homogenized w only takes the value w̄.
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Now, three questions arise:

(i) How do we express this in Eulerian coordinates?

(ii) In Eulerian coordinates, what is the portion of road 3 concerned with this
homogenized flow?

(iii) Does this solution respect the Rankine–Hugoniot relations (1.6a), (1.6b) at
the interface x = b1 = b2 = a3, and how is it connected with the downstream flow
on road 3?

(i) First (see [1]), we can rewrite (5.4), (6.3) in Eulerian coordinates to get the
equivalent system (even for weak entropy solutions):

∂tρ + ∂x(ρv) = 0,(6.5a)

∂t(ρw) + ∂x(ρvw) = 0,(6.5b)

w(U) ≡ w∗(U) = v + p∗3(ρ),(6.5c)

with w(U) ≡ w̄ and

p∗3(ρ) := P ∗
3 (ρ−1)(6.6)

defined by (6.4). Again, for arbitrary values of w, we would not recover the correct
homogenized solution.

(ii) In the (x, t) plane, at time t > 0, the portion of road 3 concerned with this
self-similar, homogenized flow is a triangle bounded by x = b1 = b2 = a3 and by
x = a3 + t v3,0. Here, v3,0 is the initial datum on road 3.

(iii) On the above portion of road 3, our solution satisfies (6.5), (6.6) and the
value of w is a constant and is equal to the corresponding average value given by
(6.1).

The boundary data specified below preserve the conservation of mass at the in-
tersection and satisfy the equal priority rule on the mixture of the cars:

ρ3 v3 = ρ1 v1 + ρ2 v2 = 2 ρ1 v1.

Therefore, combining with (6.1), we see that ρ3 v3 w3 = ρ1 v1 w1 + ρ2 v2 w2; i.e.,
we recover (1.6b): Our solution also satisfies the conservation of y = ρw at the
junction. Roughly speaking, the total number of white cars is also preserved at the
intersections!

Now we can give the proof of Proposition 6.1.

Proof. Let U−
i = Ui,0 for i = 1, 2 and let U+

3 = U3,0. Denote by wi(U) = v+pi(ρ).
Let the demand functions d1 and d2 be defined by

d1(ρ) := d(ρ;w1, w1(U
−
1 )), d2(ρ) := d(ρ;w2, w2(U

−
2 )).

With all the previous remarks in mind and again with w†
3(U) = v+p†3(U) and p†3(·) :=

p∗3(·), we consider the following supply function:

s3(ρ) := s†3(ρ) := s(ρ;w†
3, w̄), w̄ =

1

2

(
w1(U

−
1 ) + w2(U

−
2 )

)
.

As in Proposition 2.2 we obtain the intermediate state U†
3 = (ρ†3, ρ

†
3v

†
3) as the inter-

section of {v3(U) = v+
3 } and {w†

3(U) = w̄}, or as U†
3 = (0, 0). Then we solve for
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q1, q2:

max q1 + q2 subject to

0 ≤ qi ≤ di(ρ
−
i ), i = 1, 2,

0 ≤ q1 + q2 ≤ s3(ρ
†
3),

q1 = q2.

Clearly, q̃ = q1 = q2 = min{s3(ρ
†
3)/2, d1(ρ

−
1 ), d2(ρ

−
2 )} is the unique solution. As in

Proposition (2.3) we conclude that

∃U+
i such that ρ+

i v
+
i = q̃, wi(U

+
i ) = wi(U

−
i ), i = 1, 2,

∃U−
3 such that ρ−3 v

−
3 = 2q̃, w†

3(U
−
3 ) = w̄.

We recall that Ui(bi−, t) = U+
i for i = 1, 2 and U3(a3+, t) = U−

3 .
Then the conditions (1.6a)–(1.6b) are satisfied. Using the considerations above,

the function p†3 is defined in the triangle {(x, t) : a3 ≤ x ≤ a3 + tv3,0} of the x − t
plane.

Each solution Ui(x, t) is a juxtaposition of either a rarefaction or a shock wave
and a contact discontinuity.

In particular, on the outgoing road i = 3, the states U−
3 and U†

3 are connected
by a rarefaction or a shock wave associated with the first eigenvalue of system (1.1),

with pi = p†3 = p∗3. Then U†
3 is connected to U+

3 = U3,0 by a contact discontinuity
associated with the second eigenvalue λ2 = v3,0, which is independent of pi. Hence,
out of the above mentioned triangle, U3(x, t) ≡ U3,0.

An example of a solution is depicted in Figures 5 and 6.

7. Arbitrary number of incoming and outgoing roads. We combine the
results of sections 4 to 6 to treat the general case. We consider a fixed junction with
m incoming roads δ− = {1, . . . ,m} and n outgoing roads δ+ = {m + 1, . . . ,m + n}.
We assume constant initial data Ui,0 for all i and we look for solutions to the Riemann
problem (1.8) and (1.9).

In sections 4 to 6 we imposed additional conditions to obtain a unique solution.
Here, as in section 6 we introduce a mixture principle for the outgoing traffic which
is an extension of the equal priority rule; cf. assumption (H4) below. However, the
stated results can be adapted to other mixture rules.

For a set of functions Ui(x, t) = (ρi(x, t), ρi(x, t)vi(x, t)) , i ∈ δ−∪δ+, we introduce
the following abbreviations:

qi := ρi(b
−
i , t)vi(b

−
i , t) ∀i ∈ δ−,(7.1a)

qj := ρj(a
+
j , t)vj(a

+
j , t) ∀j ∈ δ+.(7.1b)

Next, we introduce real numbers qji ∈ R for j ∈ δ+ and i ∈ δ− corresponding to the
(a priori unknown) actual fluxes of cars coming from road i and going to road j. Since
the number of cars entering and leaving the junction is the same,

qi =
∑
j∈δ+

qji, qj =
∑
i∈δ−

qji.(7.2)

We look for a solution Uk(x, t) which satisfies the following assumptions and
constraints.
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Fig. 5. An example of intermediate states on road 1 (top) and road 3 (bottom) in the case

where q̃ = d2(ρ2,0;w2, w2(U2,0)), i.e., q̃ < d1(·) and q̃ < s†3(·), respectively. In this case the solution

U2 on road 2 is a constant U2(x, t) = U2,0 ≡ U−
2 and therefore is omitted from the plots. In the

drawings U∗
3 , s

∗
3, w

∗
3 , and w∗

1 stand for U†
3 , s

†
3, w

†
3, and w†

1, respectively.

(H1) Preferred choice of the drivers:
As in [12] we are given a matrix A,

A = (αji)j∈δ+,i∈δ− ∈ R
n×m,(7.3)

such that 0 ≤ αji ≤ 1 and
∑

j∈δ+ αji = 1 ∀i ∈ δ−.
We introduce aj :=

∑
i∈δ− αji for notational convenience. We impose the

constraint

qji = αjiqi ∀j ∈ δ+, i ∈ δ−.(7.4)
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Fig. 6. Plot of the solution U1 and U3 in the x − t plane with data as in Figure 5. Left
of the interface, U−

1 ≡ U1,0 is connected by a 1-rarefaction to U+
1 . Right of the interface, U−

3 is

connected by a 2–shock to U∗
3 ≡ U†

3 , and this state in turn is connected to U+
3 ≡ U3,0 by a 2–contact

discontinuity. We omit the solution U2 since it is constant.

(H2) Relation for w†
j (on the outgoing roads):

∀j ∈ δ+ : w†
j(Uj(a

+
j , t)) =

∑
i∈δ−

qji
qj

wi(Ui(b
−
i , t)).(7.5)

As in the previous sections wi(Ui(bi−, t)) = wi(Ui,0) ∀i ∈ δ− and ∀j ∈ δ+ :

w†
j(Uj(a

+
j , t)) := vj(a

+
j , t) + p†j(ρj(a

+
j , t)) = w̄j .

The functions p†j and the homogenized values w̄j have to be specified later.
(H3) Bounds on the actual fluxes:

0 ≤ qi ≤ di(ρi,0) ∀i ∈ δ−,(7.6a)

0 ≤ qj ≤ sj(ρ
†
j) ∀j ∈ δ+.(7.6b)

Here di denotes the demand function on road i, i.e., di := di(ρ;wi, wi(Ui,0)),

where wi(U) = v + pi(ρ), and sj := sj(ρ;w
†
j , w̄j) is the supply function on

road j. The functions w†
j and the homogenized values w̄j are specified later

and depend on the applied mixture rule. Finally, (ρ†j , ρ
†
jv

†
j ) is the intermediate

state on road j, i.e., the unique intersection of the curves {vj(U) = vj,0} and

{w†
j(U) = w̄j}.

In order to define a unique solution, we have to impose a further constraint, i.e.,
a maximization criterion as in [17, 12]. Here, as in section 6, we choose to impose the
following rule.
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(H4) The mixture rule:
The actual incoming fluxes (qi)i∈δ− are proportional to a given nonnegative
vector (q̃i)i∈δ− . The equal priority rule introduced in section 6 is a particular
subcase, with (q̃i)i∈δ− = (1, . . . , 1). So we impose in general

qi = q̃ q̃i ≥ 0,(7.7)

where q̃ > 0 is a priori unknown, but (q̃i)i∈δ− is given.

Theorem 7.1. Consider a junction with m incoming and n outgoing roads,
with constant initial data Ui,0 = (ρi,0, ρi,0vi,0) ∀i ∈ δ− ∪ δ+ under the assumptions
(H1)–(H4).

Then there exists a unique solution {Ui(x, t)}i∈δ−∪δ+ to the Riemann problems
(1.8)–(1.9) which is described below, and which satisfies the following properties.

(1) {Ui(x, t)}i∈δ−∪δ+ is a weak entropy solution of the network problem (1.5a)–

(1.5b) and for i ∈ δ− : p†i ≡ pi.

For the outgoing roads j ∈ δ+ we obtain two different expressions for p†j,
depending on the region. In the x − t plane in a triangle near the junction,
we consider the homogenized solution and hence p†j(·) = p∗j (·) defined below
in (7.14). This triangle is defined by {(x, t) : aj ≤ x ≤ tvj,0} for any fixed

time t > 0. Beyond this triangle we have p†j(·) ≡ pj(·).
(2) The constraints (7.4)–(7.6) are satisfied, and the homogenized values w̄j are

given by

w̄j :=
∑
i∈δ−

qji
qj

wi(Ui,0) ∀j ∈ δ+.(7.8)

The ratios qji/qj are defined below in (7.15).
(3) Moreover, the incoming fluxes satisfy (7.7) and are maximal subject to the

other conditions.

For simplicity we restrict ourselves the case of the equal priority rule. Obviously
the proof can be extended to the general case (7.7). Note that the matrix A plays the
same role as in [12], but we do not need the same restrictions on A.

Proof. With the discussion in section 6 in mind we consider the following supply
functions for j ∈ δ+:

sj(ρ) := s(ρ;w†
j ; w̄j),(7.9)

w̄j :=
∑
i∈δ−

qji
qj

wi(Ui,0),(7.10)

where wi(U) = v + pi(U) ∀i ∈ δ− and where w†
j(U) = v + p†j(U) and p†j(·) := p∗j (·)

∀j ∈ δ+. For each j ∈ δ+, p∗j (·) is defined as in section 6. Namely, we first define the
function

Pj(τ) := pj(1/τ).(7.11)

Then we set

v → τ :=
∑
i∈δ−

qji
qj

P−1
j (wi(Ui,0) − v).(7.12)
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Next, we choose to define a new invertible function P ∗
j by rewriting the relation (7.12)

under the form

τ := (P ∗
j )−1 (w̄j − v) ,(7.13)

which we use only with the particular value w̄j defined in (7.8). Finally, we set

p†j(ρ) := p∗j (ρ) := P ∗
j (1/ρ).(7.14)

Of course this construction assumes that the proportions qji/qj are known. Here,
thanks to the crucial assumption (H4), we can determine them:

qji
qj

=
αjiqi∑
i∈δ− qji

=
αjiq̃i∑

i∈δ− αjiq̃i
∀i ∈ δ−, ∀j ∈ δ+.(7.15)

In particular in the case of the equal priority rule, q̃i = 1 ∀i ∈ δ− holds true. Therefore,
qi = q̃, qj = aj q̃, and qji/qj = αji/aj for i ∈ δ−, j ∈ δ+ and for some unknown
q̃ ∈ R.

Before we turn to the determination of q̃ we define U†
j . As in Proposition 2.2 we

obtain for each j the intermediate state U†
j as the intersection of {vj(U) = vj,0} and

{w†
j(U) = w̄j}.
Now, we obtain q̃ as the unique solution to the following maximization problem:

max
q∈R

q subject to(7.16a)

0 ≤ qi = q ≤ di(ρi,0;wi;wi(Ui,0)) ∀i ∈ δ−,(7.16b)

0 ≤ qj = ajq ≤ sj(ρ
†
j ;w

†
j ; w̄j) ∀j ∈ δ+,(7.16c)

where the functions sj(·), w†
j(·) and the values w̄j are well defined since the proportions

qji/qj are known.

We conclude as before that

∃U+
i such that ρ+

i v
+
i = q̃, wi(U

+
i ) = wi(Ui,0) ∀i ∈ δ+,

∃U−
j such that ρ−j v

−
j = aj q̃, w†

j(U
−
j ) = w̄j ∀j ∈ δ+.

The conditions (1.6a)–(1.6b) are satisfied. Also (7.5) and (7.6) are fulfilled.

Again, each Ui(x, t) consists of a juxtaposition of rarefaction or shock waves
associated with the first eigenvalue and, for i ∈ δ+, an additional contact discontinuity
associated with the second eigenvalue. Furthermore, the solution satisfies on the
incoming roads i ∈ δ− : U+

i = Ui(bi−, t) and on the outgoing roads j ∈ δ+ : U−
j =

Ui(aj+, t).

For general q̃i, (7.16b) and (7.16c), respectively, become

0 ≤ qi = q̃i q ≤ di(ρi,0;wi, wi(Ui,0)) ∀i ∈ δ−,

and 0 ≤ qj =

(∑
i∈δ−

αjiq̃i

)
q ≤ s†j(ρj,0;w

†
j , w̄j) ∀j ∈ δ+.
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8. Conclusion. In this paper, we have introduced coupling conditions for the
AR traffic flow model. Contrary to [12] the total “momentum” (e.g., the total number
of white cars) is conserved at each junction. We have presented the full solution to
Riemann problems for different cases and have given a microscopic motivation and
validation of the approach. Last, we have discussed the general case of arbitrary
numbers of incoming and outgoing roads. The most striking fact is the role of the
homogenized flow on some part of the outgoing roads. It is worth noting that, even
with Riemann data and with the same function pj ≡ p on all the roads, after some
time, due to the mixture of cars at each junction, the flow is associated with a new
homogenized pseudopressure p†j , which depends on the proportions of the mixture.

As we already said in section 2, the model presented is too sophisticated for real
life applications. But it contains as a particular case the classical first-order models.
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HIGH FREQUENCY ANALYSIS OF HELMHOLTZ EQUATIONS:
CASE OF TWO POINT SOURCES∗

ELISE FOUASSIER†

Abstract. We derive the high frequency limit of the Helmholtz equation with source term when
the source is the sum of two point sources. We study it in terms of Wigner measures (quadratic
observables). We prove that the Wigner measure associated with the solution satisfies a Liouville
equation with, as source term, the sum of the source terms that would be created by each of the two
point sources taken separately. The first step, and main difficulty, in our study is to obtain uniform
estimates on the solution. Then, from these bounds, we derive the source term in the Liouville
equation together with the radiation condition at infinity satisfied by the Wigner measure.
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1. Introduction. In this article, we are interested in the analysis of the high
frequency limit of the Helmholtz equation

−i
αε

ε
uε + Δuε +

n(x)2

ε2
uε = Sε(x), x ∈ R

3,(1.1)

with

Sε(x) = Sε
0(x) + Sε

1(x) =
1

ε3
S0

(x
ε

)
+

1

ε3
S1

(x− q1
ε

)
,

where q1 is a point in R
3 different from the origin.

In what follows, we assume that the refraction index n is constant, n(x) ≡ 1.
Equation (1.1) models the propagation of a source wave in a medium with re-

fraction index n(x). There, the small positive parameter ε is related to the frequency
ω = 1

2πε of uε. In this paper, we study the high frequency limit, i.e., the asymptotics
ε → 0. We assume that the regularizing parameter αε is positive, with αε → 0 as
ε → 0. The positivity of αε ensures the existence and uniqueness of a solution uε to
the Helmholtz equation (1.1) in L2(R3) for any ε > 0.

The source term Sε models a source signal that is the sum of two source signals
concentrating, respectively, close to the origin and close to the point q1 at the scale ε.
The concentration profiles S0 and S1 are given functions. Since ε is also the scale of
the oscillations dictated by the Helmholtz operator Δ + 1

ε2 , resonant interactions can
occur between these oscillations and the oscillations due to the sources Sε

0 and Sε
1 . On

the other hand, since the two sources are concentrating close to two different points
in R

3, one can guess that they do not interact when ε → 0. These are the phenomena
that the present paper aims at studying quantitatively. We refer to section 3 for the
precise assumptions we need on the sources.
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In some sense, the sign of the term −iαεu
ε/ε prescribes a radiation condition at

infinity for uε, i.e., the oscillations of the solution at infinity (as e−in|x|). One of the
key difficulties in our problem is following this condition in the limiting process ε → 0.
We refer to section 3 for more details.

We study the high frequency limit in terms of Wigner measures (or semiclassical
measures). This is a means of describing the propagation of quadratic quantities, like
the local energy density |uε(x)|2, as ε → 0. The Wigner measure μ(x, ξ) is the energy
carried by rays at the point x with frequency ξ. These measures were introduced by
Wigner [14] and mathematically developed by Gérard [6] and Lions and Paul [9] (see
also the surveys [3] and [7]). They are relevant when a typical length ε is prescribed.
They have already proven to be an efficient tool in the study of high frequencies;
see, for instance, [2], [4] for Helmholtz equations, Gérard et al. [7] for periodic media,
Papanicolaou and Ryzhik [11] for a formal analysis of general wave equations, Erdös
and Yau [5] for an approach linked to statistical physics, and Miller [10] for a study
in the case with sharp interface.

The high frequency limit of Helmholtz equations has been studied in Benamou
et al. [2] and Castella, Perthame, and Runborg [4]. In [2], the authors considered
the case of one point source and a general index of refraction, whereas in [4] they
treated the case of a source concentrating close to a general manifold with a constant
refraction index. In the present paper, we borrow the methods used in both articles.

In the case of one point source, for instance, Sε
0 only, with a constant index of

refraction, it is proved in [2] that the corresponding Wigner measure μ0 is the solution
to the Liouville equation

0+μ0(x, ξ) + ξ · ∇xμ0(x, ξ) = Q0(x, ξ) =
1

(4π)2
δ(x)δ(|ξ|2 − 1)|Ŝ0(ξ)|2,

the term 0+ meaning that μ is the outgoing solution given by

μ0(x, ξ) =

∫ 0

−∞
Q0(x + tξ, ξ)dt.

In particular, the energy source created by Sε
0 is supported at x = 0. Similarly, the

energy source created by the source Sε
1 is supported at x = q1. Thinking of the orthog-

onality property on Wigner measures, one can guess that the energy source generated
by the sum Sε

0 + Sε
1 is the sum of the two energy sources created asymptotically by

Sε
0 and Sε

1 .
Indeed, we prove in this paper that the Wigner measure μ associated with the

sequence (uε) satisfies

0+μ(x, ξ) + ξ · ∇xμ(x, ξ) = Q0 + Q1,(1.2)

where Q0 and Q1 are the source terms obtained in [2] in the case of one point source.
However, our proof does not rest on the mere orthogonality property.

Let us now give some details about our proof. Our strategy is borrowed from [2].
First, we prove uniform estimates on the sequence of solutions (uε). It turns out that
we also need to study the limiting behavior of (and to estimate) the rescaled solutions
εuε(εx) and εuε(q1 + εx). The latter point is the key difficulty in our paper. It relies
on the study of the sequence (aε) such that

−iαεεa
ε + Δaε + aε = S1

(
x− q1

ε

)
.
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Using the explicit formula for the Fourier transform of aε, we prove that aε is uniformly
bounded in a suitable space and that aε → 0 as ε → 0 weakly. We would like to
point out that our analysis, based on a study in Fourier space, strongly rests on the
assumption of a constant index of refraction.

Second, our results on the Wigner measure then follow from the properties proved
in [2]. They are essentially consequences of the uniform bounds on (uε): we write the
equation satisfied by the Wigner transform associated with (uε) and pass to the limit
ε → 0 in the various terms that appear in this equation. The only difficult (and new)
term to handle is the source term.

Third, we prove an improved version of the radiation condition of [2]. Our ar-
gument relies on the observation that μ is localized on the energy set {|ξ|2 = 1}, a
property that was not exploited in [2].

The paper is organized as follows. In section 2, we recall some definitions and
state our assumptions. Section 3 is devoted to the proof of uniform bounds on the
sequence of solutions (uε) and of the convergence of the rescaled solutions. Then,
in section 4, we establish the transport equation satisfied by the Wigner measure μ
together with the radiation condition at infinity.

2. Notation and assumptions. In this section, we recall the definitions of
Wigner transforms and of the B, B∗ norms introduced by Agmon and Hörmander [1]
for the study of Helmholtz equations. Then, we give our assumptions.

2.1. Wigner transform and Wigner measures. We use the following defi-
nition for the Fourier transform:

û(ξ) = (Fx→ξu)(ξ) =
1

(2π)3

∫
Rd

e−ix·ξu(x)dx.

For u, v ∈ S(R3) and ε > 0, we define the Wigner transform

W ε(u, v)(x, ξ) = (Fy→ξ)
(
u
(
x +

ε

2
y
)
v̄
(
x− ε

2
y
))

,

W ε(u) = W ε(u, u).

In what follows, we denote W ε = W ε(uε).
If (uε) is a bounded sequence in L2(Rd) (or in some weighted-L2 space, as we

will see later on), it turns out that (see [6], [9]), up to extracting a subsequence, the
sequence (W ε(uε)) converges weakly to a positive Radon measure μ on the phase space
T ∗

R
3 = R

3
x×R

3
ξ called the Wigner measure (or semiclassical measure) associated with

(uε):

∀ϕ ∈ C∞
c (R6), lim

ε→0
〈W ε(uε), ϕ〉 =

∫
ϕ(x, ξ)dμ.(2.1)

We recall that these measures can be obtained using pseudodifferential operators.
The Weyl semiclassical operator aW (x, εDx) (or OpWε (a)) is the continuous operator
from S(Rd) to S ′(Rd) associated with the symbol a ∈ S ′(T ∗

R
d) by Weyl quantization

rule

(aW (x, εDx)u)(x) =
1

(2π)d

∫
R

d
ξ

∫
Rd

y

a

(
x + y

2
, εξ

)
f(y)ei(x−y)·ξdξdy.(2.2)

We have the following formula: for u, v ∈ S ′(Rd) and a ∈ S(Rd × R
d),

〈W ε(u, v), a〉S′,S = 〈v̄, aW (x, εDx)ū〉S′,S ,(2.3)
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where the duality brackets 〈., .〉 are semilinear with respect to the second argument.
This formula is also valid for u, v lying in other spaces, as we will see in section 3.

2.2. Besov-like norms. In order to get uniform (in ε) bounds on the sequence
(uε), we shall use the following Besov-like norms, introduced by Agmon and Hörmander
[1]: for u, f ∈ L2

loc(R
3), we denote

‖u‖B∗ = sup
j≥−1

(
2−j

∫
C(j)

|u|2dx
)1/2

,

‖f‖B =
∑
j≥−1

(
2j+1

∫
C(j)

|f |2dx
)1/2

,

where C(j) denotes the ring {x ∈ R
3/2j ≤ |x| < 2j+1} for j ≥ 0 and C(−1) is the

unit ball.
These norms are adapted to the study of Helmholtz operators. Indeed, Agmon

and Hörmander [1] proved that if v is the solution to

−iαv + Δv + v = f,

where α > 0, then there exists a constant C independent of α such that

‖v‖B∗ ≤ C‖f‖B .

Perthame and Vega [12] generalized this result to Helmholtz equations with general
indices of refraction.

We denote, for x ∈ R
3, |x| =

√∑3
j=1 x

2
j and 〈x〉 = (1 + |x|2)1/2. For all δ > 1

2 ,
we have

‖u‖L2
−δ

:= ‖〈x〉−δu‖L2 ≤ C(δ)‖u‖B∗ ,(2.4)

and

‖f‖B ≤ C(δ)‖f‖L2
δ
.(2.5)

We end this section by stating two properties of these spaces that will be useful
for our purpose (the reader can find the proofs in [1]). The first proposition states
that, in some sense, we can define the trace of a function in B on a linear manifold of
codimension 1.

Proposition 2.1. There exists a constant C such that for all f ∈ B, we have∫
R

‖f(x1, .)‖L2(R2)dx1 ≤ C‖f‖B .

The second property gives the stability of the space B by change of variables in
Fourier space.

Proposition 2.2. Let Ω1, Ω2 be two open sets in R
3, ψ : Ω1 → Ω2 a C2

diffeomorphism, χ ∈ C1
c (R3). For all u ∈ B, we denote

Tu = F−1
(
χ(û ◦ ψ)

)
.

Then

‖Tu‖B ≤ C‖χ‖C1
b
‖ψ‖C2

b
‖u‖B .
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2.3. Assumptions. We are now ready to state our assumptions. Our first as-
sumption, borrowed from [2], concerns the regularizing parameter αε > 0.

(H1) αε ≥ εγ for some γ > 0.

This assumption is technical and is used to get a radiation condition at infinity in the
limit ε → 0. Next, in order to compute the limit of the energy source, we shall need
the following assumption.

(H2) 〈x〉NS0 ∈ L2(R3) and 〈x〉NS1 ∈ L2(R3) for some N > 1
2 + 3γ

γ+1 .

Note that (H2) implies that the source terms S0 and S1 belong to the natural Besov
space that is needed to actually solve the Helmholtz equation (1.1):

‖S0‖B , ‖S1‖B < ∞.

3. Bounds on solutions to Helmholtz equations. In this section, we first
establish uniform bounds on the sequence (uε) that will imply estimates on the se-
quence of Wigner transforms (W ε). It turns out that we shall also need to compute
the limit of the rescaled solutions wε

0 and wε
1 defined below in order to obtain the

energy source in the equation satisfied by the Wigner measure μ.

Before stating our two results, let us define these rescaled solutions. Following [2]
and [4], we denote {

wε
0(x) = εuε(εx),

wε
1(x) = εuε(q1 + εx).

(3.1)

They, respectively, satisfy⎧⎪⎨
⎪⎩

−iαεεw
ε
0 + Δwε

0 + wε
0 = S0(x) + S1

(
x− q1

ε

)
,

−iαεεw
ε
1 + Δwε

1 + wε
1 = S0

(
x +

q1
ε

)
+ S1(x).

We are ready to state our results on uε, wε
0, and wε

1.

Proposition 3.1. Assume S0, S1 ∈ B. Then

(i) the solution uε to the Helmholtz equation (1.1) satisfies the bound

‖uε‖B∗ ≤ C(‖S0‖B + ‖S1‖B);

(ii) the rescaled solutions (wε
0) and (wε

1) are uniformly bounded in B∗:

‖wε
0‖B∗ + ‖wε

1‖B∗ ≤ C(‖S0‖B + ‖S1‖B).

(In both points, C denotes a constant independent of ε.)

Proposition 3.2. The sequences of rescaled solutions (wε
0) and (wε

1) converge
weakly-∗ in B∗ to the outgoing solutions w0 and w1 to the Helmholtz equations{

Δw0 + w0 = S0,
Δw1 + w1 = S1,

i.e., w0 and w1 are given in Fourier space by

ŵj(ξ) =
−Ŝj(ξ)

|ξ|2 − 1 + i0
= −

(
p.v.

(
1

|ξ|2 − 1

)
+ iπδ(|ξ|2 − 1)

)
Ŝj(ξ), j = 0, 1.
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Remark. The Helmholtz equation Δw + w = S does not uniquely specify the
solution w. An extra condition is necessary, for instance, the Sommerfeld radiation
condition. When the refraction index is constant equal to 1, this condition reads

lim
r→∞

1

r

∫
Sr

∣∣∣∂w
∂r

+ iw
∣∣∣2dσ = 0.(3.2)

Such a solution is called an outgoing solution.
Alternatively, still assuming that the refraction index is constant, the outgoing

solution to the Helmholtz equation may be defined as the weak limit, as δ → 0, w of
the sequence (wδ) such that

−iδwδ + Δwδ + wδ = S(x).

We point out that the two points of view are equivalent in the case of a constant index
of refraction (which is not true for a general index of refraction).

We prove the two propositions in the following two sections. As we will see in the
proofs, our main difficulties are linked to the rays that are emitted by the source at 0
towards the point q1 (and conversely). Hopefully, the interaction between those rays
is “destructive” and not constructive.

3.1. Proof of Proposition 3.1. In what follows, C will denote any constant
independent of ε.

Proof of point (i). Since uε is a solution to the Helmholtz equation (1.1), and
since the refraction index is constant, we may write uε(x) = uε

0(x)+uε
1(x−q1), where

uε
0 and uε

1 satisfy ⎧⎪⎨
⎪⎩

−i
αε

ε
uε

0 + Δuε
0 +

1

ε2
uε

0 =
1

ε3
S0

(x
ε

)
,

−i
αε

ε
uε

1 + Δuε
1 +

1

ε2
uε

1 =
1

ε3
S1

(x
ε

)
.

If we denote, for j = 0, 1, w̃ε
j (x) = εuε

j(εx), then

{
−iαεεw̃ε

0 + Δw̃ε
0 + w̃ε

0 = S0(x),

−iαεεw̃ε
1 + Δw̃ε

1 + w̃ε
1 = S1(x).

Moreover, the bound ‖w̃ε
j‖B∗ ≤ C‖Sj‖B is established in Agmon and Hörmander [1]

(see also Perthame and Vega [12]). Hence, using the scaling invariance

‖uε
j‖B∗ ≤ ‖w̃ε

j‖B∗ ,

we get

‖uε
j‖B∗ ≤ C‖Sj‖B .

Finally, we obtain the uniform estimate on uε by noting that, since q1 is a fixed point,
we have

‖uε
1(.− q1)‖B∗ ≤ C(q1)‖uε

1‖B∗ ,

which implies

‖uε‖B∗ ≤ ‖uε
0‖B∗ + C(q1)‖uε

1‖B∗ ≤ C(q1) (‖S0‖B + ‖S1‖B) .
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Proof of point (ii). Unfortunately, to get the bound on the rescaled sequences
wε

0 and wε
1, we cannot use a method similar to the one used in the proof of point

(i) (roughly, because of the translation q1/ε and not q1). We instead use the explicit
formula for wε

j that is available. In what follows, we prove the result for wε
0; the

estimate on wε
1 can be obtained similarly.

Since wε
0 is a solution to

−iαεεw
ε
0 + Δwε

0 + wε
0 = S0(x) + S1

(
x− q1

ε

)

we may decompose wε
0 = w̃ε

0 + aε, where w̃ε
0 is defined above and aε satisfy

−iαεεa
ε + Δaε + aε = S1

(
x− q1

ε

)
.

Since ‖w̃ε
0‖B∗ ≤ C‖S0‖B , the proof of point (ii) reduces to the proof of the following

lemma.
Lemma 3.3. If aε is the solution to

−iαεεa
ε + Δaε + aε = S1

(
x− q1

ε

)
,

then aε is uniformly (in ε) bounded in B�:

‖aε‖B∗ ≤ C‖S1‖B .

Proof. We want to prove that

∀v ∈ B, |〈aε, v〉| ≤ C‖S1‖B‖v‖B .

Using Parseval’s equality, we write

〈aε, v〉 =

∫
R3

e−i
q1·ξ
ε Ŝ1(ξ)¯̂v(ξ)

−|ξ|2 + 1 − iεαε
dξ.(3.3)

To estimate this integral, we shall distinguish the values of ξ close to or far from two
critical sets: the sphere {|ξ|2 = 1} (the set where the denominator in (3.3) vanishes
when ε → 0) and the line {ξ collinear to q1} (the set where we cannot apply directly
the stationary phase theorem to (3.3)).

More precisely, we first take a small parameter δ ∈ ]0, 1[, and we distinguish in
the integral (3.3) the contributions due to the values of ξ such that |ξ2 − 1| ≥ δ or
|ξ2 − 1| ≤ δ. Let χ ∈ C∞

c (R) be a truncation function such that χ(λ) = 0 for |λ| ≥ 1.

We denote χδ(ξ) = χ
( |ξ|2−1

δ

)
. We accordingly decompose

〈aε, v〉 =

∫
R3

e−i
q1
ε ·ξŜ1(ξ)¯̂v(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε
dξ +

∫
R3

e−i
q1
ε ·ξŜ1(ξ)¯̂v(ξ)(1 − χδ(ξ))

−|ξ|2 + 1 − iεαε
dξ

= Iε + IIε.

First, since the denominator is not singular on the support of χδ, we easily bound
the first part with the L2 norms,

|Iε| ≤ ‖χ‖L∞

δ
‖Ŝ1‖L2‖v̂‖L2 ,
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and using B ↪→ L2, we obtain the desired bound:

|Iε| ≤ C‖S1‖B‖v‖B .(3.4)

Let us now study the second part, IIε, where the denominator is singular. Up to
a rotation, we may assume q1 = |q1|e1, where e1 is the first vector of the canonical
base. We make the polar change of variables,

ξ =

⎧⎨
⎩

r sin θ cosϕ,
r sin θ sinϕ,
r cos θ.

Hence, q1 · ξ = |q1|r sin θ cosϕ, and we get

IIε =

∫
e−i

|q1|
ε r sin θ cosϕ

−r2 + 1 − iεαε

(
Ŝ1

¯̂v(1 − χδ)
)
(ξ(r, θ, ϕ))r2 sin θdrdθdϕ.

Now, we distinguish the contributions to the integral dθdφ linked to the values close
to or far from the critical direction {θ = π

2 , ϕ = 0, or ϕ = π} (which corresponds to
the case {ξ collinear to q1}). To that purpose, let η > 0 be a small parameter and
denote

Ω0 =

{
(r, θ, ϕ)

∣∣∣∣
(

1 − χ

(
r2 − 1

δ

))
�= 0, χ

(
θ − π

2

η

)
�= 0, χ

(
ϕ

η

)
�= 0

}
,

Ωπ =

{
(r, θ, ϕ)

∣∣∣∣
(

1 − χ

(
r2 − 1

δ

))
�= 0, χ

(
θ − π

2

η

)
�= 0, χ

(
ϕ− π

η

)
�= 0

}
.

Let k0, kπ ∈ C∞
c be such that (1 − χδ)k0(θ, ϕ) is a localization function on Ω0 and

(1 − χδ)kπ(θ, ϕ) is a localization function on Ωπ. We denote k = k0 + kπ. We write

IIε =

∫
e−i

|q1|
ε r sin θ cosϕ

−r2 + 1 − iεαε
(Ŝ1

¯̂v)(ξ(r, θ, ϕ))(1 − χδ(r))k0(θ, ϕ)r2 sin θdrdθdϕ

+

∫
e−i

|q1|
ε r sin θ cosϕ

−r2 + 1 − iεαε
(Ŝ1

¯̂v)(ξ(r, θ, ϕ))(1 − χδ(r))kπ(θ, ϕ)r2 sin θdrdθdϕ

+

∫
e−i

|q1|
ε r sin θ cosϕ

−r2 + 1 − iεαε
(Ŝ1

¯̂v)(ξ(r, θ, ϕ))(1 − χδ(r))(1 − k(θ, ϕ))r2 sin θdrdθdϕ,

IIε = IIIε0 + IIIεπ + IV ε.

The two parts IIIε0 and IIIεπ being similar, we write only how to estimate IIIε0 .
In order to translate the stationary point in (0, 0), we consider the new variable
α = θ − π

2 . The phase function is rg(α,ϕ) = r cosα cosϕ, so

∂g

∂α
= − sinα cosϕ = 0 at (α,ϕ) = (0, 0),

∂g

∂ϕ
= − cosα sinϕ = 0 at (α,ϕ) = (0, 0),

and the Hessian at the point (0, 0) is

D2g(0, 0) =

(
−1 0
0 −1

)
.
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We apply the Morse lemma: upon choosing η > 0 small enough, there exists a C∞

change of variables on Ω0, (α,ϕ) �→ (α′, ϕ′), such that

g(α,ϕ) = 1 − α′2

2
− ϕ′2

2
.

Then, we make the change of variables α′′ =
√

r
2α

′, ϕ′′ =
√

r
2ϕ

′. Finally, we decom-
pose (1 − χδ)k0 = χ1χ2, with χ1, χ2 ∈ C∞

c . Thus, we obtain, for the contribution
IIIε0 , the formula

IIIε0 =

∫
ei

q1
ε (−r+α′′2+ϕ′′2)

−r + 1 + iεαε
T̂ 1S1(r, α

′′, ϕ′′)T̂ 2v(r, α′′, ϕ′′)drdα′′dϕ′′,(3.5)

where

T 1S1 := F−1
(
(χ1Ŝ1) ◦ ξ(r, α(α′′, ϕ′′), ϕ(α′′, ϕ′′))

)
,

T 2v := F−1

(
−r + 1 + iεαε

−r2 + 1 − iεαε
(χ2v̂) ◦ ξ(r, α(α′′, ϕ′′), ϕ(α′′, ϕ′′))

×2

r

∣∣∣ dξ

d(r, α, ϕ)

∣∣∣∣∣∣ d(α,ϕ)

d(α′, ϕ′)

∣∣∣).
As a first step, using Proposition 2.2, we directly get T 1S1 ∈ B with

‖T 1S1‖B ≤ C‖S1‖B .

As a second step, we study T 2v. Since for r close to 1,∣∣∣ −r + 1 + iεαε

−r2 + 1 − iεαε

∣∣∣ ≤ 1,

we recover, from Proposition 2.2,

T 2v ∈ B and ‖T 2v‖B ≤ C‖v‖B .

Now, we apply Parseval’s equality with respect to the r variable in the formula (3.5)

IIIε0 =

∫
ei

|q1|
ε (α′′2+ϕ′′2)

−r + 1 + iεαε

̂

T 1S1

(
.− |q1|

ε
, ., .

)
T̂ 2vdrdα′′dϕ′′

=

∫
ei

|q1|
ε (α′′2+ϕ′′2)1{t>0}e

−(εαε−i)tFr→ρ

(
̂

T 1S1

(
.− |q1|

ε
, ., .

))
(ρ− t, α′′, ϕ′′)

×Fr→ρ(T̂ 2v)(ρ, α′′, ϕ′′)dtdρdα′′dϕ′′,

where 1{t>0} denotes the characteristic function of the set {t > 0}. Hence, we obtain

|IIIε0 | ≤
(∫ ∥∥∥∥∥Fr→ρ

(
̂

T 1S1

(
.− |q1|

ε
, ., .

))
(ρ)

∥∥∥∥∥
L2

dρ

)

×
(∫

‖Fr→ρ(T̂ 2v)(ρ)‖L2dρ

)
,

|IIIε| ≤
(∫ ∥∥∥∥T 1S1

(
ρ− |q1|

ε

)∥∥∥∥
L2

dρ

)(∫
‖T 2v(ρ)‖L2dρ

)
,

|IIIε| ≤
n∑

j=1

(∫
‖T 1S1(ρ)‖L2dρ

)(∫
‖T 2v(ρ)‖L2dρ

)
.
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Now, using Proposition 2.1, we get

|IIIε0 | ≤ C‖T 1S1‖B‖T 2v‖B ,
|IIIε0 | ≤ C‖S1‖B‖v‖B ,

which is the desired estimate.

We are left with the part IV ε, which corresponds to the directions ξ that are not
collinear to q1. We denote by K ′ the support of (1 − χδ)(1 − k), which is a compact
set. If we denote

η1 = |ξ|2 − 1, η2 = −q1 · ξ,(3.6)

then

d(η1, η2)

dξ
=

(
2ξ
−q1

)

is of maximal rank 2 for ξ ∈ K ′. Hence, there exists a finite covering (Ωj)j=1,m

(m ∈ N) of K ′ such that in Ωj , we can make the change of variables ξ �→ η, where η1, η2

are given by (3.6) and η3 is one of the components of ξ (depending on Ωj). We denote
by χj = χ3

jχ
4
j some localization functions on Ωj such that (1−χδ)(1− k) =

∑m
j=1 χj .

Thus, for j = 1, . . . ,m,

∫
e−i

q1
ε ·ξ

−|ξ|2 + 1 + iεαε
Ŝ1v̂χjdξ =

∫
ei

η2
ε

−η1 + iεαε
(Ŝ1v̂χj)(ξ(η))

∣∣∣dξ
dη

∣∣∣dη.
If we denote

T 3
j S1 := F−1((χ3

j Ŝ1) ◦ ξ),

T 4
j v := F−1((χ4

j v̂) ◦ ξ)
∣∣∣∣dξdη

∣∣∣∣ ,
and if F1 denotes the Fourier transform with respect to the η1 variable, Parseval’s
equality with respect to η1 gives

∣∣∣∣
∫

e−i
q1
ε ·ξ

−|ξ|2 + 1 + iεαε
Ŝ1v̂χjdξ

∣∣∣∣ = (2π)d
∣∣∣∣
∫

χ{t>0}e
−εαεt(F−1

1 (T̂ 3
j S1))(x1 − t)

×(F−1
1 (T̂ 4

j v))(x1)e
iη2/εdtdx1dη2dη3

∣∣∣∣
≤ C‖S1‖B‖v‖B ,

using Proposition 2.1 again. Summing over j, we obtain

|IV ε| ≤ C‖S1‖B‖v‖B ,

which ends the proof of the bound

|〈aε, v〉| ≤ C‖S1‖B‖v‖B .
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3.2. Proof of Proposition 3.2. As before, we prove the result for the sequence
(wε

0) only. As we did in the proof of Proposition 3.1, we write wε
0 = w̃ε

0 + aε. Since

w̃ε
0 is the solution to a Helmholtz equation with constant index of refraction and fixed

source, it converges weakly-∗ to the outgoing solution w0 to Δw + w = S0. Hence, it
suffices to show the following result.

Lemma 3.4. If aε ∈ B� is the solution to

−iαεεa
ε + Δaε + aε = S1

(
x− q1

ε

)
,

then aε → 0 in B�.
Proof. The proof of this result requires two steps (using a density argument):
1. For v ∈ B, we have the bound

∣∣〈aε, v〉∣∣ ≤ C‖S1‖B‖v‖B .
2. If S1 and v are smooth, then 〈aε, v〉 → 0.

The first point is exactly the result in Lemma 3.3. It remains to prove the convergence
in the smooth case (the second point above). We write

〈aε, v〉 =

∫
R3

e−i
q1
ε ·ξŜ1(ξ)¯̂v(ξ)

−|ξ|2 + 1 − iεαε
dξ.

We are thus left with the study of

Rε(ψ) =

∫
R3

e−i
q1
ε ·ξψ(ξ)

−|ξ|2 + 1 − iεαε
dξ,(3.7)

where ψ = Ŝ1v̂ belongs to S(R3).
As in the proof of Lemma 3.3, we distinguish the contributions of various values

of ξ. We shall use exactly the same partition, according to the values of ξ close to or
far from the sphere |ξ| = 1 and collinear or not to q1. We shall use the same notation
for the various truncation functions.

We first separate the contributions of ξ such that |ξ2 − 1| ≤ δ and |ξ2 − 1| ≥ δ
using the truncation function χδ:

Rε(ψ) =

∫
R3

e−i
q1
ε ·ξψ(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε
dξ +

∫
R3

e−i
q1
ε ·ξψ(ξ)(1 − χδ(ξ))

−|ξ|2 + 1 − iεαε
dξ

= Iε + IIε.

In the support of χδ, since the denominator is not singular, we can apply the
nonstationary phase method. Since q1 �= 0, we may assume q1

1 �= 0, and we have

Iε =
ε

iq1
1

∫
R3

e−i
q1
ε ·ξ∂ξ1

(
ψ(ξ)χδ(ξ)

−|ξ|2 + 1 − iεαε

)
dξ

=
ε

iq1
1

∫
R3

e−i
q1
ε ·ξ

(
∂ξ1(ψ(ξ)χδ(ξ))

−|ξ|2 + 1 − iεαε
− 2ψ(ξ)χδ(ξ)ξ1

(−|ξ|2 + 1 − iεαε)2

)
.

Hence, we obtain the bound

|Iε| ≤ ε

|q1
1 |

∫
R3

(1

δ
|∂ξ1(χψ)| + 2

δ2
|ξ1χψ|

)
dξ.

Since ∂ξ1(χψ) and ξ1χψ belongs to S, we have, as ε → 0,

Iε → 0.
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Let us now study the second term, IIε. As in section 3.1, we first decompose IIε

into the sum IIIε0 + IIIεπ + IV ε. We then use the same changes of variables. It leads
to the following formula for IIIε0 :

IIIε0 =

∫
e−i

q1
ε (r−α′′2−ϕ′′2)

−r + 1 + iεαε
χ̃(r, α′′, ϕ′′)ψ̃(r, α′′, ϕ′′)drdα′′dϕ′′,

where

χ̃(r, α′′, ϕ′′) = ((1 − χδ)k0) ◦ ξ(r, α(α′′, ϕ′′), ϕ(α′′, ϕ′′))

× 2(−r + 1 + iεαε)

r(−r2 + 1 − iεαε)

∣∣∣∣ d(α,ϕ)

d(α′, ϕ′)

∣∣∣∣,
ψ̃(r, α′′, ϕ′′) = ψ ◦ ξ(r, α(α′′, ϕ′′), ϕ(α′′, ϕ′′))

are still smooth functions that are bounded independently from ε.
Using Parseval’s inequality with respect to the variables (α′′, ϕ′′), we obtain the

bound

|IIIε0 | ≤ Cε

∣∣∣∣∣
∫

e−i
|q1|
ε re−iε(λ2+μ2)

−r + 1 + iεαε
Fλ,μ(χ̃ψ̃)drdλdμ

∣∣∣∣∣ .
To obtain the convergence of IIIε0 , it remains to study an integral of the type

∫
|r−1|≤δ

e−i
|q1|
ε rw(r)

−r + 1 + iεαε
dr, where w ∈ S.

This is done in the following lemma.
Lemma 3.5. For all w ∈ S and all θ ∈ (0, 1), we have

∫
|r|≤δ

e−i
|q1|
ε rw(r)

−r + iεαε
dr = −iπw(0) + Oε→0(ε

−θ).

Using this lemma, we readily get the estimate

|IIIε| ≤ Cε1−θ ∀θ ∈ (0, 1),(3.8)

which proves that IIIε → 0 as ε → 0.
Remark. In order to make the calculations easier, we write this paper in dimension

equal to 3, but the proof would be similar in any dimension d ≥ 2. For a general
dimension d ≥ 2, we will obtain an estimate in O(ε(d−1)/2−θ) instead of O(ε1−θ)
above. The result fails in dimension d = 1.

It remains to give the following proof.
Proof of Lemma 3.5. We write

∫ δ

−δ

e−i
|q1|
ε rw(r)

−r + iεαε
dr =

∫ δ

−δ

e−i
|q1|
ε rw(r)

r2 + (εαε)2
(r − iεαε)dr

= −iεαε

∫ δ

−δ

e−i
|q1|
ε rw(r)

r2 + (εαε)2
dr +

∫ δ

−δ

e−i
|q1|
ε r rw(r)

r2 + (εαε)2
dr

= I + II.
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We have

I = −i

∫ δ
εαε

− δ
εαε

e−i|q1|αεyw(εαεy)

y2 + 1
dy → −iπw(0)

and

II =

∫ δ

−δ

(
e−i

|q1|
ε rw(r) − w(0)

) r

r2 + (εαε)2
dr +

∫ δ

−δ

w(0)
r

r2 + (εαε)2
dr .

The last term vanishes because the integrand is odd. Moreover, using the smoothness
of w, we easily obtain that for all θ ∈ (0, 1),

∣∣e−i
|q1|
ε rw(r) − w(0)

∣∣ ≤ Cθ

(r
ε

)θ

.

Thus,

∣∣∣∣
∫ δ

−δ

(
e−i

|q1|
ε rw(r) − w(0)

) r

r2 + (εαε)2
dr

∣∣∣∣ ≤ C

εθ

∫ δ

−δ

|r|θ−1dr

and the result is proved.
We are left with the study of IV ε. We use the same change of variables as in

section 3.1:

IV ε =

m∑
j=1

∫
e−i

q1
ε ·ξ

−|ξ|2 + 1 + iεαε
ψ(ξ)χj(ξ)dξ

=

m∑
j=1

∫
ei

η2
ε

−η1 + iεαε
(ψχj)(ξ(η))

∣∣∣dξ
dη

∣∣∣dη
= iε

m∑
j=1

∫
ei

η2
ε

−η1 + iεαε
∂η2

(
(ψχj)(ξ(η))

∣∣∣dξ
dη

∣∣∣)dη.
The integral obviously converges with respect to all the variables except η1. It remains
to prove the convergence with respect to the η1 variable, i.e., the convergence of∫

φ(η)

−η1 + iεαε
dη1,

where

φ = ∂η2

(
(ψχj)(ξ(η))

∣∣∣dξ
dη

∣∣∣)

is smooth and compactly supported with respect to η. It is a consequence of the fact
that the distribution (x + i0)−1 is well defined on R by

1

x + i0
= p.v.

(
1

x

)
− iπδ(x).

We conclude that IV ε → 0 and 〈aε, v〉 → 0 as ε → 0.
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4. Transport equation and radiation condition on μ. In this section, we
state and prove our results on the Wigner measure associated with (uε). Since we
established the uniform bounds on (uε) and the convergence of (wε

0), (wε
1), these

results now essentially follow from the results proved in [2]. We first prove bounds on
the sequence of Wigner transforms (W ε) that allow us to define a Wigner measure μ
associated to (uε). Then, we get the transport equation satisfied by μ together with
the radiation condition at infinity, which uniquely determines μ.

4.1. Results.
Theorem 4.1. Let S0, S1 ∈ B and λ > 0. The sequence (W ε) is bounded in

the Banach space X�
λ, and up to extracting a subsequence, it converges weakly-∗ to a

positive and locally bounded measure μ such that

sup
R>0

1

R

∫
|x|<R

∫
ξ∈R3

μ(x, ξ) dxdξ ≤ C(‖S0‖B + ‖S1‖B)2.(4.1)

The Banach space X∗
λ is defined as the dual space of the set Xλ of functions ϕ̂(x, ξ)

such that ϕ(x, y) := Fξ→y(ϕ̂(x, ξ)) satisfies∫
R3

sup
x∈R3

(1 + |x| + |y|)1+λ|ϕ(x, y)|dy < ∞.(4.2)

Theorem 4.2. Assume (H1), (H2). Then the Wigner measure μ associated with
(uε) satisfies the transport equation

ξ · ∇xμ =
1

(4π)2

(
δ(x)|Ŝ0(ξ)|2 + δ(x− q1)|Ŝ1(ξ)|2

)
δ(|ξ|2 − 1) := Q(x).(4.3)

Moreover, μ is the outgoing solution to (4.3) in the following sense: for all test func-
tions R ∈ C∞

c (R6), if we denote g(x, ξ) =
∫∞
0

R(x− ξt, ξ)dt, then∫
R6

R(x, ξ)dμ(x, ξ) = −
∫

R6

Q(x, ξ)g(x, ξ)dxdξ.(4.4)

Remark. Here the support of the test function R contains 0, contrary to [2].

4.2. Proof of Theorem 4.1. This theorem, which is proved in [2], is a con-
sequence of the uniform estimate on the sequence (uε) in the space B∗ obtained in
Proposition 3.1. We observe that for any λ > 0,

‖〈x〉− 1
2−λuε(x)‖L2 ≤ C‖uε‖B∗ ≤ C (‖S0‖B + (‖S1‖B) ;(4.5)

hence, for any function ϕ satisfying (4.2), we have

|〈W ε(uε), ϕ̂〉|

≤
∫

R6

|uε|(x + ε
2y)|uε|(x− ε

2y)〈
x + ε

2y
〉 1

2+0 〈
x− ε

2y
〉 1

2+0

〈
x +

ε

2
y
〉 1

2+0 〈
x− ε

2
y
〉 1

2+0

|ϕ|(x, y)dxdy

≤ C (‖S0‖B + ‖S1‖B)
2
∫

R3

sup
x∈R3

〈|x| + |y|〉1+0|ϕ(x, y)|dy.

So (W ε(uε)) is bounded in X∗
λ, λ > 0. We deduce that, up to extracting a

subsequence, (W ε(uε)) converges weakly-∗ to a nonnegative measure μ satisfying

|〈μ, ϕ̂〉| ≤ C (‖S0‖B + ‖S1‖B)
2
∫

R3

sup
x∈R3

〈|x| + |y|〉1+0|ϕ(x, y)|dy.(4.6)
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We refer, for instance, to Lions and Paul [9] for the proof of the nonnegativity of μ.
The bound (4.1) is obtained using the family of functions

ϕR
δ (x, y) =

1

δ3/2
e−|y|2/δ 1

R
χ(〈x〉 ≤ R)

and letting δ → 0, R → ∞.

4.3. Proof of the transport equation (4.3). This section is devoted to the
proof of the transport equation satisfied by μ. We first write the transport equation
satisfied by W ε in a dual form. Then we study the convergence of the source term
(the convergence of the other terms is obvious). Finally, choosing an appropriate test
function in the limiting process, we get the radiation condition at infinity satisfied by
μ. Proving first a localization property, we improve the radiation condition proved in
[2].

4.3.1. Transport equation satisfied by W ε. W ε satisfies the equation

αεW
ε + ξ · ∇xW

ε = Qε,(4.7)

where, for ψ ∈ S(T ∗
R

d), if ϕ(x, y) = F−1
y→ξ(ψ(x, ξ)),

〈Qε, ψ〉 =
iε

2
Im 〈W ε(Sε, uε), ψ〉

=
i

2
Im

(∫
R6

wε
0(x + y)Sε

0(y)ϕ
(
ε
(
x +

y

2

)
, y
)
dxdy

)

+
i

2
Im

(∫
R6

wε
1(x + y)Sε

1(y)ϕ
(
q1 + ε

(
x +

y

2

)
, y
)
dxdy

)
.

This equation can be obtained writing first the equation satisfied by

vε(x, y) = uε
(
x +

ε

2
y
)
uε
(
x− ε

2
y
)
.

From the equality

∇y · ∇xv
ε =

ε

2

[
Δuε

(
x +

ε

2
y
)
uε
(
x− ε

2
y
)
− Δuε

(
x− ε

2
y
)
uε
(
x +

ε

2
y
)]

,

we deduce

αεv
ε + i∇y · ∇xv

ε +
i

2ε

[
n2
(
x +

ε

2
y
)
− n2

(
x− ε

2
y
)]

vε = σε(x, y),

where

σε(x, y) :=
iε

2

[
Sε

(
x +

ε

2
y
)
uε
(
x− ε

2
y
)
− Sε

(
x− ε

2
y
)
uε
(
x +

ε

2
y
)]

.

After a Fourier transform, we obtain (4.7).
Then we write the dual form of this equation. Letting ψ ∈ S(R6), we have

αε〈W ε, ψ〉 − 〈W ε, ξ · ∇xψ〉 = 〈Qε, ψ〉.(4.8)

By the definition of the Wigner measure μ, we get

αε〈W ε, ψ〉 → 0 and 〈W ε, ξ · ∇xψ〉 → 〈μ, ξ · ∇xψ〉.

Hence we are left with the study of the source term 〈Qε, ψ〉.



632 ELISE FOUASSIER

4.3.2. Convergence of the source term. In order to compute the limit of the
source term in (4.7), we develop

〈Qε, ψ〉 =
iε

2
Im

(
〈W ε(Sε

0 , u
ε), ψ〉 + 〈W ε(Sε

1 , u
ε), ψ〉

)
.

Thus, the result is contained in the following proposition.
Proposition 4.3. The sequences

(
εW ε(Sε

0 , u
ε)
)

and
(
εW ε(Sε

1 , u
ε)
)

are bounded
in S ′(R6), and for all real-valued ψ ∈ S(R6), we have

lim
ε→0

ε〈W ε(Sε
0 , u

ε), ψ〉S′,S =
1

(2π)3

∫
R3

ŵ0(ξ)Ŝ0(ξ)ψ(0, ξ)dξ,(4.9)

lim
ε→0

ε〈W ε(Sε
1 , u

ε), ψ〉S′,S =
1

(2π)3

∫
R3

ŵ1(ξ)Ŝ1(ξ)ψ(q1, ξ)dξ,(4.10)

where w0 and w1 are defined in Proposition 3.2.
Using Proposition 4.3, we readily get, for any real-valued test function ψ,

lim
ε→0

〈Qε, ψ〉 =
i

2(2π)3
Im

(∫
R3

ŵ0(ξ)Ŝ0(ξ)ψ(0, ξ)dξ +

∫
R3

ŵ1(ξ)Ŝ1(ξ)ψ(q1, ξ)dξ

)

=
1

(4π)2

(∫
R3

|Ŝ0(ξ)|2δ(ξ2 − 1)ψ(0, ξ)dξ

+

∫
R3

|Ŝ1(ξ)|2δ(ξ2 − 1)ψ(q1, ξ)dξ

)
,

which is the result in Theorem 4.2.
Let us now prove Proposition 4.3.
Proof of Proposition 4.3. The two terms to study being of the same type, we

consider only the first one in our proof. Let ψ ∈ S(T ∗
R

d) and ϕ(x, y) = F−1
y→ξ(ψ(x, ξ)).

Then we have

ε〈W ε(Sε
0 , u

ε), ψ〉S′,S = ε

∫
Sε

0

(
x +

ε

2
y
)
uε
(
x− ε

2
y
)
ϕ(x, y)dxdy

=

∫
S0(x)wε

0(x + y)ϕ
(
ε
(
x +

y

2

)
, y
)
dxdy.

As a first step, let us prove that ε〈W ε(Sε
0 , u

ε), ψ〉S′,S is bounded. Using the fact
that ψ ∈ S(R2d), we get

∣∣ε〈W ε(Sε
0 , u

ε), ψ〉S′,S
∣∣ ≤ C

∫
〈x〉N |S0(x)| |w

ε
0(x + y)|
〈x + y〉β

〈x + y〉β
〈x〉N 〈y〉k dxdy

≤ C‖〈x〉NS0‖L2‖wε
0‖B∗

∫
R3

y

sup
x∈R3

〈x + y〉β
〈x〉N 〈y〉k dy

for any k ≥ 0 and 1
2 < β < N , upon using the Cauchy–Schwarz inequality in x. Then

we distinguish the cases |x| ≤ |y| and |x| ≥ |y|: the term stemming from the first case
gives a contribution which is bounded by C

∫
dy

〈y〉k−β , and the second contribution is

bounded by C
∫

dy
〈y〉k . Hence, upon choosing k large enough, we obtain

|ε〈W ε(Sε
0 , u

ε), ψ〉S′,S | ≤ C‖〈x〉NS0‖L2‖wε‖B∗ .
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As a second step, we compute the limit (4.9). We write

ε〈W ε(Sε
0 , u

ε), ψ〉 =

∫
S0(x)wε

0(x + y)

(
ϕ
(
ε
(
x +

y

2

)
, y
)
− ϕ(0, y)

)
dxdy

+

∫
wε

0(x)S0(x− y)ϕ(0, y)dxdy

= Iε + IIε.

Reasoning as above, we readily get that limε→0 Iε = 0. Indeed, since ϕ ∈ S(R2d),
we have, for all k ∈ N and x, y ∈ R

d,∣∣∣∣ϕ(ε(x +
y

2

)
, y
)
− ϕ(0, y)

∣∣∣∣ ≤ Cε
|x| + |y|
〈y〉k ≤ Cε

〈|x| + |y|〉
〈y〉k .

Hence,

|Iε| ≤ Cε

∫
〈x〉N |S0(x)| |w

ε
0(x + y)|
〈x + y〉β

〈|x| + |y|〉β+1

〈x〉N 〈y〉k dxdy

≤ Cε‖〈x〉NS0‖L2‖wε
0‖B∗

∫
R3

y

sup
x∈R3

〈|x| + |y|〉β+1

〈x〉N 〈y〉k dy

for any k ≥ 0 and 1/2 < β < N − 1. As above, the previous integral converges for k
large enough. Therefore, Iε → 0.

We end the proof by proving that the second term, IIε, converges to
∫
S0(x)w0(x+

y)ψ̂(0, y)dxdy. We have

IIε =

∫
wε

0(x)
(
S0 ∗ ϕ(0, .)

)
(x)dx.

Hence, since wε
0 converges weakly-∗ in B∗, it suffices to prove that S0 ∗ϕ(0, .) belongs

to B. We denote φ = ϕ(0, .). Then, φ ∈ S(R3). Let 1/2 < β < N . We have, using
(2.5),

‖S0 ∗ φ‖2
B ≤ C‖S0 ∗ φ‖2

L2
β

= C

∫
〈x〉2β |S0 ∗ φ(x)|2dx.

Moreover, upon using the Cauchy–Schwarz inequality, we get, for all x ∈ R
3,

|S0 ∗ φ(x)|2 ≤
(∫

Rd
y

|S0(x− y)||φ(y)|dy
)2

≤
(∫

Rd
y

|S0(x− y)|2|φ(y)|dy
)(∫

Rd
y

|φ(y)|dy
)

= ‖φ‖L1 |S0|2 ∗ |φ|(x).

Therefore, we obtain

‖S0 ∗ φ‖2
B ≤ C‖φ‖L1

∫
〈x〉2β |S0(x− y)|2|φ(y)|dydx

≤ C‖〈x〉NS0‖2
L2

∫
R3

y

sup
x∈R3

〈x + y〉2β
〈x〉2N 〈y〉k dy
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for any k. As before, this integral converges. Thus, we have established that S0∗ψ̂(0, .)
belongs to B, which implies that

IIε →
∫

S0(x)w0(x + y)ψ̂(0, y)dxdy.

4.4. Proof of the radiation condition (4.4). It remains to prove that μ
satisfies the weak radiation condition (4.4).

4.4.1. Support of μ. In order to prove the radiation condition without restric-
tion on the test function R (as assumed in [2]), we first prove a localization property
on the Wigner measure μ. This property is well known when uε satisfies a Helmholtz
equation without source term. It is still valid here thanks to the scaling of Sε.

Proposition 4.4. Under hypotheses (H1), (H2), the Wigner measure μ satisfies

supp(μ) ⊂ {(x, ξ) ∈ R
6/ |ξ|2 = 1}.

Proof. Let φ ∈ C∞
c (R6) and φε = φW (x, εDx). Let us denote Hε = −ε2Δ − 1.

Since uε satisfies the Helmholtz equation (1.1), we have

iαεεu
ε + Hεuε = ε2Sε.(4.11)

Moreover, Hε is a pseudodifferential operator with symbol |ξ|2 − 1. By pseudodiffer-
ential calculus, φεHε = OpWε (φ(x, ξ)(|ξ|2 − 1)) + O(ε); thus, using the definition of
the measure μ, we get that

lim
ε→0

(φεHεuε, uε) = lim
ε→0

(OpWε (φ(x, ξ)(|ξ|2 − 1))uε, uε)

=

∫
φ(x, ξ)(|ξ|2 − 1)dμ.

Using (4.11), we write

(φεHεuε, uε) = ε2(φεSε, uε) − iαεε(φ
εuε, uε) = ε2(W ε(Sε, uε), φ) − iαεε(φ

εuε, uε).

On the one hand, Proposition 4.3 gives that limε→0 ε
2(W ε(Sε, uε), φ) = 0. On the

other hand, (φεuε, uε) is bounded, so limε→0 αεε(φ
εuε, uε) = 0. Therefore, for any

φ ∈ C∞
c (R6), we have

∫
φ(|ξ|2 − 1)dμ = 0, so supp(μ) ⊂ {|ξ|2 = 1}.

4.4.2. Proof of the condition (4.4). Using the previous localization property,
in order to prove the radiation condition (4.4), one may only use test functions R ∈
C∞
c (R6) such that supp(R) ⊂ R

6\{ξ = 0}.
Let R be such a test function. We associate with R the solution gε to

−αεg
ε + ξ · ∇xg

ε = R(x, ξ).

By duality, we have

〈Qε, gε〉 = 〈W ε, R〉,

so that it suffices to establish the following two convergences:

lim
ε→0

〈Qε, gε〉 = 〈Q, g〉,(4.12)

lim
ε→0

〈W ε, R〉 = 〈f,R〉,(4.13)

where Q and g are defined in Theorem 4.2.
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As before, since R ∈ Xλ for any λ > 0, the limit (4.13) follows from the weak-∗
convergence of W ε in X�

λ.
On the other hand,

〈Qε, gε〉 = Im
∫

R6

S0(x)wε
0(x + y)ĝε

(
ε
[
x +

y

2

]
, y
)
dxdy(4.14)

+ Im
∫

R6

S1(x)wε
1(x + y)ĝε

(
q1 + ε

[
x +

y

2

]
, y
)
dxdy,

so 〈Qε, gε〉 is the sum of two terms of the same type. Such a term has been studied
in [2], where the following result is proved.

Proposition 4.5. Assume that (wε) is bounded in B∗ and that (wε) converges
weakly-∗ in B∗ to w0. Assume that S0 satisfy (H2). Let R ∈ C∞

c (R6) be such that
supp(R) ⊂ R

6\{ξ = 0}. Let gε be the solution to

−αεg
ε + ξ · ∇xg

ε = R(x, ξ)

and g(x, ξ) =
∫∞
0

R(x + tξ, ξ)dt. Then we have

lim
ε→0

∫
R6

S0(x)wε
0(x + y)ĝε

(
ε
[
x +

y

2

]
, y
)
dxdy =

1

(2π)3

∫
R3

Ŝ0(ξ)ŵ0(ξ)g(0, ξ)dξ.

Using the proposition above together with Proposition 3.2, we get that

lim
ε→0

〈Qε, gε〉

= Im
(

1

(2π)3

∫
R3

Ŝ0(ξ)ŵ0(ξ)g(0, ξ)dξ +
1

(2π)3

∫
R3

Ŝ1(ξ)ŵ1(ξ)g(q1, ξ)dξ

)

=
1

(4π)2

(∫
R3

|Ŝ0(ξ)|2δ(ξ2 − 1)g(0, ξ)dξ +

∫
R3

|Ŝ1(ξ)|2δ(ξ2 − 1)g(q1, ξ)dξ

)
.

Thus, the radiation condition (4.4) is proved.
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MODEL FOR CONSERVATION LAWS∗
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Abstract. For one-dimensional kinetic BGK models, regarded as relaxation models for scalar
conservation laws with genuinely nonlinear fluxes, existence of small amplitude traveling waves is
proven. Dynamic stability of these kinetic shock profiles is shown by extending a classical energy
method for viscous regularizations of conservation laws.
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1. Introduction. In this paper we study small amplitude traveling wave solu-
tions of the following one-dimensional Bhatnagar–Gross–Krook (BGK) type equation:

∂tf + v∂xf = M(ρf , v) − f , with t > 0 , x ∈ R , v ∈ Ω .(1.1)

Here f(t, x, v) can be interpreted (in analogy with the Boltzmann equation) as a
time-dependent phase space density of particles with time t, position x, and velocity
v. We shall assume that Ω ⊂ R is the support of a measure dμ(v). In particular, both
continuous velocity distributions as well as discrete velocity models, where (1.1) is a
hyperbolic system, are included in our assumptions.

The function ρf (t, x) in (1.1) is the macroscopic density corresponding to the
distribution f , i.e., the zeroth order velocity moment

ρf (t, x) =

∫
f(t, x, v)dμ(v) .(1.2)

Here and in the following we refrain from writing Ω under the integral sign in integrals
with respect to the measure dμ(v). Note that in the case of a discrete velocity model,
Ω is a discrete set, and the integral above is a sum. The “Maxwellian” M(ρ, v) is an
equilibrium distribution satisfying the moment conditions∫

M(ρ, v)dμ(v) = ρ and

∫
vM(ρ, v)dμ(v) = a(ρ)(1.3)

for a macroscopic flux function a(ρ) that will be assumed smooth and genuinely
nonlinear, actually (without loss of generality) concave: a′′(ρ) < 0. The proper-
ties (1.3) ensure, at least formally, that the macroscopic limit equation (scaling with
(t, x) → (t/ε, x/ε) and taking ε → 0) of (1.1) is the scalar conservation law

∂tρ + ∂xa(ρ) = 0 .(1.4)
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It is well known that initial value problems for (1.4) do not possess smooth solutions
in general, and that weak solutions are not unique. Uniqueness can be obtained by
considering (1.4) as the limit of an appropriately regularized problem. Classically this
is done by introducing an artificial viscosity and carrying out the limit ν → 0+ in

∂tρ + ∂xa(ρ) = ν∂2
xρ ;(1.5)

see, e.g., [10]. In this work, instead of (1.5), the kinetic regularization (1.1) is studied.
Typical weak solutions of (1.4) are shock waves of the form

ρ(t, x) =

⎧⎨
⎩

ρ− if x− st < x0 ,

ρ+ if x− st > x0 ,

where the constants ρ± and the wave speed s are related by the Rankine–Hugoniot
condition

s =
a(ρ+) − a(ρ−)

ρ+ − ρ−
.(1.6)

The admissibility condition

a(ρ) − a(ρ−)

ρ− ρ−
− s > 0 for all ρ ∈ (min(ρ+, ρ−),max(ρ+, ρ−))(1.7)

can be derived by constructing viscous profiles, i.e., traveling wave solutions of (1.5).
In this framework, (1.7) gives a necessary and sufficient condition for existence of
traveling wave solutions connecting the values ρ± at x − st = ±∞. For the concave
flux functions a(ρ) considered here, (1.7) reduces to the condition ρ− < ρ+. This
is called an entropy condition since it can also be obtained from the (distributional)
entropy inequality

∂tφ(ρ) + ∂xψ(ρ) ≤ 0 ,

which can be derived for every convex entropy density φ(ρ) and corresponding entropy
flux ψ(ρ) (satisfying ψ′ = φ′a) in the limit ν → 0 from (1.5).

An entropy inequality can also be derived for solutions of the kinetic equation
(1.1) under an additional structure condition on the equilibrium distribution. We
shall assume that the Maxwellian is a smooth and strictly increasing function of ρ:

∂ρM(ρ, v) > 0 .(1.8)

Then there exists a function θ(f, v) such that f = M(ρ, v) is equivalent to ρ = θ(f, v).
With the primitive Θ(f, v) (∂fΘ = θ), solutions of (1.1) formally satisfy the entropy
inequality

∂t

∫
Θ(f, v)dμ(v) + ∂x

∫
vΘ(f, v) dμ(v)

=

∫
(M(ρf , v) − f)(θ(f, v) − ρf ) dμ(v) ≤ 0 .

In the context of relaxation systems, condition (1.8) can be seen as a subcharacter-
istic condition. It can be used for proving stability results such as a total variation
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diminishing property corresponding to that for entropy solutions of the macroscopic
equation (1.4); see [1], [5]. A class of examples of Maxwellians M(ρ, v) satisfying the
moment conditions (1.3) as well as (1.8) has been given by the authors in [3]:

M(ρ, v) =

∫ ρ

0

m(v − a′(r))dr ,

where m(v) > 0 for v ∈ R is an even function satisfying
∫∞
−∞ m(v)dμ(v) = 1 (Ω = R,

dμ(v) = dv).
It is our aim to study small amplitude kinetic shock profiles as traveling wave

solutions of kinetic models of the form (1.1). Assuming (1.8), we shall prove their
existence under the same entropy condition as required for the viscous regularization
in section 3. This is no surprise considering that our constructive existence proof
shows asymptotic closeness of viscous and kinetic profiles for small shocks. A main
ingredient of the proof is a fluid-kinetic (or micro-macro) decomposition in the spirit
of the one introduced by Caflisch and Nicolaenko [2] for the gas dynamics Boltzmann
equation.

A well-known kinetic model for scalar conservation laws is the Perthame–Tadmor
model [9]. There the Maxwellian is a discontinuous function. This lack of smoothness
is an obstacle for the study of small waves by perturbation arguments as carried out
here. Existence of big traveling waves has been studied by compactness arguments in
[4]. The same approach has been carried out for (1.1) by the authors of this work [3].
In this parallel, the results of the present study are reviewed, and the existence result
is extended to large amplitude waves. As opposed to the results here, the existence
proof for large waves is nonconstructive, and their stability is still open.

In section 4, local dynamic stability of the constructed traveling waves is proven.
Again, a micro-macro decomposition (now in the spirit of Liu and Yu [7]) is at the
heart of the argument. A classical energy method for proving stability on the macro-
scopic level is combined with entropy estimates for the kinetic perturbations.

In the remainder of this section, we present the formal asymptotics for the con-
struction of small amplitude waves as well as the energy method for proving stability
of viscous profiles.

Formal construction of kinetic shock profiles. We look for solutions of (1.1),
whose dependence on x and t is only through the traveling wave variable ξ = x− st,
with s being the wave speed:

(v − s)∂ξf = M(ρf , v) − f , ξ ∈ R, v ∈ Ω ,(1.9)

subject to the far-field conditions

f(±∞, v) = M(ρ±, v) , v ∈ Ω .(1.10)

We are interested in small amplitude waves and assume

ρ+ − ρ− = ε with 0 < ε � 1 .(1.11)

The positivity of ε reflects the entropy condition (1.7). It turns out that it is appro-
priate to rescale the traveling wave variable by ξ → ξ/ε, to get

ε(v − s)∂ξf = M(ρf , v) − f, ξ ∈ R, v ∈ Ω .(1.12)
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The Rankine–Hugoniot condition (1.6) is derived as a necessary condition for existence
by integrating (1.12) with respect to v and by (1.3).

The formal asymptotics below is a variant of the Chapman–Enskog expansion
procedure. We start by introducing the decomposition

f = M(ρf , v) + ε2f⊥, with

∫
f⊥dμ(v) = 0 ,(1.13)

of the solution into an equilibrium part and a remainder (or into a macroscopic and
a microscopic contribution, or into a fluid and a kinetic part). As a next step, the
traveling wave equation (1.12) is integrated with respect to v and ξ:

∫
vf dμ(v) − sρf = a(ρ−) − sρ− .(1.14)

Essentially, this equation is considered as an equation for the macroscopic density ρf ,
and the full kinetic equation (1.12) should determine f⊥. The smallness of the wave
is reflected in the fact that the macroscopic density is everywhere close to its far-field
value at ξ = −∞ and that the wave speed is close to the characteristic speed there:

ρf = ρ− + εu, s = a′(ρ−) + εσ .(1.15)

Substitution of this and (1.13) into (1.12) and (1.14) give the leading order (O(ε2))
term equation

f⊥ = −(v − a′(ρ−))∂ρM(ρ−, v)∂ξu ,(1.16)

−
∫

vf⊥dμ(v) =
a′′(ρ−)

2
u2 − σu .(1.17)

The limiting version of the Rankine–Hugoniot condition (1.6) is given by σ = a′′(ρ−)/2
< 0. After elimination of f⊥, this becomes the traveling wave equation of the viscous
Burgers equation

D0 ∂ξu = −σu(1 − u) ,(1.18)

with the diffusivity

D0 =

∫
(v − a′(ρ−))2 ∂ρM(ρ−, v) dμ(v) > 0 ,(1.19)

by ∂ρM > 0. Obviously, solutions of (1.18) connecting u = 0 at ξ = −∞ to u = 1
at ξ = +∞ exist. The lack of uniqueness due to the translation invariance of the
traveling wave problem will be an issue below.

It is far from obvious how to make this argument rigorous, since (1.16) for f⊥

is a singular limit and, even worse, its solution is a differentiation problem. In the
existence proof in section 3 we adapt an idea from Caflisch and Nicolaenko [2], where
existence of weak shock profiles for the Boltzmann equation of gas dynamics has been
proven. It is based on a slight modification of the micro-macro decomposition such
that the fluid and the kinetic terms satisfy a system of equations with separated
derivatives.
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Stability of viscous shock profiles. In section 4 we prove local dynamic sta-
bility of small amplitude traveling waves. The idea is to decouple the equation into
a macroscopic part and a small microscopic part. Then we use L2-type energy (ac-
tually entropy) methods for the macroscopic equation, which can be extended to also
control the microscopic part. Similar techniques have been used by Liu and Yu [7] for
the Boltzmann equation. For the Broadwell model, a discrete velocity model for the
Boltzmann equation, energy estimates have also been used in [6].

We expand briefly on the ideas behind the L2-estimates at the macroscopic level.
If φ is a traveling wave solution of the diffusive regularization (1.5), then the pertur-
bation ρ̃ = ρ− φ satisfies

∂tρ̃− s∂ξρ̃ + ∂ξ(a(φ + ρ̃) − a(φ)) = ν∂2
ξ ρ̃.

Linearizing this equation and testing it with ρ̃ produces a term with the wrong sign,
which is not possible to control. The usual trick (see, e.g., [8]) for overcoming this
problem is to introduce the new macroscopic unknown

W (ξ, t) =

∫ ξ

−∞
ρ̃(x, t) dx(1.20)

after choosing the shift in φ such that
∫

R
(ρ − φ)dξ = 0. Testing the integrated

perturbation equation

∂tW − s∂ξW + a(φ + ρ̃) − a(φ) = ν∂2
ξW ,

with W , gives in particular the term∫
R

(a(φ + ρ̃) − a(φ))W dξ = −1

2

∫
R

∂ξ(a
′(φ))W 2 dξ + n.l.t.

(n.l.t. stands for nonlinear terms). By the monotonicity of the wave profile the term on
the right-hand side is positive, indicating decay of the L2-norm of W if the nonlinear
terms can be controlled.

The idea now consists of combining the energy estimates for W and for ρ̃ = ∂ξW
to get an estimate on the H1-norm of W . Clearly in both cases the contribution of
the diffusion term has the good sign. This way we can also control the term with the
wrong sign for ρ̃ by the term coming from diffusion for W . The basic estimate reads

1

2

d

dt

∫
R

(
W 2 + γ(∂ξW )2

)
dξ ≤ − (ν − C0 sup |W | − γC1)

∫
R

(∂ξW )2 dξ(1.21)

for some arbitrary γ > 0. Here C0 and C1 are positive constants depending on
pointwise bounds for the density ρ which are a consequence of the maximum principle.
The supremum norm of W is controlled by the H1-norm in one dimension. Hence,
starting with initial data such that sup |W (t = 0)| is small enough, and choosing γ
small enough, the right-hand side of (1.21) is negative initially and remains so. This
implies global existence for W ∈ H1(R), as well as stability of macroscopic traveling
waves. To achieve an analogous result for the kinetic equation, the argument will
be similar, but one has to take care of the contribution of the microscopic part,
which shall, however, be small by assumption (1.11). Additional difficulties will rise
from the absence of a maximum principle requiring estimates for ρ̃ in H1 (W in
H2) for pointwise control of ρ̃, as well as from the fact that the monotonicity of the
macroscopic density of the kinetic traveling wave is not obvious.
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2. Notation and assumptions. Since we shall linearize around the state
M(ρ−, v), we introduce the notation F (v) := ∂ρM(ρ−, v) for simplicity. We shall
sometimes skip the dependence on v in the function M , and write M ′(ρ) instead of
∂ρM(ρ, v) (i.e., F = M ′(ρ−)).

We shall work in the weighted Hilbert space L2
v of functions of the velocity, defined

by the scalar product

〈f, g〉v =

∫
fg

F
dμ(v) ,

where ‖ · ‖v denotes the induced norm. We also consider the L2- and Hk-norms for
functions of ξ. We write these spaces as L2

ξ and Hk
ξ , and their norms as ‖ · ‖ξ and

‖ · ‖Hk , respectively.
The Hilbert space L2

ξ,v is then naturally defined by the scalar product

〈f, g〉ξ,v =

∫
R

〈f, g〉vdξ ,

with the induced norm ‖ · ‖ξ,v. Similarly, we shall denote by Hk
ξ (L2

v) the space of

functions with derivatives with respect to ξ up to order k in L2
v, and the corresponding

norm

‖f‖Hk
ξ
(L2

v) =
(
‖f‖2

ξ,v + · · · + ‖∂k
ξ f‖2

ξ,v

)1/2
.(2.1)

The linearization of the collision operator on the right-hand side of (1.1) around
M(ρ−, v) is given by

Lf := Fρf − f .(2.2)

It is symmetric and negative semidefinite in L2
v. These properties are easily seen from

the identity

〈Lf1, f2〉v = −1

2

∫ ∫
FF ′

(
f1

F
− f ′

1

F ′

)(
f2

F
− f ′

2

F ′

)
dμ(v) dμ(v′) ,

where ′ denotes evaluation at v′. The entropy inequality 〈Lf, f〉v ≤ 0 is a straight-
forward consequence.

Apart from the essential requirements (1.3) and (1.8), our existence and stability
proofs rely on additional technical assumptions on M . For fixed v ∈ Ω, we assume that
M(ρ, v) is a C3-function of ρ. Moreover, for a given ρ, up to fourth order moments
of the derivatives exist, i.e.,∫ ∣∣vm∂k

ρM(ρ, v)
∣∣ dμ(v) < ∞ for k ≤ 3, m ≤ 4 .(2.3)

For the second and third order derivatives of M with respect to ρ we require that for
given ρ1 and ρ2,∫

|v|m
(∂k

ρM(ρ1, v))
2

∂ρM(ρ2, v)
dμ(v) < ∞ for k ≤ 3, m ≤ 4 .(2.4)

As a consequence of (2.3), up to second order moments of velocity distributions can
be bound by their L2

v-norm:∣∣∣∣
∫

(v − s)mf dμ(v)

∣∣∣∣ ≤
(∫

|v − s|2mF dμ(v)

)1/2

‖f‖v for m ≤ 2 .(2.5)
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This will be used repeatedly in the following. For simplicity we also adopt the notation

D̂ :=

∫
(v − s)2F dμ(v) .(2.6)

Finally, we assume that for fixed ρ, ∂ρM(ρ, v) is a continuous function of v ∈ Ω.

3. Existence of small amplitude traveling waves.

3.1. An approximate solution. In this section we prove existence of solutions
of (1.12) subject to (1.10) for ε � 1. We start by returning to the problem of
constructing a formal approximation. Instead of formally passing to the limit as in
section 1, we avoid expansion errors wherever possible and produce a residual whose
v-integral vanishes. We start with the ansatz

fas := M(ρ, v) + ε2f⊥ ,(3.1)

formally resembling (1.13). The residual is then given by

ε3h := M(ρas) − fas − ε(v − s)∂ξfas , with ρas = ρ + ε2ρ⊥ .(3.2)

Recalling (1.16), we eliminate two terms in the right-hand side by the choice

f⊥ := −1

ε
(v − s)∂ξM(ρ, v) .(3.3)

Finally, the requirement that the v-integral of h vanish and that fas satisfy the far-field
conditions (1.10) leads to an ordinary differential equation (ODE) for ρ:

a(ρ) − a(ρ−) − s(ρ− ρ−)

ε2
=

1

ε

(∫
(v − s)2M ′(ρ, v)dμ(v)

)
∂ξρ(3.4)

subject to

ρ(−∞) = ρ− and ρ(+∞) = ρ+ .(3.5)

With ρ = ρ− + εu the problem for u formally tends to (1.18) in the limit ε → 0.
Actually, since the diffusivity D(ρ) :=

∫
(v − s)2M ′(ρ, v) dμ(v) is obviously positive,

(3.4) has the same qualitative properties as (1.18), and a solution of (3.4), (3.5) exists,
which is determined uniquely by the condition

ρ(0) =
ρ− + ρ+

2
.(3.6)

It is easily shown that u and ∂ξu are uniformly bounded as ε → 0 and for ξ ∈ R,
and, therefore, the same holds for ρ and ∂ξρ/ε. As a consequence, D(ρ) is uniformly
bounded away from zero. Division of (3.4) by D(ρ) and differentiation shows that also
∂k
ξ ρ/ε is uniformly bounded for k = 2, 3 (here assumption (2.3) is used). Furthermore,

the convergence of all these terms as ξ → ±∞ is exponential. Recalling s = a′(ρ−) +
O(ε),

ρ⊥ = −1

ε
(a′(ρ) − s)∂ξρ = O(ε)

holds uniformly for ξ ∈ R. This shows that the scaling of the residual in (3.2) has
been chosen correctly in terms of the sup-norm:

h =
M(ρ + ε2ρ⊥) −M(ρ)

ε3
− (v − s)∂ξf

⊥(3.7)
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is uniformly bounded in ε and ξ and decays exponentially as ξ → ±∞. However, we
shall need the following result also in other norms.

Lemma 3.1. Let the assumptions (2.3) and (2.4) be satisfied and let fas be de-
termined by (3.1) and (3.3)–(3.5). Then fas satisfies the far-field conditions (1.10),
and the traveling wave equation (1.12) up to the residual ε3h, where h is in H1

ξ (L2
v)

uniformly in ε, and
∫
h dμ(v) = 0.

Proof. The far-field conditions and the last statement are a direct consequence of
the construction of fas.

The boundedness of the first term on the right-hand side of (3.7) in H1
ξ (L2

v) is a
consequence of our observations above and of (2.4) (m = 0, k = 2). For the second
term (2.4) is used with m = 4, k = 2. Of course the exponential decay of all terms
suffices for integrability with respect to ξ.

3.2. The micro-macro decomposition of the correction term. In terms
of the correction term ε2g = f − fas, the traveling wave problem reads

ε(v − s)∂ξg − Lg

= (M ′(ρas) − F )ρg +
M(ρas + ε2ρg) −M(ρas) − ε2M ′(ρas)ρg

ε2
+ εh(3.8)

subject to

g(±∞, v) = 0 for all v ∈ Ω .(3.9)

The left-hand side of (3.8) is the linearization of the traveling wave equation (1.12)
around M(ρ−) with the linearized collision operator L defined in (2.2). The right-
hand side contains an O(ε) linear correction (since we should actually linearize around
M(ρas)), an O(ε2ρ2

g) nonlinear term, and the residual. The homogeneous far-field
conditions and Lemma 3.1 imply, after integration of (3.8) with respect to ξ, that the
flux of g vanishes: ∫

(v − s)g dμ(v) = 0 .(3.10)

The problem (3.8), (3.9) will be solved in several steps. First, we introduce a splitting
of g into a macroscopic part and a microscopic part. Then, in the following two
subsections, we solve the linear equations associated to the decomposition of g, and
finally solve the nonlinear problem.

In the first step, two ideas from the work by Caflisch and Nicolaenko [2] on the
Boltzmann equation will be adapted to the present situation. The first one is a special
micro-macro decomposition defined by

g(ξ, v) = z(ξ)Φ(v) + εw(ξ, v) ,(3.11)

where Φ := F
(
1 + ε σ

D̂
(v − s)

)
, and the orthogonality condition 〈(v − s)Φ, w〉v = 0

holds.
The choice of the coefficient σ/D̂ (see (1.15) and (2.6) for the definition of the

constants) in front of the correction term in Φ guarantees that Φ shares the property
(3.10) with g: ∫

(v − s)Φ dμ(v) = 0 .(3.12)

This and the definition of the decomposition imply several properties of z and w.
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Lemma 3.2. If g satisfies (3.8), (3.9), then

w(±∞, v) ≡ 0, z(±∞) = 0 ,(3.13)

and ∫
(v − s)w(ξ, v) dμ(v) = 0,

∫
(v − s)2w(ξ, v) dμ(v) = 0 for all ξ ∈ R .(3.14)

Substitution of (3.11) into (3.8) and division by ε gives

(v − s)Φ ∂ξz + ε(v − s)∂ξw − Lw − Λz = εΓρw + εR(ρg) + h ,(3.15)

where again the right-hand side contains a linear correction, the nonlinearity, and the
residual, with

Λ :=
M ′(ρas)ρΦ − Φ

ε
, Γ :=

M ′(ρas) − F

ε
,

R(ρg) :=
1

ε4
[M(ρas + ε2ρg) −M(ρas) − ε2M ′(ρas)ρg] .

These terms are formally O(1) such that the ε-powers in (3.15) reflect the expected
orders of magnitude.

Observe that, in terms of z and w, the nonlinearity should be written as R(ρg) =

R(zρΦ + ερw) with ρΦ = 1 − ε2σ2/D̂ (a constant). The identities
∫

Λ dμ(v) =∫
Γ dμ(v) =

∫
R(ρg) dμ(v) = 0 hold.

In order to get an equation for z (the macroscopic equation), we apply an ap-
proximation of the macroscopic projection to (3.15), i.e., we multiply (3.15) by (v−s)
and integrate with respect to v:

(3.16)

D̃ ∂ξz − r(ξ)z = ε
a′(ρas) − s

ε
ρw + ε

∫
(v − s)R(ρg) dμ(v) +

∫
(v − s)h dμ(v) ,

with

D̃ :=

∫
(v − s)2Φ dμ(v) = D0 + O(ε) > 0 ,(3.17)

r(ξ) :=

∫
(v − s)Λ(ξ, v) dμ(v) =

a′(ρas(ξ)) − s

ε
ρΦ .(3.18)

Here we have used (3.12) and Lemma 3.2. This equation already reveals the magic
of the micro-macro decomposition (3.11). It does not contain derivatives of w, and
actually becomes independent of w as ε → 0. The formal limit is the linearization of
the viscous Burgers traveling wave equation (1.18). In particular, r(ξ) = σ(2u− 1) +
O(ε) and, consequently, there exist γ, ξ̄ > 0 such that

r(ξ) ≤ −γ for ξ ≥ ξ̄ , r(ξ) ≥ γ for ξ ≤ −ξ̄ .(3.19)

Now an equation for w (the microscopic equation) is derived by substituting (3.16)
into (3.15), which actually amounts to applying the projection

Pf := f − (v − s)Φ

D̃

∫
(v − s)f dμ(v)(3.20)
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to (3.15):

ε(v − s)∂ξw − Lw − PΛz = εΓ̃ρw + εPR(ρg) + Ph ,(3.21)

with

Γ̃ = PΓ − (v − s)Φ

D̃

∫
(v − s)F dμ(v) = Γ − (v − s)Φ

D̃
(a′(ρas) − s) .

We make one more manipulation to get a final equation for w. This corresponds to
the second idea from [2]. As we observed in section 2 the operator L is symmetric
negative semidefinite, but not strictly negative. We introduce a new operator M,
which is strictly negative and coincides with L on the set of functions w satisfying the
property (3.14):

Mw := Lw − (v − s)2F

∫
(v − s)2w dμ(v) .

Lemma 3.3. The operator M is symmetric and negative definite in L2
v, i.e., there

exists a κ > 0 such that

−〈Mw,w〉v > κ‖w‖2
v for all w ∈ L2

v .

Proof. The symmetry follows from the symmetry of L and from

〈Mw1, w2〉v = 〈Lw1, w2〉v −
∫

(v − s)2w1 dμ(v)

∫
(v − s)2w2 dμ(v) .

To prove that M is negative definite, we write w = Fρw + w⊥ and observe that
Lw = −w⊥:

−〈Mw,w〉v = ‖w⊥‖2
v +

(
D0 ρw +

∫
(v − s)2w⊥dμ(v)

)2

= ‖w⊥‖2
v + γD2

0 ρ
2
w + (1 − γ)D2

0 ρ
2
w

+ 2D0 ρw

∫
(v − s)2w⊥ dμ(v) +

(∫
(v − s)2w⊥ dμ(v)

)2

for γ ∈ (0, 1). Hence

−〈Mw,w〉v = ‖w⊥‖2
v + γD2

0ρ
2
w

+ (1 − γ)

[
D0 ρw +

1

1 − γ

∫
(v − s)2w⊥ dμ(v)

]2

− γ

1 − γ

(∫
(v − s)2w⊥ dμ(v)

)2

≥ γD2
0 ρ

2
w + ‖w⊥‖2

v

(
1 − γ

1 − γ
‖(v − s)2F‖2

v

)
≥ κ(ρ2

w + ‖w⊥‖2
v) = κ‖w‖2

v ,

with κ > 0 for γ small enough. Here we have used (2.5) with m = 2.
We shall prove existence of solutions of equations (3.16) and

ε(v − s)∂ξw −Mw − zPΛ = εΓ̃ρw + εPR(ρg) + Ph(3.22)

subject to (3.13). The relation to the original problem (3.8), (3.9) is not obvious.
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Lemma 3.4. The function g = zΦ + εw is a solution of (3.8), (3.9) iff z and w
solve (3.16), (3.22) subject to (3.13).

Proof. The problem (3.16), (3.22), (3.13) has been derived from (3.8), (3.9) using
the property (3.14) of solutions of the latter. The proof relies on showing that (3.14)
also holds for solutions of (3.16), (3.22), (3.13) without requiring it as a side condition.

The properties of Φ imply that for an f(v) satisfying
∫
f dμ(v) = 0, also

∫
Pf dμ(v)

= 0 and
∫

(v−s)Pf dμ(v) = 0 hold. Since the v-integrals of Λ, Γ, R(ρg), and h vanish,
these terms do note contribute when we integrate (3.22) and its product with v − s
with respect to v:

ε∂ξ

∫
(v − s)w dμ(v) = −D0

∫
(v − s)2w dμ(v) ,

ε∂ξ

∫
(v − s)2w dμ(v) = −

∫
(v − s)w dμ(v) −

∫
(v − s)3F dμ(v)

∫
(v − s)2w dμ(v) .

This is a system of linear ODEs with constant coefficients for the unknowns
∫

(v −
s)w dμ(v) and

∫
(v − s)2w dμ(v). The decay of w at ξ = ±∞ implies homogeneous

far-field conditions for these quantities and, thus,
∫

(v−s)w dμ(v) ≡
∫

(v−s)2w dμ(v)
≡ 0.

3.3. The linear problem. In this section we prove solvability of (3.16) and
(3.22) regarding the right-hand sides as given inhomogeneities. In particular, we look
for solutions of

ε(v − s)∂ξw −Mw = hw with hw ∈ H1
ξ (L2

v)(3.23)

and

∂ξz − r(ξ)z = hz with hz ∈ L2
ξ .(3.24)

We shall look for solutions in the same spaces as the inhomogeneities. This will replace
homogeneous far-field conditions in the following. Whereas this requirement provides
uniqueness for the solution of (3.23), it permits a one-parameter set of solutions of
(3.24). This reflects the arbitrary shift in traveling wave solutions. Uniqueness will
be guaranteed by the additional requirement

z(0) = z0 ,(3.25)

where z0 ∈ R parametrizes the set of solutions.
Lemma 3.5. Let z be the solution of (3.24), (3.25) with r bounded and satisfying

(3.19). Then there exists a positive constant C, such that

‖z‖H1
ξ
≤ C(|z0| + ‖hz‖ξ) .

Proof. The solution of (3.24), (3.25) is given by

z(ξ) = E(ξ, 0)z0 +

∫ ξ

0

E(ξ, y)hz(y)dy with E(ξ, y) = exp

(∫ ξ

y

r(η)dη

)
.

For |ξ| < ξ̄, E(ξ, y) is bounded and thus, obviously,

‖z‖L2
ξ
(−ξ̄,ξ̄) ≤ C‖hz‖L2

ξ
(−ξ̄,ξ̄) .
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For ξ > ξ̄, by (3.19), we have

|z(ξ)| ≤ E(ξ̄, 0)eγ(ξ̄−ξ)|z0| +
∫ ξ̄

0

E(ξ̄, y)eγ(ξ̄−ξ)|hz(y)|dy +

∫ ξ

ξ̄

eγ(y−ξ)|hz(y)|dy

≤ Ce−γξ(|z0| + ‖hz‖L2
ξ
(0,ξ̄)) + z1(ξ) ,

where z1 solves ∂ξz1 = −γz1 + |hz|, with z1(ξ̄) = 0. Multiplying by z1 and integrating
over (ξ̄,∞) gives ‖z1‖L2

ξ
(ξ̄,∞) ≤ 1

γ ‖hz‖L2
ξ
(ξ̄,∞), and hence

‖z‖L2
ξ
(ξ̄,∞) ≤ C(|z0| + ‖hz‖L2

ξ
(0,∞)) .

The interval (−∞,−ξ̄) is treated analogously, completing the estimation of ‖z‖ξ.
The estimate on ‖∂ξz‖ξ is an obvious consequence of the differential equation and

the boundedness of r.
Theorem 3.6. There exists a unique solution w ∈ H1

ξ (L2
v) of (3.23). Moreover

w satisfies

‖∂k
ξw‖ξ,v ≤ 1

κ
‖∂k

ξ hw‖ξ,v for k = 0, 1 ,

with κ as in Lemma 3.3.

Proof. We introduce an approximation by discrete velocity models. We choose
an increasing sequence {ΩN} of bounded measurable subsets of the support of the
velocity measure exhausting it:

ΩN ⊂ ΩN+1 ,

∞⋃
N=1

ΩN = Ω .

Each of the ΩN is written as a finite disjoint union ΩN =
⋃N

j=1 ΩN
j of connected

measurable subsets ΩN
j , and the discrete velocities are chosen from these subsets:

vNj ∈ ΩN
j such that

1

F (vNj )
=

1

μ(ΩN
j )

∫
ΩN

j

dμ(v)

F (v)
,

which is possible by the continuity of F . A quadrature formula for v-integrals is then
defined by

∫
f(v) dμ(v) ≈

N∑
j=1

f(vNj )μ(ΩN
j ) .

These choices imply that for functions f and g, whose support is a subset of ΩN and
which are piecewise constant, i.e., constant on each ΩN

j , the quadrature formula is

exact both for the scalar product 〈f, g〉v and for the integrals
∫
f dμ(v) and

∫
g dμ(v).

Finally, we make the decomposition of ΩN fine enough such that

lim
N→∞

sup
1≤j≤N

∣∣∣∣∣(vNj − s)2 − 1

μ(ΩN
j )

∫
ΩN

j

(v − s)2dμ(v)

∣∣∣∣∣ = 0 .(3.26)
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Now we approximate (3.23) by the discrete velocity model

(3.27)

ε(vNj − s)∂ξw
N
j − (MNwN )j = hN

wj :=
F (vNj )

μ(ΩN
j )

∫
ΩN

j

hw(v)

F (v)
dμ(v) , j = 1, . . . , N ,

where wN denotes both the vector (wN
1 , . . . , wN

N ) and the piecewise constant function
in L2

v defined by

wN (v) =

{
wN

j for v ∈ ΩN
j ,

0 for v ∈ Ω \ ΩN .

Note that by the construction of the quadrature we have

〈fN , gN 〉N :=

N∑
j=1

fN
j gNj

F (vNj )
μ(ΩN

j ) = 〈fN , gN 〉v .

The matrix MN is defined by

(3.28)

(MNwN )j := F (vNj )

N∑
l=1

wN
l μ(ΩN

l ) − wN
j − (vNj − s)2F (vNj )

N∑
l=1

(vNl − s)2wN
l μ(ΩN

l ) .

Equations (3.27) are a system of linear constant coefficient ODEs. A proof analogous
to that of Lemma 3.3 shows that MN is symmetric and negative definite with respect
to 〈·, ·〉N and, as a consequence, the generalized eigenvalue problem

(MN − λ(VN − sIdN ))φ = 0 , with VN = diag(vN1 , . . . , vNN ) ,

corresponding to the left-hand side of (3.27) has only real eigenvalues away from
zero. Thus, a unique bounded solution exists which converges to zero as ξ → ±∞.
Computing the scalar product of the resulting equation with wN and integration with
respect to ξ gives

−
∫ ∞

−∞
〈MNwN , wN 〉N dξ =

∫ ∞

−∞
〈hN

w , wN 〉N dξ .

With the definiteness of MN and the properties of the quadrature, this implies

‖wN‖ξ,v ≤ 1

κ
‖hw‖ξ,v .

The uniform boundedness of wN in L2
ξ,v implies its weak convergence (for a subse-

quence) to w ∈ L2
ξ,v. We can also pass to the limit in (3.27). Here we use (3.26) for

proving convergence of the last term in (3.28). The above estimate carries over to
the limit w. Then the estimate for ∂ξw is obtained by differentiating equation (3.23).
Uniqueness is an obvious consequence.
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3.4. The nonlinear problem. In this section we prove existence and unique-
ness of solutions of the nonlinear problem (3.16), (3.22) subject to z(0) = z0 and to
the requirement that the solution is square integrable with respect to ξ, replacing
homogeneous far-field conditions.

After the preparations in the previous subsections, the proof is a straightforward
contraction argument. We need, however, estimates for the right-hand sides of (3.16)
and (3.22). In the following, C denotes (possibly different) ε-independent constants.

Lemma 3.7.

(i) The coefficients Λ and Γ satisfy

‖Λ‖C1
ξ
(L2

v) + ‖Γ‖C1
ξ
(L2

v) ≤ C .

(ii) The nonlinear term R(ρ) is quadratic in ρ: Let ρ1, ρ2 ∈ H1
ξ satisfy |ρ1|, |ρ2| ≤

Cε−2. Then

‖R(ρ1) −R(ρ2)‖H1
ξ
(L2

v) ≤ C
(
‖ρ1‖H1

ξ
+ ‖ρ2‖H1

ξ

)
‖ρ1 − ρ2‖H1

ξ
.

Proof. The proofs of the statements are straightforward. All that is needed is the
boundedness in L2

v of the derivatives ∂k
ρM(ρas + ε2ρ̃) for k ≤ 3 with ρ̃ between values

of ρ1 and ρ2, as well as the continuous embedding L∞
ξ → H1

ξ .

Lemma 3.8. The projection P : L2
v → L2

v, defined by (3.20), is a bounded opera-
tor.

Proof. The proof is a straightforward consequence of (2.3)–(2.5).
Before stating the existence and uniqueness result for traveling waves we recall

the micro-macro decomposition g(ξ, v) = z(ξ)Φ(v)+εw(ξ, v) of functions g ∈ H1
ξ (L2

v),
made unique by the requirement 〈(v − s)Φ, w〉v = 0, since

〈(v − s)Φ,Φ〉v =
εσD̃

D̂
�= 0 .

We define a norm on H1
ξ (L2

v) by

‖g‖ := ‖z‖H1
ξ

+ ε‖w‖H1
ξ
(L2

v) .(3.29)

We also note that in terms of the original unknown f = fas + ε2g, the condition
z(0) = z0 reads

〈(v − s)Φ, f − fas〉v(ξ = 0) =
ε3σD̃

D̂
z0 .(3.30)

Theorem 3.9. Let the assumptions stated in section 2 be satisfied. Then for
every z0 ∈ R and for ε small enough, there exists a solution f of (1.12) satisfying
(3.30), unique in a ball in (H1

ξ (L2
v), ‖ ‖) with center fas and an O(ε) radius. It

satisfies

‖f −M(ρ)‖H1
ξ
(L2

v) = O(ε2) ,

where ρ is the solution of (3.4)–(3.6), or, more precisely,

f = M(ρ) − ε(v − s)∂ξM(ρ) + ε2zΦ + ε3w ,

where ‖z‖H1
ξ

and ‖w‖H1
ξ
(L2

v) are uniformly bounded as ε → 0.
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Proof. As a consequence of Lemmas 3.7 and 3.8 we have∥∥∥∥a′(ρas) − s

ε
ρw

∥∥∥∥
H1

ξ

≤ C‖w‖H1
ξ
(L2

v) ,

‖PΛz‖H1
ξ
(L2

v) ≤ C‖z‖H1
ξ
, ‖Γ̃ρw‖H1

ξ
(L2

v) ≤ C‖w‖H1
ξ
(L2

v) .

This implies that for ε small enough, the results from Lemmas 3.5 and 3.6 can be
extended to the linear system

D̃ ∂ξz − r(ξ)z = ε
a′(ρas) − s

ε
ρw + hz ,

ε(v − s)∂ξw −Mw − zPΛ = εΓ̃ρw + hw ,

with inhomogeneities hz, hw and z0 = z(0). Applying the solution operator for this
system to (3.16), (3.22), we obtain a fixed point problem of the form

z = εRz(zρΦ + ερw) + h̃z ,(3.31)

w = εRw(zρΦ + ερw) + h̃w ,(3.32)

with Rz and Rw sharing the properties of R given in Lemma 3.7, and h̃z and h̃w are
given and bounded. Using ‖zρΦ + ερw‖H1

ξ
≤ ‖(z, w)‖ (see (3.29)), the estimate

‖(εRz(zρΦ + ερw) + h̃z, εRw(zρΦ + ερw) + h̃w)‖ ≤ c(1 + ε‖(z, w)‖2)

follows. Here we have identified g = zΦ + εw with the pair (z, w). The estimate
implies that for ε small enough both the ball with radius 2c and the ball with radius
1/(2εc) are mapped into themselves by the right-hand side of (3.31), (3.32). Also,
with the property of the nonlinearity from Lemma 3.7, the fixed point operator is a
contraction on a ball with an O(ε−1) radius. We conclude that for ε small enough,
(3.31), (3.32) has a solution with ‖(z, w)‖ ≤ 2c which is unique in a ball with an
O(ε−1) radius. Knowing this and returning to (3.32), the boundedness of ‖w‖H1

ξ
(L2

v)

follows.
By its construction the approximating density ρ is strictly monotone. It will be

important for the stability proof below to extend this property to the exact density
ρf .

Lemma 3.10. Let the assumptions of Theorem 3.9 hold and let f be the solution
of (1.12), (3.30). Then the macroscopic density ρf (ξ) is strictly monotone.

Proof. The previous proof is easily extended to show that the dependence of z
and w on z0 is Lipschitz continuous with ε-independent Lipschitz constant. Actually,
the difference of two solutions (z, w) and (ẑ, ŵ) with different z0-values z0 and ẑ0,
respectively, satisfies a system similar to (3.31), (3.31) with inhomogeneities propor-
tional to z0 − ẑ0. With the properties of the nonlinearities from Lemma 3.7 it is
straightforward that

‖z − ẑ‖H1
ξ
, ‖w − ŵ‖H1

ξ
(L2

v) ≤ C|z0 − ẑ0| .(3.33)

For the corresponding solutions f and f̂ of (1.12), (3.30),

ρf (0) − ρf̂ (0) = ε2(z0 − ẑ0)ρΦ + ε3(ρw(0) − ρŵ(0))
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holds. The continuous embedding of C(R) in H1
ξ and (3.33) imply

|ρw(0) − ρŵ(0)| ≤ C|z0 − ẑ0| ,

and, thus, strict monotonicity (and therefore invertibility) of the map z0 �→ ρf (0) for
ε small enough. This in turn implies that the traveling wave can also be made locally
unique by prescribing the value of ρf (0) instead of z0. This argument can of course
be repeated with ρf (ξ0) for every ξ0 ∈ R instead of the origin.

Now assume that ρf is not strictly monotone. Then there are two ξ-values ξ0
and ξ0 + δ with arbitrarily small positive δ such that ρf (ξ0) = ρf (ξ0 + δ). Now

f̃(ξ, v) = f(ξ + δ, v) is a traveling wave with ρf̃ (ξ0) = ρf (ξ0) and f̃ arbitrarily close

to f by making δ small. By the uniqueness result f̃ ≡ f , and, consequently, f is
periodic, which is a contradiction to the far-field boundary conditions.

4. Local stability of small amplitude traveling waves. In this section we
prove dynamic stability of the small amplitude traveling waves constructed above.
As mentioned in the introduction, the techniques we employ are commonly used
for conservation laws regularized with diffusion terms. This motivates the following
scaling: we write (1.1) in the traveling wave variable ξ = (x− st)ε, and introduce the
parabolic scaling t → t/ε2, where ε is the amplitude of the wave. Then (1.1) reads

ε2∂tf + ε(v − s)∂ξf = M(ρf ) − f ,(4.1)

and we pose the same far-field boundary conditions as for the traveling wave:

f(t, ξ = ±∞, v) = M(ρ±, v) .

Let us denote by φ a traveling wave solution as constructed in Theorem 3.9. By
Lemma 3.10 its macroscopic profile is monotone, implying

∂ξ(a
′(ρφ)) ≤ 0 .(4.2)

Observe that formally the integral of ρf − ρφ is constant in t. This allows us to
choose φ, by shifting in the ξ-direction if necessary, such that∫

R

(ρf − ρφ) dξ = 0 .(4.3)

Condition (4.3) fixes the shift in ξ; we expect the solution f to approach this particular
φ as t → ∞.

Let us denote by G the deviation of f from φ, namely,

εG = f − φ .(4.4)

Then G satisfies the equation

ε∂tG + (v − s)∂ξG =
1

ε2
[M(ρφ + ερG) −M(ρφ)] − 1

ε
G .(4.5)

We recall that condition (4.3) allows us to deal with the macroscopic unknown

W =
∫ ξ

−∞ ρG dξ; see (1.20).
We decompose G into a macroscopic part and into a microscopic part by simply

using the natural macroscopic projection f → Fρf ; thus we write

G = ρF + εg, i.e., ρ := ρG .
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Analogously, we split (4.5) into its microscopic and macroscopic parts, i.e., we apply
the macroscopic projection, and its complementary microscopic projection, which is
in fact the operator −L. Application of the macroscopic projection and division by
F gives the equation

∂tρ +
1

ε
(a′(ρ−) − s)∂ξρ + ∂ξ

∫
(v − s)g dμ(v) = 0 ,(4.6)

and application of −L gives

ε2∂tg + (v − a′(ρ−))F∂ξρ− ε∂ξL((v − s)g) = R2[ρ] − g ,(4.7)

with

R2[ρ](t, ξ, v) =
1

ε2
[M(ρφ(ξ) + ερ(t, ξ), v) −M(ρφ(ξ), v) − ερ(t, ξ)F (v)] .(4.8)

Integrating (4.6) with respect to ξ gives, in terms of W =
∫ ξ

−∞ ρ(t, y) dy,

∂tW − σ∂ξW +

∫
(v − s)g dμ(v) = 0 .(4.9)

Using (4.7) we compute∫
(v − s)g dμ(v) =

∫
(v − s)R2[ρ] dμ(v) − ε2

∫
(v − s)∂tg dμ(v)

+ ε ∂ξ

∫
(v − s)L((v − s)g)dμ(v) −D0∂ξρ .(4.10)

Substituting (4.10) into (4.9) and setting

r2[ρ](t, ξ) :=

∫
(v − s)R2[ρ](t, ξ, v) dμ(v) ,(4.11)

we arrive at the integrated macroscopic equation

∂tW − σ∂ξW + r2[ρ] −D0∂
2
ξW = εS[g] ,(4.12)

with

S[g] = ∂ξ

∫
(v − s) (ε∂tg − L((v − s)∂ξg)) dμ(v) .(4.13)

Observe that (4.12) has the form of the perturbation equation for viscous shock profiles
with a microscopic perturbation on the right-hand side and the nonlinearity

r2[ρ] =
1

ε2
(a(ρφ + ερ) − a(ρφ) − ερa′(ρ−)) .(4.14)

For controlling the nonlinear terms, a uniform (in ε) bound on the L∞-norm of the
density ρ is needed. For the macroscopic equation without the microscopic perturba-
tion on the right-hand side, this is a consequence of the maximum principle. Here we
shall employ bounds in H1

ξ for the same purpose.
Assuming such a bound, we write R2[ρ] as

R2[ρ] = ρ

∫ 1

0

M ′(ρφ + ερη) −M ′(ρ−)

ε
dη .
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Then by differentiation with respect to ξ and by assumption (2.4),

‖R2[ρ]‖Hk
ξ
(L2

v) ≤ C‖ρ‖Hk
ξ

for k = 0, 1, 2 ,(4.15)

and, consequently, by (2.5),

‖r2[ρ]‖Hk
ξ
≤ C‖ρ‖Hk

ξ
for k = 0, 1, 2 ,(4.16)

where here and in the following the symbols C as well as Cj with various j denote
constants depending on ‖ρ‖L∞

ξ
but independent of ε.

As the next step we derive integral estimates as one would do for the purely
macroscopic case.

Lemma 4.1. Let W be a solution of (4.12) (for given g) and ρ = ∂ξW . Then the
following estimates hold:

1

2

d

dt
‖W‖2

ξ + (D0 − C0‖W‖L∞
ξ

)‖∂ξW‖2
ξ ≤ ε

∫ ∞

−∞
W S[g]dξ ,(4.17)

1

2

d

dt
‖∂k

ξW‖2
ξ +

D0

2
‖∂k+1

ξ W‖2
ξ − Ck‖ρ‖2

Hk−1
ξ

≤ ε

∫ ∞

−∞
∂k
ξW S[∂k

ξ g]dξ(4.18)

for k = 1, 2. The constants C0, C1, C2 depend on ‖ρ‖L∞
ξ

.

Proof. For proving (4.17), we test (4.12) with W . Let us look at the term con-
taining r2[ρ] by writing

r2[ρ] =
1

ε
(a′(ρφ) − a′(ρ−)) ρ +

1

2
a′′(ρ̃)ρ2 ,

with ρ̃ between ρφ and ρφ + ερ. Then we get∫
R

r2[ρ]Wdξ =
1

2ε

∫
R

(a′(ρφ) − a′(ρ−))∂ξ(W
2) dξ +

1

2

∫
R

a′′(ρ̃)(∂ξW )2W dξ

≥ − 1

2ε

∫
R

∂ξ(a
′(ρφ))W 2dξ − C0‖W‖L∞

ξ
‖∂ξW‖2

ξ .(4.19)

The first term on the right-hand side of (4.19) is positive by (4.2), completing the
proof of (4.17).

For k = 1, 2, the corresponding ξ-derivatives of (4.12) are tested with ∂k
ξW . As

already mentioned in the introduction, no positive term can be expected to arise from
the nonlinearity. Therefore we just estimate the corresponding terms using (4.16):∣∣∣∣

∫
R

∂k
ξ r2[ρ] ∂

k
ξWdξ

∣∣∣∣ ≤
∫

R

|∂k−1
ξ r2[ρ] ∂

k+1
ξ W |dξ ≤ Ck‖ρ‖2

Hk−1
ξ

+
D0

2
‖∂k+1

ξ W‖2
ξ ,(4.20)

completing the proof of (4.18).
Before deriving estimates for the microscopic contributions, we have to deal with

the difficulty that the operator S[g] describing the microscopic perturbation of the
macroscopic equation contains the time derivative ∂tg.

Lemma 4.2. Let W and g satisfy (4.9), and let the operator S be defined by
(4.13). Then for k = 0, 1, 2 the following holds:∫ ∞

−∞
∂k
ξW S[∂k

ξ g]dξ(4.21)

≤ ε
d

dt

∫ ∞

−∞
〈F∂k

ξW, (v − s)∂k
ξ g〉ξ,v + C(‖∂k+1

ξ W‖2
ξ + ‖∂k

ξ g‖2
ξ,v) .
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Proof. A straightforward computation, using the kth order derivative of (4.9),
gives ∫ ∞

−∞
∂k
ξW S[∂k

ξ g]dξ = ε
d

dt

∫ ∞

−∞
∂k
ξW

∫
(v − s)∂k

ξ gdμ(v) dξ

− εσ

∫ ∞

−∞
∂k+1
ξ W

∫
(v − s)∂k

ξ g dμ(v) dξ +

∫ ∞

−∞

(∫
(v − s)∂k

ξ g dμ(v)

)2

dξ

+

∫ ∞

−∞
∂k+1
ξ W

∫
(v − s)L((v − s)∂k

ξ g)dμ(v) dξ .

To estimate the last three terms, we use the Cauchy–Schwarz inequality and (2.5).

To get control of the microscopic part, we derive entropy estimates from the full
kinetic perturbation equation (4.5).

Lemma 4.3. Let G = ρF + εg be a solution of (4.5). Then, for k = 0, 1, 2,

d

dt

(
‖∂k

ξ ρ‖2
ξ + ε2‖∂k

ξ g‖2
ξ,v

)
+ ‖∂k

ξ g‖2
ξ,v ≤ C‖ρ‖2

Hk
ξ
.(4.22)

Proof. Writing the right-hand side of (4.5) as R2[ρ] − g and taking the scalar
product of its kth derivative with ∂k

ξG = ∂k
ξ ρF + ∂k

ξ g, we get

1

2

d

dt
‖∂k

ξG‖2
ξ,v + ‖∂k

ξ g‖2
ξ,v = 〈∂k

ξR2[ρ], ∂
k
ξ g〉ξ,v .

The result is a consequence of using ‖∂k
ξG‖2

ξ,v = ‖∂k
ξ ρ‖2

ξ + ε2‖∂k
ξ g‖2

ξ,v, and then
applying the Cauchy–Schwarz inequality, the Young inequality, and (4.15) to the
right-hand side.

Now we are prepared for proving our stability result for small kinetic shock pro-
files.

Theorem 4.4. Let the assumptions of Theorem 3.9 hold and let φ be a trav-
eling wave solution. Let f0(ξ, v) be an initial datum for (4.1) and let W0(ξ) =
1
ε

∫ ξ

−∞(ρf0(η)−ρφ(η))dη. Let f0−φ ∈ H2
ξ (L2

v) (implying that f0 satisfies the same far-

field conditions as φ) and W0 ∈ L2
ξ (implying W0(∞) =

∫∞
−∞(ρf0

(ξ) − ρφ(ξ))dξ = 0).
Let

‖W0‖L2
ξ

+
1

ε
‖f0 − φ‖H2

ξ
(L2

v) ≤ δ(4.23)

for δ small enough, but independent from ε. Then (4.1) subject to the initial condition
f(t = 0) = f0 has a unique global solution and

lim
t→∞

∫ ∞

t

‖f(s, ·, ·) − φ‖2
H2

ξ
(L2

v) ds = 0 .

Remark 4.5. The shortcomings of Theorem 4.4 are that it gives only local sta-
bility (i.e., the perturbations have to be small enough) of small amplitude traveling
waves. Also convergence as t → ∞ holds only in a very weak sense. The smallness
of the wave is the basic assumption of this work allowing a perturbative treatment
close to macroscopic equations. The other shortcomings are already present in the
underlying results for viscous shock profiles.
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Proof. The proof is based on the construction of a Lyapunov functional H, such
that both H and −dH/dt measure the size of the perturbation. However, it will be
impossible to estimate H in terms of −dH/dt, which is the reason why we do not
have a result on the time decay rate.

We start by defining a partial functional for each differentiation order k appearing
in Lemmas 4.1 and 4.3. By adding the corresponding inequality from Lemma 4.1 and
the product of εAk with the corresponding inequality from Lemma 4.3, we produce
an inequality for the time derivative of

Hk =
1

2
‖∂k

ξW‖2
L2

ξ
− ε2〈F∂k

ξW, (v − s)∂k
ξ g〉ξ,v + ε3Ak‖∂k

ξ g‖2
L2

ξ
(L2

v) + εAk‖∂k+1
ξ W‖2

L2
ξ

≥ κk(‖∂k
ξW‖2

L2
ξ

+ ε‖∂k+1
ξ W‖2

L2
ξ

+ ε3‖∂k
ξ g‖2

L2
ξ
(L2

v)) ,

where the last inequality holds with an ε-independent κk > 0 if Ak > 0 is chosen
independently of ε (but otherwise arbitrarily). With two more positive constants γ1

and γ2, we define the Lyapunov functional as H = H0 + γ1H1 + γ2H2 and observe
that it can be bounded from above and below by

‖W‖2
H2

ξ
+ ε‖∂3

ξW‖2
ξ + ε3‖g‖2

H2
ξ
(L2

v) .

With the aid of the Lemmas 4.1, 4.2, and 4.3, it is now straightforward to obtain an
inequality of the form

dH

dt
≤ −C(‖ρ‖L∞

ξ
)(1 − ‖W‖L∞

ξ
)(‖ρ‖2

H2
ξ

+ ε‖g‖2
H2

ξ
(L2

v)) ,(4.24)

with an ε-independent positive C(‖ρ‖L∞
ξ

). Since (by one-dimensional Sobolev embed-

ding) H controls the L∞
ξ -norms of W and ρ, the right-hand side is negative at t = 0

and remains so if H(0) is small enough. This in turn is guaranteed by assumption
(4.23). Note that the L2

ξ-norm of W (and, thus, H) is not controlled by the dissipation
term in (4.24), which is the reason that we cannot obtain a decay rate. The proof is
completed by integrating (4.24) with respect to t.
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RIGOROUS DERIVATION OF FÖPPL’S THEORY FOR CLAMPED
ELASTIC MEMBRANES LEADS TO RELAXATION∗

SERGIO CONTI† , FRANCESCO MAGGI† , AND STEFAN MÜLLER‡

Abstract. We consider the nonlinear elastic energy of a thin membrane whose boundary is
kept fixed, and assume that the energy per unit volume scales as hβ , with h the film thickness and
β ∈ (0, 4). We derive, by means of Γ convergence, a limiting theory for the scaled displacements,
which takes a form similar to the one proposed by Föppl in 1907. Our variational approach fully
incorporates the possibility of buckling already observed during the derivation of the reduced two-
dimensional theory. At variance with Föppl’s, our limiting model is lower semicontinuous and has
an energetics that vanishes on all contractions. Therefore buckling does not need to be explicitly
resolved when computing with the reduced theory. If forces normal to the membrane are included,
then our result predicts that the normal displacement scales as the cube root of the force. This
scaling depends crucially on the clamped boundary conditions. Indeed, if the boundary is left free,
then a much softer response is obtained, as was recently shown by Friesecke, James, and Müller
[Arch. Ration. Mech. Anal., 180 (2006), pp. 183–236].

Key words. Gamma convergence, thin-film elasticity, relaxation

AMS subject classifications. 74K15, 35J35, 49J45, 35B40, 74G65
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1. Introduction. Reduced theories for thin elastic bodies have been proposed
and used since the early days of the theory of elasticity, but only in the last decade
has it become possible to derive them rigorously from three-dimensional nonlinear
elasticity. The convergence criterion which has been used for these problems is Γ-
convergence (which is very closely related to convergence of minimizers), and the
different physical regimes are reflected by different scalings of the applied forces, and
hence of the elastic energy, and different topologies on the space of deformations
[17, 18, 13, 12, 22, 23, 10] (we refer to [10] for a review of the recent mathematical
literature and of the mechanical context).

One key property of the elasticity of thin bodies is that tangential displacements
enter the strain to first order, but normal displacements only to second order (see
Figure 1.1). Therefore linear theories are not usable, as they would describe all normal
displacements as completely stress-free (soft). The first nonvanishing contribution of
normal displacements to strain is quadratic, and correspondingly the leading energy
contribution is of fourth order.

A generalization of the linear theory which incorporates the normal displacements
to leading order was proposed by Föppl [9]. In a variational language, and for the
special case of isotropic elastic moduli and zero Poisson’s ratio, his model corresponds
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Fig. 1.1. Consider a rod of unit length. If one endpoint is displaced tangentially by ε, the length
also changes by ε. If instead the endpoint is displaced by ε in the normal direction, then the length
changes only to order ε2.

to minimizing

1

2

∫
S

∣∣∇u + ∇uT + ∇v ⊗∇v
∣∣2 + fv dx′,(1.1)

subject to appropriate boundary conditions. Here S ⊂ R
2 represents the cross-section

of the membrane, u : S → R
2 the tangential displacement, v : S → R the normal

displacement, and f : S → R the applied normal force.
The functional (1.1) is not lower semicontinuous with respect to the weak

W 1,2(S,R2) × W 1,4(S,R) topology. Physically, a sheet subject to moderate com-
pression can relax its strain by forming fine-scale folds, which are not penalized by
the functional (1.1) since it does not contain any curvature term. (We note in passing
that even if bending energy is included compression is often still relaxed by fine-scale
oscillations; see, e.g., [3, 7].)

It is therefore to be expected that a variational derivation will not lead to the
functional (1.1), but to its relaxation. Indeed, we show here that under suitable scal-
ing assumptions and with clamped boundary conditions three-dimensional elasticity
reduces, in the sense of Γ-convergence, to a functional corresponding to the relaxation
of (1.1), which, for the same special case, takes the form

1

2

∫
S

Wrel

(
∇u + (∇u)T + ∇v ⊗∇v

)
dx′ + fv dx′,(1.2)

where Wrel(F ) = (λ+
1 (F ))2 + (λ+

2 (F ))2, λ1(F ) and λ2(F ) are the eigenvalues of the
symmetric matrix F , and λ+ = max{λ, 0}.

Our result, as will be explained in greater detail in the next section, has important
consequences for the scaling behavior of the response of clamped membranes. Consider
indeed application of a force fh(x′) = hαf(x′) normal to the membrane. If α ∈ (0, 3),
then our convergence result applied for β = 4α/3 implies that the three-dimensional
variational problems converge as h → 0 to the relaxed problem I0(u, v) +

∫
S
fvdx′,

for I0 as in (1.2). The tangential displacements scale as hβ/2 = h2α/3, and the normal
one as hβ/4 = hα/3.

For α > 3 one obtains a different limiting theory, which is quadratic and involves
only bending energy (see, e.g., [10]). The limit functional takes the form

∫
|∇2v|2+fv.

In this regime the out-of-plane displacement is linear in the applied force and thus
scales like hα.
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Understanding the crossover from the linear to the sublinear scaling, which had
also been observed experimentally, was an important motivation for the work of Föppl
and von Kármán [27]. Indeed von Kármán points out that his theory interpolates be-
tween the linear (pure bending) theory and Föppl’s theory [27, p. 350].1 This crossover
was analyzed quantitatively by Neubert and Sommer [20] and Way [28], finding good
quantitative agreement with von Kármán’s theory. Extensive experimental tests in
the nonlinear regime appropriate to Föppl’s theory were performed by Head and
Sechler [14], finding very good agreement between Föppl’s theory and the measured
deflections with applied pressures varying over four orders of magnitude. While the
von Kármán equations have received a lot of attention and there are several deriva-
tions available (with asymptotic expansions [5], with the implicit function theorem
[19], and with Γ-convergence [10, 11]), we are not aware of any derivation of Föppl’s
geometrically linear membrane theory.

The scaling of the force appropriate for the present result is different than the one
used in the derivation of the theory which includes bending [10]. Roughly speaking,
one can say that the presence of the boundary conditions makes the membrane stiffer.
In parallel, this additional stiffness of the membrane term makes the bending term
irrelevant in the present scaling. The crucial difference between the present result
and the hierarchy of models derived by Γ-convergence in [10] resides in the boundary
conditions. In [10] natural boundary conditions are used, and as a consequence a
variety of deformations y : S → R

3 are admissible which have zero membrane energy
(isometric immersions, or developable maps). This leads to a rather soft response,
dominated by the bending term. Here the boundary conditions rule out all nontrivial
deformations with zero membrane energy, and as a consequence the response is much
stiffer. The crucial dependence of the behavior on boundary conditions and in par-
ticular on the availability of (infinitesimally) isometric deformations was emphasized
by Sanchez-Palencia [24]. In his terminology our situation corresponds to the case of
ill-inhibited flexion, where the approach based on the spectral method is bound to
fail. Our variational approach identifies the appropriate limiting theory, and shows
that in this nonlinear regime the deformation scales as the cube root of the applied
force.

Notation. The vectors e1, e2, and e3 form an orthonormal basis of R
3, and R

2 is
the space generated by e1 and e2. To every element x = x1e1 + x2e2 + x3e3 ∈ R

3 we
associate x′ := x1e1 + x2e2 ∈ R

2. Thus x = x′ + x3e3.

The space of tensors generated by {ei ⊗ ej}i,j=1,2,3 is denoted by R
3×3, and

R
2×2 is the subspace of R

3×3 generated by the tensors {ei ⊗ ej}i,j=1,2. To every
F =

∑
i,j=1,2,3 Fij ei ⊗ ej ∈ R

3×3 we associate F ′ :=
∑

i,j=1,2 Fij ei ⊗ ej ∈ R
2×2. By

R
n×n
sym we denote the space of symmetric matrices, and by R

n×n
+ the subsets of positive

semidefinite symmetric ones (i.e., {F ∈ R
n×n
sym : F ≥ 0}). Finally Idn is the identity

matrix in R
n×n. For scalar functions, we write for brevity W 1,2

0 (S) = W 1,2
0 (S,R).

2. The relaxed Föppl functional. We consider the nonlinear elastic energy
of a thin three-dimensional body Ωh := S × (−h/2, h/2), where S ⊂ R

2 is the cross
section and h > 0 the (small) thickness. The deformation is a map wh ∈ W 1,2(Ωh,R

3),

1“In dieser Hinsicht liegt die wirkliche Platte zwischen den beiden Grenzfällen der vollkommen
steifen Platte nach Gl. (27) und der vollkommen biegsamen Platte, deren Gleichungen sich aus dem
System (29) mit D = 0 ergeben.” Translation: In this regard the real plate lies in between the two
limiting cases of the completely stiff plate according to Eq. (27) and the completely flexible plate,
whose equations are obtained from the system (29) [i.e., the vK equations] with D = 0.
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and its elastic energy per unit thickness is

E(wh,Ωh) :=
1

h

∫
Ωh

W (∇wh(x))dx.

By general arguments it suffices to prove Γ-convergence without external forces [8].
The stored energy function W is assumed to satisfy the following:

(W1) W : R
3×3 → [0,∞] is a Borel measurable function of class C2 in an open

neighborhood of SO(3).
(W2) W (RF ) = W (F ) for every R ∈ SO(3) and every F ∈ R

3×3; furthermore,
W (Id3) = 0.

(W3) W (F ) ≥ C dist2(F, SO(3)) for every F ∈ R
3×3.

We study the asymptotic behavior as h → 0 of the minimization problems

inf

{
E(wh,Ωh)

hβ
: wh ∈ W 1,2(Ωh,R

3), wh(x) = x on ∂S × (−h/2, h/2)

}

in the range β ∈ (0, 4), by means of Γ-convergence theory.
In order to define an appropriate convergence criterion for a sequence of defor-

mations wh, which are all defined on different domains, we rescale (following stan-
dard practice) to a unique domain. Precisely, for each wh ∈ W 1,2(Ωh,R

3) we define
yh ∈ W 1,2(Ω1,R

3) by yh(x) = wh(x′ + hx3e3). Then

Eh(wh,Ωh) =

∫
Ω1

W (∇hyh(x))dx,

where ∇h is the operator ∇h := ∇′ + (1/h)∂3 ⊗ e3, i.e.,

∇hy(x) = ∂1y(x) ⊗ e1 + ∂2y(x) ⊗ e2 +
1

h
∂3y(x) ⊗ e3 .

In terms of the rescaled deformations, and including the constraint given by the
boundary conditions, our problem corresponds to minimizing the functional Ih :
W 1,2(Ω1,R

3) → [0,∞] given by

Ih(y) :=

⎧⎨
⎩

∫
Ω1

W (∇hy(x))dx if y(x) = x′ + hx3e3 for x ∈ ∂S × (− 1
2 ,

1
2 ),

+∞ else.

Due to the boundary conditions and to the energy regime under consideration, the
behavior of a low energy sequence yh will be understood by considering the scaled
displacements

uh(x′) :=
1

hβ/2

∫ 1

0

(yh(x) − x)′ dx3,(2.1)

vh(x′) :=
1

hβ/4

∫ 1

0

(yh(x) − hx) · e3 dx3.(2.2)

Note that for every h we have uh ∈ W 1,2
0 (S,R2) and vh ∈ W 1,2

0 (S). However, for a
sequence yh such that h−βIh(yh) stays bounded, we shall prove that, up to extracting
subsequences, (uh, vh) is weakly∗ convergent only in the larger space BD(S)×W 1,2

0 (S)
(compare with part I of Theorem 2.1 below). We recall that BD(S) denotes the space



FÖPPL’S THEORY FOR CLAMPED ELASTIC MEMBRANES 661

of the deformations u ∈ L1(S,R2) such that the symmetric part of the distributional
gradient D′u is a Radon measure on S, namely

symD′u ∈ M(S,R2×2
sym )

(the symbol M is used for spaces of Radon measures). The limit of the in-plane
displacements uh will take values in the smaller space

X(S) := {u ∈ BD(S) : ∃M ∈ M(R2,R2×2
+ ) s.t. symD′u + M ∈ L1(R2,R2×2)},

(2.3)

where u := u in S and u := 0 in R
2 \ S. This corresponds to requiring that the

symmetrized distributional derivative is the sum of an L1 term and a negative def-
inite measure, singular with respect to Lebesgue measure. This sign condition does
not bring any additional regularity, as X(S) still contains elements that are not in
BV (S,R2). The formulation of (2.3) in terms of the extension ū corresponds to a
sign condition on the boundary values of u (in the sense of inner traces). Precisely,
functions u ∈ X(S) obey tr (u) = λνS , where λ ≥ 0 and νS is the outer normal. The
structure of X(S) is discussed in more detail in the appendix.

The main result of this paper is that for all β ∈ (0, 4), as h → 0 the functionals
h−βIh converge (in the sense of Γ-convergence) to the limit functional I0 : X(S) ×
W 1,2

0 (S) → [0,∞], defined as

I0(u, v) := inf

{
1

2

∫
S

Q2

(
(symD′u + M)(x′) +

∇′v(x′) ⊗∇′v(x′)

2

)
dx′ :

M ∈ M(R2,R2×2
+ ), symD′u + M ∈ L1(R2,R2×2

+ )

}
.

Here Q2 : R
2×2 → [0,∞) is the quadratic form

Q2(A) := min
{
Q3(symA + sym (a⊗ e3)) : a ∈ R

3
}
,

and Q3 : R
3×3 → [0,∞) is the Hessian of the energy at the identity, i.e.,

Q3(F ) := ∇2W (Id3)[F, F ].

By (W3) the quadratic forms Q2 and Q3 are positive definite on symmetric matrices.
If u ∈ W 1,1(S,R2) and I0(u, v) < ∞, as one can see, the above expression for I0
reduces to

I0(u, v) =
1

2

∫
S

WFö(∇′u(x′),∇′v(x′))dx′,(2.4)

where WFö : R
2×2 × R

2 → [0,∞) is defined by

WFö(A, b) := min

{
Q2

(
symA +

b⊗ b

2
+ M

)
: M = MT , M ≥ 0

}
.

We notice that WFö is a convex function; see Lemma A.2 in the appendix. In the
special case mentioned in the introduction, which corresponds to Q3(F ) = |F |2, we get
Q2(A) = |A|2, and WFö(A, b) coincides, up to a normalization factor, with Wrel(A +
b⊗ b) as given after (1.2).
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The minimization over positive-definite matrices entering the definition of WFö

corresponds to the relaxation of compression by means of oscillations, and implies
that WFö vanishes on all contractions. This minimization was not present in the
original theory by Föppl (i.e., he used W̃Fö = Q2(symA + b ⊗ b/2)). This difference
is the geometrically linear analogue of the difference between the membrane theory
rigorously derived by Le Dret and Raoult [17, 18] and those that had been heuristically
proposed before.

We now give a precise statement of our convergence result.
Theorem 2.1. Let S ∈ R

2 be a bounded, strictly star-shaped, Lipschitz domain,
and let W satisfy (W1), (W2), (W3). Then for every β ∈ (0, 4) the functionals h−βIh
Γ-converge (as h → 0) to the relaxed Föppl functional I0. More precisely we have the
following:

I. Compactness. For every sequence h → 0 and every yh such that

lim sup
h→0

h−βIh(yh) < ∞,

the sequences (uh, vh) defined by (2.1)–(2.2) have a subsequence such that

uh ⇀u weakly in L2(S,R2),

sym∇′uh
∗
⇀ symD′u weakly* in M(S,R2×2),

vh ⇀v weakly in W 1,2
0 (S,R2)

for some u ∈ X(S) and v ∈ W 1,2
0 (S).

II. Lower bound. Under the same assumptions, and along the same subsequence,

lim inf
h→0

Ih(yh)

hβ
≥ I0(u, v).

III. Upper bound. For every pair of functions u ∈ X(S) and v ∈ W 1,2
0 (S) and

every sequence h → 0 there exists a sequence of functions yh ∈ C∞(Ω1,R
3) with

yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2) and such that the pair (uh, vh) ∈
C∞

0 (S,R2) × C∞
0 (S) defined via (2.1)–(2.2) converges to (u, v) as above, and

lim
h→0

Ih(yh)

hβ
= I0(u, v).

By strictly star-shaped we mean that there is a point x ∈ S such that for each
y ∈ ∂S the open segment (x, y) is contained in S. Parts I and II of the theorem hold
for generic bounded Lipschitz domains.

We recall that such a Γ-convergence result implies convergence of minimizers, in
the sense that Theorem 2.1 implies that the set of minima of I0 coincides with the set
of accumulation points of asymptotically minimizing sequences for h−βIh. Explicitly,
(u, v) is a minimizer of I0 if and only if there is a sequence yh, converging to (u, v) as
above, such that h−β [Ih(yh) − inf Ih] → 0.

Further, the same holds if a continuous perturbation, such as external forces,
is included. In the relevant case of normal forces, this means that the sequence of
functionals

h−β

[
Ih(yh) +

∫
Ω1

fh(x′) (yh(x) − hx) · e3dx

]
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Γ-converges to

I0(u, v) +

∫
S

f(x′)v(x′)dx′,

provided that h3β/4fh(x′) converges to f in L2(S).
We remark that the range of scalings covered by the present result (β ∈ (0, 4)) is

much broader than the one covered by the corresponding Γ-convergence results ob-
tained without clamped boundary conditions. Indeed, without boundary conditions,
different Γ-limits for h−βIh have been determined for β ∈ (0, 5/3), β = 2, β ∈ (2, 4)
(no result is yet known for β ∈ [5/3, 2)). The two extreme cases β = 0 and β = 4 are
special both in the presence or in the absence of clamped boundary conditions. We
refer to [10] for a more complete presentation of these different regimes.

3. Proof of Theorem 2.1. We prove the three parts in sequence. We start
from the argument for the compactness part, which is more specific to this situation
where the energy has very little coercivity and different growth conditions in different
variables. The form (1.1) shows that in this scaling regime one cannot expect to
have a local coercivity. Compactness is gained by means of the boundary conditions.
Indeed, the boundary values imply that ∇uh has a zero average; hence the integral of
|∇vh|2 is controlled by the energy. This gives control of ∇vh in L2, but of sym∇uh

only in L1.
The lower bound is obtained by a standard argument exploiting the form of W

close to the minimum, again with some subtleties arising from the weakness of the
topologies.

Finally, in the upper bound an explicit construction is needed, which character-
izes the folds which are used to reduce the energy of compressive deformations. In a
first step we reduce to smooth displacements (u, v) with compact support, using the
star-shapedness of S and the convexity of WFö. Then we provide a construction which
reverses the relaxation. This is based on the explicit definition of oscillatory sequences
which reduce the energy of compressive deformations. From the viewpoint of non-
linear elasticity the typical construction can be seen as a laminate between isometric
deformations, whose average is, in general, a short deformation, i.e., a deformation
whose gradient lies in the convex hull of the set of isometries O(2, 3).

Proof.
Part I: Compactness. We have a family of deformations yh such that

yh(x) = x′ + hx3e3 ∀x ∈ ∂S × (−1/2, 1/2);(3.1) ∫
Ω1

W (∇hyh(x))dx ≤ Chβ .(3.2)

We now introduce new functions which characterize the deviation of the elastic
deformation yh from the identity x′ + hx3e3. Since we are dealing with thin sheets
it is natural to separate the tangential and the normal displacement. Therefore we
consider Uh ∈ W 1,2(Ω1,R

2) and Vh ∈ W 1,2(Ω1) defined by

yh(x) = x′ + hx3e3 + Uh(x) + Vh(x)e3.

Equivalently,

Uh(x) := (yh(x) − x)′ , Vh(x) := (yh(x) − hx) · e3.
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The gradients are related by

∇hyh(x) = Id3 + ∇′Uh(x) + e3 ⊗∇′Vh(x) +
1

h
(∂3Uh(x) + ∂3Vh(x)e3) ⊗ e3.

The tangential nonlinear strain takes the form

[
(∇hyh)T∇hyh − Id3

]′
= 2sym∇′Uh + (∇′Uh)T (∇′Uh) + ∇′Vh ⊗∇′Vh(3.3)

(recall that F ′ denotes projection of F onto R
2×2, and that (Id3 + F )T (Id3 + F ) =

Id3 + 2symF + FTF ).
Integrating (3.3) over x′ ∈ S the first term cancels, since

∫
S
∇′U(x)dx′ = 0 by

(3.1). Taking the trace and integrating over x3 ∈ (−1/2, 1/2) leads to∫
Ω1

|∇′Uh(x)|2 + |∇′Vh(x)|2dx = Tr

∫
Ω1

[
(∇hyh)T∇hyh − Id3

]′
dx ≤ Chβ/2.(3.4)

In the last step we used |FTF − Id| ≤ Cdist(F, SO(3)) + Cdist2(F, SO(3)), (W3)
and (3.2). Plugging this information back into (3.3) gives an analogous bound for
sym∇′Uh in L1(Ω1; R

2×2
sym ). Summarizing we have

∫
Ω1

|sym∇′Uh(x)| + |∇′Uh(x)|2 + |∇′Vh(x)|2dx ≤ Chβ/2.(3.5)

Therefore it is natural to rescale the tangential displacement Uh by hβ/2, and the
normal one Vh by hβ/4.

Taking averages over x3, we define the rescaled displacements uh ∈ W 1,2
0 (S,R2)

and vh ∈ W 1,2
0 (S) by

uh(x′) :=
1

hβ/2

∫ 1/2

−1/2

Uh(x′, x3)dx3, vh(x′) :=
1

hβ/4

∫ 1/2

−1/2

Vh(x′, x3)dx3.

This definition is equivalent to (2.1) and (2.2) above.
By (3.5) the sequence ∇′vh is bounded in L2(S,R2); hence there is a subsequence

such that

vh ⇀v weakly in W 1,2
0 (S).(3.6)

By (3.5) the sequence sym∇′uh is bounded in L1(S,R2×2
sym ), and since uh ∈ W 1,2

0

we can apply the Poincaré–Korn inequality [25] (see also [15, 16] and [26, sect. II.1])
to find

‖uh‖L2(S,R2) ≤ C‖sym∇′uh‖L1(S,R2×2
sym ) ≤ C.

In particular there is a subsequence and u ∈ L2 such that

uh ⇀u weakly in L2(S,R2) .(3.7)

Further, ∇′uh converges to D′u in the sense of distributions, and by (3.5)

sym∇′uh(x′)dx′ ∗
⇀ symD′u weakly* in M(S,R2×2

sym ) .(3.8)
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This is the compactness entailed in the functionals under considerations. We now
use this information to obtain a lower bound that in turn will also allow us to prove
that u ∈ X(S).

Part II: Lower bound. The first part of the argument is along the lines of [12],
and in a sense it constitutes the “generic” lower bound argument used in the regime
Ih(yh) → 0, i.e., for ∇hyh close to SO(3). In this range it is natural to “normalize”
the deformation gradients ∇hyh in order to use the structure of W near SO(3). This
amounts to considering a field of rotations Rh : Ω1 → SO(3) such that

|∇hyh(x) −Rh(x)| = dist(∇hyh(x), SO(3)).

The function Rh can be chosen to be measurable (see Lemma A.6 in the appendix),
and hence in L∞(Ω1,R

3×3). We also note (see Lemma A.1 in the appendix) that

Rh(x)T∇hyh(x) ∈ R
3×3
sym .

Consider now

Gh :=
RT

h∇hyh − Id3

hβ/2
.(3.9)

Since |Gh| = dist(∇hyh, SO(3))/hβ/2, from (W3) and (3.2) we get that Gh is uni-
formly bounded in L2, and taking a subsequence,

Gh ⇀G weakly in L2(Ω1,R
3×3).

We now use Taylor’s formula to obtain a lower bound in terms of the second
derivatives of W at the identity. Precisely, by (W1) and (W2) there is ρ : R+ → R

such that limt→0 ρ(t)/t
2 = 0 and

W (∇hyh) = W (Id3 + RT
h∇hyh − Id3)

≥ 1

2
Q3(R

T
h∇hyh − Id3) − ρ

(
|RT

h∇hyh − Id3|
)
.

It is convenient to consider separately the part of the domain where ∇hyh is close to
a rotation, which is large, and the small exceptional set. To do this, let

ωh = {x ∈ Ω1 : dist(∇hyh(x), SO(3)) ≤ hβ/4}.

Let χh be the characteristic function of ωh. By (W3) and (3.2) we get |ωh| → |Ω1|.
Restricting the integration to ωh we get

Ih(yh)

hβ
≥ 1

2

∫
Ω1

χh(x)Q3

(
Rh(x)T∇hyh(x) − Id3

hβ/2

)
dx(3.10)

− 1

hβ

∫
Ω1

χh(x)ρ (dist(∇hyh(x), SO(3))) dx.

The second term goes to zero as h → 0, for it is equal to the integral of

χh ρ (dist(∇hyh, SO(3)))

dist2(∇hyh, SO(3))
· dist2(∇hyh, SO(3))

hβ
.

By the definition of ωh the first fraction converges uniformly to zero as h → 0, at the
same time the second one is uniformly bounded in L1 by (3.2).



666 SERGIO CONTI, FRANCESCO MAGGI, AND STEFAN MÜLLER

As χh(x) ∈ {0, 1} we also have χhQ3(Gh) = Q3(χhGh), and since χhGh ⇀G
weakly in L2(Ω1,R

3×3) we easily conclude from (3.10) that

lim inf
h→0

Ih(yh)

hβ
≥ 1

2

∫
Ω1

Q3(G(x))dx.

Note that G is symmetric, as was Gh.
In order to extract further information on G it is useful to express it as a limit of

a sequence not involving Rh. Since ∇hyh = Rh(Id3 + hβ/2Gh) we get

(∇hyh)T (∇hyh) = Id3 + 2hβ/2Gh + hβGT
hGh

and thus

Gh − (∇hyh)T (∇hyh) − Id3

2hβ/2
= −hβ/2

2
GT

hGh → 0 strongly in L1(Ω1,R
3×3).

(3.11)

In particular

(∇hyh)T (∇hyh) − Id3

2hβ/2
⇀G weakly in L1(Ω1,R

3×3).(3.12)

As G(x) is symmetric we have Q3(G(x)) ≥ Q2(G(x)′). Furthermore, as Q2 is
convex, we can apply Jensen’s inequality in the x3 direction and find

lim inf
h→0

Ih(yh)

hβ
≥ 1

2

∫
S

Q2(A(x′))dx′,

where

A(x′) =

∫ 1/2

−1/2

G(x′ + x3e3)
′dx3 ∀x′ ∈ S .

It remains to relate A to u and v. To do this, we consider the integral over
x3 ∈ (−1/2, 1/2) of the nonlinear strain,

Ah(x′) :=

∫ 1/2

−1/2

[
(∇hyh)T (∇hyh) − Id3

]′
2hβ/2

dx3.

By (3.12) we have

Ah ⇀A weakly in L1(S,R2×2) .(3.13)

At the same time, dividing (3.3) by 2hβ/2 and integrating over x3 gives

Ah(x′) =
1

hβ/2

∫ 1/2

−1/2

sym∇′Uh(x) +
∇′Vh(x) ⊗∇′Vh(x)

2
+

∇′Uh(x)T∇′Uh(x)

2
dx3.

The first term equals sym∇′uh(x′), and the other two can be bounded via Jensen’s
inequality, leading to

Ah(x′) ≥ sym∇′uh(x′) +
∇′vh(x′) ⊗∇′vh(x′)

2
+ hβ/2∇′uh(x′)T∇′uh(x′).



FÖPPL’S THEORY FOR CLAMPED ELASTIC MEMBRANES 667

As vh is bounded in W 1,2(S) we have that ∇vh⊗∇vh converges weakly* to a measure
μ ∈ M(S,R2×2), and by a standard lower semicontinuity argument μ ≥ ∇v ⊗ ∇v.
Using (3.8) and the fact that the third term on the right-hand side is positive semidef-
inite, we conclude that

A(x′) dx′ ≥ symD′u +
∇′v(x′) ⊗∇′v(x′)

2
dx′.(3.14)

The difference of the two sides of this inequality defines a Radon measure on S with
values in R

2×2
+ that we denote by M . In particular symD′u + M is absolutely con-

tinuous with respect to the Lebesgue measure as

symD′u + M =

{
A(x′) − ∇′v(x′) ⊗∇′v(x′)

2

}
dx′.

Finally,

lim inf
h→0

Ih(yh)

hβ
≥ 1

2
inf

{∫
S

Q2

(
(symD′u + M)(x′) +

∇′v(x′) ⊗∇′v(x′)

2

)
dx′

}
,

where the infimum runs over all M ∈ M(S,R2×2
+ ) such that symD′u+M ∈ L1(S,R2×2

sym ).
Finally, we repeat the argument for yh(x) := yh(x) if x ∈ S × (−h/2, h/2),

yh(x) := x′ + hx3e3 if x ∈ (R2 \ S) × (−h/2, h/2). As W (Id3) = 0 and Q3(0) =
Q2(0) = 0 the above argument can be repeated without any change, and we find that
there exists a measure M ∈ M(R2,R2×2

+ ) such that symD′u + M ∈ L1(R2,R2×2
sym ).

Thus u ∈ X(S).
Part III: Upper bound. We are given u ∈ X(S) and v ∈ W 1,2

0 (S) with I0(u, v) < ∞
(otherwise there is nothing to prove), and we have to construct a recovery sequence.
We shall now use the star-shapedness of S to show that it suffices to consider u and
v with compact support in S; then we use convexity of WFö to show that it suffices
to consider smooth u and v, and finally we provide an explicit construction.

After a translation we can assume that S is star-shaped with respect to the origin.
Fix ε > 0 and consider the functions

uε(x
′) =

1

1 + ε
ū((1 + ε)x′) , vε(x

′) =
1

1 + ε
v̄((1 + ε)x′) .

As above, we denote by a bar extension by zero outside S, so that, e.g., ū = u on S
and ū = 0 in R

2 \ S. It is clear that uε and vε are supported on S/(1 + ε) ⊂⊂ S. At
the same time uε ∈ X(S) (as u ∈ X(S)), vε ∈ W 1,2

0 (S), and, as ε → 0,

(uε, vε)⇀(u, v) weakly∗ in X(S) ×W 1,2(S),

(i.e., in the convergence stated in Part I). Now we remark that

I0(uε, vε) ≤ (1 + ε)−2I0(u, v).(3.15)

This follows from a change of variables, once one has proven that ∇′vε(x
′) = ∇′v((1+

ε)x′) and that for any M ∈ M(R2,R2×2
+ ) such that symD′u+M ∈ L1(R2,R2×2

+ ) we

can find Mε ∈ M(R2,R2×2
+ ) such that

symD′uε + Mε = (symD′u + M)((1 + ε)x′)dx′.
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We now show how to construct Mε. Since

symD′uε =
1

(1 + ε)2

[
1

1 + ε
Id2#symD′u

]

(where # stands for the push-forward of measures, that is, f#μ(E) := μ(f−1(E))),
it suffices to choose

Mε :=
1

(1 + ε)2

[
1

1 + ε
Id2#M

]
.

This concludes the proof of (3.15). From now on we assume that (u, v) is supported
on S0 ⊂⊂ S.

To show that (u, v) can be assumed to be smooth, fix δ < dist(S0, ∂S), and set

uδ(x
′) =

∫
S0

ρδ(x
′ − y′)u(y′)dy′ , vδ(x

′) =

∫
S0

ρδ(x
′ − y′)v(y′)dy′,

where ρδ is a standard mollification kernel on the scale δ, i.e., ρδ(x
′) = δ−2ρ(x′/δ)

for ρ ∈ C∞
c (B2),

∫
R2 ρ = 1. Then automatically (uδ, vδ) ∈ C∞

c (S,R2) × C∞
c (S), and

as δ → 0 we have (uδ, vδ) → (u, v) weakly in X(S) × W 1,2(S). It remains to show
that lim supδ→0 I0(uδ, vδ) ≤ I0(u, v). To see this let M ∈ M(R2,R2×2

+ ) be such that
f = symD′u + M ∈ L1(R2,R2×2

sym ), and

I0(u, v) ≤
1

2

∫
S

Q2

(
(symD′u + M)(x′) +

∇v(x′) ⊗∇v(x′)

2

)
dx′ + δ

(M and f will depend on δ). Then

∇′uδ(x
′) =

∫
S

ρδ(x
′ − y′)f(y′)dy′ −

∫
S

ρδ(x
′ − y′)dM(y′),

where the second integral takes values in the (convex) set R
2×2
+ . We now use that

WFö is nondecreasing in its (matrix-valued) first argument and that it is convex to
obtain ∫

S

WFö(∇′uδ,∇′vδ)dx
′ ≤

∫
S

WFö(ρδ ∗ f, ρδ ∗ ∇′v)dx′

≤
∫
S

WFö(f,∇′v)dx′.

On the smooth functions (uδ, vδ) we can use (2.4), and since WFö ≤ Q2, we get

I0(uδ, vδ) ≤ I0(u, v) + δ.

It remains to prove the thesis for the case u ∈ C∞
c (S,R2), v ∈ C∞

c (S). We first
show that for every j ∈ N we can find Mj ∈ L∞(S,R2×2

+ ) and aj ∈ C∞
c (S,R3) such

that

1

2

∫
S

Q3

(
sym (∇′u + aj ⊗ e3) +

∇′v ⊗∇′v

2
+ Mj

)
dx′ ≤ I0(u, v) +

C

j
,(3.16)

with Mj taking only a finite number of values, each of them on a Lipschitz subset
of S. To see this, consider a subdivision of S into small squares, say of side lj . The
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oscillation of the smooth fields ∇u and ∇v on each square is uniformly small; hence—
provided lj is small enough—on each square we can pick one value of a and one value
of M so that

Q3

(
sym (∇′u + aj ⊗ e3) +

∇′v ⊗∇′v

2
+ Mj

)
≤ WFö(∇′u,∇′v) +

1

j
.

Further, on the squares intersecting ∂S we can choose a = 0, since u and v have zero
boundary values. This defines piecewise constant fields aj and Mj with the required
property. Smoothing aj concludes the proof of (3.16).

Claim. Given u ∈ C∞
0 (S,R2), v ∈ C∞

0 (S), a ∈ C∞
0 (S,R3), and M ∈ L∞(S,R2×2

+ ),
taking finitely many values on Lipschitz subsets of S, there exists a sequence yh ∈
C∞(Ω1,R

3) such that yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2); the functions uh

and vh defined as in (2.1) and (2.2) satisfy (3.6), (3.7), and (3.8); the scaled nonlinear
strain

Fh :=
(∇hyh)T (∇hyh) − Id3

2hβ/2

converges to

Fh → sym (∇′u + a⊗ e3) +
∇′v ⊗∇′v

2
+ M strongly in L2(Ω1,R

3×3);(3.17)

and such that there is a field of rotations Rh ∈ L∞(Ω1, SO(3)) such that

‖RT
h∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/2(3.18)

for some constant C which does not depend on h.
Assume for the moment that this can be done. By (W1) and (W2) we get

W (∇hyh) = W (RT
h∇hyh) =

1

2
Q3

(
RT

h∇hyh − Id3

)
+ o(|RT

h∇hyh − Id3|2),

so that by (3.18) it follows that

lim
h→0

1

hβ

∫
Ω1

W (∇hyh)dx = lim
h→0

1

2

∫
Ω1

Q3 (Gh) dx < ∞,

where Gh := h−β/2(RT
h∇hyh−Id3). By (3.18) Gh is bounded in L∞. Then Fh−Gh =

2−1hβ/2GT
hGh (compare with (3.11)) converges strongly to zero in L∞, while by (3.17)

Fh itself has a strong limit in L2. Therefore Gh converges strongly in L2 to the same
limit as Fh, and this limit is

G(x) := sym (∇′u(x′) + a(x′) ⊗ e3) +
∇′v(x′) ⊗∇′v(x′)

2
+ M(x′) .

This expression does not depend on x3, and recalling (3.16) we get

lim
h→0

1

hβ

∫
Ω1

W (∇hyh)dx =

∫
Ω1

Q3 (G(x)) dx =

∫
S

Q3 (G(x′)) dx′ = I0(u, v) +
C

j
,

which is the thesis.
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Now we prove the claim. Let us define

yh(x) := x′ + hx3e3 + hβ/2(u(x′) + ξh(x′)) + hβ/4(v(x′) + ϕh(x′))e3

+hx3

(
hβ/4bh(x′) + hβ/2sh(x′)e3 + hβ/2a(x′)

)
,

where bh ∈ C∞
0 (S,R2), sh ∈ C∞

0 (S), ξh ∈ C∞
0 (S,R2), and ϕh ∈ C∞

0 (S) have to
be chosen properly. The choice of these spaces ensures that the boundary condition
yh(x) = x′ + hx3e3 for x ∈ ∂S × (−1/2, 1/2) is satisfied. Further, we shall choose
all those functions to be uniformly Lipschitz (i.e., their gradients are bounded by a
constant which can depend on M , u, and v, but not on h).

The linear term in x3 cancels under integration over x3 ∈ (−1/2, 1/2); the se-
quences uh and vh defined via (2.1) and (2.2) satisfy

uh = u + ξh, vh = v + ϕh.

We shall choose ξh ∈ C∞
0 (S,R2) and ϕh ∈ C∞

0 (S) in such a way that

ξh ⇀ 0 weakly in W 1,2(S,R2),(3.19)

ϕh ⇀ 0 weakly in W 1,4(S),(3.20)

‖(∇′)2ϕh‖L∞(S,R2×2) ≤
C

εh
(3.21)

for a suitable sequence εh → 0 as h → 0. Note that (3.19) and (3.20) ensure the
convergence properties (3.6), (3.7), and (3.8).

Let us now note that we have

∇hyh = Id3 + hβ/4H1 + hβ/2H2 + h1+β/4H3 + h1+β/2H4,(3.22)

where

H1 := e3 ⊗∇′vh + bh ⊗ e3,

H2 := ∇′uh + a⊗ e3 + she3 ⊗ e3,

H3 := x3∇′bh,

H4 := x3(∇′sh + ∇′a).

Expanding the nonlinear strain (∇hyh)T (∇hyh) via the rule (Id3 + F )T (Id3 + F ) =
Id3 + 2symF + FTF we get

(∇hyh)T (∇hyh) − Id3 = 2hβ/4symH1 + hβ/2(2symH2 + HT
1 H1) + o(hβ/2)Jh

for a suitable tensor field Jh that we shall consider again later on. In order to obtain
a strain of order hβ/2 we need to render H1 antisymmetric, which can be done by
choosing

bh := −∇′vh.(3.23)

In this way we find

Fh = symH2 +
HT

1 H1

2
+

o(hβ/2)

2hβ/2
Jh

= sym (∇′uh + a⊗ e3) +

(
sh − |∇′vh|2

2

)
e3 ⊗ e3 +

∇′vh ⊗∇′vh
2

+
o(hβ/2)

2hβ/2
Jh.
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Since we are looking for (3.17) we choose

sh := −|∇′vh|2
2

,(3.24)

and then, in order to have (3.17), it remains to show that (i) ξh and ϕh can be chosen
in such a way that (3.19), (3.20) hold and

sym (∇′ξh + ∇′v ⊗∇′ϕh) +
∇′ϕh ⊗∇′ϕh

2
→ M strongly in L2(S,R2×2);(3.25)

and that (ii) the resulting tensor field Jh satisfies

o(hβ/2)

hβ/2
Jh → 0 strongly in L2(S,R2×2).(3.26)

This can be done as follows. Let us define

ξh = ψh − ϕh∇′v

for some ψh ∈ W 1,∞
0 (S,R2) to be chosen later. Then we find

sym (∇′ξh + ∇′v ⊗∇′ϕh) +
∇′ϕh ⊗∇′ϕh

2

= sym∇′ψh +
∇′ϕh ⊗∇′ϕh

2
− ϕh(∇′)2v.

According to Lemma A.4 we can find ψh ∈ C∞
0 (S,R2) and ϕh ∈ C∞

0 (S) uniformly
Lipschitz and such that (3.20) and (3.21) hold (with an εh that we can choose arbi-
trarily, provided it goes to zero), with

sym∇′ψh +
∇′ϕh ⊗∇′ϕh

2
→ M

strongly in L2(S,R2×2) and ψh ⇀ 0 weakly in W 1,2
0 (S,R2). As a consequence the

resulting sequence ξh will satisfy (3.19), and also (3.25) will hold true. We now prove
that (3.26) is also true and (3.17) will be established. To this end let us note that,
with the above choices of bh, sh, ξh and ϕh, we have that, for every h,

‖H1‖L∞(S,R2×2) + ‖H2‖L∞(S,R2×2) ≤ C,

‖H3‖L∞(S,R2×2) + ‖H4‖L∞(S,R2×2) ≤ C(1 + ‖(∇′)2ϕh‖L∞(S,R2×2)).

Then

o(hβ/2)

hβ/2
|Jh| ≤ C

(
hβ/4 + h1−β/4|(∇′)2ϕh|

)
≤ C

(
hβ/4 +

h1−β/4

εh

)
.

Since we are working in the regime 0 < β < 4, it suffices to choose εh = h(1−β/4)/2.
In the end we prove (3.18). First of all let us note that for every F ∈ R

3×3 we
have

dist(F, SO(3)) ≤ |symF − Id3| + C|F − Id|2,
an inequality that reflects the fact that the tangent space of SO(3) at Id3 is the
space of antisymmetric matrices. Next we consider a measurable field Rh : S →
SO(3) such that dist(∇hyh, SO(3)) = |Rh − ∇hyh|. From (3.22) we deduce that
‖∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/4 (in particular Rh is uniquely defined) and that

‖sym∇hyh − Id3‖L∞(S,R3×3) ≤ Chβ/2, as symH1 = 0. Thus from the inequality we

pointed out above we have |Rh − ∇hyh| ≤ Chβ/2, from which (3.18) immediately
follows.
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4. Membranes with an applied normal force. The Γ-convergence result of
Theorem 2.1 permits one to study the behavior of minimizing sequences for the physi-
cally relevant case where external forces are included without any a priori assumption
on the scaling of the energy. The following discussion clarifies in particular that the
scaling of the energy is dictated by the scaling of the applied forces. Precisely, we
consider the extended functional

Fh(wh,Ωh) = E(wh,Ωh) − 1

h

∫
Ωh

fh(x′)(wh(x) − x) · e3 dx .(4.1)

Here and below wh ∈ Ah, where

Ah :=

{
w ∈ W 1,2(Ωh; R3) : w(x) = x on ∂S ×

(
−h

2
,
h

2

)}
.

The normal force fh is in H−1(S) (the dual space to H1
0 (S) := W 1,2

0 (S)).
For any h and any fh, one has Fh(Id,Ωh) = 0, where Id(x) = x is the identical

map. Hence the infimum of Fh is always less than or equal to zero, and if it equals
zero it is attained. Therefore we can construct sequences of almost-minimizers, i.e.,
sequences of deformations wh ∈ Ah such that

lim
h→0

Fh(wh,Ωh)

infAh
{Fh}

= 1 ,(4.2)

with the convention that 0/0 = 1, and t/0 = ∞ for t > 0. We are interested in
the behavior of such almost-minimizers of Fh for small h, assuming that the external
forces fh scale as hα.

Corollary 4.1. Let fh ∈ H−1(S) be such that

1

hα
fh → f in H−1(S)(4.3)

for some f ∈ H−1(S) and some α ∈ (0, 3). Let wh ∈ Ah be a sequence of almost-
minimizers of Fh, in the sense of (4.2). Then there exists a constant C (depending
on the sequences {fh} and {wh}) such that, for β = 4α/3,

−Chβ ≤ inf
Ah

{Fh} ≤ 0 .(4.4)

Moreover, there is a subsequence which converges to a limit (ū, v̄) in the sense specified
in Theorem 2.1. The limit (ū, v̄) minimizes the functional

I0(u, v) −
∫
S

f v dx′,(4.5)

and

lim
h→0

1

hβ
inf
Ah

{Fh} = lim
h→0

1

hβ
Fh(wh,Ωh) = I0(ū, v̄) −

∫
S

f v̄ dx′.(4.6)

Finally, let (ũ, ṽ) be any minimizer of I0(u, v) −
∫
S
fvdx′. Then there is a sequence

wh ∈ Ah, converging in the sense specified in Theorem 2.1 to (ũ, ṽ), which fulfills
(4.2) and (4.6).
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Proof. We define

Eh := E(wh,Ωh) =
1

h

∫
Ωh

W (∇wh(x))dx =

∫
Ω1

W (∇yyh(x))dx(4.7)

and first claim that Eh → 0. Indeed, for sufficiently small h, one has ‖fh‖H−1 ≤
hα(‖f‖H−1 + 1) and

1

h

∫
Ωh

fh(x′)(wh(x) − x) · e3 dx =

∫
S

fh(x′)

∫ h/2

−h/2

(wh(x) − x) · e3 dx3 dx
′

≤ Chα
(
‖f‖H−1(S) + 1

)
‖∇′v̄h‖L2(S) ,

where

v̄h(x′) :=

∫ h/2

−h/2

(wh(x) − x) · e3 dx3 .

In turn, by assumption (W3) we have

|∇′wh|2 ≤ C (W (∇wh) + 1) ,

and therefore

‖∇′v̄h‖2
L2(S) ≤

1

h
‖∇′wh‖2

L2(Ωh) ≤ C(1 + Eh) .

We conclude that

Fh(wh,Ωh) ≥ Eh − Chα
(
‖f‖H−1(S) + 1

)
(1 + Eh)1/2 .

By (4.2) and the fact that inf{Fh} ≤ Fh(Id,Ωh) = 0, it follows that for sufficiently
small h we have

Fh(wh,Ωh) ≤ 0 .(4.8)

Therefore Eh → 0.
The proof of part I of Theorem 2.1 can now be repeated, replacing hβ by Eh in

all statements, and no other change. Precisely, (4.7) replaces (3.2), in both (3.4) and

(3.5) the estimate is in terms of CE
1/2
h , and the definitions of uh and vh are replaced

by

ũh(x′) :=
1

E
1/2
h

∫ 1/2

−1/2

Uh(x′, x3)dx3 , ṽh(x′) :=
1

E
1/4
h

∫ 1/2

−1/2

Vh(x′, x3)dx3

(recall that yh(x) = wh(x′ + hx3e3) = x′ + hx3e3 +Uh(x) + Vh(x)e3). We also obtain
convergence as in (3.6), (3.7), and (3.8) for ũh and ṽh, and to some limit ũ and ṽ.

Consider now the forcing term. Arguing as above, we write

1

h

∫
Ωh

fh(x′)(wh(x) − x) · e3 dx =

∫
Ω1

fh Vh dx = E
1/4
h

∫
S

fh vh dx
′.

Since vh is bounded in W 1,2
0 and h−αfh is bounded in the dual space H−1, we obtain

Fh(wh,Ωh) ≥ Eh − CE
1/4
h hα .(4.9)
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Here and in the following C is a constant which depends on the sequences {fh} and

{wh}. Recalling (4.8), we see that, for sufficiently small h, Eh ≤ CE
1/4
h hα and hence

Eh ≤ Ch4α/3.(4.10)

In turn, this implies

Fh(wh,Ωh) ≥ −CE
1/4
h hα ≥ −Ch4α/3,

and (4.4) is proven.
By (4.10) we can apply Theorem 2.1 with β = 4α/3. Let ū, v̄ be the limit

deformations in the sense of part I of Theorem 2.1, and fix that subsequence. Using
part II of Theorem 2.1 and (4.3) we conclude that, along the same subsequence,

lim inf
h→0

inf
Ah

1

h4α/3
Fh = lim inf

h→0

1

h4α/3
Fh(wh,Ωh) ≥ I0(ū, v̄) −

∫
S

f v̄ dx′.(4.11)

At the same time, from part III of Theorem 2.1 for every (ũ, ṽ) there is a sequence
w̃h converging to (ũ, ṽ) and such that

lim
h→0

1

h4α/3
Fh(w̃h,Ωh) = I0(ũ, ṽ) −

∫
S

f ṽ dx′.

This shows in particular that

lim inf
h→0

inf
Ah

1

h4α/3
Fh ≤ I0(ũ, ṽ) −

∫
S

f ṽ dx′;

hence the pair (u, v) is a minimizer of the limiting functional, and (4.11) is an equality.
This concludes the proof of (4.6). Finally, taking (ũ, ṽ) to be any minimizer of the
limiting functional we conclude the proof of the corollary.

Appendix. We start by briefly analyzing the properties of the space u ∈ X(S),
the convex cone in BD(S) that was introduced in (2.3) and that arises naturally in
the determination of the domain of the Γ-limit I0. General references for the space of
functions of bounded deformation BD(S) are, for example, the monograph by Temam
[26] and the paper by Ambrosio, Coscia, and Dal Maso [2].

Let us recall that if u ∈ BD(S), then

symD′u = fu(x′)dx′ + μu,

where μu ∈ M(S,R2×2
sym ) is singular with respect to the Lebesgue measure on S, and

fu ∈ L1(S,R2×2) is the density of symD′u with respect to the Lebesgue measure.
Then u ∈ X(S) if and only if μu ≤ 0, where u = u in S and u = 0 in R

2 \ S.
The structure of the singular part of the strain μu can be further analyzed: indeed,

it turns out that there is a rectifiable set Ju in S and that, once we have fixed an
orientation of it in νu ∈ L∞(H1�Ju, S1), there are functions u+, u− ∈ L1(H1�Ju,R2),
and a measure (symD′u)c singular with respect to both dx′ and H1, such that

μu = (symD′u)c + sym ((u+ − u−) ⊗ νu)dH1�Ju + sym (− tr (u) ⊗ νS)dH1�∂S,

where tr (u) ∈ L1(H1�∂S,R2) is the trace of u on ∂S and νS is the outer normal to
S. In particular the condition μu ≤ 0 implies the compatibility condition

u+(x′) − u−(x′) = −λ(x′)νu(x′) for H1-a.e. x′ ∈ Ju
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for a suitable λ ∈ L1(H1�Ju, [0,∞)) (we recall that sym a⊗ b ≤ 0, with b �= 0, if and
only if a = −λb). The sign condition on the boundary term gives analogously

tr (u)(x′) = λ(x′)νS(x′) for H1 a.e. x′ ∈ ∂S

for a function λ ∈ L1(∂S, [0,∞)). The geometric meaning of the condition (symD′u)c

≤ 0 for the Cantor part of symD′u is instead less clear as the validity of the “rank-one
property” (established in the space BV by Alberti [1]) in BD is at present unknown.

One could ask if the sign condition μu ≤ 0 is sufficient to gain more regularity for
the distributional gradient D′u. It turns out that this is not the case, in the sense that
there are functions in X(S) that are not in BV (S,R2). For example, let S = (−1, 1)2,
and for i > 2 let Qi = (2−i, 2−i+1)2. In each Qi by [21, Theorem 1] (see also [6,
Theorem 1]) there is ui ∈ C∞

0 (Qi,R
2) such that∫

Qi

|sym∇′ui|dx′ ≤ 2|Qi|,
∫
Qi

|∇′ui|dx′ ≥ 2i.

We set u = ui in Qi, u = 0 on S \ ∪Qi. It is clear that u is in BD(S) but not in
BV (S; R2), and that it has zero trace on ∂S. To show that it is in X, it suffices to
check that the symmetric part of the distributional gradient is absolutely continuous
with respect to the Lebesgue measure. Since u ∈ C1(S \ {0},R2), it suffices to check
that the n-dimensional density of symD′u at zero is finite. To this end let ρB2 be
the ball of radius ρ and center in the origin; then

|symD′u|(ρB2) ≤
∑

{i:Qi∩ρB2 �=∅}
|symD′u|(Qi) ≤ 4|ρB2| .

This concludes the proof.
It is not clear if for the u constructed above we can find a v ∈ W 1,2

0 (S) such
that I0(u, v) < ∞. In other words, the question of whether the space {u ∈ X(S) :
I0(u, v) < ∞ for some v ∈ W 1,2

0 (S)} is contained in BV (S,R2) remains open. It is,
however, clear that this space is not more regular than BV . Indeed, let f : (0, 1) →
(0, 1) be a generic monotonic BV function, and extend it to R by f(t) = t. Then set
u(x) = −(f(x1) − x1, 0), v = 0, S = (−2, 2)2. Then I0(u, v) < ∞. This construction
provides an example of where the jump and Cantor part of Du are nonzero.

The rest of the appendix is devoted to the statement and proof of some lem-
mas that were used in the proof of the upper bound. Of particular relevance in the
description of the relaxation process of compressive deformations are Lemmas A.3
and A.4.

Lemma A.1. Let F ∈ R
n×n. Then there is R ∈ SO(n) such that dist(F, SO(n)) =

|RTF − Idn|. For all such R, the product RTF is symmetric.
Proof. This is well known. We recall the argument for the convenience of the

reader. Existence is clear. To show symmetry, observe that by replacing F by F̃ =
RTF one can reduce to the case R = Idn, i.e., it suffices to show that dist(F, SO(n)) =
|F − Idn| implies that F is symmetric. Consider the function

f(Q) = |F −Q|2 = |F |2 − 2F : Q + |Q|2

(we write F : G = Tr FTG =
∑

FijGij). The first and last term are constant
(for Q ∈ SO(n)) and can be ignored. That Q = Id is a local minimum among all
Q ∈ SO(n) implies that the gradient of the linear term −2F : Q, i.e., −2F , is normal
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to the constraint SO(n) at the identity. The tangent space to SO(n) at the identity
is the space of skew-symmetric matrices; hence this requirement corresponds to −2F
being symmetric.

Lemma A.2. WFö is convex.
Proof. Choose λ ∈ (0, 1), A, A′ ∈ R

2×2
sym , and b, b′ ∈ R

2, and set

Aλ = λA + (1 − λ)A′ , bλ = λb + (1 − λ)b′.

We have to show that

WFö(Aλ, bλ) ≤ λWFö(A, b) + (1 − λ)WFö(A
′, b′) .

The key observation is that

bλ ⊗ bλ = λb⊗ b + (1 − λ)b⊗ b− λ(1 − λ)(b− b′) ⊗ (b− b′) .

Therefore for any Mλ ∈ R
2×2
+ we have

WFö(Aλ, bλ) ≤ Q2

(
symAλ +

1

2
bλ ⊗ bλ + Mλ

)

= Q2

(
λ

[
symA +

b⊗ b

2

]
+ (1 − λ)

[
symA′ +

b′ ⊗ b′

2

]
−Mb + Mλ

)
,

where Mb = λ(1 − λ)(b− b′) ⊗ (b− b′) ∈ R
2×2
+ .

Choose M,M ′ ∈ R
2×2
+ so that

WFö(A, b) = Q2

(
symA +

1

2
b⊗ b + M

)
,

and the same condition holds for A′, b′, and M ′, and set Mλ = λM+(1−λ)M ′+Mb ∈
R

2×2
+ . Then the previous expression takes the form

Q2

(
λ

[
symA +

b⊗ b

2
+ M

]
+ (1 − λ)

[
symA′ +

b′ ⊗ b′

2
+ M ′

])
,

and the convexity of Q2 concludes the proof.
Lemma A.3. For each M ∈ R

2×2
+ there are ψδ ∈ W 1,∞(R2,R2) and ϕδ ∈

W 1,∞(R2) such that

ψδ
∗
⇀ 0 weakly* in W 1,∞(R2,R2),

ϕδ
∗
⇀ 0 weakly* in W 1,∞(R2)

as δ → 0,

sym∇′ψδ(x
′) +

∇′ϕδ(x
′) ⊗∇′ϕδ(x

′)

2
= M

for a.e. x′ ∈ R
2 and ‖ψδ‖W 1,∞ + ‖ϕδ‖W 1,∞ ≤ C(|M | + 1).

Proof. Let ζ(t) be defined as t if 0 < t < 1/2, as (1 − t) if 1/2 < t < 1 and
extended periodically on the rest of R. Let ζδ(t) := δζ(t/δ) for every δ > 0 so that
ζδ ⇀

∗ 0 weakly* in W 1,∞(R) as δ → 0.
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We can write M = λ1a1 ⊗ a1 + λ2a2 ⊗ a2 for a1, a2 ∈ S1 and λ1, λ2 ≥ 0. We
define

ψδ(x
′) := (

√
λ1a1 −

√
λ2a2)ζδ((

√
λ1a1 +

√
λ2a2) · x′)

so that

∇′ψδ(x
′) := ζ ′δ((

√
λ1a1 +

√
λ2a2) · x′)(

√
λ1a1 −

√
λ2a2) ⊗ (

√
λ1a1 +

√
λ2a2).

In particular

sym∇′ψδ(x
′) =

{
λ1a1 ⊗ a1 − λ2a2 ⊗ a2 on S+

δ ,
λ2a2 ⊗ a2 − λ1a1 ⊗ a1 on S−

δ ,

where we have put S−
δ = R

2 \ S+
δ and

S+
δ :=

{
x′ ∈ R

2 : for a k ∈ N we have (
√
λ1a1 +

√
λ2a2) · x′ ∈

(
kδ, kδ + 1

2δ
)}

.

Correspondingly we define

ϕδ(x
′) :=

{
ζδ(2

√
λ2 a2 · x′) if x′ ∈ S+

δ ,

ζδ(−2
√
λ1 a1 · x′) if x′ ∈ S−

δ .

Note that ϕδ ∈ W 1,∞(R2). Indeed if x′ ∈ S+
δ ∩ S−

δ we have that for some j ∈ N

jδ = 2(
√
λ1a1 +

√
λ2a2) · x′,

and since ζδ is δ-periodic we deduce that ϕδ is continuous on the interfaces, and thus
Lipschitz on R

2. On the other hand we have that

∇′ϕδ(x
′) =

{
2
√
λ2ζ

′
δ(2

√
λ2 a2 · x′)a2 if x′ ∈ S+

δ ,

−2
√
λ1ζ

′
δ(−2

√
λ1 a1 · x′)a1 if x′ ∈ S−

δ ,

and since ζ ′δ = ±1 a.e. we get

∇′ϕδ(x
′) ⊗∇′ϕδ(x

′) =

{
4λ2a2 ⊗ a2 if x′ ∈ S+

δ ,
4λ1a1 ⊗ a1 if x′ ∈ S−

δ .

The thesis follows.
Lemma A.4. Let M ∈ L∞(S,R2×2

+ ) be constant on each of finitely many Lipschitz
subsets Sj covering S, and let εh → 0, εh > 0. Then there are ψh ∈ C∞

0 (S,R2) and
ϕh ∈ C∞

0 (S) such that

ψh ⇀ 0 weakly in W 1,2(S,R2),

ϕh ⇀ 0 weakly in W 1,4(S),

sym∇′ψh(x′) +
∇′ϕh(x′) ⊗∇′ϕh(x′)

2
→ M strongly in L2(S,R2×2),

and

εh‖(∇′)2ϕh‖L∞(S,R2×2) ≤ 1 ,

‖ψh‖W 1,∞(S,R2) + ‖ϕh‖W 1,∞(S) ≤ C(‖M‖L∞(S,R2×2) + 1) .
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Proof. We can without loss of generality assume that M is constant on the entire
S (if not, we perform the construction independently on each Sj).

Let ψ̃δ, ϕ̃δ be the functions given by Lemma A.3, let Sρ = {x′ ∈ S : dist(x′, ∂S) >
ρ}, and let ηρ ∈ C∞

0 (Bρ,R) be a mollification kernel on the scale ρ, i.e., such that∫
R2

ηρ(x
′)dx′ = 1 ,

∫
R2

ρ|∇′ηρ(x
′)| + ρ2|(∇′)2ηρ(x

′)|dx′ ≤ C .

We set

ψδ,ρ(x
′) =

∫
Sρ

ψ̃δ(y
′)ηρ(x

′ − y′)dy′

and analogously ϕδ,ρ. Clearly ψδ,ρ ∈ C∞
0 (S,R2), ϕδ,ρ ∈ C∞

c (S), and as ρ → 0

ψδ,ρ → ψ̃δ , ϕδ,ρ → ϕ̃δ strongly in W 1,2(S,R2), resp. W 1,4(S).

It remains to take a suitable diagonal subsequence. Indeed, for each δ we can choose
ρ(δ) such that

‖ψδ,ρ(δ) − ψ̃δ‖W 1,2(S,R2) + ‖ϕδ,ρ(δ) − ϕ̃δ‖W 1,4(S) ≤ δ .

This ensures all desired convergence properties as δ → 0. To include the bound
on the second gradient it suffices to choose δ(h) as the smallest δ for which

εh‖(∇′)2ϕδ,ρ(δ)‖L∞(S,R2×2) ≤ 1.

This is possible since εh → 0, and for the same reason δ(h) → 0. Finally, we set
ψh = ψδ(h),ρ(δ(h)) and define ϕh likewise.

In the proof of Theorem 2.1 we have stated the existence of certain measurable
functions. This can be proved by a rather standard application of the measurable
selections principle, which is, however, typically disregarded in the literature. We
therefore choose to provide here the simple details for the case of interest here.

The basic tool is the following slight simplification of Theorem III.6 in [4].
Lemma A.5. Let X be a set with a σ-algebra F , let Y be a complete, separable

metric space, and for every x ∈ X let a nonempty subset F (x) of Y be given in such
a way that

{x ∈ X : F (x) ∩ U �= ∅} ∈ F(A.1)

for every open set U in Y .
Then a measurable map f : X → Y can be defined in such a way that f(x) ∈ F (x)

for every x ∈ X.
For the convenience of the reader we recall the brief proof.
Proof. Let {yk}k be a countable and dense subset of Y and let f0 : X → Y be

defined by

f0(x) := yk0(x),

k0(x) := min{k ∈ N : F (x) ∩B(yk, 2
0) �= ∅}.

Note that f0 is measurable as it takes values in {yk}k and as (f0)
−1(yk) is measurable

for every k, by (A.1). Assume that a measurable fj : X → Y has been defined in
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such a way that fj(x) = ykj(x), for kj(x) such that F (x) ∩ B(ykj(x), 2
−j) �= ∅. Then

we define fj+1(x) as

fj+1(x) := ykj+1(x),

kj+1(x) := min{k ∈ N : F (x) ∩B(ykj(x), 2
−j) ∩B(yk, 2

−j−1) �= ∅}.

Once again fj+1 is measurable by (A.1). Furthermore we have easily that

dist(fj(x), F (x)) ≤ 2−j , dist(fj(x), fj+1(x)) ≤ 2−j+1,

so that dist(fj(x), fj+h(x)) → 0 as j → ∞ for every h. Since Y is complete for
every x ∈ X we find f(x) ∈ F (x) such that fj(x) → f(x), and in particular the map
f : X → Y is measurable. This completes the proof of the lemma.

We then state and prove some consequences of this lemma that we have used in
the proof of Theorem 2.1.

Lemma A.6. Let M : Ω → R
n×n be measurable. Then there is a measurable

R : Ω → SO(n) such that

|M(x) −R(x)| = dist(M(x), SO(n)) ∀x ∈ Ω.

Proof. We apply Lemma A.5 with X = Ω, F the σ-algebra of the Lebesgue
measurable sets of Ω, Y = SO(n), and F (x) = {Q ∈ SO(n) : |Q − M(x)| =
dist(M(x), SO(n)). Let U be an open set of SO(3) and let Uk be an increasing
sequence of compact sets exhausting U . Then

{x ∈ X : F (x) ∩ U �= ∅}
= {x ∈ Ω : ∃ Q ∈ U, |Q−M(x)| = dist(M(x), SO(n))}
=

⋃
k∈N

{x ∈ Ω : dist(M(x), Uk) = dist(M(x), SO(n))}

and each set in this countable union is measurable as it is the coincidence set of two
measurable functions.

Acknowledgment. This research was carried out mainly while all authors were
at the Max-Planck Institute for Mathematics in the Sciences, Leipzig, Germany.

REFERENCES

[1] G. Alberti, Rank one property for derivatives of functions with bounded variation, Proc. Roy.
Soc. Edinburgh Sect. A, 123 (1993), pp. 239–274.

[2] L. Ambrosio, A. Coscia, and G. Dal Maso, Fine properties of functions with bounded de-
formation, Arch. Ration. Mech. Anal., 139 (1997), pp. 201–238.

[3] H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scaling of compressed
elastic films—three-dimensional elasticity and reduced theories, Arch. Ration. Mech. Anal.,
164 (2002), pp. 1–37.

[4] C. Castaign and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer-
Verlag, Berlin, 1977.

[5] P. G. Ciarlet, Mathematical Elasticity. Vol. II. Theory of Plates, Elsevier, Amsterdam, 1997.
[6] S. Conti, D. Faraco, and F. Maggi, A new approach to counterexamples to L1 estimates:

Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex
functions, Arch. Ration. Mech. Anal., 175 (2005), pp. 287–300.

[7] S. Conti and F. Maggi, Confining Thin Elastic Sheets and Folding Paper, preprint, 2005.
[8] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
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A RANGE DESCRIPTION FOR THE PLANAR CIRCULAR RADON
TRANSFORM∗
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Abstract. The transform considered in the paper integrates a function supported in the unit
disk on the plane over all circles centered at the boundary of this disk. Such a circular Radon
transform arises in several contemporary imaging techniques, as well as in other applications. As is
common for transforms of Radon type, its range has infinite codimension in standard function spaces.
Range descriptions for such transforms are known to be very important for computed tomography—
for instance, when dealing with incomplete data, error correction, and other issues. A complete range
description for the circular Radon transform is obtained. Range conditions include the recently found
set of moment-type conditions, which happens to be incomplete, as well as other conditions that have
less standard form. In order to explain the procedure better, a similar (nonstandard) treatment of
the range conditions is described first for the usual Radon transform on the plane.
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1. Introduction. The following “circular” Radon transform, which is the main
object of study in this article, arises in several applications, including the newly
developing thermoacoustic tomography and its sibling, optoacoustic tomography (e.g.,
[5, 16, 29, 56, 67, 68, 69, 70]), as well as radar, sonar, and other applications [40, 48,
51, 52]. It has also been considered in relation to some problems of approximation
theory, mathematical physics, and other areas [1, 2, 10, 13, 28, 31, 38, 39].

Let f(x) be a continuous function on R
d, d ≥ 2.

Definition 1. The circular Radon transform of f is defined as

Rf(p, ρ) =

∫
|y−p|=ρ

f(y)dσ(y),

where dσ(y) is the surface area on the sphere |y − p| = ρ centered at p ∈ R
d.

In this definition we do not restrict the set of centers p or radii r. It is clear,
however, that this mapping is overdetermined, since the dimension of pairs (p, r) is d+
1, while the function f depends on d variables only. This (as well as the tomographic
motivation) suggests that we restrict the set of centers to a set (hypersurface) S ⊂ R

d,
while not imposing any restrictions on the radii. This restricted transform is denoted
by RS :

RSf(p, ρ) = Rf(p, ρ)|p∈S .

In this paper we will be dealing with the planar case only, i.e., the dimension d
will be equal to 2. Due to tomographic applications, where S is the set of locations of
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9971674 and 0002195. The result of the paper was first presented at the Fully Three-Dimensional
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transducers [29, 67, 68, 70], from now on we will be looking at the specific case when
S is the unit circle |x| = 1 in the plane.

There are many questions one can ask concerning the circular transform RS ,
e.g., concerning its injectivity, inversion formulas, stability of inversion, and range
description. Experience in computerized tomography shows (e.g., [44, 46]) that all
these questions are important. Although none of them has been resolved completely
for RS , significant developments have occurred recently (see, e.g., [1, 2, 5, 6, 12, 14,
16, 20, 35, 46, 47, 51, 52, 55, 59, 60, 67, 68, 69]). The goal of this article is to describe
the range of RS in the two-dimensional case, with S being the unit circle. Moreover,
we will be dealing with functions supported inside the circle S only. The properties
of the operator RS (e.g., stability of the inversion, its Fourier integral operator (FIO)
properties, etc.) deteriorate on functions with supports extending outside S (e.g.,
[2, 16, 70] and remarks in the last section of this article). However, in tomographic
applications one normally deals with functions supported inside S only [29, 56, 67, 70].

As was already mentioned, the range of RS has infinite codimension (e.g., in
spaces of smooth functions, see details below) and thus infinitely many range condi-
tions appear. It seems to be a rather standard situation for various types of Radon
transforms that range conditions split into two types, one of which is usually eas-
ier to discover, while the other “half” is harder to come by. For instance, it took
about a decade to find the complete range description for the so-called exponential
Radon transform arising in SPECT (single photon emission computed tomography)
[3, 4, 33, 34, 66]. For a more general attenuated transform arising in SPECT, it took
twice as much time to move from a partial set of range conditions [44, 45] to the
complete set [53]. In the circular case, a partial set of such conditions was discovered
recently [56]. It happens to be incomplete, and the goal of this text is to find the
complete one.

One might ask why is it important to know the range conditions. Such con-
ditions have been used extensively in tomography (as well as in radiation therapy
planning, e.g., [8, 9, 30]) for various purposes: completing incomplete data, detecting
and correcting measurement errors and hardware imperfections, recovering unknown
attenuation, etc. [26, 41, 42, 43, 44, 49, 50, 57, 64, 65]. Thus, as soon as a new Radon-
type transform arises in an application, a quest for the range description begins.

In order to explain our approach, we start in the next section with treating a toy
example of the standard Radon transform on the plane, where the range conditions are
well known (e.g., [13, 17, 18, 19, 25, 44, 46]). Our approach, however, is different from
the standard ones and naturally leads to the considerations of the circular transform
in the rest of the paper.

2. The case of the planar Radon transform. In this section we will approach
in a somewhat nonstandard way the issue of the range description for the standard
Radon transform on the plane. Consider a compactly supported smooth function f(x)
on the plane and its Radon transform

(Rf)(ω, s) = g(ω, s) :=

∫
x·ω=s

f(x)dl,(1)

where s ∈ R, ω ∈ S1 is a unit vector in R
2, and dl is the arc length measure on the

line x · ω = s. We want to describe the range of this transform, say on the space
C∞

0 (R2). Such a description is well known (see, e.g., [13, 17, 18, 19, 25, 44, 46], or
any other book or survey on Radon transforms or computed tomography).



CIRCULAR RADON TRANSFORM 683

Theorem 2. A function g belongs to the range of the Radon transform on C∞
0

if and only if the following conditions are satisfied:
1. g ∈ C∞

0 (S1 × R);
2. for any k ∈ Z

+ the kth moment Gk(ω) =
∫∞
−∞ skg(ω, s)ds is the restriction

to the unit circle S1 of a homogeneous polynomial of ω of degree k;
3. g(ω, s) = g(−ω,−s).

We would like to look at this result from a slighty different perspective, which
will allow us to do a similar thing in the case of the circular Radon transform.

In order to do so, let us expand g(ω, s) into the Fourier series with respect to the
polar angle ψ (i.e., ω = (cosψ, sinψ)):

g(ω, s) =

∞∑
n=−∞

gn(s)einψ.(2)

We can now reformulate the last theorem in the following, somewhat unusual way.
Theorem 3. A function g belongs to the range of the Radon transform on C∞

0

if and only if the following conditions are satisfied:
1. g ∈ C∞

0 (S1 × R);
2. for any n, the Mellin transform Mgn(σ) =

∫∞
0

sσ−1gn(s)ds of the nth Fourier

coefficient gn of g vanishes at any pole σ of the function Γ(σ+1−|n|
2 );

3. g(ω, s) = g(−ω,−s).
Since the only difference in the statements of these two theorems is in conditions

2, let us check that these conditions mean the same thing in both cases. Indeed, let
us expand g(ω, s) into Fourier series (2) with respect to ψ. Representing einψ as the
homogeneous polynomial (ω1 + i(signn)ω2)

|n| of ω of degree |n|, and noticing that
ω2

1 + ω2
2 = 1 on the unit circle, one easily concludes that condition 2 in Theorem 2 is

equivalent to the following: the kth moment
∫

R
skgn(s)ds of the nth Fourier coefficient

vanishes for integers 0 ≤ k < |n| such that k − n is even.
Let us now look at condition 2 in Theorem 3, still using the same Fourier expan-

sion. Notice that when k − |n| is a negative even integer, Mgn(σ) is one-half of the

moment of order k = σ − 1 of gn. Taking into account that Γ(σ+1−|n|
2 ) = Γ(k+2−|n|

2 )
has poles exactly when k − |n| is a negative even integer, we see that conditions 2 in
both theorems are in fact saying the same thing.

One can now ask the question, why should one disguise in the statement of The-
orem 3 negative integers as poles of Gamma-function and usual moments as values of
Mellin transforms? The answer is that in the less invariant and thus more complex
situation of the circular Radon transform, one can formulate a range description in
the spirit of Theorem 3, although it is unclear how to get an analogue of the version
given in Theorem 2.

As a warm-up, let us derive condition 2 in Theorem 3 directly, without relying
on the version given in the preceding theorem. This is in fact an easy by-product
of Cormack’s inversion procedure; see, e.g., [46, section II.2]. Indeed, if we write
down the original function f(x) in polar coordinates r(cosφ, sinφ) and expand into
the Fourier series with respect to the polar angle φ,

f(r(cosφ, sinφ)) =
∞∑

n=−∞
fn(r)einφ,(3)

then the Fourier coefficients fn and gn of the original and of its Radon transform are
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related as follows [44, formula (2.17) and further]:

M(rfn(r))(s) =
(Mgn)(s)

Bn(s)
,(4)

where

Bn(s) = const
Γ(s)2−s

Γ((s + 1 + |n|)/2)Γ((s + 1 − |n|)/2)
.(5)

Thus, condition 2 of Theorem 3 guarantees that the function M(rfn(r))(s) does not
develop singularities (which it cannot do for a C∞

0 -function f) at zeros of Bn(s). It
is not that hard now to prove also sufficiency in the theorem, applying Cormack’s
inversion procedure to g satisfying conditions 1–3. However, we are not going to do
so, since in the next sections we will devote ourselves to doing a similar thing in the
more complicated situation of the circular Radon transform.

3. The circular Radon transform. Formulation of the main result. Let
us recall the notion of the Hankel transform (e.g., [11]). For a function h(r) on R

+,
one defines its Hankel transform of an integer order n as follows:

(Hnh)(σ) =

∫ ∞

0

Jn(σr)h(r)r dr,(6)

where the standard notation Jn is used for Bessel functions of the first kind.
As in the introduction, let RS be the circular Radon transform on the plane

that integrates functions compactly supported inside the unit disk D over all circles
|x − p| = ρ with centers p located on the unit circle S = {p | |p| = 1). Since this
transform commutes with rotations about the origin, the Fourier series expansion with
respect to the polar angle partially diagonalizes the operator, and thus the nth Fourier
coefficient gn(ρ) of g = RSf will depend on the nth coefficient fn of the original f
only. It was shown in [51] that the following relation between these coefficients holds:

gn(ρ) = 2πρH0{JnHn{fn}}.(7)

For the reader’s convenience, we will provide the brief derivation from [51]. Consid-
ering a single harmonic f = fn(r)einφ and using polar coordinates, one obtains

gn(ρ) =

∫ ∞

0

rfn(r)dr

∫ 2π

0

δ
[
(r2 + 1 − 2r cosφ)1/2 − ρ

]
e−inφdφ.(8)

Thus, the computation boils down to evaluating the integral

I =

∫ 2π

0

δ
[
(r2 + 1 − 2r cosφ)1/2 − ρ

]
e−inφdφ.

Using the standard identity

δ(ρ′ − ρ) = ρ

∫ ∞

0

J0(ρ
′z)J0(ρz)zdz

and the identity that is easy to obtain from one of the addition formulas, e.g., from
[7, formula (4.10.6)]

2πJn(az)Jn(bz) =

∫ 2π

0

J0[z(a
2 + b2 − 2ab cosφ)1/2]e−inφdφ,
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one goes from (8) to (7).
Since Hankel transforms are involutive, it is easy to invert (7) and get Norton’s

inversion formulas [51]

fn =
1

2π
Hn

{
H0{gn(ρ)/ρ}

Jn

}
.(9)

Now one can clearly see analogies to the case of the Radon transform, where zeros of
Bessel functions should probably introduce some range conditions. This happens to
be correct and leads to the main result of this article, as follows.

Theorem 4. In order for the function g(p, ρ) on S1 × R to be representable as
RSf with f ∈ C∞

0 (D), it is necessary and sufficient that the following conditions be
satisfied:

1. g ∈ C∞
0 (S1 × (0, 2)).

2. For any n, the 2kth moment
∫∞
0

ρ2kgn(ρ)dρ of the nth Fourier coefficient
of g vanishes for integers 0 ≤ k < |n|. (Equivalently, the 2kth moment∫∞
0

ρ2kg(p, ρ)dρ is the restriction to the unit circle S of a (nonhomogeneous)
polynomial of p of degree at most k.)

3. For any n ∈ Z, function H0{gn(ρ)/ρ}(σ) =
∫∞
0

J0(σρ)gn(ρ)dρ vanishes at
any zero σ �= 0 of Bessel function Jn. (Equivalently, the nth Fourier coeffi-
cient with respect to p ∈ S1 of the “Bessel moment” Gσ(p)=

∫∞
0

J0(σρ)g(p, ρ)dρ
vanishes if σ �= 0 is a zero of Bessel function Jn.)

4. Proof of the main result. Let us start by proving necessity, which is rather
straightforward. Indeed, the necessity of condition 1 is obvious. Let us prove the
second condition. In fact, it has already been established in [56]. Let us repeat for
completeness its simple proof. Let k be an integer. Consider the moment of order 2k
of g: ∫ ∞

0

ρ2kg(p, ρ)dρ =

∫
R2

|x− p|2kf(x)dx =

∫
R2

(|x|2 − 2x · p + 1)kf(x)dx(10)

(we have taken into account that |p| = 1). We see that the resulting expression is
the restriction to S1 of a (nonhomogeneous) polynomial of degree k in variable p.
Expanding into Fourier series with respect to the polar angle of p, we see that the
nth harmonic gn contributes the following homogeneous polynomial of degree |n| in
the variable p: (∫ ∞

0

ρ2kgn(ρ)dρ

)
einψ.

Here as before p = (cosψ, sinψ). Thus, for |n| > k, this term must vanish, which
gives necessity of condition 2. We will return to a discussion of this condition below
to add a new twist to it.

Necessity of condition 3 follows immediately from Norton’s formula (9), which
implies in particular that

H0{gn(ρ)/ρ} = 2πJnHn{fn}.

Since both functions Jn and Hn{fn} are entire, H0{gn(ρ)/ρ} vanishes whenever Jn
does.

Remark 5. The reader might ask why in the third condition of the theorem we
do not take into account the zero root of Jn, which in fact has order n, while nonzero
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roots are all simple. The reason is that condition 2 already guarantees that σ = 0
is zero of order 2n of H0{gn(ρ)/ρ} (twice higher than that of Jn). Indeed, due to
evenness of J0, function H0{gn(ρ)/ρ}(σ) is also even. Thus, all odd order derivatives
at σ = 0 vanish. The known Taylor expansion of J0 at zero leads to the formula

H0{gn(ρ)/ρ}(σ) =
∑
m

(−1)m

(m!)2

(σ
2

)2m
∫ ∞

0

r2mgn(r)dr.

We see now that the moment condition 2 guarantees that σ = 0 is zero of order 2n of
H0{gn/ρ}(σ).

Let us move to the harder part, proving sufficiency. Assume a function g satisfies
conditions of the theorem and is supported in S × (ε, 2 − ε) for some positive ε. We
will show that then g = RSf for some f ∈ C∞

0 (Dε), where Dε is the disk |x| < 1 − ε
in the plane.

Due to Norton’s formulas, it is natural to expect the proof to go along the following
lines: expand g into the Fourier series g =

∑
m gm(ρ)eimψ with respect to the angle

variable ψ, then use (9) to construct a function f and then show that f is of an
appropriate function class and that its circular Radon transform is equal to g. This is
what we are going to do, with a small caveat: instead of constructing f itself, we will
construct its two-dimensional Fourier transform. Besides, we will start considering
the partial sums of the series hn =

∑
|m|≤n gm(ρ)eimφ. But first we need to get some

simple estimates from below for the Bessel function of the first kind Jn.
Lemma 6. On the entire complex plane, except for a disk S0 centered at the origin

and a countable number of disks Sk of radii π/6 centered at points π(k + 2n+3
4 ), one

has

|Jn(z)| ≥ Ce|Im z|√
|z|

, C > 0.(11)

Proof. Let us split the complex plane into three parts by a circle S0 of a radius R
(to be chosen later) centered at the origin and a planar strip {z = x+ iy| |y| < a}, as
follows: part I consists of points z satisfying |z| ≥ R and |Im z| ≥ a; part II consists
of points such that |z| ≥ R and |Im z| < a; part III is the interior of S0, i.e., |z| < R.
It is clearly sufficient to prove the estimate (11) in the first two parts: outside and
inside the strip. Using the parity property of Jn, it suffices to consider only the right
half plane Re z ≥ 0.

The Bessel function of the first kind Jn(z) has the following known asymptotic
representation in the sector | arg z| ≤ π − δ (e.g., [7, formula (4.8.5)] or [36, formula
(5.11.6)]):

Jn(z) =

√
2

πz
cos

(
z − πn

2
− π

4

)
(1 + O(|z|−2))

(12)

−
√

2

πz
sin

(
z − πn

2
− π

4

)(
4n2 − 1

8z
+ O(|z|−3)

)
.

Let us start estimating in the first part of the complex plane, i.e., where |Im z| > a
and |z| > R for sufficiently large a and R (and, as we have agreed, Re z ≥ 0). There,
due to boundedness of tan z in this region, one concludes that sin z

z = cos z (O(|z|−1)),
and thus (12) implies

Jn(z) =

√
2

πz
cos

(
z − πn

2
− π

4

)
(1 + O(|z|−1)),
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which in turn for sufficiently large a,R leads to

|Jn(z)| ≥ Ce|Im z|√
|z|

.(13)

In the second part of the plane (right half of the strip), due to boundedness of
sin z we have

Jn(z) =

√
2

πz

[
cos

(
z − πn

2
− π

4

)
(1 + O(|z|−2)) + O(|z|−1)

]
.

Consider the system of nonintersecting circles Sk with centers at zk = π
2 +kπ+ πn

2 + π
4

and radii equal to π
6 . Then outside these circles | cos(z − πn

2 − π
4 )| ≥ C and

|Jn(z)| ≥ C√
|z|

(1 + O(|z|−1)).

This implies that for a suitably chosen and sufficiently large R, inside of the strip and
outside the circles Sk, we have

|Jn(z)| ≥ Ce|Im z|√
|z|

(14)

for |z| > R. This proves the statement of the lemma.
Let us now return to our task: consider the function g and the partial sums hn

of its Fourier series.
Lemma 7.

1. If g(φ, ρ) =
∑

m gm(ρ)eimψ satisfies conditions of Theorem 4 and is supported
in S × (ε, 2 − ε), then each partial sum hn =

∑
|m|<n gm(ρ)eimψ does so.

2. For any n, hn is representable as RSfn for a function fn ∈ C∞
0 (Dε).

Proof. The first statement of the lemma is obvious.
Thus, it is sufficient to prove the second statement for a single term g = gn(ρ)einψ.

As was just mentioned, we will reconstruct the Fourier transform F of the function
f . In order to do this, we will use the standard relation between Fourier and Hankel
transforms. As before, let f(x) = fn(r)einφ, where r = |x| and φ are polar coordinates
on R

2. Then the Fourier transform F (ξ) of f at points of the form ξ = σω, where
σ ∈ C and ω = (cosψ, sinψ) ∈ R

2 can be written up to a constant factor as follows:

F (σω) = Hn(fn)(σ)einψ(15)

(e.g., [11, end of section 14.1]). If we knew that g = RSf , then according to (7) this
would mean that

F (σω) = F (σ)einψ =
1

2π

H0(gn(ρ)/ρ)(σ)

Jn(σ)
einψ.(16)

Let us now take (16) as the definition of F (σω). Due to the standard parity property
of Bessel functions, such an F is a correctly defined function of σω for σ �= 0 (i.e.,
F (σω) = F ((−σ)(−ω))). We would like to show that it is the Fourier transform of
a function f ∈ C∞

0 (Dε). Let us prove first that F belongs to the Schwartz space
S(R2). In order to do so, we need to show its smoothness with respect to the angular
variable ψ; smoothness and fast decay with all derivatives in the radial variable σ; as
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well as that no singularity arises at the origin, which in principle could, due to usage
of polar coordinates. Smoothness with respect to the angular variable is obvious,
due to (16). Let us deal with the more complex issue of smoothness and decay with
respect to σ. First of all, taking into account that gn(ρ) is supported inside (0, 2),
and due to the standard two-dimensional Paley–Wiener theorem, we conclude that
u(σ) = H0(gn(ρ)/ρ) is an entire function that satisfies for any N the estimate

|u(σ)| ≤ CN (1 + |σ|)−Ne(2−ε)|Imσ|.(17)

According to the range conditions 2 and 3 of the theorem, this function vanishes at
all zeros of Bessel function Jn(σ) at least to the order of the corresponding zero.

This means that function F (σ) = u(σ)
2πJn(σ) is entire. Let us show that it belongs to a

Paley–Wiener class.
Indeed, H(gn(ρ)/ρ) is an entire function with Paley–Wiener estimate (17). Due

to the estimate from below for Jn (11) given in Lemma 6, we conclude that F (σω)
is an entire function of Paley–Wiener class in the radial directions, uniformly with
respect to the polar angle. Namely,

|F (σ)| ≤ CN (1 + |σ|)−Ne(1−ε)|Imσ|.(18)

Indeed, outside the family of circles Sk the estimate (11) together with (17) gives
the Paley–Wiener estimate (18) we need. Inside these circles, application of the
maximum principle finishes the job. Smoothness with respect to the polar angle is
obvious. Thus, the only thing one needs to establish to verify that F belongs to
the Schwartz class is that F is smooth at the origin. This, however, is the standard
question in the Radon transform theory, the answer to which is well known (e.g., [17,
pp. 108–109], [18, 19], [25, Chap. 1, proof of Theorem 2.4]). Namely, one needs to
establish that for any nonnegative integer k, the kth radial (i.e., with respect to σ)
derivative of F (σω) at the origin is a homogeneous polynomial of order k with respect
to ω. So, let us check that this condition is satisfied in our situation. First of all, the
parity of the function F is the same as that of n. Thus, we do not need to worry

about the derivatives F
(k)
σ |σ=0 with k−n odd, since they are zero automatically. Due

to the special single-harmonic form of F , we only need to check that F
(k)
σ |σ=0 = 0 for

k < |n| with k − n even. This, however, as we have already discussed in Remark 5,
follows from the moment conditions 2 of the theorem.

Due to the smoothness that we have just established and Paley–Wiener estimates,
F ∈ S(R2). Thus, F = f̂ for some f ∈ S(R2). It remains to show that f is supported
inside the disk Dε. Consider the usual Radon transform Rf(s, φ) of f . According to
the standard Fourier-slice theorem [13, 17, 18, 19, 25, 44], the one-dimensional Fourier
transform (denoted by a “hat”) from the variable s to σ gives (up to a fixed constant

factor) the values R̂f(σ, ψ) = F (σω) if, as before, ω = (cosψ, sinψ). Here R, as
before, denotes the standard Radon transform in the plane. Since functions F (σω)
of σ, as we have just discussed, are uniformly with respect to ω of a Paley–Wiener
class, this implies that Rf(s, ω) has uniformly with respect to ω bounded support in
|s| < 1 − ε. Now the “hole theorem” [25, 44] (which is applicable to functions of the
Schwartz class), implies that f is supported in Dε.

The last step is to show that RSf = g = gn(r)einφ. This, however, immediately
follows from comparing formulas (16) and (7), which finishes the proof of the main
lemma, Lemma 7.

Let us now return to the proof of Theorem 4. We have proven so far that any
partial sum hn of the Fourier series for g belongs to the range of the operator RS
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acting on smooth functions supported inside the disk Dε. The function g itself is the
limit of hn in C∞

0 (S× (ε, 2− ε)). The only thing that remains to be proven is that the
range is closed in an appropriate topology. Microlocal analysis can help with this.

Consider RS as an operator acting from functions defined on the open unit disk
D to functions defined on the open cylinder Ω = S × (0, 2). As such, it is an FIO
[21, 23, 58]. If Rt

S is the dual operator, then E = Rt
SRS is an elliptic pseudodifferential

operator of order −1 [21, Theorem 1], [22].1

Lemma 8. The continuous linear operator E : H2
0 (Dε) �→ H3

loc(D) has zero kernel
and closed image.

Proof. Since E = Rt
SRS , the kernel of this operator coincides with the kernel

of RS acting on H2
0 (Dε). Since S is closed, it is known that RS has no compactly

supported functions in its kernel [1, 2] (this also follows from analytic ellipticity of E
and Theorem 8.5.6 of [27]; see also Lemma 4.4 in [2]). Thus, the statement about the
kernel is proven and we only need to prove the closedness of the range.

Let P be a properly supported pseudodifferential parametrix of order 1 for E
[63]. Then PE = I +B, where B is an infinitely smoothing operator on D. Consider
the operator Π that acts as the composition of restriction to Dε and then orthogonal
projection onto H2

0 (Dε) in H2(Dε). On H2
0 (Dε) one has ΠPE = I + K, where K

is a compact operator on H2
0 (Dε). Notice that the operator ΠP is continuous from

the Fréchet space H3
loc(D) to H2

0 (Dε). Due to the Fredholm structure of the operator
ΠPE = I + K acting on H2

0 (Dε), its kernel is finite-dimensional. Let M ⊂ H2
0 (Dε)

be a closed subspace of finite codimension complementary to the kernel, so I + K is
injective on M and has closed range. Then one can find a bounded operator A in
H2

0 (Dε) such that A(I +K) acts as identity on M . Thus, the operator AΠP provides
a continuous left inverse to E : M �→ H3

loc(D). This shows that the range of E on M
is closed in H3

loc(D). On the other hand, the total range of E differs only by a finite
dimension from the one on M . Thus, it is also closed.

We can now finish the proof of the theorem. Indeed, the last lemma shows that
the function Rt

Sg, being in the closure of the range, is in fact in the range, and thus
can be represented as Ef with some f ∈ H2

0 (Dε). In other words, Rt
S(RSf − g) = 0.

Since the kernel of Rt
S on compactly supported functions is orthogonal to the range of

RS , we conclude that RSf −g = 0. Since Ef = Rt
Sg is smooth, due to ellipticity of E

we conclude that f is smooth as well. This concludes the proof of the theorem.
We would like to finish with some remarks.
• It should be possible to prove that the operator RS in the situation considered

in the text is semi-Fredholm between appropriate Sobolev spaces (analogously
to the properties of the standard and attenuated Radon transforms; see, e.g.,
[24, 44]). This would eliminate the necessity of the closedness of the range
discussion in the end of the proof of Theorem 4.
Such a statement could probably be proven either by using FIO techniques, or
by controlling dependence on n of the constant C and of the radius of the circle
S0 in Lemma 6. The former approach would be better, being more general.

• Proving compactness of support of function f in Lemma 7, we used the stan-
dard Radon transform and the “hole theorem.” Instead, one could probably
use the fact that Fourier transform of f is, by construction, a Paley–Wiener
class CR-function on the three-dimensional variety of points σω in C

2 and
then use an appropriate mandatory analytic extension theorem in the spirit
of [54].

1Bolker’s injective immersion condition [21, 22], which is needed for validity of this result, is
satisfied here, as shown in the proof of Lemma 4.3 in [2].
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• We considered the situation most natural for tomographic imaging, when the
functions to reconstruct are supported inside the aperture curve S. What
happens when the supports of functions extend outside the circle S? It is
known that compactly supported functions [2] (or even those belonging to
Lp with sufficiently small p [1]) can still be uniquely reconstructed. Neces-
sity of the range conditions we derived apparently still holds, and they are
still sufficient for finite Fourier series. However, many things do go wrong in
this case. Our proof of the closedness of the range fails (in particular, since
Bolker’s condition for the corresponding FIO does not hold anymore, which
was also the main hurdle in proving the results of [2]). Moreover, the range
will no longer be closed. Indeed, reconstruction will become unstable, since
due to standard microlocal reasons [32, 35, 40, 61, 70], some parts of the wave
front set of the function outside S will not be stably recoverable. This means,
in particular, that nonsmooth functions can have smooth circular Radon im-
ages. This, in turn implies that the range is not closed in the spaces under
consideration, and so sufficiency of the range conditions should fail. We are
not sure what kind of range description, if any, could work in this situation.
By the way, the nice backprojection-type inversion formulas available in odd
dimensions [16] also fail for such functions.

• It would be interesting to understand range conditions in the case of a closed
curve S different from a circle. Since our method uses rotational invariance,
it is not directly applicable to this situation.

• Our result is stated and proven in two dimensions only. It is possible that a
similar approach might work in higher dimensions. As we have been notified
by D. Finch, he and Rakesh have recently obtained by different methods some
range descriptions in three dimensions [15].
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PERIODIC ROTATING WAVES IN AN UNDULATING ANNULUS
AND THEIR HOMOGENIZATION LIMIT∗

BENDONG LOU†

Abstract. We study a mean curvature flow equation in an annulus with periodically undulating
boundaries and consider the homogenization limit problem as the period of the boundary undulation
tends to zero. We first establish a necessary and sufficient condition for the existence of periodic
rotating waves. Then we study how the average rotating speed of the periodic rotating wave depends
on the geometry of the boundaries. Our results show that boundary undulation always lowers the
speed of a rotating wave. We also determine the homogenization limit of the average rotating speed.
Quite surprisingly, this homogenized speed depends only on the maximum opening angles of the
domain boundaries.

Key words. mean curvature flow equations, periodic rotating waves, undulating annulus, ho-
mogenization limit, average rotating speed
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1. Introduction. We study a curvature-driven motion of curves in an annulus
Ωm (m ∈ N), whose boundaries undulate periodically with period 2π

m . The motion of
the curves is a mean curvature flow equation,

V = A + κ,(1.1)

where V denotes the normal velocity of plane curves, κ denotes the curvature, and
A > 0 is a constant. Domain Ωm is defined as follows: Let g̃(s), h̃(s) be 2π-periodic
smooth functions satisfying

h̃(0) = 0, h̃(s) ≥ 0, max
s

h̃′(s) = tanα1, min
s

h̃′(s) = − tanβ1,

g̃(0) = 0, g̃(s) ≥ 0, max
s

g̃′(s) = tanα2, min
s

g̃′(s) = − tanβ2

for some αi, βi ∈ (0, π
2 ) (i = 1, 2). For m ∈ N, define

h(s) :=
H

m
h̃(ms), g(s) :=

G

m
g̃(ms),

where G > H > 0 are fixed. In what follows, we use polar coordinates (r, θ) to express
points in the plane. Define

Ωm :=
{
(r, θ)

∣∣ H − h(θ) < r < G + g(θ), θ ∈ [0, 2π]
}
.

Denote the outer (resp., inner) boundary of Ωm by ∂2Ωm (resp., ∂1Ωm) and call α2

(resp., α1) its maximum opening angle (see Figure 1.1).
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Fig. 1.1. Undulating annulus and periodic rotating waves.

By a solution of (1.1) we mean a time-dependent simple curve Γt in Ωm which
satisfies (1.1) and contacts both ∂1Ωm and ∂2Ωm perpendicularly. In this paper we
are interested in those curves rotating counterclockwise along Ωm periodically, as well
as their average rotating speeds.

In the following we state the motivation and background of (i) the study of mean
curvature flow equations; (ii) the study of propagation in annuli; and (iii) the study
of propagation in a domain with undulating boundaries.

(i) In 1951 [3] proposed that, in the growth of crystals, the evolution of a crystal
surface is governed by a curvature flow equation like (1.1). In 1956 [17] also proposed
that the motion of idealized grain boundaries is governed by its curvature. Later
mean curvature flow equations were used in the study of propagation of wave fronts
in an excitable medium, in flame front propagation, in crystal growth, and in many
other fields. From a mathematical point of view, it is found that sharp internal
layers (or interfaces) appear in singular limit problems of reaction diffusion equations,
and the motion of such layers is mean curvature flow equations. For example, a
successful model used in the study of Belousov–Zhabotinsky (BZ) reactions are so-
called FitzHugh–Nagumo (FHN) equations; the propagation of a pulse solution of
FHN equations depends on the mean curvature of the pulse front (e.g., [11], [12],
[22]), that is, the motion is a mean curvature flow equation like (1.1).

Mean curvature flow equations are also interesting in their own right from a
geometrical point of view. Recently, many geometricians have studied the asymptotic
behavior of mean curvature flows ([1], [2], [5], [8], [10], to name only a few). However,
as far as we know, very little is known about (periodic) traveling/rotating waves of
mean curvature flow equations, though periodic traveling wave solutions of reaction
diffusion equations have been studied a lot (cf. [16], [23] and the references therein).

(ii) In the past twenty years many scientists have been interested in BZ reactions
in annular gel (for example, [6], [18]). As we said above, one can use FHN equations
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to model BZ reactions, and FHN equations can be reduced to a mean curvature flow
equation. So the study of mean curvature flow equations in annuli is very helpful to
the study of propagation of pulse solutions in BZ reactions in annuli. Some other
motivation and studies of rotating waves in annuli can also be found in [9], [20], [22].

(iii) In some cases the domains are not necessarily equipped with flat boundaries.
When we consider a propagation in a space with reticulated structure (cf. [4]), or in
a media mixed with impurity which blocks the propagation, we may get a domain
with undulating boundaries. Such a domain may be an undulating annulus like Ωm

provided the reticulated structure or the masses of impurity are arranged in circles.
The propagation of pulses in such an annulus reduces to our problem.

In this paper, we study periodic rotating waves of mean curvature flow (1.1) in
annulus Ωm. We believe that the results in this paper can be extended to more general
mean curvature flows.

To avoid sign confusion, the normal vector ν to Γt will always be chosen to
be counterclockwise; the sign of the normal velocity V and the curvature κ will be
understood in accordance with this normal direction (see details below).

We will consider the case that each curve Γt is expressed as a graph of a C2,1

function θ = u(r, t) with (r, u(r, t)) ∈ Ωm. Let η1(t), η2(t) be the r-coordinates of
the end points of Γt lying on ∂1Ωm, ∂2Ωm, respectively. In other words, η1(t) =
H − h(u(η1(t), t)), η2(t) = G + g(u(η2(t), t)). Write the orthogonal coordinates as
(r cos θ, r sin θ)⊥ and denote the unit tangent vector of Γt by T (in the positive di-
rection of r); then T = (cosu − r sinu · ur, sinu + r cosu(r, t) · ur)⊥/

√
1 + r2u2

r,

ν = (− sinu− r cosu · ur, cosu− r sinu(r, t) · ur)⊥/
√

1 + r2u2
r and

V = (−r sinu · ut, r cosu · ut)⊥ · ν =
rut√

1 + r2u2
r

, κ =
rurr + 2ur + r2u3

r

(1 + r2u2
r)

3/2
.

Hence (1.1) is equivalent to

ut =
urr

1 + r2u2
r

+
2ur + r2u3

r

r(1 + r2u2
r)

+ A

√
1 + r2u2

r

r
, η1(t) < r < η2(t), t > 0.(1.2)

Denote the clockwise unit tangent vector of r = H (resp., r = G, ∂1Ωm, ∂2Ωm)
by T0

1 (resp., T0
2, T1, T2). In what follows, we say that the curve Γt contacts r = H

(resp., r = G, ∂1Ωm, ∂2Ωm) with angle γ in the sense that T · T0
1 = cos γ (resp.,

T · T0
2 = − cos γ, T · T1 = cos γ, T · T2 = − cos γ). Our boundary conditions are

T · Ti = 0 on ∂iΩm (i = 1, 2), which are expressed as

ur(η1(t), t) =
h′(u)

(η1(t))2
, ur(η2(t), t) =

−g′(u)

(η2(t))2
.(1.3)

Let Ω0 = {(r, θ) | H < r < G, θ ∈ [0, 2π]} be the trivial annulus which is formally
a limit of Ωm as m → ∞. Problem (1.2) in Ω0 with boundary conditions

ur(H, t) = ur(G, t) = 0(1.4)

is quite simple. In fact, as is shown in subsection 2.1.3, when A > 0, there exists a
unique ω0 > 0 such that (1.2), (1.4) has a unique rotating wave u(r, t) = ϕ(r) + ω0t,
which has a certain nonplanar profile and rotating speed ω0. Relevant study in trivial
annulus can also be found in [9], [20].
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On the other hand, in Ωm, a rotating wave with a certain profile does not exist.
In fact, as Γt propagates, its shape and speed fluctuate along with the undulation of
the domain Ωm. In such a situation, we adopt a generalized notion of rotating waves.
A solution Um(r, t) of (1.2)–(1.3) is called a periodic rotating wave if it satisfies

Um(r, t + Tm) = Um(r, t) +
2π

m

for some Tm > 0. Clearly, a periodic rotating wave changes its profile periodically in
time (see Figure 1.1). The average rotating speed of a periodic rotating wave is

ωm =
2π

mTm
.

In what follows we concentrate our attention on periodic rotating waves with average
rotating speed ωm = O(1) as m → ∞.

Before stating the main results, we give some assumptions on the boundaries:

α1 + β1 <
π

2
, α2 + β2 <

π

2
,(1.5)

|h′| ·M < 1, |g′| ·M < 1,(1.6)

where M = max{M1,M2} + 1 with

M1 := max

{
tanα1

H
,
tanβ1

H
,
tanα2

G
,
tanβ2

G

}
,(1.7)

and M2 > 0 is such that

w(2 + 5H2w2 + H4w4) > A(1 + H2w2)3/2 for w > M2.(1.8)

Roughly speaking these conditions require that the undulation of the boundaries be
gradual. Assumption (1.5) excludes the possible singularity that the curve touches
∂Ωm at some points besides the two end points. Assumption (1.6) guarantees the
boundedness of |ur| on the boundaries (see Appendix A), and it also ensures that we
can convert u(r, t) into another unknown v(z, t) defined on z ∈ [0, 1]; we can then
simply carry out a rigorous proof (see (A.9) in Appendix A). It should be pointed out
that these conditions are not necessary ones and can be weakened in special cases.

About the existence we have the following.
Theorem 1.1. Assume (1.5) and (1.6) hold. Then for large m, (1.2)–(1.3) has

a periodic rotating wave Um(r, t) if and only if

A >
2H sinα1 + 2G sinα2

G2 −H2
.(1.9)

Moreover, a periodic rotating wave is unique up to a time-shift when it exists.
In fact, (1.9) is a necessary and sufficient condition for the existence of rotating

lower solutions (see subsection 2.1.3).
A more important aim in this paper is to study how the periodic rotating wave

and its average speed depend on the shape of the boundaries. In chemical, physical,
or biological experiments, traveling/rotating waves can be observed directly. In this
sense, people concern themselves with the traveling/rotating speed rather than the
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existence, though the latter is important from a mathematical point of view. Gener-
ally, traveling/rotating waves in a trivial domain with flat boundaries can be studied
by converting the problem to an ODE. However, the propagation in a domain with
undulating boundaries (a domain with reticulated structure) cannot be converted to
an ODE. We have to deal with a PDE directly. Thus the study for the speed of
traveling/rotating waves in undulating domains is important and difficult. Very little
is known so far.

We estimate the average rotating speed ωm and determine its homogenization
limit as well as the homogenization limit of Um(r, t) as m → ∞.

Theorem 1.2. Assume (1.5), (1.6), and (1.9) hold. Then for large m,
(i) there exists C = C(h′, g′, H,G,A) > 0 such that ωm satisfies

ω∗ − C

m
< ωm < ω∗ +

C√
m

< ω0,(1.10)

where ω∗ = ω∗(α1, α2, H,G,A) is given by the unique solution (ω∗, ϕ∗(r;ω∗)) of

⎧⎪⎪⎨
⎪⎪⎩

ω =
ϕ′′

1 + r2ϕ′2 +
2ϕ′ + r2ϕ′3

r(1 + r2ϕ′2)
+ A

√
1 + r2ϕ′2

r
, H < r < G,

ϕ′(H) =
tanα1

H
, ϕ′(G) =

− tanα2

G
,

(1.11)

where ω0 is given by the unique rotating wave solution of (1.2), (1.4) in Ω0;
(ii) as m → ∞, Um(r, t) → ϕ∗(r;ω∗)+ω∗ t+C in C2,1([H,G]× [−T, T ]) for any

T > 0, where C is a constant independent of T .
ωm < ω0 in (1.10) implies that boundary undulation always lowers the speed of

the rotating wave, and ω∗ < ω0 implies that the effect of spatial inhomogeneity of
Ωm is left to the homogenization limit. Moreover, the fact that homogenized speed
ω∗ depends only on α1, α2 (besides H,G,A) is a surprising result.

In [15], we studied periodic traveling waves of (1.1) in an undulating band domain,
obtaining results similar to those above. The problem in that paper is different from
the present one on several points. First, since the boundaries of an annulus have
period 2π anyway, Theorem 1.1 remains valid even if the smallest periods of h and
g are 2π, provided the undulation of h and g is gradual. (We omit the detail in this
paper.) Second, the backgrounds are different. Mean curvature flows in an unbounded
band domain are reduced from a traveling front or a traveling pulse, but in a bounded
annulus can be reduced only from a rotating pulse. Third, the symmetries of a band
domain and an annulus are different. This can be seen from the following fact. A flat
band domain is quite simple, in which we have a planar traveling wave with speed
A, while a trivial annulus is not symmetric in the direction of radius, in which the
rotating wave of V = κ + A is ϕ(r) + ω0t; its profile is not planar. Especially, in
case G−H is large, the graph of ϕ(r) may be a spiral which turns around the origin
for several rounds (cf. [9], [20], [22]). Fourth, the boundaries of the band domain in
[15] are symmetric and hence the boundary conditions are symmetric. But in this
paper, outer and inner boundaries of Ωm are given by different functions h, g, and the
boundary conditions (1.3) are also not symmetric.

In section 2, we prove Theorem 1.1. First, we give a global solution of an initial-
boundary value problem for appropriate initial data. Next, we use the global solution
to construct an entire solution by using the renormalization method. Then we prove
the uniqueness (up to a time-shift) of the entire solution; this immediately implies the
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existence and uniqueness of periodic rotating wave. The necessity of (1.9) is explained
in section 2.5. Finally, we state without proof the stability of periodic rotating waves.

In section 3 we prove Theorem 1.2: we estimate the average rotating speed by
constructing a precise upper solution. We point out that our construction for an upper
solution is a peculiar method, since the upper solution is larger than the solution not
only on one period and not for all time, but just in time-interval [0, 1]. However, this
is good enough to give the upper bound of the average rotating speed.

2. Existence of periodic rotating waves.

2.1. Global solutions of the initial-boundary value problem. The proof
for the existence of global solutions is divided into several steps. In subsection 2.1.1
we state the comparison principle as a preliminary. In subsection 2.1.2 we construct
appropriate initial data u0(r). In subsection 2.1.3 we study rotating waves in trivial
annuli, and select two of them as the lower solution and the upper solution. Using
them we give the estimate of |u| in finite time-interval (0, T ]. In subsection 2.1.4 we
give the a priori estimates for |ur|, |ur|μ and for |u|μ by converting the problem of
u(r, t) to a problem of a new unknown v(z, t) (z ∈ (0, 1)). Also we show the global
existence, smoothness, and C2+μ,1+μ

2 bound of u. The proofs in subsection 2.1.4 are
long and the idea is similar to that of [15]; we move the details to the appendices.

In what follows, we also write 1
m = ε for convenience.

2.1.1. Comparison principle.
Definition 2.1. Let u1(r, t), u2(r, t) (t ≥ 0) be two functions satisfying (r, ui(r, t))

∈ Ωm (i = 1, 2). Then u1 is called a lower solution of (1.2)–(1.3) if

u1t ≤
u1rr

1 + r2u2
1r

+
2u1r + r2u3

1r

r(1 + r2u2
1r)

+ A

√
1 + r2u2

1r

r
(2.1)

for t ≥ 0 and r with (r, u1(r, t)) ∈ Ωm,

u1r(r, t) ≥
h′(u1)

r2
for t ≥ 0 and r with (r, u1(r, t)) ∈ ∂1Ωm,

u1r(r, t) ≤
−g′(u1)

r2
for t ≥ 0 and r with (r, u1(r, t)) ∈ ∂2Ωm.

(2.2)

u2 is said to be an upper solution of (1.2)–(1.3) if the opposite inequalities hold.
Lemma 2.2. Assume u1(r, t) and u2(r, t) are the lower solution and the upper

solution of (1.2)–(1.3) for 0 ≤ t < t1, respectively. If u1(r, 0) ≤ u2(r, 0), then u1(r, t) ≤
u2(r, t) for 0 ≤ t < t1 and r with (r, ui(r, t)) ∈ Ωm. If u1(r, 0) ≤ u2(r, 0) and
u1(r, 0) �≡ u2(r, 0), then u1(r, t) < u2(r, t) for 0 < t < t1 and r with (r, ui(r, t)) ∈ Ωm.

This lemma follows from the maximum principle.

2.1.2. Appropriate initial data. Assume θ1 ∈ (0, 2πε) such that h′(θ1) = 0
and h′(θ) ≤ 0 for θ1 ≤ θ < θ1 +δ1 for small δ1 > 0. Since the period of the boundaries
is 2πε, there exists θ2 ∈ (−2πε + θ1, 2πε + θ1) such that g′(θ2) = 0 and g′(θ) ≤ 0
for θ2 ≤ θ < θ2 + δ1, provided δ1 > 0 is small. Denote P1 = (H − h(θ1), θ1) and
P2 = (G + g(θ2), θ2). It is easy to connect P1 and P2 by a smooth curve Γ0 (denote
its function by u0(r)) such that the parts of Γ0 near the boundaries are straight line
segments, it contacts ∂1Ωm (resp., ∂2Ωm) at P1 (resp., P2) vertically, and

|u0(r)| = O(ε), |u0r(r)| = O(ε), |u0rr(r)| = O(ε).
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Choose δ2 > 0 small. Then function u0(r)+δ2t satisfies (2.1). Moreover, for small
σ1 > 0 and t ∈ [0, σ1], this function also satisfies (2.2), which is equivalent to saying
that the graph of u0(r) + δ2t contacts ∂iΩm with angles not less than π

2 . Therefore,
u0(r) + δ2t is a lower solution of (1.2)–(1.3) on t ∈ [0, σ1).

Assume u(r, t) is a solution of (1.2)–(1.3) with initial data u0(r) on time-interval
0 ≤ t < σ2. Denote σ3 := min{σ1, σ2}. Then using the comparison principle to
solution u(r, t) and lower solution u0(r) + δ2t we have

u(r, t) ≥ u0(r) + δ2t, 0 ≤ t < σ3.

For any given t1, t2 ∈ [0, σ3) with t2 > t1, the above inequality implies that

u(r, t2 − t1) ≥ u0(r) + δ2(t2 − t1) > u0(r).

Note that a solution starting at u(r, t2 − t1) is nothing but u(r, t+ t2 − t1). Applying
again the comparison principle again to u(r, t+ t2 − t1) and to solution u(r, t) (which
starts at u0(r)), we have

u(r, t + t2 − t1) > u(r, t), 0 ≤ t < σ2 − (t2 − t1).

Especially, at t = t1, it is u(r, t2) > u(r, t1). Since t1, t2 ∈ (0, σ3) with t2 > t1 can be
chosen arbitrarily, we have

ut(r, t) ≥ 0, 0 ≤ t < σ3.

Finally, it is easily seen that this inequality holds indeed on [0, σ2).

2.1.3. Rotating waves in trivial annuli. In this part we study rotating waves
in trivial annuli. We shall select two such rotating waves as the lower solution and
the upper solution, and then we can give an a priori estimate of |u| for finite time T
by using the lower and upper solutions.

Let H̃ and G̃ be constants satisfying H̃ = H + O(ε), G̃ = G + O(ε). Let γ1, γ2 ∈
(−π

2 ,
π
2 ) and consider the two-point boundary value problem of the ODE⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω =
ϕ′′

1 + r2ϕ′2 +
2ϕ′ + r2ϕ′3

r(1 + r2ϕ′2)
+ A

√
1 + r2ϕ′2

r
, H̃ < r < G̃,

ϕ′(H̃) =
tan γ1

H̃
, ϕ′(G̃) =

− tan γ2

G̃
, ϕ(H̃) = 0.

(2.3)

If there exist ω and ϕ(r) = ϕ(r;ω, H̃, G̃, γ1, γ2) satisfying (2.3), then we call the pair
(ω, ϕ(r)) a solution of (2.3). This solution determines a rotating wave ϕ(r) + ωt of

(1.2) in annulus {(r, θ)|H̃ < r < G̃}, and its graph contacts r = H̃ (resp., r = G̃)
with angle π

2 + γ1 (resp., π
2 + γ2).

Lemma 2.3. (i) Assume (1.9) holds and ε is small. Let γi ∈ [0, αi+ζiε) (i = 1, 2)
for ζi = O(1). Then (2.3) has a unique solution (ωl, ϕ(r;ωl)), and ωl > 0.

(ii) Let γi = −βi+O(ε) (i = 1, 2). Then (2.3) has a unique solution (ωu, ϕ(r;ωu)),
and ωu > 0.

(iii) ωl < ωu.
Proof. Set ψ(r) = ϕ′(r), and consider the following initial value problem:⎧⎪⎪⎨

⎪⎪⎩
ψ′ = ω(1 + r2ψ2) − 2ψ + r2ψ3

r
−A

(1 + r2ψ2)3/2

r
, r ≥ H̃,

ψ(H̃) =
tan γ1

H̃
.

(2.4)
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For each ω, denote the solution of (2.4) by ψ(r;ω). It is clear that ψ(r;ω) is strictly
increasing in ω.

(i) First, when ω ≥ A/H̃, we have ψ(r) ≥ 0 (r > H̃).
Next, when ω = 0, the solution of (2.4) is

ψ(r; 0) =
L
r − Ar

2

r
√

1 − (Lr − Ar
2 )2

for r ∈ [H̃, r̃),

where L = A
2 H̃

2 + H̃ sin γ1 and r̃ = 1+
√

1+2AL
A . If r̃ ≤ G̃, then for some ω1 > 0,

ψ(r;ω1) is defined on [H̃, G̃] and ψ(G̃;ω1) <
− tan γ2

G̃
. If r̃ > G̃, then ψ(G̃; 0) < − tan γ2

G̃
if and only if the following holds:

A >
2H̃ sin γ1 + 2G̃ sin γ2

G̃2 − H̃2
.(2.5)

This is true since (1.9) holds and ε is small. Then we always have ω2 ≥ 0 such that

ψ(G̃;ω2) <
− tan γ2

G̃
.

Therefore, there is a unique ωl > 0 such that the solution ψ(r;ωl) of (2.4) is

defined on [H̃, G̃] and ψ(G̃;ωl) = − tan γ2

G̃
, which determines a solution of (2.3): ϕ(r) =∫ r

H̃
ψ(ζ;ωl)dζ.
(ii) can be proved in a way similar to (i) above, and (iii) is verified by an easy

analysis of (2.4).
Now we use this lemma to construct lower and upper solutions. We show that for

appropriate choice of H̃, G̃, γ1, and γ2, the rotating wave ϕ(r;ω, H̃, G̃, γ1, γ2) + ωt,
given by the unique solution of (2.3), is a lower/upper solution of (1.2)–(1.3).

Remark 2.1. We remark that it is complicated to state the optimal lower solution
(cf. section 2.5). Here by optimal lower solution we mean a rotating wave whose
graph contacts ∂Ωm with angles not smaller than π

2 and, at some points, exactly
π
2 . For example, even if we choose a rotating wave whose graph contacts ∂1Ωm

perpendicularly at point (H −h(s1), s1) where h′(s1) = H tanα1, and contacts ∂2Ωm

perpendicularly at point (G+ g(s2), s2) where g′(s2) = G tanα2, we are not yet clear
whether the angles between the graph of the rotating wave and ∂Ωm are larger than
π
2 at other places, because this depends on the geometry of ∂Ωm and the shape of the
rotating wave. So for simplicity, instead of constructing the optimal lower solution,
we construct a good lower solution, which is a rotating wave whose graph contacts
∂Ωm with angles not smaller than π

2 , and equals π
2 + O(ε) at some points.

In what follows, we shall use many positive constants μ, C, ζ1, ζ2, etc., which
may be different from line to line and may depend on some of h, g,H,G,A,m and
sometimes on t. When such a constant depends only on h′, g′, H,G,A, or even if it
depends on h, g, and m but can be replaced by another constant independent of h, g,
and m (as m → ∞), then we will omit the dependence on h, g, h′, g′, H,G,A,m and
just write it simply as μ or C; only when μ or C really depends on m and t do we
write it out clearly, i.e., μ(t), C(t,m), etc.

Lemma 2.4. Assume (1.9) holds and ε is small. Then (1.2)–(1.3) has a lower
solution ϕ̂(r) + ω̂t and upper solution ϕ̃(r) + ω̃t.

Let u(r, t) (t ∈ [0, T )) be the solution of (1.2)–(1.3) with initial data u0(r) as in
subsection 2.1.2. Then for t0 ∈ [0, T ) and t ∈ [0, T − t0) we have

ω̂t− C ≤ u(r, t + t0) − u(r, t0) ≤ ω̃t + C(2.6)

for some C > 0.
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Fig. 2.1. Good lower solution.

Proof. Denote h0 = maxs h(s), g0 = maxs g(s). Consider⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω =
ϕ′′

1 + r2ϕ′2 +
2ϕ′ + r2ϕ′3

r(1 + r2ϕ′2)
+ A

√
1 + r2ϕ′2

r
, H − h0 < r < G + g0,

ϕ′(H − h0) =
tan γ1

H − h0
, ϕ′(G + g0) =

− tan γ2

G + g0
, ϕ(H − h0) = 0,

(2.7)

with γi = αi + ζiε (i = 1, 2). Denote the unique solution of this problem by (ω̂, ϕ̂(r)).
Suppose that the graph of ϕ̂(r) contacts ∂1Ωm (resp., ∂2Ωm) at P1 (resp., P2) with
angle ϑ1 (resp., ϑ2) (see Figure 2.1).

Then a careful analysis shows that, for large ζi (i = 1, 2) with order O(1), we
have ϑi ≥ π

2 (i = 1, 2), and there exist s1 and s2 such that

ϑ1 =
π

2
+ O (ε) at (H − h(s1), s1), ϑ2 =

π

2
+ O(ε) at (G + g(s2), s2).(2.8)

Hence ϕ̂(r) + ω̂t is a good lower solution of (1.2)–(1.3).
In a similar way, using (ii) in Lemma 2.3 one can find a solution (ω̃, ϕ̃(r)) of (2.3)

with γi = −βi− ζiε. It is easy to see that when ζi > 0 is large, the graph of ϕ̃(r)+ ω̃t
contacts ∂Ωε with angles smaller than π

2 , and equal to π
2 +O(ε) at some points. This

means that ϕ̃(r) + ω̃t is an upper solution of (1.2)–(1.3).
Now if u(r, t) is the solution of (1.2)–(1.3) on [0, T ), then we denote osc u(r, t) :=

maxr u(r, t) − minr u(r, t) to be the oscillation of u(r, t). By (i) of Lemma 2.5 below,
which has nothing to do with this lemma, there exists C such that

osc ϕ̂(r), osc ϕ̃(r), osc u(r, t) ≤ C.

For any t0 ∈ [0, T ) and t ∈ [0, T − t0), we have

ϕ̂(r) + u(0, t0) − 2C ≤ u(r, t0) ≤ ϕ̃(r) + u(0, t0) + 2C,

ϕ̂(r) + ω̂t + u(0, t0) − 2C ≤ u(r, t + t0) ≤ ϕ̃(r) + ω̃t + u(0, t0) + 2C.

Hence

ω̂t− 6C ≤ u(r, t + t0) − u(r, t0) ≤ ω̃t + 6C.
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2.1.4. A priori estimates and global existence. In this subsection, we give
some a priori estimates and then prove the global existence of solutions of (1.2)–(1.3).
Since the proofs are very long and are not our main purpose in this paper, we move
them to the appendices.

For any T > 0, denote QT := {(r, t) | η1(t) < r < η2(t) and 0 < t ≤ T}.
Lemma 2.5. Let u(r, t) ∈ C2,1(QT ) be a solution of (1.2)–(1.3) with initial data

u0(r). Then for (r, t) ∈ QT we have
(i) |ur(r, t)| < M ;
(ii) there exist μ(T ) > 0 and C > 0 (independent of T ) such that |ur|μ ≤ C;
(iii) there exist μ(T ) > 0 and C > 0 (independent of T ) such that |u|μ ≤ C.
Based on Lemmas 2.4 and 2.5, we have the following result.
Lemma 2.6. Assume (1.9) holds. Then (1.2)–(1.3) with initial data u0 has a

unique, global solution u(r, t) which satisfies ut(·, t) ≥ 0.
Moreover, for any T > 0, there exist positive constants μ(T ), C1, and C2 (C1, C2

are independent of T ) such that

u ∈ C2+μ,1+μ
2 (QT ) and ‖u(r, t)‖

C2+μ,1+
μ
2 (QT )

≤ C1T + C2.(2.9)

2.2. Existence of entire solutions. A solution defined on t ∈ (−∞,∞) is
called an entire solution. We use the renormalization method to show the existence
of entire solutions.

Lemma 2.7. Equations (1.2)–(1.3) have an entire solution U(r, t) such that
Ut(r, t) ≥ 0 and

ω̂t− Ĉ ≤ U(r, t + t0) − U(r, t0) ≤ ω̃t + C̃ for t0 ∈ R and t ≥ 0,(2.10)

for some Ĉ, C̃ > 0.
Proof. Let u be the global solution of (1.2)–(1.3) obtained in Lemma 2.6. Take

tn → ∞ in the following way:

max
r

u(r, tn) = n · 2πε (n = n0, n0 + 1, . . .),

where n0 is a large integer. Set

un(r, t) := u(r, t + tn) − n · 2πε.

Then un also satisfies (1.2)–(1.3) for −tn ≤ t < ∞, and

max
r

un(r, 0) = 0,
∂un

∂t
≥ 0 (n = n0, n0 + 1, . . .).

By (2.6), there exist Ĉ, C̃ > 0 such that

ω̂t− Ĉ ≤ un(r, t) ≤ ω̃t + C̃ for − tn ≤ t < ∞.(2.11)

For any given T > 0, consider the problem about un (for large n) on [−T, T ].
One can see that (i)–(iii) of Lemma 2.5 and (2.9) remain valid for un, the constant μ
depends on T , and neither μ nor C depend on n. Therefore there exist μ = μ(T ) > 0,

U(r, t) ∈ C2+μ,1+μ
2 (QU

T ), and a sequence nj → ∞ (j → ∞) such that

unj (r, t) → U(r, t) in C2+μ,1+μ
2 (QU

T ),

where QU
T := {(r, t) | t ∈ [−T, T ], r with (r, U(r, t)) ∈ Ωm}.
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Taking T → ∞ and using Cantor’s diagonal argument, one finds that there exists
a sequence, still writing it as nj (nj → ∞ as j → ∞) and U(r, t) ∈ C2,1(QU

∞) with

QU
∞ = limT→∞ Qz

T , such that for any T > 0, U(r, t) ∈ C2+μ(T ),1+
μ(T )

2 (QU
T ) for some

μ(T ) > 0 and

unj
(r, t) → U(r, t) in C2+μ(T ),1+

μ(T )
2 (QU

T ).

Hence U is an entire solution of (1.2)–(1.3). It is also easy to see that U satisfies
(2.10), maxr U(r, 0) = 0, and satisfies all the conclusions for u in Lemmas 2.5 and
2.6.

2.3. Uniqueness of entire solution. Assume U(r, t) and W (r, t) are two entire
solutions of (1.2)–(1.3) satisfying (2.10) and the conclusions for u in Lemmas 2.5 and
2.6. We shall prove that U is a time-shift of W . Define

ΛU,W (t) := inf{Λ > 0 | ∃ a ∈ R such that U(r, t + a) ≤ W (r, t) ≤ U(r, t + a + Λ)}.

Lemma 2.8. (i) ΛU,W (t) is monotone decreasing, and there exists M > 0 such
that 0 ≤ ΛU,W (t) ≤ M for t ∈ R.

(ii) If ΛU,W (t0) = 0 for some t0, then there exists a ∈ R such that U(r, t + a) ≡
W (r, t) for t ≥ t0. If ΛU,W (t0) > 0 for some t0, then ΛU,W (t) > 0 and is strictly
decreasing for t < t0.

Proof. (i) For any t ∈ R, by the definition of ΛU,W (t) there exist r1 and r2 such
that

U(r1, t + a) = W (r1, t), W (r2, t) = U(r2, t + a + ΛU,W (t)),

so

max
r

U(r, t + a + ΛU,W (t)) − min
r

U(r, t + a)

≤ U(r2, t + a + ΛU,W (t)) + osc U − (U(r1, t + a) − osc U)

≤ W (r2, t) −W (r1, t) + 2M(G−H) ≤ 3M(G−H).

On the other hand, (2.10) implies that

max
r

U(r, t + a + ΛU,W (t)) − min
r

U(r, t + a)

≥ U(r, t + a + ΛU,W (t)) − U(r, t + a) ≥ ω̂ · ΛU,W (t) − Ĉ.

Hence

0 ≤ ΛU,W (t) ≤ 3M(G−H) + Ĉ

ω̂
.

(ii) The first statement in (ii) is clear by the uniqueness. If ΛU,W (t0) > 0 for some
t0, then for any t < t0 we have

U(r, t + a) ≤ W (r, t) ≤ U(r, t + a + ΛU,W (t)) for some a = a(t).

By the strong comparison principle, after time τ = t0 − t > 0 we have

U(r, t + τ + a(t)) < W (r, t + τ) < U(r, t + τ + a(t) + ΛU,W (t)),
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i.e.,

U(r, t0 + a(t)) < W (r, t0) < U(r, t0 + a(t) + ΛU,W (t)).

By the definition of ΛU,W (t0) we have

U(r, t0 + a(t0)) ≤ W (r, t) ≤ U(r, t0 + a(t0) + ΛU,W (t0))

for some a(t0); each of the two equalities holds at some r. Since Ut ≥ 0 we have

a(t) < a(t0) and a(t) + ΛU,W (t) > a(t0) + ΛU,W (t0),

and so ΛU,W (t) > ΛU,W (t0).
It is also easy to know the following.
Lemma 2.9. Let Un and Wn be two sequences of entire solutions of (1.2)–(1.3).

If Un → U∞ for t ∈ R and r with (r, U∞(r, t)) ∈ Ωm, Wn → W∞ for all t ∈ R and r
with (r,W∞(r, t)) ∈ Ωm, then ΛUn,Wn

(t) → ΛU∞,W∞(t) for every t.
Our aim in this section is to prove the following.
Lemma 2.10. W (r, t) is a time-shift of U(r, t).
Proof. We need to show only that ΛU,W (t) = 0 for all t ∈ R. If this is not true,

then ΛU,W (t0) > 0 for some t0.
By the monotonicity and boundedness of ΛU,W (t), we have limt→−∞ ΛU,W (t) =: Λ̄

for some Λ̄ satisfying 0 < ΛU,W (t0) < Λ̄ ≤ M .
Set ln =

[
maxr U(r,−n) · m

2π

]
and define

Un(r, t) := U(r, t− n) − 2π

m
ln, Wn(r, t) := W (r, t− n) − 2π

m
ln.

Then both of Un and Wn satisfy the inequalities for un in (2.11), and so a discussion
similar to that in the proof of Lemma 2.7 shows that there exists a sequence nj →
∞ (j → ∞) and U∞,W∞ ∈ C2,1, which are entire solutions of (1.2)–(1.3), such that
as j → ∞,

Unj (r, t) → U∞(r, t) for t ∈ R and r with (r, U∞(r, t)) ∈ Ωm,

Wnj (r, t) → W∞(r, t) for t ∈ R and r with (r,W∞(r, t)) ∈ Ωm.

It follows from Lemma 2.9 that ΛU∞,W∞(t) = limj→∞ ΛUnj
,Wnj

(t).

On the other hand, ΛUnj
,Wnj

(t) = ΛU,W (t−nj), so ΛU∞,W∞(t) = limj→∞ ΛU,W (t−
nj) = Λ̄, that is, ΛU∞,W∞(t) ≡ Λ̄ (t ∈ R). Applying (ii) of Lemma 2.8 to functions U∞
and W∞ we see that this is true only if Λ̄ = 0, a contradiction to Λ̄ > ΛU,W (t0) > 0.

Therefore, ΛU,W (t) = 0 (for all t ∈ R), and so there exists a0 such that U(r, t +
a0) ≡ W (r, t) for t ∈ R.

2.4. Existence and uniqueness of periodic rotating wave.
Proof for the sufficiency part of Theorem 1.1. In previous sections we obtained

an entire solution U(r, t) of (1.2)–(1.3). Clearly, U(r, t)+ 2π
m is also an entire solution;

Lemma 2.10 implies that U(r, t)+ 2π
m is a time-shift of U(r, t), i.e., there exists Tm > 0

such that

U(r, t) +
2π

m
= U(r, t + Tm) for t ∈ R and r with (r, U(r, t)) ∈ Ωm.

In other words, U(r, t) is a periodic rotating wave.
The uniqueness follows from the uniqueness of the entire solution.
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2.5. Necessity of (1.9). We show that (1.9) is a necessary condition for the
existence of counterclockwise periodic rotating waves with average rotating speeds
O(1).

(i) Assume A = 2H sinα1+2G sinα2

G2−H2 .

From the proof of Lemma 2.3, one sees that when H̃ = H, G̃ = G, γ1 = α1, γ2 =
α2, (2.3) has the solution (0, ϕ(r; 0, H,G, α1, α2)).

Extend this solution ϕ(r) a little beyond [H,G]; suppose its graph contacts ∂1Ωm

(resp., ∂2Ωm) at a point P ′
1 = (H − h(s′1), s

′
1) for some s′1 (resp., P ′

2 = (G+ g(s′2), s
′
2)

for some s′2). Choose si ∈ (s′i, s
′
i + 2πε) (i = 1, 2) such that h′(s1) = H tanα1,

g′(s2) = G tanα2. Denote P1 = (H − h(s1), s1), P2 = (G + g(s2), s2). Then when
we move the extended graph of ϕ(r) such that it contacts ∂1Ωm at P1, the angle ϑ1

between the graph of ϕ(r) and ∂1Ωm will be π
2 + O(ε). A similar conclusion is true

at P2 ∈ ∂2Ωm.
Let us see the shape of ∂iΩm near Pi (i = 1, 2). First, at P1, h

′(s1) = maxs h
′(s) =

H tanα1, h
′′(s1) = 0 and h′′′(s1) = O( 1

ε2 ). Then for Δs ∈ (−ε3/2, ε3/2), we have

h′(s1 + Δs) = H tanα1 +
h′′′(s1)

2
(Δs)2 + h(4)(s∗)(Δs)3

= H tanα1 + O

((
Δs

ε

)2
)

= h′(s1) + O(ε).

A similar discussion is valid on ∂2Ωm near P2.
Since the solution of (2.7) depends on γi continuously, we know that when γi =

αi − ζiε (ζi > 0 are large), there is a unique ωs > 0, ωs = O(ε) and ϕs(r;ωs) solves
(2.7). Moreover, the graph of ϕs(r) + ωst contacts ∂1Ωm at points (H − h(s), s)
for s ∈ (s1 − ε3/2, s1 + ε3/2) with angles less than π

2 , and contacts ∂2Ωm at points

(G + g(s), s) for s ∈ (s2 − ε3/2, s2 + ε3/2) with angles less than π
2 .

Suppose the end points of ϕs(r) + ωst reach si + ε3/2 at time ti (i = 1, 2) and
denote t3 := min{t1, t2}; then the discussion in the previous paragraph shows that
ϕs(r) + ωst is an upper solution on t ∈ [0, t3]. In this period the speed of ϕs(r) + ωst
is ωs = O(ε), and the θ-distance of this period is O(ε3/2). Hence the upper solution
ϕs(r) + ωst uses more time than Cε1/2 (for some C > 0) to pass this period. Any
rotating wave will be blocked by this kind of upper solution in each period of Ωm such
that the rotating wave passes one period in time greater than Cε1/2. In other words,
its average speed is at most O(ε1/2). This is not the case we are interested in here.

(ii) In case A < 2H sinα1+2G sinα2

G2−H2 , one can even find a curve (like ϕs(r) above) such
that it rotates clockwise temporarily in a small period, and it blocks counterclockwise
rotation.

Consequently, (1.9) is a necessary condition.

2.6. Stability. One has the following stability result by general theory in [19].
Theorem 2.11. Let U(r, t) be a counterclockwise periodic rotating wave of (1.2)–

(1.3). Then U(r, t) is asymptotically stable in the C1 sense. More precisely, any
solution u(r, t) of (1.2)–(1.3) whose initial data u(r, 0) is sufficiently close to U(r, t0)
for some t0 ∈ R satisfies

lim
t→∞

‖U(·, t + t1) − u(·, t)‖C1 = 0

for some t1 ∈ R, where ‖ · ‖C1 is understood in the following sense: U(r, t) and u(r, t)
correspond to V (z, t) (z ∈ (0, 1)) and v(z, t) (z ∈ (0, 1)), respectively, by using (A.2)
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in the appendices. The above limit is understood as

lim
t→∞

‖V (z, t + t1) − v(z, t)‖C1 = 0.

3. Estimate of average speed: Proof of Theorem 1.2.

3.1. Proof of (i) in Theorem 1.2. Recall that in section 2.1 we construct a
good lower solution ϕ̂(r) + ω̂t, so the average rotating speed ωm satisfies ωm ≥ ω̂.

Denote by (ω∗, ϕ∗(r)) the solution of (1.11) (that is, (2.3) with H̃ = H, G̃ = G, γ1 =
α1, γ2 = α2). Then it is easy to see by the proofs of Lemmas 2.3 and 2.4 that

ω∗ = ω̂ + O (ε) , ϕ∗ = ϕ̂ + C + O (ε) , ϕ∗′ = ϕ̂ ′ + O (ε) .(3.1)

Therefore ωm > ω∗ − C
m for some C > 0.

Also from the proofs of Lemmas 2.3 and 2.4 we have ω̂ < ω0 and so ω∗ < ω0.
This proves the first and the third inequalities of (1.10).

3.1.1. Upper solution. Now we use ϕ̂(r) + ω̂t to construct an upper solution.
Let U(r, t) be the periodic rotating wave of (1.2)–(1.3). We note that U(r, t)

∣∣
[H,G]

is
nothing but the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ũt =

ũrr

1 + r2ũ2
r

+
2ũr + r2ũ3

r

r(1 + r2ũ2
r)

+ A

√
1 + r2ũ2

r

r
, t > 0, H < r < G,

ũ(H, t) = U(H, t), ũ(G, t) = U(G, t), t > 0,

ũ(r, 0) = U(r, 0), H < r < G.

(3.2)

Without loss of generality, we may assume U(r, 0) ≤ ϕ̂(r) for r ∈ [H,G] and
U(r0, 0) = ϕ̂(r0) for some r0 ∈ [H,G]. Recall ε = 1/m and define

w(r, t) = E
√
ε
(
1 − e−a2t sin(ar + b)

)
+ aEF

√
ε t for r ∈ [H,G], t ≥ 0,(3.3)

where E = O(1) is determined later, a = π
G−H , b = −πH

G−H , and

F = max
H−h0≤r≤G+g0

| F (r) | + 2,(3.4)

where

F =
2(rϕ̂′′+ 2ϕ̂′+ r2(ϕ̂′)3)r2ϕ̂′− 2 − 2r2(ϕ̂′)2 − 3r2(ϕ̂′)2(1+ r2(ϕ̂′)2)

r(1 + r2(ϕ̂′)2)2
− Arϕ̂′√

1 + r2(ϕ̂′)2
.

It is clear that

w − aEF
√
εt ≥ 0, wt = wrr + aEF

√
ε > 0, minw(r, 0) = 0.

Lemma 3.1. ū(r, t) := w(r, t)+ϕ̂(r)+ω̂t is an upper solution of (3.2) on t ∈ [0, 1],
and hence

ū(r, t) ≥ U(r, t) for r ∈ [H,G], t ∈ [0, 1].(3.5)

Proof. To prove the lemma, it suffices to show that

ūt ≥
ūrr

1 + r2ū2
r

+
2ūr + r2ū3

r

r(1 + r2ū2
r)

+ A

√
1 + r2ū2

r

r
for H < r < G, t > 0,(3.6)
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and

U(H, t) ≤ ū(H, t), t ∈ [0, 1],(3.7)

U(G, t) ≤ ū(G, t), t ∈ [0, 1].(3.8)

We first prove (3.6). Direct calculation shows that

ūt −
ūrr

1 + r2ū2
r

− 2ūr + r2ū3
r

r(1 + r2ū2
r)

−A

√
1 + r2ū2

r

r

= wt −
wrr

1 + r2(wr + ϕ̂′)2
+ F1(r)wr + O(ε) ≥ 0,

where

F1(r) =
2(rϕ̂′′ + 2ϕ̂′ + r2(ϕ̂′)3)r2ϕ̂′ − 2 − 2r2(ϕ̂′)2 − 3r2(ϕ̂′)2(1 + r2(ϕ̂′)2)

r(1 + r2(ϕ̂′)2)(1 + r2(wr + ϕ̂′)2)

− 2Arϕ̂′√
1 + r2(ϕ̂′)2 +

√
1 + r2(wr + ϕ̂′)2

= F (r) + O(
√
ε)

satisfies

|F1(r)| < F − 1 (note that |wr| ≤ aE
√
ε ).

Next we prove (3.7) and (3.8). Suppose that they hold on t ∈ [0, τ ] for some
τ < 1; we show that they hold in fact on t ∈ [0, 1].

Construct an arc θ = ζ(r) as follows (see Figure 3.1). Assume that h′(s1) =
H tanα1. Denote P = (H − h(s1), s1) ∈ ∂1Ωm. Choose ζ(r) to be the arc with
curvature −A that contacts ∂1Ωm perpendicularly at P . Without loss of generality,
assume that ζ(H) = θ0 ∈ (−2πε, 2πε). Then P and (H, θ0) are on ζ(r).

By (2.8), we know that both ϕ̂ and ζ(r) have almost the same slope at P :

ϕ̂ ′(H − h(s1)) − ζ ′(H − h(s1)) = O(ε).

Hence, there exists M > 0 such that

|ϕ̂ ′(H + l
√
ε) − ζ ′(H + l

√
ε)| ≤ (M − 1)

√
ε for any l ∈ [0, 1].(3.9)

Choose D(τ) > 0, such that ζ(r) + D(τ) intersects ū(r, τ) at r = H +
√
ε, that

is, ζ(H +
√
ε) + D(τ) = ū(H +

√
ε, τ) (see Figure 3.1). Then by (3.9) we have

D(τ) = w(H +
√
ε, τ) + ϕ̂(H +

√
ε) + ω̂τ − ζ(H +

√
ε)

= ū(H, τ) + wr(H, τ)
√
ε + ϕ̂(H +

√
ε) − ϕ̂(H) − ζ(H +

√
ε) + o(ε)

< ū(H, τ) − aEe−a2

ε + (M + 2π)ε.

Therefore when we choose E satisfying aEe−a2

> 8π +M we have D(τ) < ū(H, τ)−
6πε.

Since ζ(r) contacts ∂1Ωm at P perpendicularly, there exists δ ∈ [0, 2πε) such that
the graph of ζ(r)+D(τ)+δ contacts ∂1Ωm perpendicularly and hence ζ(r)+D(τ)+δ
is stationary. So

U(H +
√
ε, τ) ≤ ū(H +

√
ε, τ) ≤ ζ(H +

√
ε) + D(τ) + δ
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Fig. 3.1. Upper solution.

implies that U(r, τ) ≤ ζ(r) + D(τ) + δ for H < r < H +
√
ε. Especially,

U(H, τ) ≤ ζ(H) + D(τ) + δ ≤ ū(H, τ) − 2πε.

So

ū(H, τ + t) ≥ ū(H, τ) ≥ U(H, τ) + 2πε ≥ U(H, τ + t) for t ∈ [0, Tm].

This means that (3.7) holds on t ∈ [0, τ + Tm] provided τ < 1. Repeating the above
discussion finite times, we obtain (3.7).

Similarly, we can show (3.8) provided that E in the definition of w is chosen large
enough.

3.1.2. Proof of the second inequality in (1.10).

U(r, 1)− ϕ̂(r) ≤ ū(r, 1)− ϕ̂(r) ≤ (E +aEF )
√
ε+ ω̂ ≤

[
(E + aEF )

√
ε + ω̂

2πε
+ 1

]
· 2πε,

where [·] is a Gauss function. On the other hand, by the periodicity

U

(
r,

[
(E + aEF )

√
ε + ω̂

2πε
+ 1

]
· Tm

)
≤ ϕ̂(r) +

[
(E + aEF )

√
ε + ω̂

2πε
+ 1

]
· 2πε,

where “ = ” holds at r = r0. Hence time 1 is smaller than time
[ (E+aEF )

√
ε+ω̂

2πε +1
]
·Tm,

and so

ωm =
2π

mTm
≤ ω̂ +

E + aEF + 1√
m

.(3.10)

Therefore (3.1) implies that

ωm ≤ ω∗ +
E + aEF + 2√

m
.

This completes the proof of (i) in Theorem 1.2.
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3.2. Proof of (ii) in Theorem 1.2. In this subsection, we write the unique
periodic rotating wave constructed in Lemma 2.7 by Um(r, t). Clearly, the period Tm

of Um(r, t) is smaller than 1 when m > m0 for some m0.
For any given T > 0, by Lemma 2.7, Um (m = m0,m0 + 1, . . .) are bounded in

C2+μ,1+μ
2 (Qm

T ), where μ = μ(T ) is independent of m and Qm
T := {(r, t)|t ∈ [−T, T +

1], r with (r, Um(r, t)) ∈ Ωm}. So there exists a sequence {mi}∞i=0 and U(r, t) ∈
C2,1([H,G] × [−T, T + 1]) such that

‖Umi − U‖C2,1([H,G]×[−T,T+1]) → 0 as i → ∞.

Thus, for any (r, t) ∈ [H,G] × [−T, T ], when i → ∞ we have

ω∗ ← ωmi =
2π

miTmi

=
1

Tmi

∫ Tmi
+t

t

∂Umi
(r, t)

∂t
dt =

∂Umi
(r, s)

∂t
→ Ut(r, t)

with s ∈ (t, Tmi + t). This means that U(r, t) = U(r) + ω∗t in [H,G] × [−T, T ] for
some U(r) ∈ C2([H,G]).

Umi
is the solution of (1.2)–(1.3); taking limit i → ∞ in these equations we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ω∗ =

Urr

1 + r2U2
r

+
2Ur + r2U3

r

r(1 + r2U2
r )

+ A

√
1 + r2U2

r

r
, H ≤ r ≤ G,

Ur(H) ∈
[
− tanβ1

H
,

tanα1

H

]
, Ur(G) ∈

[
− tanα2

G
,

tanβ2

G

]
.

(3.11)

Comparing it with (1.11) we find that when Ur(H) < tanα1

H , Ur(r) < ϕ∗
r(r;ω

∗) and
so Ur(G) < − tanα2

G . Therefore, (3.11) has a solution if and only if

Ur(H) =
tanα1

H
, Ur(G) =

− tanα2

G
,

and the solution U(r) is nothing but ϕ∗(r;ω∗)+C for some C. Recall that we require
maxr Um(r, 0) = 0 in the proof of Lemma 2.7; hence maxr U(r) = 0, which implies
that C = −maxr ϕ

∗(r;ω∗).
For any sequence {Umj}, there is a subsequence {Umjk

} that converges to the same

homogenized limit ϕ∗(r;ω∗)+ω∗t−maxr ϕ
∗(r;ω∗) in C2,1([H,G]×[−T, T ]) as k → ∞.

Consequently, Um(r, t) → ϕ∗(r;ω∗) + ω∗t − maxr ϕ
∗(r;ω∗) in C2,1([H,G] × [−T, T ])

as m → ∞. This proves (ii) of Theorem 1.2.

Appendix A. Proof of Lemma 2.5.
(i) of Lemma 2.5. Set w = ur; then for t ∈ (0, T ] and η1(t) < r < η2(t) we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt =
wrr

1 + r2w2
+ awr −

2 + 5r2w2 + r4w4

r2(1 + r2w2)2
w − A

r2
√

1 + r2w2
,

w(η1(t), t) = h′(u(η1(t), t))/η
2
1(t), w(η2, t) = −g′(u(η2(t), t))/η

2
2(t),

w(r, 0) = u′
0(r) for r with (r, u0(r)) ∈ Ωm,

(A.1)

where a = a(r, u, w) is a smooth function. By the boundary condition we have

− tanβ1

H
− C

m
< w(η1(t), t) <

tanα1

H
+

C

m
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for some C > 0. Hence |w(η1(t), t)| ≤ M1 + C
m < M − 1

2 . Similarly, |w(η2(t), t)| ≤
M1 + C

m < M − 1
2 .

On the other hand, if w takes the maximum at (r1, t) with r1 ∈ (η1(t), η2(t)) and
w(r1, t) > M − 1

2 , then we have

wt(r1, t) <
wrr(r1, t)

1 + r2w2(r1, t)
+ awr(r1, t) ≤ 0,

which implies that w will never be larger than M − 1
4 . Similarly, if w takes the

minimum at (r2, t) with r2 ∈ (η1(t), η2(t)) and w(r2, t) < −M + 1
2 , then, by the

definition of M2 in (1.8), we have

wt(r2, t) ≥ −2 + 5r2w2 + r4w4

r2(1 + r2w2)2
w − A

r2
√

1 + r2w2

∣∣∣∣
r=r2

> 0.

Therefore, w will never be smaller than −M + 1
4 . Thus we obtain (i) of Lemma 2.5.

We prove (ii) and (iii) of Lemma 2.5 by converting the problem of u into a problem
about v(z, t) (z ∈ (0, 1)).

Introduce a new variable

z :=
r −H + h(θ)

J(θ)

with J(θ) = G − H + g(θ) + h(θ). Then in the new coordinates (z, θ), domain Ωm

is expressed as a domain {(z, θ) | z ∈ (0, 1), θ ∈ R}. Now, given a solution u(r, t) of
(1.2), we define a new unknown v(z, t) by

v(z, t) = u(r(z, t), t),(A.2)

where r(z, t) is the inverse function of

z(r, t) =
r −H + h(u(r, t))

J(u(r, t))
.

Such an inverse function exists if

∂z

∂r
:=

J(u) + [(G + g)h′ + (H − h)g′ − r(g′ + h′)]ur

J2(u)
�= 0,

that is,

J(u) + [(G + g)h′ + (H − h)g′ − r(g′ + h′)]ur �= 0.(A.3)

We will see later that (A.3) always holds for any solution of (1.2)–(1.3) with
appropriate initial data. From ∂z

∂r �= 0, we have inverse function r(z, t) and

∂r

∂z
= J(v) + (g′ + h′)zvz − h′vz �= 0.

As is easily seen, we have

ur = vz
∂z

∂r
=

vz
J(v)

+
[(G + g)h′ + (H − h)g′ − r(g′ + h′)]urvz

J2(v)
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and hence

ur =
J(v)vz

J2(v) − [(G + g)h′ + (H − h)g′ − r(g′ + h′)]vz
=

vz
J(v) + I(z, v)vz

,

where I(z, v) = z(g′(v) + h′(v)) − h′(v). Similarly,

urr =
Jvzz − 2(g′ + h′)v2

z − (z(g′′ + h′′) − h′′)v3
z

(J + Ivz)3
, ut =

Jvt
J + Ivz

since

∂z

∂t
=

h′ − z(g′ + h′)

J
ut.

Hence the problem about u reduces to a problem about v,

vt =
vzz
K

+ f(z, v, vz) for 0 < z < 1, t > 0,(A.4)

with

f(z, v, p) =
(Jz + H − h)p3 − 2(g′ + h′)p2 − [z(g′′ + h′′) − h′′]p3

JK
+

2p(J + Ip)2

JK(Jz + H − h)

and

K(z, v, p) = (J + Ip)2 + p2(Jz + H − h)2.

Boundary conditions (1.3) reduce to

vz(0, t) =
Jh′

(H − h)2 + (h′)2
, vz(1, t) =

−Jg′

(G + g)2 + (g′)2
.(A.5)

Any solution u(r, t) of (1.2)–(1.3) satisfying (A.3) defines a solution v(z, t) of
(A.4)–(A.5) by the relation (A.2). Conversely, if v(z, t) is a solution of (A.4)–(A.5),
then the function u(r, t) defined by

u(r, t) = v

(
r −H + h(u)

J(u)
, t

)
(A.6)

is a solution of (1.2)–(1.3). For u to be well defined by (A.6), we need to assume that

∂

∂u

(
u− v

(
r −H + h(u)

J(u)
, t

))
�= 0

or, equivalently,

J(v) + [z(g′ + h′) − h′]vz �= 0.(A.7)

We will see later that any solution of (A.4)–(A.5) with appropriate initial data satisfies
(A.7) everywhere.

Using initial data u0(r) constructed in subsection 2.1.2, one can define a smooth
function v0(z) by (A.2). Since

v0z(z)

J(v0(z)) + I(z, v0(z))v0z(z)
≡ u0r(r) = O(ε) for z ∈ [0, 1],
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we have v0z(z) = O(ε). In what follows we consider problem (A.4)–(A.5) with initial
data v0(z). First, we give an a priori estimate of vz by (i) of Lemma 2.5.

Lemma A.1. Let v(z, t) be a solution of (A.4)–(A.5) with initial data v0 on some
time-interval 0 ≤ t < t1. Then

(i) there exists σ = σ(v0) > 0 such that

J(v) + I(z, v)vz ≥ σ for t ∈ [0, t1), z ∈ [0, 1];

(ii) there exists � ∈ (0, 1) such that

|vz(z, t)| ≤
G−H + max(g(s) + h(s))

�
·M for t ∈ [0, t1), z ∈ [0, 1].

Proof. (i) Suppose that

J(v(z, t)) + I(z, v(z, t))vz(z, t) ≥ σ1 > 0 for 0 ≤ t < t̃ < t1, z ∈ [0, 1];

then u(r, t) is well defined by (A.6) on [0, t̃) with

ur(r, t) =
vz(z, t)

J(v(z, t)) + I(z, v(z, t))vz(z, t)
.

u(r, t) is a solution of (1.2)–(1.3) and satisfies (i) of Lemma 2.5 on t ∈ [0, t̃). This
means that∣∣∣∣ vz(z, t)

J(v(z, t)) + I(z, v(z, t))vz(z, t)

∣∣∣∣ < M for t ∈ [0, t̃), z ∈ [0, 1].(A.8)

If there exists z0 ∈ [0, 1] such that J(v(z0, t))+I(z0, v(z0, t))vz(z0, t) → 0 as t ↗ t̃,
then (A.8) indicates that vz(z0, t) → 0 as t ↗ t̃. However, this implies that

J(v(z0, t)) + I(z0, v(z0, t))vz(z0, t) → J(v(z0, t)) ≥ G−H > 0 as t ↗ t̃,

a contradiction. This proves (i).

(ii) From (i), we can define a function u(r, t) by (A.6) on 0 ≤ t < t1, which is a
solution of (1.2)–(1.3) and satisfies (i) of Lemma 2.5 on 0 ≤ t < t1.

By (1.6), there exists a � > 0 such that |h′|M < 1−2�, |g′|M < 1−2�. Therefore,
for large m, (i) of Lemma 2.5 implies that

∣∣∣∣ (G + g)h′ + (H − h)g′ − r(g′ + h′)

G−H + g + h
· ur

∣∣∣∣<
∣∣∣∣ (G− r)h′

G−H
− (r −H)g′

G−H

∣∣∣∣M+� < 1−�.

(A.9)

Hence |ur| = |vz| ·
∣∣∂z
∂r

∣∣ > �|vz|/J(v) and then

|vz(z, t)| <
G−H + max(g(s) + h(s))

�
M for z ∈ [0, 1], t ∈ [0, t1).

Remark A.1. In fact, from the proof we know that the left-hand side of (A.3) is
positive, that is, ∂z

∂r > 0, so ∂r
∂z > 0.
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Next we give the Hölder estimate for vz by a result in [13].
Theorem A.2 (see [13, Theorem 13.16]). Let Ω = ω × (0, T ) for some domain

ω ⊂ Rn with ∂ω ∈ H2. Let w ∈ C2,1(Ω) be a solution of⎧⎨
⎩

wt = divA(x, t, w,Dw) + B(x, t, w,Dw) in Ω,
A(x, t, w,Dw) · γ + ψ(x, t, w) = 0 on ∂ω × (0, T ),
w = ϕ on ω × {0},

(A.10)

with A a C1 function of (x, t, w, p), ψ a C1 function of (x, t, w), and A and B uni-
formly continuous with respect to (x, t, w, p), γ the inner normal to ∂ω. Suppose that
there are positive constants L, λL, ΛL, and μL such that |w| + |Dw| ≤ L and

∂Ai

∂pj
ξiξj ≥ λL|ξ|2, |Ap| ≤ ΛL,(A.11)

|Aw| + |Ax| + |At| + |B| ≤ μL, |ψw| + |ψx| + |ψt| + |ψ| ≤ μL(A.12)

for (x, t, w, p) with |w| + |p| ≤ L. Suppose also that

|A(x, t, w, p) −A(x, s, w, p)| + |ψ(x, t, w) − ψ(x, s, w)| ≤ μL|t− s| 12(A.13)

for (x,w, p) ∈ ∂ω × R × Rn with |w| + |p| ≤ L and all s, t ∈ (0, T ). If also ϕ ∈ H2

and

A(x, t, ϕ,Dϕ) · γ + ψ(x, t, ϕ) = 0 on ∂ω × {0},

then there are positive constants α = α(L, n, λL,ΛL) and C = C(n, λL,ΛL, μL,Ω, |ϕ|2)
such that |Du|α ≤ C.

Define

A(z, v, p) =
p

K(z, v, p)
+

∫ p

0

pKp(z, v, p)

K2(z, v, p)
dp,

H(v) =
J(v)h′(v)

(H − h(v))2 + h′(v)
2 , G(v) =

−J(v)g′(v)

(G + g(v))2 + g′(v)
2 .

Then (A.4)–(A.5) with initial data v0(z) can be written in divergence form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt =
∂

∂z
A(z, v, vz) + B(z, v, vz), z ∈ (0, 1), t > 0,

vz(0, t) = H(v(0, t)), vz(1, t) = G(v(1, t)), t > 0,

v(z, 0) = v0(z), z ∈ (0, 1),

(A.14)

where ∂A
∂z denotes the partial derivative of A on z when we regard A as a function

of z and t, and a careful calculation shows that B(z, v, p) is a smooth and bounded
function provided vz is bounded.

Lemma A.3. Let v(z, t) be a solution of (A.14) on some time-interval 0 ≤ t ≤ T ;
then there exist μ(T ) > 0 and C > 0 (independent of T ) such that

|vz|μ ≤ C in [0, 1] × [0, T ].(A.15)
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Proof. First, (2.6) gives the a priori estimate of u ≡ v:

ω̂t− C ≤ v(z, t) < ω̃t + C for z ∈ [0, 1], t ∈ [0, T ].

As T goes to +∞, v also goes to +∞. However, one important thing should be noticed:
in our problem (A.14), v appears always in a form such as g(v), h(v), g′(v), h′(v),
etc. Therefore, the unboundedness of v does not cause the unboundedness of the
coefficients in (A.14).

Second, the a priori estimate for vz is given by (ii) in Lemma A.1: |vz(z, t)| ≤ C
for z ∈ [0, 1] and t ∈ [0, T ].

A trivial and careful calculation shows that Theorem A.2 stated above is applica-
ble to (A.14) and none of the constants λ,Λ, and μ depend on T (since the bound of
z and vz are independent of T , and v appears in the form g(v), h(v), etc.). So there
exist μ = μ(T ) and C > 0 (independent of T ) such that (A.15) holds.

Proof of (ii) of Lemma 2.5. By ur = vz

J(v)+I(z,v)vz
and the a priori estimates

of v, vz, and |vz|μ we have μ(T ) > 0 and C > 0 (independent of T ) such that
|ur|μ(T ) ≤ C for (r, t) ∈ QT .

Proof of (iii) of Lemma 2.5. Choose a constant σ > 0 such that

σ > max{max
s

|H′(s)|, max
s

|G′(s)|} + 1

and define w(z, t) := v(z, t)eσz. Then w is a solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt =
∂

∂z
Ã(z, w,wz) + B̃(z, w,wz), z ∈ (0, 1), t > 0,

wz(0, t) = H(v(0, t)) + σw(0, t), t > 0,

wz(1, t) = G(v(1, t))eσ + σw(1, t), t > 0,

w(z, 0) = v0(z)e
σz, z ∈ (0, 1),

(A.16)

where Ã and B̃ are smooth functions like A and B. Theorem A.2 stated above can
also be used for this problem and so we have |wz|μ(T ) ≤ C for (z, t) ∈ QT , where
μ(T ) > 0 and C > 0 (independent of T ).

Especially, at z = 0 we have |wz(0, t) − wz(0, s)| ≤ C|t − s|μ(T ). On the other
hand,

|wz(0, t) − wz(0, s)| = |H(v(0, t)) −H(v(0, s)) + σw(0, t) − σw(0, s)|
= |σ + H′(ς)| · |w(0, t) − w(0, s)| ≥ |w(0, t) − w(0, s)|.

Hence |w(0, t) − w(0, s)| ≤ C|t− s|μ(T ). Similarly we have |w(1, t) − w(1, s)| ≤ C|t−
s|μ(T ). Finally by Theorem 1.1 of Chapter V in [14] we have |w|μ(T ) ≤ C. This implies
that |v|μ(T ) ≤ C for another C > 0.

Appendix B. Proof of Lemma 2.6. It is clear that to prove Lemma 2.6 we
only need to prove similar conclusions for v.

Lemma B.1. Assume (1.9) holds; then (A.14) has a unique, global solution v(z, t)
satisfying vt(·, t) ≥ 0. Moreover, for any T > 0, let Qz

T := (0, 1) × (0, T ]; then there
exist positive constants μ(T ), C1, and C2 (C1, C2 are independent of T ) such that

(i) v ∈ C2+μ,1+μ
2 (Qz

T );
(ii) ‖v(z, t)‖

C2+μ,1+
μ
2 (Qz

T
)
≤ C1T + C2.
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Proof. First, by Theorem 8.1 in [21] and the above a priori estimates for v,
we have a unique, global solution v of (A.14). Moreover for any T > 0, v ∈
C∞([0, T ], H∞(0, 1)), where H∞(0, 1) :=

⋂∞
k=0 H

k(0, 1) is a Fréchet space with norms
(‖ · ‖k)∞k=0, and Hk(0, 1) is a Sobolev space with norm ‖ · ‖k (cf. [21]). Embedding
theorem implies that we indeed obtain a global solution of (A.14): v ∈ C∞(Qz

∞),
where Qz

∞ = (0, 1) × (0,∞). (i) is proved.
The result ut(·, t) ≥ 0 for t > 0 in subsection 2.1.2 implies that vt(z, t) ≥ 0.
Now we use the a priori estimates in Lemma 2.5 and the interior estimate (see,

for example, Theorem 5 of Chapter 3 in [7]) for problem (A.4)–(A.5) with initial data
v0(z); then for any T > 0, there exist μ = μ(T ) > 0 and C1 > 0, C2 > 0 (C1, C2 are
independent of T ) such that

‖v‖
C2+μ,1+

μ
2 (Qz

T
)
≤ C1T + C2.

By the smoothness of v on Qz
T , we indeed obtain ‖v‖

C2+μ,1+
μ
2 (Qz

T
)
≤ C1T +C2.
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PACKET FLOW ON TELECOMMUNICATION NETWORKS∗

CIRO D’APICE† , ROSANNA MANZO† , AND BENEDETTO PICCOLI‡

Abstract. The aim of this paper is to introduce a macroscopic fluid dynamic model dealing with
the flow of information on a telecommunication network encoded in packets. Taking an intermediate
time and space scale, we propose a model similar to that introduced recently for car traffic; see
[G. M. Coclite, M. Garavello, and B. Piccoli, SIAM J. Math. Anal., 36 (2005), pp. 1862–1886]. For
dynamics at nodes we consider two “routing algorithms” and prove existence of solutions to Cauchy
problems. The main difference among the two algorithms is the possibility of redirecting packets of
the second algorithm, which in turn implies stability, i.e., Lipschitz continuous dependence on initial
data, not granted for solutions using the first algorithm.
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1. Introduction. The aim of this paper is to introduce a macroscopic fluid
dynamic model dealing with the flow of information on a telecommunication network
encoded in packets. There are some recent works on traffic flow on road networks (see
[10, 11, 14, 15, 16, 18]) that are based on macroscopic description via car densities
and other conserved quantities. Our idea is to look at the network at an intermediate
time scale so that packet transmission happens at a faster level but the equilibria of
the whole network are reached only as asymptotic. This permits us to construct a
model again relying on macroscopic description.

There exist various approaches to traffic flow on telecommunication networks, in
particular for the Internet and with special focus on properties of control congestion
algorithms such as TCP/IP; see, for example, [4, 17, 25]. Our idea is rather to take
a large number of nodes, which use some simple routing algorithm, and via some
limiting procedure obtain a partial differential equation for the packet density on
the network. First we focus on a straight transmission line and justify the limiting
procedure. Then we consider a network and introduce two routing algorithms for
nodes with many entering and exiting lines. Let us start with the basic assumptions.

A network is formed by a finite collection of transmission lines and nodes (or
routers). We assume that each node receives and sends information encoded in pack-
ets. Each packet can thus be seen as a particle on the network, but we have to take
into account specific issues of telecommunications. Having in mind the Internet as
our key model, we assume the following:

(1) Each packet travels on the network with a fixed speed and with assigned final
destination.

(2) Nodes receive, process, and then forward packets. Packets may be lost with
a probability increasing with the number of packets to be processed. Each
lost packet is sent again.
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We first model the behavior of a single straight transmission line on which there
are some consecutive nodes. Each node sends packets to the following one a first
time, then packets which are lost in this process are sent a second time, and so on.
The important point is that each packet is sent until it reaches the next node; thus,
looking from a macroscopic level, it is assumed that packets are conserved. This leads
from the microscopic dynamics to the simple model consisting of a single conservation
law:

ρt + f (ρ)x = 0,(1)

where ρ is the packet density, v is the velocity, and f(ρ) = vρ is the flux. Since
the packet transmission velocity on the line is assumed constant, we can derive an
average transmission velocity among nodes considering the amount of packets that
may be lost. More precisely, assigning a loss probability as function of the density, it
is possible to compute a velocity function and thus a flux function.

The conclusion is rigorously justified only for constant density, but is assumed to
hold in general. This corresponds to the hypotheses that macroscopic density waves
move at a velocity much smaller than the packet transmission velocity. In section 2
we derive some models and then focus the rest of the paper on a particular model
that implies equivalence between the total variation of density and of flux. Even if
our limiting procedure is not completely rigorous, there are other approaches, as that
of [3] for supply chains, which lead to conservation laws. Moreover, since our method
to solve problems at nodes is based only on flux values, every limiting procedure,
which leads to a conservation law formulation, may be used to treat the problem on
a network.

The aim is then to consider complex networks; thus we need to introduce a way of
solving dynamics at nodes in which many lines intersect. For this, respecting rule 2,
we propose two different routing algorithms:
(RA1) Packets from incoming lines are sent to outgoing ones according to their

final destination (without taking into account possible high loads of outgoing
lines).

(RA2) Packets are sent to outgoing lines in order to maximize the flux through the
node.

The main differences of the two algorithms are the following. The first one simply
sends each packet to the outgoing line which is naturally chosen according to the final
destination of the packet itself. The algorithm is blind to possible overloads of some
outgoing lines and, by some abuse of notation, is similar to the behavior of a “switch.”
The second algorithm, on the contrary, sends packets to outgoing lines taking into
account the loads, and thus possibly redirecting packets. Again by some abuse of
notation, this is similar to a “router” behavior.

Routing algorithm (RA1) can be described by two rules and was already used
in [11] for car traffic. In particular a traffic distribution matrix A is given, which
describes the percentage of packets from an incoming line that are addressed to an
outgoing one. For existence of solutions to the Cauchy problem on the network, we
have to restrict ourselves to the case of simple nodes with two incoming and two
outgoing lines, but, differently from [11], we can obtain a precise bound on the total
variation of density, thanks to the assumption on the flux function, and then derive
existence of solutions to the Cauchy problem more directly by wave-front tracking.
However, Lipschitz continuous dependence of solutions is not granted.

Then we analyze routing algorithm (RA2). Notice that this second algorithm
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was not considered for car traffic, because redirection of cars is not expected from a
modeling point of view (except special situations, as closure of a road).

In order to determine unique solutions to Riemann problems, some additional
parameters are introduced, called, respectively, priority parameters and traffic distri-
bution parameters. The former describe priorities among incoming lines, while the
latter have the same meaning of the traffic distribution matrix.

The advantage of this second algorithm is that the flux variation at a node is
conserved for interaction of waves from transmission lines. This permits us both to
obtain estimates on the total variation of density, thus to construct solutions again by
wave-front tracking, and also to obtain uniqueness and Lipschitz continuous depen-
dence of solutions. The latter result is achieved by the method introduced in [6, 8],
which considers a Riemannian-type metric on L1. More precisely, the distance among
solutions is measured by paths in L1 which admit some generalized tangent vectors.
The key point is that the norms of tangent vectors are known to decrease inside each
line (i.e., for scalar conservation laws), while for interactions with nodes its evolution
is determined by flux variation. As explained in section 5.2.1, other known methods
to treat uniqueness for scalar conservation laws seem not to work for the network case.

The obtained results show the strong effect of the routing algorithm. More pre-
cisely, the choice of a “router”-type algorithm, i.e., (RA2), implies stability of solu-
tions, with respect of perturbation of the data, as opposed to the instability obtained
with the “switch” types.

The paper is organized as follows. Section 2 describes the dynamics of packet
density on a single transmission line. Section 3 gives general definitions of a network
and of the Riemann solver. Then we describe the two routing algorithms in section 4,
giving explicit unique solutions to Riemann problems. Finally, section 5 provides the
needed estimates for constructing solutions to Cauchy problems and for obtaining
continuous dependence for the second algorithm.

2. Packet loss and velocity functions on transmission lines. We model a
transmission line by a sequence of nodes Nk, representing routers, and edges which
connect consecutive nodes. Thus the transmission line is represented by a real interval
I union of many edges and nodes.

Each node (router) sends and receives packets. Following rule 1, we assume that
packets flow at constant velocity from each node Nk to Nk+1. Taking a discrete
time scale for the evolution, the state at time ti is described by the packet quantities
Rk(ti) on nodes Nk, and transmission happens among consecutive nodes between two
discrete times. Therefore, to determine the dynamics on I we need to describe the
effect of packet loss on the velocity of transmission function.

As for the Internet, we assume that each node Nk sends again packets that are
lost by the following node Nk+1. Therefore the number of packets is conserved, i.e., at
macroscopic level we expect (1) to hold. More precisely, we assume that there exists
a function p : [0, Rmax] → [0, 1] which assigns the packet loss probability as a function
of the number of packets.

Let us focus now on two consecutive nodes and introduce some notation. Suppose
that δ is the distance between nodes Nk and Nk+1. Let Δt0 be the transmission time
of packets from node Nk to node Nk+1 if they are sent with success at the first
attempt, and let Δtav be the average transmission time when some packets are lost
by Nk+1. Finally, we denote by v̄ = δ

Δt0
and v = δ

Δtav
the packet velocity in the two

cases.
At the first attempt, the packets sent by node Nk reach with success node Nk+1
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Fig. 1. Packet loss function.

with probability (1− p) and are lost by node Nk+1 with probability p. At the second
attempt there are p of the total number of packets left to be sent again and (1−p)p are
sent with success while p2 are lost. Going on at the nth attempt, (1− p)pn−1 packets
are sent successfully and pn are lost. The average transmission time is equal to

Δtav =

+∞∑
n=1

nΔt0(1 − p)pn−1 =
Δt0
1 − p

,(2)

from which we get that the transmission velocity is given by

v =
δ

Δtav
=

δ

Δt0
(1 − p) = v̄(1 − p).(3)

The above reasoning works for the entire line if Rk(t0) = R for all k. In fact, one
gets immediately that Rk(ti) = R for all i and k. Thus the following holds.

Lemma 1. Assume that Rk(t0) = R for all k. Then the average transmission
time and velocity are given by (2) and (3).

Clearly Lemma 1 gives an average velocity only if the density is constant. How-
ever, we assume the conclusion holds in general for the macroscopic velocity and use
this together with (1). This assumption is not completely justified, but it is reason-
able if the transmission velocity of packets is expected to be much bigger than the
macroscopic velocity.

We may also assign the loss probability directly as a function of the packet density;
then the corresponding flux is easily determined. Such loss probability should vanish
for low load levels of nodes and reach the value 1 for R = Rmax. We show some choice
of packet loss functions and the corresponding macroscopic fluxes.

Example 2. Let us suppose that the packet loss probability is given by

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
2(ρ−σ)

ρ , σ ≤ ρ ≤ ρmax,

for some σ ∈ ]0, ρmax[ ; see Figure 1. Then the average transmission velocity is equal to

v (ρ) = v̄(1 − p(ρ)) =

{
v̄, 0 ≤ ρ ≤ σ,

v̄ (2σ−ρ)
ρ , σ ≤ ρ ≤ ρmax.
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Imposing that

v(ρmax) = v̄
(2σ − ρmax)

ρmax
= 0,

we get that σ = ρmax

2 . Since f (ρ) = v(ρ)ρ it follows that (see Figure 2)

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄(2σ − ρ), σ ≤ ρ ≤ ρmax.

The fundamental diagram (i.e., the expression of the flux as a function of the
density) of Example 2 was extensively used in traffic flow literature (see [13, 20]) and
is sometimes called the Daganzo–Newell flux.

Example 3. Suppose that

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
ρ−σ
σ , σ ≤ ρ ≤ ρmax.

It follows that

v (ρ) =

{
v̄, 0 ≤ ρ ≤ σ,
v̄(2σ−ρ)

σ , σ ≤ ρ ≤ ρmax,

and

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄ρ(2σ−ρ)

σ , σ ≤ ρ ≤ ρmax.

Example 4. Suppose that

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
(ρ−σ)2

σ2 , σ ≤ ρ ≤ ρmax.

It follows that

v (ρ) =

{
v̄, 0 ≤ ρ ≤ σ,
v̄ρ(2σ−ρ)

σ2 , σ ≤ ρ ≤ ρmax,
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and

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄ρ2(2σ−ρ)

σ2 , σ ≤ ρ ≤ ρmax.

Remark 5. Examples 2 and 3 lead to fluxes which are not C1; the opposite
happens for Example 4. Notice that only for Example 2 does the corresponding flux
have the property that f ′(ρ±) �= 0 for every ρ. Thus the density variation along
discontinuities not crossing σ is equivalent to the flux ones.

In what follows we suppose that measures on packet loss probability lead to the
formulation of Example 2. This allows us to control the variation of the density
function in terms of the variation of the flux function, as shown later.

We can suppose for simplicity that ρmax = 1, so we have the following assumptions
on the flux:

(F) f : [0, 1] → R, f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄(2σ − ρ), σ ≤ ρ ≤ 1,

f(0) = f(1) = 0. Thus σ = 1
2 is the unique maximum point.

3. Telecommunication networks. We consider a telecommunication network
that is modeled by a finite set of intervals Ii = [ai, bi] ⊂ R, i = 1, . . . , N , ai < bi,
possibly with either ai = −∞ or bi = +∞, on which we consider the model of the
previous section, i.e., equation (1) with assumption (F). The network evolution is
described by a finite set of functions ρi defined on [0,+∞[ × Ii.

On each transmission line Ii we want ρi to be a weak entropic solution of (1), that
is, for every function ϕ : [0,+∞[× Ii → R smooth, positive with compact support on
]0,+∞[ × ]ai, bi[,

∫ +∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ f (ρi)

∂ϕ

∂x

)
dxdt = 0,(4)

and for every k ∈ R and every ϕ̃ : [0,+∞[ × Ii → R smooth, positive with compact
support on ]0,+∞[ × ]ai, bi[,

∫ +∞

0

∫ bi

ai

(
|ρi − k| ∂ϕ̃

∂t
+ sgn(ρi − k) (f (ρi) − f (k))

∂ϕ̃

∂x

)
dxdt ≥ 0.(5)

It is well known that, for (1) on R and for every initial data in L∞, there exists a
unique weak entropic solution depending in a continuous way on the initial data in
L1
loc. Moreover, for initial data in L∞ ∩L1 we have Lipschitz continuous dependence

in L1.
We assume that the transmission lines are connected by some junctions. Each

junction J is given by a finite number of incoming transmission lines and a finite num-
ber of outgoing transmission lines; thus we identify J with ((i1, . . . , in) , (j1, . . . , jm)),
where the first n-tuple indicates the set of incoming transmission lines and the second
m-tuple indicates the set of outgoing transmission lines. Each transmission line can
be incoming for at most one junction and outgoing for at most one junction. Hence
the complete model is given by a couple (I,J ), where I = {Ii : i = 1, . . . , N} is the
collection of transmission lines and J is the collection of junctions.

Now we discuss how to define solutions at junctions. For this, fix a junction J with
n incoming transmission lines, say I1, . . . , In, and m outgoing transmission lines, say
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In+1, . . . , In+m. A weak solution at J is a collection of functions ρl : [0,+∞[×Il → R,
l = 1, . . . , n + m, such that

n+m∑
l=1

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl

∂t
+ f (ρl)

∂ϕl

∂x

)
dxdt

)
= 0(6)

for every ϕl, l = 1, . . . , n+m, smooth having compact support in ]0,+∞[× ]al, bl] for
l = 1, . . . , n (incoming transmission lines) and in ]0,+∞[ × [al, bl[ for l = n + 1, . . . ,
n + m (outgoing transmission lines), which are also smooth across the junction, i.e.,

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, . . . , n, j = n + 1, . . . , n + m.

Remark 6. Let ρ = (ρ1, . . . , ρn+m) be a weak solution at the junction such
that each x → ρi(t, x) has bounded variation. We can deduce that ρ satisfies the
Rankine–Hugoniot condition at the junction J , namely,

n∑
i=1

f(ρi(t, bi−)) =

n+m∑
j=n+1

f(ρj(t, aj+))(7)

for almost every t > 0.

For a scalar conservation law a Riemann problem is a Cauchy problem for an
initial data of Heaviside type that is piecewise constant with only one discontinuity.
One looks for centered solutions, i.e., ρ(t, x) = φ(xt ) formed by simple waves, which
are the building blocks for constructing solutions to the Cauchy problem via wave-
front tracking algorithm. These solutions are formed by continuous waves called
rarefactions and by traveling discontinuities called shocks. The speed of waves are
related to the values of f ′; see [7].

Analogously, we call the Riemann problem for a junction the Cauchy problem
corresponding to an initial data which is constant on each transmission line.

Definition 7. A Riemann solver for the junction J is a map RS : [0, 1]n×[0, 1]m

→ [0, 1]n × [0, 1]m that associates to Riemann data ρ0 = (ρ1,0, . . . , ρn+m,0) at J a
vector ρ̂ = (ρ̂1, . . . , ρ̂n+m) so that the solution on an incoming transmission line Ii, i =
1, . . . , n, is given by the wave (ρi,0, ρ̂i) and on an outgoing one Ij, j = n+1, . . . , n+m,
is given by the wave (ρ̂j , ρj,0). We require the following consistency condition:

(CC) RS(RS(ρ0)) = RS(ρ0).

Remark 8. The condition (CC) is necessary for providing a good definition of
Riemann solver and thus also for uniqueness.

Assume, for example, that RS(ρ) = ρ′ and RS(ρ′) = ρ for some Riemann data
ρ �= ρ′. To solve the Riemann problem with datum ρ, one should use the boundary
datum ρ′ at the junction. In turn, when ρ′ starts propagating into lines, one should
go back to ρ, and so on and so forth. A solution would thus not exist.

The same kind of problem happens for uniqueness.

Once a Riemann solver is assigned we can define admissible solutions at J .

Definition 9. Assume a Riemann solver RS is assigned. Let ρ = (ρ1, . . . , ρn+m)
be such that ρi(t, ·) is of bounded variation for every t ≥ 0. Then ρ is an admissible
weak solution of (1) related to RS at the junction J if and only if the following
properties hold:

(i) ρ is a weak solution at junction J ;
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(ii) for almost every t setting

ρJ(t) = (ρ1(·, b1−), . . . , ρn(·, bn−), ρn+1(·, an+1+), . . . , ρn+m(·, an+m+))

we have

RS(ρJ(t)) = ρJ(t).

For every transmission line Ii = [ai, bi], if ai > −∞ and Ii is not the outgoing
transmission line of any junction, or bi < +∞ and Ii is not the incoming transmission
line of any junction, then a boundary datum ψi : [0,+∞[ → R is given. We ask ρi
to satisfy ρi(t, ai) = ψi(t) (or ρi(t, bi) = ψi(t)) in the sense of [5]. The treatment of
boundary data in the sense of [5] can be done as in [1, 2], and thus only the case
without boundary data is considered. All the stated results hold also for the case
with boundary data with obvious modifications.

Our aim is to solve the Cauchy problem on [0,+∞[ for given initial and boundary
data as in the next definition.

Definition 10. Given ρ̄i : Ii → [0, 1], i = 1, . . . , N , measurable functions, a
collection of functions ρ = (ρ1, . . . , ρN ), with ρi : [0,+∞[ × Ii → [0, 1] continuous as
functions from [0,+∞[ into L1

loc, is an admissible solution to the Cauchy problem on
the network if ρi is a weak entropic solution to (1) on Ii, ρi(0, x) = ρ̄i(x) a.e., and
at each junction ρ is a weak solution and is an admissible weak solution in case of
bounded variation.

Remark 11. It is possible to generalize all definitions and results of upcoming
sections to the case of different fluxes fi for each line Ii. In fact, all statements are
in terms of values of fluxes at junctions; thus it is sufficient that the ranges of fluxes
intersect.

4. Riemann solvers at junctions. In this section we describe two different
Riemann solvers at a junction that represent two different routing algorithms:
(RA1) We assume that

(A) the traffic from incoming transmission lines is distributed on outgoing
transmission lines according to fixed coefficients;

(B) respecting (A), the router chooses to send packets in order to maximize
fluxes (i.e., the number of packets which are processed).

(RA2) We assume that the number of packets through the junction is maximized
over both incoming and outgoing lines.

Once solutions to Riemann problems are given, one can use a wave-front tracking
algorithm to construct a sequence of approximate solutions. To pass to the limit
one has to bound the number of waves and the BV norm of approximate solutions;
see [7, 11]. In the next section we prove a BV bound on the density for the case of
junctions with two incoming and two outgoing transmission lines, for both the routing
algorithms.

4.1. Riemann solver for algorithm (RA1). The Riemann solver for algo-
rithm (RA1) has already been described in [10, 11], where traffic problems for road
networks have been analyzed, using different assumptions on the flux function.

Consider a junction J in which there are n transmission lines with incoming
traffic and m transmission lines with outgoing traffic. To deal with (A) we fix a traffic
distribution matrix A

.
= {αji}j=n+1,...,n+m,i=1,...,n ∈ R

m×n such that

0 < αji < 1,

n+m∑
j=n+1

αji = 1
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Fig. 3. A junction.

for each i = 1, . . . , n and j = n + 1, . . . , n + m, where αji is the percentage of
packets arriving from the ith incoming transmission line that take the jth outgoing
transmission line.

For simplicity we indicate by

(t, x) ∈ R+ × Ii → ρi(t, x) ∈ [0, 1], i = 1, . . . , n,

the densities of the packets on the transmission lines with incoming traffic and by

(t, x) ∈ R+ × Ij → ρj(t, x) ∈ [0, 1], j = n + 1, . . . , n + m,

those on transmission lines with outgoing traffic; see Figure 3.
We need some more notation.
Definition 12. Let τ : [0, 1] → [0, 1] be the map such that
1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];
2. τ(ρ) �= ρ for every ρ ∈ [0, 1]\{σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇔ σ ≤ τ(ρ) ≤ 1,
σ ≤ ρ ≤ 1 ⇔ 0 ≤ τ(ρ) ≤ σ.

To state the main result of this section we need some assumption on the matrix A
(satisfied under generic conditions for m = n). Let {e1, . . . , en} be the canonical
basis of R

n and for every subset V ⊂ R
n indicate by V ⊥ its orthogonal. Define

for every i = 1, . . . , n, Hi = {ei}⊥, i.e., the coordinate hyperplane orthogonal to
ei, and for every j = n + 1, . . . , n + m, let αj = {αj1, . . . , αjn} ∈ R

n and define
Hj = {αj}⊥. Let K be the set of indices k = (k1, . . . , kl), 1 ≤ l ≤ n − 1, such that

0 ≤ k1 < k2 < · · · < kl ≤ n + m and for every k ∈ K set Hk =
⋂l

h=1 Hh. Letting
1 = (1, . . . , 1) ∈ R

n, we assume
(C) for every k ∈ K, 1 /∈ H⊥

k .
Theorem 13 (Theorem 3.1 of [11]). Consider a junction J ; assume that the

flux f : [0, 1] → R satisfies (F) and the matrix A satisfies condition (C). For every
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ρ1,0, . . . , ρn+m,0 ∈ [0, 1], there exists a unique admissible centered weak solution, in
the sense of Definition 9; ρ = (ρ1, . . . , ρn+m) of (1) at the junction J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρn+m(0, ·) ≡ ρn+m,0.

Moreover, there exists a unique (n + m)-tuple (ρ̂1, . . . , ρ̂n+m) ∈ [0, 1]n+m such that

ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n,(8)

and

ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m,(9)

and on each incoming line Ii, i = 1, . . . , n, the solution consists of the single wave
(ρi,0, ρ̂i), while on each outgoing line Ij, j = n + 1, . . . , n + m, the solution consists
of the single wave (ρ̂j , ρj,0).

Condition (C) on A cannot hold for crossings with two incoming and one outgoing
transmission lines. Following [10], it is possible to introduce a further parameter whose
meaning is the following. When the number of packets is too big to let all of them go
through the crossing, there is a priority rule that describes the percentage of packets,
going through the crossings, that comes from the first line. Since the construction
happens to be a special case of that in the next section, we omit the details and refer
the reader to [10] or to the next section.

4.2. Riemann solver for algorithm (RA2). To solve Riemann problems ac-
cording to (RA2) we need some additional parameters called priority and traffic dis-
tribution parameters. For simplicity of exposition, consider first a junction J in which
there are two transmission lines with incoming traffic and two transmission lines with
outgoing traffic. In this case we have only one priority parameter q ∈ ]0, 1[ and one
traffic distribution parameter α ∈ ]0, 1[. We denote by ρi(t, x), i = 1, 2, and ρj(t, x),
j = 3, 4, the traffic densities, respectively, on the incoming transmission lines and on
the outgoing ones and by (ρ1,0, ρ2,0, ρ3,0, ρ4,0) the initial datum.

Define γmax
i and γmax

j as follows:

γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, σ],
f(σ) if ρi,0 ∈ ]σ, 1] ,

i = 1, 2,(10)

and

γmax
j =

{
f(σ) if ρj,0 ∈ [0, σ],
f(ρj,0) if ρj,0 ∈ ]σ, 1] ,

j = 3, 4.(11)

The quantities γmax
i and γmax

j represent the maximum flux that can be obtained by
a single wave solution on each transmission line. In order to maximize the number of
packets through the junction over incoming and outgoing lines we define

Γ = min {Γmax
in ,Γmax

out } ,

where Γmax
in = γmax

1 + γmax
2 and Γmax

out = γmax
3 + γmax

4 . Thus we want to have Γ as a
flux through the junction.

Reasoning as in Theorem 13, one can easily see that to solve the Riemann problem,
it is enough to determine the fluxes γ̂i = f(ρ̂i), i = 1, 2. In fact, to have simple
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Fig. 4. Case Γmax
in > Γ.

waves with the appropriate velocities, i.e., negative on incoming lines and positive on
outgoing ones, we get the constraints (8), (9). We have to distinguish two cases.

Case I. Γmax
in = Γ.

Case II. Γmax
in > Γ.

In the first case we set γ̂i = γmax
i , i = 1, 2.

Let us analyze the second case in which we use the priority parameter q.
Not all packets can enter the junction, so let C be the amount of packets that can

go through. Then qC packets come from the first incoming line and (1− q)C packets
from the second. Consider the space (γ1, γ2) and define the following lines:

rq : γ2 =
1 − q

q
γ1,

rΓ : γ1 + γ2 = Γ.

Define P to be the point of intersection of the lines rq and rΓ. Recall that the final
fluxes should belong to the region (see Figure 4):

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , i = 1, 2} .

We distinguish two cases.
Case (a). P belongs to Ω.
Case (b). P is outside Ω.
In the first case we set (γ̂1, γ̂2) = P , while in the second case we set (γ̂1, γ̂2) =

Q, with Q = projΩ∩rΓ(P ), where proj is the usual projection on a convex set; see
Figure 5.

The reasoning can be repeated also in the case of n incoming lines. In R
n the line

rq is given by rq = tvq, t ∈ R, with vq ∈ Δn−1, where

Δn−1 =

{
(γ1, . . . , γn) : γi ≥ 0, i = 1, . . . , n,

n∑
i=1

γi = 1

}

is the (n− 1)-dimensional simplex and
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Fig. 5. P belongs to Ω and P is outside Ω.

HΓ =

{
(γ1, . . . , γn) :

n∑
i=1

γi = Γ

}

is a hyperplane where Γ = min{
∑

in γ
max
i ,

∑
out γ

max
j }. Since vq ∈ Δn−1, there exists

a unique point P = rq ∩ HΓ. If P ∈ Ω, then we set (γ̂1, . . . , γ̂n) = P . If P /∈ Ω,
then we set (γ̂1, . . . , γ̂n) = Q = projΩ∩HΓ

(P ), the projection over the subset Ω ∩HΓ.
Observe that the projection is unique since Ω ∩HΓ is a closed convex subset of HΓ.

Remark 14. A possible alternative definition in the case P /∈ Ω is to set
(γ̂1, . . . , γ̂n) as one of the vertices of Ω ∩HΓ.

Let us now determine γ̂j , j = 3, 4. As for the incoming transmission lines we have
to distinguish two cases.

Case I. Γmax
out = Γ.

Case II. Γmax
out > Γ.

In the first case γ̂j = γmax
j , j = 3, 4. Let us determine γ̂j in the second case. Recall

α the traffic distribution parameter. Since not all packets can go on the outgoing
transmission lines, we let C be the amount that goes through. Then αC packets go
on the outgoing line I3 and (1 − α)C on the outgoing line I4.

Now we can proceed exactly as in the previous case with q replaced by α. More
precisely, we define rα by the equation γ4 = 1−α

α γ3, rΓ by γ3 + γ4 = Γ, and P to be
the point of intersection of the lines rα and rΓ. Setting Ω = {(γ3, γ4) : 0 ≤ γj ≤ γmax

j ,
j = 3, 4}, we distinguish two cases.

Case (a). P belongs to Ω.
Case (b). P is outside Ω.
In the first case we set (γ̂3, γ̂4) = P , while in the second case we set (γ̂3, γ̂4) = Q,

where Q = projΩ∩rΓ(P ). Again, we can extend to the case of m outgoing lines as for
the incoming lines defining the hyperplane HΓ = {(γn+1, . . . , γn+m) :

∑n+m
j=n+1 γj = Γ}

and choosing a vector vα ∈ Δm−1.
Remark 15. An alternative way of choosing the vector vα is the following. We

assume that a traffic distribution matrix A is assigned; then we compute γ̂1, . . . , γ̂n
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as before and choose vα ∈ Δm−1 by

vα = Δm−1 ∩ {tA(γ̂1, . . . , γ̂n) : t ∈ R} .

The solution to Riemann problems in this section is consistent, as shown by the
next lemma.

Lemma 16. (CC) holds for the Riemann solver for (RA2) defined in this section.
Proof. Let ρ0 = (ρ1,0, . . . , ρ4,0) be the initial datum and ρ̂ = RS(ρ0). Assume,

first, that Γ < Γmax
in . Define γ̂max

i to be the maximum flux on Ii given by a wave

with left datum ρ̂i and then set Γ̂max
in = γ̂max

1 + γ̂max
2 . Then Γ̂max

in ≥ Γmax
in . Indeed

if ρi,0 ∈ [0, σ[, then ρ̂i ∈ {ρi,0} ∪ ]τ(ρi,0), ρmax] and γ̂max
i ≥ γmax

i = f(ρi,0), while if
ρi,0 ∈ [σ, ρmax], then ρ̂i ∈ [σ, ρmax] and so γ̂max

i = f(σ) = γmax
i . The case Γ < Γmax

out is
treated similarly.

5. Estimates on density variation. In this section we derive estimates on
the total variation of the densities along a wave-front tracking approximate solution
(constructed as in [11]) for both routing algorithms. This allows us to construct
the solutions to the Cauchy problem in the standard way; see [7]. From now on,
we assume that every junction has exactly two incoming transmission lines and two
outgoing ones. This hypothesis is crucial, because the presence of more complicated
junctions may provoke additional increases of the total variation of the flux and so of
the density. The case where junctions have at most two incoming transmission lines
and at most two outgoing ones can be treated in the same way.

From now on we fix a telecommunication network (I,J ), with each node having
at most two incoming and at most two outgoing lines, and a wave-front tracking
approximate solution ρ, defined on the telecommunication network.

5.1. Algorithm (RA1). We first introduce the following.
Definition 17. For every transmission line Ii, i = 1, . . . , N , we indicate by(

ρβ−, ρ
β
+

)
, β ∈ A = A(ρ, t, i), A finite set,

the discontinuities on line Ii at time t, and by xβ(t), λβ(t), β ∈ A, respectively,
their positions and velocities at time t. We also refer to the wave β to indicate the
discontinuity (ρβ−, ρ

β
+).

We have the following.
Lemma 18. For some K > 0, we have

TV (f(ρ(t, ·))) ≤ eKtTV (f(ρ(0+, ·)))
≤ eKt(TV (f(ρ(0, ·))) + 2Nf(σ))

for each t ≥ 0, where N is the total number of transmission lines of the network.
For the proof see Lemma 18 in [11]. To estimate the total variation of densities

and to pass to the limit we need some additional notation.
Definition 19. For every line Ii, we define two curves Y i,ρ

− (t), Y i,ρ
+ (t), called the

boundary of external flux (BEF), in the following way. We set the initial condition
Y i,ρ
− (0) = ai, Y i,ρ

+ (0) = bi (if ai = −∞, then Y i,ρ
− ≡ −∞ and if bi = +∞, then

Y i,ρ
+ ≡ +∞). We let Y i,ρ

± (t) follow the generalized characteristic as defined in [12],

letting Y i,ρ
− (t) = ai (resp., Y i,ρ

+ (t) = bi) if the generalized characteristic reaches the

boundary and f ′(ρ(t, ai)) < 0 (resp., f ′(ρ(t, bi)) > 0). (In this way Y i,ρ
± (t) may

coincide with ai or bi for some time intervals.) Let t̄ be the first time such that



730 CIRO D’APICE, ROSANNA MANZO, AND BENEDETTO PICCOLI

Y i,ρ
− (t̄) = Y i,ρ

+ (t̄) (possibly t̄ = +∞). Then we let Y i,ρ
± be defined on [0, t̄]. Finally,

we define the sets

Di
1(ρ) =

{
(t, x) : t ∈ [0, t̄[ : Y i,ρ

− (t) < x < Y i,ρ
+ (t)

}
and

Di
2(ρ) = [0,+∞[ × [ai, bi] \Di

1(ρ).

Clearly Y i,ρ
± (t) bound the set on which the datum is not influenced by other

transmission lines through the junctions.
Definition 20. Fix a transmission line Ii, i = 1, . . . , N , and a junction J . A

wave β in Ii is said to be a big wave if

sgn(ρβ− − σ) · sgn(ρβ+ − σ) ≤ 0,

where sgn(0) = 0. We say that an incoming transmission line Ii has a bad datum at
J at time t > 0 if

ρi(t, bi−) ∈ [0, σ[ ,

while we say that an outgoing transmission line Ij has a bad datum at J at time t > 0
if

ρj(t, aj+) ∈ ]σ, 1] .

Our aim is now to bound, for each line Ii, the number of big waves inside the
region Di

2(ρ), i.e., those generated by the influence of external lines.
Lemma 21. Let t̄ be the time at which the two BEFs Y i,ρ

± interact. Assume

t̄ < +∞, Y i,ρ
± (t̄) ∈ ]ai, bi[, and define

ρ̂out = ρ
(
Y i,ρ
± (t̄)−

)
, ρ̂in = ρ

(
Y i,ρ
± (t̄)+

)
, ρ∗ = lim

t↑t̄
ρ
(
Y i,ρ
− (t)+

)
= lim

t↑t̄
ρ
(
Y i,ρ

+ (t)−
)
.

If ρ̂in, respectively, ρ̂out, is a bad datum for Ii as incoming line, respectively, for Ii as
outgoing line, then there exists no value ρ∗ of the density such that

λ(ρ̂out, ρ
∗) > λ(ρ∗, ρ̂in).

Proof. Since ρ̂out and ρ̂in are bad data for, respectively, an outgoing transmission
line and an incoming transmission line, it follows that

ρ̂out ∈ ]σ, 1] , ρ̂in ∈ [0, σ[ .

Observe that ρ̂out and ρ∗ must be connected by a single wave, and thus ρ∗ ≥ σ;
otherwise the wave would be split in a fan of rarefaction shocks.

Similarly, ρ∗ and ρ̂in must be connected by a single wave, and thus ρ∗ ≤ σ;
otherwise the wave would be split in a fan of rarefaction shocks.

Finally, ρ∗ = σ, but then

λ(ρ̂out, ρ
∗) ≤ 0 ≤ λ(ρ∗, ρ̂in)

and the conclusion holds.
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Lemma 22. For every t ≥ 0, there are at most two big waves on{
x : (t, x) ∈ Di

2(ρ)
}
⊆ [ai, bi] .

Proof. A big wave can originate at time t on transmission line Ii from J only if
the line Ii has a bad datum at J at time t. If this happens, then, from Theorem 13,
line Ii has not a bad datum at J up to the time in which a big wave is absorbed from
Ii. This concludes the proof if Di

2(ρ) is formed by two connected components.
It remains to consider the time at which the two BEFs interact. By Lemma 21

we have that not both connected components can contain a big wave. Thus again
there are at most two big waves.

Up to now, we did not make use of assumption (F), which is necessary for the
next lemma.

Lemma 23. Assume (F); then for some K > 0, we have

TV (ρ(t, ·)) ≤ TV (ρ(0, ·)) + 2N

(
eKtf(σ)

v̄
+ 1

)

for each t ≥ 0, where N is the total number of transmission lines of the network.
Proof. Let TV (h; [a, b]) denote the total variation of the function h over the

interval [a, b] and define

TV j(ρ(t)) =
∑
i

TV (ρ(t);Di
j(ρ(t)), j = 1, 2,

which are, respectively, the total variation of ρ(t) due to the evolution only inside
each line Ii and by interaction with junctions. Clearly,

TV (ρ(t)) = TV 1(ρ(t)) + TV 2(ρ(t)).

Since Di
1(ρ(t)) is not influenced by external lines, we are in the situation of a conser-

vation law on R, hence

TV 1(ρ(t)) ≤ TV (ρ(0)).

Let B(t) denote the number of big waves generated from junctions, i.e., the number
of big waves in

⋃
i D

i
2(ρ(t)). Then by the chain rule for BV functions and Lemma 18,

TV 2(ρ(t)) ≤ 1

v̄
TV 2(f(ρ(t)) + B(t) ≤ 1

v̄
eKt(TV 2(f(ρ(0+))) + B(t).(12)

Now that TV 2(ρ(0)) = 0, and thus, using again Lemmas 18 and 22, the following
relation holds:

TV 2(ρ(t)) ≤ 1

v̄
eKt2Nf(σ) + 2N.(13)

Finally we get

TV (ρ(t)) = TV 1(ρ(t)) + TV 2(ρ(t)) ≤ TV (ρ(0)) + 2N

(
eKtf(σ)

v̄
+ 1

)
.

Thanks to Lemma 23 and the Lipschitz continuous dependence in L1
loc of wave-

front tracking approximations, we can apply the Helly theorem, as in [7], to get
existence of solutions.
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Theorem 24. Fix a telecommunication network (I, J) and assume (F). Given
T > 0, for every initial data there exists an admissible solution to the Cauchy problem
on the network defined on [0, T ].

Let us observe that there is no Lipschitz continuous dependence by initial data
with respect to the L1 norm. In fact it is possible to choose two piecewise constant
initial data, which are exactly the same except for a shift of a discontinuity, such
that the L1-distance of the two corresponding solutions increases by an arbitrary
multiplicative factor (see [11]).

5.2. Algorithm (RA2). Let us now estimate the flux total variation and the
density total variation for routing algorithm (RA2). We can define BEFs, bad data,
and big waves as in the previous section.

Fix a junction J with two incoming transmission lines I1 and I2 and two outgoing
ones I3 and I4.

Suppose that at some time t̄ a wave interacts with the junction J and let (ρ−1 , ρ
−
2 ,

ρ−3 , ρ
−
4 ) and (ρ+

1 , ρ
+
2 , ρ

+
3 , ρ

+
4 ) indicate the equilibrium configurations at the junction J

before and after the interaction, respectively. Introduce the following notation:

γ±
i = f(ρ±i ), Γ±

in = γ±
1,max + γ±

2,max, Γ±
out = γ±

3,max + γ±
4,max,

Γ± = min{Γ±
in,Γ

±
out},

where γ±
i,max, i = 1, 2, and γ±

j,max, j = 3, 4, are defined as in (10) and (11). In general
− and + denote the values before and after the interaction, while by Δ we indicate
the variation, i.e., the value after the interaction minus the value before. For example,
ΔΓ = Γ+ − Γ−. Let us denote by TV (f)± = TV (f(ρ(t̄±, ·))) the flux variation of
waves before and after the interaction, and by

TV (f)±in = TV (f(ρ1(t̄±, ·))) + TV (f(ρ2(t̄±, ·))),

TV (f)±out = TV (f(ρ3(t̄±, ·))) + TV (f(ρ4(t̄±, ·)))

the flux variation of waves before and after the interaction, respectively, on incoming
and outgoing lines.

Let us prove some estimates which are used later to control the total variation of
the density function. For simplicity, from now on we assume that

(A) the wave interacting at time t̄ with J comes from line 1 and we let ρ1 be the
value on the left of the wave.

The case of a wave from an outgoing line can be treated similarly.
Lemma 25. We have

sgn (Δγ3) · sgn (Δγ4) ≥ 0.

Proof. To prove the lemma it is enough to observe that a variation of γ3 is due
to a movement along the line rq or along γ3 = c1 or γ4 = c2 with c1 and c2 constant.
In each case Δγ3 and Δγ4 have the same sign.

In the same way we can prove the following lemma.
Lemma 26. We have

sgn(γ+
1 − γ1) · sgn(Δγ2) ≥ 0,

where γ1 = f(ρ1).
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Lemma 27. It holds that

TV (f)+out = |ΔΓ|.

Proof. To prove the lemma it is enough to observe that

Γ− = γ−
3 + γ−

4 , Γ+ = γ+
3 + γ+

4 ,

|ΔΓ| = |Γ+ − Γ−| = |(γ+
3 − γ−

3 ) + (γ+
4 − γ−

4 )|,

from which, by Lemma 25, we have

|ΔΓ| = |Δγ3| + |Δγ4| = TV (f)+out.

Lemma 28. We have

TV (f)−in = TV (f)+in + |ΔΓ|.(14)

Proof. Clearly since the wave on the first line has positive velocity, we have
0 ≤ ρ1 ≤ σ. Since ρ1 ≤ σ, observe that the maximum flux for ρ+

1 , which is the
solution with initial data ρ1, is given by γ1,max = f(ρ1). Also

TV (f)− = TV (f)−in = |γ1 − γ−
1 |.

We have two possibilities.
Case 1. ρ−1 ≤ σ.
Case 2. ρ−1 > σ.
Let us first analyze Case 1. Then we further split it into two subcases.
Case 1(a). ρ1 < ρ−1 .
Case 1(b). ρ1 > ρ−1 .
If 1(a) holds true, since ρ1 < ρ−1 , we get γ1,max = f(ρ1) < f(ρ−1 ) = γ−

1,max and
one of the following holds.

Case 1(a.1). Γ− = Γ−
in.

Case 1(a.2). Γ− = Γ−
out.

In Case 1(a.1) from γ1,max < γ−
1,max and Γ− = Γ−

in, it follows that Γ+ = Γ+
in, from

which γ+
2 = γ−

2 , γ+
1 = γ1 and then TV (f)+in = 0.

In Case 1(a.2) we have γ1,max < γ−
1,max, and hence Γ−

in ≥ Γ− and γ1,max+γ−
2,max <

Γ−
in. The following distinction must be considered.

Case 1(a.2.1). γ1,max + γ−
2,max ≥ Γ−.

Case 1(a.2.2). γ1,max + γ−
2,max < Γ−.

If Case 1(a.2.1) holds, from γ1,max + γ−
2,max ≥ Γ−, we have that Γ+ = Γ−, from

which |ΔΓ| = 0. By Lemma 26 the conclusion holds.
In the opposite Case 1(a.2.2) from γ1,max + γ−

2,max < Γ−, one gets Γ+ = γ1,max +

γ−
2,max, from which it follows that TV (f)+in = 0. Then |ΔΓ| =

∣∣γ−
1 − γ1

∣∣ = TV (f)−in.
Case 1(a) is thus finished.

Let us now focus on Case 1(b). We have to distinguish two possibilities.
Case 1(b.1). Γ− = Γ−

out.
Case 1(b.2). Γ− = Γ−

in.
If Case 1(b.1) holds, from Γ− = Γ−

out it follows that γ1,max + γ−
2,max > Γ−

in. Then
Γ+ = Γ−; hence |ΔΓ| = 0 and by Lemma 26 the conclusion holds.

In Case 1(b.2), we have γ1,max + γ−
2,max > Γ−

in and Γ−
out ≥ Γ−

in, and the following
cases may happen.
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Case 1(b.2.1). γ1,max + γ−
2,max ≤ Γ−

out.

Case 1(b.2.2). γ1,max + γ−
2,max > Γ−

out.

Consider Case 1(b.2.1) first. From γ1,max + γ−
2,max ≤ Γ−

out, one has TV (f)+in = 0,

and hence |ΔΓ| =
∣∣γ1 − γ−

1

∣∣ = TV (f)−in.

In Case 1(b.2.2), from γ1,max+γ−
2,max > Γ−

out we obtain Γ+ = Γ+
out. By Lemma 25,

TV (f)+in = γ1,max + γ−
2,max − Γ−

out,

TV (f)−in = γ1,max − γ−
1,max,

and hence

TV (f)−in − TV (f)+in = −γ−
1,max − γ−

2,max + Γ−
out

= Γ+ − Γ−
in = Γ+ − Γ− = |ΔΓ| .

Let us analyze Case (2). Since ρ−1 > σ it follows that ρ1 < τ(ρ−1 ) < σ. Observe
that γ1 = f(ρ1) < f(ρ−1 ) = γ−

1 and γ−
1,max = f(σ), γ1,max = f(ρ1).

We have to distinguish two cases.
Case 2(a). Γ− = Γ−

in.
Case 2(b). Γ− = Γ−

out.
If Case 2(a) holds, then one gets γ1,max + γ−

2,max < Γ−, from which it follows that

Γ+ = γ1,max + γ−
2,max. Hence TV (f)+in = 0 and the conclusion holds.

For the opposite Case (2b), we have γ1,max +γ−
2,max < Γ−

in and Γ−
in ≥ Γ−

out. Hence
the following two cases are possible.

Case 2(b.1). γ1,max + γ−
2,max ≥ Γ−

out.

Case 2(b.2). γ1,max + γ−
2,max < Γ−

out.

In Case 2(b.1), from γ1,max + γ−
2,max ≥ Γ−

out, it follows that Γ+ = Γ−. The latter
implies |ΔΓ| = 0 and the conclusion follows from Lemma 26.

In Case 2(b.2) from γ1,max+γ−
2,max < Γ−

out, we obtain Γ+ = γ1,max+γ−
2,max. Thus,

by Lemma 26, we get

TV (f)+out = Γ+ − (γ1 + γ−
2 ) = (γ1,max + γ−

2,max) − (γ1 + γ−
2 ) = γ−

2,max − γ−
2 .

It follows that

|ΔΓ| = Γ− − Γ+ = γ−
1 + γ−

2 − (γ1,max + γ−
2,max)

= (γ−
1 − γ1,max) + (γ−

2 − γ−
2,max) = TV (f)−in − TV (f)+out,

and the conclusion holds. The proof is thus complete.
From the above results, we are ready to state the following.
Lemma 29. The flux variation TV (f) is conserved along wave-front tracking

approximations.
Notice that this result is much stronger than that obtained for routing algorithm

(RA1), for which only an exponential in time bound for the flux variation is achieved.
Proof. From Lemmas 27 and 28 we get

TV (f)− = TV (f)−in = TV (f)+in + |ΔΓ| = TV (f)+.

The estimate on the number of big waves is valid also for algorithm (RA2); thus
we bound the total variation of the densities as follows.
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Theorem 30. Consider a telecommunication network (I,J ) and assume (F).
Let ρ be a wave-front tracking approximate solution. Then

TV (ρ(t, ·)) ≤ TV (ρ(0, ·)) + 2N

(
f(σ)

v̄
+ 1

)

for each t ≥ 0, where N is the total number of transmission lines of the network.
Moreover, given T > 0, there exists an admissible solution to the Cauchy problem on
the network defined on [0, T ] for every initial data.

5.2.1. Uniqueness and Lipschitz continuous dependence. The aim of this
section is to prove Lipschitz continuous dependence by initial data for solutions to the
Cauchy problem on the network, controlling for any two approximate solutions ρ, ρ′

how their distance varies in time. We use the method introduced in [8], which is based
on a Riemannian type distance on L1. There are various alternative methods to treat
uniqueness and continuous dependence for the case of scalar conservation laws on the
real line, including Kruzkov entropies (cf. [7]), viscous approximations (cf. [22, 23]),
and Bressan–Liu–Yang functionals (see [9]). No one of these methods seems to work
for the network case. In fact, the Kruzkov method requires one to estimate integrals
on a region in R

2, which now is replaced by an integral on the topological space
obtained by the product of the network and R. On the other hand, it is not clear how
to define a viscous solution on the network, in particular how to treat boundary data
at nodes, and how to pass to the limit. Finally, a Bressan–Liu–Yang-type functional
requires one to introduce a definition of approaching waves, but, on a general network,
with complicated topology, every wave is potentially approaching each other.

The basic idea is to estimate the L1-distance viewing L1 as a Riemannian man-
ifold. We consider the subspace of piecewise constant functions and “generalized
tangent vectors” consisting of two components (v, ξ), where v ∈ L1 describes the
L1 infinitesimal displacement, while ξ ∈ R

n describes the infinitesimal displace-
ment of discontinuities. For example, take a family of piecewise constant functions
θ → ρθ, θ ∈ [0, 1], each of which has the same number of jumps, say at the points
xθ

1 < · · · < xθ
N . Assume that the following functions are well defined (Figure 6):

L1 � vθ(x)
.
= lim

h→0

ρθ+h(x) − ρθ(x)

h
,

as well as the numbers

ξθβ
.
= lim

h→0

xθ+h
β − xθ

β

h
, β = 1, . . . , N.

Then we say that γ admits tangent vectors (vθ, ξθ) ∈ Tρθ
.
= L1(R; Rn) × R

n. In
general a path such as θ → ρθ is not differentiable with respect to the usual differential
structure of L1; in fact if ξθβ �= 0, as h → 0 the ratio

[
ρθ+h(x)−ρθ

]
/h does not converge

to any limit in L1.
Moreover, we can compute the L1-length of the path γ : θ → ρθ in the following

way:

‖γ‖L1 =

∫ 1

0

∥∥vθ∥∥
L1 dθ +

N∑
β=1

∫ 1

0

∣∣ρθ(xβ+) − ρθ(xβ−)
∣∣ ∣∣ξθβ∣∣ dθ.(15)



736 CIRO D’APICE, ROSANNA MANZO, AND BENEDETTO PICCOLI
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Fig. 6. Construction of “generalized tangent vectors.”

According to (15), in order to compute the L1-length of a path γ, we integrate the
norm of its tangent vector, which is defined as follows:

‖(v, ξ)‖ .
= ‖v‖L1 +

N∑
β=1

|Δρβ | |ξβ | ,

where Δρβ = ρ(xβ+) − ρ(xβ−) is the jump across the discontinuity xβ .
Let us introduce the following definition.
Definition 31. We say that a continuous map γ : θ → ρθ

.
= γ(θ) from [0, 1] into

L1
loc is a regular path if the following holds. All functions ρθ are piecewise constant,

with the same number of jumps, say at xθ
1 < · · · < xθ

N , and coincide outside some fixed
interval ]−M,M [. Moreover, the function θ → ρθx is continuous from [0, 1] into L1,
and the map θ → ρθ admits a generalized tangent vector Dγ(θ) = (vθ, ξθ) ∈ Tγ(θ) =
L1(R; Rn) × R

N , continuously depending on θ.
Given two piecewise constant functions ρ and ρ′, call Ω(ρ, ρ′) the family of all

regular paths γ : [0, 1] → γ(t) with γ(0) = ρ, γ(1) = ρ′. The Riemannian distance
between ρ and ρ′ is given by

d(ρ, ρ′)
.
= inf {‖γ‖L1 , γ ∈ Ω(ρ, ρ′)} .

To define d on all L1, for given ρ, ρ′ ∈ L1 we set

d(ρ, ρ′)
.
= inf {‖γ‖L1 + ‖ρ− ρ̃‖L1 + ‖ρ′ − ρ̃′‖L1 :

ρ̃, ρ̃′ piecewise constant functions, γ ∈ Ω(ρ̃, ρ̃′)} .

It is easy to check that this distance coincides with the distance of L1. For the systems
case, one has to introduce weights; see [8].

Now we are ready to estimate the L1-distance among solutions, studying the
evolution of norms of tangent vectors along wave-front tracking approximations. Take
ρ, ρ′ piecewise constant functions and let γ0(ϑ) = ρϑ be a regular path joining ρ = ρ0

with ρ′ = ρ1. Define ρϑ(t, x) to be a wave-front tracking approximate solution with
initial data ρϑ and let γt(ϑ) = ρϑ(t, ·).
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If we can prove that, for every γ0 (regular path) and every t ≥ 0, γt is a regular
path and

‖γt‖L1 ≤ ‖γ0‖L1 ,(16)

then for every t ≥ 0

‖ρ(t, ·) − ρ′(t, ·)‖L1 ≤ inf
γt

‖γt‖L1 ≤ inf
γ0

‖γ0‖L1 = ‖ρ(0, ·) − ρ′(0, ·)‖L1 .(17)

To obtain (16), hence (17), it is enough to prove that, for every tangent vector (v, ξ)(t)
to any regular path γt, one has

‖(v, ξ)(t)‖ ≤ ‖(v, ξ)(0)‖ ,(18)

i.e., the norm of a tangent vector does not increase in time. Moreover, if (17) is
established, then uniqueness and Lipschitz continuous dependence of solutions to
Cauchy problems is straightforwardly achieved passing to the limit on the wave-front
tracking approximate solutions.

The same reasoning can be used on the network. If ρ = (ρ1, . . . , ρN ) is a solution
on the network, then we set

‖ρ‖L1 =
∑
i

‖ρi‖L1(Ii)
.

To estimate the distance among wave-front tracking solutions it is thus enough to
prove (18). We prove the latter estimating the evolution of the tangent vector norm
at each time. For this, we fix a time t̄ ≥ 0 and, without loss of generality, treat the
following cases:

(a) no interaction of waves takes place in any transmission line at t̄, and no wave
interacts with a junction;

(b) two waves interact at t̄ on a transmission line, and no other interaction takes
place;

(c) a wave interacts with a junction at t̄, and no other interaction takes place.
In case (a) we can prove [

d

dt
‖(v, ξ)(t)‖

]
t=t̄

≤ 0,

while in cases (b) and (c), letting (v, ξ)± be the tangent vector before (−) and after (+)
the interaction, we prove ∥∥(v, ξ)+

∥∥ ≤
∥∥(v, ξ)−

∥∥ .
Let us first analyze case (a). Denote by xβ , σβ , and ξβ , respectively, the positions,
sizes, and shifts of the discontinuities of the wave-front tracking approximate solution.
Following [8] we get

d

dt

⎧⎨
⎩
∫

|v(t, x)| dx +
N∑

β=1

|ξβ | |σβ |

⎫⎬
⎭

= −

⎧⎨
⎩
∑
β

(
λ(ρ−) − ẋβ

) ∣∣v−∣∣ +
∑
β

(
ẋβ − λ(ρ+)

) ∣∣v+
∣∣
⎫⎬
⎭

+
∑
β

Dλ(ρ−, ρ+) · (v−, v+) (sign ξβ) |σβ | ,
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with σβ = ρ+ − ρ−, ρ±
.
= ρ(xβ±) and similarly for v±. If the waves respect the

Rankine–Hugoniot conditions, then

Dλ(ρ−, ρ+)(v−, v+) =
(
λ(ρ−) − ẋβ

) v−

|σβ |
+

(
ẋβ − λ(ρ+)

) v+

|σβ |

and

d

dt

⎧⎨
⎩
∫

|v(t, x)| dx +
N∑

β=1

|ξβ | |σβ |

⎫⎬
⎭ ≤ 0.(19)

Remark 32. To be precise, to obtain control over TV (f) the wave-front tracking
is slightly modified in the following way (see [11]). For every initial data ρ a sequence
of piecewise constant approximations ρν are constructed, converging to ρ in L1. Then
one chooses a sequence δν > 0 converging to zero and construct wave-front tracking
approximate solutions splitting rarefaction waves into a fan of rarefaction shocks, each
of size at most δν . If a rarefaction wave is originated at a junction with ρ+ or ρ−

equal to σ, then we let ẋβ = 0. However, since ẋβ = f(σ+δν)−f(σ)
δν

, |ẋβ − x̄β | = δν we
get

d

dt

⎧⎨
⎩
∫

|v(t, x)| dx +
N∑

β=1

|ξβ | |σβ |

⎫⎬
⎭ ≤ 2δνN,

where N is the number of transmission lines. In fact, by Lemma 22, there are at most
two such waves on each transmission line. Hence the estimate (18) is obtained in the
limit as ν tends to +∞.

In case (b), we use the following lemma (see [11], for example).
Lemma 33. Let us consider in a transmission line two waves, with speeds λ1 and

λ2, respectively, that interact, producing a wave with speed λ3. If the first wave is
shifted by ξ1 and the second wave by ξ2, then the shift of the resulting wave is given
by

ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2.

Moreover we have that

Δρ3ξ3 = Δρ1ξ1 + Δρ2ξ2,(20)

where Δρi are the signed strengths of the corresponding waves.
From (20) it follows that

|Δρ3ξ3| ≤ |Δρ1| |ξ1| + |Δρ2| |ξ2| ,

from which ∥∥(v, ξ)+
∥∥ ≤

∥∥(v, ξ)−
∥∥ .(21)

For case (c) we report the lemma in [11].
Lemma 34. Let us consider a junction J with incoming lines I1 and I2 and

outgoing lines I3 and I4. If a wave on a transmission line Ii (i ∈ {1, . . . , 4}) interacts
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with J and if ξi is the shift of the wave in Ii, then the shift ξj produced in a different
line Ij (j ∈ {1, . . . , 4}\{i}) satisfies

ξj(ρ
+
j − ρ−j ) =

Δγj
Δγi

ξi(ρ
+
i − ρ−i ),

where Δγl (l ∈ {i, j}) represents the variation of the flux in the line Il and ρ−l , ρ
+
l (l ∈

{i, j}) are the states at J in the line Il, respectively, before and after the interaction.
Define TV (f)± to be the total variation of the flux of the solution before (−)

and after (+) the interaction, and TV (f)±i the same quantity on line Ii. Without
loss of generality, we can assume that a wave from an incoming transmission line ı̄
interacts with a junction J and no other wave is present. Then TV (f)− = TV (f)−ı̄
and TV (f)+ =

∑
j TV (f)+j , where TV (f)+j measures just the wave produced by the

interaction. From Lemma 34 we have

|ξj | |Δρj | =
TV (f)−j
TV (f)−

|ξı̄| |Δρı̄| .

Using Lemma 29 we conclude

∥∥(v, ξ)+
∥∥ = ‖v‖L1 +

∑
j

|ξj | |Δρj | = ‖v‖L1 +
∑
j

TV (f)−j

TV (f)−ı̄
|ξı̄| |Δρı̄|

= ‖v‖L1 +
TV (f)+

TV (f)−
|ξı̄| |Δρı̄| =

∥∥(v, ξ)−
∥∥ .

(22)

From (19), (21), and (22), we get the following.
Theorem 35. Consider a telecommunication network (I,J ) and assume (F).

Then the solutions to Cauchy problems on the networks are unique and depend in a
Lipschitz continuous way on initial data.
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APPROXIMATE TRAVELING WAVES IN LINEAR
REACTION-HYPERBOLIC EQUATIONS∗
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Abstract. Linear reaction-hyperbolic equations arise in the transport of neurofilaments and
membrane-bound organelles in axons. The profile of the solution was shown by simulations to be
approximately that of a traveling wave; this was also suggested by formal calculations [M. C. Reed,
S. Venakides, and J. J. Blum, SIAM J. Appl. Math., 50 (1990), pp. 167–180]. In this paper we prove
such a result rigorously.
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1. Introduction. This paper is concerned with the mathematical analysis of
reaction-hyperbolic equations which describe transport of materials along a straight
ray l0 = {x : 0 < x < ∞}. The model is motivated from biology; it describes the
transport of proteins and other molecules along the axon of a neuron. The proteins
are formed near the nucleus of the cell, that is, at x = 0, and are transported to
various locations along the axon, moving towards the synaptic end. Some material
is also transported back, in retrograde motion. The transported materials include,
for example, vesicles, membrane-bound organelles, and neurofilaments. Motor pro-
teins attached to a vesicle (or a neurofilament) carry this cargo as they pace along
a microtubule, step by step, energized by adenosine triphosphate (ATP) molecules.
While some of the motors may be moving along a microtubule, others may be “rest-
ing” on-track, or even off-track, for a while. Thus the model has to deal with several
populations of vesicles, depending in what state of motion they are. Earlier models
of axonal transport were developed by Reed and Blum [10, 1, 2]. Using mass reaction
laws and conservation of mass, they derived a system of hyperbolic equations and
studied (mostly numerically) the particle concentration profile along the axon. The
numerical results show that the transport of the particle concentrations has the pro-
file of “approximate traveling waves”; experimentally, they arise from radiolabeling
proteins in the soma and then observing the progress of the wave of label as it goes
down the axon. The wave goes at constant velocity, but the front spreads so it is only
approximately a traveling wave. Reed, Venakides, and Blum [11] considered a mathe-
matical problem derived from such a transport model, in the biologically relevant case
when the transition between the various populations is fast relative to the transport.
Recent experimental results and computational models [4, 6, 8, 12, 13] also describe
the dynamics of such transport.
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Consider, for example, two populations p and q, with transition rates

k1

p � q
k2

,

where q is moving and p is resting. Then the corresponding reaction-hyperbolic system
describing their transport is given by

εpt = −k1p + k2q,(1.1)

ε (qt + v2qx) = k1p− k2q,

where ε is a small positive constant. The general transport problem for n species may
be written in the form

ε (∂t + vi∂x) pi =

n∑
j=1

kijpj for 0 < x < ∞, t > 0, 1 ≤ i ≤ n,(1.2)

where kij ≥ 0 if i �= j, the velocities vi may be positive, negative, or zero, and

n∑
i=1

kij = 0(1.3)

by conservation of mass; thus,

kjj = −
n∑

i=1
i �=j

kij .

We need to complement (1.2) with initial conditions, and with boundary condi-
tions at x = 0 for each pi for which vi > 0.

The special case

vi = 0, 1 ≤ i ≤ n− 1,(1.4)

vn > 0,

pi(x, 0) = 0, 1 ≤ i ≤ n, 0 < x < ∞
pn(0, t) = 1, t > 0,

was studied by Reed, Venakides, and Blum [11]. They derived formulas which suggest
that if we write pn in the form

pn(x, t) = Qε

(
x− vt√

ε
, t

)
,(1.5)

then

Qε(s, t) → Q0(s, t) as ε → ∞,(1.6)

where Q0 is a solution of the heat equation

∂tQ0 − σ2∂2
sQ0 = 0, −∞ < s < ∞, t > 0,(1.7)

Q0(s, 0) = 1 if s < 0,

Q0(s, 0) = 0 if s > 0;
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the parameters v, σ2 are computed from the vj and kij . Formula (1.5), together
with (1.6), (1.7), shows the approximate traveling wave profile for the transport of
the concentration pn(x, t). The assertion (1.5) in [11] was only formal, but Brooks [3]
developed a probabilistic model which enabled her to prove (1.5), in some sense, in
the special case of (1.1).

One of the aims of the present paper is to give a rigorous proof of (1.6) for the
case (1.4), or more generally for the case when all vj ≥ 0, and

pi(x, 0) = λiq0

(
x√
ε

)
, 1 ≤ i ≤ n,

pj(0, t) = λj if vj > 0,

where either q0 ≡ 0 or q0(s) has compact support and q0(0) = 1; here (λ1, . . . , λn)
is a vector with positive components and, at the same time, a generator of the null
space of the matrix (kij).

The proof, given in section 3, is by PDE methods. Since, in the case q0 ≡ 0, the
function Q0 is discontinuous only at the point (0, 0) while Qε is discontinuous along
the half-line x = vt, t ≥ 0, we don’t expect the convergence in (1.6) to be in the
uniform sense, at least not near the origin (0, 0); we shall prove the convergence in
the weak Lr-sense for any 1 < r < ∞.

In the case of (1.1) we shall prove, in section 2, in case q0 is not identically zero,
a “strong” convergence in (1.6), namely,

∫ ∞

− vT√
ε

(Qε(s, t) −Q0(s, t))
2
ds +

∫ T

0

∫ ∞

− vT√
ε

(∂sQε(s, t) − ∂sQ0(s, t))
2
dsdt ≤ C

√
ε.(1.8)

This estimate also holds for the case (1.2) if n = 2, i.e., for v2 > 0 and v1 ≥ 0.

In [9] Pinsky considered the system (1.2) for −∞ < x < ∞, t > 0, with initial
data

pi(x, 0) = f

(
x√
ε

)
for all i, −∞ < x < ∞,

and proved that

|Qε(s, t) −Q0(s, t)| ≤ C
√
ε,

where Q0(s, t) is a solution of a heat equation as in (1.7) for −∞ < s < ∞, t > 0,
with Q0(s, 0) = f(s), −∞ < s < ∞. Pinsky’s dynamical system is derived from a
different (stochastic) model and, in particular, he assumes that

∑n
j=1 kij = 0 instead

of (1.3). His proof is based on the construction of boundary layers and estimates via
the Fourier transform in x; that proof does not extend to the system (1.2), (1.4), not
even in the case n = 2.

We conclude the introduction by pointing out several open problems:

(i) Extend the strong convergence result to n > 2.
(ii) Extend the results of this paper to the case of forward and backward velocities

(i.e., anterograde and retrograde transport).
(iii) Study the case where the kinetics is nonlinear.
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2. The case n = 2. Throughout this paper we shall use the notation

D = {(x, t) : 0 < x < ∞, t > 0}.

Consider the process
k1

p � q
k2

, where k1, k2 are positive constants, with dynamics

ε(pt + v1px) = −k1p + k2q,(2.1)

ε(qt + v2qx) = k1p− k2q(2.2)

in D, where v1, v2 are given constant velocities, and ε is a small positive number. We
intend to prove that, as ε → 0, q(x, t) will behave like Q(x−vt√

ε
, t), where Q(s, t) is

a solution of a parabolic equation. Such a result requires, of course, that the initial
values for q should be of the form q0(

x√
ε
). We also choose initial data which are in

equilibrium with respect to the process
k1

p � q
k2

. Thus, we assume that

p(x, 0) =
k1

k2
q0

(
x√
ε

)
, q(x, 0) = q0

(
x√
ε

)
for 0 ≤ x < ∞.(2.3)

We further assume that v1 ≥ 0, v2 > 0, v1 �= v2 and prescribe the boundary condition

q(0, t) = 1 for t > 0.(2.4)

If v1 = 0, then no boundary conditions are imposed on p; however, if v1 > 0, then we
prescribe the boundary condition p(0, t) = k2

k1
for t > 0.

We shall require that q0(s) is in C4 (0 ≤ s < ∞) and that

0 ≤ q0(s) ≤ 1 if s > 0, q0(s) = 0 if s > A0 for some A0 < ∞,(2.5)

q0(0) = 1, ∂j
sq0(s)|s=0 = 0 if 1 ≤ j ≤ 4.

The last two conditions ensure that the initial and boundary data fit at (0, 0) up to
order 4. Note that (2.5) implies that 0 ≤ q0(s) ≤ 1.

It will be convenient to first deal with the case

v1 = 0.(2.6)

However, in order not to repeat some of the calculations, we shall perform these
calculations for general v1.

By standard ODE arguments we deduce that the solution (p, q) is continuously
differentiable in D̄, that (∂xp, ∂xq) satisfy the same system as (p, q), and that

k1∂xp(x, 0) = k2∂xq(x, 0) = k2∂xq0

(
x√
ε

)
, 0 < x < ∞;

furthermore, if v1 = 0, then

εv2∂xq(0, t) = k1p(0, t) − k2q(0, t) → 0 if t → 0.

Since ∂xq(x, 0) → 0 as x → 0, the initial-boundary data are continuous at (0, 0). It
follows, as before, that the second order derivatives of p, q are continuous in D̄, and
similarly one can prove that also the third order derivatives of p, q are continuous in
D̄.
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Lemma 2.1 (maximum principle). The following inequalities hold:

0 ≤ p ≤ k2

k1
, 0 ≤ q ≤ 1.

Proof. Let us first consider the system (2.1)–(2.4) in DL = D ∩ {x < L}, for
0 < L < ∞. We modify (2.1), (2.2) by subtracting a small positive number μ from
the right-hand sides, and we denote the corresponding solution by (pμ, qμ). We claim
that

pμ <
k2

k1
(1 + μ), qμ < 1 + μ.(2.7)

Indeed, if this is not true, then consider a point (x0, t0) with the smallest t0 for
which equality occurs in (2.7) either for pμ or for qμ. Suppose, for definiteness, that
qμ(x0, t0) = 1+μ. Because of the boundary and initial conditions, x0 �= 0 and t0 �= 0.
At (x0, t0) we have

ε(∂t + v2∂x)qμ = k1pμ − k2qμ − μ ≤ −μ < 0.

Thus, there would be an earlier time at which qμ ≥ 1 + μ, which is a contradiction.
Taking μ → 0 and then L → ∞ we obtain the inequalities p ≤ k2

k1
, q ≤ 1. Similarly

one can prove, by taking μ < 0, that p ≥ 0, q ≥ 0.
We now proceed to derive the asymptotic behavior for q(x, t) as ε → 0. We begin

by deriving a second order PDE for q. From (2.1), (2.2) we obtain

ε(∂t + v1∂x)(∂t + v2∂x)q + (k1 + k2)∂tq − (k1v2 + k2v1)∂xq = 0.(2.8)

Introduce a change of variables

s =
x− vt√

ε
, Qε(s, t) = q(x, t),

where v will be determined later on. The domain D is transformed into the domain

Ω =

{
(s, t) : − vt√

ε
< s < ∞, t > 0

}
.

Later on we shall use the notation

ΩT = Ω ∩ {t < T},

ΓT ≡ ΓT,ε =

{
(s, t) : s = − vt√

ε
, 0 < t < T

}
, where 0 < T ≤ ∞,

L0 = {(s, 0) : 0 < s < ∞},

st ≡ st,ε = − vt√
ε
.

Note that

∂tq = ∂tQε −
v√
ε
∂sQε, ∂xq =

1√
ε
∂sQε, and(2.9)

∂tQε = ∂tq + v∂xq, ∂sQε =
√
ε∂xq.
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It is easily seen that if we choose

v =
k1v2 + k2v1

k
, where k = k1 + k2,(2.10)

then we obtain the following equation for Qε:

∂tQε − σ2∂2
sQε + ∂tsK

√
εQε +

ε

k
∂2
tQε = 0 in Ω,(2.11)

where

σ2 =
k1k2

k3
(v2 − v1)

2, K =
k2 − k1

k2
(v2 − v1).(2.12)

Continuing with the assumption (2.6), we also have

Qε(s, 0) = q0(s), s > 0,(2.13)

and, by (2.2), (2.3), (2.9), and (2.10),

∂tQε(s, 0) = −k2(v2 − v1)

k

1√
ε
∂sq0(s), s > 0.(2.14)

Since q(0, t) = 1 the function p(0, t) ≡ k2/k1 is the solution of (2.1) at x = 0, so that
also

ε∂xq(0, t) =
ε

v2
(∂tq + v2∂xq) =

1

v2
(k1p− k2q) = 0 at (0, t).

Hence

Qε = 1, ∂sQε = ∂tQε = 0 on ΓT for any T > 0.(2.15)

If W,φ are bounded continuously differentiable functions in Ω̄T , T < ∞, and
φ(s, T ) ≡ 0, then, by integration by parts,∫∫

ΩT

∂tW · φdsdt = −
∫

ΓT∪L0

Wφds−
∫∫

ΩT

W · ∂tφdsdt,

where in the integrals along ΓT and L0 the variable s is increasing from left to right.
Similarly, if φ(s, t) or W (s, t) converges to zero as s → ∞, 0 < t < T , then∫∫

ΩT

∂sW · φdsdt = −
∫

ΓT

Wφdt−
∫∫

ΩT

W · ∂sφdsdt,

where in the integral along ΓT the variable t is increasing from t = 0 to t = T . With
the above understanding of the integrals along ΓT , we have∫

ΓT

Wφdt =

∫
ΓT

√
ε

v
Wφds.(2.16)

Let Q̃ε denote the unique bounded solution of the parabolic equation

∂tQ̃ε − σ2∂2
s Q̃ε = 0 in Ω,(2.17)
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with the initial and boundary conditions

Q̃ε(s, 0) = q0(s) on L0,(2.18)

Q̃ε ≡ 1 on Γ∞.

Recalling that ∂jq0(s) = 0 at s = 0 for 1 ≤ j ≤ 4, one can easily verify that Q̃ε satisfies
the consistency conditions of order 2 at (s, t) = (0, 0). Hence all the derivatives

∂k
t ∂

l
sQ̃ε (0 ≤ 2k + l ≤ 4) are continuous at (0, 0).(2.19)

In the next two lemmas we prove that these functions are uniformly bounded in Ω,
and that they converge uniformly to zero as s → ∞, the uniformity being with respect
to ε.

Lemma 2.2. The following inequalities hold:

|∂k
t ∂

l
sQ̃ε(s, t)| ≤ C in Ω (0 ≤ 2k + l ≤ 4),(2.20)

where C is a constant independent of ε.
Proof. Consider the function

U(x, t) = Q̃ε(s, t), where s =
x− vt√

ε
.

Since ∂tQ̃ε = ∂tU + v∂xU , there holds

∂tU = αε∂2
xU − β∂xU in D,(2.21)

where α, β are positive numbers depending only on ki, vi, and

U(x, 0) = q0

(
x√
ε

)
, x > 0,(2.22)

U(0, t) = 1, t > 0.(2.23)

The function V = ∂xU satisfies the heat equation (2.21) and, since ∂tU(0, t) = 0,

∂xV − γ

ε
V = 0 at x = 0, t > 0, where γ =

β

α
.

Hence V cannot take positive maximum or negative minimum at (0, t), t > 0. By the
maximum principle we then deduce that

|∂xU | ≤ 1√
ε

sup
x>0

∣∣∣∣q′0
(

x√
ε

)∣∣∣∣ ≤ C√
ε

on the set {(x, t) : x > 0, t > 0}.
We proceed to apply the above argument to the function V1 = ∂t∂xU , which is

again a solution of the heat equation (2.21), with

∂xV1 −
γ

ε
V1 =

1

αε
∂2
tU = 0 at x = 0, t > 0.

By the maximum principle we then get

|∂xV1|L∞(R+
2 ) ≤ sup

x>0
|V1(x, 0)|

= sup
x>0

∣∣∣∣αε∂3
xq0

(
x√
ε

)
− β∂2

xq0

(
x√
ε

)∣∣∣∣
≤ C

ε
.
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Hence ∣∣∣∂x(∂2
xU) − γ

ε
(∂2

xU)
∣∣∣ =

|V1|
αε

≤ C

ε2
.

Multiplying by e−γx/ε and integrating in x over (x,∞) we get

|e−γx/ε∂2
xU(x, t)| ≤ C

ε
e−γx/ε.

Hence

|∂2
xU(x, t)|L∞(R+

2 ) ≤
C

ε
.

Similarly, working with the function V2 = ∂2
t ∂xU , we deduce, by the maximum prin-

ciple, that

|V2|L∞(R+
2 ) ≤

C

ε3/2
.

Hence ∣∣∣∂x(∂t∂
2
xU) − γ

ε
(∂t∂

2
xU)

∣∣∣ ≤ C

ε5/2
.

As before, we deduce by integration that

|∂t∂2
xU(x, t)|L∞(R+

2 ) ≤
C

ε3/2
.

This implies, by (2.21), that

∣∣∣∂x(∂3
xU) − γ

ε
(∂3

xU)
∣∣∣ ≤ C

ε5/2
.

and, by integration, as before,

|∂3
xU(x, t)|L∞(R+

2 ) ≤
C

ε3/2
.

Similarly we can estimate ∂4
xU by working with the function V3 = ∂3

t ∂xU . We conclude
that

|∂j
xU(x, t)|L∞(R+

2 ) ≤
C

εj/2
for j = 0, 1, 2, 3, 4.

It follows that

|∂j
sQ̃ε(s, t)| ≤ C in Ω.

The remaining inequalities in (2.20) follow from the differential equation (2.17).
Lemma 2.3. For any 0 < T < ∞, the following inequalities hold for some γ > 0:

|∂k
t ∂

l
sQ̃ε(s, t)| ≤ Ce−γs2 in ΩT ∩ {s > 0} (0 ≤ 2k + l ≤ 4),(2.24)

where C is a constant independent of ε.
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Proof. Recall that Q̃ε(s, 0) = 0 if s > A0, so that also ∂l
sQ̃ε(s, 0) = 0 if s > A0.

We can then compare ∂l
sQ̃ε with a solution of (2.17) of the form

C√
t
e−δs2/t in G ≡ {s > A0, t > 0}

(
where δ =

1

4σ2

)
.

The difference

V =
C√
t
e−δs2/t − ∂l

sQ̃ε(s, t)

is a bounded solution of (2.17) in G, with V (s, 0) = 0 if s > A0 and V (A0, t) > 0 (< 0)
if C is positive and large (negative and large in absolute value). By the maximum
principle for parabolic equations in an unbounded domain (see, e.g., [7, Chap. 2,
Thm. 9]), we conclude that V > 0 (V < 0) in G in the case where C was positive
(negative), so that the inequality (2.24) with k = 0 follows. The remaining estimates
follow from (2.17).

Consider the function

W = Qε − Q̃ε in ΩT , 0 < T < ∞.

It satisfies the equation

∂tW − σ2∂2
sW + K

√
ε∂2

tsW +
ε

k
∂2
sW = Fε,(2.25)

where

Fε = −K
√
ε∂2

tsQ̃ε −
ε

k
∂2
t Q̃ε.(2.26)

Clearly

W ≡ 0 on L0 ∪ ΓT(2.27)

and, by (2.9), (2.15),

∂tW = −∂tQ̃ε, ∂sW = −∂sQ̃ε = −
√
ε

v
∂tQ̃ε on ΓT .(2.28)

Also, by (2.14),

∂tQε = ∂tq + v∂xq =
v − v2√

ε
q′0(s) on L0,

so that

∂tW = −k2(v2 − v1)

k
√
ε

q′0(s) on L0.(2.29)

From Lemmas 2.2 and 2.3 we deduce that∫∫
ΩT

F 2
ε ≤

∫∫
ΩT ∩{s<0}

C0ε +

∫∫
ΩT ∩{s>0}

C0εe
−2γs2 ≤ C

√
ε,

where C0, C are constants (independent of ε). Hence, for any function Z ∈ L2(ΩT )
and any small η > 0, ∣∣∣∣

∫∫
ΩT

FεZ

∣∣∣∣ ≤ η

∫∫
ΩT

Z2 + C
√
ε,(2.30)
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where C is a constant which depends on η and T .
Lemma 2.4. For any 0 < T < ∞, there exists a constant C = C(T ) such that∫∫

ΩT

W 2
t dsdt + sup

0≤t≤T

∫ ∞

st

W 2
s (s, t)ds ≤ C,(2.31) ∫∫

ΩT

(W 2 + W 2
s )dsdt ≤ C

√
ε.(2.32)

Proof. If we multiply (2.25) by Wt and integrate over ΩT , we get∫∫
ΩT

W 2
t − σ2

∫∫
ΩT

WtWss + K
√
ε

∫∫
ΩT

WtWts +
ε

k

∫∫
ΩT

WtWtt(2.33)

= −
∫∫

ΩT

WtFε.

We proceed to evaluate terms on the left-hand side of (2.33). By integration by parts
we obtain

−
∫∫

ΩT

WtWss = −
∫∫

ΩT

[∂s(WtWs) −WtsWs]

=

∫
ΓT

WtWsdt +
1

2

∫ ∞

sT

W 2
s (s, T )ds− 1

2

∫
L0∪ΓT

W 2
s ds,

and, by (2.28), ∫
ΓT

WtWsdt =

√
ε

v

∫
ΓT

Q̃2
ε,tdt

and ∫
L0∪ΓT

W 2
s ds =

∫
ΓT

W 2
s ds =

∫
ΓT

Q̃2
ε,sds =

√
ε

v

∫
ΓT

Q̃2
ε,tdt,

where in the last equation we used also (2.16). Hence,

−σ2

∫∫
ΩT

WtWss =
1

2
σ2

∫ ∞

sT

W 2
s (s, T )ds− 1

2
σ2

√
ε

v

∫
ΓT

Q̃2
ε,tdt.(2.34)

Next,

K
√
ε

∫∫
ΩT

WtWts =
1

2
K
√
ε

∫∫
ΩT

∂s(W
2
t )(2.35)

= −1

2
K
√
ε

∫
ΓT

W 2
t dt = −1

2
K
√
ε

∫
ΓT

Q̃2
ε,tdt.

Consider finally

ε

∫∫
ΩT

WtWtt =
ε

2

∫ ∞

sT

W 2
t (s, T )ds− ε

2

∫
L0∪ΓT

W 2
t ds.

Since

−ε

2

∫
ΓT

W 2
t ds = −ε

2

∫
ΓT

Q̃2
ε,tds = −

√
ε

2v

∫
ΓT

Q̃2
ε,tdt,
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and

−ε

2

∫
L0

W 2
t ds = O(1)

by (2.29) and the fact that (by (2.17), (2.18)) Q̃ε,t = 0 on L0 ∩ {s > A0}, we obtain

ε

∫∫
ΩT

WtWtt =
ε

2

∫ ∞

sT

W 2
t (s, T )ds−

√
ε

2v

∫
ΓT

Q̃2
ε,tdt + O(1).(2.36)

Substituting (2.34)–(2.36) into (2.33) and using also (2.30) with Z = Wt, η = 1
2 , and

the inequality |Q̃ε,t| < C on ΓT , we obtain∫∫
ΩT

W 2
t +

1

2
σ2

∫ ∞

sT

W 2
s (s, T )ds +

ε

k

∫ ∞

sT

W 2
t (s, T )ds ≤ C

√
ε

∫
ΓT

dt + O(1).

This implies
∫∫

ΩT
W 2

t < C1(T ), and
∫∞
st

W 2
s (s, t)ds < C2(t) for t ∈ [0, T ] and some

continuous function C2, and (2.31) follows, with C(T ) = C1(T ) + sup0≤t≤T C2(t).
To prove (2.32) we multiply (2.25) by W and integrate over ΩT . By integration

by parts we obtain

1

2

∫ ∞

sT

W 2(s, T )ds + σ2

∫∫
ΩT

W 2
s −K

√
ε

∫∫
ΩT

WsWt(2.37)

+
ε

k

∫ ∞

sT

(WWt)(s, T )ds− ε

k

∫∫
ΩT

W 2
t =

∫∫
ΩT

WFε.

By Lemma 2.3 and (2.31),∣∣∣∣K√
ε

∫∫
ΩT

WsWt

∣∣∣∣ ≤ 1

2
σ2

∫∫
ΩT

W 2
s +

K2ε

2σ2

∫∫
ΩT

W 2
t ≤ 1

2
σ2

∫∫
ΩT

W 2
s + Cε.

Also, by (2.30), ∣∣∣∣
∫∫

ΩT

WFε

∣∣∣∣ ≤ η

∫∫
ΩT

W 2 + C
√
ε, C = C(η).

Hence

1

2

∫ ∞

sT

W 2(s, T )ds +
1

2
σ2

∫∫
ΩT

W 2
s +

ε

2k

∫ ∞

sT

(W 2)t(s, T )ds(2.38)

≤ η

∫∫
ΩT

W 2 + C
√
ε.

Integrating both sides with respect to T, 0 < T < T0, and choosing η = 1
4T0

, we
obtain ∫∫

ΩT0

W 2 +

∫ T0

0

(∫∫
ΩT

W 2
s

)
dT + ε

∫ ∞

sT0

W 2(s, T0)ds ≤ C
√
ε,(2.39)

where C depends on T0. Finally, if we use the inequality

∫ T0

0

(∫ T

0

f(t)dt)

)
dT =

∫ T0

0

(T0 − t)f(t)dt ≥ δ0

∫ T0−δ0

0

f(t)dt
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with f(t) =
∫∞
st

W 2
s (s, t)ds in (2.39), we obtain the estimate (2.32).

We extend the function Q̃ε(s, t) by 1 into the domain {s < −vt/
√
ε, t > 0}, and

wish to estimate Q̃ε −Q0, where Q0 is the bounded solution of

∂tQ0 − σ2∂2
sQ0 = 0 in R

2
+,(2.40)

Q0(s, 0) = q0(s) if s > 0, Q0(s, 0) = 1 if s < 0.(2.41)

Lemma 2.5. The following inequality holds:∫ ∞

−∞
(Q̃ε −Q0)

2(s, T )ds +

∫ T

0

∫ ∞

−∞
(∂sQ̃ε − ∂sQ0)

2dsdt ≤ C
√
ε,(2.42)

where 0<T <∞ and C is a constant independent of T and ε.
Proof. We first estimate Q̃ε − Q0 on ΓT . For this purpose we represent the

function V ≡ 1 −Q0 in the form

V (s, t) =

∫ ∞

0

e−
(s−ζ)2

4σ2t

σ
√

4πt
φ(ζ)dζ, φ(ζ) = 1 − q0(ζ)

and compute

V

(
− vt√

ε
, t

)
=

∫ ∞

0

e
−(− vt√

ε
−ζ)2/(4σ2t)

σ
√

4πt
φ(ζ)dζ.

Substituting

ξ =

(
vt√
ε

+ ζ

)
1√
t

we obtain ∣∣∣∣V
(
− vt√

ε
, t

)∣∣∣∣ ≤ C

∫
v
√

t/ε

e−
ξ2

4σ2 dξ ≤ Ce−
αt
ε (for some α>0).

Similarly we obtain ∣∣∣∣∂sV
(
− vt√

ε
, t

)∣∣∣∣ ≤ (C/
√
t)e−

αt
ε .

Consider the function R = Q̃ε −Q0ε. It satisfies the equation

∂tR− σ2∂2
sR = 0 in ΩT ,(2.43)

and, by the last two estimates,

|R|ΓT
≤ Ce−

αt
ε , |∂sR|ΓT

≤ C√
t
e−

αt
ε .(2.44)

If we multiply (2.43) by R and integrate over ΩT , we obtain, after integration by
parts,

1

2

∫ ∞

sT

R2(s, T )ds− σ2

∫∫
ΩT

(∂sR)2 =
1

2

∫
ΓT

R2ds− σ2

∫
ΓT

R · ∂sRdt.
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Using (2.44) we find that each of the two integrals on the right-hand side is bounded
by C

√
ε, and thus we derive the estimate (2.42).

Combining the estimates (2.32), (2.42) we obtain the following theorem.
Theorem 2.6. Consider the system (2.1)–(2.4) under the assumptions (2.5) and

(2.6). Then we can write q in the form

q(x, t) = Qε

(
x− vt√

ε
, t

)
,(2.45)

where Qε(s, t) (extended by 1 for s < −vt/
√
ε) converges to the solution Q0(s, t) of

(2.40), (2.41) as ε → 0 in the following sense:

sup
0≤t≤T

∫ ∞

−∞
(Qε −Q0)

2(s, t)ds +

∫ T

0

∫ ∞

−∞
(∂sQε − ∂sQ0)

2dsdt ≤ C
√
ε(2.46)

for any 0 < T < ∞, where C is a constant which may depend on T .
Remark 2.1. The proof of Theorem 2.6 extends to the case where the first two

conditions on q0(s) are replaced by the weaker condition that ∂j
sq0(s) are continuous

functions for s ≥ 0 and they belong to L2(R) for 0 ≤ j ≤ 4.
Remark 2.2. Theorem 2.6 extends, with essentially the same proof, to the case

where v1 > 0, provided v1 �= v2 and we prescribe the boundary condition p(x, t) ≡ k2

k1

at x = 0.
Remark 2.3. Consider the case where q0 ≡ 0, and take for simplicity v1 = 0.

Then the initial and boundary data form a function which is discontinuous at (0, 0),
so that the proof of Theorem 2.6 cannot be extended to this case. If we introduce an
approximating system by changing the initial data,

q(x, 0) = q0δ

(
x√
ε

)
, q0δ(0) = 1, q′0δ ≤ 0, q0δ(s) = 0 if s ≥ δ,(2.47)

then for the corresponding solution (pδ, qδ) we have the following result.
Theorem 2.7. The following inequality holds:

sup
T>0

∫ ∞

0

[(pδ(x, T ) − p(x, T ))2 + (qδ(x, T ) − q(x, T ))2]dx ≤ Cδ,(2.48)

where C is a constant independent of the function q0δ.
Proof. Set p̃ = pδ − p, q̃ = qδ − q. Then

∂tp̃ = −k1p̃ + k2q̃, (∂t + v1∂x)q̃ = k1p̃− k2q̃.

Multiplying the first equation by k2p̃ and the second equation by k1q̃ and adding, we
obtain the inequality

k2∂tp̃
2 + k1((∂t + v1∂x)q̃)2 ≤ 0.

Integrating over 0 < x < ∞, 0 < t < T , the inequality (2.48) easily follows.
Theorem 2.7 combined with Theorem 2.6 suggests that, if q0(s) ≡ 0, then q(x, t)−

Q0(
x−vt√

ε
, t) converges to zero in some sense when Q0 is the solution of (2.40), (2.41)

with q0(s) ≡ 0. This situation will be considered, for more general dynamical systems,
in section 3.
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3. The case n > 2. Let K = (kij) be an n× n matrix satisfying the following
conditions:

kij ≥ 0 if i �= j.(3.1)
n∑

i=1

kij = 0

(
so that kjj = −

n∑
i=1
i �=j

kij

)
.(3.2)

For any indices i0 �= i1 there are j1, j2, . . . , jm such that(3.3)

j1 = i0, jm = i1, and kjljl+1
> 0 for l = 1, . . . ,m− 1.

As proved in [11], under conditions (3.1)–(3.3), the null space of the matrix (kij)
is one-dimensional, and it is generated by a vector (λ1, . . . , λn) with positive compo-
nents. For simplicity we take

∑n
j=1 λj = 1. For later reference we write

n∑
j=1

kijλj = 0 for 1 ≤ i ≤ n.(3.4)

In this section we consider a collection of populations undergoing transitions

kij

pi � pj
kji

for i, j = 1, . . . , n

with the dynamics given by (1.2), in the special case (1.4), or, more generally, for the
case when vj ≥ 0 for all j, and

pi(x, 0) = λiq0

(
x√
ε

)
, 1 ≤ i ≤ n,(3.5)

pj(0, t) = λj if vj > 0.

Here we have the following:

either q0 ≡ 0, or q0(s) is of class Cn, has compact(3.6)

support, q0(0) = 1, and q
(k)
0 (0) = 0 for all k = 1, . . . , n.

Theorem 3.1. Let the matrix (kij) satisfy conditions (3.1)–(3.3), and consider
the system (1.2) with vj ≥ 0 for all 1 ≤ j ≤ n, vn > 0, and with the initial and
boundary conditions (3.5), where q0 is a function satisfying (3.6). Then, for some
constants v > 0 and σ2 > 0, the following holds:

pj(x, t) = Qε,j

(
x− vt√

ε
, t

)
(1 ≤ j ≤ n),(3.7)

where, as ε → 0,

Qε,j → λjQ0 weakly in Lr(R2
+)(3.8)

for any 1 < r < ∞, and Q0(s, t) is the bounded solution of (2.40), (2.41).
Proof. For clarity we first prove the theorem for j = n, q0(0) = 1, q0 ∈ Cn, and

set Qε,j = Qε. As in section 2 one can prove that the functions pj(x, t) belong to
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Cn(D̄). Then, by algebraic elimination, as in [5, p. 14], it follows that each of the
functions pj satisfies the equation

det

(
λij − δijε(∂t + vj∂x)

)
w = 0.(3.9)

We shall henceforth use this equation for the function pn(x, t). Introducing the func-
tion Qε as in (3.7), the calculations in [9], [11] show that

∂tQε − σ2∂2
sQε = P (∂s, ∂t)Qε,(3.10)

where v =
∑n

j=1 λjvj , −σ2 = a02

a10
, where akl are defined by det(kij − γδij − λ(vi −

v)δij) =
∑

0≤k+l≤n aklγ
kλl, and

P (∂s, ∂t) =
∑

l+k≤n

βlkε
l+ k

2−1∂l
t∂

k
s ,(3.11)

where the βlk are constants depending only on kij and vj .
Set pi(x, t) = Pi(

x−vt√
ε
, t). Then

ε

(
∂t +

v√
ε
∂s

)
Pi +

vi√
ε
∂sPi =

n∑
j=1

kijPj .(3.12)

Lemma 3.2. There holds

∂l
t∂

k
xpj(0, t) = 0 for all 0 ≤ k + l ≤ n, t > 0,

or, equivalently,

∂l
t∂

k
sPj,ε

(
−vt√

ε
, t

)
= 0 for all 0 ≤ k + l ≤ n, t > 0.

Proof. Let A = {i : vi = 0}, B = {i : vi > 0}. We break (1.2) at x = 0 into two
subsystems:

∂tpi(0, t) =
∑
j∈A

kijpj(0, t) +
∑
j∈B

kijpj(0, t) for i ∈ A,(3.13)

∂tpi(0, t) + vi∂xpi(0, t) =

n∑
j=1

kijpj(0, t) for i ∈ B.(3.14)

Since pj(0, t) ≡ λj if j ∈ B, and pi(0, 0) = λi if i ∈ A, using (3.4) we deduce that
the unique solution of the ODE system (3.13) is pi(0, t) ≡ λi for all i ∈ A. Then
pj(0, t) ≡ λj for all j = 1, . . . , n and (3.14) gives

∂xpi(0, t) = 0 for i ∈ B.(3.15)

We now apply ∂x to (1.2) and deduce analogously to (3.13), (3.14) that

∂t∂xpi(0, t) =
∑
j∈A

kij∂xpj(0, t) +
∑
j∈B

kij∂xpj(0, t) for i ∈ A,(3.16)

∂t∂xpi(0, t) + vi∂x∂xpi(0, t) =

n∑
j=1

kij∂xpj(0, t) for i ∈ B.(3.17)
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Note that, by (3.15), we have
∑

j∈B kij∂xpj(0, t) = 0; also, ∂xpi(0, 0) = 0 for all i ∈ A.
Then the unique solution of the ODE system (3.16) is ∂xpi(0, 0) ≡ 0 for all i ∈ A,
so that, upon recalling (3.15), ∂xpi(0, 0) ≡ 0 for all i = 1, . . . , n. By differentiating
(3.15) in t we obtain ∂t∂xpi(0, t) ≡ 0, and using (3.17) we conclude that ∂2

xpi(0, t) ≡ 0
for all i ∈ B.

In the same way, if we differentiate (1.2) twice in x, we can conclude that ∂2
xpj(0, t)

≡ 0 for all 1 ≤ j ≤ n, and similarly ∂k
xpj(0, t) ≡ 0 for all 1 ≤ k ≤ n, 1 ≤ j ≤ n. This

implies the statement of the lemma.
Lemma 3.3. There holds

∂l
t∂

k
sPj,ε(s, 0) = O(ε

1
2−l) for all l ≥ 1, k + l ≤ n, s > 0.

Proof. By (3.12), at t = 0,

∂tPm(s, 0) =
v − vm√

ε
∂sPm(s, 0) +

1

ε

n∑
j=1

kmjPj(s, 0) =
v − vm√

ε
λmq′0(s),

i.e., ∂tPm(s, 0) = C1
1ε

− 1
2 q′0(s) for some constant C1

1 . Next, applying ∂t to (3.12), we
obtain

∂2
t Pm(s, 0) = ∂t

⎛
⎝v − vm√

ε
∂sPm(s, 0) +

1

ε

n∑
j=1

kmjPj

⎞
⎠ (s, 0)

= C2
1ε

− 3
2 q′0(s) + C2

2ε
−1q′′0 (s)

for some constants C2
1 and C2

2 . Similarly, for any l ≤ n we obtain

∂l
tPm(s, 0) =

l∑
j=1

Cl
jε

l− j
2 q

(j)
0 (s)

for some constants Cl
j , which implies the statement of the lemma.

We return to the proof of Theorem 3.1 for pn, in the case q0(0) = 1, q0 ∈ Cn. As
in the proof of the maximum principle (Lemma 2.1) one can prove that

0 ≤ pj(x, t) ≤ λj .(3.18)

We extend the function Qε(s, t) by 1 into {−∞ < s < − vt√
ε
, t > 0}. By (3.18) with

j = n, any sequence ε′ → 0 has a subsequence ε′′ → 0 such that Qε′′ → Q̄ in Lr(R+
2 )

for any 0 < r < ∞, where R
+
2 = {(s, t) ∈ R2 : t > 0}

Take any smooth function φ with compact support K ⊂ R
+
2 . If we multiply φ by

the left-hand side of (3.10) and perform integration by parts, we obtain∫∫
K

φ(∂tQε − σ2∂2
sQε) =

∫∫
K

Qε(−∂t − σ2∂2
s )φ,(3.19)

provided ε is sufficiently small so that K stays to the right of Γ∞. Similarly, from the
right-hand side of (3.10) we get∫∫

K

φP (∂s, ∂t)Qε =

∫∫
K

QεP
∗(∂s, ∂t)φ,(3.20)
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where P ∗ is the adjoint of the differential operator P defined in (3.11). As ε = ε′′ → 0
the right-hand side of (3.20) converges to zero. Hence, by (3.10), the same is true of
each of the two sides of (3.19), so that∫∫

K

Q̄(−∂t − σ2∂2
s )φ = 0.

It follows that Q̄ is a weak solution of the heat equation

∂tQ̄− σ2∂2
s Q̄ = 0 in R

+
2 .(3.21)

By regularity of weak solutions we conclude that Q̄ is a smooth solution of (3.21).
Next let φ be a smooth function with compact support K in {(s, t) : s > 0,−1 <

t < ∞}. If we multiply the right-hand side of (3.10) by φ and integrate by parts, we
obtain

∫∫
K

QεP
∗(∂s, ∂t)φ−

∫
K∩{t=0}

φ

⎛
⎝ ∑

l+k≤n

βlkε
l+ k

2−1∂l−1
t ∂k

s

⎞
⎠Qε,

and by Lemma 3.3 the last integral converges to zero as ε → 0; the first integral also
converges to zero, as in the previous case. We conclude from (3.10) that∫∫

K

φ(∂tQε − σ2∂2
sQε) → 0 as ε → 0.

By integration by parts, the left-hand side is equal to∫∫
K

Qε(−∂t − σ2∂2
s )φ−

∫
K∩{t=0}

λnq0φ.

Hence, as ε = ε′′ → 0, we get∫∫
K

Q̄(−∂t − σ2∂2
s )φ−

∫
K∩{t=0}

λnq0φ = 0.

This means that Q̄ takes the initial data λnq0(s) in a weak sense and, by regularity
results, also in the classical sense.

Finally, take a smooth function φ with compact support K in {(s, t) : s < 0,−1 <
t < ∞}. We proceed as in the previous case, but with the function Rε = Qε − λn.
By Lemma 3.3, when integrating by parts, we do not get any boundary integrals on
Γ∞. Hence, after going to the limit with ε = ε′′ → 0, we find that Q̄ − λn takes the
initial value 0 on {(s, t) : s < 0, t = 0}. We have thus proved that Q̄ = Q0, and this
completes the proof of the theorem for pn in the case q0(0) = 1, q0 ∈ Cn.

Consider next the case q0 ≡ 0. Since the solution is not continuous, the preceding
proof cannot be applied directly. Instead, we approximate the problem by introducing
initial data as in Theorem 1, but with

q′0(s) ≤ 0, q0(s) ≡ 0 if s > δ.

We denote the corresponding solutions by pj,δ and set qδ,ε = pj,δ. We introduce a
function Qδ,ε(s, t) by

qδ,ε(x, t) = Qδ,ε(s, t), s =
x− vt√

ε
.
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Then any sequence (δ′, ε′) → 0 has a subsequence (δ′′, ε′′) → 0 such that Qδ′′,ε′′ → Q̄
weakly in Lr(R+

2 ), and, as before, Q̄ coincides with the solution of the heat equation
(1.7).

The proof of Theorem 3.1 for any pj is the same as for pn, since Lemmas 3.2 and
3.3 hold for any 1 ≤ j ≤ n.
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Abstract. This paper is concerned with the classification of global and uniformly localized
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1. Introduction. This paper is concerned with the classification of global and
uniformly localized solutions of linear problems related to the dynamics of the gener-
alized Korteweg–de Vries equations (gKdV equations) in a neighborhood of solitons.
We also consider the case of a nonlinear dispersive equation similar to the KdV equa-
tion which was introduced by Peregrine [22] and Benjamin, Bona, and Mahony [2];
see below in this section and section 4.

It is well known that the gKdV equations

∂tψ + ∂x(∂2
xψ + ψp) = 0, t, x ∈ R,(1)

for p ≥ 2 integer, have explicit traveling wave solutions. Let

Q(x) =

(
p + 1

2 cosh2
(
p−1
2 x

)
) 1

p−1

(2)

be the unique H1 positive solution (up to translations) of

Q′′ + Qp = Q on R.

Then, for any c > 0, x0 ∈ R, the functions

Rc,x0(t, x) = Qc(x− x0 − ct), where Qc(x) = c
1

p−1Q(
√
cx),

are solutions of the gKdV equations (1). We call these solutions solitons.
Let us recall some general results concerning the solutions of (1).
First, we recall that the local Cauchy problem for (1) is well-posed in H1 for

any p ≥ 2 integer. More precisely, Kenig, Ponce, and Vega [10] proved that for any
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ψ0 ∈ H1(R) there exists a unique (in a suitable sense) maximal H1 solution ψ(t) of
(1) satisfying ψ(0) = ψ0. Moreover, the following quantities are invariant for such H1

solutions:∫
R

ψ2(t) =

∫
R

ψ2(0),(3) ∫
R

[
1

2
(∂xψ(t))2 − 1

p + 1
ψp+1(t)

]
=

∫
R

[
1

2
(∂xψ(0))2 − 1

p + 1
ψp+1(0)

]
.(4)

It follows that if 1 < p < 5, then H1 solutions are globally defined and uniformly
bounded in H1.

Second, we review results on the large time dynamics of (1) in a neighborhood of
the solitons Rc,x0(t, x). We refer to Miura [19] and Schuur [23] for results on the KdV
and modified KdV equations (p = 2, 3) which are specific to the integrability theory
and the inverse scattering transform. We recall that the stability problem in the energy
space H1 is completely solved. Note that by the scaling and translation invariances
of the equation, it is enough to study the stability of the solution R(t, x) = Q(x− t).
The following results are well known:

• For 1 < p < 5, the solitons are stable in H1, which means that the following
result holds.

Stability of solitons (see [26]). Let p = 2, 3, or 4. Let ψ0 ∈ H1(R), and let
ψ(t) be the global H1 solution of (1) satisfying ψ(0) = ψ0. For all ε > 0, there exists
δ > 0 such that if ‖ψ0 −Q‖H1 ≤ δ, then for all t ∈ R, there exists x(t) ∈ R such that

‖ψ(t, . + x(t)) −Q‖H1 ≤ ε.

See Benjamin [1], Bona [3], and Weinstein [26].
• For p ≥ 5, the solitons are not stable in H1. See Bona, Souganidis, and Strauss

[4] for the case p > 5. For p = 5, the following stronger statement holds true: there
exist initial data ψ0 arbitrarily close to Q in H1 such that the corresponding solution
of (1) blows up in the H1 norm in finite time (see Merle [17], Martel and Merle [14],
and the references therein).

The next natural question concerns the asymptotic completeness of the family of
solitons. First results related to this question are due to Pego and Weinstein [21], who
have proved the asymptotic completeness of the family of solitons in some weighted
spaces for (1) with p = 2 and 3.

Later, Martel and Merle [13] proved the asymptotic stability of solitons of the
gKdV equations in the energy space for p = 2, 3, and 4. More precisely, they proved
the following.

Asymptotic stability of solitons (see [13]). Let p = 2, 3, or 4. Let ψ0 ∈
H1(R), and let ψ(t) be the global H1 solution of (1) satisfying ψ(0) = ψ0. There
exists δ > 0 such that if

‖ψ0 −Q‖H1 < δ,(5)

then there exists c+ close to 1, and for all t ∈ R
+, there exist x(t) ∈ R such that

‖ψ(t) −Qc+(.− x(t))‖H1(x>t/10) → 0 as t → +∞,(6)

and x′(t) → c+ as t → +∞.(7)

See also Martel, Merle, and Tsai [16] for the case of multisoliton solutions.
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Note that in (6) the convergence as t → +∞ holds for x ≥ t/10, which is a large
region around the soliton Qc+(. − x(t)) since x′(t) is close to 1. We refer to [15] for
the optimality of this result in H1. Note that a similar result had been previously
proved by the same techniques for p = 5; see Theorem 2 in [12] (the statement for
p = 5 is weaker due to the instability of solitons and to a special degeneracy of the
critical case).

The proofs of these results in [12] and [13] proceed into three independent steps:
1. First, the problem of asymptotic stability is reduced to a rigidity property of

(1) close to the solitons. More precisely, we show that asymptotic stability is true if
the following nonlinear Liouville-type theorem holds.

Nonlinear Liouville property (see [13]). Let p = 2, 3, or 4. Let ψ0 ∈ H1(R),
and let ψ(t) be the global H1 solution of (1) satisfying ψ(0) = ψ0. There exists δ > 0
such that if

‖ψ0 −Q‖H1 < δ,(8)

and if, for some function t ∈ R 	→ x(t) ∈ R,

∀ε > 0, ∃A > 0, ∀t ∈ R,

∫
|x|>A

ψ2(t, x + x(t))dx < ε(9)

is satisfied, then there exist c1 close to 1 and x1 ∈ R such that ψ(t, x) ≡ Rc1,x1(t, x).
This result is an illustration of the rigidity of the gKdV equations around the

solitons. See Theorem 1 in [12] and Theorem 2 in [13].
2. The second step is to prove the nonlinear Liouville property. This is done by

reducing the proof to a similar property on a linear problem. Indeed, since we want
to prove a result in a neighborhood of the function Q by passing to the limit (δ → 0)
on renormalized problems, we show that it is sufficient to classify a related linearized
problem. See a precise statement (linear Liouville property) in Theorem 1 below (see
also Corollary 1 in section 3.4).

3. The last step is to prove the linear Liouville property. For p = 2, 3, 4, and
5, this property was proved in [12] and [13] by using the positivity of the quadratic
form (15), under orthogonality conditions. The study of this quadratic form required
at some point numerical calculations.

With respect to the first papers [12] and [13], some of the arguments, especially
in the first step, have been simplified. Exponential decay properties of solutions that
are uniformly localized in the L2 norm can be proved more easily using monotonic-
ity properties. See, for example, Laurent and Martel [11] for a simple approach of
smoothness and decay for localized solutions.

In a third paper on the subject [15], the proof of asymptotic stability has been
further simplified for p = 2, 3, and 4. Indeed the property of positivity of the quadratic
form (15) could be used to determine a Liapunov functional for the original gKdV
problem. This Liapunov functional implies directly the asymptotic stability result
and the use of the linear or nonlinear Liouville property is not necessary. However,
this approach does not seem to work in the critical case p = 5 and still relies on
the study of the quadratic form (15) below. Moreover it was unclear whether such
a problem could be solved by the same technique for p > 5, or even in general for
p ∈ (1, 5) not integer.

In this paper, we present a simpler approach to prove the linear Liouville property
(i.e., step 3) which is successful for any real value of p > 1. Since there is no restriction
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on p, it is now clear that this question is not related to the stability problem. Let

Lu = −∂2
xu + u− pQp−1u = −∂2

xu + u− p(p + 1)

2 cosh2
(
p−1
2 x

)u.(10)

Our main result is the following theorem.
Theorem 1 (linear Liouville property). Let p > 1. Let u ∈ C(R, H1(R)) ∩

L∞(R, H1(R)) be a solution of

∂tu = ∂x (Lu) on R × R.(11)

Assume that for two constants C > 0, σ > 0,

∀t, x ∈ R, |u(t, x)| ≤ Ce−σ|x|.(12)

Then there exists a constant b0 ∈ R such that for all t ∈ R,

u(t) ≡ b0Q
′.(13)

Since LQ′ = 0 (see Lemma 1 below), it is clear that u(t, x) = b0Q
′(x) is a solution

of (11). Theorem 1 claims that there is no other solution that is uniformly localized
in the sense of (12).

Remark 1. Theorem 1 is not exactly the result required for the asymptotic stability
result. See Corollary 1 in section 3.4 for a direct consequence of Theorem 1 that is
the suitable form of the rigidity result to be used for the asymptotic stability.

Remark 2. Assumption (12) can be relaxed to the following condition:

∀ε > 0, ∃A > 0, ∀t ∈ R,

∫
|x|>A

u2(t, x)dx < ε.(14)

Indeed, in this context (14) implies (12) and in fact a much stronger result: H1

bounded solutions of (11) satisfying (14) are C∞(R × R) and all their derivatives
have exponential decay in x; see Lemma 4 in section 3.2. This is a consequence
of smoothing properties of the gKdV equations observed by Kato [9] and of refined
techniques introduced in [13] and [11].

Remark 3. Theorem 1 holds for all p > 1, and there is no difference in the proof
for the various values of p. In particular, sub- or supercriticality of p (i.e., whether
1 < p < 5 or p ≥ 5) is not relevant in this problem.

As mentioned above, Theorem 1 (and Corollary 1) was already proved for p = 5
(see Theorem 3 in [12]) and for p = 2, 3, and 4 (see Proposition 5 in [13]). The proof
presented here is simpler and does not require numerical computations. Moreover, it
is a unified proof for all real values of p > 1.

Remark 4. From Theorem 1, we deduce that for p ≥ 6 integer, asymptotic
completeness of the family of solitons is true in the same sense as Theorem 2 in [12]
for p = 5. The proof of this result requires some properties of stability of weak H1

convergence through the flow of the gKdV equation (Lemma 17 in [12]). This property
was checked in [12] for p = 5 and in [13] for p = 2, 3, and 4 using estimates of Kenig,
Ponce, and Vega [10] used for proving the well-posedness of the Cauchy problem in
Hs spaces. The same can be done for p ≥ 6 integer.

Since p > 1 need not be an integer in Theorem 1, one can expect the asymptotic
stability result to be true for all p > 1. This would require considering

∂tψ + ∂x(∂2
xψ + |ψ|p−1ψ) = 0
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instead of (1) and adapting the methods of [10] to this situation.
We now sketch the proof of Theorem 1. Recall that the proof in [13] was based

on the quantity
∫
xu2(t, x)dx. A direct calculation gives for u(t) a solution of (11):

− d

dt

∫
xu2 = 3

∫
(∂xu)2 +

∫
u2 − p

∫
Qp−1u2 + p(p−1)

∫
xQ′Qp−2u2 = H(u);

(15)

see Lemma 8 in [13]. When proving the positivity of the quadratic form H(u) under
orthogonality conditions on u(t), the term

∫
Qp−1u2 has the negative sign, but it is

a classical potential, whose spectrum is explicit. The term
∫
xQ′Qp−2u2 also has a

negative sign since xQ′(x) ≤ 0 for all x ∈ R, and it is quite difficult to control.
In the present paper, the main idea is to consider the function v(t, x) = Lu(t, x)

instead of u(t, x). It satisfies

∂tv = L(∂xv).

Then, we have

− d

dt

∫
xv2 = 3

∫
(∂xv)

2 +

∫
v2 − p

∫
Qp−1v2 − p(p− 1)

∫
xQ′Qp−2v2,

and thus the last term now has the good sign, which implies easily the positivity result
for some values of p. In fact, we consider in this paper the quantity

∫
v2(t, x)g(x)dx

for a suitable choice of function g(x) (see Lemma 2) which allows us to prove at once
the result for any p > 1.

Since we argue on v(t, x) rather than on u(t, x), we need to obtain some regularity
on v(t, x). In section 3.2, we prove that under the assumptions of Theorem 1, u(t, x)
is completely smooth. The main argument of Theorem 1 is presented in section 3.3.

We now turn to another nonlinear equation, introduced by Peregrine [22] and
Benjamin, Bona, and Mahony [2]:

(1 − ∂2
y)∂sψ + ∂y(ψ + ψ2) = 0, s, y ∈ R.(16)

Equation (16) is not scaling invariant, but it still has a two-parameter family of
traveling wave solutions: for any c > 1 and any y0 ∈ R,

Sc,y0(s, y) = ϕ(y − cs− y0)(17)

is a solution of (16), where ϕc is an H1 solution of

−c∂2
yϕc + (c− 1)ϕc − ϕ2

c = 0 on R.(18)

Note that we have the following expression for ϕc:

ϕc(y) = (c− 1)Q

(√
c− 1

c
y

)
,(19)

where Q is defined in (2).
Equation (16) has properties similar to the gKdV equation: it is globally well-

posed in H1(R) (the proof is straightforward, unlike for the gKdV equation), and H1
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solutions have two invariant quantities: for all s ∈ R,∫
(ψ2 + (∂yψ)2)(s) =

∫
(ψ2 + (∂yψ)2)(0),∫ (

1

2
ψ2 +

1

3
ψ3

)
(s) =

∫ (
1

2
ψ2 +

1

3
ψ3

)
(0).

(20)

It was proved by Weinstein [27] that all traveling waves Sc,y0
are stable in H1, by the

same techniques as for the gKdV equation in [26], using only the invariant quantities
(20).

The first result on asymptotic stability of traveling waves for (16) was given by
Miller and Weinstein [18] in the spirit of the work of Pego and Weinstein [21] on
gKdV. Next, Mizumachi [20] and El Dika [5], [6] gave independently the first result
of asymptotic stability of Sc,y0 in the energy space. Their proof is in the spirit of [13],
with several structural differences. It was first proved in [20] and [6] that asymptotic
stability in H1 is equivalent to a linear Liouville property. Then, their proof differs
from the one of the KdV equation since Mizumachi and El Dika both apply a spectral
result of Miller and Weinstein [18] to classify the linearized problem around ϕc. In
fact, due to the use of Miller and Weinstein’s result, the classification was obtained
with the restriction c ∈ (1,+∞)\E, where E is an unknown set with no accumulation
point (recall that (16) is not scaling invariant). Results for the case of several traveling
waves were obtained by El Dika and Martel [8].

In the present paper, applying the strategy of the proof of Theorem 1, we are
able to prove the linear Liouville property related to (16) for any c > 1. The linear
equation related to the traveling waves Sc,y0

is

(1 − ∂2
y)∂sω = ∂y(−c∂2

yω + (c− 1)ω − 2ϕcω).(21)

We change the variable

x =

√
c− 1

c
y, t =

(c− 1)3/2

c1/2
s, and ω(s, y) = u(t, x).

Then u(t, x) satisfies(
1 − c− 1

c
∂2
x

)
∂tu = ∂x(−∂2

xu + u− 2Qu).

Let λ = c−1
c ∈ (0, 1). Note that λ = 0 corresponds to the limit case of the KdV

equation, and λ = 1 corresponds to c → +∞. These limit cases, which make no sense
for (16), are covered by our result. We claim the following theorem.

Theorem 2 (linear Liouville property related to (16)). Let p = 2. Let λ ∈ [0, 1].
Let u ∈ C(R, H1(R)) ∩ L∞(R, H1(R)) be a solution of

(1 − λ∂2
x)∂tu = ∂x (Lu) on R × R.(22)

Assume that for two constants C > 0, σ > 0,

∀t, x ∈ R,

∫
(u2 + (∂xu)2)(t, x)eσ|x|dx ≤ C.(23)

Then there exists a constant b0 ∈ R such that for all t ∈ R,

u(t) ≡ b0Q
′.(24)



LINEAR PROBLEMS RELATED TO GENERALIZED KdV EQUATIONS 765

This result implies that the asymptotic stability results stated for (16) in [6] and
[8] hold for all c > 1 (see [6, Theorem 1] for p = 2 and [8, Theorem 2] for p = 2
concerning the case of several traveling waves).

Remark 5. A condition of the type (14) on u and ∂xu is sufficient. See Remark 2
and El Dika [7].

Remark 6. Considering the generalized form of (16),

(1 − ∂2
y)∂sψ + ∂y(ψ + ψp) = 0(25)

for p > 1 integer, the problem of asymptotic stability can be reduced to the classifi-
cation of the following linear equation:

(1 − λ∂2
x)∂tu = ∂x (Lu) on R × R,(26)

where Lu = −∂2
xu + u − pQp−1u. In the present paper, we consider only p = 2, and

our proof does not seem to adapt immediately to the other cases. Note that p = 3
with the restriction c �∈ E, for some set E without accumulation point, is treated by
Miller and Weinstein [18] and thus also in [20] and [6].

The proof of Theorem 2 is given in section 4.

2. Preliminaries. We first gather in Lemma 1 some well-known properties of
the operator L. Recall that L is a classical operator (see Titchmarsh [24]). Then, in
Lemma 2, we introduce the function g(x) to be used in the proof of Theorem 1.

Lemma 1 (properties of L). Let p > 1. The operator L defined in (10) satisfies
the following properties:

(i) First eigenfunction: LQ p+1
2 = − 1

4 (p− 1)(p + 3)Q
p+1
2 .

(ii) Second eigenfunction: LQ′ = 0, and the kernel of L is {λQ′, λ ∈ R}.
(iii) For any L2 function h(x) orthogonal to Q′ for the L2 scalar product, there

exists a unique f(x) ∈ H2(R) orthogonal to Q′ such that Lf = h.
(iv) L( 2

p−1Q + xQ′) = −2Q.

(v) Positivity under orthogonality: for any function w ∈ H1(R),∫
w(x)Q

p+1
2 (x)dx = 0 ⇒

∫ {
(∂xw)2(x) + w2(x) − pQp−1(x)w2(x)

}
dx ≥ 0.

Proof. We recall that

Q′′ = Q−Qp and (Q′)2 = Q2 − 2

p + 1
Qp+1(27)

by integration. Thus,

d2

dx2
Q

p+1
2 =

p + 1

2

[
p− 1

2
Q′2Q

p−3
2 + Q′′Q

p−1
2

]
=

(
p + 1

2

)2

Q
p+1
2 − pQp−1Q

p+1
2 ,

and so LQ p+1
2 = −

[(
p+1
2

)2 − 1
]
Q

p+1
2 = − 1

4 (p− 1)(p + 3)Q
p+1
2 .

The property LQ′ = 0 is easily checked. Moreover, the fact that the spectrum
of L is restricted to {λQ′, λ ∈ R} was proved by ODE techniques (see Weinstein [25,
Proposition 2.8(b)]). The third property is a direct consequence of the structure of L
as well as the Lax–Milgram theorem. Property (iv) is obtained by direct calculations.

Finally, it follows from the fact that Q′(x) has only one zero on R that 0 is the

second eigenvalue of L. Therefore, if w ∈ H1 is orthogonal to Q
p+1
2 , then

(Lw,w) =

∫ {
(∂xw)2(x) + w2(x) − pQp−1(x)w2(x)

}
dx ≥ 0.
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We introduce a suitable function g(x) to be used in the proof of Theorem 1, and
we list some of its properties.

Lemma 2 (properties of the function g(x)). Define

g(x) = −
(
p + 1

p− 1

)
Q′(x)

Q(x)
.

Then g(x) satisfies the following properties for all x ∈ R:

g′(x) = Qp−1(x) =
p + 1

2 cosh2
(
p−1
2 x

) , (
g′′(x)

g′(x)

)2

= (p−1)2
(

1− 2

p+1
Qp−1(x)

)
,

g′′′(x)

g′(x)
= (p−1)2

(
1− 3

p+1
Qp−1(x)

)
, g2(x) =

(
p+1

p−1

)2 (
1 − 2

p+1
Qp−1(x)

)
,

and

(Qp−1g)′ = −(p + 1)Qp−1 + 3Q2p−2, |g(x)| ≤ p + 1

p− 1
.

Proof. By (27) and direct calculations

g′ = −
(
p + 1

p− 1

)
Q′′Q− (Q′)2

Q2
= Qp−1,

g′′

g′
= (p− 1)

Q′

Q
,

(
g′′

g′

)2

= (p− 1)2
(
Q′

Q

)2

= (p− 1)2
(

1 − 2

p + 1
Qp−1

)
.

Next,

g′′′ = (p−1)(p−2)(Q′)2Qp−3 + (p−1)Q′′Qp−2 = (p−1)2Qp−1

(
1− 3

p+1
Qp−1

)
.

We also have

(Qp−1g)′ = −p + 1

p− 1
(Q′Qp−2)′ = − p + 1

(p− 1)2
g′′′

and

g2(x) =

(
p + 1

p− 1

)2
(Q′)2

Q2
=

(
p + 1

p− 1

)2 (
1 − 2

p + 1
Qp−1

)
.

The last identity also implies |g(x)| ≤ p+1
p−1 .

3. Linear problem related to the gKdV equations. In this section, we
prove Theorem 1. In sections 3.1 and 3.2, we recall some technical arguments for the
proof. The main argument of the proof is presented in section 3.3.

3.1. The H1 Cauchy problem. For the sake of completeness, we claim a well-
posedness result for (11) in H1(R).

Lemma 3 (H1 well-posedness of the Cauchy problem for (11)). Let u0 ∈ H1(R).
There exists one and only one function u ∈ C(R, H1(R)) that satisfies (11) in the
sense of distributions and such that u(0) = u0. Moreover, if u0 ∈ Hs(R), for some



LINEAR PROBLEMS RELATED TO GENERALIZED KdV EQUATIONS 767

s > 1, then u ∈ C(R, Hs(R)) and if (un
0 ) is a sequence of Hs(R), s ≥ 2, satisfying

un
0 → u0 in H1(R), then for all T > 0, the corresponding solutions un of (11) satisfy

un → u in C([−T, T ], H1(R)).
Proof. The existence proof is given in [12, Lemma 9], for p = 5. The same

argument applies to any p > 1.
For uniqueness in the class of functions C(R, H1(R)) satisfying (11) in the sense of

distribution, since the equation is linear in u(t), we only have to prove that a solution
u(t) in this class satisfying u(0, x) ≡ 0 is necessarily u(t, x) ≡ 0.

To do this, we apply an energy method not directly to u(t) but to v(t) ∈ C(R, H3(R))

defined for any t ∈ R, by v(t) =
(
1 − ∂2

x

)−1
u(t). Indeed, v(t) satisfies

∂tv = −∂3
xv + ∂xv − p

(
1 − ∂2

x

)−1
[∂x(Qp−1

(
1 − ∂2

x

)
v)].

The second member is in L2; thus we can take the L2 scalar product by v(t) and
integrate by parts to obtain

d

dt

∫
v2(t) = p

∫
Qp−1[

(
1 − ∂2

x

)
v]
(
1 − ∂2

x

)−1
∂xv.

By further integrations by parts, we obtain

d

dt

∫
v2(t) = −p

2

∫
(Qp−1)′v2 − p

∫
(Qp−1)′′v

(
1 − ∂2

x

)−1
∂xv

− 2p

∫
(Qp−1)′v

(
1 − ∂2

x

)−1
∂2
xv.

Since ‖
(
1 − ∂2

x

)−1
∂xv‖L2 + ‖

(
1 − ∂2

x

)−1
∂2
xv‖L2 ≤ C‖v‖L2 , and by the properties

of Q, we obtain by the Cauchy–Schwarz inequality
∣∣ d
dt

∫
v2(t)

∣∣ ≤ C
∫
v2(t). Thus,

v(0) = 0 implies by the Gronwall inequality that v(t) = 0 and thus u(t) = 0. This
proves the uniqueness statement. The persistence of regularity in Hs and continuous
dependence results are easily checked.

3.2. Smoothness and exponential decay. By applying arguments of [11] (see
also [13]), we claim that a solution of (11) which is uniformly localized in the L2 norm
is necessarily completely smooth and exponentially decaying.

Lemma 4 (smoothness and exponential decay). Let u(t) be an H1 solution of
(11), bounded in H1 and satisfying

∀ε > 0, ∃A > 0, ∀t ∈ R,

∫
|x|>A

u2(t, x)dx < ε.(28)

Then u ∈ C∞(R × R). Moreover, there exists σ > 0 and, for all k ∈ N, there exists
Ck > 0 such that

∀t, x ∈ R,

∣∣∣∣ ∂k

∂xk
u(t, x)

∣∣∣∣ ≤ Cke
−σ|x|.(29)

Remark 7. From the proof of Lemma 4, we can choose 1
σ = max(2, 1

p−1 ). Note

also that for the proof of Theorem 1, we only need to check u ∈ H3(R) and (29) for
k = 0, 1, and 2.

Proof. The proof of Lemma 4 follows from arguments used in the proof of Theorem
1 in [11], but it is in fact simpler since the equation is linear and since the potential
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Qp−1 has both smoothness and decay properties. Recall that Theorem 1 in [11]
concerns similar properties for L2 localized solutions of the nonlinear equation (1).
We present in this proof formal calculations on u(t) that can be justified rigorously
by using Lemma 3 and some usual regularizing arguments.

Let K = max(2, 1
p−1 ). For x ∈ R, let

φ(x) =
2

π
arctan(exp(x/K)),

so that lim+∞φ = 1, lim−∞φ = 0, and, for all x ∈ R, φ(−x) = 1 − φ(x). Note also
that by direct calculations

φ′(x) =
1

Kπcosh(x/K)
, φ′′′(x) ≤ 1

K2
φ′(x) ≤ 1

4
φ′(x).(30)

Let x0 > 0, t0 ∈ R. We define, for all t < t0,

Ix0,t0(t) =

∫
u2(t, x)φ

(
x− 1

2
(t0 − t) − x0

)
dx.

We first prove the following property of Ix0,t0(t).
Lemma 5. There exists θ0 > 0 such that for all x0 > 0, t0 ∈ R,

∀t ≤ t0, Ix0,t0(t0) − Ix0,t0(t) ≤ θ0 exp
(
−x0

K

)
.

Proof. Let R0 > 1 to be chosen later, and let x0 > 2R0. Define x̃ = x − 1
2 (t0 −

t) − x0. Note that x̃ ≤ x. By direct calculations, using the equation of u(t), we have

d

dt
Ix0,t0(t) = −3

∫
(∂xu)2φ′(x̃) − 1

2

∫
u2φ′(x̃) +

∫
u2φ′′′(x̃)

+ p

∫ [
−(Qp−1)′φ(x̃) + Qp−1φ′(x̃)

]
u2

≤ −3

∫
(∂xu)2φ′(x̃) − 1

4

∫
u2φ′(x̃) + p

∫ [
−(Qp−1)′φ(x̃) + Qp−1φ′(x̃)

]
u2

by using (30). By the properties of Q and φ, we have∣∣−(Qp−1)′φ(x̃) + Qp−1φ′(x̃)
∣∣ ≤ Ce−(p−1)|x|φ(x̃).

We consider three cases depending on x:
• If x < R0, then x̃ < − 1

2 (t0 − t) − x0 + R0 < 0 and so

e−(p−1)|x|φ(x̃) ≤ Cφ(x̃) ≤ Ce
x̃
K ≤ C exp

(
− 1

2K
(t0 − t) − x0

K
+

R0

K

)
.

• If R0 < x < 1
2 (t0 − t) + x0, then x̃ < 0 and so

e−(p−1)|x|φ(x̃) ≤ e−(p−1)R0φ(x̃) ≤ Ce−(p−1)R0φ′(x̃),

since φ(y) ≤ Cφ′(y) for y < 0.
• If x > 1

2 (t0 − t) + x0 > 0, then

e−(p−1)|x|φ(x̃) ≤ Ce−(p−1)x ≤ C exp

(
−(p− 1)

[
1

2
(t0 − t) + x0

])

≤ C exp

(
−
[

1

2K
(t0 − t) +

x0

K

])
,

since K ≥ 1/(p− 1).
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Therefore, we have, for all x ∈ R,

∣∣−(Qp−1)′φ(x̃) + Qp−1φ′(x̃)
∣∣ ≤ Ce

R0
K exp

(
− 1

2K
(t0 − t) − x0

K

)
+ C ′e−(p−1)R0φ′(x̃).

We choose R0 large enough so that

pC ′e−(p−1)R0

∫
u2φ′(x̃) ≤ 1

8

∫
u2φ′(x̃).

The value of R0 being fixed, since
∫
u2(t) is bounded, we obtain

d

dt
Ix0,t0(t) ≤ C exp

(
− 1

2K
(t0 − t) − x0

K

)
.

By integrating this estimate between t0 and some t < t0, we obtain the desired result
for x0 > 2R0. The result for 0 < x0 < 2R0 is clear by possibly taking a larger value
of θ0.

We continue the proof of Lemma 4. By the proof of this result, proceeding exactly
as in [11, pp. 162–164], and using (28), we first obtain

Ix0,t0(t0) ≤ θ0 exp
(
−x0

K

)
.

Next, dividing by exp(−x0/K), passing to the limit as x0 → +∞, and using the
properties of φ, we deduce that for some constant θ′0,

∀t0 ∈ R,

∫
u2(t0, x) exp

( x

K

)
dx +

∫ t0

t0−1

∫
(∂xu)2(s, x) exp

( x

K

)
dxds ≤ θ′0.

Proceeding in the solution u(t) of the linear problem (11) exactly as for the
solution of (1) in [11, pp. 165–169], using the functionals

I
(k)
x0,t0(t) =

∫
(∂k

xu)2(t, x)φ

(
x− 1

2
(t0 − t) − x0

)
dx

for k ≥ 1 integer, we find by iteration on k that for a constant θk > 0, for any t0 ∈ R,∫
(∂k

xu)2(t0, x) exp
( x

K

)
dx +

∫ t0

t0−1

∫
(∂k+1

x u)2(s, x) exp
( x

K

)
dxds ≤ θk.

Since u(−t,−x) is also a solution of (11) satisfying (28), we have as well∫
(∂k

xu)2(t0, x) exp

(
|x|
K

)
dx +

∫ t0

t0−1

∫
(∂k+1

x u)2(s, x) exp

(
|x|
K

)
dxds ≤ θk.

It follows that u(t) ∈ ∩s≤0H
s(R), and thus by the equation of u(t) and the smoothness

of Q(x), we obtain u ∈ C∞(R × R). Finally, by the Gagliardo–Nirenberg inequality

‖w‖2
L∞(x>R0)

≤ 2 ‖w‖L2(x>R0)‖∂xw‖L2(x>R0),

we obtain pointwise estimates (29), as required. We refer to [11] for more details.
The only difference in the proof is the method used to estimate the nonlinear terms,
which we have detailed in the proof of Lemma 5 for Ix0,t0 . The same estimates are

applied to d
dtI

(k)
x0,t0 .
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3.3. Main argument of the proof of Theorem 1. Let u(t) be an H1 bounded
solution of

∂tu = ∂x (Lu) on R × R,

satisfying

∀t, x ∈ R, |u(t, x)| ≤ Ce−σ|x|.

By Lemma 4 we have u ∈ C∞(R × R) and

∀k ∈ N, ∀t ∈ R, ∀x ∈ R,

∣∣∣∣∂ku

∂xk
(t, x)

∣∣∣∣ ≤ Cke
−σ|x|.(31)

Let ṽ(t, x) = Lu(t, x). The equation of ṽ(t) is

∂tṽ = L(∂tu) = L (∂xṽ) .(32)

Note also that
∫
ṽQ′ =

∫
uLQ′ = 0. Now, we modify ṽ(t) to obtain a second orthog-

onality condition by setting

v(t, x) = ṽ(t, x) −
(∫

ṽ(t, x)Qp(x)dx∫
Qp+1(x)dx

)
Q(x),

so that ∫
v(t, x)Qp(x)dx =

∫
v(t, x)Q′(x)dx = 0.

Moreover, since LQ′ = 0, v(t, x) satisfies the equation

∂tv = L (∂xv) + δ(t)Q,(33)

where

δ(t) = − 1∫
Qp+1

d

dt

∫
ṽ(t, x)Qp(x)dx.

Note that v ∈ C∞(R×R) and by (31) and the properties of Q(x) there exist constants
σ, C > 0 such that

∀t ∈ R, ∀x ∈ R, |v(t, x)| ≤ Ce−σ|x|.(34)

We multiply the equation of v(t) by 2 v(t, x)g(x), where g(x) is defined in Lemma
2, and we integrate over R; we obtain

d

dt

∫
v2(t, x)g(x)dx = 2

∫
v∂tvg = 2

∫
L (∂xv) vg + 2 δ(t)

∫
Qvg = 2

∫
L (∂xv) vg.

The term in δ(t) disappears since
∫
Qv(t)g = −

(
p+1
p−1

) ∫
v(t)Q′ = 0, by the definition

of the function g(x) and orthogonality of v(t). By integration by parts, we have

2

∫
L (∂xv) vg = −2

∫
(∂3

xv)vg + 2

∫
(∂xv)vg − 2p

∫
Qp−1(∂xv)vg

= 2

∫
(∂2

xv)(∂xv)g + 2

∫
(∂2

xv)vg
′ −

∫
v2g′ + p

∫
(Qp−1g)′v2

= −3

∫
(∂xv)

2g′ −
∫

v2
[
−g′′′ + g′ − p(Qp−1g)′

]
.

(35)
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We now set w(t, x) = v(t, x)
√
g′(x) = v(t, x)Q

p−1
2 (x). We have

∂xw = ∂xv
√
g′ +

1

2

g′′√
g′
v,

and so by integration by parts,∫
(∂xw)2 =

∫
(∂xv)

2g′ +
1

4

∫
v2 (g′′)2

g′
− 1

2

∫
v2g′′′,

which also reads∫
(∂xv)

2g′ =

∫
(∂xw)2 − 1

4

∫
w2

(
g′′

g′

)2

+
1

2

∫
w2

(
g′′′

g′

)
.

Thus,

d

dt

∫
v2(t, x)g(x)dx = −3

∫
(∂xw(t, x))2dx−

∫
w2(t, x)A(x)dx,

where

A(x) = 1 +
1

2

g′′′(x)

g′(x)
− 3

4

(
g′′(x)

g′(x)

)2

− p
(Qp−1g)′(x)

g′(x)
.

Using Lemma 2, we obtain the following expression for A(x):

A(x) = 1 +
1

2
(p− 1)2 − 3(p− 1)2

2(p + 1)
Qp−1 − 3

4
(p− 1)2 +

3(p− 1)2

2(p + 1)
Qp−1

+ p(p + 1) − 3pQp−1

=
3

4
(p + 1)2 − 3pQp−1.

Therefore,

−1

3

d

dt

∫
v2(t, x)g(x)dx =

∫
(∂xw)2 +

(
p + 1

2

)2 ∫
w2 − p

∫
Qp−1w2

= (Lw,w) +
(p− 1)(p + 3)

4

∫
w2

(36)

(where (., .) denotes the L2 scalar product). In the right-hand member, we recognize
a nonnegative quadratic form related to the operator L. Note that∫

v(t, x)Qp(x)dx = 0 is equivalent to

∫
w(t, x)Q

p+1
2 (x)dx = 0.

By Lemma 1, we thus have (Lw,w) ≥ 0,

−1

3

d

dt

∫
v2(t, x)g(x)dx ≥ 1

4
(p− 1)(p + 3)

∫
w2(t, x)dx.(37)

Since |g(x)| ≤ p+1
p−1 , the function

∫
v2(t, x)g(x)dx is uniformly bounded in time, and

so ∫ +∞

−∞

∫
w2(t, x)dxdt < +∞.
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It follows that for some sequence tn → +∞, we have∫
w2(tn, x)dx → 0 as n → +∞.

Thus, from (34), we obtain∫
v2(tn, x)dx → 0 as n → +∞.

Similarly, we have for a sequence sn → +∞∫
v2(−sn, x)dx → 0 as n → +∞.

Using (37) integrated over (−sn, tn) and the bound on g(x), we obtain, for all n ∈ N,

∫ tn

−sn

∫
w2(t, x)dxdt ≤ C

(∫ [
v2(tn, x) + v2(−sn, x)

]
dx

)
.

By passing to the limit as n → +∞, we obtain∫ +∞

−∞

∫
w2(t, x)dxdt = 0,

giving us w(t, x) ≡ 0, and thus v(t, x) ≡ 0. Therefore, Lu(t, x) = ṽ(t, x) = γ(t)Q(x),
and so by Lemma 1,

u(t, x)=−1

2
γ(t)

(
2

p− 1
Q + xQ′

)
(x) + b(t)Q′(x)=a(t)

(
2

p− 1
Q + xQ′

)
(x) + b(t)Q′(x).

But from the equation of u(t, x), the functions a(t), b(t) satisfy the following relations:

a′(t) = 0, b′(t) = −2a(t).

Since u(t) is uniformly bounded, the only possible solutions u(t) are for b(t) ≡ b0
constant, and a(t) ≡ 0. Thus, u(t) ≡ b0Q

′.

3.4. Classification for a more general problem. As a direct corollary of
Theorem 1, we obtain the following classification result.

Corollary 1. Let p > 1. Let u ∈ C(R, H1(R))∩L∞(R, H1(R)) be a solution of

∂tu = ∂x (Lu) + α(t)

(
2

p− 1
Q + xQ′

)
+ β(t)Q′ on R × R,(38)

where α(t) and β(t) are two continuous and bounded functions. Assume that for two
constants C > 0, σ > 0,

∀t, x ∈ R, |u(t, x)| ≤ Ce−σ|x|.(39)

Then for all t ∈ R,

u(t) ≡ a(t)

(
2

p− 1
Q + xQ′

)
+ b(t)Q′(40)
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for some C1 bounded functions a(t) and b(t) satisfying

a′(t) = α(t), b′(t) = −2 a(t) + β(t).(41)

Since by direct calculations

L
(

2

p− 1
Q + xQ′

)
= −2Q and LQ′ = 0

(see Lemma 1), it is easily checked that (40)–(41) indeed define a solution of (38).
Corollary 1 means that there is no other H1 bounded solution of (38) satisfying (39).

Problem (38) is the one that really appears in the proof of asymptotic stability
in [12], [13].

Proof. Let u(t) be a solution of (38) as in the statement of Corollary 1, where
α(t), β(t) are bounded. We have to consider separately the cases p �= 5 and p = 5,
because of some structural differences.

Case p �= 5. Since p �= 5, we have, by integrating by parts,∫ (
2

p− 1
Q + xQ′

)
Q =

5 − p

2(p− 1)

∫
Q2 �= 0.(42)

Multiplying the equation of u(t) by Q and integrating on R, using LQ′ = 0, we obtain
by (42)

5 − p

2(p− 1)

(∫
Q2

)
α(t) =

d

dt

∫
u(t)Q.

Let

ũ(t) = u(t) − 2(p− 1)

5 − p

1∫
Q2

(∫
u(t)Q

)(
2

p− 1
Q + xQ′

)
.

Then ũ(t) satisfies, by L( 2
p−1Q + xQ′) = −2Q,

∂tũ− ∂x(Lũ) = ∂tu− α(t)

(
2

p− 1
Q + xQ′

)
− ∂x(Lu) − 4(p− 1)

5 − p

Q′∫
Q2

(∫
u(t)Q

)
= β̃(t)Q′,(43)

where β̃(t) = β(t)− p−1
5−p

4∫
Q2

∫
u(t)Q is bounded. Moreover, for all t ∈ R,

∫
ũ(t)Q = 0.

Now let

J(t) =

∫
R

ũ(t, y)

(∫ y

0

(
2

p− 1
Q + xQ′

)
dx

)
dy.

Then, since L( 2
p−1Q + xQ′) = −2Q, we have

J ′(t) = 2

∫
ũ(t)Q− β̃(t)

∫
Q

(
2

p− 1
Q + xQ′

)
, and so

5 − p

2(p− 1)

(∫
Q2

)
β̃(t) = −J ′(t).

Since LQ′ = 0, it follows that w(t, x) = ũ(t) − 2(p−1)
5−p

1∫
Q2 J(t)Q′ satisfies

∂tw − ∂x(Lw) = 0,
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and thus w(t) satisfies the assumptions of Theorem 1. It follows that w(t, x) =
b0Q

′(x), for some constant b0, and

u(t, x) = ũ(t, x) + a(t)

(
2

p− 1
Q + xQ′

)
= a(t)

(
2

p− 1
Q + xQ′

)
+ b(t)Q′,

where a(t) and b(t) are bounded and satisfy

a′(t) = α(t), b′(t) = −2a(t) + β(t).

Case p = 5. Since p = 5, we have
∫

( 2
p−1Q + xQ′)Q = 0, and we need to modify

the previous argument. In fact, the argument that we present now for p = 5 works
also for any p �= 3. Indeed, since p �= 3, we have∫ (

2

p− 1
Q + xQ′

)
=

3 − p

p− 1

∫
Q �= 0.

By integrating the equation of u(t), we deduce

d

dt

∫
u(t) = α(t)

3 − p

p + 1

∫
Q.

Thus, we set

ũ(t) = u(t) − p + 1

3 − p

1∫
Q

(∫
u(t)

)(
2

p− 1
Q + xQ′

)
,

so that ũ(t) satisfies (43) for some β̃(t) and
∫
ũ(t) = 0.

Observe now that L(1) = 1−pQp−1. Let j ∈ H1(R) be such that
∫
j(x)Q′(x)dx =

0 and Lj = pQp−1 (the existence and uniqueness of j(x) is a consequence of Lemma
1). Then L(1 + j) = 1. Multiplying the equation of ũ(t) by

∫ x

0
(1 + j)(y)dy and

integrating, we obtain the following:

let J(t) =

∫
R

ũ(t, x)

(∫ x

0

(1 + j)(y)dy

)
dx; then J ′(t) = −β̃(t)

∫
Q(1 + j)(x).

But
∫
Q(1 + j) = − 1

2

∫
L( 2

p−1Q+xQ′)(1 + j) = − 1
2

∫
( 2
p−1Q+xQ′) = − 1

2
3−p
p−1

∫
Q, so

that by setting

w(t, x) = ũ(t, x) − 2(p− 1)

3 − p

Q′∫
Q
J(t),

we obtain ∂tw−∂x(Lw) = 0, and w satisfies the assumptions of Theorem 1. We finish
as for the case p �= 5.

4. Linear problem related to (16). In this section, we prove Theorem 2. The
proof follows closely that for the KdV case (i.e., Theorem 1 with p = 2). First, we
observe that by the techniques developed by El Dika [7], if u(t) is an H1 solution of

(1 − λ∂2
x)∂tu = ∂x (Lu) on R × R,

satisfying

∀t, x ∈ R,

∫
(u2 + (∂xu)2)(t, x)eσ0|x|dx ≤ C,
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then u ∈ C∞(R × R) and satisfies

∀t, x ∈ R,

∣∣∣∣ ∂k

∂xk
u(t, x)

∣∣∣∣ ≤ Cke
−σ|x|.(44)

Using [7], the proof is similar to that of Lemma 4 and so we omit it.
We restrict ourselves to the case p = 2 and consider any λ ∈ [0, 1] (which means

that for the original nonlinear problem, we consider any speed c > 1).
Let

v(t, x) = Lu(t, x) and h̃(t, x) =
(
1 − λ∂2

x

)−1
v(t, x),(45)

i.e., for any t ∈ R, h̃(t) is solution of
(
1 − λ∂2

x

)
h̃(t) = v(t). Then v(t, x) and h̃(t, x)

satisfy

∂tv = L(∂xh̃), ∂th̃ =
(
1 − λ∂2

x

)−1 L(∂xh̃).

We set R(x) =
(
1 − λ∂2

x

)
Q(x) = (1−λ)Q(x) +λQ2(x), by the equation of Q(x). We

have ∫
vQ′ =

∫
uLQ′ = 0 and so

∫
h̃R′ = 0.

We modify h̃ in order to get another orthogonality condition. Indeed, setting

h(t, x) = h̃(t, x) −
∫
h̃(t, x)R(x)dx∫
R(x)Q(x)dx

Q(x)

(note that
∫
R(x)Q(x)dx = (1 − λ)

∫
Q2 + λ

∫
Q3 �= 0), we have, for all t ∈ R,∫

h(t, x)R(x)dx =

∫
h(t, x)R′(x)dx = 0.

Moreover, since LQ′ = 0, h(t, x) satisfies the equation

∂th =
(
1 − λ∂2

x

)−1 L(∂xh) + δ(t)Q,

where

δ(t) = − 1∫
RQ

d

dt

∫
h̃(t, x)R(x)dx.

In contrast to the KdV case, we will need an expression of δ(t) in terms of h. For
this, we take the L2 scalar product of the equation of h by R(x). We obtain

0 =
d

dt

∫
h(t, x)R(x)dx =

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
R + δ(t)

∫
QR.

Since
(
1 − λ∂2

x

)−1
R = Q and LQ = −Q2, we obtain

δ(t) = − 1

(1 − λ)
∫
Q2 + λ

∫
Q3

∫
h(Q2)′.(46)
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From (44) it follows that

∀t ∈ R,

∫
v2(t, x) cosh(σx)dx ≤ C,(47)

where we choose 0 < σ < 1
2 . Using v(t) =

(
1 − λ∂2

x

)
h̃(t) and integrating by parts, we

obtain

∀t ∈ R,

∫ (
λ2(∂2

xh̃(t))2 + 2λ(∂xh̃(t))2 + (1 − λσ2)h̃2(t)
)

cosh(σx)dx ≤ C,(48)

and so by the properties of Q,

∀t ∈ R,

∫ [
λ(∂xh(t))2 + h2(t)

]
eσ|x|dx ≤ C.(49)

We now choose the functional of h(t, x) that will allow us to obtain h = 0. Set

K(t) = λ

∫
(∂xh)2(t)g +

∫
h2(t)g − λ

∫
h2(t)g′′,

where the function g(x) is defined in Lemma 2. We claim the following lemma.
Lemma 6. For all t ∈ R,

K ′(t) ≤ −H(t), where H(t) = −2

∫
L(∂xh)hg − 2

∫
(∂xh)2g′.(50)

Proof. We have by direct calculations using the equation of h(t, x) and integration
by parts,

d

dt

∫
(∂xh)2g = 2

∫
∂x

[(
1 − λ∂2

x

)−1 L(∂xh)
]
(∂xhg) + 2δ(t)

∫
Q′(∂xhg)

= −2

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
(∂2

xhg + ∂xhg
′) − 2δ(t)

∫
(Q′g)′h,

d

dt

∫
h2g = 2

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
hg + 2δ(t)

∫
Qhg,

and

d

dt

∫
h2g′′ = 2

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
hg′′ + 2δ(t)

∫
Qhg′′.

Thus,

K ′(t) = 2

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
(−λ∂2

xhg − λ∂xhg
′ − λhg′′ + hg)

+ 2δ(t)

∫
h (−λ(Q′g)′ + Qg − λQg′′) .

We set V = −λ(Q′g)′ + Qg − λQg′′. Moreover, we note that

−λ∂2
xhg − 2λ∂xhg

′ − λhg′′ + hg =
(
1 − λ∂2

x

)
(hg).
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Thus, we obtain

K ′(t) = 2

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
] (

−λ∂2
xhg − 2λ∂xhg

′ − λhg′′ + hg
)

+ 2λ

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
∂xhg

′ + 2δ(t)

∫
hV

= 2

∫
L(∂xh)hg + 2λ

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
∂xhg

′ + 2δ(t)

∫
hV.

(51)

The first term in (51), i.e., 2
∫
L(∂xh)hg, has already been developed for the KdV

equation (see (35)). We consider the second term in (51). Since Lh = −∂2
xh + h −

2Qh = −∂2
xh + h− 2g′h, we have

2λ

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
∂xhg

′

= 2

∫
(∂xh)2g′ − 2(1 − λ)

∫ [(
1 − λ∂2

x

)−1
(∂xh)

]
∂xhg

′

− 4λ

∫ [(
1 − λ∂2

x

)−1
(∂xhg

′)
]
∂xhg

′.

For t ∈ R, we denote by a(t, x) and b(t, x) the functions satisfying, respectively,(
1 − λ∂2

x

)
a(t, x) = h(t, x) and

(
1 − λ∂2

x

)
b(t, x) = ∂xh(t, x)g′(x).

In other words, a(t) =
(
1 − λ∂2

x

)−1
h(t) and b(t) =

(
1 − λ∂2

x

)−1
(∂xh(t)g′). Using

these functions, we obtain∫ [(
1 − λ∂2

x

)−1
(∂xh)

]
∂xhg

′ =

∫
∂xa

[(
1 − λ∂2

x

)
(∂xa)

]
g′

=

∫ [
(∂xa)

2 + λ(∂2
xa)

2
]
g′ − λ

2

∫
(∂xa)

2g′′′

and ∫ (
1 − λ∂2

x

)−1
(∂xhg

′)∂xhg
′ =

∫
b
(
1 − λ∂2

x

)
b =

∫ [
b2 + λ(∂xb)

2
]
.

Thus, we have

2λ

∫ [(
1 − λ∂2

x

)−1 L(∂xh)
]
∂xhg

′

= 2

∫
(∂xh)2g′ − 2(1 − λ)

∫ ([
(∂xa)

2 + λ(∂2
xa)

2
]
g′ − λ

2
(∂xa)

2g′′′
)

− 4λ

∫ [
b2 + λ(∂xb)

2
]
.

By Lemma 2 for p = 2, we have g′′′ = g′ − (g′)2 ≤ g′, and thus by λ ≤ 1, we obtain∫ ([
(∂xa)

2 + λ(∂2
xa)

2
]
g′ − λ

2
(∂xa)

2g′′′
)

≥ 0.

It follows that

K ′(t) ≤ 2

∫
L(∂xh)hg + 2

∫
(∂xh)2g′ + 2δ(t)

∫
hV.
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We now consider the term 2δ(t)
∫
hV , where V = −λ(Q′g)′ + Qg − λQg′′. We use

Lemma 2 with p = 2 to compute V :

V = 3λ

(
(Q′)2

Q

)′
− 3Q′ − λQQ′ = 3λ

(
Q− 2

3
Q2

)′
− 3Q′ − λ

2
(Q2)′ = −3R′ +

λ

2
(Q2)′.

Thus, by (46) and
∫
hR′ = 0, we obtain

2δ(t)

∫
hV = − λ

(1 − λ)
∫
Q2 + λ

∫
Q3

(∫
h(Q2)′

)2

≤ 0.

Therefore, we finally obtain

K ′(t) ≤ 2

∫
L(∂xh)hg + 2

∫
(∂xh)2g′,

which finishes the proof of Lemma 6.
We continue the proof of Theorem 2. By (35), we have

H(t) =

∫
(∂xh)2g′ +

∫
h2 [−g′′′ + g′ − 2(Qg)′] .

We set w(t, x) = h(t, x)
√
g′(x) = h(t, x)

√
Q(x). Note first that∫

hR = 0 ⇔
∫

w
[
(1 − λ)Q

1
2 + λQ

3
2

]
= 0.

Since ∫
(∂xh)2g′ =

∫
(∂xw)2 − 1

4

∫
w2

(
g′′

g′

)2

+
1

2

∫
w2

(
g′′′

g′

)
,

we obtain

H(t) =

∫
(∂xw)2 +

∫
B(x)w2,

where, by Lemma 2 applied to p = 2,

B(x) = −1

4

(
g′′

g′

)2

− 1

2

(
g′′′

g′

)
+ 1 − 2

(Qg)′

g′

= −1

4

(
1 − 2

3
Q

)
− 1

2
(1 −Q) + 1 + 2(3 − 3Q) =

25

4
− 16

3
Q.

(52)

Now, we have to check the positivity of

H(t) =

∫
(∂xw)2 +

25

4

∫
w2 − 16

3

∫
Qw2,

under the following orthogonality condition on w:∫
w
[
(1 − λ)Q

1
2 + λQ

3
2

]
= 0.
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The expression of H in w is related to the operator −∂2
x+ 25

4 − 16
3 Q, which is a classical

operator (see Titchmarsh [24]). Let us recall some computations related to Qα for
α > 0:

−(Qα)′′ = −α2Qα + α

(
2α + 1

3

)
Qα+1.(53)

Indeed, we have

−(Qα)′′ = −α
(
Q′′Qα−1 + (α− 1)(Q′)2Qα−2

)
= −α

(
αQα −

(
1 +

2(α− 1)

3

)
Qα+1

)
= −α2Qα + α

(
2α + 1

3

)
Qα+1.

This leads us to compare H(t) to a quadratic form for which the first eigenfunction
will be explicit and simple. Indeed, we decompose H(t) as

H(t) =

∫
(∂xw)2 +

25

4

∫
w2 − 5

∫
Qw2 − 1

3

∫
Qw2,

and we observe that since |Q(x)| ≤ 3
2 , we have

H(t) ≥
∫

(∂xw)2 +
23

4

∫
w2 − 5

∫
Qw2 ≡ H̃(t).

The quadratic form H̃(t) is related to the operator L̃ = −∂2
x + 23

4 − 5Q, i.e., H̃(t) =

(L̃w,w). By (53), we have L̃Q 5
2 = − 1

2Q
5
2 , which means that the first eigenvalue of L̃ is

− 1
2 . On the other hand, we check by elementary computation that L̃(Q2)′ = 7

4 (Q2)′,

which means that the second eigenvalue of L̃ is 7
4 . Moreover, L̃ has a continuous

spectrum, which is [ 234 ,+∞). Thus, for odd functions, the operator is positive, and
there is only one negative direction for even functions. We now want to check that
there exists κ > 0 such that, for any H1 function w,∫

w
[
(1 − λ)Q

1
2 + λQ

3
2

]
= 0 ⇒ (L̃w,w) ≥ κ

∫
w2(54)

(where (., .) is the L2 scalar product). Let R̃ = (1 − λ)Q
1
2 + λQ

3
2 . Following Lemma

E.1 of Weinstein [26], it suffices to check that (R̃,Q
5
2 ) > 0, which is clearly true, and

(L̃−1R̃, R̃) < 0. Using (53) it turns out that L̃−1R̃ can be computed explicitly.
Indeed, by (53) for α = 3

2 , we have

L̃Q 3
2 =

7

2
Q

3
2 − 3Q

5
2 ,

and since L̃Q 5
2 = − 1

2Q
5
2 , we deduce

Q
3
2 = L̃

(
2

7
Q

3
2 − 12

7
Q

5
2

)
.

In a similar way, we have

L̃Q 1
2 =

11

2
Q

1
2 − 14

3
Q

3
2 ,
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and so using L̃Q 3
2 and L̃Q 5

2 , we obtain

Q
1
2 = L̃

(
2

11
Q

1
2 +

8

33
Q

3
2 − 16

11
Q

5
2

)
.

Thus, using ∫
Q =

∫
Q2,

∫
Q3 =

6

5

∫
Q2,

∫
Q4 =

54

35

∫
Q2(55)

(deduced from Q′′ = Q−Q2, (Q′)2 = Q2 − 2
3Q

3), we obtain

(L̃−1Q
3
2 , Q

3
2 ) =

2

7

∫
Q3 − 12

7

∫
Q4 = −562

245

∫
Q2 < 0,

(L̃−1Q
1
2 , Q

1
2 ) =

2

11

∫
Q +

8

33

∫
Q2 − 16

11

∫
Q3 = −218

165

∫
Q2 < 0,

(L̃−1Q
3
2 , Q

1
2 ) = (L̃−1Q

1
2 , Q

3
2 ) =

2

7

∫
Q2 − 12

7

∫
Q3 = −62

35

∫
Q2 < 0.

(56)

Since all the terms in (56) are negative, and R̃ = (1 − λ)Q
1
2 + λQ

3
2 with λ ∈ [0, 1], it

is clear that (L̃−1R̃, R̃) < 0. Therefore, (54) is verified.
Using (54) and the previous calculations on K ′(t) (Lemma 6), we deduce

K ′(t) ≤ −H(t) ≤ −κ

∫
w2(t).

Integrating between −∞ and +∞, we deduce that
∫ +∞
−∞

∫
w2(t, x)dxdt < +∞. Using

this in the expression of H(t), we also have
∫ +∞
−∞

∫
(∂xw)2(t, x)dxdt < +∞. At this

point, using (49), we obtain w(t) ≡ 0 on R × R exactly as in the proof of Theorem 1
in section 3.

By w ≡ 0 we obtain h ≡ 0, and thus h̃(t, x) ≡ a(t)Q(x). Then ∂th̃ = 0 implies
a′(t) = 0, and so h̃(t, x) = a0Q(x) for a constant a0 ∈ R. Finally, we obtain Lu =
a0

(
1 − λ∂2

x

)
Q, and so u(t) = a0L−1(

(
1 − λ∂2

x

)
Q) + b(t)Q′, and by the equation of

u(t), this implies b′(t) = a0. But since b(t) has to be bounded, this implies a0 = 0
and b(t) = b0 for some constant b0 ∈ R. Thus u(t) ≡ b0Q

′, which is solution for any
b0 ∈ R, and Theorem 2 is proved.
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ON GLOBAL WELL-POSEDNESS OF THE LAGRANGIAN
AVERAGED EULER EQUATIONS∗

THOMAS Y. HOU† AND CONGMING LI‡

Abstract. We study the global well-posedness of the Lagrangian averaged Euler equations
in three dimensions. We show that a necessary and sufficient condition for the global existence is
that the bounded mean oscillation of the stream function is integrable in time. We also derive a
sufficient condition in terms of the total variation of certain level set functions, which guarantees the
global existence. Furthermore, we obtain the global existence of the averaged two-dimensional (2D)
Boussinesq equations and the Lagrangian averaged 2D quasi-geostrophic equations in finite Sobolev
space in the absence of viscosity or dissipation.

Key words. well-posedness, nonlinearity partial differential equations, Euler equations
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1. Introduction. The question of global existence for the three-dimensional
(3D) incompressible Euler equations is a very challenging open question. The main
difficulty is to understand the effect of vortex stretching, which is absent in the two-
dimensional (2D) Euler equations. As part of the effort to understand the vortex
stretching effect for 3D flows, various simplified model equations have been proposed
in the literature. Amongst these models, the 2D Boussinesq system and the quasi-
geostrophic equations are two of the most commonly used because they share a similar
vortex stretching effect as that in the 3D incompressible flow. An interesting recent
development is the Lagrangian averaged Euler equations [15, 16]. This work was
originally motivated by the development of a one-dimensional (1D) shallow water
theory [3]. The averaged Euler models have been used to study the average behavior of
the 3D Euler and Navier–Stokes equations and used as a turbulent closure model (see,
e.g., [5]). The theoretical and computational aspects of the Lagrangian averaged Euler
and Navier–Stokes equations have been studied by several authors [4, 5, 16, 22, 21, 13].
However, the global existence of the 3D Lagrangian averaged Euler equations is still
open, although the Lagrangian averaged Navier–Stokes equations have been shown to
have global existence [21, 13].

In this paper, we consider the global existence of the 3D Lagrangian averaged
Euler equations and the corresponding 2D Lagrangian averaged Boussinesq equations
and the averaged 2D quasi-geostrophic equations in the absence of viscosity or dis-
sipation. The 3D Lagrangian averaged Euler equations have been derived by Holm,
Marsden, and Ratiu [15, 16] (see page 1458 of [21]) in the following form:

∂tu + (uα · ∇)u + (∇uα)T · u = −∇p;(1)
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here the notation is different from that in [21]. Our uα corresponds to the original u
and our u corresponds to (1 − α2�)u in [21].

We will adopt the vorticity formulation [21]:

∂tω + (uα · ∇)ω = ∇uα · ω,(2)

where u, ω, the α-averaged velocity uα, and the divergence-free vector stream function
ψ are related by

−�ψ = ω, u = ∇× ψ,(3)

uα = (1 − α2�)−1u.(4)

One of the important properties of the averaged Euler equations is the following
identity (see (3.3) on page 1457 of [21]; recall that uα is called u in [21]):

1

2

d

dt

∫
R3

(
|uα|2 + α2|∇uα|2

)
dx = 0.

This conservation property gives a priori bound on the H1 norm of uα:

‖uα‖H1 ≤ Cα.(5)

The above reformulation gives a clear physical interpretation of the Lagrangian
averaged Euler equations. The vorticity is convected by the α-averaged velocity field.
If one discretizes the averaged Lagrangian Euler equations by the point vortex method,
i.e., to approximate the initial vorticity by a collection of point vortices (Dirac delta
functions), then the resulting numerical approximation is a vortex blob method with
α being the vortex blob size [23, 14].

With the above interpretation of the averaged Lagrangian Euler equations, we
can clearly apply the same averaging principle to other fluid dynamics equations. For
example, if we apply the same Lagrangian averaging principle to the density equation,
we would obtain the following Lagrangian averaged 2D Boussinesq equations:

ωt + u · ∇ω = ρx1 ,(6)

ρt + uα · ∇ρ = 0 ,(7)

where uα = (1−α2�)−1u and u is related to the vorticity ω through the usual vorticity
stream function formulation; see (3). We refer the reader to [25] for the derivation
and discussions of the physical applications for the Boussinesq equations. Note that
we replace the velocity by the averaged velocity only in the density equation but not
in the vorticity equation. We remark that the global well-posedness of the viscous 2D
Boussinesq equations has been obtained in [17].

Similarly, we can derive the Lagrangian averaged 2D quasi-geostrophic equations
as follows:

θt + uα · ∇θ = 0,(8)

u = ∇⊥ψ, (−�)1/2ψ = θ,(9)

uα = (1 − α2�)−1/2u ,(10)
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where ∇⊥ψ = (∂x2
ψ,−∂x1

ψ) and (−�)1/2 is defined as

(−�)1/2ψ ≡
∫

e2πix·ξ(2π|ξ|)ψ̂(ξ) dξ,

with ψ̂(ξ) being the Fourier transform of ψ. We refer the reader to [9] for derivation
and discussions of the quasi-geostrophic equation. Note that we use a weaker aver-
aged velocity field for the 2D quasi-geostrophic equation. The exponent 1/2 in the
averaging operator corresponds to the critical case in the corresponding dissipative
quasi-geostrophic equations [8].

In this paper, we prove that a necessary and sufficient condition for the global
existence is that the bounded mean oscillation (BMO) norm (see [18]) of the stream
function is integrable in time. This is an analogue of the well-known Beale–Kato–
Majda condition [1] for the 3D Euler equations. For some recent results on the 3D
Euler equations that explore the geometric properties of the Euler flow, we refer
the reader to [10, 11]. Moreover, using a level formulation, we derive a sufficient
condition for the global existence. The nonblow-up condition we obtain is expressed
in terms of the total variation of a level set function; see (53) in section 3 for the
precise definition. Assume that the initial vorticity can be expressed in the form
ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0 for some smooth and bounded level set functions φ0

and ψ0. Let φ and ψ be the level set functions satisfying

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x),

ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x).

Then vorticity can be expressed in terms of these two level set functions:

ω = ω0(φ, ψ)∇φ×∇ψ.

Moreover, if the total variation of either φ or ψ is integrable in time, then there is no
finite time blow-up of the 3D averaged Euler equations. This result has a geometric
interpretation. In particular, it excludes the possibility of a finite number of isolated
singularities when vorticity is considered as a 1D function by fixing the other two
variables. If there is a finite time singularity, the 1D restriction of vorticity must
be highly oscillatory at the singularity time, and the singularities are dense in the
singular region. We remark that global well-posedness of a family of Navier–Stokes
alpha-like models has been recently studied by Olson and Titi [24].

Application of the same argument to the corresponding 2D models gives much
sharper existence results. In particular, we prove the global existence of the La-
grangian averaged 2D Boussinesq equations and the averaged 2D quasi-geostrophic
equations in finite Sobolev spaces without any assumption on the solution itself.

The rest of the paper is organized as follows. In section 2, we prove the necessary
and sufficient condition for the 3D Lagrangian averaged Euler equations and prove the
global existence for the averaged 2D Boussinesq equations and the averaged 2D quasi-
geostrophic equations. In section 3 we present some results for the global existence of
the 3D Lagrangian averaged Euler equations using a novel level set formulation.

2. Main results and proofs. In this section, we present three results. The
first result is a necessary and sufficient condition for the global existence of the av-
eraged Euler equations. The second result is the global existence of the averaged 2D
Boussinesq equations. The third result is the global existence of the averaged 2D



GLOBAL WELL-POSEDNESS OF AVERAGED EULER EQUATIONS 785

quasi-geostrophic equations. We begin by stating our first result for the 3D averaged
Euler equations. Our result uses the BMO norm. Before we state our existence result,
we remind the reader of the definition of the BMO norm:

‖f‖BMO = sup
x∈R3

sup
r>0

1

|Br|

∫
|f − f̄ |dx,

where f̄ = 1
|Br|

∫
Br

f(y)dy, Br = {y ∈ R3, |y − x| ≤ r}, and |Br| is the volume of

Br.

Theorem 1. Assume that ω0 ∈ Hm(R3), m ≥ 0. Then for any α > 0, the
solution of the Lagrangian averaged 3D Euler equations (2)–(4) has a unique global
solution in Hm(R3) satisfying

‖ω(t)‖Hm ≤ C(T )‖ω0‖Hm for 0 ≤ t ≤ T

if we have

∫ T

0

‖ψ‖BMOdt < ∞(11)

for any T > 0. Conversely, if the maximal time T of the existence of classical solutions
is finite, then we necessarily have

∫ T

0

‖ψ‖BMOdt = ∞.(12)

Proof. The proof relies on the following estimate obtained by Kozono and Taniuchi
[19]:

‖f‖∞ ≤ C (1 + ‖f‖BMO(1 + log(‖f‖W s,p + e))(13)

for all f ∈ W s,p with 1 < p < ∞ and s > n/p, where n is the space dimension.
We remark that inequalities of similar type for various functional spaces have been
obtained earlier; see, e.g., [28].

Another useful result is the following embedding estimate in the BMO norm:

‖Rf‖BMO ≤ C‖f‖BMO(14)

for any Riesz-type operator R (see [26, 27]).

It follows from (2)–(4) that

uα = (1 − α2�)−1∇× ψ.(15)

This implies that

∇uα = R̃ψ,(16)

where R̃ = ∇(1 − α2�)−1∇× is a Riesz-type operator.

Now applying the embedding estimate (14) to (16), we obtain

‖∇uα‖BMO ≤ C‖ψ‖BMO.(17)
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Using estimates (13) and (17), we get

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,4 + e))(18)

≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ,

where we have used u = ∇× (−�)−1ω and the Sobolev embedding estimate

‖∇uα‖W 1,p ≤ C(‖uα‖H3) ≤ C(‖uα‖H1 + ‖ω‖L2)

for p ∈ [2, 6] and the fact that ‖uα‖H1 is bounded from (5).
Next, we perform an energy estimate for the vorticity equation. Multiplying both

sides of the vorticity equation (2) by ω and integrating over R3, we get

1

2

d

dt

∫
R3

|ω|2dx +

∫
R3

(uα · ∇ω) · ωdx =

∫
R3

(∇uαω) · ωdx.(19)

Note that using integration by parts, we have∫
R3

(uα · ∇ω) · ωdx =
1

2

∫
R3

(uα · ∇)|ω|2dx = −1

2

∫
R3

(∇ · uα)|ω|2dx = 0,(20)

since ∇ · uα = 0.
On the other hand, we obtain by using estimate (18)∣∣∣∣

∫
R3

(∇uαω) · ωdx
∣∣∣∣ ≤ ‖∇uα‖∞

∫
R3

|ω|2dx

≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ‖ω‖2
L2 .(21)

Putting together estimates (19)–(21), we get

1

2

d

dt
‖ω‖2

L2 ≤ C (1 + ‖ψ‖BMO log(‖ω‖L2 + e)) ‖ω‖2
L2 .(22)

The Gronwall inequality then implies that

‖ω(t)‖L2 ≤ C(T ) for 0 ≤ t ≤ T,(23)

since
∫ T

0
‖ψ‖BMOdt < ∞ by our assumption (11). Moreover,

‖∇uα(t)‖∞ ≤ C||uα||H3 ≤ C(||uα||H1 + ||ω||L2) ≤ C(T ).(24)

Using (2) and (24), we can easily show that

‖ω(t)‖∞ ≤ ‖ω0‖∞ exp

(∫ T

0

‖∇uα‖∞dt

)
≤ C(T ) for 0 ≤ t ≤ T.(25)

Now it is a standard exercise to obtain energy estimates in high-order Sobolev norms
[20]

d

dt
‖ω‖Hm ≤ Cm(‖∇uα‖∞ + ‖ω‖∞)‖ω‖Hm .(26)
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Since ‖∇uα(t)‖∞ and ‖ω(t)‖∞ are bounded for 0 ≤ t ≤ T , we obtain the desired
estimate for ‖ω‖Hm up to time T .

Now if the maximal time T of the existence of classical solutions is finite, then
we must have ∫ T

0

‖ψ‖BMOdt = ∞,

since if
∫ T

0
‖ψ‖BMOdt < ∞, the above argument would imply that ‖ω(t)‖Hm ≤

C(T )‖ω0‖Hm for t ≤ T , which is a contradiction. This completes the proof.
Next, we prove the global existence of the averaged Boussinesq equations (6)–(7).
Theorem 2. Assume that ω0 ∈ Hm(R2) and ρ0 ∈ Hm+1(R2) for m ≥ 0. Then

for any α > 0, the Lagrangian averaged 2D Boussinesq equations (6)–(7) have a unique
global solution in Hm(R2) satisfying

‖ω(t)‖Hm + ‖ρ(t)‖Hm+1 ≤ C(T )(‖ω0‖Hm + ‖ρ0‖Hm+1), 0 ≤ t ≤ T,

for any T > 0.
Proof. First, a standard energy estimate shows that ‖u‖L2 is bounded since ‖ρ‖L2

is conserved in time and bounded.
Let W = ∇⊥ρ. Then W satisfies the following evolution equation:

Wt + (uα · ∇)W = ∇uα ·W.(27)

For any odd integer p > 2, we multiply (6) by ωp−1 and (27) by |W |p−2W ,
respectively, and integrate over R2. Upon using integration by parts for the convection
terms and exploring the incompressibility of the velocity fields, u and uα, we obtain

1

p

d

dt

∫
R2

(|ω|p + |W |p) dx ≤ (1 + ‖∇uα‖∞)

∫
R2

|W |pdx +

∫
R2

|ω|pdx(28)

≤ (1 + ‖∇uα‖∞)

(∫
R2

|ω|pdx +

∫
R2

|W |pdx
)
,

where we have used Yang’s inequality to obtain∫
R2

ωp−1|ρx1
|dx ≤ p− 1

p

∫
R2

|ω|pdx +
1

p

∫
R2

|ρx1 |pdx

≤
∫
R2

|ω|pdx +

∫
R2

|W |pdx.

Using estimates (13), we get

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,p + e))(29)

≤ C (1 + ‖∇uα‖BMO log(‖ω‖Lp + e)) ,

where we have used u = ∇⊥(−�)−1ω and the Sobolev embedding estimate

‖∇uα‖W 1,p ≤ C(‖uα‖H1 + ‖ω‖Lp)

for p ≥ 2 and the fact that ‖uα‖H1 ≤ C‖u‖L2 is bounded.
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On the other hand, we obtain by using the John–Nirenberg-type estimate (defi-
nition of BMO) in two dimensions

‖∇uα‖BMO ≤ C‖∇uα‖H1 ≤ C‖u‖L2 ≤ C,(30)

where we have used the fact that ‖u‖L2 is bounded. Therefore, we obtain by combining
(28), (29), and (30) that

d

dt
(‖ω‖pLp + ‖W‖pLp) ≤ (‖ω‖pLp + ‖W‖pLp) (1 + log(‖ω‖pLp + ‖W‖pLp + e)) .(31)

The Gronwall inequality then implies that

‖ω(t)‖Lp + ‖W (t)‖Lp ≤ C(T ) for 0 ≤ t ≤ T.(32)

Using (29), (30), and (32), we get

‖∇uα(t)‖∞ ≤ C(T ) for 0 ≤ t ≤ T.(33)

It follows from (27) and (33) that

‖W (t)‖∞ ≤ C(T ) for 0 ≤ t ≤ T,(34)

which in turns implies that

‖ω(t)‖∞ ≤ C(T ) for 0 ≤ t ≤ T.(35)

Now it is a standard exercise to show [20] that

d

dt
(‖ω‖Hm + ‖W‖Hm) ≤ C(T )(‖∇uα‖∞ + ‖W‖∞)(‖ω‖Hm + ‖W‖Hm).

The theorem now follows from (34)–(35) and the Gronwall inequality. This completes
the proof of the theorem.

Next, we prove the global existence of the averaged 2D quasi-geostrophic equa-
tions (8)–(10).

Theorem 3. Assume that θ0 ∈ Hm+1(R2) for m ≥ 0. Then for any α > 0,
the solution of the Lagrangian averaged 2D quasi-geostrophic equations (8)–(10) has
a unique global solution in Hm+1(R2) satisfying

‖θ(t)‖Hm+1 ≤ C(T )‖θ0‖Hm+1), 0 ≤ t ≤ T,

for any T > 0.
Proof. Again, we can perform a standard energy estimate to show that ‖θ‖Lp

is bounded by ‖θ0‖Lp (including p = ∞, which can be obtained via the so-called
maximum principle).

Let ω = ∇⊥θ. Then ω satisfies the following evolution equation:

ωt + (uα · ∇)ω = ∇uα · ω.(36)

Thus, ω shares the similar vortex stretching term as the 3D Euler equation. Now
using an argument similar to our energy estimate for (27), we can obtain

1

p

d

dt

∫
R2

|ω|pdx ≤ ‖∇uα‖∞
∫
R2

|ω|pdx.(37)
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Note that

∇uα = ∇(1 − α2�)−1/2(−�)−1/2∇⊥θ ≡ Rθ

for some Riesz-type operator R. Using the embedding estimates

‖∇uα‖BMO ≤ C‖θ‖BMO

and

‖∇uα‖W 1,p ≤ C‖θ‖W 1,p ≤ C(‖θ‖Lp + ‖∇θ‖Lp) for 1 < p < ∞,

we obtain using (13) that

‖∇uα‖∞ ≤ C (1 + ‖∇uα‖BMO log(‖∇uα‖W 1,p + e))

≤ C (1 + ‖θ‖BMO log(‖θ‖Lp + ‖ω‖Lp + e))

≤ C (1 + ‖θ‖∞ log(‖ω‖Lp + e))

≤ C (1 + log(‖ω‖Lp + e)) .(38)

Substituting (38) into (37) gives

d

dt
‖ω‖pLp ≤ C (1 + log(‖ω‖Lp + e)) ‖ω‖pLp .(39)

The Gronwall inequality then implies that

‖ω(t)‖Lp ≤ C(T )‖ω0‖Lp , 0 ≤ t ≤ T,(40)

which, together with (38), gives

‖∇uα‖∞ ≤ C(T ), 0 ≤ t ≤ T.(41)

Now it follows from (41) and (36) that

‖ω‖∞ ≤ C(T ), 0 ≤ t ≤ T.(42)

Now it is a standard exercise to show [20] that

d

dt
‖ω‖Hm ≤ C(T )(‖ω‖∞ + ‖∇uα‖∞)‖ω‖Hm .

The theorem now follows from (41)–(42) and the Gronwall inequality. This completes
the proof of the theorem.

3. The level set formulation for the 3D Euler equations. In this section,
we will present a level set formulation for the 3D Euler equations and show how they
can be used to obtain a sufficient condition to guarantee the global existence of the
averaged Euler equations.

We consider the 3D Euler equations in the vorticity form:

∂tω + (u · ∇)ω = ∇u · ω, ω(0, x) = ω0(x),(43)

where ω = ∇× u and u is divergence-free.
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Let X(t, α) be the Lagrangian flow map satisfying

d

dt
X(t, α) = u(t,X(t, α)), X(0, α) = α.(44)

Since u is divergence-free, we know that the determinant of the Jacobian matrix
∂X
∂α is identically equal to one. It is well known that vorticity along the Lagrangian
trajectory has the following analytical expression [6]:

ω(t,X(t, α)) =
∂X

∂α
ω0(α).(45)

Let θ(t, x) be the inverse map of X(t, α), i.e., X(t, θ(t, x)) ≡ x. Then it is easy to
show that θ satisfies the following evolution equation:

θt + (u · ∇)θ = 0, θ(0, x) = x.(46)

Let θ = (θ1, θ2, θ3) and ω0 = (ω
(1)
0 , ω

(2)
0 , ω

(3)
0 ). Using (45) and the fact that

Xαθx = I and |θx| = 1, we can show that

ω(t, x) = ω
(1)
0 (θ)∇θ2 ×∇θ3 + ω

(2)
0 (θ)∇θ3 ×∇θ1 + ω

(3)
0 (θ)∇θ1 ×∇θ2.(47)

Note that θj(j = 1, 2, 3) are level set functions convected by the flow velocity u. In
general, one can show that if the initial vorticity ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0 and
the level set functions φ and ψ satisfy

φt + (u · ∇)φ = 0, φ(0, x) = φ0(x),(48)

ψt + (u · ∇)ψ = 0, ψ(0, x) = ψ0(x),(49)

then the vorticity at a later time can be expressed in terms of these two level set
functions and their gradients:

ω(t, x) = ω0(φ, ψ)∇φ×∇ψ.(50)

This level set formulation has been considered by Deng, Hou, and Yu in their study
of the 3D Euler equations [12]. The special case when ω0 = 1 is also known as the
Clebsch representation [7]. In this case, the velocity field has the form

u = ∇p + φ∇ψ

for some potential function p.
It is easy to see that the above level set formulation of vorticity for the 3D Euler

equations also applies to the 3D Lagrangian averaged Euler equations. The only
change is that the level set functions now satisfy

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x),(51)

ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x).(52)

Now we state a sufficient condition for the global existence of the Lagrangian
averaged Euler equations in terms of the property of the level set functions defined
by (51)–(52). Before we state our result, we first introduce a definition of the total
variation of a level set function, φ, as follows:

‖φ‖TV x1 = sup
x2,x3

∫ ∞

−∞

∣∣∣∣ ∂

∂x1
φ(x1, x2, x3)

∣∣∣∣ dx1.(53)
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We can define ‖φ‖TV x2
and ‖φ‖TV x3

similarly and let ‖φ‖TV =
∑3

i=1‖φ‖TV xi
.

Theorem 4. Assume that ω(0, x) = ω0(φ0, ψ0)∇φ0 × ∇ψ0 is the form of the
initial vorticity, with ω0, φ0, and ψ0 being smooth and bounded. Moreover, we assume

that φ and ψ satisfy (51)–(52) such that either
∫ T

0
‖φ‖TV dt < ∞ or

∫ T

0
‖ψ‖TV dt < ∞

for any T > 0. Then the averaged 3D Euler equations have a unique smooth global
solution satisfying

‖ω(t)‖Hm ≤ C(T )‖ω(0)‖Hm), 0 ≤ t ≤ T,

for any T > 0.
Remark. As we mentioned before, the above result has a clear geometric inter-

pretation. It implies that if the 1D restriction of the level set function φ or ψ has a
total variation which is integrable in time, then there is no finite time blow-up. This
excludes the possibility of a finite number of isolated singularities when vorticity is
considered as a 1D function by fixing the other two variables. In particular, if there
is a finite time singularity, the 1D restriction of vorticity must be highly oscillatory
at the singularity time, and the singularities are dense in the singular region.

Proof. Recall that

uα = (1 − α2�)−1∇× (−�)−1ω.

Thus we have

∇uα = (1 − α2�)−1Rω,

where R = ∇∇× (−�)−1 is a Riesz operator.
First, we consider the special case when ω0 ≡ 1. In this case, we have ω = ∇φ×∇ψ

for all times. Without loss of generality, we may assume that
∫ T

0
‖ψ‖TV dt < ∞. We

can further rewrite ω = ∇× (φ∇ψ).
Let B(y) be the integral kernel of the operator (1−α2�)−1R in R3. We set x = 0

and omit the reference to time. Then we can express

|∇uα(0)| =

∣∣∣∣
∫
R3

B(y)ω(y)dy

∣∣∣∣
=

∣∣∣∣
∫
R3

∇B(y) × (φ(y)∇ψ(y))dy

∣∣∣∣ .
One can show that

|∇B(y)| ≤ Cα

|y|2(1 + |y| 14 )
.(54)

Let Bε denote the ball centered at the origin with radius ε < 1. Note that the level
set functions φ and ψ are bounded for all times. Let p > 3, q be the conjugate of p
satisfying 1

p + 1
q = 1. Further, we denote r = 3−2q

q . If yi is one of the three components

of y in R3, we denote by y′ the remaining 2D vector excluding yi. Then we have

|∇uα(0)| =

∣∣∣∣∣
∫
Bε

+

∫
|y|≥ε

∇B(y) × (φ(y)∇ψ(y))dy

∣∣∣∣∣
≤ ‖φ‖∞

(
ε

3−2q
q ‖∇ψ‖Lp +

3∑
i=1

∫
|y′|2+|yi|2≥ε2

dy′

(|yi|2 + |y′|2)(1 + |y| 14 )

∫ ∣∣∣∣ ∂ψ∂yi
∣∣∣∣ dyi

)
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≤ ‖φ‖∞
(
εr‖∇ψ‖Lp + ‖ψ‖TV

∫
R2

dy′

(ε2 + |y′|2)(1 + |y| 14 )

+‖ψ‖TV

∫
|y′|≥ε

dy′

|y′|2(1 + |y′| 14 )

)

≤ ‖φ‖∞
(
εr‖∇ψ‖Lp + ‖ψ‖TV log

1

ε

)
,

where we have used the Hölder inequality in the estimate for the inner part. Note
that ‖φ‖∞ ≤ ‖φ0‖∞. By setting εr(e + ‖∇ψ‖Lp) = 1, we obtain

|∇uα(0)| ≤ C (1 + ‖ψ‖TV log(‖∇ψ‖Lp + e)) .(55)

Differentiating (52) with respect to x, we obtain

(∇ψ)t + (uα · ∇)(∇ψ) + ∇uα∇ψ = 0.(56)

Performing the energy estimate to (56), we get

∂

∂t
‖∇ψ‖Lp ≤ ‖∇uα‖∞‖∇ψ‖Lp

≤ C (1 + ‖ψ‖TV log(‖∇ψ‖Lp + e)) ‖∇ψ‖Lp .

The Gronwall inequality then implies that

‖∇ψ‖Lp ≤ C(T ),(57)

provided that
∫ T

0
‖ψ‖TV dt < ∞. Substituting (57) back into (55), we conclude that

∫ T

0

‖∇uα‖∞dt ≤ C

∫ T

0

‖ψ‖TV dt ≤ C(T ).(58)

The bound on
∫ T

0
‖∇uα‖∞dt immediately gives the maximum bound on ∇ψ from

(56). Similarly, we obtain the maximum bound for ∇φ. Combining the maximum
estimates for ∇ψ and ∇φ, we obtain the maximum bound for vorticity ω. Then it is
a standard argument to prove the energy estimate for ω in the Hm norm using

∂

∂t
‖ω‖Hm ≤ C(‖∇uα‖∞ + ‖ω‖∞)‖ω‖Hm .

It remains to comment on the more general case when ω0 
= 1. Note that

ω0(φ, ψ)∇φ×∇ψ = ∇(ω0φ) ×∇ψ − φ(ω0)φ∇φ×∇ψ

= ∇× (ω0φ∇ψ) − φ(ω0)φ∇φ×∇ψ.

Define

h(φ, ψ) =

∫ φ

0

s(ω0)φ(s, ψ)ds.

Then we have

∇h(φ, ψ) = hφ∇φ + hψ∇ψ

= φ(ω0)φ∇φ + hψ∇ψ.
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This implies that

(φ(ω0)φ∇φ) ×∇ψ = ∇h×∇ψ − hψ∇ψ ×∇ψ

= ∇× (h∇ψ).

Note that h is bounded since both φ and (ω0)φ are bounded. Therefore, we can
rewrite

ω0(φ, ψ)∇φ×∇ψ = ∇× (ω0φ∇ψ) −∇× (h∇ψ),

with both ω0φ and h being bounded. Thus the previous argument for ω0 = 1 applies
to the case when ω0 
= 1. This completes the proof of the theorem.
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A FULLY NONLINEAR VERSION OF THE INCOMPRESSIBLE
EULER EQUATIONS: THE SEMIGEOSTROPHIC SYSTEM∗
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Abstract. The semigeostrophic equations are used in meteorology. They appear as a variant
of the two-dimensional Euler incompressible equations in vorticity form, where the Poisson equation
that relates the stream function and the vorticity field is just replaced by the fully nonlinear elliptic
Monge–Ampère equation. This work gathers new results concerning the semigeostrophic equations:
existence and stability of measure-valued solutions, existence and uniqueness of solutions under
certain continuity conditions for the density, and convergence to the incompressible Euler equations.
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1. Introduction. The semigeostrophic equations are an approximation of the
Euler equations of fluid mechanics used in meteorology to describe atmospheric flows.
They are believed (see [12]) to be an efficient model in describing frontogenesis. Dif-
ferent versions (incompressible [1], shallow water [10], compressible [11]) of this model
have been studied, and we will focus here on the incompressible two-dimensional (2-d)
and three-dimensional (3-d) versions. The 3-d model describes the behavior of an in-
compressible fluid in a domain Ω ⊂ R

3. To the evolution in Ω is associated a motion
in a “dual” space, described by the following nonlinear transport equation:

∂tρ + ∇ · (ρv) = 0,

v = (∇Ψ(x) − x)⊥,

detD2Ψ = ρ,

ρ(t = 0) = ρ0.

Here ρ0 is a probability measure on R
3, and for every v = (v1, v2, v3) ∈ R

3, v⊥

stands for (−v2, v1, 0). The velocity field is recovered at each time step by solving a
Monge–Ampère equation in the sense of the polar factorization of maps (see [3]), i.e.,
in the sense that Ψ is convex from R

3 to R and satisfies ∇Ψ#ρ = χΩL3, where L3

is the Lebesgue measure of R
3, and χΩ is the indicator function of Ω. It is imposed

as a compatibility condition that Ω has Lebesgue-measure one. This model arises as
an approximation of the primitive equations of meteorology, and we shall give a brief
idea of the derivation of the model, although the reader interested in more details
should refer to [12].

In this work we will deal with various questions related to the semigeostrophic
(SG) system: existence and stability of measure-valued solutions, existence and unique-
ness of smooth solutions, and finally convergence toward the incompressible Euler
equations in 2-d. As stated in the title, we will exploit throughout the paper the
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strong analogy with the 2-d incompressible Euler equations that we recall here:

∂tω + ∇ · (ωv) = 0,

v = (∇Φ)⊥,

ΔΦ = ω,

ω(t = 0) = ω0.

We recognize clearly that the vorticity ω here plays the role of the density ρ in the SG
system. One obtains the SG system just by replacing the Poisson equation ΔΦ = ω
by the Monge–Ampère equation det(I + D2Φ) = ω. (However, note that the density
ρ does not have a clear physical interpretation since it is a density in a dual space.)
From this analogy, and inspired by the well-developed mathematical theory on the
2-d Euler equations (see [21] for instance), the goal of this paper is twofold:

The first goal is to the study of the initial value problem for the SG system. We
will first establish a global existence result for weak measure-valued solutions, hence
giving a framework for weak solutions that strictly contains the results obtained in
previous works. We will also obtain local smooth solutions, trying to lower as much as
possible the requirement on the initial data, and prove uniqueness in a certain class of
smooth solutions. This well-posedness result for smooth initial data will be our main
result.

The second goal is to give some rigorous mathematical justification of the deriva-
tion of the SG system from the 2-d Euler equations. In an attempt in this direction,
we will show that in some asymptotic regime (namely, “small” solutions over a long
time) the SG system and the 2-d Euler system are asymptotically close.

We will use a combination of various techniques: The SG system is a transport
equation, and we will study it as such, using either the Eulerian or the Lagrangian
point of view. Since the coupling between density and velocity field involves a Monge–
Ampère equation, we will also rely on the regularity theory developed for this fully
nonlinear elliptic equation, which is much more recent and far less known than the
results on solutions to the Poisson equation. More originally we will use optimal
transportation and the technique developed in [18] to show uniqueness of certain
solutions. Note (though this is a coincidence) that optimal transportation will appear
earlier in the present paper in the derivation of the SG system. Finally the proof of
convergence toward the incompressible Euler equations will be made using modulated
energy techniques, a general technique (also known as the “relative entropy method,”
documented in [13]) used for the asymptotic study of hyperbolic systems.

The paper is organized as follows: In the next paragraph we give a brief descrip-
tion of the derivation of the SG system from the Euler incompressible equations. To
formulate rigorously the system, we then review the results concerning optimal trans-
portation and polar factorization of maps, which are key concepts used throughout
this paper (section 1.2). We are then able to formulate the SG system, both in its
Lagrangian and Eulerian (or dual) forms (sections 1.3 and 1.4).

Section 1.5 is dedicated to a longer discussion on the results obtained and gives
a sketch of some of the crucial arguments. This section closes the introduction. Each
of the following sections is dedicated to the proof of one of the results.

Section 2 is devoted to the existence of a weak measure-valued solution, in section
3 we show existence of Dini continuous solutions, in section 4 we show uniqueness of
solutions with Hölder continuous density, and in section 5 we show the convergence of
solutions of SG equations toward solutions of the 2-d Euler incompressible equations.
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All those results will be reviewed and discussed in greater detail in section 1.5,
after we have derived the SG equations.

1.1. Derivation of the SG equations. We now give for the sake of complete-
ness a brief and simplified idea of the derivation of the system, inspired by [1]; more
complete arguments can be found in [12].

Lagrangian formulation. We start with the 3-d incompressible Euler equations
with constant Coriolis parameter f in a domain Ω.

Dv

Dt
+ fv⊥ =

1

ρ
∇p−∇ϕ,

∇ · v = 0,
Dρ

Dt
= 0,

v · ∂Ω = 0,

where D·
Dt stands for ∂t+v·∇, and we still use v⊥ = (−v2, v1, 0). The term ∇ϕ denotes

the gravitational effects (here we will take ϕ = gx3 with constant g), and the term
fv⊥ is the Coriolis force due to rotation of the Earth. For large scale atmospheric
flows, the Coriolis force fv⊥ dominates the advection term Dv

Dt and renders the flow
mostly 2-d. We use the hydrostatic approximation, ∂x3p = −ρg, and restrict ourselves
to the case ρ ≡ 1.

Keeping only the leading order terms leads to the geostrophic balance

vg = −f−1∇⊥p,

which defines vg, the geostrophic wind. Decomposing v = vg +vag, where the second
component is the ageostrophic wind, a supposed small departure from the geostrophic
balance, the SG system reads

Dvg

Dt
+ fv⊥ = ∇Hp,

∇ · v = 0,

where ∇H = (∂x1
, ∂x2 , 0). Note, however, that the advection operator ∂t + v · ∇ still

uses the full velocity v. Introducing the potential

Φ =
1

2
|xH |2 + f−2p,

with xH = (x1, x2, 0), we obtain

D

Dt
∇Φ(t, x) = f(x−∇Φ(t, x))⊥.

We introduce the Lagrangian map g : Ω × R
+ �→ Ω, giving the position at time

t of the particle of fluid located at x0 at time 0. The previous equation means
that if for fixed x ∈ Ω we consider the trajectory in the “dual” space, defined by
X(t, x) = ∇Φ(t,g(t, x)), we have

∂tX(t, x) = f (g(t, x) −X(t, x))
⊥
.

By rescaling the time, we can set f = 1. Under this form the system looks
underdetermined: Indeed Φ is unknown; however, we have the condition X(t, x) =
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∇Φ(t,g(t, x)). Moreover, the motion of the fluid being incompressible and contained
in Ω, the map g(t, ·) must be measure preserving in Ω for each t, i.e.,

L3(g(t)−1(B)) = L3(B)

for each B ⊂ Ω measurable (where L3 denotes the Lebesgue measure of R
3). We shall

hereafter denote by G(Ω) the set of all such measure preserving maps. Then Cullen’s
stability criteria [12] asserts that the potential Φ should be convex for the system to
be stable to small perturbations of a particle’s positions in the x space. Indeed the
convexity of Φ asserts that ∇Φ minimizes some potential energy (the reader interested
in a more detailed explanation of this variational principle should refer to [12]).

Hence, for each t, Φ must be a convex function such that

X(t, ·) = ∇Φ(t,g(t, ·)),

with g(t, ·) ∈ G(Ω).
In the next paragraph we shall see that, under very mild assumptions on X, this

decomposition, called polar factorization, can only happen for a unique choice of g
and ∇Φ. Now if Φ∗ is the Legendre transform of Φ,

Φ∗(y) = sup
x∈Ω

x · y − Φ(x),

then ∇Φ and ∇Φ∗ are inverse maps of each other, and the SG system then reads

DX

Dt
= (∇Φ∗(X(t)) −X(t))

⊥
,

∇Φ∗(t) ◦X(t) ∈ G(Ω).

In this context, X(t) is thus the dual trajectory to the physical trajectory g(t), and

(∇Φ∗(X(t)) −X(t))
⊥

is up to a multiplicative constant, the geostrophic wind at point
g(t) = ∇Φ∗(X(t)).

In the next paragraph, we review the results concerning the existence and unique-
ness of the gradients ∇Φ,∇Φ∗.

1.2. Polar factorization of vector valued maps. The polar factorization of
maps has been discovered by Brenier in [3]. It was later extended to the case of
general Riemannian manifolds by McCann in [23].

The Euclidean case. Let Ω be a fixed bounded domain of R
d of Lebesgue

measure 1 and satisfying the condition Ld(∂Ω) = 0. We consider a mapping X ∈
L2(Ω; Rd). We will also consider the push-forward of the Lebesgue measure of Ω by
X, which we will denote by X#χΩLd = dρ (or, in short, X#dx) and which is defined
by

∀f ∈ C0
b (Rd),

∫
Rd

f(x) dρ(x) =

∫
Ω

f(X(x)) dx.

Let P be the set of probability measures R
d, and let P2

a be the subset of P where the
subscript a means absolutely continuous with respect to the Lebesgue measure (or
equivalently that have a density in L1(Rd)), and the superscript 2 means with finite
second moment, i.e., such that ∫

Rd

|x|2dρ(x) < +∞.
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Note that for X ∈ L2(Ω,Rd), the measure ρ = X#dx has necessarily a finite second
moment, and thus belongs to P2.

Theorem 1.1 (Brenier [3]). Let Ω be as above, X ∈ L2(Ω; Rd), and ρ = X#dx.

1. There exists a unique up to a constant convex function, which will be denoted
Φ[ρ], such that

∀f ∈ C0
b (Rd),

∫
Ω

f(∇Φ[ρ](x)) dx =

∫
Rd

f(x)dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ]. If ρ ∈ P2
a , then Ψ[ρ] is the unique

up to a constant convex function satisfying

∀f ∈ C0
b (Ω),

∫
Rd

f(∇Ψ[ρ](x)) dρ(x) =

∫
Ω

f(x)dx.

3. If ρ ∈ P2
a , X admits the following unique polar factorization:

X = ∇Φ[ρ] ◦ g,

with Φ[ρ] convex, g measure preserving in Ω.

Remark. Ψ[ρ],Φ[ρ] depend only on ρ, and are solutions (in some weak sense) in
R

d and Ω, respectively, of the Monge–Ampère equations

detD2Ψ = ρ,

ρ(∇Φ) detD2Φ = 1.

When Ψ and Φ are not in C2
loc these equations can be understood in the viscosity (or

Alexandrov) sense or in the sense of Theorem 1.1, which is strictly weaker. For the
consistency of the different weak formulations and regularity issues, the reader can
refer to [8].

The periodic case. The polar factorization theorem has been extended to Rie-
mannian manifolds in [23] (see also [9] for the case of the flat torus). In this case,
we consider a mapping X : R

d �→ R
d such that for all �p ∈ Z

d, X(· + �p) = X + �p.
Then ρ = X#dx is a probability measure on T

d. We define Ψ[ρ],Φ[ρ] through the
following.

Theorem 1.2. Let X : R
d → R

d be as above, with ρ = X#dx.

1. Up to an additive constant there exists a unique convex function Φ[ρ] such
that Φ[ρ](x)−x2/2 is Z

d-periodic (and thus ∇Φ[ρ](x)−x is Z
d-periodic), and

∀f ∈ C0(Td),

∫
Td

f(∇Φ[ρ](x)) dx =

∫
Td

f(x) dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ]. If ρ is Lebesgue integrable, then
Ψ[ρ] is the unique up to a constant convex function satisfying the statement
that Ψ[ρ](x)−x2/2 is Z

d-periodic (and thus ∇Ψ[ρ](x)−x is Z
d-periodic), and

∀f ∈ C0(Td),

∫
Td

f(∇Ψ[ρ](x)) dρ(x) =

∫
Td

f(x) dx.
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3. If ρ is Lebesgue integrable, X admits the following unique polar factorization:

X = ∇Φ[ρ] ◦ g,

with g measure preserving from T
d into itself, and Φ[ρ] convex, Φ[ρ]− |x|2/2

periodic.
Remark 1. From the periodicity of ∇Φ[ρ](x) − x,∇Ψ[ρ](x) − x, for every f

Z
d-periodic, f(∇Ψ[ρ]), f(∇Φ[ρ]) are well defined on R

d/Z
d.

Remark 2. Both in the periodic and nonperiodic cases, the definitions of Ψ[ρ] and
Φ[ρ] make sense if ρ is absolutely continuous with respect to the Lebesgue measure.
If not, the definition and uniqueness of Φ[ρ] is still valid, as well as the property
∇Φ[ρ]#ρ = χΩLd. The definition of Ψ[ρ] as the Legendre transform of Φ[ρ] is still
valid also, but then the expression

∫
f(∇Ψ[ρ](x)) dρ(x) does not necessarily make

sense since ∇Ψ[ρ] is not necessarily continuous, and hence not defined dρ almost
everywhere. Moreover the polar factorization no longer holds.

Remark 3. We have (see [9]) the unconditional bound

‖∇Ψ[ρ](x) − x‖L∞(Td) ≤
√
d/2,

which will be useful later on.

1.3. Lagrangian formulation of the SG system. From Theorems 1.1 and
1.2 the Lagrangian formulation of the SG equation then becomes

DX

Dt
= [∇Ψ(X) −X]

⊥
,(1)

Ψ = Ψ[ρ], ρ = X#dx.(2)

1.4. Eulerian formulation in dual variables. In both cases (periodic and
nonperiodic) we thus investigate the following system, which will be referred to as SG
in dual variables (but we will only say SG hereafter): We look for a time-dependent
probability measure t → ρ(t, ·) satisfying

∂tρ + ∇ · (ρv) = 0,(3)

v(t, x) = (∇Ψ[ρ(t)](x) − x)
⊥
,(4)

ρ(t = 0) = ρ0.(5)

Global existence of weak solutions (which are defined below) of this system with Lp

initial data for p ≥ 1 has been shown in [1], [10], [20].

1.5. Results. In this work we deal with various mathematical problems related
to this system: We first extend the notion of weak solutions that have been shown to
exist for ρ ∈ L∞(R+, L

q(R3)), q > 1 (see [1], [10]), and then for ρ ∈ L∞(R+, L
1(R3))

(see [20]), to the more general case of bounded measures. The question of existence
of measure-valued solutions was raised and left unanswered in those papers, and we
show here existence of global solutions to the Cauchy problem with initial data a
bounded compactly supported measure, and we show the weak stability/compactness
of these weak measure solutions.

Then we show existence of continuous solutions; more precisely, we show local
existence of solutions with Dini continuous (see (12)) density. For these solutions,
the velocity field is then C1 and the Lagrangian system (1)–(2) is defined everywhere.
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This proof relies heavily on the available regularity results on solutions to the Monge–
Ampère equation (Theorem 3.1). Note that the Dini condition is the lowest condition
known on the right-hand side of the Poisson equation that enforces C2 regularity for
the solution. Our result is not totally satisfactory since it does not provide existence of
a global smooth solution, which is the case for the 2-d incompressible Euler equation.
The reason for this more powerful result is that for the Poisson equation

ΔΦ = ω,

ω bounded implies that ∇Φ is log-Lipschitz. This continuity is slightly weaker than
the Lipschitz continuity, but allows one to define a Hölder continuous flow (see [21]).
Moreover, the flow being incompressible, this implies (when d = 2) that the vorticity
is just transported along the streamlines. The construction of global smooth solutions
can then be achieved only by using those two arguments.

For the SG system, solutions to

detD2Ψ = ρ

are only C1,α when ρ is merely bounded. This is not enough to build a continuous
flow and prevents us from obtaining the same results as for Euler.

We also show uniqueness in the class of Hölder continuous solutions (a subclass
of Dini continuous solutions). This proof uses in a crucial way the optimal trans-
portation of measures by convex gradients and its regularity properties, and can be
adapted to give a new proof of uniqueness for solutions of the 2-d Euler equation with
bounded vorticity, but also for a broad class of nonlinearly coupled system. The typ-
ical application is a density evolving through a transport equation where the velocity
field depends on the gradient of a potential. The potential is obtained by solving an
elliptic equation, where the density appears in the right-hand side. Well-known exam-
ples of such cases are the Vlasov–Poisson and Euler–Poisson systems (see [18]). We
point out that the results of existence and uniqueness obtained here are all obtained
by working in a purely Lagrangian framework.

Finally, in the 2-d case, we study the convergence of the system to the Euler
incompressible equations; this convergence is expected for ρ close to 1, since formally
expanding Ψ = x2/2+εψ, and linearizing the determinant around the identity matrix,
we get

ρ = detD2Ψ = 1 + εΔψ + O(ε2),

and the Monge–Ampère equation turns into the Poisson equation

Δψ =
ρ− 1

ε
=: μ.

We then perform the change of time scale t → t/ε and consider now με(t) := μ( t
ε ).

Then με solves

∂tμ
ε + ∇ · (με∇⊥ψε) = O(ε),

Δψε = με,

which, when we set O(ε) = 0, we recognize as the vorticity formulation of the 2-d
Euler incompressible equation.
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Let us comment on this scaling: We consider a small solution to SG, i.e., a solution
where ρ− 1 is small. We then expand this solution by a factor of ε−1 and study it on
a time scale of order ε−1.

From a physical point of view, this asymptotic study may be seen as a justification
of the consistency of the SG approximation when d = 2. Indeed, when d = 2, the
Euler equations are not affected by the Coriolis force, i.e., the solutions to

∂tv + v · ∇v = −∇p,(6)

divv = 0(7)

and to

∂tv + v · ∇v + fv⊥ = −∇p,(8)

divv = 0(9)

are the same, since the term v⊥ can be considered a pressure term (remember that
v = ∇⊥Φ). The term f is just a time scale, and the geostrophic regime is the one
where v

L � f , where v denotes here the typical size of v and L the typical space scale
of the system. Then, note that if v(t, x) is a solution to (6), so is vε = εv(εt, x). But
the ratio vε

L goes to 0 as ε goes to 0 (note that the space scales for v and vε are the
same). Hence, in the limit ε → 0, i.e., for small solutions to Euler, the geostrophic
approximation should be valid. It is precisely in this regime that we show that the SG
system and the incompressible Euler system are asymptotically close to each other,
since for SG, a small solution is one where ρ is close to 1. Hence what we show is the
following: Let ρ0 be a “small” initial data for SG. Consider με obtained from ρ as
explained above; then με is close to some ω where ω solves the 2-d Euler incompressible
equation in vorticity form

∂tω + ∇ · (ω∇⊥φ) = 0,

Δφ = ω.

In other words, when ρ goes to 1, ρ is equivalent to a solution of Euler, on a time that
goes to infinity.

The study of this “quasi-neutral” limit is done in two different ways: One uses a
modulated energy method similar to the one used in [4] and [5] and is valid for weak
solutions. The other uses a more classical expansion of the solution, and regularity
estimates, and is similar to the method used in [17]. The second method also yields
almost global solutions: Indeed, it will be shown in this paper that smooth (say,
with Lipschitz density) solutions exists in short time. The asymptotic study of the
convergence to Euler shows that the Lipschitz bound on the solution remains valid
on a time that goes to infinity when the solution is chosen with an initial condition
that converges toward the uniform density.

2. Measure-valued solutions.

2.1. A new definition of weak solutions. We have first the following classical
weak formulation of (3): ρ ∈ C(R+, L1(R3) − w) is said to be a weak solution of SG
if

∀T > 0, ∀ϕ ∈ C∞
c ([0, T ] × R

2),∫
∂tϕρ + ∇ϕ · (∇Ψ[ρ] − x)⊥ ρ dtdx =

∫
ϕ(T, x)ρ(T, x)dx−

∫
ϕ(0, x)ρ(0, x)dx,
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where, for all t, Ψ[ρ] is as in Theorem 1.1. The problematic part in the case of
measure-valued solutions is to give sense to the product ρ∇Ψ[ρ] since at the point
where ρ is singular ∇Ψ[ρ] is unlikely to be continuous. Therefore we use Theorem 1.1
to write, for any ρ ∈ P2

a(R3),

∀ϕ ∈ C∞
c (R3),

∫
R3

ρ∇Ψ[ρ]⊥ · ∇ϕ =

∫
Ω

x⊥ · ∇ϕ(∇Φ[ρ])

(the integrals would be performed over T
3 in the periodic case). The property

∇Φ[ρ]#χΩL3 = ρ is still valid when ρ is only a measure with finite second moment
(see Remark 2 after Theorem 1.2). Therefore, the formulation on the right-hand side
extends unambiguously to the case where ρ /∈ L1(R2).

Geometric interpretation. This weak formulation has a natural geometric
interpretation: At a point where Ψ[ρ] is not differentiable, and thus where ∂Ψ[ρ] is
not reduced to a single point, ∇Ψ[ρ] should be replaced by ∂̄Ψ[ρ], the center of mass
of the (convex) set ∂Ψ[ρ]. The function ∂̄Ψ[ρ] coincides Lebesgue almost everywhere
with ∇Ψ, and is defined as follows.

Definition 2.1. The map ∂̄Ψ[ρ] is defined at every point x by the center of mass
with respect to the Lebesgue measure of the set ∂Ψ[ρ](x). In other words, if ∂Ψ[ρ](x)
is a k-dimensional convex set, we have

∂̄Ψ[ρ](x) =

∫
∂Ψ[ρ](x)

y dLk(y).

This provides motivation for the following definition of weak measure solutions.
Definition 2.2. For all t ∈ [0, T ], let ρ(t) be a probability measure of R

3. It is
said to be a weak measure solution to SG if

1. the time-dependent probability measure ρ belongs to C([0, T ],P − w∗);
2. there exists t → R(t) nondecreasing such that for all t ∈ [0, T ], ρ(t, ·) is

supported in B(0, R(t));
3. for all T > 0 and for all ϕ ∈ C∞

c ([0, T ] × R
3) we have∫

[0,T ]×R3

∂tϕ(t, x) dρ(dt, x) +

∫
[0,T ]×Ω

∇ϕ(t,∇Φ[ρ(t)](x)) · x⊥ dtdx(10)

−
∫

[0,T ]×R3

∇ϕ(t, x) · x⊥ dρ(dt, x)

=

∫
ϕ(T, x)dρ(T, x) dx−

∫
ϕ(0, x)dρ(0, x) dx.

This definition is consistent with the classical definition of weak solutions if, for
all t, ρ(t, ·) is absolutely continuous with respect to the Lebesgue measure.

2.2. Result. Here we prove the following.
Theorem 2.3.

1. Let ρ0 be a probability measure compactly supported. There exists a global
weak measure solution to the SG system in the sense of Definition 2.2.

2. For any T > 0, if (ρn)n∈N is a sequence of weak measure solutions on [0, T ]
to SG with initial data (ρ0

n)n∈N, supported in BR for some R > 0 indepen-
dent of n, the sequence (ρn)n∈N is precompact in C([0, T ],P −w∗) and every
converging subsequence converges to a weak measure solution of SG.
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Proof of Theorem 2.3. We first show the weak stability of the formulation of
Definition 2.2 and the compactness of weak measure solutions. We then use this
result to obtain global existence of solutions to the Cauchy problem with initial data
a bounded measure.

Weak stability of solutions. We consider a sequence (ρn)n∈N of solutions of
SG in the sense of Definition 2.2. The sequence is uniformly compactly supported at
time 0. We first show that there exists a nondecreasing function R(t) such that ρn(t)
is supported in B(R(t)) for all t, n.

Lemma 2.4. Let ρ ∈ C([0, T ],P(R3) − w∗) satisfy (10), and let ρ0 = ρ(t = 0) be
supported in B(0, R0). Then ρ(t) is supported in B(0, R0 +CΩt), CΩ = supy∈Ω{|y|}.

Proof. Consider any function ξε(t, r) ∈ C∞([0, T ] × R) such that

ξε(0, r) ≡ 1 if −∞ < r ≤ R0,

ξε(0, r) ≡ 0 if r ≥ R0 + ε,

ξε(t, r) = ξε(0, r − CΩt),

with ξ(0, ·) nonincreasing. Then applying (10) to the test function ξε(t, |x|), we find

d

dt

∫
ξε(t, |x|) dρ(t, x) = −

∫
∂rξε(t, |x|)CΩ dρ(t, x)

+

∫
Ω

∂rξε(t, |∇Φ[ρ(t)]|) ∇Φ[ρ(t)]

|∇Φ[ρ(t)]| · x
⊥ dx

≥
∫

Ω

∂rξε(t, |∇Φ[ρ(t)]|)(−CΩ + |x|) dx

≥ 0

since, by definition of CΩ, for x ∈ Ω, |x| ≤ CΩ and ξε is nonincreasing with respect to
r. Note also that we have used

∫
∇x[ξ(t, |x|)] · x⊥dρ(t, x) dx ≡ 0. We know, on the

other hand, that ∫
R3

ξε(0, |x|)dρ(0, x) = 1,∫
R3

ξε(t, |x|)dρ(t, x) ≤ 1.

Therefore we conclude that
∫

R3 ξε(t, |x|)dρ(t, x) ≡ 1, which concludes the lemma by
letting ε go to 0.

From Lemma 2.4, we have∣∣∣∣−
∫

[0,T ]×R3

∇ϕ(t, x) · x⊥ dρn(dt, x) +

∫
[0,T ]×Ω

∇ϕ(t,∇Φ[ρn(t)](x)) · x⊥ dtdx

∣∣∣∣
≤ C(T )‖ϕ‖L1([0,T ],C1(BR(T )).

Thus from Definition 2.2, equation (10), we know that for any time t ≥ 0, ∂tρn(t, ·) is
bounded in the dual of L1([0, T ], C1(R3)) and thus in the dual of L1([0, T ],W 2,p(R3))
for p > 3 by Sobolev embeddings. Thus for some p′ > 1 we have

∂tρn ∈ L∞([0, T ],W−2,p′
(R2)).

With the two above results, and using a classical compactness result (see [16,
Chapter 1, Lemma 5.1]), we can obtain the following lemma.
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Lemma 2.5. Let the sequence (ρn)n∈N be as above. There exists ρ ∈ C([0, T ],P−
w∗) and a subsequence (ρnk

)k∈N, such that for all t ∈ [0, T ], ρnk
(t) converges to ρ(t)

in the weak-∗ topology of measures.

With this lemma, we need to show that for all ϕ ∈ C∞
c ([0, T ] × R

3) we have
∇ϕ(t,∇Φ[ρn(t)]) converging to ∇ϕ(t,∇Φ[ρ(t)]) whenever ρn(t) converges weakly-∗
to ρ(t). This last step will be a consequence of the following stability theorem.

Theorem 2.6 (Brenier [3]). Let Ω be as above. Let (ρn)n∈N be a sequence of
probability measures on R

d, such that for all n,
∫

(1 + |x|2)dρn ≤ C, let Φn = Φ[ρn],
and let Ψn = Ψ[ρn] be as in Theorem 1.1. If, for any f ∈ C0(Rd) such that |f(x)| ≤
C(1 + |x|2),

∫
fρn →

∫
ρf, then the sequence Φn can be chosen in such a way that

Φn → Φ[ρ] uniformly on each compact set of Ω and strongly in W 1,1(Ω; Rd), and
Ψn → Ψ[ρ] uniformly on each compact set of R

d and strongly in W 1,1
loc (Rd).

From this result, we obtain that the sequence ∇Φ[ρn] converges strongly in
L1(Ω) and almost everywhere (because of the convexity of Φ[ρ]) to ∇Φ[ρ]. Thus
∇ϕ(t,∇Φ[ρn]) converges to ∇ϕ(t,∇Φ[ρ]) in L1(Ω) and one can pass to the limit in
the formulation of Definition 2.2. This ends the proof of point 2 of Theorem 2.3.

Existence of solutions. We show briefly the existence of a solution to the
Cauchy problem in the sense of Definition 2.2. Indeed given ρ0 the initial data for the
problem that we want to solve, by smoothing ρ0, we can take a sequence ρ0

n of initial
data belonging to L1(R2), uniformly compactly supported and converging weakly-∗
to ρ0. We know already from [1], [10], [20] that for every ρ0

n, one can build a global
weak solution of (3)–(5) that will be uniformly compactly supported on [0, T ] for all
T ≥ 0. This sequence will also be a solution in the sense of Definition 2.2. We then
use the stability Theorem 2.6 and conclude that, up to extraction of a subsequence,
the sequence ρn converges in C([0, T ],P −w∗) to a weak measure solution of SG with
initial data ρ0. This achieves the proof of Theorem 2.3.

Remark. One can prove in fact the more general result, valid for nonlinear func-
tionals.

Proposition 2.7. Let F ∈ C0(Ω × R
d), such that |F (x, y)| ≤ C(1 + |y|2), and

let (ρn)n∈N be a bounded sequence of probability measures, Lebesgue integrable, with
finite second moment. Let ρ be a probability measure with finite second moment, such
that for all f ∈ C0(Rd) such that |f(x)| ≤ C(1 + |x|2),

∫
fdρn →

∫
fdρ. Then, as n

goes to ∞, we have∫
Rd

F (∇Ψ[ρn](x), x) dρn(x) =

∫
Ω

F (y,∇Φ[ρn](y)) dy

→n

∫
Ω

F (y,∇Φ[ρ](y)) dy =:

∫
Rd

F (∂̄Ψ[ρ](x), x) dρ(x),

where ∂̄Ψ[ρ] is given in Definition 2.1.

Remark. One checks easily that this definition of
∫

Rd F (∂̄Ψ[ρ](x), x) dρ(x) is con-
sistent with the definition of

∫
Rd F (∇Ψ[ρ](x), x) dρ(x) whenever ρ is absolutely contin-

uous with respect to the Lebesgue measure, or ∇Ψ[ρ] is continuous. Indeed, note that
∇Ψ and ∂̄Ψ always coincide Lebesgue almost everywhere, since as a convex and hence
Lipschitz function Ψ is differentiable Lebesgue almost everywhere (Rademacher’s the-
orem), and hence ∂Ψ is single-valued Lebesgue almost everywhere.

3. Continuous solutions. What initial regularity is necessary in order to guar-
antee that the velocity fields remains Lipschitz, or that the flow remains continuous,
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at least for a short time? The celebrated Youdovich’s theorem for the Euler incom-
pressible equation shows that when d = 2, if the initial vorticity data is bounded in
L∞, the flow is Hölder continuous, with Hölder index decreasing to 0 as time goes to
infinity. This proof relies on the following regularity property of the Poisson equa-
tion: If Δφ is bounded in L∞, then ∇φ is log-Lipschitz. This continuity is enough to
define a Hölder continuous flow for the vector field ∇φ⊥. Such a result is not valid
for the Monge–Ampère equation. As far as we know, the strongest regularity result
for Monge–Ampère equations is the following.

3.1. Regularity of solutions to Monge–Ampère equation with Dini con-
tinuous right-hand side.

Theorem 3.1 (Wang [25]). Let u be a strictly convex Alexandrov solution of

detD2u = ρ(11)

with ρ strictly positive. If w(r), the modulus of continuity of ρ, satisfies

∫ 1

0

w(r)

r
dr < ∞,(12)

then u is in C2
loc.

We will work here in the periodic case. In this case, u the solution of (11) will
be Ψ[ρ] of Theorem 1.2. The arguments of [7], [8], adapted to the periodic case, show
that Ψ[ρ] is indeed a strictly convex Alexandrov solution of (11). Therefore we obtain
the following corollary of Theorem 3.1.

Corollary 3.2. Let ρ ∈ P(Td) be such that

0 < m ≤ ρ ≤ M,∫ 1

0

w(r)

r
dr = C < ∞,

where m,M,C are positive constants. Let Ψ[ρ] be as in Theorem 1.2. We have, for
some constant H depending only on m,M,C,

‖Ψ[ρ]‖C2(Td) ≤ H.

3.2. Result. We will now prove the following.
Theorem 3.3. Let ρ0 be a probability on T

3, such that ρ is strictly positive and
satisfies the continuity condition (12). Then there exist T > 0 and C1, C2 depending
on ρ0, such that on [0, T ] there exists a solution ρ(t, x) of SG that satisfies the following
for all t ∈ [0, T ]:

∫ 1

0

w(t, r)

r
dr ≤ C1, ‖Ψ(t, ·)‖C2(T3) ≤ C2,

where w(t, r) is the modulus of continuity (in space) of ρ(t, .).
Proof of Theorem 3.3. Let us first sketch the proof: If Ψ ∈ C2, then the flow

t → X(t, x) generated by the velocity field [∇Ψ(x) − x]⊥ is Lipschitz in space. Since
the flow is incompressible, we have ρ(t, x) = ρ0(X−1(t, x)).

Now we use the following property: If two functions f, g have a modulus of
continuity, respectively, wf , wg, then g ◦ f has modulus wg ◦ wf .
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Thus if X−1(t) is Lipschitz, we have wρ0◦X−1(t) ≤ wρ0(L ·) with L the Lipschitz
constant of X−1(t), and condition (12) remains satisfied.

Remark 4. Note that Hölder continuous functions satisfy condition (12).
Remark 5. Note also that we do not need any integrability on ∇ρ and the solution

of the Eulerian system (3)–(5) still has to be understood in the distributional sense.

A fixed point argument. Let us introduce the seminorm

‖μ‖C =

∫ 1

0

wμ(r)

r
dr(13)

defined on P(T3), where we recall that wμ is the modulus of continuity of μ. We
denote by PC the set P equipped with this seminorm, i.e.,

PC = {μ ∈ P(T3), ‖μ‖C < ∞}.

From now on, we fix ρ0 a probability density in PC , satisfying m ≤ ρ0 ≤ M , where m
and M are strictly positive constants. Let μ be a time-dependent probability density
in L∞([0, T ];PC), such that m ≤ μ(t) ≤ M for all t. We consider the solution ρ of
the initial value problem:

∂tρ + (∇Ψ[μ](x) − x)⊥ · ∇ρ = 0,(14)

ρ(t = 0) = ρ0.(15)

From Theorem 3.1 and its corollary, the vector field v[μ] = (∇Ψ[μ](x) − x)⊥ is C1

uniformly in time; therefore there exists a unique solution to this equation, by the
Cauchy–Lipschitz theorem. This solution can be built by the method of characteristics
as follows: Consider the flow X(t, x) of the vector field v[μ]. Then ρ(t) is ρ0 pushed
forward by X(t), i.e., ρ(t) = ρ0 ◦ X−1(t). From the incompressibility of v[μ] the
condition m ≤ ρ0 ≤ M implies that for all t ∈ [0, T ], m ≤ ρ(t) ≤ M .

The initial data ρ0 being fixed, the map μ �→ ρ will be denoted by F .
The spatial derivative of X, DxX satisfies

∂tDxX(t) = Dxv[μ](X)DxX(t);(16)

therefore we have

|DxX(t)| ≤ exp

(
t sup
s∈[0,t]

‖Dxv[μ](s)‖L∞

)
.(17)

We have also, from (16),

∂t
[
DxX

−1(t,X(t, x))
]

= DxX
−1(t,X(t, x));

hence

|DxX
−1(t)| ≤ exp

(
t sup
s∈[0,t]

‖Dxv[μ](s)‖L∞

)
.(18)

Since wf◦g ≤ wf ◦ wg, and writing Ct = exp(t sups∈[0,t] ‖Dxv[μ]‖L∞), we obtain
wρ(t)(·) ≤ wρ0(Ct·), and∫ 1

0

wρ(t)(r)

r
dr ≤

∫ Ct

0

wρ0(r)

r
dr

≤
∫ 1

0

wρ0(r)

r
dr + (M −m)(Ct − 1)
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(using that, for all r, wρ(r) ≤ M −m). Therefore,

‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)(Ct − 1).

Now from Corollary 3.2, and m,M being fixed, there exists a nondecreasing function
H such that

‖v[μ]‖C1 ≤ H(‖μ‖C),

and so Ct ≤ exp(tH(‖μ‖L∞([0,t];PC
)). Hence we can choose Q > 1, and then T such

that

‖ρ0‖C + (M −m)(exp(T H(Q‖ρ0‖C)) − 1) = Q‖ρ0‖C .

Note that for Q > 1, we necessarily have T > 0. Then the map F : μ �→ ρ goes now
from

A =
{
μ, ‖μ‖L∞([0,T ];PC) ≤ Q‖ρ0‖C , m ≤ μ ≤ M

}
into

B =
{
ρ, ‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)(exp(t H(Q‖ρ0‖C)) − 1) ∀t ∈ [0, T ]

}
,

and with our choice of T = T (Q), we have B ⊂ A. Moreover from the unconditional
bounds

ρ ≤ M,

‖v[μ]‖L∞([0,T ]×T3) ≤
√

3/2

(see the remark after Theorem 1.2 for the second bound), and using (14), we have
also ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M) whenever ρ = F(μ).

Call Ã (resp., B̃) the set A ∩ {ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)} (resp., B ∩
{ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)}); we claim that

• F(Ã) ⊂ B̃ ⊂ Ã;
• Ã is convex and compact for the C0([0, T ] × T

3) topology;
• F is continuous for this topology,

so that we can apply the Schauder fixed point Theorem. We check only the last point,
the second being a classical result of functional analysis. So let us consider a sequence
(μn)n∈N converging to μ ∈ A and the corresponding sequence (ρn = F(μn))n∈N. The
sequence ρn is precompact in C0([0, T ] × T

3), from the previous point, and we see
(with the stability Theorem 2.6) that it converges to a solution ρ of

∂tρ + ∇ · (ρv[μ]) = 0.

But, v[μ] being Lipschitz, this solution is unique, and therefore F(μn) converges
to F(μ), which proves the continuity of F , and ends the proof of existence by the
Schauder fixed point Theorem.

We state here some consequences of the previous result.
Corollary 3.4. Let ρ0 ∈ P(T3), such that 0 < m ≤ ρ ≤ M .
1. If ρ0 ∈ Cα, α ∈ ]0, 1], for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to (3,

4, 5) exists in L∞([0, T ∗[, Cα(T3)).
2. If ρ0 ∈ W 1,p, p > 3, for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to (3, 4, 5)

exists in L∞([0, T [,W 1,p(T3)).
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3. If ρ0 ∈ Ck,α, α ∈ ]0, 1], k ∈ N, for T ∗ > 0 depending on ρ0, a solution ρ(t, x)
to (3)–(5) exists in L∞([0, T ∗[, Ck,α(T3)).

Moreover, for these solutions, the velocity field is, respectively, in C1,α(T3), W 2,p(T3),
and Ck+1,α(T3) on [0, T ∗[.

Proof. We prove only the first point. We use the representation formula ρ(t) =
ρ0(X−1(t)). Since Hölder continuous functions satisfy condition (12), we can construct
a solution such that X−1(t) remains Lipschitz with respect to the x variable. Then,
composing a Hölder continuous function with a Lipschitz function, we obtain a Hölder
continuous function, which yields the result.

4. Uniqueness of solutions to SG with Hölder continuous densities.

4.1. Result. Here we prove the following theorem.
Theorem 4.1. Suppose that ρ0 ∈ P(T3) with 0 < m ≤ ρ0 ≤ M and belongs to

Cα(T3) for some α > 0. From Theorem 3.3, for some T > 0 there exists a solution
ρ̄ to SG in L∞([0, T ], Cα(T3)). Then every solution of SG in L∞([0, T ′], Cβ(T3)) for
T ′ > 0, β > 0 with the same initial data coincides with ρ̄ on [0, inf{T, T ′}].

Remark 6. The uniqueness of weak solutions is still an open question.
Remark 7. Our proof of uniqueness is thus valid in a smaller class of solutions

than the one found in the previous section, the reason for this being the following:
During the course of the proof, we will need to solve a Monge–Ampère equation,
whose right-hand side is a function of the second derivatives of the solution of another
Monge–Ampère equation. In Theorem 3.1, if u is a solution to (11) with a right-hand
side satisfying (12), although u ∈ C2, it is not clear that the second derivatives of
u satisfy (12). Actually, it is even known to be wrong in the case of the Laplacian
(for a precise discussion on the subject, the reader may refer to [15]). However, from
Theorem 4.3 below, if ρ ∈ Cα, then u ∈ C2,α.

What we actually need is a continuity condition on the right-hand side of (11)
such that the second derivative of the solution u satisfies (12). This may be a weaker
condition than Hölder continuity; however, the proof would not be affected, and
therefore it is enough to give it under the present form.

Proof of Theorem 4.1. Let ρ1 and ρ2 be two solutions of (3)–(5) in L∞([0, T ],
Cβ(T3)) that coincide at time 0. Let X1, X2 be the two corresponding Lagrangian
solutions, (i.e., solutions of (1,2)). The velocity field being C1, for all t ∈ [0, T ],
X1(t, ·) and X2(t, ·) are both C1 diffeomorphisms of T

d.
We call v1 (resp., v2) the velocity field associated to X1 (resp., X2), vi(t, x) =

[∇Ψi(t, x) − x]⊥, i = 1, 2. We have

∂t(X1 −X2) = v1(X1) − v2(X2)

= (v1(X1) − v1(X2)) + (v1(X2) − v2(X2)).

We want to obtain a Gronwall-type inequality for ‖X1−X2‖L2 . Since v1 is uniformly
Lipschitz in space (from Theorem 3.3), the first bracket is estimated in the L2 norm
by C‖X1 −X2‖L2 .

We now need to estimate the second term. We first have that∫
|v1(X2) − v2(X2)|2 =

∫
ρ2|∇Ψ1 −∇Ψ2|2,

and since ρ2 is bounded, we need to estimate ‖∇Ψ1 −∇Ψ2‖L2 . This will be done in
the following proposition.
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Proposition 4.2. Let X1, X2 be mappings from T
d into itself, such that the

densities ρi = Xi#dx, i = 1, 2, are in Cα(Td) for some α > 0 and satisfy 0 < m ≤
ρi ≤ M . Let Ψi, i = 1, 2, be convex such that

detD2Ψi = ρi

in the sense of Theorem 1.1, i.e., Ψi = Ψ[ρi]. Then

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2 ,

where C depends only on α (the Hölder index of ρi), ‖ρi‖Cα(Td), m, and M .
Before giving a proof of this result, we conclude the proof of Theorem 4.1. Propo-

sition 4.2 implies immediately that

‖∂t(X1 −X2)‖L2 ≤ C‖X1 −X2‖L2 ,

and we conclude the proof of the theorem by a standard Gronwall lemma.

4.2. Energy estimates along Wasserstein geodesics.
Proof of Proposition 4.2. In the proof of this result we will need the following

result on optimal transportation of measures by a gradient of convex functions.
Theorem 4.3 (Brenier [3], McCann [23], Cordero-Erausquin [9], and Caffarelli

[6]). Let ρ1, ρ2 be two probability measures on T
d, such that ρ1 is absolutely continuous

with respect to the Lebesgue measure.
1. There exists a convex function φ such that φ−|·|2/2 is Z

d-periodic, satisfying
∇φ#ρ1 = ρ2.

2. The map ∇φ is the dρ1 a.e. unique solution of the minimization problem

inf
T#ρ1=ρ2

∫
Td

ρ1(x)|T (x) − x|2
Td dx,(19)

and for all x ∈ R
d, |∇φ(x) − x|Td = |∇φ(x) − x|Rd .

3. If ρ1, ρ2 are strictly positive and belong to Cα(Td) for some α > 0, then
φ ∈ C2,α(Td) and satisfies pointwise

ρ2(∇φ) detD2φ = ρ1.

For complete references on the optimal transportation problem (19) and its ap-
plications, the reader can refer to [24].

Remark 8. The expression | · |Td denotes the Riemannian distance on the flat
torus, whereas | · |Rd is the Euclidean distance on R

d. The second assertion of point
2 means that, for all x ∈ R

d, |∇φ(x) − x| ≤ diam(Td) =
√
d/2.

Remark 9. Here again, note that since φ−| · |2/2 is periodic, the map x �→ ∇φ(x)
is compatible with the equivalence classes of R

d/Z
d, and therefore is defined without

ambiguity on T
d.

Wasserstein geodesics between probability measures. In this part we use
results from [2], [22]. Using Theorem 4.3, we consider the unique (up to a constant)
convex potential φ such that

∇φ#ρ1 = ρ2,

φ− | · |2/2 is Z
d-periodic.
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We consider, for θ ∈ [1, 2], φθ defined by

φθ = (2 − θ)
|x|2
2

+ (θ − 1)φ.

We also consider, for θ ∈ [1, 2], ρθ defined by

ρθ = ∇φθ #ρ1.

Then ρθ interpolates between ρ1 and ρ2. This interpolation was introduced in [2] and
[22] as the time continuous formulation of the Monge–Kantorovich mass transfer. In
this construction, a velocity field vθ is defined dρθ a.e. as follows:

∀f ∈ C0(Td; Rd),

∫
ρθvθ · f =

∫
ρ1f(∇φθ) · ∂θ∇φθ

=

∫
ρ1f(∇φθ) · (∇φ(x) − x).(20)

It is easily checked that the pair ρθ, vθ satisfies

∂θρθ + ∇ · (ρθvθ) = 0,

and for any θ ∈ [1, 2], we have (see [2])

1

2

∫
Td

ρθ|vθ|2 =
1

2

∫
Td

ρ1|∇φ(x) − x|2 = W 2
2 (ρ1, ρ2),

where W2(ρ1, ρ2) is the Wasserstein distance between ρ1 and ρ2, defined by

W 2
2 (ρ1, ρ2) = inf

T#ρ1=ρ2

{∫
ρ1(x)|T (x) − x|2

Td

}
.

The Wasserstein distance can also be formulated as follows:

W 2
2 (ρ1, ρ2) = inf

Y1,Y2

{∫
Td

|Y1 − Y2|2Td

}
,

where the infimum is performed over all maps Y1, Y2 : T
d �→ T

d such that Yi#dx =
ρi, i = 1, 2. From this definition we have easily

W 2
2 (ρ1, ρ2) ≤

∫
|X2(t, a) −X1(t, a)|2 da,

and it follows that, for every θ ∈ [1, 2],∫
Td

ρθ|vθ|2 = W 2
2 (ρ1, ρ2) ≤ ‖X2 −X1‖L2 .(21)

Regularity of the interpolant measure ρθ. From Theorem 4.3, for ρ1, ρ2 ∈
Cβ and pinched between the positive constants m and M , we know that φ ∈ C2,β

and satisfies

detD2φ =
ρ1

ρ2(∇φ)
.
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We now estimate ρθ = ρ1[detD2φθ]
−1. From the concavity of log(det(·)) on

symmetric positive matrices, we have

detD2φθ = det((2 − θ)I + (θ − 1)D2φ)

≥ [detD2φ]θ−1

≥ m

M
.

Moreover, since φ ∈ C2, detD2φθ is bounded by above. Thus ρθ is uniformly bounded
away from 0 and infinity, and is uniformly Hölder continuous.

Final energy estimate. If we consider, for every θ ∈ [1, 2], Ψθ a solution of

detD2Ψθ = ρθ,(22)

in the sense of Theorem 1.2, and we impose that∫
Td

Φθ = 0(23)

(see [19]), then Ψθ interpolates between Ψ1 and Ψ2, and Ψθ ∈ C2,β uniformly, from
the regularity of ρθ. We will estimate ∂θ∇Ψθ by differentiating (22) with respect to θ.
The fact that Ψθ,Φθ is differentiable with respect to θ is a consequence of the results
of [19]. We will have, following the a priori estimate of [19, Proposition 5.1, Theorem
2.3],

∂θ∇Φθ, ∂θ∇Ψθ ∈ L∞([1, 2], L2(Td)),

∂θΦθ, ∂θΨθ ∈ L∞([1, 2], Cγ(Td))

for some γ ∈ ]0, 1[. (Note that we need the condition (23).)
Let us obtain a precise quantitative estimate in our present case. First we recall

the following fact: For M,N two d× d matrices, t ∈ R,

det(M + tN) = detM + t (trace M t
coN) + o(t),

where Mco is the comatrix (or matrix of cofactors) of M . Moreover, for any f ∈
C2(Rd; R), if M is the comatrix of D2f , it is a common fact that

∀j ∈ {1, . . . , d},
d∑

i=1

∂iMij ≡ 0.(24)

Hence, denoting by Mθ the comatrix of D2Ψθ, we obtain that ∂θΨθ satisfies

∇ · (Mθ∇∂θΨθ) = ∂θρθ(t)

= −∇ · (ρθvθ),(25)

where vθ is given by (20). From the C2,β regularity of Ψθ, D
2Ψθ is a Cβ smooth,

positive definite matrix, and its comatrix Mθ is as well. Thus (25) is uniformly elliptic.
If we multiply by ∂θΨθ and integrate by parts, we obtain∫

∇t∂θΨθ Mθ ∇∂θΨθ = −
∫

∇∂θΨθ · vθρθ.
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Using that Mθ ≥ λI for some λ > 0, and combining with the inequality (21) above,
we obtain

‖∇∂θΨθ(t)‖L2 ≤ λ−1‖ρθvθ‖L2

≤ λ−1‖X2 −X1‖L2

(
sup
θ

‖ρθ‖L∞

)1/2

.

The constant λ−1 depends only on m,M, β, {‖ρi‖Cβ , i = 1, 2} and is thus bounded
under our present assumptions. We have already seen that ρθ is uniformly bounded,
and we finally obtain that

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2 .(26)

This ends the proof of Proposition 4.2.
Remark 10. In [19], the author obtains also (weaker) estimates of the type of

Proposition 4.2 for discontinuous densities ρ1, ρ2.

5. Uniqueness of solutions to the 2-d Euler equations with bounded
vorticity: A new proof. As stated in the introduction, the method that we have
presented here to show uniqueness of solutions to SG is in fact quite general. It has
been shown in [18] to yield a uniqueness result for solutions to the Vlasov–Poisson
system, the only condition being that the density in the physical space is bounded. In
that paper it was also shown that the method could give a new proof of Youdovich’s
theorem for solutions in the whole space R

2.
We give here a simplified version of this proof in the periodic case.
We start now from the following system:

∂tρ + ∇ · (ρ∇ψ⊥) = 0,(27)

ρ = Δψ,(28)

ρ(t = 0) = ρ0.(29)

We restrict ourselves to the periodic case, i.e., x ∈ T
2, ρ, ψ periodic; this implies that

ρ has total mass equal to 0. We reprove the following classical result.
Theorem 5.1 (Youdovich [26]). Given an initial data ρ0 ∈ L∞(T2) satisfying∫

T2 ρ
0 = 0, there exists a unique solution to (27)–(29) such that ρ belongs to L∞

loc(R
+×

T
2).

Proof of Theorem 5.1. We consider two solutions ρ1, ψ1 and ρ2, ψ2, such that
ρi, i = 1, 2, are bounded in L∞([0, T ]×T

d). In this case the velocity fields vi = ∇ψ⊥
i

both satisfy (see [21, Chapter 8])

∀(x, y) ∈ T
2, |x− y| ≤ 1

2
, |vi(x) − vi(y)| ≤ C|x− y| log

1

|x− y| .

The flows (t, x) �→ Xi(t, x) associated to the velocity fields vi = ∇ψ⊥
i are then Hölder

continuous, and one has, for all t ∈ [0, T ], ρi(t) = Xi(t)#ρ0.
Applying the same technique as before, we need to estimate ‖∇ψ1 −∇ψ2‖L2(T2)

in terms of ‖X1 −X2‖L2(T2). In the present case, the energy estimate of Proposition
4.2 will hold under the weaker assumptions that the two densities are bounded.

Proposition 5.2. Let X1, X2 be continuous injective mappings from T
d into

itself, and let ρ0 be a bounded measure, with
∫

Td ρ
0 = 0. Let ρi = Xi#ρ0, i = 1, 2.
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Assume that ρ1, ρ2 have densities in L∞ with respect to the Lebesgue measure. Let
ψi, i = 1, 2, be periodic solutions of Δψi = ρi, i = 1, 2. Then we have

‖∇ψ1 −∇ψ2‖L2(Td) ≤ (2 max{‖ρ1‖L∞ , ‖ρ2‖L∞}‖ρ0‖L∞)
1/2 ‖X1 −X2‖L2(Td).

Remark 11. In other words, this proposition shows that for ρ1, ρ2 bounded, the
H−1 norm of ρ1−ρ2 is controlled by some “generalized” (since here we have unsigned
measures) Wasserstein distance between ρ1 and ρ2.

Remark 12. We see that we obtain a result as in Proposition 4.2 under the weaker
condition that the densities are bounded in L∞ (and not in Cα). This is because the
Laplacian is uniformly elliptic, independently of the regularity of the solution, while
the Monge–Ampère operator is uniformly elliptic only for C2 solutions.

To conclude the proof of Theorem 5.1, note first that for all C > 0, we can take
T small enough so that ‖X2 −X1‖L∞([0,T ]×T2) ≤ C. Now we have, for the difference
X1 −X2, as long as |X1 −X2| ≤ 1/2,

‖∂t(X1 −X2)‖L2 ≤ ‖∇ψ1(X1) −∇ψ1(X2)‖L2 + ‖∇ψ1(X2) −∇ψ2(X2)‖L2

≤ C1‖|X1 −X2| log(|X1 −X2|)‖L2 + C2‖X1 −X2‖L2 ,

where we have used Proposition 5.2 to evaluate the second term. We just need to
evaluate ‖|X1 − X2| log(|X1 − X2|)‖L2 . We take T small enough so that ‖X2 −
X1‖L∞([0,T ]×T2) ≤ 1/e and notice that x �→ x log2 x is concave for 0 ≤ x ≤ 1/e.
Therefore by Jensen’s inequality we have∫

T2

|X2 −X2|2 log2(|X1 −X2|) =
1

4

∫
T2

|X2 −X2|2 log2(|X1 −X2|2)

≤ 1

4

∫
T2

|X2 −X1|2 log2

(∫
T2

|X2 −X1|2
)
,

and some elementary computations finally yield

∂t‖X2 −X1‖L2 ≤ C‖X2 −X1‖L2 log
1

‖X2 −X1‖L2

.

The conclusion X1 ≡ X2 then follows by standard arguments.

5.1. Energy estimates along Wasserstein geodesics.
Proof of Proposition 5.2. The proof of this proposition is very close to the proof

of Proposition 4.2, and we will only sketch it, insisting on the specific points. Here
the densities ρi cannot be of constant sign, since their mean value is zero; hence we
introduce ρ+

i (resp., ρ−i ) the positive (resp., negative) part of ρi, i.e., ρi = ρ+
i − ρ−i .

The mappings Xi are supposed injective, and therefore we have Xi#ρ±0 = ρ±i . Now,
ρ±i are positive measures of total mass equal to, say, M , with M < ∞.

Wasserstein geodesic. We interpolate between the positive parts ρ+
i , and the

negative part is handled in the same way. As before, we introduce the density ρ+
θ (t)

that interpolates between ρ+
1 (t) and ρ+

2 (t). In this interpolation, we consider v+
θ such

that

∂θρ
+
θ + ∇ · (ρ+

θ v
+
θ ) = 0,(30)

and we introduce ρ−θ , v
−
θ as well. Then ρθ = ρ+

θ − ρ−θ has mean value zero. Let the
potential ψθ be a solution to

Δψθ = ρθ.(31)
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Note that ρθ has mean value zero, and therefore this equation is well posed on T
2;

moreover ψθ interpolates between ψ1 and ψ2.

Bound on the interpolant measure ρθ. Instead of interpolating between two
smooth densities, we interpolate between bounded densities and use the following
result from [22].

Proposition 5.3 (McCann [22]). Let ρ+
θ be the Wasserstein geodesic linking ρ+

1

to ρ+
2 defined above. Then, for all θ ∈ [1, 2],

‖ρ+
θ ‖L∞ ≤ max

{
‖ρ+

1 ‖L∞ , ‖ρ+
2 ‖L∞

}
.

The same holds for ρ−i , ρ
−
θ .

Remark. This property is often referred to as displacement convexity.

Energy estimates. Now we impose that
∫

Td φθ = 0. Since ρ±θ , v
±
θ are uniformly

bounded in L∞, we have, using (30), that ∂θρθ ∈ L∞([1, 2];W−1,∞(Td)). We can
thus differentiate (31) with respect to θ to obtain

Δ∂θψθ = ∂θρθ = −∇ · (ρ+
θ v

+
θ − ρ−θ v

−
θ ),(32)

with v±θ the interpolating velocity defined as in (20) and satisfying, for all θ ∈ [1, 2],∫
ρ±θ (t)|v±θ |2(t) = W 2

2 (ρ±1 (t), ρ±2 (t)).

Multiplying (32) by ∂θψθ and integrating over θ ∈ [1, 2], we obtain

‖∇ψ1 −∇ψ2‖L2(Td) ≤
∫ 2

θ=1

‖ρ+
θ v

+
θ ‖L2 + ‖ρ−θ v

−
θ ‖L2

≤ W2(ρ
+
1 , ρ

+
2 )

(
sup
θ

‖ρ+
θ ‖L∞

)1/2

+W2(ρ
−
1 , ρ

−
2 )

(
sup
θ

‖ρ−θ ‖L∞

)1/2

.

Note that the energy estimate is easier here than in the Monge–Ampère case, since
the problem is immediately uniformly elliptic.

The mappings Xi are injective and satisfy Xi#ρ0 = ρi; therefore we have Xi#(ρ±0 )
= ρ±i . Hence,

W 2
2 (ρ±1 , ρ

±
2 ) ≤

∫
ρ±0 |X1 −X2|2

≤ ‖ρ0‖L∞‖X1 −X2‖L2 .

Using Proposition 5.3, we conclude:

‖∇ψ1 −∇ψ2‖L2(Td) ≤ 2‖ρ0‖1/2
L∞‖X2 −X1‖L2 (max {‖ρ1‖L∞ , ‖ρ2‖L∞})1/2 .

This ends the proof of Proposition 5.2. Note that in our specific case, Xi are Lebesgue
measure-preserving invertible mappings; therefore ‖ρ±i ‖L∞ = ‖ρ±0 ‖L∞ , and the esti-
mate can be simplified in

‖∇ψ1 −∇ψ2‖L2(Td) ≤ 2‖ρ0‖L∞‖X2 −X1‖L2(Td).
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6. Convergence to the Euler equation.

6.1. Scaling of the system. Here we present a rescaled version of the 2-d SG
system and some formal arguments to motivate the next convergence results. Here
x ∈ T

2, t ∈ R
+, and for v = (v1, v2) ∈ R

2, v⊥ now means (−v2, v1). Introducing
ψ[ρ] = Ψ[ρ]− |x|2/2, where Ψ[ρ] is given by Theorem 1.2, the periodic 2-d SG system
now reads

∂tρ + ∇ · (ρ∇ψ⊥) = 0,

det(I + D2ψ) = ρ.

If ρ is close to one, then ψ should be small, and therefore one may consider the
linearization det(I + D2ψ) = 1 + Δψ + O(|D2ψ|2), which yields Δψ � ρ − 1. Thus
for small initial data, i.e., ρ0 − 1 small, one expects ψ, μ = ρ − 1 to stay close to a
solution of the Euler incompressible equation EI,

∂tρ̄ + ∇ · (ρ̄∇φ̄⊥) = 0,(33)

Δφ̄ = ρ̄.(34)

We shall rescale the equation in order to consider quantities of order one. We introduce
the new unknown

ρε(t, x) =
1

ε

(
ρ

(
t

ε
, x

)
− 1

)
,

ψε(t, x) =
1

ε
ψ

(
t

ε
, x

)
.

Then we have

ρ(t) = 1 + ερε(εt),

Ψ[ρ](t) = |x|2/2 + εψε(εt),

and we define φε by

εφε = |x|2/2 − Φ[ρ],

so that

∇φε = ∇ψε(∇Φ[ρ]).(35)

Hence, at a point x ∈ T
2, ∇φε⊥ is the velocity of the associated dual point ∇Φ[ρ](x).

The evolution of these quantities is then governed by the system SGε,

∂tρ
ε + ∇ · (ρε∇ψε⊥) = 0,(36)

det(I + εD2ψε) = 1 + ερε.(37)

Remark. Note that this system admits global weak solutions with initial data any
bounded measure ρε 0, as long as ∫

T2

ρε 0 = 0,(38)

ρε 0 ≥ −1

ε
.(39)
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Note also that if the pair (ρ̄, φ̄) is a solution to the EI system (33)–(34), so is the
pair (1

ε ρ̄(
t
ε , x), 1

ε φ̄( t
ε , x)).

We now present the convergence results. We show that solutions of SGε converge
to solutions of EI in the following sense: If ρε 0, the initial data of SGε, is close (in
some sense depending on the type of convergence we wish to show) to a smooth initial
data ρ̄0 for EI, then ρε and ρ̄ remain close for some time. This time goes to infinity
when ε goes to 0.

We present two different versions of this result: The first one is for weak solutions
of SGε, and the second one is for Lipschitz solutions.

6.2. Convergence of weak solutions.
Theorem 6.1. Let (ρε, ψε) be a weak solution of the SGε system (36)–(37). Let

(ρ̄, φ̄) be a smooth C3([0, T ] × T
2) solution of the EI system (33)–(34). Let φε be

obtained from ψε as in (35), and let Hε(t) be defined by

Hε(t) =
1

2

∫
T2

∣∣∇φε −∇φ̄
∣∣2 .

Then

Hε(t) ≤ (Hε(0) + Cε2/3(1 + t)) expCt,

where C depends only on sup0≤s≤t{‖D3φ̄(s), D2∂tφ̄(s) ‖L∞(T2)}.
In particular, if Hε(0) ≤ C0ε

2/3, we have, for all T > 0, t ∈ [0, T ],

Hε(t) ≤ CT ε
2/3,

where CT depends on T,C,C0 above.
Remark 13. Note that ∇φε⊥(t, x) is the velocity at point ∇Φ[ρ] = x − ε∇φε.

Thus we compare the SGε velocity at point x − ε∇φε (the dual point of x) with the
EI velocity at point x. Our result also allows comparison of the velocities at the same
point by noticing that

Gε(t) =
1

2

∫
T2

ρ
∣∣∇ψε −∇φ̄

∣∣2
=

1

2

∫
T2

∣∣∇φε −∇φ̄(x− ε∇φε)
∣∣2

≤ C(Hε(t) + ε2),

using the smoothness of φ̄, and if vsgε ,vei are the respective velocities of the SGε and
EI systems, Gε =

∫
T2 ρ

ε|vsgε − vei|2.
Remark 14. The expansion det(I + D2ψ) = 1 + Δψ + O(|D2ψ|2), used in the

heuristic argument above to justify the convergence, relies a priori on the control of
D2ψ in the sup norm. But in Theorem 6.1, the initial data must satisfy ∇ψε close
in the L2 norm to ∇φ̄; this condition means that D2ψε is close in the H−1 norm
to D2φ̄, which is smooth. This control does not allow us to justify the expansion
det(I + D2ψ) = 1 + Δψ + O(|D2ψ|2), but we see that the result remains valid.

Proof of Theorem 6.1. In all the proof, we use C to denote any quantity that
depends only on φ̄. We use the conservation of the energy of the SGε system, given
by

E(t) =

∫
T2

|∇φε|2.(40)
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This fact, although formally easily justified, is actually not so straightforward for weak
solutions, and has been proved by F. Otto in an unpublished work. The argument is
explained in [5]. Therefore E(t) = E0. The energy of the smooth solution of EI is
given by

Ē(t) =

∫
T2

|∇φ̄|2(41)

and also conserved. For all smooth θ, we will use the notation

〈D2θ〉(t, x) =

∫ 1

s=0

(1 − s)D2θ(t, x− sε∇φε(t, x)).

Thus we have the identity∫
T2

ρεθ =

∫
T2

θ(x− ε∇φε)(42)

=

∫
T2

θ − ε

∫
T2

∇θ · ∇φε + ε2
∫

T2

〈D2θ〉∇φε∇φε.(43)

Using the energy bound, the last term is bounded by ε2‖D2θ‖L∞(T2)E0. Then, using
the conservation of the energies E and Ē defined, respectively, in (40) and (41), we
have

d

dt
Hε(t) = − d

dt

∫
T2

∇φ̄ · ∇φε.

Using the identity (43), we have, for all smooth θ,

ε

∫
T2

∇θ · ∇φε = −
∫

T2

ρεθ +

∫
T2

θ + ε2
∫

T2

〈D2θ〉∇φε∇φε;

hence, replacing θ by φ̄ in this identity, we get

d

dt
Hε(t) =

1

ε

d

dt

∫
T2

[ρεφ̄− φ̄− ε2〈D2φ̄〉∇φε∇φε].

We can suppose without loss of generality that
∫

T2 φ̄(t, x) dx ≡ 0. Then if we define

Qε(t) =

∫
T2

ε〈D2φ̄〉∇φε∇φε

(note that |Qε(t)| ≤ Cε), we have

d

dt
(Hε + Qε) =

1

ε

d

dt

∫
T2

ρεφ̄.

Hence we are left to compute

1

ε

d

dt

∫
T2

ρεφ̄ =
1

ε

∫
T2

∂tρ
εφ̄ + ρε∂tφ̄

=
1

ε

∫
T2

ρε∇ψε⊥ · ∇φ̄− ε∇φε · ∇∂tφ̄ + ε2〈D2∂tφ̄〉∇φ̄∇φ̄

=
1

ε

∫
T2

ρε∇ψε⊥ · ∇φ̄−
∫

T2

∇φε · ∇∂tφ̄ + O(ε)

= T1 + T2 + O(ε),
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where in the second line we have used (36) for the first term and (43) with θ = ∂tφ̄
for the second and third terms. (Remember also that we assume

∫
∂tφ̄ ≡ 0.)

We will now use the other formulation of the Euler equation: v = ∇φ̄⊥ satisfies

∂tv + v · ∇v = −∇p.

After a rotation of π/2, this equation becomes

∂t∇φ̄ + D2φ̄∇φ̄⊥ = ∇p⊥,

and thus for T2 we have

T2 = −
∫

T2

∇φε · ∇∂tφ̄

=

∫
T2

∇φεD2φ̄∇φ̄⊥.

For T1, using (35) and (43), we have

εT1 =

∫
T2

ρε∇ψε⊥ · ∇φ̄

=

∫
T2

∇ψε⊥(x− ε∇φε) · ∇φ̄(x− ε∇φε)

=

∫
T2

∇φε⊥ · ∇φ̄− ε∇φε⊥D2φ̄∇φε + εΞ,

where Ξ is defined by

Ξ =

∫
T2

∇φε⊥
(
D2φ̄−

∫ 1

s=0

D2φ̄(x− sε∇φε) ds

)
∇φε.(44)

The term
∫

T2 ∇φε⊥ · ∇φ̄ vanishes identically. Concerning Ξ, we claim the following
estimate.

Lemma 6.2. Let Ξ be defined by (44). Then

|Ξ| ≤ C(ε
2
3 + Hε),

where C depends on ‖D3φ̄‖L∞ .
We postpone the proof of this lemma until after the proof of Theorem 6.1. We

now obtain

d

dt
(Hε(t) + Qε(t)) ≤

∫
T2

(∇φ̄⊥ −∇φε⊥)D2φ̄∇φε + CHε + Cε2/3.

Noticing that for every θ : T
2 �→ R we have∫

T2

∇θ⊥D2φ̄∇φ̄ =

∫
T2

∇θ⊥ · ∇
(

1

2
|∇φ̄|2

)
= 0,

we find that∫
T2

(∇φ̄⊥ −∇φε⊥)D2φ̄∇φε =

∫
T2

(∇φ⊥ −∇φ̄ε⊥)D2φ̄(∇φε −∇φ̄),
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and hence

d

dt
(Hε(t) + Qε(t)) ≤ −

∫
T2

(∇φε⊥ −∇φ̄⊥)D2φ̄(∇φε −∇φ̄) + CHε + Cε2/3

≤ C(Hε(t) + Qε(t) + ε2/3),

using the fact that Qε(t) ≤ Cε. Therefore

Hε(t) + Qε(t) ≤ (Hε(0) + Qε(0) + Cε2/3t) exp(Ct)

and finally

Hε(t) ≤ (Hε(0) + Cε2/3(1 + t)) exp(Ct),

and the result follows. Check that the constant C depends only on sup0≤s≤t{‖D3φ̄,

D2∂tφ̄‖L∞(T2)}. This ends the proof of Theorem 6.1
Proof of Lemma 6.2. First we show that if Θ(R) =

∫
{|∇φε|≥R} |∇φε|2, then, for

some C > 0,

Θ(R) ≤ C

∫
|∇φε −∇φ̄|2 +

C

R2
.(45)

Indeed,
∫
|∇φε|2 ≤ C implies that meas{|∇φε| ≥ R} ≤ C 1

R2 . Since |∇φ̄(t, x)| ≤ C for
(t, x) ∈ [0, T ′] × T

d, we have

Θ(R) ≤ 2

∫
{|∇φε|≥R}

|∇φ̄|2 + 2

∫
{|∇φε|≥R}

|∇φε −∇φ̄|2

≤ 2C

R2
+ 2

∫
|∇φε −∇φ̄|2.

Hence (45) is proved for C replaced by max{2, 2C}.
Then, letting

K(x) = D2φ̄−
∫ 1

s=0

D2φ̄(x− sε∇φε) ds,

we have

Ξ ≤ CΘ(R) +

∫
|∇φε|≤R

|K(x)||∇φε|2

with |K(x)| ≤ Cε|∇φε|, and thus

Ξ ≤ Cε

∫
|∇φε|≤R

|∇φε|3 + CΘ(R)

≤ C

(
εR

∫
|∇φε|2 +

1

R2
+

∫
|∇φε −∇φ̄|2

)

≤ C

(
εR +

1

R2
+

∫
|∇φε −∇φ̄|2

)

for all R, so for R = ε−1/3 we obtain

Ξ ≤ Cε2/3 + C

∫
|∇φε −∇φ̄|2.

This proves Lemma 6.2
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6.3. Convergence of strong solutions. We present here another proof of con-
vergence, which holds for stronger norms. Let us consider as above the solution (ρ̄, φ̄)
to Euler,

∂tρ̄ + ∇ · (ρ̄∇φ̄⊥) = 0,

Δφ̄ = ρ̄,

and we recall the SGε system

∂tρ
ε + ∇ · (ρε∇ψε⊥) = 0,

det(I + εD2ψε) = 1 + ερε.

We then have the following theorem.
Theorem 6.3. Let (ρ̄, φ̄) be a solution of EI, such that ρ̄ ∈ C2

loc(R
+ × T

2). Let

ρε 0 be a sequence of initial data for SGε satisfying (38)–(39), and such that ρε 0−ρ̄0

ε is
bounded in W 1,∞(T2). Then there exists a sequence (ρε, ψε) of solutions to SGε that
satisfies the following: For all T > 0, there exists εT > 0, such that the sequence

ρε − ρ̄

ε
,
∇ψε −∇φ̄

ε

for 0 < ε < εT is uniformly bounded in L∞([0, T ],W 1,∞(T2)).
Remark. In the previous theorem, we obtained estimates in the L2 norm; here

we obtain estimates in Lipschitz norm. Estimates of higher derivatives follow in the
same way.

Proof of Theorem 6.3. We expand the solution of SGε as the solution of EI plus
a small perturbation of order ε and show that this perturbation remains bounded in
large norms (at least Lipschitz). We first remark that the assumption on ρ̄ implies
that for all T > 0, φ̄ ∈ L∞([0, T ];C3(T2)). Let us write

ρε = ρ̄ + ερ1,

ψε = φ̄ + εψ1.

Rewritten in terms of ρ1, ψ1, the SGε system reads

∂tρ1 + (∇φ̄ + ε∇ψ1)
⊥ · ∇ρ1 = −∇ψ⊥

1 · ∇ρ̄,

Δψ1 + ε trace [D2ψ1D
2φ̄] + ε2 detD2ψ1 = ρ1 − detD2φ̄.

Differentiating the first equation with respect to space, we find the evolution equation
for ∇ρ1:

(46)

∂t∇ρ1 + ((∇φ̄ + ε∇ψ1)
⊥ · ∇)∇ρ1 = −(D2φ̄ + εD2ψ1)∇ρ⊥1 −D2ψ1∇ρ̄⊥ −D2ρ̄∇ψ⊥

1 .

We claim that in order to conclude the proof it is enough to have an estimate of the
form

‖ψ1(t, ·)‖C1,1(T2) ≤ C(1 + ‖ρ1(t, ·)‖C0,1(T2)),(47)

where C depends on φ̄. Let us admit this bound temporarily, and finish the proof of
the theorem: Using (47) and (46), we obtain

d

dt
‖∇ρ1‖L∞ ≤ C(t)(1 + ‖∇ρ1‖L∞ + ε‖∇ρ1‖2

L∞),
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where the constant C(t) depends on the C2(T2) norm of (ρ̄(t, ·), φ̄(t, ·)). This quantity
is bounded on every interval [0, T ].

Thus we conclude using Gronwall’s lemma that ‖∇ρ1(t, ·)‖L∞(T2) remains bounded
on [0, Tε] with Tε going to T as ε goes to 0. We then choose T as large as we want,
since when d = 2 the smooth solution to EI is global in time. From estimate (47) the
W 1,∞ bound on ρ1 implies a W 2,∞ bound on ψ1. Then, we remember that

ρ1 =
ρε − ρ̄

ε
, ∇ψ1 =

∇ψε −∇φ̄

ε

to conclude the proof of Theorem 6.3.
Proof of the estimate (47). We write the equation followed by ψ1 as follows:

Δψ1 = −trace [εD2ψ1D
2φ̄] − ε2 detD2ψ1 + ρ1 − detD2φ̄.

We recall that

‖fg‖C2,α ≤ ‖f‖C2,α‖g‖C2,α ;

hence, using Schauder C2,α estimates for solutions to the Laplace equation (see [14]),
we have

‖ψ1‖C2,α ≤ C1(1 + ε‖ψ1‖C2,α + ε2‖ψ1‖2
C2,α),(48)

where C1 depends on ‖φ̄‖C2,α , ‖ρ1‖Cα . Inequality (48) will be satisfied in two cases:
Either for ‖ψ1‖C2,α ≤ C2 or for ‖ψ1‖C2,α ≥ C3ε

−2, where C2, C3 are positive constants
that depend on C1.

Now we show that ψε, the solution of (37), is bounded in C2,α for ρε bounded
in the Cα norm. We consider for t ∈ [0, 1] ψε

t the unique up to a constant periodic
solution of

det(I + εD2ψε
t ) = 1 + tερε.

Differentiating this equation with respect to t, we find

MijDij∂tψ
ε
t = ρε,

where M is the comatrix of I + εD2ψε
t . From the regularity result of Theorem 4.3,

M is Cα and strictly elliptic. From Schauder estimates, we then have ‖∂tψε
t‖C2,α ≤

C‖ρε‖C2,α , and integrated over t ∈ [0, 1], we get

‖ψε‖C2,α ≤ C‖ρε‖C2,α .

Hence, since ψε = φ̄ + εψ1, we have ψ1 bounded by C/ε in C2,α. Hence it cannot be
bigger than C3/ε

2, and to satisfy (48), we must have

‖ψ1‖C2,α ≤ C2,

where C2 as above depends on ‖φ̄‖C2,α , ‖ρ1‖Cα . This proves estimate (47).
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Paris, 1969.

[17] G. Loeper, Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems,
Comm. Partial Differential Equations, 30 (2005), pp. 1141–1167.

[18] G. Loeper, Uniqueness of solutions to the Vlasov-Poisson system with bounded density, J.
Math. Pures Appl., in press.

[19] G. Loeper, On the regularity of the polar factorization for time dependent maps, Calc. Var.
Partial Differential Equations, 22 (2005), pp. 343–374.

[20] M. C. Lopes Filho and H. J. Nussenzveig Lopes, Existence of a weak solution for the semi-
geostrophic equation with integrable initial data, Proc. Roy. Soc. Edinburgh Sect. A, 132
(2002), pp. 329–339.

[21] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts Appl.
Math. 27, Cambridge University Press, Cambridge, UK, 2002.

[22] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), pp. 153–
179.

[23] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal.,
11 (2001), pp. 589–608.

[24] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, AMS, Providence, RI,
2003.

[25] X. J. Wang, Remarks on the regularity of Monge-Ampère equations, in Proceedings of the
International Conference on Nonlinear PDE (Hangzhou, 1992), F. H. Lin and G. C. Dong,
eds., Academic Press, Beijing, 1992, pp. 257–263.

[26] V. Youdovich, Non-stationary flows of an ideal incompressible fluid, Zh. Vych. Mat., 3 (1963),
pp. 1032–1066.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 824–844

ON THE CONTROL OF AN INTERACTING PARTICLE
ESTIMATION OF SCHRÖDINGER GROUND STATES∗

MATHIAS ROUSSET†

Abstract. We consider a general Schrödinger operator L + V on a domain E ⊂ R
d and its

associated positive ground state h solution to the maximal eigenvalue problem L(h) + V h = λh. In
this work, an interacting particle model approximating the pair (h, λ) is studied. When V ≤ 0, a
basic version of this particle system consists of N walkers evolving independently according to the
Markov generator L, each walker dying at a rate given by the value of the potential |V | at the walker’s
current location; when a walker dies, any other one splits in two. The long time distribution of the
particle system is then an estimator of h. Under some reasonable assumptions (with examples for
E = R

d), we get a nonasymptotic control of the L
p deviations (resp., the bias) of this estimator with

the genuine rate of convergence in 1/
√
N (resp., 1/N). We also compute explicitly the asymptotic

standard deviation of the estimation of λ, which remains bounded in usual mild situations.

Key words. Schrödinger ground states, stochastic particle methods, long time behavior, quan-
tum Monte Carlo

AMS subject classifications. 35Q40, 60J35, 65C35, 81-08

DOI. 10.1137/050640667

1. Introduction. Our motivation can be split into two steps:

1. Control the long time behavior of an interacting particle approximation of
Feynman–Kac formulas with genuine rate of convergence.

2. Use the long time distribution of the particle system as a Monte Carlo esti-
mator of the ground state of Schrödinger operators.

The last question is of very high practical interest in quantum physics and chemistry,
where one uses such diffusion Monte Carlo methods to compute observables of systems
(see [3], [2] and the references therein). In the difficult yet crucial case of Fermi
systems, the so-called fixed node approximation is used [3], [2], where one is resorting
to the ground state of a general Schrödinger operator on a domain of R

d.

We focus in this work on the interacting particle system (IPS) studied by Del
Moral and Miclo in [7]. In its diffusive time-continuous version, it is particularly
well suited to this context. Indeed, the fixed number of particles and the selection
mechanism make it liable to be stable in the long run and to give rise to finite variance.
Note that it has not yet inspired as such practitioners’ heuristics. Several keys are
given here to design it in practice, and some toy simulations will soon be available on
the author’s web page and in [12].

For the analysis we have used some semigroup and martingale techniques inherited
from [6]. However, this paper is mostly self-contained. The good rate of convergence
of the long time distribution of the IPS is a new result, technically demanding, and
proved in a very reasonable setting which includes examples in R

d. Intermediate
results can be used to make some proofs of [7] precise (see Remark 5.5). For the
stability questions, we have used a Foster–Lyapunov drift criterion to prove uniform
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exponential convergence of Schrödinger semigroups (Proposition 2.2) under a quite
general assumption, which seems to be a new point also.

If K(x, dy) is an integral kernel, ϕ a test function, and μ a probability measure,
we will use the notation μK(ϕ) =

∫
ϕ(y)K(x, dy)μ(dx). ( )+ and ( )− denote,

respectively, the positive and negative part.
Let us now give the main results of this paper. Suppose we are given an irreducible

strong Feller diffusion Xt in an open connected domain E ⊂ R
d with generator L,

reversible with respect to a probability measure μ(dx) =
h2
I(x)dx∫
h2
I
(x)dx

for some hI ≥ 0. V

denotes a potential function such that the Feynman–Kac semigroup

PV
t (ϕ)(x) = E

(
ϕ(Xt)e

∫
t
0V (Xs)ds|X0 = x

)
, ϕ ∈ L

2(μ),

is strongly continuous in L
2(μ) and Fellerian (x �→ PV

t (ϕ)(x) is continuous for ϕ
bounded; see [8]). It gives rise to its associated self-adjoint Schrödinger operator

(L + V )(ϕ) = lim
t→0+

PV
t (ϕ) − ϕ

t
∈ L

2(μ)

defined on its domain D(L + V ), where the latter limit exists (see [8]).
Our main example (detailed in section 2.1), which arises in many practical situa-

tions of interest (again in [3]), is some “importance sampling” transformation of the
usual Schrödinger operator (with hI > 0)

(L + V )(.) = h−1
I

(
Δ

2
+ V0

)
(hI .),(1)

which leaves the spectrum of Δ
2 + V0 invariant, and multiplies eigenfunctions by h−1

I .
Xt is then a Brownian motion with local drift ∇ lnhI .

We will work under the following usual assumption.
Assumption 1. The spectrum of L + V is bounded by a greatest eigenvalue λ

and has a spectral gap λ∗ > 0. λ is associated with a unique eigenfunction h ∈ L
2(μ)

(the ground state), which is continuous and strictly positive.
Note that Assumption 1 is very general and idiomatic; see [8, Chapter 3], [4], [9],

[11], and the example of section 2.1.
By spectral theory, we get that

PV−λ
t (ϕ)

exp−−−−→
t→+∞

hμ(hϕ) in L
2(μ)

with rate λ� > 0. If the initial probability law η0 of X0 has a density in L
2(μ), the

Cauchy–Schwarz inequality gives

η0P
V−λ
t (ϕ)

exp−−−−→
t→+∞

η0(h)μ(hϕ).

This is not sufficient to compute h numerically, since of course λ is unknown. That’s
why we resort to the renormalized version of the semigroup

ηt =
η0P

V
t (ϕ)

η0PV
t (1)

=
η0P

V−λ
t (ϕ)

η0P
V−λ
t (1)

.

This probability flow verifies from the discussion above that

ηt(ϕ)
exp−−−−→

t→+∞

μ(hϕ)

μ(h)
= η∞(ϕ),
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the ground state eigenvalue λ can be recovered from η∞ by the identity

η∞(V ) =
μ(−L(h) + λh)

μ(h)
= λ,

and the Feynman–Kac semigroup can be recovered from ηt by

η0P
V
t (ϕ) = ηt(ϕ) exp

(∫ t

0

ηs(V )ds

)
.

Thus a stochastic particle approximation of ηt enables the computation of PV
t , of λ,

and of h under a renormalized weak form.

Now we consider continuous and bounded potentials V ∈ Cb(E) and smooth test
functions ϕ ∈ C∞

b (E), and we remark then that ηt is a weak solution to the “nonlinear”
Fokker–Planck equation

∂tηt(ϕ) = ηt (L(ϕ) + (V − ηt(V ))ϕ)

= ηt(Lηt(ϕ)).(2)

The “nonlinear” Markov generator Lη is a jump perturbation of L defined by (other
choices are possible, as in the abstract; see subsection 3.1)

Lη(ϕ)(x) = L(ϕ)(x) +

∫
E

(ϕ(y) − ϕ(x))
(
(V (x) − η(V ))− + (V (y) − η(V ))+

)
η(dy).

To compute ηt, we construct a particle system associated to this mean-field interpre-
tation. The latter is denoted ξt = (ξ1

t , . . . , ξ
N
t ) ∈ EN with initial law η⊗N

0 , and its
Markov generator is given by

L(ψ)(ξ) =

N∑
i=1

L
(i)
m(ξ)(ψ)(ξ) with m(ξ) =

1

N

N∑
j=1

δξj(3)

for any ξ = (ξ1, . . . , ξN ) ∈ EN . The exponent (i) means that the operator acts on
the ith coordinate of the test function ψ ∈ C∞

b (EN ). The empirical measure of the
particle system ξt denoted

ηNt = m(ξt) =
1

N

N∑
j=1

δξjt

is then a stochastic approximation of ηt and converges to the ground state η∞ in the
long run.

ξt consists of N walkers evolving independently according to the Markov generator
L, but constrained by the following birth and death mechanism:

1. With rate (V (ξit) − ηNt (V ))−, each walker ξit jumps to the location of a uni-
formly randomly chosen walker.

2. With rate (V (ξit) − ηNt (V ))+, a uniformly randomly chosen walker jumps to
the location of each walker ξit.
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Under some localization assumptions (Assumptions 1, 2, and 3, with examples in R
d),

we prove a strong control on the long time behavior of this IPS:

sup
T≥0

E(|ηNT (ϕ) − ηT (ϕ)|p)1/p ≤ Cp‖ϕ‖∞√
N

,

sup
T≥0

|E(ηNT (ϕ)) − ηT (ϕ)| ≤ C‖ϕ‖∞
N

,

sup
T≥0

‖Law(ξiT ) − ηT ‖tv ≤ C

N
.

To get a more quantitative result, we then consider the asymptotic standard deviation
of the estimator of λ,

Ad2(V ) = lim
N→+∞

lim T→+∞NE
(
(ηNT (V ) − λ)2

)
,(4)

and we give an explicit upper bound on the latter, which remains finite in the usual
mild situations with general unbounded potentials V .

2. Assumptions and examples. We begin with our main example (see also
[3]), which motivates the results of the paper.

2.1. Example. We say that a positive function h has exponential fall-off at
infinity as soon as − lnh goes to infinity at least linearly.

Let E be an open domain of R
d with boundary ∂E. Classically, we consider the

Schrödinger operator Δ
2 + V0, with V0 continuous on Ē and going to −∞ at infinity

lim+∞ V0 = −∞.
Δ
2 +V0 is then self-adjoint for the core C∞

c (E) of smooth test functions with com-
pact support in E (Dirichlet conditions) and has compact resolvent (see [11, Chapter
13]). The operator thus has a discrete spectrum with maximal eigenvalue λ, a spectral
gap λ∗, and a ground state h0 > 0 on E. h0 is continuous on Ē with h0|∂E = 0 and
has exponential fall-off at infinity (see [1]).

Now we consider the importance sampling transformation (1) for hI ∈ C∞∩L
2(Ē),

with hI > 0 on E, hI |∂E = 0 and exponential fall-off. The resulting operator L + V
then reads

L =
Δ

2
+ ∇ lnhI∇,

V = V0 + h−1
I

Δ

2
hI .

L + V is self-adjoint for the core C∞
c (E) in L

2(μ) with μ(dx) =
h2
I(x)dx∫
h2
I
(x)dx

; it has the

same spectrum as Δ
2 + V0, but with continuous ground state h = h0h

−1
I > 0. As a

consequence, L + V satisfies Assumption 1.
To stick to our probabilistic setting we additionally ask that the following hold:

1. ∇hI = 0 on ∂E.
2. For some constant a and b, x.∇ lnhI(x) ≤ a|x|2 + b for all x ∈ Ē.
3. V or h−1

I
Δ
2 hI is bounded above.

By Proposition 7 of [3], L then defines a nonexplosive strong Feller diffusion Xt in E,
verifying the stochastic differential equations (for some Brownian motion t �→ Wt)

dXt = dWt + ∇ lnhI(Xt)dt,
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and reversible with respect to μ. Here are two examples satisfying Assumptions 2
and 3.

Remark 2.1. Within the context of section 2.1, Assumptions 2 and 3 are satisfied
as soon as V0 is Hölder continuous, and that there is an ε > 0 such that, outside some
compact set,

ε ≤ h = hIh
−1
0 ≤ ε−1,(5)

−ε−1 ≤ h−1
I

Δ

2
hI − h−1

0

Δ

2
h0 ≤ −ε.(6)

Heuristically, this means that hI and h0 must have a similar behavior outside compact
sets, hI being chosen slightly more concave than h0.

First example for bounded domains. Suppose now that E is bounded and V0 is
Hölder. The Schrödinger operator is regularizing and h0 is smooth. Note this classical
fact:1 ∇h0 = 0 on ∂E. It is now always possible to construct explicitly an hI satisfying
(5) and (6) and thus Assumptions 1, 2, and 3.

Proof. On the boundary ∂E, ∇h0, and ∇hI are nondegenerated and directed
along the normal vector of ∂E. This ensures (5). Now adjust the concavity of hI near
the boundary so that (6) is satisfied.

Second example for unbounded domains. This case is slightly more intricate, so
we only give a particular explicit example:

Suppose that E = R
d, V0 is Hölder, and that h0 has the following expression:

h0(x) = e−
|x|4
4 +ε0(x),

where ε0 is smooth and bounded with bounded first derivatives.
Now if we choose hI such that, outside some compact set,

hI(x) = e
− |x|4

4 +ε0(x)− C
|x|2

for some C > 0, then (5) and (6), and thus Assumptions 1, 2, and 3, are satisfied.
Proof. Inequality (5) is obvious. A straightforward computation shows that at

infinity V (x) − λ = −4C + o(|x|−2), which gives (6).
Third example for general situations. Here is our last example, which less restric-

tive (neither V nor h−1 shall be bounded). Assumptions 2 and 3 are not satisfied,
but the expression of the asymptotic standard deviation of the eigenvalue estimation
Ad(V ) (defined by (4)) remains finite, which is a very favorable indication of practical
efficiency.

Take E = R
d and suppose V0 behaves polynomially at infinity. Choose hI such

that
1. lnhI and its first two derivatives are of polynomial behavior;
2. h = h0h

−1
I is bounded with exponential fall-off.

Then the expression of Ad(V ) remains bounded. Note that it is practically easy to
choose such an hI , since the exponential fall-off of h0 is known from V0 (see [1]).

Proof. Recall that V = V0 + Δ
2 ln(hI) + 1

2 (∇ ln(hI))
2 is polynomially dominated,

and that dη∞
dμ (x) ∝ h(x) = h0(x)h−1

I (x), dη∞
dx (x) ∝ h0(x)hI(x), and dμ

dx (x) ∝ h2
I(x) are

bounded with exponential fall-off. The result follows then from Proposition 4.5.
This latter case could be generalized to noncontinuous potentials V0 lying locally

in the Kato class (see [5]).

1Consider Theorems 4.7 and 4.19 of [5], and an integration by parts between Δ
2
h0 and positive

solutions of the Dirichlet boundary value problem.
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2.2. Convergence of semigroups in the uniform sense. We define the non-
linear propagator associated to ηt by

Φt,T (ν) =
νPV

T−t

νPV
T−t(1)

∈ P(E).

By the semigroup property, it verifies the propagation equation ηT = Φt,T (ηt).
In this subsection, we give an assumption for the uniform convergence of PV−λ

t

and its consequence for the stability of Φt,T . This will be crucial for the stability of
the particle approximation. The only assumption we need is the following.

Assumption 2. V is bounded above and there is an ε > 0 such that the subset
Kε = {x ∈ E |V (x) − λ ≥ −ε} is relatively compact in E.

This is a natural physical assumption, which ensures that h is a “strict bound”
state in the sense that V is a strict potential barrier outside some compact set.

We then have the following.
Proposition 2.2. Under Assumptions 1 and 2, the Feynman–Kac semigroup

is uniformly exponentially converging in the sense that there is some C ≥ 0 and
0 < ρ < 1 such that for any test function ϕ,

‖PV−λ
t (ϕ) − hμ(hϕ)‖∞ ≤ ‖ϕ‖∞Cρt.

Proof. We use the results developed by Tweedie and collaborators, for instance,
in [6]. We consider the strong Feller irreducible Markov diffusion semigroup

Ph
t (ϕ) = h−1PV−λ

t (hϕ),

its associated diffusion process Xh
t , and its extended generator Lh = h−1(L + V −

λ)(h.), reversible with respect to h2(x)μ(dx). We show that h−1 is a strict Lyapunov
function for Lh outside K̄ε (in the sense of condition (D̃) of [7]). Indeed we have that

1. K̄ε is compact and thus is a petite set for Xh
t (see [13, Theorems 7.1 and

5.1]);
2. Lh(h−1) + εh−1 = (V − λ + ε)h−1 is bounded on K̄ε and negative outside.

So by Theorem 5.2 of [7], Xh
t is h−1-uniformly ergodic, which means that

sup
|g|≤h−1

|Ph
t (g)(x) − μ(h2g)| ≤ h−1(x)Cρt,

and gives the result for ϕ = gh.
We then harvest the uniform stability of Φt,T .
Corollary 2.3. Under Assumptions 1 and 2, we have for some C ≥ 0, 0 < ρ <

1, and any ν ∈ P(E)

|Φt,T (ϕ)(ν) − η∞(ϕ)| ≤ ‖ϕ‖∞
C

ν(h)
ρT−t.

Proof. We take ‖ϕ‖∞ ≤ 1 and use the Landau symbol “O” uniformly with respect
to t, T , ν, and ϕ. From Proposition 2.2 we get

Φt,T (ϕ)(ν) =
νPV−λ

T−t (ϕ)

νPV−λ
T−t (1)

=
ν(h)μ(hϕ) + O(ρT−t)

ν(h)μ(h) + O(ρT−t)

=
μ(hϕ) + O(ρ

T−t

ν(h) )

μ(h) + O(ρ
T−t

ν(h) )
,

which gives the result.
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2.3. A last assumption. To construct the particle system and carry out the
long time analysis, we will need some more boundedness and regularity hypotheses.

Assumption 3.

1. V is continuous and bounded.
2. lnh is continuous and bounded.
3. For ϕ ∈ C∞

b (E), (t, x) �→ PV
t (ϕ)(x) is C1,2

b (E × R
+).

Remark 2.4. C1,2
b (E×R

+) denotes bounded continuous functions of E with con-
tinuous time derivative and continuous second order space derivatives. The regularity
assumption is probably necessary only for intermediate technical purpose.

The second assumption could be replaced by supt,N E
(

1
(ηN

t (h))p

)
< +∞.

The regularity of PV
t (ϕ) and V gives the backward Fokker–Planck equation in a

pointwise sense.
Lemma 2.5. For all ϕ ∈ C∞

b (E), we have

∂tP
V
T−t(ϕ) = −PV

T−t(L(ϕ) + V ϕ)

= −L(PV
T−t(ϕ)) + V PV

T−t(ϕ).

3. The IPS approximation.

3.1. The generator of the IPS. In this subsection, we design the interacting
particle interpretation of the flow (ηt)t≥0, with initial probability η0 ∈ P(E). The
bounded potential being given, we first consider two continuous bounded applications
(P(E),weak topology) → (Cb(E), ‖ ‖∞), whose images are nonnegative functions de-
noted

η �→ V b
η ≥ 0, η �→ V d

η ≥ 0

and verifying

V b
η (x) − V d

η (x) = V (x) + Cη,

where Cη does not depend on x (as explained in section 3.2, “b” stands for “birth”
and “d” for “death”).

We define

V ∗
η = V b

η + V d
η .

Example 3.1. Here are several possible choices of the above functions:
1. V b = 0, V d = sup(V ) − V (as in the abstract).
2. V b = V +, V d = V −.
3. V b

η = (V − η(V ))+, V d
η = (V − η(V ))−.

The last choice is of fundamental importance since it is invariant by the transformation
V �→ V + C, which leaves ηt invariant.

Recall from (2) that ηt satisfies the fundamental nonlinear Markovian evolution
equation

∂tηt(ϕ) = ηt(Lηt(ϕ)),

but here the nonlinear Markov generator is more generally defined by

Lη(ϕ)(x) = L(ϕ)(x) +

∫
(ϕ(y) − ϕ(x))(V b

η (y) + V d
η (x)) η(dy).



PARTICLE ESTIMATION OF SCHRÖDINGER GROUND STATES 831

Indeed we have that

η(Lη(ϕ)) = η(L(ϕ)) + η(V b
η ϕ) − η(V d

η ϕ) + η(V d
η )η(ϕ) − η(V b

η )η(ϕ)

= η(L(ϕ) + V ϕ) − η(ϕ)η(V ).

If A is a linear operator, the associated formal “carré-du-champs” ΓA is a bilinear
operator defined by

ΓA(ϕ,ϕ) = A(ϕ2) − 2ϕA(ϕ).

Recall that when A is the generator of a Markov process Xt, ΓA(ϕ,ϕ) ≥ 0 and∫ t

0
ΓA(ϕ,ϕ)(Xs)ds is the predictable quadratic variation of the martingale part of

ϕ(Xt).
We can then define

ΓLη (ϕ,ϕ)(x) = ΓL(ϕ,ϕ)(x) +

∫
(ϕ(y) − ϕ(x))2(V b

η (y) + V d
η (x))η(dy)

and remark that

η(ΓLη (ϕ,ϕ)) = η(ΓL(ϕ,ϕ)) + η(ϕ2V ∗
η ) + η(ϕ2)η(V ∗

η ) − 2η(V ∗
η ϕ)η(ϕ)

= η(ΓL(ϕ,ϕ)) + η
(
(ϕ− η(ϕ))2(V ∗

η + η(V ∗
η ))

)
.

We now consider the interacting particle model (ξt)t∈R+ associated to the nonlinear
operator Lη as defined in the introduction by its initial law η⊗N

0 and its Markov
generator L given in (3). The IPS is a Markov process resulting from a bounded
jump perturbation of N independent copies of Xt, and thus is well defined.

When we use as a test function the empirical mean m(.)(ϕ) ∈ C∞
b (EN ) of a

ϕ ∈ C∞
b (E), we have the following simple form of the generator and its associated

carré-du-champs.
Lemma 3.2.

L(m(.)(ϕ)) = m(.)(Lm(.)(ϕ)),

ΓL(m(.)(ϕ),m(.)(ϕ)) =
1

N
m(.)(ΓLm(.)

(ϕ,ϕ)).

Proof. The first identity is by definition. The second one is a straightforward
formal computation. We use the linearity of A �→ ΓA to get

ΓL(ψ,ψ) =

N∑
i=1

Γ
(i)
Lm(.)

(ψ,ψ),

and since Lη(constant) = 0, for any ξ ∈ EN , we have

Γ
(i)
Lm(ξ)

(m(.)(ϕ),m(.)(ϕ))(ξ) =
1

N2
2
∑
j 
=i

ϕ(ξj)Lm(ξ)(ϕ)(ξi) +
1

N2
Lm(ξ)(ϕ

2)(ξi)

− 2

(
1

N

∑
j

ϕ(ξj)

)
1

N
Lm(ξ)(ϕ)(ξi)

=
1

N2
Γ

(i)
m(ξ)(ϕ,ϕ)(ξi),

and the result follows.
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Now we can state our key tool.
Proposition 3.3. For all ϕ. ∈ C1,2

b (E × R
+), the process

Mt(ϕ.) = ηNt (ϕt) − ηN0 (ϕ0) −
∫ t

0

ηNs
(
∂sϕs + LηN

s
(ϕs)

)
ds

is a local martingale, with predictable quadratic variation given by

〈
M(ϕ.)

〉t
0

=
1

N

∫ t

0

ηNs
(
ΓL

ηN
s

(ϕs, ϕs)
)
ds,

and jumps estimated by

|ΔMt(ϕ.)| ≤
2‖ϕt‖
N

.

We recall that

ηNs (LηN
s

(ϕ)) = ηNs
(
L(ϕ) + (V − ηNs (V ))ϕ

)
and

ηNs (ΓL
ηN
s

(ϕ,ϕ)) = ηNs (ΓL(ϕ,ϕ)) + ηNs

(
(ϕ− ηNs (ϕ))2(V ∗

ηN
s

+ ηNs (V ∗
ηN
s

))
)
.

Proof. This is a particular case of the usual martingale problem associated to the
Markov process ξt. The statement can be proved with a standard application of the
Itô formula, with Markov property arguments for the jump part.

The estimate on the jumps follows from the fact that each jump concerns only
one particle (see the probabilistic construction in subsection 3.2).

From the above proposition we immediately get the stochastic differential equa-
tion

dηNt (ϕ) = ηNt (LηN
t

(ϕ))dt + dMt(ϕ),

which is a perturbation of (2) of the dynamic of ηt by a martingale whose jumps and
predictable quadratic variation are of order 1

N . In this sense, we already see that ηNt is
a natural approximation of the flow ηt. Of course, this point of view is too elementary
to enable an asymptotic analysis mainly because of the nonlinearity of (2).

3.2. Probabilistic construction and genetic interpretation. We start with
a more explicit expression for the IPS generator.

Proposition 3.4. We have L = Lmut + Lsel with the pair mutation/selection
generators defined by

Lmut(ψ)(ξ) =

N∑
i=1

L(i)(ψ)(ξ),

Lsel(ψ)(ξ) =

N∑
i=1

V d
m(ξ)(ξ

i)
1

N

N∑
j=1

(ψ(ξi→j) − ψ(ξ))

+

N∑
i=1

V b
m(ξ)(ξ

i)
1

N

N∑
j=1

(ψ(ξj→i) − ψ(ξ)),

where if ξ′ = ξi→j, then ξ′
k

= ξk except for k = i, where ξ′
i
= ξj.
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Proof. The jump part of L is by definition

Lsel(ψ)(ξ) =

N∑
i=1

V d
m(ξ)(ξ

i)

(
1

N

N∑
j=1

ψ(ξi→j) − ψ(ξ)

)

+

N∑
i=1

1

N

N∑
j=1

V b
m(ξ)(ξ

j)(ψ(ξi→j) − ψ(ξ)),

and the result follows by exchanging the indexes i and j in the second part of the
right-hand side of the identity.

Thus the N walkers evolve according to the following birth and death mechanism,

for any i ∈ [1, N ] (τ
d/b,i
n+1 designing independent exponential clocks of mean 1):

1. Between each jump time, the walkers evolve independently according to the
mutation generator L.

2. At random times T d,i
n defined by

∫ Td,i
n+1

Td,i
n

V d
ηN
s

(ξis)ds = τd,in+1, a walker is uni-

formly randomly chosen, and the ith walker then jumps to its location.

3. At random times T b,i
n defined by

∫ T b,i
n+1

T b,i
n

V b
ηN
s

(ξis)ds = τ b,in+1, a walker is uniformly

randomly chosen, and then jumps to the location of the ith walker.
This explains how the selection generator tends to “get rid of” walkers with relatively
high potential V d

ηN
t

, and tends to “reproduce” walkers with relatively high potential

V b
ηN
t

. The effect of selection is then to favor walkers with relatively high potential

V = V b
ηN
t
−V d

ηN
t
−CηN

t
. In this sense, the IPS can be seen as a continuous time genetic

algorithm with fitness function V and mutations of generator L.
Moreover this structure enables a nice parallelized implementation, where walkers

are individually collecting information from V , but yet learns globally the structure
of the ground state h.

In practice, one may use some Euler discretization scheme, and may approximate
integrals with sums. This requires at least the continuity of the potential V .

4. Long time behavior of the IPS.

4.1. Nonasymptotic control. We give directly the main theoretical results of
this paper, the proof being postponed to section 5.

Theorem 4.1 (time-uniform L
p estimate). We suppose that Assumptions 1, 2,

and 3 are verified.
There are constants Cp such that, for all test function ϕ ∈ Cb(E) with ‖ϕ‖∞ ≤ 1,

sup
T≥0

E
(
|ηNT (ϕ) − ηT (ϕ)|p

)1/p ≤ Cp√
N

.

Theorem 4.2 (bias estimate/time-uniform convergence of a particle). We sup-
pose that Assumptions 1, 2, and 3 are verified.

There is a constant C such that, for all ϕ ∈ Cb(E) with ‖ϕ‖∞ ≤ 1,

sup
T≥0

∣∣E(ηNT (ϕ)
)
− ηT (ϕ)

∣∣ ≤ C

N
,

sup
T≥0

‖Law(ξiT ) − ηT ‖tv ≤ C

N
.
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Remark 4.3. One can easily show that the particle system ξt is recurrent and
ergodic. If the invariant measure is finite, it converges in law to a random variable
ξ∞ (this always happens when E is compact). ηN∞ is then the natural estimator of
η∞ and we have the almost sure convergence

ηN∞
a.s.−−−−−→

N→+∞
η∞ in the weak topology,

which follows the L
p estimate for p = 4 with a Borel–Cantelli argument.

This situation is probably true in general for N large enough, although the posi-
tivity seems difficult to prove. Anyway, one can take for ηN∞ any adherent limit (which
is a positive measure) of ηNt under the weak topology of evanescent functions.

We want to lay the emphasis on the difficulty of the proof of these results, which
comes from the nonlinear propagation of the error made by the particle approximation.

We also propose an asymptotic study of the standard deviation.

4.2. Long time asymptotic standard deviation. The asymptotic standard
deviation gives a quantitative information of the IPS approximation. We show in
Proposition 4.5 that the latter is likely to remain bounded in many mild situations of
interest.

Theorem 4.4. Under Assumptions 1, 2, and 3, we have for any ϕ ∈ Cb(E)
(ϕ̄ = ϕ− η∞(ϕ))

lim
N→+∞

lim T→+∞NE
(
(ηNT (ϕ) − η∞(ϕ))2

)
= Ad2(ϕ) = η∞(ϕ̄2) + 2

∫ +∞

0

η∞
(
PV−λ
s (ϕ̄)2(V b

η∞ + η∞(V d
η∞))

)
ds.

Note that by Proposition 2.2, the local noise introduced by interactions

s �→ η∞
(
PV−λ
s (ϕ̄)2(V b

η∞ + η∞(V d
η∞))

)
is exponentially decreasing with s.

We’re interested in clarifying this quantity for the meaningful case ϕ = V , which
corresponds to the eigenvalue estimation. We will take V b

η = (V − η(V ))+ and V d
η =

(V − η(V ))−.
Proposition 4.5. Under Assumption 1 only, we have

Ad2(V ) ≤ η∞((V − λ)2) +
1

λ∗

∥∥∥∥dη∞dμ ×
(
(V − λ)+ + η∞((V − λ)−)

)∥∥∥∥
∞
μ((V − λ)2).

Proof. Since ϕ̄ = ϕ − η∞(ϕ) is orthogonal to h in L
2(μ), we have by spectral

theory μ(PV−λ
t (ϕ̄)

2
) ≤ e−2λ∗tμ(ϕ̄2). The result follows from Theorem 4.4 for ϕ = V

with η∞(V ) = λ.
When dη∞

dμ = h
μ(h) is bounded with exponential fall-off, this upper bound is ex-

pected to remain finite in almost any situation of interest (see the third example of
section 2.1).

5. Proofs. Throughout this section we will use the following notation:
1. T > 0 will be a deterministic horizon time and we will take t ∈ [0, T ].
2. n ≥ 0 p ≥ 1 are integers.
3. ‖ ‖ is the uniform norm.
4. ϕ ∈ C∞

b (E) is a test function such that ‖ϕ‖ ≤ 1, and ϕ̄ = ϕ− ηT (ϕ).
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5. C > 0 a constant independent of test functions, of the time parameters t, T
and of the number of particles N . In the same spirit, we will use the Landau
notation “O” uniformly with these variables. Note: The constant C and the
“O” notation may depend on integers n and p.

We recall that ‖V ‖ ≤ C and supη ‖V ∗
η ‖ ≤ C.

The proofs are based on the use of a “linearized” version of the propagator of ηt
defined by

Qt,T (ϕ) =
PV
T−t(ϕ)

ηtPV
T−t(1)

,

which verifies the propagation equation

ηT (ϕ) = ηtQt,T (ϕ).

The main idea is to analyze the martingale part and the predictable part of the
process t �→ ηNt Qt,T (ϕ̄) for ϕ̄ = ϕ − ηT (ϕ). Because we have ηt(Qt,T (ϕ̄)) = 0, it
can be interpreted as a stochastic perturbation of the identically null process. Note
that ηNT (QT,T (ϕ̄)) = ηNT (ϕ) − ηT (ϕ), which is the quantity we wish to control when
T → +∞.

To lighten the computations, the test function ϕ will be omitted.
Throughout these proofs, we will use the following stability results.
Lemma 5.1. The propagator Qt,T verifies the following properties:
n being given, there is a C such that for any test function ϕ

‖Qt,T (ϕ)‖ ≤ C,∫ T

t

‖Qs,T (ϕ)‖2n

ds ≤ C(T − t).

Moreover there is some 0 < ρ < 1 such that for any ϕ̄ = ϕ− ηT (ϕ)

‖Qt,T (ϕ̄)‖ ≤ CρT−t,∫ T

t

‖Qs,T (ϕ̄)‖2n

ds ≤ C.

Proof. First we write

Qt,T (ϕ) =
PV−λ
T−t (ϕ)(x)

ηtP
V−λ
T−t (1)

.

We claim that

1

ηtP
V−λ
T−t (1)

≤ C.

Indeed by definition and the semigroup property we have ηtP
V−λ
T−t (1) =

η0P
V −λ
T

(1)

η0P
V −λ
t (1)

,

and t �→ η0P
V−λ
t (1) is continuous, positive, and goes from 1 to η0(h)μ(h) > 0.

By Proposition 2.2, we then get for any ϕ ‖Qt,T (ϕ)‖ ≤ C.
For ϕ̄ = ϕ− ηT (ϕ) we use the decomposition

|Qt,T (ϕ̄)| =
1

(ηtP
V−λ
T−t (1))2

|ηtPV−λ
T−t (1)PV−λ

T−t (ϕ) − ηtP
V−λ
T−t (ϕ)PV−λ

T−t (1)|,
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and again Proposition 2.2 gives a 0 < ρ < 1 such that for any ϕ̄, ‖Qt,T (ϕ̄)‖ ≤
CρT−t.

Note the control on the initial error.
Lemma 5.2. We have for any ϕ

E((ηN0 (ϕ) − η0(ϕ))p) ≤ C

Np/2
.

Proof. Since, at time t = 0, all particles are sampled independently with law
η0, η

N
0 (ϕ) is a sum of N zero-mean independently and identically distribute (i.i.d.)

variables. The result is then the Burkholder–Davies–Gundy (BDG) inequality for
i.i.d. variables.

5.1. Precise Lp-estimate of the key martingales. We want to apply Propo-
sition 3.3 to the collection (Qt,T (ϕ)2

n

)n≥0 ≡ (Q2n

t,T )n≥0. Recall that ηt(P
V
T−t(1)) =

η0P
V
T (1)

η0PV
t (1)

and so

∂tηt
(
PV
T−t(1)

)
= − η0P

V
T (1)

η0PV
t (1)2

η0P
V
t (V )

= −ηt
(
PV
T−t(1)

)
ηt(V ) ;

this yields, using Lemma 2.5,

∂tQt,T = −L(Qt,T ) − V Qt,T +
1

ηt(PV
T−t(1))2

ηt
(
PV
T−t(1)

)
ηt(V )

= −L(Qt,T ) − (V − ηt(V ))Qt,T

and

∂tQ
2n

t,T = −2nQ2n−1
t,T L(Qt,T ) − 2nQ2n

t,T × (V − ηt(V )) .

From Proposition 3.3, we obtain a collection of difference of martingales between t
and T indexed by n:

MT
t (Q2n

.,T ) = MT (Q2n

.,T ) −Mt(Q
2n

.,T )

= ηNT (Q2n

T,T ) − ηNt (Q2n

t,T ) −
∫ T

t

ηNs

(
L(Q2n

s,T ) − 2nQ2n−1
s,T L(Qs,T )

)
ds

−
∫ T

t

ηNs

(
Q2n

s,T ×
(
V − ηNs (V ) − 2n(V − ηs(V ))

))
ds,(7)

with predictable quadratic variation given by

N
〈
M(Q2n

.,T )
〉T
t

=

∫ T

t

ηNs

(
ΓL

(
Q2n

s,T , Q
2n

s,T

))
+ ηNs

((
Q2n

s,T − ηNs (Q2n

s,T )
)2 (

V ∗ + ηNs (V ∗)
))

ds.(8)

We can get rid of the carré-du-champs term and get the following bounds up to a
martingale.

Lemma 5.3. For all n ≥ 0 and any test function ϕ we have

N
〈
M(Q2n

.,T (ϕ))
〉T
t
≤ C(T − t + 1) −MT

t (Q2n+1

.,T (ϕ)),
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and for any centered test function ϕ̄ = ϕ− ηT (ϕ)

N
〈
M(Q2n

.,T (ϕ̄))
〉T
t
≤ C −MT

t (Q2n+1

.,T (ϕ̄)).

Proof. The formal carré-du-champs upper bound (Lemma 6.1) gives∫ T

t

ηNs

(
ΓL(Q2n

s,T , Q
2n

s,T )
)
ds

(= for n=0)

≤
∫ T

t

ηNs

(
L(Q2n+1

s,T ) − 2n+1Q2n+1−1
s,T L(Qs,T )

)
ds.

From (8), we use the above inequality and (7) at rank n+ 1 to find the upper bound

N
〈
M(Q2n

.,T )
〉T
t

(= for n=0)

≤ −MT
t (Q2n+1

.,T ) + ηNT (Q2n+1

T,T ) − ηNt (Q2n+1

t,T )

−
∫ T

t

ηNs

(
Q2n+1

s,T

(
V − ηNs (V ) − 2n+1(V − ηs(V ))

))
ds

+

∫ T

t

ηNs

((
Q2n

s,T − ηNs (Q2n

s,T )
)2(

V ∗ + ηNs (V ∗)
))

ds.(9)

The result follows then from Lemma 5.1.
The case n = 0 is of crucial importance. From (7) or Proposition 3.3 we can get

dηNt (Qt,T ) = dMt(Q.,T ) +
(
ηt(V ) − ηNt (V )

)
ηNt (Qt,T )dt,(10)

which gives for centered test functions, by integrating on [0, T ],

ηNT (ϕ) − ηT (ϕ) = ηN0 (Q0,T (ϕ̄)) + MT (Q.,T (ϕ̄))

+

∫ T

0

(
ηs(V ) − ηNs (V )

) (
ηNs (Qs,T (ϕ̄)) − ηs(Qs,T (ϕ̄))

)
ds.(11)

The martingale part and the initial error ηN0 (Q0,T (ϕ̄)) is expected to be of order 1√
N

,

and the predictable part of order 1
N .

Note that by developing the right-hand side of (9) with the identity V = V b
ηN
s
−

V d
ηN
s

+ CηN
s

, the predictable quadratic variation of the martingale gives

N
〈
M(Q.,T )

〉T
0

= −MT (Q2
.,T ) + ηNT (Q2

T,T ) − ηN0 (Q2
0,T )

+ 2

∫ T

0

ηNs (Q2
s,TV

b
ηN
s

) + ηNs (Q2
s,T )ηs(V

d
ηN
s

)

− ηNs (Qs,T )ηNs (Qs,TV
∗
ηN
s

) + ηNs (Q2
s,T )

(
ηNs (V b

ηN
s

) − ηs(V
b
ηN
s

)
)
ds.(12)

We can now state the first result of this section, which is the control of all moments
of these martingales.

Theorem 5.4. For all p ≥ 1, all n ≥ 0, and all test functions ϕ,

E

(([
M(Q2n

.,T (ϕ)
]T
t

)p) ≤ C(T − t + 1)p

Np
,

and for centered test functions ϕ̄,

E

(([
M(Q2n

.,T (ϕ̄)
]T
t

)p) ≤ C

Np
.
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Proof. Note that by localization, we can suppose that we work with bounded
martingales.

Thanks to the Jensen inequality, it is sufficient to prove the inequalities for all
p = 2q. We are going to use an induction on q to prove that

∀n ≥ 0,

E

((〈
M(Q2n

.,T )
〉T
t

)2q)
≤ C(T − t + 1)2

q

N2q ,

E

(([
M(Q2n

.,T )
]T
t

)2q)
≤ C(T − t + 1)2

q

N2q .

For q = 0, these inequalities are a direct consequence of Lemma 5.3.
Suppose the inequality true at order q and lower. Again from Lemma 5.3, we get

E

(
N2q+1(〈M(Q2n

.,T )
〉T
t

)2q+1)
≤ C(T − t + 1)2

q+1

+ CE

(
MT

t (Q2n+1

.,T )2
q+1

)
≤ C(T − t + 1)2

q+1

+ CE

(([
M(Q2n+1

.,T )
]T
t

)2q)
(by the BDG inequality).

By induction, this proves the first upper bound at rank q + 1.
Now we use the alternate BDG inequality stated in Lemma 6.2 to the martingale

M(Q2n

.,T ), whose jumps, by Proposition 7, verify a ≤ 2‖Q2n

t,T ‖
N ≤ C

N . This gives

E

(([
M(Q2n

.,T )
]T
t

)2q+1)
≤ C

q+1∑
k=0

1

N2q+2−2k+1 E

((〈
M(Q2n

.,T )
〉T
t

)2k)
.

By induction,

E

(([
M(Q2n

.,T )
]T
t

)2q+1)
≤ C

q+1∑
k=0

(T − t)2
k

N2q+2−2k+1+2k

≤ C(T − t)2
q+1

N2q+1 ,

which proves the second upper bound at rank q + 1.
The case of centered test functions is identical.
Remark 5.5. Some results of [6] use L

p estimates of a similar martingale (Lemma
3.23) whose proof uses the Itô formula but may be incorrect. Resorting to the Itô
formula seems to be intractable, and the techniques used for Theorem 5.4 enables us
to clarify these results.

5.2. Proof of Theorem 4.1. First of all let’s define the following quantity:

Ip(N) = sup
T,ϕ

E
(
(ηNT (ϕ) − ηT (ϕ))p

)
.

In this subsection, we will prove the time-uniform estimate Ip(N) ≤ C
Np/2 . We start

with our first key lemma.
Lemma 5.6. There is an ε > 0 independent of p such that

Ip(N) ≤ C

N εp/2
.
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Proof. Let’s fix T and use the decomposition

ηNT (ϕ) − ηT (ϕ) = ηNT (ϕ) − Φt,T (ηNt )(ϕ)︸ ︷︷ ︸
a(t)

+ Φt,T (ηNt )(ϕ) − ηT (ϕ)︸ ︷︷ ︸
b(t)

.

a(t) can be controlled by the stochastic errors made by the particle approximation
between t and T . b(t) can be controlled by the stability property of the limiting
propagator Φ between t and T . b(0) can also be controlled by the error made by the
initial condition. We then optimize the whole in t.

Control of a(t). Let us define the continuous finite variation process

At2
t1 = exp

(∫ t2

t1

(ηNs (V ) − ηs(V ))ds

)
.

An elementary integration by parts for s ∈ [t, T ] gives

d
(
As

t η
N
s (Qs,T )

)
= ηNs (Qs,T )As

t (ηNs (V ) − ηs(V )) ds

+As
t dη

N
s (Qs,T )

= As
t dMs(Q.,T ) (by (10)).

Integrating from t to T and simplifying by (AT
t )−1 gives

ηNT (ϕ) − (AT
t )−1ηNt (Qt,T (ϕ)) = (AT

t )−1

∫ T

t

As
t dMs(Q.,T (ϕ)).(13)

Now, recalling that Φt,T (ηNt )(ϕ) =
(AT

t )−1ηN
t (Qt,T (ϕ))

(AT
t )−1ηN

t (Qt,T (1))
, we write a(t) as

a(t) = ηNT (ϕ) − (AT
t )−1ηNt (Qt,T (ϕ)) − ΦT−t(η

N
t )(ϕ)

(
1 − (AT

t )−1ηNt (Qt,T (1))
)
,

which using (13) gives the upper bound

|a(t)| ≤ (AT
t )−1

(∣∣∣∣
∫ T

t

As
t dMs(Q.,T (ϕ))

∣∣∣∣ +

∣∣∣∣
∫ T

t

As
t dMs(Q.,T (1))

∣∣∣∣
)
,

and thus

E (|a(t)|p) ≤ Ce2‖V ‖p(T−t)
E

(∣∣∣∣
∫ T

t

As
t dMs(Q.,T (ϕ))

∣∣∣∣
p)

≤Ce2‖V ‖p(T−t)
E

(∣∣∣∣
∫ T

t

(As
t )

2 d
[
M(Q.,T (ϕ))

]
s

∣∣∣∣
p/2)

(by the BDG inequality)

≤ Ce4‖V ‖p(T−t)
E

(∣∣∣∣[M(Q.,T (ϕ))
]T
t

∣∣∣∣
p/2)

≤ Ce4‖V ‖p(T−t) (T − t + 1)p/2

Np/2
(by Theorem 5.4)

≤ C
Rp(T−t)

Np/2
(for R = e4‖V ‖+1 > 1).

Control of b(t). We have for some 0 < ρ < 1, as a direct consequence of Corollary
2.3,

E(|b(t)|p) = E
(∣∣Φt,T (ηNt )(ϕ) − Φt,T (ηt)(ϕ)

∣∣p)
≤

(
E

(
1

ηNt (h)p

)
+ 1

)
CρT−t

≤ CρT−t by Assumption 3.
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Control of b(0). We remark that η0(Q0,T (1)) = 1 and write b(0) as

b(0) =
(
ηN0 (Q0,T (ϕ)) − η0(Q0,T (ϕ))

)
+ Φ0,T (ηN0 )(ϕ)

(
η0(Q0,T (1)) − ηN0 (Q0,T (1))

)
,

which gives by Lemma 5.2

E(|b(0)|p) ≤ C

Np/2
.

Global control. We have

E((a(0) + b(0))p) ≤ C
RpT + 1

Np/2
,

E((a(t) + b(t))p) ≤ C
Rp(T−t)

Np/2
+ Cρp(T−t) (∀t ∈ [0, T ]).

Now we take ε = − ln ρ
− ln ρ+lnR and remark that

R
1
2

ln N
ln R−ln ρ

N1/2
=

1

N ε/2

and

ρ
1
2

ln N
ln R−ln ρ =

1

N ε/2
.

We then get E((ηNT (ϕ) − ηT (ϕ))p) ≤ C
Nεp/2 from the first inequality when T ≤

1
2

lnN
lnR−ln ρ , and from the second one otherwise for T − t = 1

2
lnN

lnR−ln ρ .

Now we go back to (11), which readily gives(
ηNT (ϕ) − ηT (ϕ)

)p ≤ C
(
ηN0 (Q0,T (ϕ̄))

)p
+ CMp

T (Q.,T )

+C

(∫ T

0

|ηNs (V ) − ηs(V )||ηNs (Qs,T (ϕ̄))|ds
)p

.

From Lemma 5.2,

E(ηN0 (Q0,T (ϕ̄))p) ≤ C

Np/2
.

From Theorem 5.4,

E
(
Mp

T (Q.,T (ϕ̄))
)
≤ C

Np/2
.

On the other hand, using the Hölder inequality, we also have

(∫ T

0

|ηNs (V ) − ηs(V )||ηNs (Qs,T (ϕ̄))|ds
)p

≤
∫ T

0

|ηNs (V ) − ηs(V )|p
∣∣∣∣ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)∣∣∣∣
p

‖Qs,T (ϕ̄)‖ds
(∫ T

0

‖Qs,T (ϕ̄)‖ds
)p−1

≤ C

∫ T

0

|ηNs
(

V

‖V ‖

)
− ηs

(
V

‖V ‖

)∣∣∣∣
p∣∣∣∣ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)
− ηs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)∣∣∣∣
p

‖Qs,T (ϕ̄)‖ds.
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Taking expectations, and then using the Cauchy–Schwarz inequality, we obtain

E

((∫ T

0

|ηNs (V ) − ηs(V )||ηNs (Qs,T (ϕ̄))|ds
)p)

≤ C

∫ T

0

I2p(N)‖Qs,T (ϕ̄)‖ds

≤ CI2p(N),(14)

which gives on the whole for all p ≤ 1

Ip(N) ≤ C

Np/2
+ I2p(N).

Applying this result to Lemma 5.6 gives

Ip(N) ≤ C

N inf(2ε,1)p/2
,

and by induction we get

Ip(N) ≤ C

Np/2
,

which ends the proof.

5.3. Proof of Theorem 4.2. We take expectation in (11) to find

E(ηNT (ϕ)) − ηT (ϕ) =

∫ T

0

E

((
ηs(V ) − ηNs (V )

)
ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

))
‖Qs,T (ϕ̄)‖ds.

As above, we use the Cauchy–Schwarz inequality and find that

|E(ηNT (ϕ)) − ηT (ϕ)| ≤ C

∫ T

0

I2(N)‖Qs,T (ϕ̄)‖ds

≤ CI2(N) ≤ C

N
,(15)

which gives the estimate on the bias.
The second result is a direct consequence of exchangeability of particles.

5.4. Proof of Theorem 4.4. The study of the asymptotic standard deviation
relies on the following asymptotic behavior.

Lemma 5.7. For all T > 0, and ϕ̄ = ϕ− ηT (ϕ),

E
(
(ηNT (ϕ) − ηT (ϕ)

)2
) =

1

N
E(ηNT (ϕ̄)2)

+
2

N
E

(∫ T

0

ηNs
(
Q2

s,T (ϕ̄)V b
ηN
s

)
+ ηNs

(
Q2

s,T (ϕ̄)
)
ηs(V

d
ηN
s

)ds

)
+ O

(
1

N3/2

)
.

Proof. Again we start from (11):

ηNT (ϕ) − ηT (ϕ) = ηN0 (Q0,T (ϕ̄)) + MT (Q.,T (ϕ̄))︸ ︷︷ ︸
a

+

∫ T

0

(
ηs(V ) − ηNs (V )

)
ηNs (Qs,T (ϕ̄))︸ ︷︷ ︸

b

ds,
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which gives

E((ηNT (ϕ) − ηT (ϕ))2) = E(a2) + E(b2) + 2E(ab).

Now we note by the results of the previous section—that is to say, by (14)—that

E(b2) = E

(∣∣∣∣
∫ T

0

(ηs(V ) − ηNs (V ))ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)
‖Qs,T (ϕ̄)‖ds

∣∣∣∣
2)

= O

(
1

N2

)
,

and by Theorem 5.4 and Lemma 5.2

E(a2) = E(MT (Q.,T (ϕ̄))2) + E(ηN0 (Q0,T (ϕ̄))2) = O

(
1

N

)
.

So we get

E
(
(ηNT (ϕ) − ηT (ϕ))2

)
= E

(
ηN0 (Q0,T (ϕ̄))2

)
+ E

(〈
M(Q.,T (ϕ̄))

〉T
0

)
+ O

(
1

N3/2

)
.

Now we shall use the identity (12) to compute the asymptotic (with respect to N)

value of E(
〈
M(Q.,T (ϕ̄))

〉T
0
). For this purpose, we note that by Theorem 4.1∣∣∣∣E

(
ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)
ηNs

(
Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖V
∗
ηN
s

))∣∣∣∣ ≤ CE

(∣∣∣∣ηNs
(

Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖

)∣∣∣∣
)

= O

(
1

N1/2

)
,

and in the same way∣∣∣∣E
(
ηNs

(
Q2

s,T (ϕ̄)

‖Q2
s,T (ϕ)‖

)(
ηNs (V b

ηN
s

) − ηs(V
b
ηN
s

)
))∣∣∣∣ = O

(
1

N1/2

)
.

Finally we remark that ηN0 (Q0,T (ϕ̄)) is a sum of centered i.i.d. random variables, and
thus

E
(
ηN0 (Q2

0,T (ϕ̄))
)

= η0(Q
2
0,T (ϕ̄)) = E

(
ηN0 (Q0,T (ϕ̄))2

)
,

which ends the proof.
Now recall that Theorem 4.1 implies by a Borel–Cantelli argument:

ηNs
a.s.−−→ ηs (in the weak sense)

We take the limit first when N → +∞ in Lemma 5.7 uniformly with respect to T , and
then when T → +∞. Of course, the two limits commute. This gives by the Lebesgue
convergence theorem

lim
N→+∞

NE
(
(ηNT (ϕ) − ηT (ϕ))2

)
= ηT

(
(ϕ− ηT (ϕ))2

)
+ 2

∫ T

0

ηs
(
Q2

s,T (ϕ̄)V b
ηs

)
+ ηs(Q

2
s,T (ϕ̄))ηs(V

d
ηs

)ds.

Now we do the change of variables s �→ T − s in the above integrand and take the
limit T → +∞. We have

ηT−s → η∞,

ϕ̄ = ϕ− ηT (ϕ) → ϕ̄ = ϕ− η∞(ϕ),

QT−s,T (ϕ̄) → PV
s (ϕ̄)

η∞PV
s (1)

= PV−λ
s (ϕ̄),

which gives the asymptotic standard deviation.
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6. Two general lemmas.
Lemma 6.1 (an upper bound for the “carré-du-champs” operator). Let L be

a Markov generator and Γ be its associated “carré-du-champs” operator defined by
Γ(ϕ,ϕ) = L(ϕ2) − 2ϕL(ϕ). Then we have the upper bound for all n ≥ 0:

Γ(ϕ2n

, ϕ2n

) ≤ L(ϕ2n+1

) − 2n+1ϕ2n+1−1L(ϕ).

Proof. Check out by induction the formal identity

Γ(ϕ2n

, ϕ2n

) = L(ϕ2n+1

) − 2n+1ϕ2n+1−1L(ϕ)

−
n∑

k=1

2n+1−kϕ2n+1−2k

Γ(ϕ2k−1

, ϕ2k−1

),

and use the positivity property Γ(ϕ,ϕ) ≥ 0.
Lemma 6.2 (BDG inequalities). Let M be a quasi-left-continuous (i.e., with

continuous predictable increasing process) locally square-integrable martingale with
M0 = 0 and bounded jumps supt |ΔMt| ≤ a < +∞. Then there is a constant C
(dependant on q) such that

E
(
sup
t

M2q+1

t

)
≤ CE

([
M

]2q

∞
)
≤ C

q∑
k=0

a2q+1−2k+1

E
(〈
M

〉2k

∞
)
.

Proof. The first inequality is the classical BDG inequality (p. 350 of [10]).
For the second, by localization, we can suppose that M is a square-integrable

martingale. We are to use the martingale N =
[
M

]
−
〈
M

〉
. Because

〈
M

〉
is continuous

ΔN = Δ
[
M

]
= (ΔM)2. Moreover, N has finite variation, so[

N
]

=
∑
s≤.

(ΔNs)
2 =

∑
s≤.

(ΔMs)
4

≤ a2
∑
s≤.

(ΔMs)
2 ≤ a2

[
M

]
≤ a2(N +

〈
M

〉
).(16)

We will also us the general fact (C depends on q)

∀x, y, (x + y)2
q ≤ C(x2q

+ y2q

).(17)

By definition of N and (17) we get

E
([
M

]2q

∞
)
≤ CE

(
sup
t

N2q

t

)
+ CE

(〈
M

〉2q

∞
)
.

Now it remains to prove for any q ≥ 1 that

E
(
sup
t

N2q

t

)
≤

q−1∑
k=0

Ca2q+1−2k+1

E
(〈
M

〉2k

∞
)
,(18)

which we are going to do by induction on q. For q = 1, (18) follows from the BDG
inequality applied to Nt, with (16). Suppose (18) is true for a given q. Applying again
the BDG inequality to Nt, and using (16) and (17), we get

E
(
sup
t

N2q+1

t

)
≤ Ca2q+1

E
(
sup
t

N2q

t

)
+ Ca2q+1

E
(〈
M

〉2q

∞
)
.

Inequality (18) at rank q + 1 then follows from the induction hypothesis.
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Appl., Birkhäuser Boston, Boston, MA, 1990.

[5] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, 2nd ed.,
Grundlehren Math. Wiss. 312, Springer, Berlin, 2001.

[6] P. Del Moral and L. Miclo, Branching and interacting particle systems approximations of
Feynman–Kac formulae with applications to nonlinear filtering, in Séminaire de Proba-
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ANALYSIS OF AN INVERSE FIRST PASSAGE PROBLEM FROM
RISK MANAGEMENT∗

LAN CHENG† , XINFU CHEN† , JOHN CHADAM† , AND DAVID SAUNDERS‡

Abstract. We study the following “inverse first passage time” problem. Given a diffusion
process Xt and a probability distribution q on [0,∞), does there exist a boundary b(t) such that
q(t) = P[τ ≤ t], where τ is the first hitting time of Xt to the time-dependent level b(t)? A free
boundary problem for a parabolic partial differential operator is associated with the inverse first
passage time problem. We prove the existence and uniqueness of a viscosity solution to this problem.
We also investigate the small time behavior of the boundary b(t), presenting both upper and lower
bounds. Finally, we derive some integral equations characterizing the boundary.

Key words. free boundary problem, mathematical finance, first passage problem, boundary
crossing, inverse problem

AMS subject classifications. 34A55, 35D05, 60G40, 45G10
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1. Introduction. In this paper we study the following free boundary problem:
find a boundary b(t) (t > 0) and an unknown function w = w(x, t) (x ∈ R, t ≥ 0)
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = 1
2 (σ2wx)x − μwx for x > b(t), t > 0,

w(x, t) = p(t) for x ≤ b(t), t > 0,

wx(x, t) = 0 for x ≤ b(t), t > 0,

0 ≤ w(x, t) < p(t) for x > b(t), t > 0,

w(x, 0) = 1(−∞,0)(x) for x ∈ R, t = 0,

(1.1)

where q(t) = 1− p(t) is a given cumulative probability distribution function with the
following properties:

1 = p(0) = lim
t↘0

p(t), p(t1) ≥ p(t2) ≥ 0 ∀ t1 < t2.(1.2)

This problem arises from the consideration of the first passage times of diffusion pro-
cesses to curved boundaries. More specifically, let Xt be the solution of the following
stochastic differential equation:

dXt = μ(Xt, t)dt + σ(Xt, t)dBt, X0 = 0,(1.3)

where Bt is a standard Brownian motion on a filtered probability space satisfying the
usual conditions, μ : R×R+ → R and σ : R×R+ → R are smooth bounded functions,
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and σ(x, t) > ε > 0 for all x ∈ R, t ≥ 0. For a given function b : R+ → R we define
the first passage time of the diffusion process Xt to the curved boundary b(t) to be

τ = inf{t > 0 | Xt ≤ b(t)}.(1.4)

Two important problems concerning the first passage time of a diffusion process to a
curved boundary are the following:

1. The first passage problem: Given a barrier function b(t), find the survival
probability p(t) that X does not cross b before or at t:

p(t) := P{τ > t}.(1.5)

2. The inverse first passage problem: Given a survival probability function p(t),
find a barrier function b(t), such that (1.5) holds.

The first passage problem is a classical problem in probability and is the subject
of a rather large literature. It is also fundamental in many applications of diffusion
processes to engineering, physics, biology, and economics. For a survey of techniques
for approximating and computing first passage times to curved boundaries and a
discussion of their applications in the biological sciences, we refer the reader to [18].
The financial applications motivating the current study are discussed below.

The work of Peskir [16, 17] on the first passage problem is of particular relevance
for the inverse problem discussed in this paper. In [17], he derived a sequence of
integral equations1

tn/2Hn

(
b(t)√

t

)
+

∫ t

0

(t− s)n/2Hn

(
b(t) − b(s)√

t− s

)
ṗ(s)ds = 0, n = −1, 0, 1, . . . ,(1.6)

where H−1(x) = 1√
2π

e−x2/2 and Hn(x) =
∫∞
x

Hn−1(z)dz for n ≥ 0. In [16], under

the assumption that b(t) is C 1 on (0,∞), decreasing, and concave, Peskir derived the
equality

ṗ(0+) = − lim
t↘0

1

2
√

2π

b(t)

t3/2
e−

b2(t)
2t = − lim

t↘0

ḃ(t)√
2πt

e−
b2(t)
2t ,

provided that the second or third limit exists.
The inverse first passage problem is much harder than the direct problem, and

there has been relatively little work on it. The studies on the problem to date are
principally concerned with the numerical calculation of the boundary b(t) for a given
p(t). There is no publication proving the well-posedness (existence and uniqueness)
of the boundary given the survival probability.

Our interest in the inverse first passage problem originates2 from structural mod-
els of credit risk in financial markets. Consider a company whose asset value and
debt at time t ≥ 0 are denoted by At and Dt, respectively, with Dt assumed to be
deterministic. Assume the following:

1. D0 ≤ A0 and the company is in default at a time t > 0 if At < Dt.

1In this reference, the derivations are carried out for the case σ ≡ 1 and μ ≡ 0, i.e., when Xt is
a Brownian motion. As mentioned in the reference, the techniques directly extend to other diffusion
processes.

2We thank A. Kreinin and R. Stamicar for introducing us to this problem and for helpful discus-
sions.
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2. At ≥ 0 follows a diffusion process (e.g., a geometric Brownian motion, as in
[14]).

It is convenient to use the default index Xt and the barrier function b(t) defined
by

Xt := log
At

A0
, b(t) := log

Dt

A0
.

Then Xt is a diffusion process satisfying (1.3). In this context, the inverse first passage
time problem is the problem of finding the default barrier b(t) given the survival
function p(t).

The problem of finding the default barrier b(t) given the survival function p(t)
is of critical importance in many problems in modern credit risk management. Hull
and White [8, 9] show how the default barrier b(t) can be used, once it is computed,
in a model for pricing credit default swaps with counterparty default, and basket
credit default swaps, and remark that it could be used to price other, exotic, credit
derivatives.3 They also show how the required input to our problem, the (risk-neutral)
survival probability p(t), can be derived from observed market prices. Iscoe, Kreinin,
and Rosen [10] show how the inverse first passage problem is a key component in
a multistep integrated market and credit risk portfolio model. They state that in
their framework, the survival probability p(t) may be derived from the internal model
of a financial institution, from an external credit rating agency, or from published
transition matrices for credit ratings, assuming a Markov process (see also [12]).

1.1. Mathematical formulation and existing results. Formulating the prob-
lems in a PDE setting, we introduce a new function w(x, t) being the probability that
the company does not default before or at t and its default index Xt is bigger than
x, i.e.,

w(x, t) := P{Xt > x, τ > t}.(1.7)

Then the density function of Xt when τ > t can be computed by

u(x, t) =
d

dx
P{X(t) ≤ x, τ > t} = (p(t) − w(x, t))x.(1.8)

From (1.3) and the Kolmogorov forward equation, we see that (assuming sufficient
regularity) w(x, t) (x ∈ R, t ≥ 0) satisfies (1.1). From this we see the following:

• The first passage problem is to solve (1.1) for p, with given b.
• The inverse first passage problem is to solve (1.1) for b, with given p.

The first passage problem can be solved as follows. From the Kolmogorov forward
equation, we obtain the following closed system for u(x, t):⎧⎨

⎩
ut(x, t) = 1

2 (σ2u)xx − (μu)x for x > b(t), t > 0,
u(x, t) = 0 for x ≤ b(t), t > 0,
u(x, 0) = δ(x) for x > 0, t = 0,

(1.9)

3A standard credit default swap (CDS) is a credit derivative in which a buyer provides a series
of payments to a seller in exchange for the seller’s commitment to make a payment to the buyer
in the event that a third party (the reference entity) defaults on one of its bonds. Pricing a CDS
with counterparty default means taking into account the fact that the seller itself may default on its
obligations before the reference entity defaults (in which case the buyer would not receive payment).
In a basket CDS the seller provides a payment to the buyer when the first of a set of reference entities
defaults.
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where δ is a Dirac measure concentrated at 0. Given sufficiently regular b, this system
has a unique solution. Then p and ṗ can be computed from the formulas

p(t) =

∫ ∞

b(t)

u(x, t)dx ∀ t ≥ 0,(1.10)

ṗ(t) = −1

2
(σ2u)x

∣∣
x=b(t)

∀ t ≥ 0.(1.11)

It is possible to compute the solution in a closed form in only a few special cases.
However, there is a large literature on numerical and analytic approximations of the
solution.

Our system (1.1) is obtained directly from (1.9) and (1.8). Observe that since
w is obtained by integrating u, the Dirichlet condition on u at the boundary b(t)
(corresponding to an absorbing barrier for the diffusion process) becomes a Neumann
condition on w. The additional condition w(x, t) = p(t), x ≤ b(t), is obvious from the
definition of w (1.7).

Avellaneda and Zhu [1] were the first to use (1.9) and (1.11) to study the inverse
first passage problem. They performed a change of variables from Xt to Yt = Xt −
b(t), whose financial meaning is the risk-neutral distance-to-default process for the
company. Denote by f(y, t) = u(y + b(t), t) the probability density function of Yt

when τ > t. Equations (1.9) and (1.11) are equivalent to⎧⎪⎪⎨
⎪⎪⎩

ft = ḃ(t)fy − (μf)y + 1
2 (σ2fy)y for y > 0, t > 0,

f(0, t) = 0 for y = 0, t > 0,
f(y, 0) = δ0(y − b(0)) for y > 0, t = 0,
1
2σ

2fy(0, t) + ṗ(t) = 0 for y = 0, t > 0.

(1.12)

In [11], Iscoe and Kreinin demonstrated that a Monte Carlo approach can be applied
to solve the inverse first passage problem in discrete time, essentially by reducing
it to the sequential estimation of conditional distributions. Hull and White [9] also
consider a time discretization and compute the boundary by solving a system of
nonlinear equations at each time point. Huang and Tian [7] apply a probabilistic
method to construct piecewise linear solutions to the problem of constructing the
default barriers. In [19], both a Monte Carlo algorithm based on a piecewise linear
approximation of the boundary and a method based on the integral equation (1.6)
with n = 1 are studied.

In this paper, we are particularly interested in the following fundamental ques-
tions: (1) Given a survival probability function p(t) satisfying (1.2), is there a barrier
function b(t)? (2) If there is a barrier function, how many are there? (3) What is
the behavior of the barrier function for small times? Namely, we are concerned with
the well-posedness (existence and uniqueness) of the free boundary problem (1.1)
and the asymptotic properties of b(t) near zero. The motivation for studying the
well-posedness of the problem is evident. Aside from its intrinsic interest, knowledge
of the behavior of the boundary near zero is essential for effective implementations
of numerical solutions to the inverse first passage problem based on equations such
as (1.6); see [2].

We point out that solutions to (1.1) are not smooth, so that a weaker concept of
solutions has to be used. Instead of using the classical weak solution defined in the
distributional sense (see Evans [4]), we use viscosity solutions, introduced by Crandall
and Lions in 1981. In this paper, we shall prove the following theorem.
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Theorem 1. Problem (1.1) is a well-posed problem; i.e., for any given p(t)
satisfying (1.2), there is a unique (viscosity) solution.

The remainder of the paper is organized as follows. In section 2, we provide a
definition of the viscosity solution to (1.1) and show there is at most one such solution.
In section 3, we establish the existence of a viscosity solution. This is accomplished by
first defining and studying a regularization of the problem obtained by penalizing the
obstacle (a standard procedure for the obstacle problem; see Friedman [5]). The ε-
regularization is carefully designed so that the solution is monotonic in ε, and therefore
the existence of a limit as ε → 0 is automatically guaranteed.4 We show that the limit
is a viscosity solution. In section 4, we study the asymptotic behavior of the boundary

as t ↘ 0 by providing explicit upper and lower bounds. When lim supt↘0 −
1−p(t)
tṗ(t) <

∞, we prove that

lim
t→0

b(t)√
−2t log(1 − p(t))

= −1.

In section 5, we derive integral equations for b when σ ≡ 1 and μ ≡ 0 under the
assumption that p is continuous and nonincreasing.

2. Viscosity solutions and uniqueness. By noticing that w(x, t) < p(t) for
all x > b(t) when τ > t, we can state the inverse first passage problem as follows.
Find an unknown function w = w(x, t) such that⎧⎪⎪⎨

⎪⎪⎩
Lw = 0 when w(·, t) < p(t),

0 ≤ w(x, t) ≤ p(t) for any (x, t) ∈ (R × (0,∞)),

w(x, 0) = 1(−∞,0)(x) for x ∈ R,

(2.1)

where Lw := wt − 1
2 (σ2wx)x + μwx. Define the free boundary as

bw(t) := inf {x |w(x, t) < p(t)} .

We can write (2.1) as a variational inequality:{
max{Lw,w − p} = 0 in R × (0,∞),

w(·, 0) = 1(−∞,0)(·) on R × {0}.
(2.2)

In this paper, we shall consider viscosity solutions to this variational inequality,
as defined below (see also Crandall, Ishii, and Lions [3]). The principle motivation
for doing so is to allow the maximum generality in specifying p. Of course, one
could consider other notions of weak solution with corresponding assumptions on the
problem data. The basic strategy of using penalization to construct approximations
and analyze the properties of the solution would still be applicable (see, e.g., Friedman
[5]).

For a given p, we define

p∗(t) = lim inf
0≤s→t

p(s), p∗(t) = lim sup
0≤s→t

p(s) ∀t ≥ 0.

4For purely proving existence, such careful design of the sequence is unnecessary. We introduce
the complication with a view towards applications in numerical simulations.
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Since cumulative probability distribution functions (hence q) are increasing and right
continuous, we see that for any b, p(t) = P{τ > t} ≥ 0 is decreasing and right
continuous, and in particular, p = p∗. Furthermore, Blumenthal’s zero-one law (see,
for example, [13]) implies that we must have either p(0) = 0 (in which case the problem
is trivial) or p(0) = 1. Therefore, in the remainder of the paper, we shall consider
only lower semicontinuous p for which p(0) = 1.

For a function w defined on R × [0,∞), we define w∗ and w∗ by

w∗(x, t) := lim sup
y→x,0≤s→t

w(y, s) ∀(x, t) ∈ R × [0,∞),

w∗(x, t) := lim inf
y→x,0≤s→t

w(y, s) ∀(x, t) ∈ R × [0,∞).

A function w is called upper semicontinuous (USC) if w = w∗ and lower semicontin-
uous (LSC) if w = w∗.

In what follows, the parabolic open ball Bδ(x, t) is defined as

Bδ(x, t) := (x− δ, x + δ) × (t− δ2, t) ∀δ > 0, (x, t) ∈ R × [0,∞).

For any cylindrical set of the form D = (s, t) × Ω, where 0 ≤ s < t and Ω ⊆ R, the
parabolic boundary is defined as

∂pD =
(
∂Ω × (s, t)

)
∪
(
Ω̄ × {s}

)
.

Definition 1 (viscosity subsolution, supersolution, and solution).
1. A function w defined on R × (0,∞) is called a (viscosity) subsolution if

w = min{p, w∗} in R × (0,∞),

and Lϕ(x, t) ≤ 0 whenever ϕ is smooth and w∗ − ϕ attains at (x, t) a local
maximum on B̄δ(x, t), where x ∈ R and t > δ2 > 0.

2. A function w defined on R × (0,∞) is called a (viscosity) supersolution if

0 ≤ w = w∗ in R × (0,∞),

and max{w(x, t)−p(t),Lϕ(x, t)} ≥ 0 whenever ϕ is smooth and w−ϕ attains
at (x, t) a local minimum on B̄δ(x, t), where x ∈ R and t > δ2 > 0.

3. A function w defined on R× [0,∞) is called a (viscosity) solution if w is both
a subsolution and a supersolution in R × (0,∞), and for all x ∈ R,

w(x, 0) = lim inf
y→x,t↘0

w(y, t) = 1(−∞,0), lim sup
y→x,t↘0

w(y, t) = 1(−∞,0].(2.3)

Remark 2.1. Here we use the default that a viscosity solution is LSC (w = w∗).
Also, the (probabilistically obvious) condition w ≥ 0 imposed for supersolutions is to
ensure the boundedness of the supersolution, as is usually required. This condition
could be relaxed to the assumption that w ≥ −eA(1+|x|2) for some A > 0.

To prove the uniqueness of the solution to (2.2), we first establish a few properties
of viscosity solutions.

Lemma 2.1. Let w be a viscosity solution and define

Q := {(x, t) ∈ R × [0,∞) | w(x, t) < p(t)}, Π := Qc = R × [0,∞) \Q.

Then
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1. Q is open and w is a smooth solution to Lw = 0 in Q;
2. Π = {(x, t) ∈ R × [0,∞) | w(x, t) = p(t)} = Π0 ∪ Π1 ∪ Π2, where

Π0 : = {(x, t) ∈ R × [0,∞) | w∗(x, t) = w∗(x, t) = p(t)},
Π1 : = {(x, t) ∈ R × [0,∞) | p∗(t) > w∗(x, t) > w∗(x, t) = p(t)},
Π2 : = {(x, t) ∈ R × [0,∞) | p∗(t) = w∗(x, t) > w∗(x, t) = p(t)}.

In particular, if p is continuous, then w is continuous in R × [0,∞) \ {(0, 0)}.
Proof. 1. First, we show that Q is open and w is continuous in Q. For any

(x, t) ∈ Q, w(x, t) < p(t). As a supersolution, w(x, t) = w∗(x, t), and as a subsolution,
w(x, t) = min{p(t), w∗(x, t)} = w∗(x, t). Then w∗ = w = w∗ at (x, t). Therefore w is
continuous at (x, t) and w < p in a neighborhood of (x, t). Consequently, Q is open
and w is continuous in Q.

Next, we prove Lw = 0 in Q. Let (x0, t0) ∈ Q with t0 > 0. Then w(x0, t0) < p(t0)
and w is continuous at (x0, t0). There exist positive constants η and δ such that w <
p−η in D̄ ⊂ Q, where D = (x0−δ, x0+δ)×(t0−δ2, t0+δ2). Denote by w̃ the solution
to Lw̃ = 0 in D with continuous initial data w̃(·, t0− δ2) = w(·, t0− δ2) and boundary
data w̃ = w on the parabolic boundary ∂pD. Let ε > 0 and ϕε = w̃ − ε

t0+δ2−t ,

ψε = w̃+ ε
t0+δ2−t . We have that w−ϕε > 0 on ∂pD, and w−ϕε → ∞ as t ↗ t0 + δ2.

Suppose there is a point (x, t) ∈ D such that w(x, t) − ϕε(x, t) ≤ 0; then w − ϕε

will have a local minimum in D, say, at (x∗, t∗). Since w is a supersolution and
w(x∗, t∗) < p(t∗), we must have − ε

t0+δ2−t∗ = Lϕε ≥ 0, which is a contradiction.
Thus w > ϕε. A similar argument gives that w < ψε. Sending ε → 0 we obtain
w = w̃ in D, which implies that w is a smooth solution to Lw = 0 in Q.

2. Since w ≤ p, Π := Qc. As a subsolution w = min{p, w∗} ≤ p, and as a
supersolution, w = w∗. It follows that w∗ = w = p ≤ w∗ and w∗ ≤ p∗ in Π. Hence
w∗ = p ≤ w∗ ≤ p∗. There are only three possibilities for w∗: (i) w∗ = p, (ii)
w∗ ∈ (p, p∗), and (iii) w∗ = p∗ > p. Thus Π = Π0 ∪ Π1 ∪ Π2.

The following lemma characterizes the discontinuities of a solution.
Lemma 2.2. Suppose w is a viscosity solution. Then for each t > 0, the following

hold:
1. w(·, t) = w∗(·, t) is continuous in R;
2. for each x ∈ R,

w∗(x, t) = min{p(t), w∗(x, t)} = lim
y→x,s↘t

w(y, s),(2.4)

w∗(x, t) = lim
y→x,s↗t

w(y, s) ≤ p∗(t);(2.5)

3. if w∗(x, t) < p∗(t), then for some δ > 0, w = w∗ in Bδ(x, t) and w∗ is a
smooth solution to Lw∗ = 0 in B̄δ(x, t).

Proof. 1. If w(x, t) < p(t), by Lemma 2.1 w is continuous near (x, t); oth-
erwise w(x, t) = p(t). Then using the subsolution property, lim infy→x w(y, t) ≥
w∗(x, t) = w(x, t) = p(t) ≥ lim supy→x w(y, t). Thus lim infy→x w(y, t) = w(x, t) =
lim supy→x w(y, t), and the first assertion follows.

2. Next, we prove (2.4). The first equality is immediate since w is both a sub-
solution and a supersolution. The second follows by considering separately the cases
w(x, t) < p(t) and w(x, t) = p(t) as in the previous step. If w(x, t) < p(t), then w is
continuous near (x, t). Therefore w∗(x, t) = min{p(t), w∗(x, t)} = limy→x,s↘t w(y, s).
If w(x, t) = p(t), then w∗(x, t) = w(x, t) = p(t) ≥ limy→x,s↘t w(y, s) ≥ w∗(x, t). Thus
(2.4) holds.
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3. Now we prove (2.5) and the third assertion when w∗(x, t) < p∗(t). By the
upper semicontinuity of w∗, there exist some positive constants δ and η such that
w(·, ·) < p∗(t) − η in B̄δ(x, t). For all s < t, p(s) ≥ p∗(t). Following the same proof
as that for the previous lemma, we conclude that w∗ = w in Bδ(x, t) and w∗ is a
smooth solution to Lw∗ = 0 in B̄δ(x, t). The third assertion and (2.5) for the case
w∗(x, t) < p∗(t) thus follow.

4. Finally, we verify (2.5) for the case w∗(x, t) = p∗(t). For each small δ > 0, we
compare w in Bδ(x, t) with solutions w̄ and w to{

Lw̄ = 0 in Bδ,
w̄ = w∗ on ∂pBδ

and

{
Lw = 0 in Bδ,
w = min{w∗, p∗(t)} on ∂pBδ,

respectively. Note that w ≤ w∗ = w̄ and w = min{w∗, p∗(t)} ≤ min{w∗, p} = w on
∂pBδ since w ≤ p∗(t) ≤ p(s) for all s < t. By the maximum principle, w ≤ w ≤ w̄ in
Bδ. Observing that maxB̄δ

{w̄ − w} = max∂pBδ
{w̄ − w} ≤ p∗(t− δ2) − p∗(t), we find

that

lim sup
y→x,s↗t

w(y, s) − lim inf
y→x,s↗t

w(y, s) ≤ sup
Bδ(x,t)

{w̄ − w} ≤ p∗(t− δ2) − p∗(t).

Equation (2.5) then follows by sending δ → 0.
Theorem 2 (uniqueness). There is at most one viscosity solution.
Proof. Suppose w1 and w2 are two solutions. We claim that for any η > 0,

w1(x, t) ≤ w2(x− η, t) ∀(x, t) ∈ R × [0,∞).(2.6)

Once this is proven, sending η → 0 and using Lemma 2.2(1) allows one to conclude
that w1 ≤ w2 on R×[0,∞). Exchanging the roles of w1 and w2, we also have w2 ≤ w1,
so that w1 ≡ w2.

Suppose that (2.6) is not true; i.e., there exists at least one pair of (x̄, t̄ ) ∈
R× [0,∞) such that w1(x̄, t̄) > w2(x̄− η, t̄). Then for all sufficiently small positive ε,

Mε := sup
x∈R,t≥0

{w1(x, t) − w2(x− η, t) − ε4x2 − εet} > 0.

Hence fix such a positive ε such that ε ≤ 1/(1 + ‖σ2‖∞ + 2‖σσx − μ‖∞). Let
{(xn, tn)}∞n=1 be a sequence in R × [0,∞) such that the supremum Mε is attained
along the sequence. This sequence is bounded since 0 ≤ w1, w2 ≤ 1. By taking
a subsequence if necessary, there exist the limits (x̂, t̂) := limn→∞(xn, tn), α :=
limn→∞ w1(xn, tn), and β := limn→∞ w2(xn − η, tn). Note that

0 ≤ w1∗(x̂, t̂ ) ≤ α ≤ w∗
1(x̂, t̂ ) ≤ 1,

0 ≤ w2∗(x̂− η, t̂ ) ≤ β ≤ w∗
2(x̂− η, t̂ ) ≤ 1,

β < α.

Consequently,

Mε = α− β − ε4x̂2 − εet̂ > 0.(2.7)

Additionally, |x̂| < ε−2. Otherwise Mε ≤ α − β − 1 − ε ≤ −ε < 0, which is a
contradiction to (2.7).

Now we show that this is impossible by excluding the following three possibilities:

(i) t̂ = 0; (ii) t̂ > 0, β < p(t̂); (iii) t̂ > 0, β ≥ p(t̂).
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Case (i). Suppose t̂ = 0. If x̂ ≥ η, then 0 ≤ β < α ≤ w∗
1(x̂, 0) = 0; otherwise

1 ≥ α > β ≥ w2∗(x̂− η, 0) = 1. Both are impossible.

Case (ii). Suppose t̂ > 0 and β < p(t̂). Then w2∗(x̂ − η, t̂) ≤ β < p(t̂). By
Lemma 2.1, w2 is a smooth solution to Lw2(· − η, ·) = 0 in D̄, where D = (x̂− δ, x̂+
δ) × (t̂− δ2, t̂ + δ2) for some δ > 0. Let

ϕ(x, t) = w2(x− η, t) + ε4x2 + εet + (x− x̂)4/δ4 + (t− t̂)2/δ4.

Then ϕ is smooth in D̄ and

max
D

{w∗
1 − ϕ} = sup

D̄

{w1 − ϕ} ≤ Mε ≤ w∗
1(x̂, t̂) − ϕ(x̂, t̂).

That is, (x̂, t̂) is a local maximum of w∗
1−ϕ in D. As w1 is a subsolution, Lϕ(x̂, t̂) ≤ 0.

However, Lϕ(x̂, t̂) = εet̂−ε4σ2−2(σσx−2μ)ε4x̂ ≥ ε−ε2‖σ2‖∞−2ε2‖σσx−μ‖∞ > 0
by the smallness of ε. This is a contradiction. Thus case (ii) is impossible.

Case (iii). Suppose t̂ > 0 and β ≥ p(t̂). Since p∗(s) ≤ p(t) for any s > t̂, w1(x, s) ≤
p(s) ≤ p∗(t) for each x. Then supx w1(x, s) ≤ p(t̂) ≤ β < α = limn→∞ w1(xn, tn).
We claim tn < t̂ for all sufficiently large n; i.e., there exists N ∈ N

+ such that tn < t̂
for each n ≥ N . To the contrary, suppose for each N ∈ N

+ there exists n > N
such that tn > t̂. Then α > β ≥ supx w1(x, tn) > w1(xn, tn). Hence there exists
ε > 0, independent on n, such that α > w1(xn, tn) + ε. This is a contradiction to
α = limn→∞ w1(xn, tn). Consequently, from (2.5), we conclude that

α = w∗
1(x̂, t̂) ≤ p∗(t̂), β = w∗

2(x̂− η, t̂) ≤ α < p∗(t̂).

By Lemma 2.2(3), for some δ > 0, w∗
2 = w2 in Bδ(x̂+η, t̂) and w∗

2 is a smooth solution
to Lw∗

2 = 0 in B̄δ(x̂ + η, t̂). Set

φ(x, t) := w∗
2(x− η, t) + ε4x2 + εet + (x− x̂)4/δ4 + (t− t̂)2/δ4.

Then, by (2.5) and w∗
2 = w2 in Bδ(x̂ + η, t̂),

max
B̄δ(x̂,t̂)

{w∗
1 − φ} = sup

Bδ(x̂,t̂)

{w1 − φ} ≤ Mε = w∗
1(x̂, t̂) − φ(x̂, t̂).

That is, w∗
1−φ obtains its local maximum at (x̂, t̂). As w1 is a subsolution, Lφ(x̂, t̂) ≤

0. However, Lφ(x̂, t̂)εet̂−ε4σ2−2(σσx−2μ)ε4x̂ ≥ ε−ε2‖σ2‖∞−2ε2‖σσx−μ‖∞ > 0
by the smallness of ε. This is a contradiction. Thus case (iii) is impossible.

The exclusion of cases (i), (ii), and (iii) implies that (2.6) holds for each η >
0.

As a product, (2.6) and the uniqueness give the following.

Corollary 2.3. The unique solution w, if it exists, is nonincreasing in x, i.e.,
w(x, t) ≤ w(x− η, t) for all η > 0 and (x, t) ∈ R × [0,∞).

3. Existence of a viscosity solution. To establish a solution, we first de-
fine and study a regularization of the problem obtained by penalizing the obstacle.
This ε-regularization is carefully designed so that the solution is monotonic in ε, and
therefore the existence of a limit as ε → 0 is automatically guaranteed. We prove
some regularity properties of the solution to the penalized problem for the purpose of
establishing compactness. Finally, we show that the limit is a viscosity solution.
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3.1. The regularization. Following the classical penalization technique (see,
for example, Friedman [5]) for variational inequalities, we consider a semilinear para-
bolic equation: ⎧⎨

⎩
Lwε = −β

(
ε−1(wε − pε)

)
in R × (0,∞),

wε(·, 0) = W ε(·) on R × {0},
(3.1)

where pε and W ε are the smooth approximations of p and w(·, 0) = 1(−∞,0), respec-
tively, and β(·) is a smooth function being identically zero in (−∞, 0] and strictly
increasing and convex in [0,∞). For definiteness, we take

β(s) := max{0, s3} ∀ s ∈ R.

The particular pε and W ε are chosen so that the solution wε is strictly increasing in
ε. Define

pε(t) :=
3

4

∫ 1

−1

(1 − z2)p(t + ε + εz) dz − 3ε2/3 ∀ε > 0, t ≥ 0.

Then pε ∈ C1([0,∞)), and

−1

ε
≤ d

dt
pε(t) ≤ 0,

d

dε
pε(t) ≤ − 2

ε1/3
, lim

ε↘0
pε(t) = p(t) ∀ε > 0, t ≥ 0.(3.2)

The first two inequalities follow directly from the definition of pε and monotonicity
of p. Consequently, for any fixed t > 0, the limit as ε ↘ 0 of pε(t) exists and is p(t).

When t = 0, (3.2) yields limε↘0 p
ε(0) = p(0) = 1 and pε(0) is a monotone function

of ε. We denote by ε∗ > 0 the unique constant such that pε
∗
(0) = 0 and in what

follows assume ε ∈ (0, ε∗).
Fix a smooth function W (·) defined on R that satisfies

W (x) = 0 ∀x ≥ 0, W (x) = 1 ∀x ≤ −1, Ẇ ≤ 0 ∀ x ∈ (−1, 0).

Set

W ε(x) := pε(0) W (x/ε) ∀x ∈ R.

Then W ε is a smooth function satisfying

d

dε
W ε(x) ≤ 0,

d

dx
W ε(x) ≤ 0, W ε(x) = 0 ∀x ≥ 0, W ε(x) = pε(0) ∀x ≤ −ε.

Before proving the existence of a solution to problem (3.1), we introduce the
following functions.

1. Denote by wε
0(x, t) the solution to{

Lwε
0 = 0 in R × (0,∞),

wε
0(·, 0) = W ε(·) on R × {0}.

(3.3)

Since the problem for wε
0 is linear, the solution wε

0 can be expressed as

wε
0(x, t) =

∫
R

K(x, t; y, 0)wε
0(y, 0) dy = pε(0)

∫ 0

−∞
K(x, t; y, 0)W (y/ε) dy,
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where K(x, t; y, s) is the fundamental solution associated with the linear operator L.
In particular, when L = ∂t − 1

2∂xx, i.e., μ ≡ 0 and σ ≡ 1,

K(x, t; y, s) = Γ(x− y, t− s), Γ(x, t) =
1√
2πt

e−x2/2t.

2. Denote by ρε the solution to⎧⎨
⎩

d
dtρ

ε(t) = −β
(

ρε(t)−pε(t)
ε

)
in (0,∞),

ρε(0) = pε(0).

Comparing the solution ρε with the functions of the form pε+C, where C is constant,
one finds that

pε(t) ≤ ρε(t) ≤ pε(t) + ε‖ṗε‖1/3
∞ , ρ̇ε(t) ≤ 0 ∀t ≥ 0.

Now we are ready to begin studying the properties of (3.1).
Theorem 3. For each ε > 0, problem (3.1) admits a unique smooth (C2,1)

solution in R × [0,∞). The solution is continuously differentiable in ε and satisfies,
for all ε > 0 and (x, t) ∈ R × (0,∞),

wε
0(x, t) + ρε(t) − ρε(0) ≤ wε(x, t) ≤ min{ρε(t), wε

0(x, t)},(3.4)

wε
x(x, t) < 0,

d

dε
wε(x, t) < 0.(3.5)

Consequently, the following limit exists:

w(x, t) := lim
ε↘0

wε(x, t) ∀ (x, t) ∈ R × [0,∞).

Proof. 1. Existence and uniqueness of a smooth solution wε to (3.1) in R ×
[0,∞) follows from standard results; see, for example, Friedman [6]. The fact that wε

satisfies (3.4) follows from the comparison principle. In particular, since

Lwε
0 + β

(
wε

0 − pε

ε

)
= β

(
wε

0 − pε

ε

)
≥ 0 = Lwε + β

(
wε − pε

ε

)

and wε
0(x, 0) = wε(x, 0) we have wε(x, t) ≤ wε

0(x, t). Similarly, Lρε + β(ρ
ε−pε

ε ) = 0
and ρε(0) = pε(0) ≥ maxx∈R wε(x, 0), so that wε(x, t) ≤ ρε(x, t). Combining the two
upper bounds gives the right half of (3.4).

The proof of the lower bound is similar. Set wε := wε
0(x, t) + ρε(t) − ρε(0). We

can compute

Lwε + β
(wε − pε

ε

)
= Lwε

0(x, t) + Lρε(t) + β
(wε − pε

ε

)
= −

[
β
(ρε − pε

ε

)
− β

(ρε − pε + wε
0 − ρε(0)

ε

)]
≤ 0,

since β(·) is nondecreasing. We also have

wε(x, 0) = wε
0(x, 0) = wε(x, 0),(3.6)

so the comparison principle implies wε(x, t) ≥ wε(x, t) for all x, t.
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2. The estimates (3.5) can be proved by differentiating the system (3.1). More
specifically, to prove the first inequality in (3.5) differentiate (3.1) with respect to x
and let uε := −wε

x to obtain

Auε +
1

ε
β̇
(wε − pε

ε

)
uε = 0,

uε(x, 0) = − d

dx
wε(x, 0) = − d

dx
W ε(x) ≥ 0 ∀x ∈ R,

where Au = Lu−σσxux +(μx−σσxx +(σx)2)u. Since 1
ε β̇(w

ε−pε

ε ) > 0, the maximum
principle implies that −wε

x(x, t) = uε(x, t) > 0 in R × (0,∞).
For the second half of (3.5), differentiating the system (3.1) with respect to ε we

obtain

d

dε
wε(x, 0) =

d

dε
W ε(x) ≤ 0 ∀x ∈ R,

L d

dε
wε +

1

ε
β̇
(wε − pε

ε

) d

dε
wε =

1

ε2
β̇
(wε − pε

ε

){
wε − pε + ε

d

dε
pε
}

≤ 0,

since β̇ ≥ 0, wε − pε ≤ ρε − pε ≤ ε‖ṗε‖1/3
∞ ≤ ε2/3, and d

dεp
ε ≤ −2ε−1/3. Then, by the

maximum principle, d
dεw

ε < 0 in R × (0,∞). The monotonicity and boundedness of
wε in ε imply that w = limε↘0 w

ε exists.
Also note that since wε

0 is monotonic in ε and bounded, the limit w0 := limε↘0 w
ε
0

exists and is the solution to

Lw0 = 0 in R × (0,∞), w0(·, 0) = 1(−∞,0).

By Theorem 3, wε
x < 0 and wε(x, t) ≥ ρε(t) − ρε(0) (since wε

0 ≥ 0). We conclude
that limx→∞ wε exists. Similarly, the limit limx→∞ wε

0 exists and is nonnegative.

3.2. Continuity estimates and existence. In the previous section, we proved
that the limit w = limε↘0 w

ε of solutions to the system (3.1) exists. In this section,
we will prove that this limit gives a viscosity solution to our variational inequality. In
order to do so, we need to derive some supplementary estimates on the continuity of
w. We first control the behavior of w in the space variable, keeping the time constant.

Lemma 3.1. For each T > 0, there exists a constant C1 = C1(T ) that depends
only on σ and μ such that for all ε ∈ (0, ε∗), 0 < t ≤ T , and x, y ∈ R,

−C1p
ε(0)√
t

≤ wε
0x(x, t) ≤ wε

x(x, t) ≤ 0.(3.7)

Consequently, the limit w = limε↘0 w
ε satisfies

−C1√
t

≤ w0x(x, t) ≤ wx(x, t) ≤ 0,(3.8)

and we have

|wε(x, t) − wε(y, t)| ≤ C1p
ε(0)√
t

|x− y|, |w(x, t) − w(y, t)| ≤ C1√
t
|x− y|.(3.9)

Proof. We will prove (3.7). It is clear that (3.8) then follows by letting ε ↘ 0,
and (3.9) can be derived from (3.7) and (3.8) by integration. The upper bounds
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in (3.7) can be obtained by differentiating the systems (3.1) and (3.3) with respect
to x and applying the maximum principle. Using the notation from the previous
theorem, we find that

Awε
x = −ε−1β̇(ε−1(wε − pε)wε

x ≥ 0 = Awε
0x in R × (0,∞),

wε
x(·, 0) = W ε

x(·) = wε
0x(·, 0) on R × {0},

since wε
x ≤ 0. Therefore by the maximum principle (the zeroth order term in A is

bounded above) wε
0x ≤ wε

x ≤ 0.
Next, we estimate the lower bound of wε

0x. Differentiating the system (3.3) with
respect to x, we obtain

Awε
0x = 0 in R × (0,∞), wε

0x(·, 0) = W ε
x(·) on R × {0}.

This is a linear problem, and the solution can be expressed as

wε
0x(x, t) =

∫
R

K̃(x, t; y, 0)W ε
y (y) dy,

where K̃ is the fundamental solution associated with the linear operator A, and we
therefore have K̃ > 0. Also W ε

y ≤ 0, so for any 0 < t ≤ T ,

0 ≤ −wε
0x(x, t) ≤ sup

x,y∈R

{K̃(x, t; y, 0)}
∫

R

−W ε
y (y) dy ≤ C1√

t

∫
R

−W ε
y (y) dy =

C1p
ε(0)√
t

,

where

C1 = C1(T ) = sup
x,y∈R,0<t<T

{√
t K̃(x, t; y, 0)

}
,

and the above quantity is finite by the standard Gaussian upper bound on the fun-
damental solution K̃ (see Friedman [6]). This gives the lower bound in (3.7).

We now proceed to estimate the variation in the time variable, leaving the space
variable fixed.

Lemma 3.2. For each T > 0, there exists a constant C2 = C2(T ) that depends
only on σ and μ such that for all ε ∈ (0, ε∗), 0 < s < t ≤ T , and x ∈ R,

|wε(x, t) − wε(x, s)| ≤ 2C2p
ε(0)

√
t− s√

s
+ ρε(s) − ρε(t),(3.10)

wε(x, t) − wε(x, s) ≤ 2C2

√
t− s√
s

.(3.11)

Consequently, the limit w = limε↘0 w
ε satisfies

|w(x, t) − w(x, s)| ≤ 2C2

√
t− s√
s

+ ρε(s) − ρε(t),(3.12)

wε(x, t) − wε(x, s) ≤ 2C2

√
t− s√
s

.(3.13)

We remark that when σ ≡ 1 and μ ≡ 0, C1 = C2 = (2π)−1/2 for all T .
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Proof. Once again, we need only worry about the estimates (3.10) and (3.11)
for wε as the corresponding results for w follow by letting ε ↘ 0. The estimates
are derived by first controlling the difference between w(x, t) and the average of w
on a small space interval centered at (x, t) and then estimating the difference of the
values of such averages with respect to time and space. More specifically, for δ > 0,
s ∈ (0, T ], we have, using (3.7),∣∣∣∣∣wε(x, s) − 1

2δ

∫ x+δ

x−δ

wε(y, s) dy

∣∣∣∣∣ =

∣∣∣∣∣ 1

2δ

∫ x+δ

x−δ

(wε(x, s) − wε(y, s)) dy

∣∣∣∣∣
≤ C1p

ε(0)

2δ
√
s

∫ x+δ

x−δ

|y − x| dy ≤ C1δp
ε(0)√
s

.

We now consider the variation in time of the integrals of w over intervals of size 2δ.
Note that since β(·) is increasing and wε ≤ ρε,

0 ≤ β(ε−1(wε − pε)) ≤ β(ε−1(ρε − pε)) = −ρ̇ε(t) ∀ t ≥ 0, x ∈ R.

And therefore, for 0 < s < t ≤ T and x ∈ R,∣∣∣∣∣
∫ x+δ

x−δ

{wε(y, t) − wε(y, s)} dy
∣∣∣∣∣ =

∣∣∣∣∣
∫ x+δ

x−δ

∫ t

s

wε
v(y, v) dv dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

s

∫ x+δ

x−δ

(
1

2
(σ2wε

y)y − μwε
y − β

(
ε−1(wε − pε)

))
dy dv

∣∣∣∣∣
≤

∣∣∣∣
∫ t

s

1

2
σ2wε

y

∣∣∣x+δ

x−δ
dv

∣∣∣∣ +

∣∣∣∣∣
∫ t

s

∫ x+δ

x−δ

μwε
ydy dv

∣∣∣∣∣ +

∣∣∣∣∣
∫ t

s

∫ x+δ

x−δ

β
(
ε−1(ρε − pε)

)
dy dv

∣∣∣∣∣
≤ pε(0)(t− s)

(
C1‖σ2‖∞√

s
+ ‖μ‖∞

)
+

∣∣∣∣∣
∫ t

s

∫ x+δ

x−δ

− d

dv
ρε(v)dy dv

∣∣∣∣∣
≤ pε(0)(t− s)

(
C1‖σ2‖∞√

s
+ ‖μ‖∞

)
+ 2δ(ρε(s) − ρε(t)).

We can now estimate the continuity in the time variable:

|wε(x, t) − wε(x, s)|

≤
∣∣∣∣∣wε(x, t) − 1

2δ

∫ x+δ

x−δ

wε(y, t) dy

∣∣∣∣∣ +

∣∣∣∣∣ 1

2δ

∫ x+δ

x−δ

(wε(y, t) − wε(y, s)) dy

∣∣∣∣∣
+

∣∣∣∣∣ 1

2δ

∫ x+δ

x−δ

wε(y, s) dy − wε(x, s)

∣∣∣∣∣
≤ C1p

ε(0)√
s

(
2δ +

(t− s)‖σ2‖∞
2δ

)
+

(t− s)2‖μ‖∞pε(0)

2δ
+ ρε(s) − ρε(t).

By taking δ = 1
2

√
‖σ2‖∞(t− s), we then obtain

|wε(x, t) − wε(x, s)| ≤
√

‖σ2‖∞(t− s)

(
2‖wε

x‖s,t∞ +
‖μ‖∞pε(0)

‖σ2‖∞

)
+ ρε(s) − ρε(t)

≤ 2C2p
ε(0)

√
t− s√

s
+ ρε(s) − ρε(t).
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Observe that in estimating the upper bound of wε(x, s)−wε(x, t), the term involving
the integral of β can be dropped, so we have (3.11).

It is now straightforward to derive the following estimates on the variation of wε

and w.
Lemma 3.3. For each T > 0, there exists a constant C = C(T ) that depends only

on σ and μ such that for all ε ∈ (0, ε∗), 0 < t ≤ T , and x, y ∈ R,

|wε(x, t) − wε(y, s)| ≤ Cpε(0)√
s

{
|x− y| + 2

√
t− s

}
+ ρε(s) − ρε(t),(3.14)

wε(x, t) − wε(y, s) ≤ Cpε(0)√
s

{
|x− y| + 2

√
t− s

}
.(3.15)

Consequently, the limit w = limε↘0 w
ε satisfies, for all 0 < s < t ≤ T and

x, y ∈ R,

|w(x, t) − w(y, s)| ≤ C√
s

{
|x− y| + 2

√
t− s

}
+ p(s) − p(t),(3.16)

w(x, t) − w(y, s) ≤ C√
s

{
|x− y| + 2

√
t− s

}
.(3.17)

Proof. Using the previous two lemmas we have

|wε(x, t) − wε(y, s)| ≤ |wε(x, t) − wε(x, s)| + |wε(x, s) − wε(y, s)|

≤ Cpε(0)√
s

{
|x− y| + 2

√
t− s

}
+ ρε(s) − ρε(t).

This proves (3.14). The proof of (3.15) is similar, and (3.16), (3.17) follow by sending
ε ↘ 0.

With the results from Lemma 3.3 we are now in a position to verify that w is
indeed a viscosity solution to the variational inequality.

Theorem 4. Assume p(·) defined on [0,∞) is nonnegative, decreasing, and lower
semicontinuous, with p(0) = 1. Then there is a unique viscosity solution, and it can
be obtained as the limit w := limε↘0 w

ε.
Proof. First, we verify that w satisfies the initial condition (2.3). For any t > 0,

from (3.4) |wε(·, t) − wε
0(·, t)| ≤ ρε(0) − ρε(t), so that

‖w(·, t) − w0(·, t)‖∞ ≤ lim
ε↘0

‖wε(·, t) − wε
0(·, t)‖∞ ≤ p(0) − p(t),

where

w0(x, t) = lim
ε→0

wε
0(x, t) =

∫ 0

−∞
K(x, t; y, 0) dy,

‖w(·, t) − w0(·, t)‖∞ = sup
x∈R

|w(·, t) − w0(·, t)|.

Sending t ↘ 0, we see that w satisfies (2.3).
To verify that w is a viscosity solution in R × (0,∞) we consider two cases for

each (x, t) ∈ R × (0,∞): (i) p(t) − w(x, t) > 0 and (ii) p(t) − w(x, t) ≤ 0.
Case (i). Suppose p(t)−w(x, t) > 0. Let Dδ = (x− δ, x+ δ)× (t− δ2, t+ δ2) for

all δ > 0. Then, for each (y, s) ∈ Dδ,

|ρε(s)−ρε(t)| ≤ |ρε(s)−pε(s)|+ |pε(s)−pε(t)|+ |pε(t)−ρε(t)| ≤ |pε(s)−pε(t)|+2ε2/3,
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since 0 ≤ ρε − pε ≤ ε2/3. As pε(·) is decreasing, when s > t,

pε(t) − pε(s) + |pε(t) − pε(s)| = 2 (pε(t) − pε(s)) ≤ 2
(
pε(t) − pε(t + δ2)

)
;

and when s ≤ t,

pε(t) − pε(s) + |pε(t) − pε(s)| = 0 ≤ 2
(
pε(t) − pε(t + δ2)

)
.

Using (3.14), we can compute

wε(y, s) − pε(s) ≤ wε(x, t) + (2+2
√

2)Cδ√
t−δ2

+ |ρε(s) − ρε(t)| − pε(s)

≤ (2+2
√

2)Cδ√
t−δ2

+ wε(x, t) − pε(t) + pε(t) − pε(s) + |pε(t) − pε(s)| + 2ε2/3

≤ (2+2
√

2)Cδ√
t−δ2

+ wε(x, t) − pε(t) + 2(pε(t) − pε(t + δ2)) + 2ε2/3.

Then, if we take δ small enough,

lim sup
ε→0

max
D̄δ

{
wε − pε

}
≤ lim sup

ε→0

(2+2
√

2)Cδ√
t−δ2

+ wε(x, t) − pε(t) + 2(pε(t) − pε(t + δ2)) + 2ε2/3

≤ (2+2
√

2)Cδ√
t−δ2

+ w(x, t) − p(t) + 2(p(t) − p(t + δ2)) < 0.(3.18)

Thus, for all sufficiently small positive ε, wε − pε < 0 in D̄δ. Consequently, Lwε =
−β(w

ε−pε

ε ) = 0 in D̄δ. The limit w is then a smooth solution to Lw = 0 in Dδ.
Case (ii). Suppose w(x, t) − p(t) ≥ 0. However, w − p ≤ 0 in R × [0,∞) since

wε ≤ ρε and limε↘0 ρ
ε(t) = p(t) in R× [0,∞). Hence, we must have w(x, t) = p(t) =

min{p(t), w∗(x, t)}. From (3.17)

w(x, t)−w∗(x, t) = lim sup
y→x,s→t

(w(x, t)−w(y, s)) ≤ lim sup
y→x,s→t

(
C√
s

{
|x− y| + 2

√
t− s

})
= 0.

Therefore w∗(x, t) = w(x, t) = p(t). Thus the semicontinuity requirements for a
viscosity solution hold.

In this case, we clearly have max{w(x, t) − p(t),Lϕ(x, t)} ≥ 0 for any smooth
ϕ. Therefore w is a supersolution. It remains to verify the differential inequality for
subsolutions. To this end, let ϕ be a smooth function on B̄δ, where Bδ = Bδ(x, t)
such that w∗(y, s) − ϕ(y, s) attains at (x, t) a local maximum on B̄δ. Set

ψ(y, s) = ϕ(y, s) + (y − x)4/δ4 + (s− t)2/δ4.

For each small positive ε, wε − ψ attains a global maximum on B̄δ. Denote any
such point of maximum by (yε, sε). Then (wε−ψ)s ≥ 0, (wε−ψ)yy ≤ 0, (wε−ψ)y = 0
at (yε, sε). Thus, Lψ(yε, sε) ≤ Lwε(yε, sε) = −β(ε−1(wε − pε)) ≤ 0. If (x̄, t̄) is a
limit point of {(yε, sε)} as ε → 0, then Lψ(x̄, t̄) ≤ 0. Thus, it suffices to show that
(x̄, t̄) = (x, t).

Since wε ≤ w ≤ w∗,

lim sup
ε↘0

max
B̄δ

{
wε − ψ

}
≤ lim sup

ε↘0

{
w∗(yε, sε) − ψ(yε, sε)

}
≤ w∗(x̄, t̄) − ψ(x̄, t̄) ≤ max

B̄δ

(w∗ − ϕ) − |x̄− x|4/δ4 − |t̄− t|2/δ4.
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On the other hand, from (3.16) and (3.17), we see that w∗(x̂, t) = lims↗t w(x̂, s), so
that

lim sup
ε↘0

max
B̄δ

{
wε − ψ

}
≥ lim

s↗t
lim sup

ε↘0
{wε(x, s) − ψ(x, s)}

= lim
s↗t

{w(x, s) − ψ(x, s)} = w∗(x, t) − ψ(x, t) = max
B̄δ

(w∗ − ϕ).

Thus, we must have (x̄, t̄) = (x, t). This completes the proof.

3.3. The differential equation and the free boundary problem. Since

0 ≤ β(ε−1(wε − pε)) ≤ −ρ̇ε,

and ρε(·) is decreasing, by weak compactness of measures, as ε → 0,

β(ε−1(wε − pε))−→ γ as a measure in R × [0,∞),

Lw= γ on R × (0,∞),

where γ is a Radon measure satisfying

0 ≤ γ dx dt ≤ −dx dp(t).

In addition, from Lemma 2.1(1), γ is supported on the set w = p.

Now suppose that p is continuous. Then γ = ṗ on the contact set Π (noticing
that Π2 is empty). Hence, w is the solution to

Lw = ṗ(t)1{w=p} in R × (0,∞), w(·, 0) = 1(−∞,0) on R × {0}.(3.19)

Using a free boundary approach, this can be written as the solution to the free bound-
ary problem for (b, w):

⎧⎪⎨
⎪⎩

Lw = ṗ(t)1x<b(t) in R × (0,∞),

b(t) := inf{x | w(x, t) < p(t)} ∀ t ≥ 0,
w(·, 0) = 1(−∞,0) on R × {0}.

(3.20)

We emphasize that this formulation works only when p is continuous, since if p is not
continuous at s, then

Lw = min{p(s) − w∗(x, τ), 0} · δ(t− s) on R × {s},

where δ is the Dirac measure.

Remark 3.1. Suppose ‖ṗ‖∞ := supt≥0 |ṗ(t)| is finite. Then ‖ṗε‖∞ ≤ ‖ṗ‖∞ and

ρε − pε ≤ ε‖ṗ‖1/3. Consequently, ρ̇ε = −β(‖ṗ‖1/3) = −‖ṗ‖∞. Hence

0 ≤ γε(x, t) ≤ ‖ṗ‖∞ ∀(x, t) ∈ R × [0,∞).

It is then easy to show that wε(x, t) − wε
0 → w − w0 in W 2,1

r ([−R,R] × [0, R2]) for
any r > 1 and any R > 0.
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4. Estimation of the free boundary. In this section, we provide both upper
and lower bounds for the free boundary

b(t) := inf{x ∈ R | w(x, t) < p(t)} ∈ [−∞,∞] ∀ t > 0

in the case of Brownian motion, i.e., when σ ≡ 1 and μ ≡ 0.
Recall the notation q(t) = 1 − p(t). Note that for any s > 0, 0 = q(0) = q∗(0) ≤

q(s), and since p is LSC, q is USC. We define

q̇(s) := lim inf
t↗s

q(s) − q(t)

s− t
∈ [0,∞].

The following lemma is obvious from the probabilistic interpretation of our prob-
lem since it states that P[Xt ≤ b(t)] ≤ P[τ ≤ t]. Its analytic derivation is equally
simple.

Lemma 4.1. For every t > 0,

1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz ≤ q(t).

Proof. We need only consider the case b(t) > −∞. Since w(x, t) ≤ w0(x, t),

1 − q(t) = p(t) = w(b(t), t) ≤ w0(b(t), t) =

∫ 0

−∞
Γ(b(t) − y, t) dy

= 1 − 1√
2πt

∫ ∞

0

e−
(b(t)−y)2

2t dy = 1 − 1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz.

We observe that the above lemma immediately yields an upper bound on b(t):

b(t) ≤
√
t · Φ−1(q(t)),

where Φ(z) is the cumulative distribution function of a standard normal random

variable, Φ(z) =
∫ z

−∞ e−w2/2 dw√
2π

. We now proceed to the more difficult task of

deriving useful lower bounds on b(t).
Lemma 4.2 (method for lower bounds). Assume that w defined on R × [0, t]

satisfies ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lw = 0 in R × (0, t],

w(·, 0) ≤ w(·, 0) on R × {0},

w ≤ p on R × (0, t),

w(s, t) ≥ p(t) at (s, t).

(4.1)

Then

w ≤ w in R × [0, t), s ≤ b(t).

Proof. First, consider the case where p is continuous at t, so p(t) = p∗(t). For each
ε > 0, let φε = w− εer − εx2. We claim that φε ≤ w on R× [0, t]. Suppose not; then
w−φε can attain a global negative minimum, say, at (x̂, r̂). Since w(x, 0)−φε(x, 0) =
w(x, 0) − w(x, 0) + ε + εx2 ≥ ε, r̂ > 0. Therefore Lφε(x̂, r̂) = −εer̂ + ε < 0. As a
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supersolution, max{w(x̂, r̂)−p(r̂),Lφε(x̂, r̂)} ≥ 0; hence we must have w(x̂, r̂)−p(r̂) ≥
0. The condition w ≤ p on R× (0, t), and p∗(t) = p(t) implies that w ≤ p on R× (0, t].
Then w(x̂, r̂) < φε(x̂, r̂) < w(x̂, r̂) ≤ p(r̂). This is a contradiction. Thus φε ≤ w in
R × (0, t] for each ε > 0. Sending ε ↘ 0, we conclude that w ≤ w in R × (0, t].

In general, let {tn} be a sequence of positive numbers such that tn ↗ t as n → ∞,
and p(·) is continuous at tn. Then w ≤ w in R × [0, tn]. Sending n → ∞ we obtain
w ≤ w in R × [0, t).

As a subsolution, w = min{p, w∗}. From the above argument, w∗(s, t) ≥ w(s, t) ≥
p(t). Therefore w(s, t) = w∗(s, t) = p(t). By the definition of b(·), we conclude that
b(t) ≥ s.

Lemma 4.3 (a criterion for lower bounds). For each s < 0 < t, let

Q(s, r) := q(r) − 2√
π

∫ s/
√

2r

−∞
e−z2

dz.

Suppose (s, t) is such that

s < 0 < t, Q(s, r) ≤ Q(s, t) ∀ r ∈ (0, t).(4.2)

Then b(t) ≥ s.
Proof. Let w be the solution to{

Lw = 0 in R × (0, t],
w(·, 0) = θ 1(2s,0) on R × {0}.

where

θ = p(t)

(
2√
π

∫ 0

s/
√

2t

e−z2

dz

)−1

.

We claim w satisfies (4.1).
1. Since the problem for w is linear, it can be expressed as

w(x, r) = θ

∫ 0

2s

Γ(x− y, r)dy =
θ√
π

∫ x−2s√
2r

x√
2r

e−z2

dz ∀x ∈ R, r > 0.(4.3)

In particular, when x = s,

w(s, t) =
θ√
π

∫ −s/
√

2t

s/
√

2t

e−z2

dz =
2θ√
π

∫ 0

s/
√

2t

e−z2

dz = p(t).

2. By (4.3), we find that

max
x∈R

w(x, r) = w(s, r) =
p(t)

∫ 0

s/
√

2r
e−z2

dz∫ 0

s/
√

2t
e−z2dz

∀r > 0.(4.4)

For any s < 0 < r, we can compute

2√
π

∫ 0

s/
√

2r

e−z2

dz = 1 − 2√
π

∫ s/
√

2r

−∞
e−z2

dz = 1 + Q(s, r) − q(r) = Q(s, r) + p(r).

(4.5)
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From (4.4) and (4.5), for all r ∈ (0, t),

max
x∈R

w(x, r) − p(r) =
p(t)[Q(s, r) + p(r)]

Q(s, t) + p(t)
− p(r)

=
p(t)Q(s, r) − p(r)Q(s, t)

Q(s, t) + p(t)

≤ p(t)[Q(s, r) −Q(s, t)]

Q(s, t) + p(t)
≤ 0,

i.e., w ≤ p on R × (0, t).
3. Since Q(s, ·) is increasing for any s < 0, Q(s, t) ≥ limr↘0 Q(s, r) = 0. In

particular, when r = t, (4.5) reads as

2√
π

∫ 0

s/
√

2t

e−z2

dz = Q(s, t) + p(t) ≥ p(t).

Therefore θ ≤ 1, and thus w(·, 0) ≤ w(·, 0) on R × {0}. Lemma 4.2 now gives b(t) ≥
s.

The above lemma has an interesting probabilistic interpretation. Recalling that
we are assuming that Xt is a Brownian motion, define Xt = minv≤t Xv. Then

Q(s, r) = q(r) − 2√
π

∫ s/
√

2r

−∞
e−z2

dz

= P[τ ≤ r] − 2P[Xr ≤ s]

= P[τ ≤ r] − P[Xr ≤ s],

where the last line follows from the reflection principle (see, for example, Karatzas
and Shreve [13]). Rearranging (4.2) then yields that if s < 0 < t are such that

P[Xr > s and Xt ≤ s] ≤ P[r < τ ≤ t]

for all r ∈ (0, t), then b(t) ≥ s. This result is clear in the case that b(t) is monotone
but requires a more careful argument, as above, in the general case.

Before we continue, we provide an interesting application of Lemmas 4.3 and 4.1.
Corollary 4.4. For each t > 0, let ζ(t) ∈ (−∞, 0) and ν(t) ∈ R be defined by

q(t) =
2√
π

∫ ζ(t)/
√

2t

−∞
e−z2

dz =
1√
π

∫ ν(t)/
√

2t

−∞
e−z2

dz.

1. Suppose ζ is a constant function. Then the exact solution to (1.1) is given by⎧⎨
⎩ w(x, t) = 1√

π

∫ (x−2ζ)/
√

2t

x/
√

2t
e−z2

dz ∀x ≥ ζ, t > 0,

b(t) = ζ ∀ t > 0.
(4.6)

2. Suppose ζ(r) ≤ ζ(t) for all r ∈ (0, t). Then ζ(t) ≤ b(t) ≤ ν(t).
3. Suppose ζ̇(t) ≥ 0 for all t ∈ (0, T ]. Then

ζ(t) ≤ b(t) ≤ ν(t) ∀t ∈ (0, T ], lim
t↘0

b(t)

ζ(t)
= 1.
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Proof. 1. The first assertion may be verified by a direct computation. We note
that it agrees with the formula for the first hitting time of Brownian motion to the
level ζ (see, e.g., Karatzas and Shreve [13, pages 94–96]).

2. Suppose ζ(r) ≤ ζ(t) for all r ∈ (0, t). Set s = ζ(t). Then

Q(s, r) = q(r) − 2√
π

∫ ζ(t)/
√

2r

−∞
e−z2

dz =
2√
π

∫ ζ(r)/
√

2r

ζ(t)/
√

2r

e−z2

dz ≤ 0 = Q(s, t)

for each r ∈ (0, t). Thus, by Lemma 4.3, b(t) ≥ s = ζ(t). This is the lower bound for
b(t).

For t > 0, Lemma 4.1 reads as

1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz ≤ q∗(t) =
1√
π

∫ ν∗(t)/
√

2t

−∞
e−z2

dz,

which implies that b(t) ≤ ν∗(t).
3. Suppose ζ̇(t) ≥ 0 in (0, T ]. Then by Corollary 4.4(2) ζ(t) ≤ b(t) ≤ ν(t) for all

t ∈ (0, T ]. To complete the proof, it remains to estimate the difference between α(t) :=
ν∗(t)/

√
2t and γ(t) := ζ(t)/

√
2t. Let δ(t) = ln 2/(−2γ(t) − 1). Since limt↘0 γ(t) =

−∞, we conclude that for all small positive t > 0, δ(t) ∈ (0, 1). Note that

1√
π

∫ α

−∞
e−z2

dz = q(t) =
2√
π

∫ γ

−∞
e−z2

dz =
2√
π

∫ γ+δ

−∞
e−z2+2δz−δ2

dz

≤ 2√
π

∫ γ+δ

−∞
e−z2+2δ(γ+δ)−δ2

dz =
2eδ(2γ+δ)

√
π

∫ γ+δ

−∞
e−z2

dz

=
2e− ln 2+δ2−δ

√
π

∫ γ+δ

−∞
e−z2

dz ≤ 1√
π

∫ γ+δ

−∞
e−z2

dz.

Thus, α(t) ≤ γ(t) + δ(t). Then

0 ≤ 1 − b(t)

ζ(t)
≤ 1 − ν(t)

ζ(t)
= 1 − α(t)

γ(t)
≤ δ(t)

−γ(t)
=

ln 2

2γ2(t) + γ(t)
.

The third assertion of the lemma thus follows by sending t → 0.
Next, we present a sufficient condition for Q(s, ·) to attain its maximum in (0, t]

at t. Note that for 0 < r < t, Q(s, r) ≤ Q(s, t) is equivalent to

q(t) − q(r)

t− r
≥ 2√

π(t− r)

{∫ s/
√

2t

−∞
e−z2

dz −
∫ s/

√
2r

−∞
e−z2

dz

}
=

−s e−s2/(2θ)

θ3/2
√

2π
,

where r < θ ≤ t. The second equality follows from the mean value theorem. To
achieve the maximum in (0, t] for Q(s, ·), it is sufficient to have

inf
0<r<t

q(t) − q(r)

t− r
≥ sup

r<θ≤t

|s|e−s2/(2θ)

θ3/2
√

2π
=

|s|e−s2/(2t)

t3/2
√

2π
,(4.7)

provided that s ≤ −
√

3t. Taking the best possible s ≤ −
√

3t for the inequality (4.7)
to hold, we then obtain the following.

Lemma 4.5. Assume that t > 0 and

k(t) := inf
0≤r≤t

q(t) − q(r)

t− r
> 0.
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Then

b(t) ≥ max

{
s
∣∣∣ s ≤ −

√
3t ;

|s|√
2πt3/2

e−s2/(2t) ≤ k(t)

}
.

As an immediate consequence of the lemma, we have the following.
Corollary 4.6. If q̇(t) > 0, then b(t) > −∞.
We end this section with the following estimate on the asymptotic behavior of

the boundary near 0. As mentioned above, this estimate is important when solving
the inverse first passage problem numerically using integral equations such as (1.6);
see [2].

Theorem 5. Assume that

lim sup
t↘0

q(t)

tq̇(t)
< ∞.(4.8)

Then

lim
t↘0

b(t)√
−2t log q(t)

= −1.(4.9)

Consequently, in special cases the following hold:
1. when q(t) = A tm, where A and m are positive constants,

b(t) = −
√
−2mt log t [1 + o(1)], lim

t↘0
o(1) = 0;

2. when q(t) = Ae−γ2/(2tm), where A,m, γ are positive constants,

b(t) = −γ t(1−m)/2 [1 + o(1)], lim
t↘0

o(1) = 0.

In particular,

lim
t↘0

b(t) =

⎧⎪⎪⎨
⎪⎪⎩

−∞ if m > 1,

γ if m = 1,

0 if 0 < m < 1.

Proof. The idea is to estimate k(r) via q(r)/r. Under the assumption (4.8), there
exist positive constants C and T such that

0 < q(r) ≤ C r q̇(r) ∀ r ∈ (0, T ].

For any 0 < r < t ≤ T , we can compute

C (q(t) − q(r)) ≥
∫ t

r

C q̇(θ) dθ ≥
∫ t

r

q(θ)

θ
d(θ − r)

=
q(θ)(θ − r)

θ

∣∣∣θ=t

θ=r
−
∫ t

r

(θ − r)
θq̇(θ) − q(θ)

θ2
dθ

=
(t− r)q(t)

t
−
∫ t

r

q̇(θ) dθ +

∫ t

r

rθq̇(θ) + (θ − r)q(θ)

θ2
dθ

≥ (t− r)
q(t)

t
− [q(t) − q(r)].
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That is, (C + 1)(q(t) − q(r)) ≥ (t− r) q(t)/t. It follows that

k(t) = inf
0<r<t

q(t) − q(r)

t− r
≥ 1

C + 1

q(t)

t
.

Now fix t ∈ (0, T ], when s ≤ −
√

3t, to be

|s|
t3/2

√
2π

∫ s/
√

2t

−∞
e−z2

dz ≤ |s|
t3/2

√
2π

es
2/(2t).

Let s < −
√

3t be the solution to

|s|√
2πt3/2

∫ s/
√

2t

−∞
e−z2

dz =
1

C + 1

q(t)

t
.(4.10)

For small t, q(t) is small, so that s/
√
t � −1 and we can use the expansion, for a < 0,∫ a

−∞
e−z2

dz =

∫ ∞

a2

e−xdx

2
√
x

=
e−a2

2|a| −
∫ ∞

a2

e−xdx

4x3/2
=

e−a2

2|a|

{
1 − θ

2a2

}
,

where θ = θ(a) ∈ (0, 1). Hence, the equation for s reads as

e−s2/(2t)

{
1 − θ

s2/(2t)

}
=

√
2π

C + 1
q(t).

It then follows that

|s| =
√

2t
(
− log q(t) + log(1 − θt/s2) + log[(C + 1)/

√
2π]

)1/2

≤
√
−2t log q(t)

{
1 + (log[(C + 1)/

√
4π])/(− log q(t))

}1/2

.

By Lemma 4.5, we then have

b(t) ≥ s ≥ −
√
−2t log q(t)

{
1 +

log[(C + 1)/
√

2π]

| log q(t)|

}1/2

= −
√
−2t log q(t){1 + o(1)}.

This gives the lower bound for b(t); now we estimate the upper bound. From
Lemma 4.1,

q(t) ≥ 1√
π

∫ b(t)/
√

2t

−∞
e−z2

dz =

√
t√

2π|b(t)|

{
1 − θ t

b2(t)

}
e−b(t)2/(2t).

This implies that

b(t) ≤ −
√
−2t log q(t)

{
1 +

log[1 − θt/b2(t)] − log[
√

2π|b(t)|/
√
t]

− log q(t)

}1/2

≤ −
√

−2t log q(t)

{
1 − O(1) log | log q(t)|

| log q(t) + o(1)|

}1/2

.

The assertion (4.9) thus follows. The remainder of the theorem is a direct application
of (4.9).
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5. Integral equations. As in section 4, we assume σ ≡ 1 and μ ≡ 0. Also we
assume that p (and therefore q) is continuous. Then the solution to (3.19) can be
expressed as

w(x, t) =

∫ 0

−∞
Γ(x− y, t)dy +

∫ t

0

dp(s)

∫ b(s)

−∞
Γ(x− y, t− s) dy

= 1 −
∫ ∞

0

Γ(x− y, t)dy +

∫ t

0

dp(s)

(
1 −

∫ ∞

b(s)

Γ(x− y, t− s) dy

)

= p(t) −
∫ x

−∞
Γ(z, t) dz +

∫ t

0

dq(s)

∫ x−b(s)

−∞
Γ(z, t− s) dz,(5.1)

where the second equation is obtained by using
∫

R
Γ(x− y, s)dy = 1 for all s > 0.

Now assume that b is smooth. Differentiating w, we can derive

u(x, t) = −wx(x, t) = Γ(x, t) −
∫ t

0

Γ(x− b(s), t− s) dq(s).(5.2)

Also, for x �= b(t), we can further differentiate to obtain

ux(x, t) = Γx(x, t) −
∫ t

0

Γx(x− b(s), t− s)dq(s),(5.3)

ut(x, t) = Γt(x, t) −
∫ t

0

Γt(x− b(s), t− s)dq(s)

= Γt(x, t) +

∫ t

0

(
d

ds
Γ(x− b(s), t− s) + ḃ(s)Γx(x− b(s), t− s)

)
dq(s)

= Γt(x, t) +

∫ t

0

ḃ(s)Γx(x− b(s), t− s)dq(s) +

∫ t

0

q̇(s)dΓ(x− b(s), t− s)

= Γt(x, t) +

∫ t

0

ḃ(s)Γx(x− b(s), t− s)dq(s) − q̇(0)Γ(x, t)

−
∫ t

0

Γ(x− b(s), t− s)dq̇(s),(5.4)

where the second equation is obtained by the equality

Γt(x− b(s), t− s) = − d

ds
Γ(x− b(s), t− s) − ḃ(s)Γx(x− b(s), t− s)

and the third equation by using integration by parts to
∫ t

0
q̇(s)dΓ(x− b(s), t− s).

From potential theory, for any b and f with the certain regularity, we have

lim
x→b(t)±0

∫ t

0

f(s)Γx(x− b(s), t− s)ds =

∫ t

0

f(s)Γx(b(t) − b(s), t− s) ds∓ f(t).(5.5)
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This can be derived as follows:

lim
x→b(t)±0

∫ t

0

f(s)Γx(x− b(s), t− s)ds

= − lim
x→b(t)±0

∫ t

0

f(s)

[
(b(t) − b(s))√
2π(t− s)3/2

e−
(x−b(s))2

2(t−s) +
(x− b(t))√
2π(t− s)3/2

e−
(x−b(s))2

2(t−s)

]
ds

=

∫ t

0

f(s)Γx(b(t) − b(s), t− s) ds− lim
x→b(t)±0

∫ t

0

f(s)
x− b(t)√

2π(t− s)3/2
e−

(x−b(s))2

2(t−s) ds

=

∫ t

0

f(s)Γx(b(t) − b(s), t− s) ds

− 2√
π

lim
x→b(t)±0

∫ ±∞

x−b(t)√
2t

f

(
t− (x− b(t))2

2η2

)
e
−(η+

b(t)−b(s)√
2(t−s)

)2

dη

=

∫ t

0

f(s)Γx(b(t) − b(s), t− s) ds− 2√
π

∫ ±∞

0

f(t)e−η2

dη

=

∫ t

0

f(s)Γx(b(t) − b(s), t− s) ds∓ f(t).

Note that w(x, t) = p and 0 = u(x, t) = ux(x, t) = ut(x, t) for x < b(t). Sending
x to b(t) from below in (5.1) and (5.2) we then obtain∫ b(t)

−∞
Γ(z, t)dz =

∫ t

0

dq(s)

∫ b(t)−b(s)

−∞
Γ(z, t− s)dz,(5.6)

Γ(b(t), t) =

∫ t

0

Γ(b(t) − b(s), t− s) dq(s),(5.7)

which reflect the free boundary condition w(b(t), t) = p(t) and the condition u(b(t), t) =
0, respectively. Sending x to b(t) from below in (5.3) and (5.4) and using (5.5), we
have

q̇(t) = Γx(b(t), t) −
∫ t

0

Γx(b(t) − b(s), t− s) dq(s),(5.8)

−ḃ(t)q̇(t) = Γt(b(t), t) +

∫ t

0

ḃ(s)Γx(b(t) − b(s), t− s)dq(s),

−q̇(0)Γ(b(t), t) −
∫ t

0

Γ(b(t) − b(s), t− s)dq̇(s).(5.9)

Equation (5.8) reflect the free boundary condition ux(b(t)−, t) = 0 and ux(b(t)+, t) =
q̇(t). Similarly, (5.9) reflects the free boundary condition that ut(b(t)

−, t) = 0 and
ut(b(t)

+, t) = −ḃ(t)ux(b(t)+, t) = −ḃ(t)q̇(t).
Clearly, these identities can provide numerical schemes much more flexible and

economical than integrating the corresponding PDEs. For this purpose, it is necessary
to study solutions to each of these identities.

One observes that if b(·) is a solution to (5.7), then b1(t) := −b(t) is also the
solution. Hence, we need to be careful when considering solutions to the integral
equation.

Theorem 6. Let q : [0,∞) → [0, 1) be continuous, increasing, and q(0) = 0.
Assume that b : (0, T ] → R is a continuous function. Then x = b(t), t ∈ (0, T ], is the
solution to the free boundary problem, provided that one of the following holds.
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1. b satisfies (5.6) for all t ∈ (0, T ];
2. b satisfies (5.7) for all t ∈ (0, T ], b(t) < 0 for all sufficiently small positive t,

and the function

t → q1/2(t) :=

∫ t

0

q̇(t)√
2π(t− s)

ds

is continuous in (0, T ] with q1/2(0+) = 0;

3. b satisfies (5.8), limt↘0
b(t)√

t
= −∞, q̇ is continuous in [0, T ], and the function

t → qb3/2 :=

∫ t

0

|b(t) − b(s)|√
2π(t− s)3/2

dq(s)

is continuous on (0, T ] and is uniformly bounded.
The analogous condition for (5.9) is too technical, and hence we omit it here.
Proof. With the given continuous function b, we define w(x, t) as in (5.1). Note

that

0 ≥ w(x, t) − w0(x, t) =

∫ t

0

dp(s)

∫ b(s)

−∞
Γ(x− y, t− s)dy

=

∫ t

0

dp(s)

(
1 −

∫ ∞

b(s)

Γ(x− y, t− s)dy

)

= −q(t) +

∫ t

0

dq(t)

∫ x−b(s)

−∞
Γ(z, t− s)dz ≥ −q(t).

This implies that

|w(x, t) − w0(x, t)| ≤ q(t).

When t = 0, it reads as |w(x, 0) − w0(x, 0)| ≤ q(0) = 0, so that w(x, 0) = w0(x, 0) =
1(−∞,0).

In addition, upon differentiation, Lw = ṗ1{x<b(t)} ≤ 0 as a measure in R× (0, T ].
This can verified as follows. Direct calculation gives

wxx = −Γx(x, t) +

∫ t

0

Γx(x− b(s), t− τ)dq(s),

wt = ṗ(t) −
∫ x

−∞
Γt(z, t)dz +

∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s).

Using the fact that Γt = 1
2Γxx, we obtain∫ x

−∞
Γt(z, t)dz =

∫ x

−∞

1

2
Γxx(z, t)dz =

1

2
Γx(z, t)

∣∣∣z=x

z=−∞
=

1

2
Γx(x, t).

When x < b(s),∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s) =

1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=x−b(s)

z=−∞
dq(s)

=
1

2

∫ t

0

Γx(x− b(s), t− τ)dq(s).
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When x > b(s),

∫ t

0

∫ x−b(s)

−∞
Γt(z, t− s)dzdq(s)

=
1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=(b(t)−b(s))−

z=−∞
dq(s) +

1

2

∫ t

0

Γx(z, t− s)
∣∣∣z=x−b(s)

z=(b(t)−b(s))+
dq(s)

=
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s) + lim
z↗(b(t)−b(s))

1

2

∫ t

0

Γx(z, t− s)dq(s)

− lim
z↘(b(t)−b(s))

1

2

∫ t

0

Γx(z, t− s)dq(s)

= q̇(t) +
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s)

= −ṗ(t) +
1

2

∫ t

0

Γx(x− b(s), t− s)dq(s).

Thus Lw = ṗ1{x<b(t)} ≤ 0 in R × (0, T ] holds.
It remains to show that w(x, t) = p(t) for x ≤ b(t) and w < p(t) for x > b(t).
(1) Assume the condition of the first assertion. We define

v(x, t) := w(x, t) − p(t) = −
∫ x

−∞
Γ(z, t) dz +

∫ t

0

dq(s)

∫ x−b(s)

−∞
Γ(z, t− s) dz.

Upon differentiation, Lv = 0 in {x < b(t)}. Note that v is bounded, continuous, and,
by (5.6), v(b(t), t) = 0. It follows that v(x, t) ≡ 0 for all x ≤ b(t), i.e., w = p(t) for
any x ≤ b(t). Also by differentiation, we see that Lv = −ṗ ≤ 0 in {x > b(t)}. The
strong maximum principle gives v < 0 in {x > b(t)}. That is, w < p(t) in {x > b(t)}.
Thus w is a variational solution.

(2) Assume the condition of the second assertion. We see that u := −wx given
by (5.2) is continuous in R × (0,∞). For every small ε > 0, the function u satisfies
Lu = 0 in

Ωε := {(x, t) | x < b(t), t ∈ (ε, T ]}.

Also, from (5.7), u(b(t), t) = 0 for all t ∈ (0, T ]. Since b(t) < 0 for small positive t, we
can assume that b(ε) < 0. It then follows from (5.2) that for all x ≤ b(ε),

|u(x, ε)| ≤ max{Γ(x, ε), q1/2(ε)} ≤ max{Γ(b(ε), ε), q1/2(ε)} ≤ q1/2(ε),

since for any t ∈ (0, T ]∫ t

0

Γ(b(t) − b(s), t− s)dq(s) ≤
∫ t

0

q̇(s)√
2π(t− s)

ds = q1/2(t),

which holds for ε as well. It then follows from the maximum principle that

max
Ωε

|u| ≤ q1/2(ε).

Sending ε to 0 from above, we obtain wx = u ≡ 0 in {(x, t) | x ≤ b(t), t > 0}. w is
constant in {x ≤ b(t)}, and w(−∞, t) = p(t) imply that w ≡ p(t) in {x ≤ b(t)}. From
the first assertion, the second assertion of the theorem thus holds.
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(3) Assume the conditions in the third assertion. Let u := −wx be given by (5.2)
and ux := −wxx by (5.3) when x �= b(t). Since b, q̇, and qb3/2 are continuous, and (5.5)

holds for f = q̇, sending x to b(t) from below in the equation for ux and using (5.8)
we derive that ux(b(t)−, t) = 0.

Next, we show that ux ≡ 0 in {x < b(t)}. To do this, we first show that ux

given in (5.3) is uniformly bounded in {x < b(t)}. First, the boundedness of qb3/2 and

(5.8) imply that Γx(b(t), t) is uniformly bounded in (0, T ]. Next, as b(t) < −
√

3t for
small positive t, we see that 0 < Γx(x, t) < Γ(b(t), t) for all x < b(t). Thus Γx(x, t) is
bounded for all x < b(t).

For x < b(t), let A1 = {s ∈ (0, t] | b(t) − x > 2|b(t) − b(s)|} and A2 = [0, t] \ A1.
Then∫ t

0

Γx(x− b(t), t− s)dq(s) = I1 + I2, Ii =

∫
Ai

Γx(x− b(t), t− s)dq(s).

Note that

|I2| ≤
∫ t

0

|b(t) − b(s)|q̇(s)
2
√
π|t− s|3/2 ds ≤ 2qb3/2(t)

is uniformly bounded. To estimate Ii, notice that when x − b(t) > 2|b(t) − b(s)|,
(x− b(s))2 = (x− b(t) − (b(t) − b(s)))2 ≥ 1

4 (x− b(t))2. Thus,

|I1| ≤
∫ t

0

|x− b(t)|q̇(s)e−|x−b(t)|2/[16(t−s)]ds√
2π(t− s)3/2

≤ ‖q̇‖∞,

and therefore ux is uniformly bounded in {x < b(t)}.
Since Lux = 0 in {x < b(t), t > 0}, ux((b(t) − 0), t) = 0, and ux(x, 0) = 0 for all

x < 0, a special maximum principle then implies that ux ≡ 0 in {x < b(t)}. Using
u(−∞, t) = 0 we then conclude that u ≡ 0. Following (2), the third assertion of the
theorem follows.

Acknowledgments. The authors would like to thank Alex Kreinin, Soiliou Daw
Namoro, Dan Rosen, Rob Stamicar, Ivan Yotov, the participants in the PhiMAC
seminar at McMaster University, and two anonymous referees for helpful comments
and suggestions.

REFERENCES

[1] M. Avellaneda and J. Zhu, Modeling the distance-to-default process of a firm, Risk, 14 (2001),
pp. 125–129.

[2] L. Cheng, Analysis and Numerical Solution of an Inverse First Passage Problem from Risk
Management, University of Pittsburgh, Pittsburgh, PA, 2005.

[3] M. G. Crandall, H. Ishii, and P. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1–67.

[4] L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.
[5] A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley and Sons, New

York, 1982.
[6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood

Cliffs, NJ, 1964.
[7] H. Huang and W. Tian, Constructing default boundaries, Banque & Marches, Jan.-Feb.

(2006), pp. 21–28.
[8] J. Hull and A. White, Valuing credit default swaps I: No counterparty default risk, J. Deriva-

tives, 8 (2000), pp. 29–40.



INVERSE FIRST PASSAGE PROBLEM 873

[9] J. Hull and A. White, Valuing credit default swaps II: Modeling default correlations, J.
Derivatives, 8 (2001), pp. 12–21.

[10] I. Iscoe, A. Kreinin, and D. Rosen, An integrated market and credit risk portfolio model,
Algo. Research Quarterly, 2 (1999), pp. 21–37.

[11] I. Iscoe and A. Kreinin, Default Boundary Problem, Internal Paper, Algorithmics Inc.,
Toronto, ON, Canada, 2002.

[12] R. B. Israel, J. S. Rosenthal, and J. Z. Wei, Finding generators for Markov chains via
empirical transition matrices with applications to credit ratings, Math. Finance, 11 (2001),
pp. 245–265.

[13] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York,
1996.

[14] R. C. Merton, On the pricing of corporate debt: The risk structure of interest rates, J.
Finance, 29 (1974), pp. 449–470.

[15] B. Øksendal, Stochastic Differential Equations, 6th ed., Springer, Berlin, 2002.
[16] G. Peskir, Limit at zero of the Brownian first-passage density, Probab. Theory Related Fields,

124 (2002), pp. 100–111.
[17] G. Peskir, On integral equations arising in the first-passage problem for Brownian motion, J.

Integral Equations Appl., 14 (2002), pp. 397–423.
[18] L. M. Ricciardi, A. Di Crescenzo, V. Giorno, and A. G. Nobile, An outline of theoretical

and algorithmic approaches to first passage time problems with applications to biological
modeling, Math. Japonica, 50 (1999), pp. 247–322.

[19] C. Zucca, L. Sacerdote, and G. Peskir, On the inverse first-passage problem for a Wiener
process, submitted.



SIAM J. MATH. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 874–893

VORTEX LATTICES IN ROTATING BOSE–EINSTEIN
CONDENSATES∗

AMANDINE AFTALION† AND XAVIER BLANC†

Abstract. The structure of the vortex lattice for a fast rotating condensate in a harmonic trap
has been studied experimentally and numerically: it is an almost regular hexagonal lattice, with a
distortion on the edges. In this paper, we provide rigorous proofs of results announced in [A. Aftalion,
X. Blanc, and J. Dalibard, Phys. Rev. A, 71 (2005), p. 023611]. We analyze the vortex pattern in
the framework of the Gross–Pitaevskii energy using wave functions in the lowest Landau level. We
compute the energy of a regular triangular lattice and of a class of distorted lattices and find the
optimal distortion which provides a decay of the wave function similar to an inverted parabola.

Key words. Bose–Einstein condensates, lattice, lowest Landau level, averaging process, Gross–
Pitaevskii, vortices

AMS subject classifications. 35Jxx, 35Q40, 81V45

DOI. 10.1137/050632889

1. Introduction. One of the special features of Bose–Einstein condensates
(BEC), related to superfluidity, is the existence of quantized vortices. These vortices
can be observed in different types of experiments, one of them being the equivalent
of what is known for helium as the rotating bucket experiment [17]. When a normal
fluid is rotated, the velocity field inside the fluid is governed by solid body rotation.
In contradistinction, a quantum fluid such as a BEC, described by a macroscopic
wave function, nucleates vortices. This has been observed experimentally recently, in
particular in the ENS group [13, 27] but also in [1, 28]. When the rotational velocity
is small, there are only a few vortices in the system [12]. Their three dimensional
shape is of interest, as has been described in [6, 7] using tools developed by [10] for
Ginzburg–Landau vortices. At high velocity, the size of the condensate and the num-
ber of vortices increase: vortices arrange themselves in a lattice [1, 14, 18, 31, 33],
referred to as an Abrikosov lattice due to the analogy with superconductors. Such
a system can be related to homogeneous media since there are two scales emerging:
the size of vortices (of order 1) and the size of the condensate (much larger). In this
regime, vortices have approximately the same size as their mutual distance, which
is very different from the lower rotation regime. Hence different mathematical tools
need to be introduced relying on averaging effects (see [8]).

The description of the vortex lattice has been the focus of very recent papers in
the condensed matter physics community, starting with the seminal paper of Ho [21]
and very recently of Fischer and Baym [20], Baym and Pethick [9], Cooper, Komineas,
and Read [15], Watanabe, Baym, and Pethick [37], and Sheehy and Radzihovsky [34].
Our aim is to provide mathematical insight to the lattice pattern. In particular, we
show why a regular lattice has a higher energy than a distorted one and describe
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the appropriate distortion and how the distortion towards the edges modifies the
decay of the wave function. This is performed using the minimization of the Gross–
Pitaevskii energy. This framework, known as the mean field Quantum Hall regime, is
acceptable only if the number of vortices is much smaller than the number of atoms
in the condensate, which is the case of the present experiments. Otherwise, one has
to consider other models, as in [16, 35]. The reduction of the quantum many-body
Hamiltonian to the Gross Pitaevskii energy is an open question for this fast rotating
regime. It has been derived in the case of no rotation by Lieb, Seiringer, and Yngvason
[25], and in the case of fixed rotation by Lieb and Seiringer [24].

The energy that we want to minimize is the following:

∫
R2

(
1

2
|∇φ(x)|2 +

1

2
|x|2|φ(x)|2 − Ω (Lφ) (x)φ(x) +

1

2
G|φ(x)|4

)
dx(1.1)

under
∫

R2 |φ|2 = 1, where x = (x1, x2) ∈ R
2, L = i(x2∂x1 − x1∂x2) is the angular

momentum, Ω is the rotational velocity. The contributions to the energy are the
kinetic term (1/2)|∇φ|2, the term due to the potential trapping the atoms (1/2)|x|2|φ|2
and the rotating term −ΩL. The last term is due to atomic interactions, G being a
positive constant equal to Na, where N is the number of atoms in the condensate and
a the scattering length. In fact, we should have taken a three-dimensional version of
this energy, but as we are interested in a rotational velocity Ω close to 1, the minima
of the 2D and 3D energies are asymptotically the same (see [3]). Indeed, the effective
perpendicular trapping frequency becomes

√
1 − Ω2, and is thus much smaller than

the trapping frequency in the x3 direction, which is fixed: the condensate is strongly
confined along the x3 axis and it is expected that, as Ω tends to 1, the 3D wave
function is well approximated by the product of a Gaussian in the x3 direction times
a 2D wave function minimizing (1.1). The kinetic and rotational terms in the energy
(1.1) are the beginning of the expansion of a complete square. Adding and subtracting
the missing term modifies the trapping potential, creating what is called the effective
trapping potential, and the energy (1.1) can be rewritten as follows:

E(φ) =

∫
R2

1

2
|∇φ− iΩx⊥φ|2 +

1

2
(1 − Ω2)|x|2|φ|2 +

1

2
G|φ|4,(1.2)

where x⊥ = (−x2, x1). In order for the energy to be bounded below, we need to have
Ω < 1, which means that the trapping potential remains stronger than the rotating
force. As Ω < 1 approaches one, the extension of the condensate increases. The first
term in the energy is identical to the energy of a particle placed in a uniform magnetic
field 2Ω. It is also reminiscent of type II superconductors near the second critical field
Hc2. The minimizers for

∫
R2

1

2
|∇φ− iΩx⊥φ|2 under

∫
R2

|φ|2 = 1(1.3)

are well known [23, 26] through the study of the eigenvalues of the operator −(∇ −
iΩx⊥)2. The minimum is Ω and it is achieved in a space of infinite dimension called
the lowest Landau level (LLL). This space is spanned by

φ(x1, x2) = P (z)e−Ω|z|2/2 with z = x1 + ix2,(1.4)
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where P varies in the space of polynomials. The other eigenvalues are (2k + 1)Ω,
k ∈ N.

We will see that as Ω approaches 1, the second and third term in the energy (1.2)
produce a contribution of order

√
1 − Ω, which is much smaller than the gap between

two eigenvalues of −(∇ − iΩx⊥)2, namely 2Ω. Thus, it is natural, as a first step,
to restrict to the minimizers of (1.3) and minimize the energy (1.2) in this reduced
infinite dimensional space. Since we want to keep the same space as Ω varies, we will
use the rescaled wave function

ψ(x) =
1√
Ω
φ

(
x√
Ω

)
,(1.5)

which satisfies the condition
∫
|ψ|2 = 1. Therefore, the energy (1.2) provides E(φ) =

Ẽ(ψ) with

Ẽ(ψ) =

∫
R2

Ω

2
|∇ψ − ix⊥ψ|2 +

1 − Ω2

2Ω
|x|2|ψ|2 +

1

2
GΩ|ψ|4,(1.6)

and the condition (1.4) becomes

ψ(x) = P (z)e−|z|2/2 with P (z) = A

n∏
i=1

(z − zi) and z = x1 + ix2.(1.7)

For such a ψ, the first term of the energy is equal to Ω. Hence, we find that the energy
Ẽ(ψ) is equal to

ELLL(ψ) := Ω +

∫
R2

1 − Ω2

2Ω
|x|2|ψ|2 +

GΩ

2
|ψ|4.(1.8)

The issue is to minimize the energy (1.8) on the space (1.7), and in particular under-
stand the optimal location of the zeros or vortices zi and the averaged behavior of ψ
on large spheres.

The ansatz (1.7) is motivated by very recent physics papers: in a seminal paper,
Ho [21] computed the energy (1.6) of a configuration of the type (1.7), where the zi
are located on a triangular lattice and found that the wave function averaged over
vortex cells has a Gaussian decay. This was confirmed by [9]. Only recently did
Cooper, Komineas, and Read [15] observe numerically the distortion of the lattice on
the edges of the condensate and the decay of the wave function, which is closer to an
inverted parabola than a Gaussian. The inverted parabola profile can be explained
in two ways: either by taking contributions to the wave function in excited Landau
levels or by distorting the lattice in the LLL—that is, moving the zi in (1.7) away
from a regular lattice. Watanabe, Baym, and Pethick [37] claimed (without rigorously
proving it) that the minimizer is achieved by a distorted lattice inside the LLL. In this
paper, we want to understand rigorously the distortion of the lattice and are going
to provide a rigorous proof of the results announced in [2]: in [2], we have performed
numerical computations, fixing an upper bound on the number of zeros and using
a conjugate gradient on the zi to find a minimizer of the energy. This provides the
pattern for vortices illustrated in Figure 1. On the left, we have plotted the zi and on
the right |ψ|, where ψ is related to the zi through (1.7): in a central region, vortices
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Fig. 1. An example of (left) a configuration of zi minimizing the energy for Ω = 0.999, G = 3,
and n = 58; (right) density plot of |ψ|.

are located on a regular triangular lattice, while the lattice is distorted towards the
edges. The density plot of |ψ| shows that the only visible vortices are the central ones
in the regular lattice part, the outer ones being in a region of very low density.

If we minimize the energy (1.8) without any ansatz, we find that the minimizer is

|ψmin(r)|2 =
2

πR2
0

(
1 − r2

R2
0

)
+

, R0 =

(
4GΩ2

π(1 − Ω2)

)1/4

.(1.9)

This is a first indication of the main scale of the problem: the extension of the
condensate is of size R0, which is large when Ω approaches 1. The value of the energy
yields a lower bound for ELLL:

εmin := ELLL(ψmin) − Ω ∼
Ω→1

2
√

2

3

√
G(1 − Ω)

π
.(1.10)

Since ψmin has compact support, it is not in the closure of the space spanned by
(1.7). Thus, computing the energy of ψmin requires going back to (1.6). This yields a
contribution due to the kinetic energy of order R2 and hence much larger than (1.10).
Nevertheless, with an appropriate location of the zeros zi, the aim is to build a test
function whose energy can be of the same order as (1.10) and whose decay weakly
approaches that of (1.9) as Ω tends to 1. Our main results, announced in [2], are the
following: if the vortices are located on a regular lattice, the wave function decays like
a Gaussian and we provide a rigorous proof of the energy estimate obtained by Ho
[21]. On the other hand, we are able to build distortions of the lattice which improve
the energy and hence modify the decay of the wave function. This decay is similar to
that of an inverted parabola, as already observed by [15, 33, 37].

In what follows, � will denote a regular hexagonal lattice, whose unit cell Q,
centered at the origin has volume V . Moreover, we will identify complex numbers
and vectors in R

2 and in particular dz will denote the two dimensional Lebesgue
measure dx = dx1 dx2 when z = x1 + ix2 and x = (x1, x2). The symbol −

∫
is the

average of an �-periodic function: −
∫
f = 1

V

∫
Q
f.
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Theorem 1.1. Let � be a regular hexagonal lattice and Q its unit cell. Let

ψR(z) = AR

∏
j∈�∩BR

(z − j)e−|z|2/2(1.11)

with AR chosen such that ‖ψR‖L2(R2) = 1. If V = |Q| > π, we define

1

σ2
= 1 − π

V
,(1.12)

then we have, as R tends to ∞,

|ψR(z)| −→ ψ(z) =
1√
πσ

η(z)e−|z|2/(2σ2) in Lp
(
R

2, (1 + |z|2)dz
)
∀p ≥ 1,(1.13)

where η is an �-periodic function which vanishes at each point of �. Moreover, η is
the unique (up to multiplication by a constant) solution of

−Δ (ln η) = 2πδ0 −
2π

V
in Q,

with periodic boundary conditions. In addition, limR→+∞ ELLL(ψR) = ELLL(ψ). As
σ tends to infinity,

ELLL(ψ) − Ω ∼ 1 − Ω2

2Ω
σ2 +

1

4

GΩb

πσ2
where b =

−
∫
|η|4

(−
∫
|η|2)2 ,(1.14)

uniformly with respect to Ω.
The main feature of the periodic lattice is to modify the decay of the Gaussian

from e−|z|2/2 to e−|z|2/2σ2

, where σ depends on the volume through (1.12). The choice
of the normalization by the L2 norm implies convergence of ψR only if V > π.

We need to choose the optimal σ in (1.14), which yields

σ4 =
1

2

GbΩ2

π(1 − Ω2)
.(1.15)

This value of σ indeed satisfies σ → +∞ as Ω tends to 1. The volume condition (1.12)
matched with the value of σ (1.15) implies

V = π

(
1 +

√
(1 − Ω)

4π

Gb

)
+ O(1 − Ω).(1.16)

This is close to the value predicted by solid body rotation arguments, π/Ω (see [21]),
but different. The estimate of the energy is thus

ELLL(ψ) − Ω ∼
Ω→1

√
Gb

π
(1 − Ω).(1.17)

This is to be compared to (1.10), which is better by a factor
√

8/9b, but is of the
same magnitude, as 1−Ω is small. Let us emphasize the presence of the coefficient b:
it takes into account the averaged vortex contribution in each cell. As in the case of
superconductors near Hc2 , for the Abrikosov lattice, the optimal lattice minimizing
the ratio b is the hexagonal one [22]. An approximate value of b is 1.16. Note that
our proof holds with other lattices than the hexagonal one.
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The aim of the paper is to improve the numerical factor in front of the square
root in (1.17). The main observation is that modifying the location of the vortices
from a regular lattice can change the decay of the wave function and hence improve
the energy estimate.

Theorem 1.2. There exists a sequence of functions ψΩ of the form (1.7), such
that as Ω tends to 1,

ELLL(ψΩ) − Ω ∼ 2
√

2

3

√
Gb

π
(1 − Ω).(1.18)

This is closer to the lower bound (1.10) than the regular lattice: the numerical
factor is the same as in (1.10), except for the coefficient b, coming from the averaged
vortex contribution.

Let us now explain the main ideas of the proof, announced in [2]. For the regular
lattice, we split ln |ψR(z)| into vR(z) + wR(z) with

vR(z) =
∑

j∈�∩BR

(
ln |z − j| − 1

V

∫
Q

ln |z − y − j| dy
)
,(1.19)

wR(z) = lnAR − |z|2
2

+
1

V

∑
j∈�∩BR

∫
Q

ln |z − y − j| dy.(1.20)

At this stage, we have just added and subtracted the sum of the integrals. As R tends
to ∞, we prove that vR converges to a periodic series v and ewR to a Gaussian with
modified decay 1/σ2. The computation of the energy uses the fact that for a periodic
function η, η(σz) converges weakly to the average of η (see Lemma 2.5 and [8, 29]).
This allows one to separate the integrals of the Gaussian and of v, which vary on two
different scales; the v integral provides the term b.

Let us be more precise about Theorem 1.2. We define the radius R by

R =

(
2Gb

π(1 − Ω)

)1/4

,(1.21)

and we perform a general transformation of the lattice in the following way: for j in �,
a regular triangular lattice of unit cell with volume V = π, we define the transformed
lattice �′R by

k ∈ �′R if k = νR(|j|) j for j ∈ � ∩BR.(1.22)

We assume that νR is close to 1 as Ω tends to 1, in the sense that

ν2
R(r) = 1 +

f(r2/R2)

R2
+ O

(
1

R4

)
,(1.23)

where f(t) is a continuous function, such that for some γ, f(γ) = ∞ and
∫ γ

0
f(s) ds =

∞. Actually, we will see in (1.28) that the one providing an energy minimizer is
f(s) = 1/(1 − s).

We would like to apply the same proof as for the regular lattice, using vR and
wR for this distorted lattice. Contrary to the proof for the regular lattice, we cannot
study the two limits R → ∞ in (1.13) and σ → ∞ in (1.14) separately, since R is
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Fig. 2. A plot of the distorted lattice defined by (1.24).

now related to Ω through (1.21). Hence, the lattice has a finite extent at each R and
we have to pass to the limit in the averaging process at the same time as the scale of
the lattice. For technical reasons, we are unable to match wR inside and outside the
lattice and use the dominated convergence theorem.

In order to circumvent this problem, we introduce an outer regular lattice, whose
characteristic size tends to infinity in a last step. Let α ∈ (0, γ), R be related to Ω by
(1.21), and

λR(r) =

{
νR(r) if r ≤ αR,
να,R = νR(αR) if r > αR,

(1.24)

and �′R = {λR(|j|)j, j ∈ �}. We have plotted such a transformation in Figure 2. For
fixed α, we let R tend to ∞, and study the limit of the wave functions vanishing at
each point of �′R:

ψR(z) = AR

∏
j∈�

(z − λR(|j|)j) e−|z|2/2.(1.25)

Since α is fixed, νR(αR) tends to 1. We use similar ideas as in the regular lattice
case and identify two parts in the limit of |ψR(Rz)|2 as R tends to ∞: a periodic
part, which is rapidly oscillating and averaged in the limit, multiplied by a profile
depending on the transformation f , which is equal to

|ψ(z)|2 = e−F (|z|2)1Bα(z) + eα
2f(α2)−F (α2)−f(α2)|z|21Bc

α
(z),(1.26)

where F : R
+ → R satisfies F ′ = f . The proof uses as a main tool that λR is close to

one. As a final step only, once we have passed to the limit Ω → 1, we let α tend to γ,
so that the exterior regular lattice has a unit volume cell which tends to infinity and
the outer contribution disappears. We find an estimate for the energy:

ELLL(ψΩ) − Ω ∼
Ω→1

√
2Gb(1 − Ω)

π

∫ γ

0

(
se−F (s) +

1

4
e−2F (s)

)
ds,(1.27)

where F is such that F ′ = f and
∫ γ

0
e−F (s) ds = 1.
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We want to find which type of distortion f provides the optimal energy. The
minimizer of (1.27) under

∫ γ

0
e−F (s) ds = 1 is reached when

γ = 1 and e−F (r2) = 2(1 − r2)+.(1.28)

Thus, the decay of the wave function is asymptotically an inverted parabola. The
corresponding value of f is f(s) = 1/(1−s). The limiting value of the energy is (1.18).

Let us point out that the proof uses two lattices: an initial regular lattice and
an image lattice obtained by (1.22) and (1.23). The meaning of γ = 1 in (1.28) is
that the initial lattice is truncated in the ball BR: the points outside BR are sent to
infinity. There are two regions in the initial lattice: the points sufficiently far away
from the circle of radius R, for which νR is almost one, and the points close to the
circle, at distance less than

√
R for instance. For the first category of points, the

image lattice is an almost regular lattice and the image points are inside the disk BR.
These are the visible points on the density profile. On the contrary, the points close to
the circle are strongly modified by (1.23) and sent far away. This allows one to better
understand the distorted shape of Figure 1. It turns out that R is both the radius
of the “horizon” for the initial lattice, but also the radius of the limiting inverted
parabola (1.28). The points which are not visible in the density profile, and are in the
distorted region, have nevertheless a contribution in creating the inverted parabola
profile, since they provide the decay of the wave function: if they are removed, the
decay is that of a Gaussian.

For each Ω, this analysis gives an estimate of the number Nv of points in the
distorted lattice: it is given by the number of points in a regular lattice of unit
volume π, included in a ball of radius R given by (1.21), namely

Nv ∼
√

2Gb

π(1 − Ω)
.

This is probably a good estimate of the number of significant points to produce an
energy of order (1.18). Nevertheless, adding more points in the low density region
may lower the energy at the next order term in (1 − Ω). In [2], we have studied
numerically the dependence of En, the minimum of the energy over polynomials of
degree less than or equal to n, which corresponds to at most n vortices. With the
parameters Ω = 0.999 and G = 3, we find that En becomes almost constant for
n ≥ 52 (with a precision of order 10−10) which is comparable to the present estimate
Nv = 47. Nevertheless, in [4, 5], we have now proved, using Bargmann spaces, that
the minimizer has an infinite number of zereos. It means that additional zeroes appear
in the low density region and contribute to decrease higher order terms in the energy.
Consequently, the present upper bound only provides information for vortices entering
in the first order expansion of the energy.

One of our technical tools in the proof is to use an outer regular lattice whose
spacing tends to infinity in a last step. If one wanted to get rid of this trick, one would
need to count the number of points in the lattice closest to the limiting circle of radius
R and estimate the convergence of vR and wR due to the fact that these limiting points
do not lie on a circle but on the edges of hexagons. We are not able to prove that the
finite extension of the lattice (which becomes infinite with an outer regular lattice)
does not create a boundary contribution in the energy. These boundary effects seem
to be more important than we expected and are related to known problems about
counting the number of points of a lattice in an annulus (see [11] and the references
therein).
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Our results deal with an upper bound for the energy. A natural question would
be to also get the lower bound and prove Γ convergence–type results. The present
gap between the lower bound (1.10) and the upper bound (1.18) lies in the coefficient
b. We believe that an optimal lower bound should match the upper bound and that
the limiting inverted parabola should have a radius given by (1.21) instead of (1.9);
that is, the optimal inverted parabola should have the coefficient b. Let us give a few
more explanations.

A first question is to understand the lower bound for the energy restricted to the
LLL and prove that it matches our upper bound (1.18). For the moment, we are
unable to prove it, though we expect that reproducing an inverted parabola profile
in the space (1.7) requires a lot of vortices and thus creates a contribution in the
energy through b. Our numerical computations agree with this. But proving that a
minimizing sequence has zeros which are located on an almost regular lattice seems
very difficult and is probably related to similar difficulties in crystalization and sphere
packing problems.

Another issue is to check that the lower bound of the energy restricted to the
LLL should provide the lower bound for the full energy (1.6). More precisely, if ψ
is a minimizer of (1.6), we can project it on the LLL and its orthogonal through
ψ = ψLLL + ψ⊥. The upper bound and the properties of the operator (1.3) imply
that ‖ψLLL‖L2 is close to 1 and ‖ψ⊥‖L2 is small like

√
1 − Ω. If we had for ELLL a

lower bound in the LLL matching the upper bound (1.18), this would imply ‖ψ⊥‖L2 =
o
(√

1 − Ω
)
. Using the Poincaré inequality of Lu and Pan [26], one can improve the

norm and get an L∞ estimate for ψ⊥. This should allow one to prove that the leading
order term in the energy of ψ is ELLL(ψLLL).

The authors of [37] provide a formal argument to exclude contributions of excited
Landau levels. Let us give a gist on how to justify it. Let us call ρ the rescaled
limiting density distribution given by (1.26), which can either be a Gaussian if the
lattice is regular or approach an inverted parabola if the lattice is distorted. We have
seen that the energy of this test function is computed through√

2Gb(1 − Ω)

π

∫ (
r2ρ2 + ρ4

)
under

∫
ρ2 = 1.(1.29)

This is done by using a wave function ψΩ such that |ψΩ|p → (−
∫
|η|p)ρp. In [37],

the following ansatz is introduced: the authors replace ψΩ by hΩψΩ, where ψΩ is the
above wave function and hΩ is a modulation due to the contribution of higher Landau
levels. It is in addition assumed that hΩ varies on a much larger scale than the vortex
lattice. This assumption of slow variation allows them to compute the limit of hΩψΩ

using averaging effects and find as a limiting energy of (1.6), when Ω tends to 1,√
2Gb(1 − Ω)

π

∫
1

2
ρ2|∇h|2 + r2ρ2h2 + ρ4h4 under

∫
ρ2h2 = 1.(1.30)

Note that h = 1 reproduces the previous computations. Minimizing (1.30) and using

a convexity argument, we find that
∫ (

h2ρ2 − p2
)2

tend to 0, where p is the rescaled
inverted parabola. If ρ itself is close to the inverted parabola, this implies that h is
close to 1, and thus the contribution from higher Landau levels is negligible.

Let us point out that other trapping potentials than |x|2 can be dealt with these
techniques. In [2], we have addressed the case of |x|2 + k|x|4 with k small, following
recent experiments [13, 36]. For certain values of Ω, a giant vortex can be obtained.
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This paper is organized as follows: In section 2, we study the regular lattice case
and prove Theorem 1.1. Then, in section 3, we prove Theorem 1.2. Finally, section 4
is devoted to remarks concerning other trapping potentials.

2. Regular lattice. In this section, we prove Theorem 1.1. We first need two
technical lemmas:

Lemma 2.1. Let � be a lattice, and denote by Q its unit cell centered at 0. Let
QR =

⋃
k∈�∩BR

(Q + k) and for x in R
2, let

hR(x) =

∫
QR

(ln |x− x′| − ln |x′|) dx′.

Then there exists C > 0 and R0 > 0 such that

∀R ≥ R0, hR(x) ≤
(
π

2
+

C

R

)
|x|2.

Proof. If QR was a ball, then the integral could be computed explicitly. Thus, we
use a ball close to QR and estimate the difference. We separate the integral defining
hR into two parts:

hR(x) =

∫
BR−a

(ln |x− x′| − ln |x′|) dx′ +

∫
QR\BR−a

(ln |x− x′| − ln |x′|) dx′,

where a > 0 is independent of R and such that BR−a ⊂ QR. The first term is the
radial solution of Δu = 1BR−a

such that u(0) = 0. One easily computes this solution:

u(x) =
π

2
|x|21BR−a

+ π(R− a)2
(

1

2
+ ln

(
|x|

R− a

))
1Bc

R−a
.

Next, we consider the second term defining hR and use the inequality ln(t) ≤ 1
2 (t2−1),

valid for any t > 0:∫
QR\BR−a

(ln |x− x′| − ln |x′|) dx′ ≤
∫
QR\BR−a

1

2

(
|x− x′|2
|x′|2 − 1

)
dx′

= |x|2
∫
QR\BR−a

dx′

2|x′|2 ≤ C
|x|2
R

,

the constant C being independent of R and x. Collecting both results, we infer

hR(x) ≤ π

2
|x|21BR−a

(x) + π(R− a)2
(

1

2
+ ln

(
|x|

R− a

))
1Bc

R−a
(x) +

C

R
|x|2

≤
(
π

2
+

C

R

)
|x|2,

here using again ln(t) ≤ 1
2 (t2 − 1). This gives the result.

Lemma 2.2. Let � be the hexagonal lattice, and let Q be its elementary unit cell
(i.e., the regular hexagon centered at 0). Let

g(x) = ln |x| − 1

|Q|

∫
Q

ln |x− y| dy.(2.1)
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Then we have, for some constant C > 0,

∀x ∈ Bc
1, |g(x)| ≤ C

|x|3 .(2.2)

Hence, the function

v(x) =
∑
j∈�

g(x− j)(2.3)

is such that ev(x) exists, is continuous on R
2, and �-periodic.

Proof. We first point out that g is continuous on R
2 \ {0}. Hence, we need only

to show (2.2) on Bc
a for some a > 0. We fix a > 0 such that Q ⊂ B a

2
. For any x ∈ Bc

a

and any y ∈ Q, we have |x−y|
|x| ≥ |x|− a

2

|x| ≥ 1
2 . Hence,

|x− y|2
|x|2 − 1 ≥ −3

4
.

For any t > − 3
4 , we have

t− t2

2
− |t|3 ≤ ln(1 + t) ≤ t− t2

2
+

t3

3
.

Hence, writing g(x) = − 1
|Q|

∫
Q

1
2 ln

(
1 − 2y·x

|x|2 + |y|2
|x|2

)
dy, we infer

1

2|Q|

∫
Q

(
−2y · x

|x|2 +
|y|2
|x|2 − 1

2

(
−2y · x

|x|2 +
|y|2
|x|2

)2

−
∣∣∣∣−2y · x

|x|2 +
|y|2
|x|2

∣∣∣∣
3
)
dy ≤ −g(x)

≤ 1

2|Q|

∫
Q

(
−2y · x

|x|2 +
|y|2
|x|2 − 1

2

(
−2y · x

|x|2 +
|y|2
|x|2

)2

+
1

3

(
−2y · x

|x|2 +
|y|2
|x|2

)3
)
dy.

Since Q is symmetric with respect to the origin,
∫
Q
y·x dy = 0. In addition, Q is invari-

ant under the rotation of angle π/3, so one easily shows that
∫
Q

(
|y|2 − 2(y · x)2

)
dy =

0. We thus have

1

2|Q|

∫
Q

(
2y · x|y|2

|x|4 − |y|4
|x|4 −

∣∣∣∣−2y · x
|x|2 +

|y|2
|x|2

∣∣∣∣
3
)
dy ≤ g(x)

≤ 1

2|Q|

∫
Q

(
2y · x|y|2

|x|4 − |y|4
|x|4 +

1

3

(
−2y · x

|x|2 +
|y|2
|x|2

)3
)
dy.

Using |y| ≤ a
2 , we end up with

|g(x)| ≤ 1

|Q|

∫
Q

(
|y|3
|x|3 +

|y|4
2|x|4 +

1

2

∣∣∣∣2|y||x| +
|y|2
|x|2

∣∣∣∣
3
)
dy ≤

a3

8 + a3

16 + 2a3

|x|3 .

This ensures that the series (2.3) converges normally on any set of the form (
⋃

j∈� Bε(j))
c,

which implies that v exists, is �-periodic, and continuous on R
2 \�. Near a point k ∈ �,

we write

ev(x) = |x− k|e−
1

|Q|
∫
Q

ln |x−y| dye
∑

j∈�\{k} g(x−j)

and the conclusion follows.
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Remark 2.3. It is in this lemma that we have used the symmetry properties
of the lattice. However, the same proof applies to a general lattice (which does not
necessarily have the above symmetries). In this case, one needs to use instead of
g = ln | · | ∗ (δ0 − 1

|Q|1Q) the convolution of ln | · | with a distribution g0 such that∑
k∈� g0(x − k) =

∑
k∈� δk − 1

|Q| and such that the first harmonic moments of g0

cancel. This is always possible (in such a case g0 is not supported inside Q).
Remark 2.4. The estimate (2.2) is valid for a fixed hexagonal lattice �0. Now,

g = g� depends on � in the following way: if � = λ�0, then g�(x) = g�0
(
x
λ

)
. Hence,

|g�(x)| ≤ C0λ
3

|x|3 if |x| ≥ λ for some constant C0 independent of �.

We finally state the following lemma, which may be seen as the simplest case of
two-scale convergence [8, 29]. The proof is standard and may be found, for example,
in [8].

Lemma 2.5. Let v ∈ L1
loc

(
R

2
)
, which is periodic, and set vσ(x) = v (σx) for any

σ > 0. Then

vσ
∗−⇀

σ→∞
−
∫

v in L∞(R2).

Proof of Theorem 1.1. Let fR(z) = ln |ψR(z)|. We split fR into

fR(z) = vR(z) + wR(z)(2.4)

with

vR(z) =
∑

j∈l∩BR

ln |z − j| − 1

V

∫
Q

ln |z − y − j| dy,(2.5)

wR(z) = lnAR − |z|2
2

+
1

V

∑
j∈�∩BR

∫
Q

ln |z − y − j| dy.(2.6)

Let v be given by (2.3). We have

vR(z) − v(z) =
∑

j∈�∩Bc
R

g(z − j).

Hence, if z ∈ BR, we deduce from Lemma 2.2 that

|vR(z) − v(z)| ≤
∑

j∈�∩Bc
R

C

|z − j|3

for some constant C independent of R and z. One can thus find a constant C inde-
pendent of R such that

∀A ∈ (0, R), ‖vR − v‖L∞(BR−A) ≤
C

A
.(2.7)

In addition, we have, for any z ∈ R
2, denoting by jz the unique point of � such that

|jz − z| < 1,

vR(z) ≤ ln |z − jz| + C +
∑

j∈�\{jz}

C

|z − j|3 ≤ ln |z − jz| + C,
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for various constants C independent of z and R. Hence, evR is bounded in L∞(R2)
independently of R. Next, using the inequality |ea − eb| ≤ 1

2 (ea + eb)|a− b| and (2.7),
we infer that evR converges to ev in L∞

loc(R
2).

Let us call w̃R(z) = wR(z)−wR(0)− ln(AR) + 1
2σ2 |z|2. Applying Lemma 2.1, we

have

w̃R(z) ≤ −|z|2
2

+

(
π

2V
+

C

R

)
|z|2 +

1

2σ2
|z|2 =

C

R
|z|2.(2.8)

In addition, w̃R is a harmonic function in QR =
⋃

j∈�∩BR
(Q + j) and vanishes at 0.

Hence, using Harnack inequality, w̃R is bounded and we may extract convergence of
w̃R in L∞

loc(R
2) to some w̃, which is harmonic nonpositive, and vanishes at 0. Applying

Liouville theorem, we find that w̃ = 0. Gathering all the previous results, we thus have

|ψR(z)|
ARewR(0)

−→ ev(z)e−|z|2/(2σ2) almost everywhere in R
2.(2.9)

For R large enough, (2.8) also implies

|ψR(z)|
ARewR(0)

≤ Ce−
|z|2
4σ2 .(2.10)

From (2.9) and (2.10), we apply the dominated convergence theorem and find that,
as R tends to infinity,

|ψR|
ARewR(0)

−→ ev(z)e−|z|2/(2σ2) in Lp(R2) ∀p ≥ 1.

Using the fact that ‖ψR‖L2 = 1, we deduce that 1/(ARe
wR(0)) converges to the

appropriate constant, so that (1.13) holds.
Then we write the limiting energy, z being identified with a vector in R

2:

ELLL(ψ) = Ω +

∫
R2

(
1 − Ω2

2Ω
|z|2|η(z)|2e−|z|2/σ2

+
GΩ

2σ2
|η(z)|4e−2|z|2/σ2

)
dz

πσ2

= Ω +

∫
R2

(
1 − Ω2

2Ω
σ2|η(σξ)|2|ξ|2e−|ξ|2 +

GΩ

2σ2
|η(σξ)|4e−2|ξ|2

)
dξ

π
.

We want to find the limit as σ tends to infinity. Since the function η is periodic,
Lemma 2.5 implies that |η(σξ)|2 and |η(σξ)|4, respectively, converge L∞-weak-∗ to
−
∫
|η|2 and −

∫
|η|4, and (1.14) holds.

3. Distorted lattice. In this section, we prove two theorems, which will imply
Theorem 1.2. Theorem 3.1 consists of studying a distorted lattice analogous to Fig-
ure 2 and find the limit of the wave function with an infinite number of vortices. The
proof is similar to the regular lattice case, since only the central vortices are displaced
from their regular location. Theorem 3.2 identifies the limit of the modulus of the
wave function as Ω tends to 1: a periodic, rapidly oscillating part which converges
in L∞-weak-∗ and a slowly varying profile. The proof is more involved since this is
precisely where the distortion of the lattice appears.

Theorem 3.1. Let � be a hexagonal lattice, and let Q be the regular hexagon
of area π centered at zero. Let γ > 0 and let f be a positive Lipschitz continuous
function defined in [0, γ) such that

lim
t→γ

f(t) = +∞ and lim
t→γ

∫ t

0

f(s)ds = ∞.(3.1)
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Let us define

νR(t) = 1 +
1

2R2
f

(
t2

R2

)
+ O

(
1

R4

)
,(3.2)

where O
(

1
R4

)
is uniform with respect to t ∈ R

+. Let α ∈ (0, γ)

λR(t) =

{
νR(t) if t ≤ αR,
να,R = νR(αR) if t > αR.

(3.3)

For R′ > R, we define

ψR,R′(x) = AR,R′

∏
j∈�∩BR′

(x− λR(|j|)j) e−|x|2/2,(3.4)

where AR,R′ is such that ‖ψR,R′‖L2(R2) = 1. Then, we have the following convergence
in Lp(R2, (1 + |x|2)dx) for any p < +∞:

|ψR,R′ | −→
R′→+∞

ARe
vR

(
x

να,R

)
+ wR(x) +

(
1

να,R2
− 1

)
|x|2
2 ,(3.5)

where

wR(x) =
∑

j∈�∩BαR

1

ν2
α,R|Q|

∫
να,RQ

ln

(
|x− y − νR(|j|)j|
|x− y − να,Rj|

)
dy,(3.6)

and

vR(y) =
∑
j∈�

g

(
y − λR(|j|)

να,R
j

)
,(3.7)

the function g being defined by (2.1).
Then, we let Ω tend to 1, or equivalently R to infinity.
Theorem 3.2. With the same definitions as in Theorem 3.1, we have

∀n ≥ 1, envR(Rx) ∗−⇀
R→+∞

−
∫

env in L∞(R2),(3.8)

e
2wR(Rx)+

(
1

λR(αR)2
−1

)
R2|x|2 −→

R→+∞
ρ(x)(3.9)

in Lp(R2, (1 + |x|2)dx) ∀p ≥ 1, where v is given by (2.3),

ρ(x) = e−F (|x|2)1Bα
(x) + eα

2f(α2)−F (α2)−f(α2)|x|21Bc
α
(x),(3.10)

and F is such that F ′ = f and −
∫
e2v

∫
ρ = 1.

Proof of Theorem 1.2. We let Ω tend to 1, let R be given by (1.21), and take a diag-
onal sequence in R′. Theorems 3.1 and 3.2 provide the convergence of

∫
|ψR,R′(Rz)|2

to −
∫
e2v

∫
ρ, and similarly for the energy:

(3.11) ELLL(ψR,R′(Rz)) − Ω ∼
Ω→1

√
2Gb(1 − Ω)

π

(
−
∫

e2v

∫ ∞

0

sρ(
√
s) ds

+
1

4
−
∫

e4v

∫ ∞

0

ρ2(
√
s) ds

)
,
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where ρ is defined by (3.10), F is such that F ′ = f and
∫ γ

0
e−F (s) ds = 1 and −

∫
e2v = 1.

If one lets α tend to γ: the contribution to ρ in the outer part Bc
γ vanishes and the

energy is given by (1.27).
We want to find which type of distortion f provides the optimal energy. The

minimizer of (1.27) under
∫ γ

0
e−F (s) ds = 1 is reached when

γ = 1 and e−F (r2) = 2(1 − r2).(3.12)

Thus, the decay of the wave function is asymptotically an inverted parabola. The
corresponding value of f is f(s) = 1/(1 − s). The limiting value of the energy is
(1.18).

Proof of Theorem 3.1. This proof is a mere adaptation of section 2. Indeed, up
to normalization by a constant, the function ln |ψR,R′ |2 is equal to

ln |ψR,R′(x)|2 = 2
∑

j∈�∩BR′

(
ln |x− λR(|j|)j|(3.13)

− 1

να,R2|Q|

∫
να,RQ

ln |x− y − λR(|j|)j|dy
)

(3.14)

+
∑

j∈�∩BR′

2

να,R2|Q|

∫
να,RQ

ln |x− y − λR(|j|)j|dy(3.15)

−|x|2.(3.16)

The sum (3.13)–(3.14) may be written∑
j∈�∩BR′

g

(
x

να,R
− λR(|j|)

να,R
j

)
,(3.17)

where g is defined by (2.1). Now, R being fixed, Lemma 2.2 ensures that the above
sum converges as R′ goes to infinity to vR( x

ν(αR) ), where vR is defined by (3.7).

Moreover, the convergence of the exponential of (3.17) to evR( x
ν(αR) ) is the same as in

Theorem 1.1, that is, L∞
loc(R

2). Next, the sum (3.15) is equal to∑
j∈�∩BR′

2

να,R2|Q|

∫
να,RQ

ln |x− y − λR(|j|)j|dy

=
∑

j∈�∩BαR

2

να,R2|Q|

∫
να,RQ

ln
|x− y − νR(|j|)j|
|x− y − να,R j| dy

+
∑

j∈�∩BR′

2

να,R2|Q|

∫
να,RQ

ln |x− y − να,R j|dy.(3.18)

The first sum in the left-hand side of (3.18) is wR(x), while the second sum is the one
appearing in (2.6), with ν(αR)� replacing �. Since this lattice is also a hexagonal one
(with a different volume for its unit cell), the proof of its convergence applies, using
Lemma 2.1.

Proof of Theorem 3.2. For simplicity, we will give the proof in the case where the
O(1/R4) is zero. We start with the proof of (3.9). We define ε > 0 depending on R
such that, as R tends to infinity, {

Rε −→ +∞,
Rε2 −→ 0.

(3.19)
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For instance, ε = R−3/4 is a suitable choice. Writing

wR(Rx) =
∑

k∈ �
R∩Bα

R2

να,R2|Q|

∫
να,R

R Q

ln

(
|x− z − νR(R|k|)k|
|x− z − να,Rk|

)
dz,

we split this sum into terms for which |k − x| < ε, and terms for which |x− k| ≥ ε :
in the first case, we use the inequality

∀a, b > 0, | ln a− ln b| ≤ 1

2

(
1

a
+

1

b

)
|b− a|,

and the fact that |να,R − νR(|k|R)| ≤ C
R2 for some constant C independent of R and

x. Hence, ∣∣∣∣∣∣
∑

|k−x|<ε

R2

να,R|Q|

∫
να,R

R Q

ln

(
|x− z − νR(R|k|)k|
|x− z − να,Rk|

)
dz

∣∣∣∣∣∣
≤

∑
|k−x|<ε

R2

2να,R|Q|

∫
να,R

R Q

(
1

|x− z − νR(R|k|)k|

+
1

|x− z − να,Rk|

)
|k||να,R − νR(|k|R)|dz

≤ C

R2

∑
|k−x|<ε

R2

2να,R|Q|

∫
B 3

R

dy

|y| ≤ C#

(
�

R
∩Bε(x)

)
1

R
= CRε2,

which tends to zero as R → +∞. Next, we deal with |k − x| ≥ ε, and denote the
corresponding sum by TR(x):

TR(x) =
∑

|k−x|≥ε

R2

να,R2|Q|

∫
να,R

R Q

ln

(
|x− z − νR(R|k|)k|
|x− z − να,Rk|

)
dz.

Using the equality νR(R|k|) = 1 + f(|k|2)
2R2 , valid for any |k| ≤ α, we deduce

TR(x) =
∑

|k−x|≥ε

R2

να,R2|Q|

∫
να,R

R Q

ln

(
|x− z − k − f(|k|2)

2R2 k|
|x− z − k − f(α2)

2R2 k|

)
dz.

We have |x− z − k| ≥ |x− k| − |z| ≥ ε− C
R = ε(1 − C

εR ) for z ∈ να,R

R Q, so that for R
large enough, we get |x− z−k| ≥ ε

2 . Hence, developing the quotient in the logarithm,
we get

TR(x) =
∑

|k−x|≥ε

R2

2να,R2|Q|

∫
να,R

R Q

ln

⎛
⎝1 − f(|k|2)

R2|x−z−k|2 k · (x− z − k) + O
(

1
ε2R4

)
1 − f(α2)

R2|x−z−k|2 k · (x− z − k) + O
(

1
ε2R4

)
⎞
⎠ dz,

where the O
(

1
ε2R4

)
are uniform with respect to x and k. Developing the logarithm,

we thus find

TR(x) =
∑

|k−x|≥ε

(
R2

να,R2|Q|

∫
να,R

R Q

f(α2) − f(|k|2)
R2

k · (x− z − k)

|x− z − k|2 dz

)
+ O

(
1

ε2R2

)
.
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Using the fact that f is smooth in [0, α], and recalling that the sum is a sum over the
set �

R ∩Bα ∩Bε(x)c, we find that it converges to the corresponding integral, namely

lim
R→+∞

TR(x) =
1

|Q|

∫
Bα

(
f(α2) − f(|y|2)

) y · (x− y)

|x− y|2 dy.

We then point out that x−y
|x−y|2 = −∇y ln |x−y|, so that, integrating by parts, we have

lim
R→+∞

wR(Rx) =
1

|Q|

∫
Bα

div
(
f(α2) − f(|y|2)y

)
ln |x− y|dy.

This limit is a radially symmetric function, which solves the partial differential equa-
tion Δu = 2π

|Q|div
(
f(α2) − f(|y|2)y

)
in Bα, Δu = 0 elsewhere. For any F such that

F ′ = f , the function 1
2

(
f(α2)|y|2 − F (|y|2)

)
1Bα(y) + 1

2

(
α2f(α2) − F (α2)

)
1Bc

α
(y) is

such a solution, so we have (3.9) almost everywhere. In addition, the above proof

allows one to bound 2wR(Rx) + ( 1
ν2
α,R

− 1)R2|x|2 by C − f(α2)
4 |x|2 for some constant

C independent of R and x, which allows one to apply the dominated convergence
theorem.

We now prove (3.8). We fix n = 1, the general proof following exactly the
same pattern. It is sufficient to show that the following convergence holds for any
measurable bounded set D: ∫

D

evR(Rx) −→
R→+∞

|D|−
∫

ev.(3.20)

Hence, we are going to prove that for any a > 0,

∣∣∣evR(x) − ev(x)
∣∣∣ ≤ C

1 +
√
|x|

R
for |x| ≤ aR.(3.21)

Since, according to Lemma 2.5, ev(Rx) converges in L∞ weak-∗ to −
∫
ev (because ev is

continuous and periodic), (3.21) will give (3.20). Let jx be the point of � which is the
closest to x. As R goes to infinity, |(λR(|jx|) − 1)jx| = O

(
1
R

)
uniformly with respect

to x since |x| ≤ aR. Hence, for R large enough, λR(|jx|)jx is the closest to x among
all λR(|j|)j, j ∈ �. Hence, for j ∈ � \ {jx}, we have, for some ε > 0,

∀y ∈ Q, |x− j − y| ≥ ε and |x− j − λR(|j|)(j + y)| ≥ ε.(3.22)

We then isolate jx in the sum defining vR and write∣∣∣evR(x) − ev(x)
∣∣∣ ≤ ∣∣∣egR(x−λR(|jx|)jx) − egR(x−jx)

∣∣∣ e∑j �=jx
gR(x−λR(|j|)j)(3.23)

+egR(x−jx)
∣∣∣e∑j �=jx

gR(x−λR(|j|)j) − e
∑

j �=jx
gR(x−j)

∣∣∣ ,(3.24)

where gR(z) = g( z
να,R

). We first bound (3.23). For this purpose, we point out that,

according to Lemma 2.2, one can find a constant Cε such that

∀z ∈ Bc
ε, |g(z)| ≤ Cε

|z|3 .(3.25)

Hence, the sum appearing in (3.23) may be bounded as follows:

∑
j �=jx

|gR(x− λR(|j|)j)| ≤
∑
j �=jx

Cενα,R
3

|x− λR(|j|)j|3 ,
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which is bounded independently of R. Moreover, we have∣∣∣egR(x−λR(|jx|)jx) − egR(x−jx)
∣∣∣ ≤ C ||x− λR(|jx|)jx| − |x− jx||

+C

∣∣∣∣
∫
Q

(
ln

|x− y − jx|
|x− y − λR(|jx|)jx|

)
dy

∣∣∣∣ ;
thus∣∣∣egR(x−λR(|jx|)jx) − egR(x−jx)

∣∣∣ ≤ C |(1 − λR(|jx|)jx|

+ C

∫
Q

(
1

|x− y − jx|
+

1

|x− y − λR(|jx|)jx|

)
|1 − λR(|jx|)||jx|dy.

This implies∣∣∣egR(x−λR(|jx|)jx) − egR(x−jx)
∣∣∣ ≤ C

|x|
R2

+ C
|x|
R2

∫
B3

dy

|y| ≤ C
|x|
R2

.

Hence, the left-hand side of (3.23) is bounded by C |x|
R2 . Next, we deal with (3.24).

Since g is bounded from above, it is sufficient to show the following:∣∣∣∣∣∣
∑
j �=jx

gR(x− λR(|j|)j) −
∑
j �=jx

gR(x− j)

∣∣∣∣∣∣ ≤ C
1 +

√
|x|

R
.(3.26)

In order to prove (3.26), we define A > 0 depending on R and x, to be fixed later on,
and distinguish in the above sum between terms for which |j − jx| ≤ A and those for
which |j − jx| > A. We have∑

0<|j−jx|≤A

|gR(x− λR(|j|)j) − gR(x− j)| ≤ ‖∇g‖L∞(Bc
ε)

∑
0<|j−jx|≤A

|j||λR(|j|) − 1|

≤ C

R2

∑
0<|j−jx|≤A

|j| ≤ C

R2
A2(|x| + A).

We have used here the fact that g is Lipschitz continuous in Bc
ε. Considering the case

|j − jx| > A, we have, using (3.25),

∑
A>|j−jx|

|gR(x− λR(|j|)j) − gR(x− j)| ≤
∑

A>|j−jx|

C

|x− j|3 ≤ C

A
.

We thus may bound the left-hand side of (3.26) by C
A + CA2|x|

R2 + CA3

R2 . Choosing

A =
√
R

1+|x|1/4 , we thus find (3.26), thereby concluding the proof of (3.21).

4. Other trapping potentials. In the previous sections, we have studied a
harmonic confinement, which is the case of most current experiments. As pointed
out in [2], one could imagine a more general trapping potential, where in (1.2), (1 −
Ω2)|x|2/2 is replaced by (1−Ω2)|x|2/2+W (x), and perform a similar analysis. Then,
the limiting distribution replacing the inverted parabola should be

|ψ(x)|2 =

⎛
⎝μ− 1−Ω2

2Ω |x|2 −W
(

x√
Ω

)
GbΩ

⎞
⎠

+

,(4.1)
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where μ is such that
∫
|ψ|2 = 1. There are two necessary conditions to apply our

previous analysis: we need ELLL(ψ)−Ω to be small and the extent of the condensate
(where |ψ|2 is nonzero) to be large. The first condition is required so that the lowest
Landau level is indeed a good approximation. The second condition then allows one
to write the wave function as the product of a rapidly oscillating function (which is
averaged in the limit), multiplied by a slowly varying profile.

In recent experiments [13, 36], W (x) = k|x|4/4. One can check that if Ω > Ωc =
1+

√
Δ, where Δ = (3k2Gb/8π)2/3, then the limiting distribution (4.1) has its support

in an annulus of inner and outer radii R± = 2(Ω− 1±
√

Δ)/k. An interesting regime
to study is when k is small and Ω − 1 = αk2/3, with α such that Ω > Ωc. Then the
large scaling parameter replacing R is k−1/6, which is the order of magnitude of R±.
The vortex lattice is located in the annulus (R−, R+) and is distorted towards the
inner and outer edges, the inner disk corresponding to a giant vortex.

This approach does not allow one to study the case where Ω is large and the
annulus gets thin [19]: vortices are arranged on concentric circles and there is only
a few number of them in the condensate. The extent of the condensate is no longer
much larger than a vortex cell so that we are no longer in the setting to use the
averaging effect.
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SPECTRAL CHARACTERIZATION OF THE TRACE SPACES
Hs(∂Ω)∗
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Abstract. This paper defines certain scales of trace spaces Hs(∂Ω) using harmonic Steklov
eigenfunction expansions. The approach is intrinsic and applies to bounded regions in R

n for which
standard imbedding results hold. In particular it suffices that the boundary of the region be a
finite disjoint union of Lipschitz surfaces. The definition generalizes the classical definitions that
require the boundary to consist of smooth manifolds. The description depends on a special inner
product on H1(Ω), certain completeness theorems for Steklov eigenfunctions, and special properties
of the harmonic Steklov eigenfunctions. The characterization provides explicit formulae for the inner
products and norms of a function in Hs(∂Ω) and allows the description of specific orthonormal bases
for these spaces. For s < 0, the spaces are obtained by duality from the case for s > 0.

Key words. Hilbert trace spaces, Steklov eigenproblems, boundary trace operator, normal
derivative operator
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1. Introduction. This paper develops a spectral characterization of real Hilbert
trace spaces associated with bounded regions in R

n whose boundary may consist of
Lipschitz surfaces—or slightly more general surfaces of finite area. The description
uses harmonic Steklov eigenfunction expansions and provides concrete formulae for
the inner products, norms, and orthonormal bases.

The approach used here is based on the use of special inner products and related
decompositions for H1(Ω). A remarkable property of the harmonic Steklov eigenfunc-
tions is that they provide an orthogonal set in H1(Ω) with respect to a natural inner
product as well as a maximal orthogonal set in L2(∂Ω, dσ). This property is used to
develop a description of Hs(∂Ω) for all real s. The resulting spaces form an interpo-
latory family of spaces, and explicit formulae for the inner products in H1/2(∂Ω) and
H−1/2(∂Ω) are obtained. Moreover it enables the use of Hilbert space approximation
results using these harmonic Steklov eigenfunctions.

The usual theory of trace spaces as described in Adams and Fournier [2], Dautray
and Lions [8], Lions and Magenes [12], and McLean [14] requires the use of local
diffeomorphisms of domains onto a half-space. Then the allowable functions in the
trace spaces are described either via properties of their Fourier transforms, or else
using double integrals over the boundary of certain potential theoretic expressions.
These definitions required various regularity assumptions for the boundary; in [8] and
[12] they are required to be C∞-manifolds.

Here an intrinsic definition of these spaces is given which does not require any
mappings of the underlying domain. This approach permits weaker regularity of the
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boundary than does the conventional theory. We require only that condition (B2)
of section 2 hold. In particular this is satisfied when (B1) holds. The results here
depend on the characterization, and completeness, of Steklov eigenfunctions proved
in Auchmuty [4].

2. Definitions and notation. This paper will develop a spectral characteriza-
tion of the trace spaces Hs(∂Ω), where Ω is a bounded region in R

n, and show that
these spaces are Hilbert spaces with respect to a natural inner product. A region is a
nonempty, connected, open subset of R

n. Its closure is denoted Ω and its boundary
is ∂Ω := Ω \ Ω. A standard assumption on the region is the following.

(B1) Ω is a bounded region in R
n and its boundary ∂Ω is the union of a finite

number of disjoint closed Lipschitz surfaces, each surface having finite surface
area.

When this holds there is an outward unit normal ν defined at σ for a.e. point of
∂Ω. The definitions and terminology of Evans and Gariepy [10] will be followed except
that σ, dσ will represent the Hausdorff (n − 1)-dimensional measure and integration
with respect to this measure, respectively. All functions in this paper will take values
in R := [−∞,∞] and derivatives should be taken in a weak sense.

The real Lebesgue spaces Lp(Ω) and Lp(∂Ω, dσ), 1 ≤ p ≤ ∞, are defined in the
standard manner and have the usual p-norm denoted by ‖u‖p and ‖u‖p,∂Ω, respec-
tively. Their inner products are defined by

〈u, v〉 :=

∫
Ω

u(x) v(x) dx and 〈u, v〉∂Ω := |∂Ω|−1
∫
∂Ω

u v dσ.

Let H1(Ω) be the usual real Sobolev space of functions on Ω. It is a real Hilbert space
under the standard H1-inner product

[u, v]1 :=

∫
Ω

[u(x).v(x) + ∇u(x) · ∇v(x)] dx.(2.1)

Here ∇u is the gradient of the function u and the corresponding norm is denoted
‖u‖1,2.

When Ω satisfies (B1), then the Gauss–Green theorem holds in the form∫
Ω

u(x)Dj v(x) dx =

∫
∂Ω

u vνj dσ −
∫

Ω

v(x)Dj u(x) dx for 1 ≤ j ≤ n(2.2)

and for all u, v in H1(Ω).
The region Ω is said to satisfy Rellich’s theorem provided the imbedding of H1(Ω)

into Lp(Ω) is compact for 1 ≤ p < pS , where pS(n) := 2n/(n − 2) when n ≥ 3, or
pS(2) = ∞ when n = 2.

There are a number of different criteria on Ω and ∂Ω that imply this result. When
(B1) holds it is Theorem 1 in section 4.6 of [10]; see also Amick [1]. DiBenedetto
[9], in Theorem 14.1 of Chapter 9, shows that the result holds when Ω is bounded
and satisfies a “cone property.” Adams and Fournier give a thorough treatment of
conditions for this result in Chapter 6 of [2] and show that it also holds for some
classes of unbounded regions.

When (B1) holds and u ∈ W 1,1(Ω), then the trace of u on ∂Ω is well-defined and
is a Lebesgue integrable function with respect to σ; see [10, section 4.2] for details.
The region Ω is said to satisfy a compact trace theorem, provided the trace mapping
Γ : H1(Ω) → L2(∂Ω, dσ) is compact. The trace map is the linear extension of the
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map restricting Lipschitz continuous functions on Ω to ∂Ω. Occasionally u will be
used in place of Γu for the trace of a function on ∂Ω.

Evans and Gariepy [10, section 4.3] show that Γ is continuous when ∂Ω satisfies
(B1). Theorem 1.5.1.10 of Grisvard [11] proves an inequality that implies the compact
trace theorem when ∂Ω satisfies (B1). This inequality is also proved in [9, Chapter 9,
section 18], under stronger regularity conditions on the boundary.

The results in this paper require only that the region satisfy the following condi-
tion.

(B2) Ω is a bounded region with a boundary ∂Ω such that the Gauss–Green, Rellich,
and compact trace theorems hold.

Condition (B2) holds when (B1) does. Discussion of general regions for which
(B2) holds may be found in Maz’ya and Poborchi [13], especially section 6.3, and also
section 3 of [7]. Our analysis uses the following (equivalent) inner product on H1(Ω):

[u, v]∂ :=

∫
Ω

∇u · ∇v dx + |∂Ω|−1
∫
∂Ω

u v dσ.(2.3)

The corresponding norm will be denoted by ‖u‖∂ . The proof that this norm is equiv-
alent to the usual (1, 2)-norm on H1(Ω) when (B2) holds is Corollary 6.2 of [4] and
also is part of Theorem 21A of [15].

A function u ∈ H1(Ω) is said to be harmonic on Ω, provided it is a solution of
Laplace’s equation in the usual weak sense. Namely,∫

Ω

∇u · ∇ϕ dx = 0 for all ϕ ∈ C1
c (Ω).(2.4)

Here C1
c (Ω) is the set of all C1-functions on Ω with compact support in Ω.

Define H(Ω) to be the space of all such harmonic functions on Ω. When (B1)
holds, the closure of C1

c (Ω) in the H1-norm is the usual Sobolev space H1
0 (Ω). Then

(2.4) is equivalent to saying that H(Ω) is ∂-orthogonal to H1
0 (Ω). This may be ex-

pressed as

H1(Ω) = H1
0 (Ω) ⊕∂ H(Ω),(2.5)

where ⊕∂ indicates that this is a ∂-orthogonal decomposition. This result is also
discussed in section 22.4 of [15].

In this paper we shall use various standard results from the calculus of vari-
ations and convex analysis. Background material on such methods may be found
in Blanchard and Brüning [6] or Zeidler [16], both of which have discussions of the
variational principles for the Dirichlet eigenvalues and eigenfunctions of second order
elliptic operators. The variational principles used here are variants of the principles
described there and are analogous to those for the Laplacian described in section 5 of
Auchmuty [3].

All the variational principles and functionals in this paper will be defined on
(closed convex subsets of) H1(Ω). When F : H1(Ω) → (−∞,∞] is a functional, then
F is said to be G-differentiable at a point u ∈ H1(Ω) if there is an F ′(u) such that

lim
t→0

t−1 [F(u + tv) −F(u)] = F ′(u)(v) for all v ∈ H1(Ω),

with F ′(u) a continuous linear functional on H1(Ω). In this case, F ′(u) is called the
G-derivative of F at u.
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In this paper we will say that a real sequence {xm : m ≥ 1} is said to be increasing
if xm+1 ≥ xm for all m; it is strictly increasing if strict inequality holds here for all
m. Similarly a function u is said to be (strictly) positive on a set E, if u(x) ≥ (>) 0
on E.

3. The harmonic Steklov eigenproblem. Assume Ω is a region in R
n which

satisfies (B2). A nonzero function s ∈ H1(Ω) is said to be a harmonic Steklov eigen-
function on Ω corresponding to the Steklov eigenvalue δ, provided s satisfies∫

Ω

∇s · ∇v dx = δ |∂Ω|−1

∫
∂Ω

s v dσ for all v ∈ H1(Ω).(3.1)

This is the weak form of the boundary value problem

Δ s = 0 on Ω with Dν s = δ |∂Ω|−1 s on ∂Ω.(3.2)

Here Δ is the Laplacian and Dν s(x) := ∇s(x) · ν(x) is the unit outward normal
derivative of s at a point on the boundary.

δ0 = 0 is the least eigenvalue of this problem corresponding to the eigenfunction
s0(x) ≡ 1 on Ω. This eigenvalue is simple as Ω is connected. All other eigenvalues of
(3.1) are strictly positive.

These eigenvalues and a corresponding family of ∂-orthonormal eigenfunctions
may be found using variational principles as described in sections 6 and 7 of [4]. A
different variational description is developed in Bandle [5, Chapter 3]. Let the first
k Steklov eigenvalues be 0 = δ0 < δ1 ≤ δ2 ≤ · · · ≤ δk−1 and let s0, s1, . . . , sk−1 be a
corresponding set of ∂-orthonormal eigenfunctions. The kth eigenfunction sk will be
a maximizer of the functional

B(u) := |∂Ω|−1

∫
∂Ω

u2 dσ(3.3)

over the subset Bk of functions in H1(Ω) which satisfy

‖s‖∂ ≤ 1 and [s, sl]∂ = 0 for 0 ≤ l ≤ k − 1.(3.4)

The existence and some properties of these eigenfunctions are described in sections
6 and 7 of [4]. In particular, that analysis shows that each δj is of finite multiplicity
and δj → ∞ as j → ∞; see Theorem 7.2 of [4]. Let S := {sj : j ≥ 0} be the maximal
family of ∂-orthonormal eigenfunctions constructed inductively as above. For each
u ∈ H1(Ω), consider the series

PH u(x) :=

∞∑
j=0

[u, sj ]∂ sj(x).(3.5)

Theorem 3.1. Assume Ω, ∂Ω satisfy (B2) and PH is defined by (3.5); then PH

is the ∂-orthogonal projection of H1(Ω) onto H(Ω).
Proof. This follows from standard results about orthogonal expansions and The-

orem 7.3 of [4], which says that S is a maximal orthonormal subset of H(Ω).
An expression of the form

v(x) :=
∞∑
j=0

cj sj(x) with cj := [v, sj ]∂(3.6)
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will be called a harmonic Steklov expansion and, since S is a basis of H(Ω), the Riesz–
Fischer theorem implies that it represents an H1-harmonic function on Ω if and only
if

∞∑
j=0

|cj |2 < ∞.(3.7)

As described in section 8 of [4], the Steklov eigenfunctions on the unit disc in R
2

are the functions rk cos kθ and rk sin kθ, so the above series are familiar from classical
treatments of harmonic functions on a disc. Similarly when Ω is the unit ball in R

3

the Steklov eigenfunctions are spherical harmonics and these series generalize some
common expansions used in classical mathematical physics.

4. A spectral representation of the trace operator. The Steklov eigen-
functions sj described in the preceding section have L2 traces on the boundary ∂Ω
whenever (B1) holds. Define

ŝj(x) :=
√

1 + δj Γ sj(x) for x ∈ ∂Ω, and j ≥ 0.(4.1)

Then (3.1) and (3.4) imply that the set Ŝ := {ŝj : j ≥ 0} will be an orthonormal set
in L2(∂Ω, dσ) with respect to the inner product defined in section 2. The following
result provides an explicit expression for the trace operator in terms of the harmonic
Steklov expansion of a function u ∈ H1(Ω).

Theorem 4.1. Assume Ω, ∂Ω satisfy (B2), with Γ, Ŝ as above. Then Ŝ is a
maximal orthonormal set in L2(∂Ω, dσ) and

Γu =

∞∑
j=0

(1 + δj)
−1/2

[u, sj ]∂ ŝj for each u ∈ H1(Ω).(4.2)

Proof. The first claim is a special case of Theorem 9.4 in [4]. The null space of
the operator Γ is H1

0 (Ω) from Theorem 3.40 of [14]. Hence, from (2.5) and Theorem
3.1, Γu = ΓPH u, where PH is the projection onto the space H(Ω). Equation (4.2)
then follows from (4.1).

Apply Parseval’s identity to (4.2). Then

‖Γu‖2
∂Ω := |∂Ω|−1

∫
∂Ω

|Γu|2 dσ =

∞∑
j=0

(1 + δj)
−1

[u, sj ]∂
2

(4.3)

for any u ∈ H1(Ω), since Ŝ is a basis of L2(∂Ω, dσ).
Suppose now that g = Γu for some u ∈ H1(Ω). Then g ∈ L2(∂Ω, dσ) and

g(x) =

∞∑
j=0

gj ŝj(x) with gj = 〈g, ŝj〉∂Ω.(4.4)

Equation (4.2) and the orthonormality of Ŝ imply that

[u, sj ]∂ = (1 + δj)
1/2

gj for all j ≥ 0.

Let gM be the Mth partial sum of the series (4.4) and consider the map EM :
L2(∂Ω, dσ) → H(Ω) defined by

EM g(x) :=

M∑
j=0

(1 + δj)
1/2

gj sj(x).(4.5)
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This is a harmonic function on Ω with boundary trace gM . Define

E g(x) := lim
M→∞

EM g(x).(4.6)

Then (3.7) shows that Eg is in H(Ω) if and only if

∞∑
j=0

(1 + δj) |gj |2 < ∞.(4.7)

Formally E defines a harmonic extension of the boundary data g to Ω.

5. A spectral definition of Hs(∂Ω). The classical description of trace theo-
rems for H1-functions on a region requires the description of the boundary using local
coordinates and mappings from canonical regions such as a half-space. See chapter 3
of McLean [14] for a detailed description under weak regularity conditions. A com-
parison of a number of methods for defining these spaces is given in the appendix
to Chapter 4 of [8]. Here a very different definition will be described which should
be much more useful for approximation theory and computational purposes. It is
based on the use of a scale of spaces defined by weights that depend on the Steklov
eigenvalues.

Specifically Hs(∂Ω) is defined as that subspace of L2(∂Ω, dσ) of functions whose
harmonic Steklov coefficients satisfy certain summability conditions. For s ≥ 0, we de-
fine Hs(∂Ω) to be the subspace of all functions g ∈ L2(∂Ω, dσ) with Steklov expansion
(4.4) satisfying

∞∑
j=0

(1 + δj)
2s |gj |2 < ∞.(5.1)

Define the s-inner product and s-norm on Hs(∂Ω) by

[g, h]s,∂Ω :=

∞∑
j=0

(1 + δj)
2s
gj hj and ‖g‖2

s,∂Ω :=

∞∑
j=0

(1 + δj)
2s
gj

2.(5.2)

When s = 0, one sees that H0(∂Ω) = L2(∂Ω, dσ).
When s = 1/2, (4.7) shows that the space H1/2(∂Ω) will be precisely the class of

all boundary values of H1-functions on Ω—so this definition agrees with the classical
definition based on Fourier methods when ∂Ω is a smooth manifold. Note that this
definition of the spaces Hs(∂Ω) requires only that ∂Ω be smooth enough for the
Steklov eigenanalysis to hold.

For general s > 0, this definition corresponds to the spaces described via (com-
plex) interpolation. The following results show that this definition satisfies the same
intermediate space properties as the original definitions of Lions and Magenes [12,
Chapter 1, section 7.3], which required that the boundary comprise C∞-manifolds.

Theorem 5.1. Assume that Ω, ∂Ω satisfy (B2) and Hs(∂Ω) is defined as above.
If 0 ≤ s1 < s2, then Hs2(∂Ω) is a dense subspace of Hs1(∂Ω) and the imbedding of
Hs2(∂Ω) into Hs1(∂Ω) is compact.

Proof. For M ≥ 1, let PM : L2(∂Ω, dσ) → L2(∂Ω, dσ) be the finite rank operator
corresponding to the Mth partial sum of the Steklov expansion (4.4). That is,

PM g(x) :=

M∑
j=0

〈g, ŝj〉∂Ω ŝj(x) for g ∈ L2(∂Ω, dσ).(5.3)
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Obviously PM g ∈ Hs(∂Ω) for all s ≥ 0 and the definition (5.2) yields that

‖g‖s1,∂Ω ≤ ‖g‖s2,∂Ω whenever 0 ≤ s1 < s2.(5.4)

Given g ∈ Hs1(∂Ω), then the sequence {PM g : M ≥ 1} is a subset of Hs2(∂Ω) which
converges to g in Hs1(∂Ω). Thus Hs2(∂Ω) is a dense subspace of Hs1(∂Ω).

Consider the linear map Lθ : L2(∂Ω, dσ) → L2(∂Ω, dσ) defined by

Lθ g(x) :=

∞∑
j=0

(1 + δj)
−θ 〈g, ŝj〉∂Ω ŝj(x).(5.5)

For θ > 0, using the fact that δj → ∞, Lθ is a compact linear operator, as it may be
uniformly approximated by a finite rank operator. Moreover

‖Lθ g‖2
s,∂Ω =

∞∑
j=0

(1 + δj)
2(s−θ) 〈g, ŝj〉2∂Ω.(5.6)

Thus Lθ is a linear isometry of L2(∂Ω, dσ) onto Hθ(∂Ω), so the imbedding of Hs(∂Ω)
into L2(∂Ω, dσ) is compact whenever s > 0. A translation in s then yields that the
imbedding of Hs2(∂Ω) into Hs1(∂Ω) is compact whenever s1 < s2.

The family of spaces Hs(∂Ω) with s ≥ 0 forms an interpolatory family (or scale)
of real Hilbert spaces, as these s-norms satisfy the following log-convexity inequality.

Theorem 5.2. Assume that Ω, ∂Ω satisfy (B2) and Hs(∂Ω) is defined as above.
If 0 ≤ s1 < s2 and s = (1 − θ)s1 + θs2 with 0 ≤ θ ≤ 1, then

‖g‖s,∂Ω ≤ ‖g‖1−θ
s1,∂Ω ‖g‖θs2,∂Ω for all g ∈ Hs2(∂Ω).(5.7)

Proof. This is obviously true when θ = 0 or 1. Assume 0 < θ < 1. Then from
(5.2),

‖g‖2
s,∂Ω :=

∞∑
j=0

(1 + δj)
2s
gj

2.(5.8)

Factor each term in the sum, so that (1 + δj)
2s
gj

2 = cj dj with

cj := (1 + δj)
s1(1−θ)

gj
2(1−θ), dj := (1 + δj)

s2θ gj
2θ.

Apply Holder’s inequality to (5.8) with p := 1/(1 − θ), p∗ := θ−1. Then inequality
(5.7) follows.

Suppose F is a continuous linear functional on Hs(∂Ω) with s ≥ 0. F will be
represented by a function f ∈ L2(∂Ω, dσ), provided

F (g) = |∂Ω|−1

∫
∂Ω

f g dσ = 〈f, g〉∂Ω for all g ∈ Hs(∂Ω).(5.9)

When f, g have Steklov expansions of the form (4.4) with Steklov coefficients fj , gj ,
then this becomes

F (g) =

∞∑
j=0

fj gj .(5.10)
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Use of Schwarz’s inequality here shows that each f ∈ L2(∂Ω, dσ) represents a contin-
uous linear functional on such Hs(∂Ω).

For s < 0, define the space Hs(∂Ω) to be the completion of the space L2(∂Ω, dσ)
with respect to the inner product and norm of (5.2). Elements of this space will be
called generalized functions on ∂Ω. Below we shall show that H−s(∂Ω) is precisely
the dual space of Hs(∂Ω) with respect to the pairing induced by the L2-inner product
on ∂Ω. When ∂Ω is a C∞-manifold, these will be spaces of distributions on ∂Ω.

It is straightforward to verify that Hs(∂Ω) with s < 0 is a real Hilbert space under
the inner product of (5.2). The following theorem specifies the duality relationship.

Theorem 5.3. Assume that Ω, ∂Ω satisfy (B2), Hs(∂Ω) is defined as above with
s > 0, and F is a continuous linear functional on Hs(∂Ω). Then there is a unique
generalized function f ∈ H−s(∂Ω) such that

F (g) = 〈f, g〉∂Ω for all g ∈ Hs(∂Ω).(5.11)

Moreover the dual norm of F is ‖f‖−s,∂Ω.
Proof. Rewrite each term in the sum (5.10) as the product of

cj := μ−1
j fj and dj := μj gj with μj := (1 + δj)

s
.

Apply Schwarz’s inequality to (5.10). Then the definitions of the norms yield

|F (g)| ≤ ‖f‖−s,∂Ω ‖g‖s,∂Ω.(5.12)

Moreover equality holds here whenever fj = (1 + δj)
2
gj for all j ≥ 0. Since F is

continuous if and only if it is bounded, we see that each continuous linear functional
on Hs(∂Ω) will be represented by a generalized function in H−s(∂Ω). The dual norm
is defined by

‖F‖∗s := sup
‖g‖s,∂Ω ≤ 1

|F (g)|,

so (5.12) shows that it is given by the norm on H−s(∂Ω).

6. Spectral representation of the normal derivative operator. When ∂Ω
is locally a C1-manifold, then the exterior unit normal ν is a continuous vector field.
The exterior normal derivative of a C1-function u on Ω is then given by

Dν u(x) := ∇u(x) · ν(x) for x ∈ ∂Ω.(6.1)

When the Steklov eigenfunctions are sufficiently smooth, then (3.2) and (4.1)
imply that

Dν sj(x) =
δj

|∂Ω|
√

(1 + δj)
ŝj(x) for x ∈ ∂Ω and j ≥ 0.(6.2)

Take this to hold for each Steklov eigenfunction. When v ∈ H(Ω) has a Steklov
expansion of the form (3.6), define the linear extension of Dν to be

Dν v = |∂Ω|−1
∞∑
j=1

δj√
(1 + δj)

[v, sj ]∂ ŝj .(6.3)
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The Hs-norm of this generalized function on ∂Ω is

‖Dν v‖2
s,∂Ω = |∂Ω|−2

∞∑
j=1

(1 + δj)
2s−1

δj
2 [v, sj ]

2
∂ .(6.4)

In view of this calculation, this operator satisfies the following.
Theorem 6.1. Assume that Ω, ∂Ω satisfy (B2), and Hs(∂Ω) is defined in section

5. Then the operator Dν defined by (6.3) is a continuous map from H(Ω) to Hs(∂Ω)
for s ≤ −1/2.

Proof. From (6.4), the operator will be continuous if and only if there is a constant
C > 0 such that

(1 + δj)
2s−1

δj
2 ≤ C for all j ≥ 0.

Since δj → ∞, this holds if and only if s ≤ −1/2.

7. Explicit inner product on H1/2(∂Ω). When f, g ∈ H1/2(∂Ω), the inner
product on H1/2(∂Ω) was defined in section 5 in terms of a Steklov series expansion.
Here it will be shown to have an expression in terms of the boundary trace and a
normal derivative.

Given g ∈ H1/2(∂Ω), let Eg be its harmonic extension in H(Ω) defined by (4.6).
Then the outward normal derivative Dν Eg will be in H−1/2(∂Ω) from Theorem 6.1.

Theorem 7.1. Assume that Ω, ∂Ω satisfy (B2) and H1/2(∂Ω) is defined as above.
Then E is a linear isometry from H1/2(∂Ω) to H(Ω) and

[f, g]1/2,∂Ω = 〈f, g + |∂Ω|Dν Eg〉∂Ω for all f, g ∈ H1/2(∂Ω).(7.1)

Proof. From (4.6),

E g(x) =

∞∑
j=0

(1 + δj)
1/2

gj sj(x),

so

‖Eg‖2
∂ =

∞∑
j=0

(1 + δj) |gj |2 = ‖g‖2
1/2,∂Ω for all g ∈ H1/2(∂Ω).(7.2)

Hence E is an isometry as claimed. Substitute for Eg in (6.3). Then

Dν E g(x) = |∂Ω|−1
∞∑
j=0

δj gj ŝj(x).

This and the orthonormality of Ŝ yield that

〈f, g + |∂Ω|Dν Eg〉∂Ω =

∞∑
j=0

fj (1 + δj) gj ,(7.3)

which is (7.1).
This result (7.1) may be written formally as

[f, g]1/2,∂Ω =

∫
∂Ω

f (|∂Ω|−1 g + Dνg) dσ,
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so the (1/2)-norm is defined by the quadratic form

‖g‖2
1/2,∂Ω =

∫
∂Ω

[ |∂Ω|−1 g2 + g Dνg ] dσ.(7.4)

That is, H1/2(∂Ω) is the space of all functions in L2(∂Ω, dσ) for which this quadratic
form is finite. Here Dνg is actually the outward normal derivative of the harmonic
extension of g to Ω.

8. The inner product on H−1/2(∂Ω). The space H−1/2(∂Ω) was defined as
the completion of L2(∂Ω, dσ) with respect to the inner product defined by (5.2) with
s = −1/2. In this section, this inner product will be characterized in terms of the
solution of a Robin boundary value problem for Laplace’s equation. More specifically,
it will be described using a variational principle for such solutions.

Given g ∈ H−1/2(∂Ω), define the functional D : H1(Ω) → R by

D(u) :=

∫
Ω

|∇u|2 dx + |∂Ω|−1

∫
∂Ω

|Γu|2 dσ − 2 〈g,Γu〉∂Ω.(8.1)

Consider the variational principle of minimizing D on H1(Ω). The essential results
about this problem can be stated as follows.

Theorem 8.1. Assume that Ω, ∂Ω satisfy (B2), g ∈ H−1/2(∂Ω), and D is defined
by (8.1). Then there is a unique minimizer û of D on H1(Ω) and it satisfies∫

Ω

∇u · ∇v dx + 〈(Γu − g),Γ v〉∂Ω = 0 for all v ∈ H1(Ω).(8.2)

Proof. The existence of a unique minimizer of D on H1(Ω) is Theorem 9.2 of [4]
with τ = 1/2 and g ∈ L2(∂Ω, dσ). The extension to g ∈ H−1/2(∂Ω) is straightforward.

This functional D is convex and G-differentiable on H1(Ω) and its derivative
can be obtained from Theorems 3.1 and 6.1 of [4]. The left-hand side of (8.2) is
the directional derivative of D, so the extremality conditions imply that û will be a
minimizer of D on H1(Ω) if and only if it is a solution of (8.2).

Note that (8.2) is the weak form of the Robin boundary value problem

Δu = 0 on Ω with |∂Ω|Dν u + u = g on ∂Ω.(8.3)

When v ∈ H1
0 (Ω), then Γv ≡ 0, so (8.2) implies that (2.4) holds or the solution û

is harmonic on Ω. Let û have a Steklov expansion of the form

û(x) :=

∞∑
j=0

uj sj(x) on Ω.(8.4)

Then, from (4.2), the boundary trace Γ û is given by

Γ û :=
∞∑
j=0

uj√
(1 + δj)

ŝj .(8.5)

Assume that g ∈ H−1/2(∂Ω) has the Steklov representation

g :=

∞∑
j=0

gj ŝj with gj := 〈g, ŝj〉∂Ω.(8.6)
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Substitute v = s0 in (8.2) to find that u0 = g0.
For k ≥ 1, put v = sk in (3.1). Then∫

Ω

∇u · ∇sk dx = δk 〈sk,Γu〉∂Ω for all u ∈ H1(Ω).(8.7)

Substitute this in (8.2) with v = sk, to obtain

(1 + δk) 〈Γû, ŝk〉∂Ω = 〈g, ŝk〉∂Ω for all k ≥ 1.(8.8)

The expression (8.5) for Γû yields that the Steklov coefficients uk of the solution of
this variational problem are given by

uk = (1 + δk)
−1/2 gk for each k ≥ 0.(8.9)

Define GR : H−1/2(∂Ω) → H(Ω) to be the solution operator of this variational
problem. Equations (8.4) and (8.9) show that GR has the Steklov spectral represen-
tation

û(x) := GR g(x) =

∞∑
k=0

(1 + δk)
−1/2 gk sk(x)(8.10)

for any g ∈ H−1/2(∂Ω) as in (8.6). The boundary trace of this function will be

ΓGR g =

∞∑
k=0

(1 + δk)
−1 gk ŝk.(8.11)

Moreover a straightforward computation shows that

‖ΓGR g‖1/2,∂Ω = ‖g‖−1/2,∂Ω,(8.12)

so this operator ΓGR is an isometric linear mapping of H−1/2(∂Ω) onto H1/2(∂Ω).
More generally ΓGR will be an isometry from any space Hs(∂Ω) onto Hs+1(∂Ω).

This, together with the orthonormality of Ŝ, proves the following theorem.
Theorem 8.2. Assume that Ω, ∂Ω satisfy (B2) and GR is the operator defined

by (8.11). Then the inner product on H−1/2(∂Ω) obeys

[f, g]−1/2,∂Ω = 〈f,ΓGR g〉∂Ω for all f, g ∈ H−1/2(∂Ω).(8.13)

For other negative values of s, the inner products on Hs(∂Ω) may be defined
using fractional powers of the operator ΓGR.
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1. Introduction. In 1933 Friedrichs [9] proposed the functional

J(ψ) =

∫∫∫
0≤ψ≤1

[
(∇ψ)2 + v2(x, y)

]
d2x,

where ψ is the stream function for an incompressible flow, as a variational method of
obtaining solutions to free boundary value problems. Critical points of J are harmonic
functions which satisfy the condition

(∇ψ)2 = v2

on the free boundary, given by ψ = 1. The free boundary condition relevant to theory
of gravity waves, however, is the Bernoulli equation

(∇ϕ)2

2
+ gζ = constant,

where ϕ is either the velocity potential for irrotational flow or the stream function in
the case of flows with vorticity. Thus some other variational principle is needed for
the study of gravity waves.

Recently, a variational principle for gravity waves with vorticity was given by
Constantin, Sattinger, and Strauss [7], using a direct, “hands-on” approach. More
generally, a variational principle for a stationary wave may be obtained for systems
possessing a Hamiltonian structure by minimizing the Hamiltonian computed in a
Galilean frame moving with the wave. We illustrate that approach in this study.

We begin with a brief review of Euler’s equations of incompressible flows and the
associated free boundary value problems; in section 3 we describe the Hamiltonian
structure of these problems, for irrotational flows and flows with vorticity, as given by
Lewis et al. [15]. All the functions under consideration in this article, including the
free boundaries, are assumed to be smooth.
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2. Incompressible fluid flows. Let the velocity field of an incompressible fluid
in a fixed region D be denoted by v. The incompressibility of the fluid is expressed
by the condition div v = 0. We must have v · ν = 0 on the boundary of D, where ν
is the outward unit normal at the boundary. Euler’s equations of motion for the flow
of an inviscid, incompressible fluid are

dx

dt
= v, ρ

dv

dt
= ρ(vt + (v · ∇)v) = −∇( p− g · x),(2.1)

div v = 0,

where ρ is the density, p is the hydrodynamic pressure, and g · x is the gravitational
potential. Henceforth we take ρ = 1.

Given a manifold D ∈ R
3 with smooth boundary, we denote by L2(D) the Hilbert

space of vector fields on D with the inner product

〈v,w〉 =

∫∫∫
D

v · w d3x.

We denote by Lπ the closed subspace of L2(D) generated by vector fields, of the form
w = ∇ p for some function p with finite Dirichlet norm. The orthogonal complement
Lσ = L⊥

π is the space of all vector fields v for which 〈v,∇ p〉 = 0 for all p ∈ W 1,2(D).
By applying the Gauss divergence theorem, we see that if v ∈ L2(D) and is smooth,
say C1, then div v = 0 and v · ν = 0 on Σ = ∂D, where ν denotes the outward unit
normal on Σ. The Hilbert space Lσ is the space of weakly divergence-free vector fields.
We denote the orthogonal projections onto Lσ and Lπ by Pσ and Pπ, respectively.

In many applications the fluid is not confined to a fixed region but instead carries
the region with it. In such cases, the region D occupied by the fluid must also be de-
termined. Such problems are called free boundary problems and occupy a substantial
part of the literature on incompressible flows.

Given an irrotational flow (curl v = 0) on a simply connected domain, there is
velocity potential ϕ for which v = ∇ϕ. The velocity potential is defined only up to
an arbitrary function of time; the transformation ϕ �→ ϕ + k(t) is called a gauge
transformation and will play a role in what follows.

The equation div v = 0 implies that ϕ is harmonic. Substituting v = ∇ϕ into
the second equation in (2.1) we obtain

∇
(
ϕt +

1

2
(∇ϕ)2 + gz + p

)
= 0;

hence

ϕt +
1

2
(∇ϕ)2 + gz + p = k(t)

for some function of time, which can be eliminated by a gauge transformation of the
velocity potential. We always choose the gauge to be such that

ϕt +
1

2
(∇ϕ)2 + gz + p = 0

everywhere in the fluid.
An interface between the fluid and another medium—for example, air—is called

a free surface. If the pressure is constant in the air, then it is also constant at the
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surface of the fluid, and we may normalize the pressure to be zero at the free surface.
Hence we obtain Bernoulli’s equation

ϕt +
1

2
(∇ϕ)2 + gz = 0,

where gz is the gravitational potential on the free surface.
The free surface is given in space-time by φ = 0, where φ(x, y, z, t) = z−ζ(x, y, t).

The free surface moves with the fluid; hence the material derivative of φ vanishes, and

0 =
dφ

dt
=

d

dt
(z − ζ) = v3 − ζt − v1ζx − v2ζy.

Thus

ζt + v1ζx + v2ζy − v3 = 0.

This is called the kinematic condition on the free surface.
This collection of equations for gravity waves on a free surface is known as Euler’s

equations for waves on the surface of an inviscid, incompressible fluid with irrotational
flow in the region D = {(x, y, z) : 0 ≤ z ≤ h + ζ(x, y, t)}. They are

Δϕ = 0, 0 ≤ y ≤h + ζ,

ζt + ϕxζx + ϕyζy = ϕz on S,(2.2)

ϕt +
1

2
|∇ϕ|2 + g z = 0 on S,(2.3)

ϕz = 0 on z =0.

Here, ϕ is the velocity potential of the flow, and ζ(x, y, t) the displacement of the
fluid surface from equilibrium. We have neglected surface tension. The second equa-
tion is known as the kinematic equation; the third equation is Bernoulli’s equation.
At rest, the fluid lies in the region 0 ≤ z ≤ h; g is the acceleration due to gravity.
The free surface is denoted by S = {(x, y, z) : z = h + ζ(x, y, t)}.

The two physical constants in the theory are g and h. Let c denote a characteristic
velocity (e.g., the velocity of a gravity wave); then h/c is a characteristic time. We
introduce dimensionless variables

(x, y, z) = h(x′, y′, z′), t = ht′/c, ϕ = chϕ′.

Equation (2.3) now becomes

ϕ′
t′ +

1

2
(∇′ϕ′)2 + λ ζ = 0, λ =

gh

c2
,(2.4)

where λ is the inverse square of the Froude number. The other equations in Euler’s
system are unchanged under the rescaling. From now on we drop the primes and
understand that we are working in nondimensional variables.

The Euler equations are invariant under the one parameter subgroup of Galilean
boosts along the x axis, given by

(x′, y′, t′) = (x− ct, y, t), v′(x′, y′, t′) = v(x, y, t) − (c, 0).
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The velocity potential, however, is determined only up to a function of time. Thus
the Galilean boosts on the velocity potential are given by

ϕ′(x′, y′, t′) = ϕ(x, y, t) − cx + q(t).

Under these Galilean boosts,

∂ϕ′

∂t′
+

1

2
(∇′ϕ′)2 =

∂ϕ

∂t
+

1

2
(∇ϕ)2 + q′(t) − 1

2
c2.(2.5)

The result follows by direct calculation, noting that

∂

∂t′
=

∂

∂t
+ c

∂

∂x
,

∂

∂x′ =
∂

∂x
.

Proposition 2.1. Suppose the solutions of Euler’s equations are stationary in
a Galilean frame moving with speed c. Then ζt′ = ϕ′

t′ = 0, and, choosing q(t) = c2t,
the conditions on the free surface are (dropping the primes)

ϕxζx = ϕy,
ϕ2
x + ϕ2

y

2
+ λ ζ =

c2

2
.(2.6)

Proof. By (2.5) the Bernoulli equation in the moving frame is

ϕ′
t′ +

1

2
(∇′ϕ′)2 + λζ ′ = q′(t′) − 1

2
c2.

As x → ±∞, ζ ′ → 0 while (∇′ϕ′)2 → c2. Moreover, ϕ′
t′ = 0 by the assumption of

stationarity. These conditions force the choice q′ = c2, and the result follows. The
kinematic equation in the moving frame is immediate.

Proposition 2.2. Let v be a divergence-free vector field in a domain D. There
is a unique orthogonal decomposition, known as the Weyl–Hodge decomposition,

v = w + ∇ϕ,(2.7)

Δϕ = 0, ϕν = v · ν; div w = 0, w · ν = 0.(2.8)

The proof is left to the reader.

3. Poisson structures. Let M be a C∞ manifold of dimension n, and let F,G ∈
C∞(M). A bilinear form {F,G} is said to be a Poisson bracket if

• {F,G} = −{G,F};
• {F,GH} = {F,G}H + G{F,H};
• {{F,G}, H} + {{G,H}, F} + {{H,F}, G} = 0.

The second property implies that the Poisson bracket is a derivation in each of its
entries. Hence any H ∈ C∞(M) generates a vector field XH , called a Hamiltonian
vector field on M , defined by XHF = {H,F}. The Hamiltonian vector field XH

generates a flow on M ; if xi are a set of local coordinates on M , then the time
evolution of the xi on that chart is given by the ordinary differential equations

ẋi = {H,xi}.
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Due to the fact that the bracket acts as a derivation on each of its entries, we
may represent a Poisson bracket in the form

{F,G} =
n∑

j,k=1

W jk ∂F

∂xj

∂G

∂xk
,

where W jk(x) is a skew-symmetric matrix.
If detW 
= 0, then it is easily seen that n must be even. A classical theorem of

Darboux states that in this case it is always possible to find a set of local coordinates,
called canonical coordinates qi, pi (1 ≤ i ≤ n/2), in which the Poisson brackets take
the form

{F,G} =

n∑
j=1

∂F

∂pj
∂G

∂qj
− ∂F

∂qj
∂G

∂pj
.

A manifold with a Poisson bracket is called a Poisson manifold ; if the brackets
are nondegenerate, the manifold is called a symplectic manifold. On a symplectic
manifold, the Hamiltonian flow takes the form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

In this paper we shall restrict ourselves to the case in which M is a linear vector
space with an inner product 〈 , 〉, and we shall write the Poisson brackets in the form

{F,G} = 〈∇F, Jx∇G〉,
where Jx is a skew-symmetric linear transformation on M and ∇F is the gradient
of the function F . The gradient is characterized as follows. Differentiating F (x(t))
along a curve x(t) on M , we have

d

dt
F = 〈∇F, ẋ〉.

If Jx is nonsingular, then the Poisson brackets are nondegenerate and have locally
a canonical system of coordinates. In many problems of physical interest, however,
the Poisson brackets are degenerate, i.e., det Jx = 0. For example, in the study of
rigid motions about a fixed point in R

3, the Poisson bracket is

{F,G} = 〈∇F, x ×∇G〉.(3.1)

The operator Jx is defined by Jxv = x × v; hence ker(Jx) = Rx.
The bracket (3.1) vanishes for all regular functions G whenever F is spherically

symmetric. Such a function F is called a Casimir. It is invariant under any Hamilto-
nian flow generated by these brackets.

Any Poisson bracket on an odd-dimensional manifold must be degenerate and
therefore have Casimirs. The bracket (3.1) is an example of a noncanonical Poisson
bracket.

The formalism of Poisson brackets and Hamiltonian flows can be extended to
infinite dimensions—for example, in the study of continuum mechanics—although a
number of technical difficulties arise. In particular, Poisson structures play a useful
role in the theory of the Euler equations for an incompressible fluid. Two important
such brackets are the Poisson bracket introduced by Arnold [3, 4, 5] in his study of
incompressible fluids on fixed domains, and the Poisson bracket implicit in Zakharov’s
fundamental discovery [18] of the Hamiltonian structure of the Euler equations of
gravity waves.
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3.1. Arnold’s Poisson brackets. Arnold observed that Euler’s equations for
an incompressible fluid in a fixed domain D are directly analogous to his equations for
rigid body motion and that they have a Hamiltonian structure with the Hamiltonian
and Poisson brackets given respectively by

H =

∫∫∫
D

1

2
v · v d3x(3.2)

and

{F,G } =

∫∫∫
D

δF

δv
·
(

curl v × δG

δv

)
d3x.(3.3)

Here, F and G are functionals on Lσ with gradients in Lσ. The gradient of F is
δF/δv, the Euler–Lagrange derivative of F with respect to v. For example, δH

δv = v.
The operator Jv in this case is

Jvw = Pσ(curl v × w).

Let us show that (2.1) are the Hamiltonian equations generated by (3.2) and
(3.3). We have

Ḟ =

∫∫∫
D

δF

δv
· vt d

3x,

{H,F} =

∫∫∫
D

δH

δv
·
(
curl v × δF

δv

)
d3 x =

∫∫∫
D

δF

δv
· (v × curl v) d3 x.

The Hamiltonian flow Ḟ = {H,F} implies that∫∫∫
D

δF

δv
· (vt + (curl v) × v) d3x = 0(3.4)

for all admissible F on Lσ.
All linear functionals of the form Fw(v) = 〈w,v〉 are admissible, and the gradient

of Fw is the vector w. Therefore vt + (curl v)× v belongs to L⊥
σ = Lπ. Hence it is a

gradient, and

vt + (curl v) × v = ∇f

for some function f . The Euler momentum equations (2.1) follow from this and the
vector identity

(curl v) × v = (v · ∇)v − 1

2
∇|v|2(3.5)

if we let f = −p + 1
2∇|v|2.

Just as in the case of rigid motion, the Arnold bracket is degenerate. This degener-
acy is related to the action of the (formal) group of volume preserving diffeomorphisms
acting on D. Arnold’s Poisson bracket is an example of a Lie–Poisson bracket.
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3.2. Zakharov’s Poisson brackets. In 1968, Zakharov made a striking obser-
vation: Euler’s equations for irrotational gravity waves have a canonical Hamiltonian
structure. The Hamiltonian (in nondimensional variables) is

H =
1

2

∫∫∫
D

(∇ϕ)2 d3x +
1

2
λ

∫∫
R2

ζ2(x, y, t) d2x.

The Poisson brackets implicit in Zakharov’s observation are the canonical brackets

{F,G} =

∫∫
R2

(
δF

δϕ

δG

δζ
− δF

δζ

δG

δϕ

)
d2x;

the Hamiltonian flow is then the canonical flow

ζt =
δH

δϕ
, ϕt = −δH

δζ
.

The Hamiltonian H is regarded as a functional of (ϕ̃, ζ), where ζ = ζ(x, y, t) is
the height of the free surface and ϕ̃ = ϕ|S is the trace of the harmonic function ϕ on
the free surface, with ϕν = 0 on the bottom. The evolution takes place in the space
of harmonic functions on D.

Zakharov’s result is verified by calculating the gradients of H with respect to ζ
and ϕ. Now

d

dε
H(ϕ, ζε)

∣∣∣
ε=0

=

∫∫
R2

[
1

2
(∇ϕ̃)2 + λζ

]
δζ d2x,

where ∇ϕ̃ denotes ∇ϕ
∣∣
R2 . By identification,

δH

δζ
=

1

2
(∇ϕ̃)2 + λζ.

Similarly,

d

dε
H(ϕ̃ε, ζ)

∣∣∣
ε=0

=

∫∫∫
D

∇ϕ · ∇δϕ d3x

= −
∫∫∫
D

δϕΔϕd3x +

∫∫
Σ

δϕ
∂ϕ

∂ν
dS =

∫∫
Σ

δϕ
∂ϕ

∂ν
dS,

since ϕ is harmonic in D and ϕν = 0 on the bottom.
On the free surface

ϕ̃νdS = ∇ϕ̃ · (−ζx,−ζy, 1)√
1 + ζ2

x + ζ2
y

√
1 + ζ2

x + ζ2
yd

2x,

so

δH

δϕ̃
= ϕ̃z − ϕ̃xζx − ϕ̃yζy.

The free boundary equations (2.2) and (2.3) are thus precisely the Hamiltonian equa-
tions for this system.
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Remark. The effects of surface tension can be obtained by simply adding the
boundary integral

σ

∫∫
Σ

dS

to the Hamiltonian, where σ is the coefficient of surface tension and dS is the element
of surface area on the free surface S. The inclusion of surface tension leads to an
additional term in the Bernoulli equation; when the free surface is a graph z =
ζ(x, y, t), it is

ϕt +
1

2
|∇ϕ|2 + g z = σ div

∇ζ√
1 + (∇ζ)2

, ∇ζ = (ζx, ζy).

The potential energy can also be written as the integral of the gravitational potential
over the fluid domain, so that the Hamiltonian for gravity waves including the effects
of surface tension is

H =

∫∫∫
D

[
(∇ϕ)2

2
+ λU+(x)

]
d3x + σ

∫∫
S

dS,(3.6)

where U+(x) is the gravitational potential, truncated in such a way that the integral
over the unbounded domain D converges. When the fluid is a horizontal layer and
the gravity field is constant in the negative z direction, we take U+ = (z− 1)+, where
z+ denotes the function given by z when z > 0 and by 0 when z < 0. The factor g
has been absorbed into the pure parameter λ.

4. Free boundary flows with vorticity. Free boundary value flows with vor-
ticity, with both gravitational forces and surface tension included, are generated by
the Hamiltonian

H =

∫∫∫
D

E d3x + σ

∫∫
Σ

dS, E =
v · v

2
+ λU+(x).(4.1)

The corresponding Poisson brackets are [15]

{F,G } =

∫∫∫
D

δF

δv
·
(

curl v × δG

δv

)
d3x +

∫∫
Σ

(
δF

δϕ

δG

δΣ
− δF

δΣ

δG

δϕ

)
dS,(4.2)

where Σ is the free boundary and dS is the element of surface area on Σ.
Admissible functionals are regarded as functions of v and Σ, the free boundary

of D, and their gradients are defined implicitly by the relation

d

dε
F (vε,Σε)

∣∣∣
ε=0

=

∫∫∫
D

δF

δv
· δv d3x +

∫∫
Σ

δF

δΣ
δΣ dS.

Variations with respect to the free surface are restricted to normal variations, in a
sense explained below. Admissible functionals F are those for which δF/δv is a
divergence free vector field. We require that

∫∫
D δΣdS = 0, reflecting the fact that

only volume preserving variations are allowed. This means that the gradient of a
functional with respect to Σ is determined only up to a constant.
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Let Ld(D) be the space of divergence-free L2 vector fields on D. Let P1 and P2

be the orthogonal projections defined by P1v = w and P2v = ∇ϕ in the Weyl–Hodge
decomposition.

Lemma 4.1. Let

F (v,Σ) =

∫∫∫
D

F(v,x)d3x + σ

∫∫
Σ

dS

be an admissible functional. Then

δF

δw
= P1

δF

δv
∈ L2(D, d3x).

The gradients with respect to ϕ and Σ lie in L2(Σ, dS) and are given by

δF

δϕ
=

δF

δv

∣∣∣
Σ
· ν, δF

δΣ
= F(v,x) + σκ

∣∣∣
Σ

mod constant,

where κ is the mean curvature function on Σ.
Proof. Applying the Weyl–Hodge decomposition to both δv and δF/δv we obtain〈

δF

δv
, δv

〉
=

∫∫∫
D

δF

δv
· δv d3x =

∫∫∫
D

P1
δF

δv
· δw + P2

δF

δv
· δ∇ϕd3x.

By the uniqueness of the Weyl–Hodge decomposition, we may conclude

δF

δw
= P1

δF

δv
,

δF

δϕ
= P2

δF

δv
.

Since δF/δv is divergence-free, we have, by the divergence theorem,∫∫∫
D

P2
δF

δv
· δ∇ϕd3x =

∫∫∫
D

δF

δv
· ∇δϕ d3x =

∫∫
∂D

δF

δv
· ν δϕ dS,

and the second relation follows.
Let Σε be a one parameter family of surfaces parameterized by a vector valued

map

X(u, v, ε) = X0(u, v) + ε δΣN(u, v),

where N is the normal vector field to Σ. For ε sufficiently small, the symmetric
difference DεΔD of the domains bounded respectively by Σε and Σ is contained in a
tubular neighborhood of Σ. In this neighborhood, the volume element of the 3-space
can be written as d3x = drdS, where dS is the area element on Σ and dr corresponds
to the normal coordinate in the tubular neighborhood. We get

δ

∫∫∫
D

F(v,x) d3x = lim
ε→0

1

ε

∫∫∫
DεΔD

F(v,x) d3x

=

∫∫
Σ

(
lim
ε→0

1

ε

∫ εδΣ

0

F(v,x) dr

)
dS =

∫∫
Σ

F(v,x)δΣ dS.
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On the other hand, by classical differential geometry,

δ

∫∫
Σ

dS =

∫∫
Σ

κδΣ dS,

where κ is the mean curvature function on Σ, and this completes the proof of Lemma
4.1.

Let us derive the equations of motion from the Hamiltonian structure. We have

δH

δv
= v,

δH

δϕ
= v · ν, δH

δΣ
= E

∣∣∣
Σ

+ σκ.

From Ḟ = {H,F }, we get∫∫∫
D

δF

δv
· vt d

3x +

∫∫
Σ

δF

δΣ
Σt dS(4.3)

=

∫∫∫
D

(v × (curl v)) · δF
δv

d3x +

∫∫
Σ

(
v · ν δF

δΣ
− (E + σκ)

δF

δϕ

)
dS.

Since ∫∫
Σ

E δF
δϕ

dS =

∫∫
Σ

E δF
δv

· ν dS =

∫∫∫
D

∇E · δF
δv

d3x

and δF/δv is divergence-free, we get from (4.3), using functionals for which δF/δϕ =
0,

vt + (curl v) × v = ∇ (−p + E), Σt = v · ν
∣∣∣
Σ
.

The boundary condition on the bottom is v · ν = 0, where ν is the outward normal.
The first equation, together with (3.5), implies that Δp = −div (v · ∇)v. Substi-

tuting the two equations above into (4.3), we obtain∫∫∫
D

∇ p · δF
δv

d3x −
∫∫
Σ

σκ
δF

δϕ
dS = 0

for all admissible functionals F . Applying the divergence theorem to the integral over
D we obtain ∫∫

Σ

(p− σκ)
δF

δϕ
dS = 0

for all admissible functionals F . But∫∫
Σ

δF

δϕ
dS =

∫∫
Σ

δF

δv
· ν dS =

∫∫∫
D

div
δF

δv
d3x = 0,

and therefore

p
∣∣∣
Σ

= σκ + constant.(4.4)
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Thus the Hamiltonian approach yields the dynamic conditions on the free boundary
in the case of surface tension [7, 15, 12].

Remark. In the general theory one considers normal variations of the free surface,
whereas in the theory of gravity waves on a free surface over a horizontal bottom, it
is customary to use the height of the free surface, ζ. More generally, if the surface
Σ is a graph over a fixed manifold M, we may represent Σ by a “height” function ζ
defined on M. In that case we refer to δζ as the “vertical” variation and δΣ as the
“normal” variation.

Proposition 4.2. Let δΣ and δζ denote the normal and vertical variations of a
surface Σ in the case when Σ is a graph over a fixed manifold. Let Σ be given in local
coordinates by φ = 0, where φ = z − ζ. Then δζ = |∇φ| δΣ.

Proof. Let X : U �→ R
3 be a local embedding of Σ in R

3, and let Xε be a one
parameter family of embeddings, with X0 = X. Then

δΣ =
d

dε

∣∣∣
ε=0

(Xε(u, v)) · ν.

Let Σ be defined by φ = 0, φ = z − ζ. Then Xε = (u, v, ζε(u, v), and

δΣ =
d

dε

∣∣∣
ε=0

⎛
⎝ u

v
ζε(u, v)

⎞
⎠ · ν =

⎛
⎝ 0

0
δζ

⎞
⎠ · ∇φ

|∇φ| =
δζ

|∇φ| .

5. Variational principles for traveling waves. The Hamiltonian structure
of the equations for gravity waves can be used to obtain variational principles for
traveling waves—waves of constant speed and shape. Such a wave is a stationary
solution of the Hamiltonian system in a Galilean frame moving with the wave; thus
the wave is a critical point for the Hamiltonian, computed in such a reference frame.
We apply the method here to the general case of gravity waves on a horizontal surface.
The variational principle for irrotational flows given below appears to be new.

A variational approach, if successful, would permit a global treatment of the exis-
tence of traveling waves by the direct methods of the calculus of variation, but so far,
the existence of traveling waves for potential flows of low amplitude has been proved
by perturbation methods. The first existence theorems were given independently for
periodic wave trains by Levi-Civita [14] and Struik [17] in the case of finite depth.
The existence of the solitary wave, which is a more difficult problem, was first proved
by Friedrichs and Hyers [10], since the bifurcation problem in this case is a singu-
lar perturbation problem (see the discussion by Sattinger [16]). These authors used
conformal mapping techniques. A dynamical systems approach to the existence of
traveling waves has been developed by Kirchgässner [13]; Amick and Toland [2] have
shown that periodic wave trains tend to a solitary wave in the limit as the period
tends to infinity.

In the direct method, one first uses compactness properties of the functional to
obtain a minimum from a minimizing sequence. In general, this guarantees only a
weak solution of the associated Euler–Lagrange equations. In many cases, these are
elliptic equations, and it is possible to prove sufficient regularity of the weak solution
to show that in fact it is a classical solution to the problem. (See Alt and Caffarelli [1]
for functionals of Friedrichs’ type.) For the present, we simply indicate the method
for the problems discussed here in the theorems below.
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Theorem 5.1. Euler’s equations for gravity waves are the Euler–Lagrange equa-
tions for the functional

H(ϕ, ζ) =

∫∫
Dζ

[
1

2

[
(∇ϕ)2 − 1

]
+ λ(y − 1)+

]
d2x ,(5.1)

where

y+ =

{
0, y ≤ 0,
y, y ≥ 0,

Dζ = {(x, y) : −∞ < x < ∞, 0 ≤ y ≤ 1 + ζ(x)},
and the minimum is taken over all functions ϕ for which∫∫

D

[
(ϕx − 1)2 + ϕ2

y

]
d2x < +∞.

If (ϕ, ζ) is a local minimum of H, then ϕ is harmonic on the interior of Dζ ; if ζ is C1

and ϕ ∈ H2(D), then the kinematic and Bernoulli equations hold on the free surface.
Remark. The Hamiltonian (5.1) is the renormalization of the Hamiltonian in the

moving frame. By carrying out the integration in y we obtain∫∫
D

(y − 1)+ d2x =
1

2

∫ ∞

−∞
ζ2 dx;

thus H can also be written

H(ϕ, ζ) =

∫∫
D

1

2

[
(∇ϕ)2 − 1

]
d2x +

λ

2

∫ ∞

−∞
ζ2(x) dx.

If ϕ ∈ H2(D) and ζ ∈ C1, then ∇ϕ has an L2 trace on the boundary y = ζ, and
Stokes’ theorem applies.

Proof. Let (ϕ, ζ) be a minimizer of H and suppose that ζ is C1 and ϕ ∈ H2(D).
Let (ϕε, ζε) be a one parameter family of admissible functions and denote the corre-
sponding domains by Dε. By the calculations in section 3.2 we have

δH(δϕ, δζ) =
∂H(ϕε, ζε)

∂ε

∣∣∣
ε=0

= −
∫∫
D

Δϕδϕd2x +

∮
∂D

ϕνδϕ ds +

∫ +∞

−∞

[
1

2
(∇ϕ)2 − 1

2
+ λζ

]
δζ dx

= 0

for all admissible δϕ, δζ.
Since the bottom is fixed, ϕν = 0 on y = 0. We first restrict ourselves to variations

for which δζ = δϕ
∣∣
S

= 0. Then the double integral must vanish for a set of variations

δϕ which are dense in L2(D); it follows that ϕ is harmonic in the interior of D. As
before, ϕνds = ∇ϕ · (−ζx, 1)dx = (ϕy − ζxϕx)dx, and so

δH =

∫ +∞

−∞

[(
(∇ϕ)2 − 1

2
+ λζ

)
δζ + (ϕy − ϕxζx) δϕ

]
dx.

Setting first δζ = 0 and letting δϕ vary on Σ, we obtain the kinematic equation on
the free surface. Therefore the second term always vanishes. Now allowing δζ to vary,
we see that Bernoulli’s equation holds on Σ.
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6. A variational problem with constraint. Whereas Friedrich’s paper shows
that Bernoulli’s equation is not obtained when the functional J is minimized with
respect to the stream function, Constantin, Sattinger, and Strauss showed in [7] that
traveling gravity waves in the rotational case are obtained as extremals of a variational
problem for the stream function with constraints. The existence of traveling water
waves with vorticity was established in [8] for the periodic case. In a recent Ph.D.
thesis at Brown University, V. Hur [11] has constructed solitary waves with nonzero
vorticity. Some of their qualitative properties were investigated in [6].

In the irrotational case we have the following theorem.

Theorem 6.1. Define the set of admissible functions K = {ψ, ζ} with the fol-
lowing properties:

(i)

∫ +∞

−∞
ζ(x)dx = m,

∫ +∞

−∞
ζ2 dx < ∞,

(ii) ψ(x, 0) = 0, ψ(x, 1 + ζ(x)) = 1,

(iii)

∫∫
D

[
ψ2
x + (ψy − 1)2

]
d2x < +∞.

Consider the variational problem

λ = inf
K

∫∫
D
[
(∇ψ)2 − 1

]
d2x∫ +∞

−∞ ζ2 dx
.

Let (ψ, ζ) be a minimizer in K of the above variational principle. Then ψ is harmonic
in the interior of D. If ζ is C1 and ψ ∈ H2(D), then the Bernoulli equation is satisfied
on the free surface ψ = 1. Hence minima of the above variational problem provide an
irrotational flow for the gravity wave problem.

Proof. Let (ψ, ζ) be a minimizer, and let ψε, ζε be a family of admissible functions
with ψ0 = ψ and ζ0 = ζ. Then J(ε) ≥ 0 and J(0) = 0, where

J(ε) =

∫∫
Dε

[
(∇ψε)

2 − 1
]
d2x − λ

∫ +∞

−∞
ζ2
ε dx.

Then δJ(δψ, δζ) = 0 for all admissible variations, where

δJ =

∫∫
D

2∇ψ · ∇ δψ d2x +

∫ +∞

−∞

[
(∇ψ)2 − 1 − 2λζ

]
δζ dx

= −2

∫∫
D

Δψ δψ d2x + 2

∮
∂D

δψψν ds +

∫ +∞

−∞

[
(∇ψ)2 − 1 − 2λζ

]
δζ dx.

The integral over the bottom of the flow domain vanishes, since ψν = 0 there. On
the free surface (see δ(2) [9, p. 65])

δψ + ψyδζ = 0.
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This follows immediately by differentiating the relation ψε(x, 1 + ζε(x)) ≡ 1 with
respect to ε and setting ε equal to zero. Similarly, differentiating the expression
ψ(x, 1 + ζ(x)) ≡ 1 with respect to x we find that ψx/ψy = −ζx; hence

ψν = ∇ψ · ν = ∇ψ · ∇ψ

||∇ψ|| =
(∇ψ)2√
ψ2
x + ψ2

y

=
(∇ψ)2

|ψy|
√

1 + ζ2
x

.

Hence δJ reduces to

δJ = −2

∫∫
D

Δψ δψ d2x −
∫ +∞

−∞

[
(∇ψ)2 + 1 + 2λζ

]
δζ dx.(6.1)

First restrict the variations to fixed domains, δζ = 0, and the first integral must
vanish for all variations δψ which vanish on ∂D. Hence ψ is harmonic in the interior
of D, and the double integral vanishes.

We next consider variations of the domain. Since
∫
ζε dx = m for all variations,

we have
∫
δζ dx = 0; then the condition

∫ +∞

−∞
((∇ψ)2 + 1 + 2λζ)δζ dx = 0

for all such δζ implies that the integrand is a constant. We therefore have (∇ψ)2 +
2λζ + 1 = C = constant on the line; letting x → ∞ and noting that ζ → 0 while
(∇ψ)2 → 1 we see that C = 2, and the Bernoulli equation is satisfied.
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on Wave Motion. The authors wish to extend their thanks to the institute for its
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STEADY PERIODIC CAPILLARY-GRAVITY WAVES WITH
VORTICITY∗
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Abstract. In this paper we prove the existence of steady periodic two-dimensional capillary-
gravity waves on flows with an arbitrary vorticity distribution. The original free-surface problem
is first transformed to a second-order quasi-linear elliptic equation with a second-order quasi-linear
boundary condition in a fixed domain by a change of variables. We then use local bifurcation
theory combined with the Schauder theory of elliptic equations with Venttsel boundary conditions
and spectral theory in Pontryagin spaces to construct the solutions. We show that some bifurcation
points are simple while others are double, a situation already known to occur in the case of irrotational
capillary-gravity waves.

Key words. water waves, vorticity, capillarity, bifurcation theory
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1. Introduction. The mathematical studies of water waves have until recently
been mainly restricted to irrotational flows (see, e.g., [8, 12, 16, 31, 38]). While the
irrotational setting is regarded as appropriate for waves traveling into still water [19,
27], there are many situations in which it is necessary to take vorticity into account.
For example, nonuniform currents generate water flows with vorticity [35, 36, 37] and
the effect of a wind blowing in one direction results at first in the creation of capillary
waves.

In the last few years there has been an increasing amount of research in the
area of water waves with vorticity; see [4, 5] regarding the symmetry of rotational
water waves, [14, 23, 24, 39] for questions of uniqueness, and [2, 3, 6, 7, 40] for
existence results. However, in all of these recent investigations the surface tension is
neglected. It is therefore an interesting task to study the effects of surface tension
in the presence of vorticity. The recent paper [41] dealt with the existence of pure
capillary waves with vorticity, that is, the force of gravity was neglected. In the
present paper we take into account both gravity and capillarity. It is known that the
irrotational capillary-gravity wave problem is a single problem in which many different
bifurcation phenomena appear. One of the main differences from the theory of pure
capillary and gravity waves is the presence of double bifurcation points. Closely
connected with this is the existence of secondary bifurcation points. We refer the
reader to [8, 20, 33, 34] (finite depth) and [8, 21, 22] (infinite depth) for a detailed
presentation of the local bifurcation theory of irrotational capillary-gravity waves. As
we shall see, double bifurcation points also occur when vorticity is present. However,
we do not fully investigate the structure of the solution set at these points.

The main result of this paper is the proof of the existence of steady periodic
capillary-gravity waves for an arbitrary vorticity distribution. The proof is inspired
by the approach in [7], but there are several interesting differences. We will first for-
mulate the water wave problem in terms of the stream function. After this we perform
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a change of variables which transforms the free-boundary problem into a second-order
quasi-linear elliptic equation in a fixed domain. As in [41], one difference to the pure
gravity problem is that this elliptic equation has a second-order boundary condition.
This means that we cannot use the standard Schauder theory for elliptic equations,
but instead have to rely on similar estimates for so-called Venttsel boundary condi-
tions (see [29]). A perhaps more dramatic difference is that the eigenvalue problem
associated with bifurcation is not a standard Sturm–Liouville problem. The opera-
tor T involved is, however, self-adjoint with respect to an indefinite inner product
(see [18]). Unlike the pure capillary case, the operator T (λ) is not positive definite for
all values of the bifurcation parameter λ. This is the key to why double bifurcation
points occur when we also include gravity. After the proof of the main theorem, we
investigate the distribution of the bifurcation points and present a necessary and suf-
ficient condition for the existence of double bifurcation points. We also consider what
happens as we vary the surface tension and gravity. Finally, at the end of the paper
we take a closer look at the interesting special cases of irrotational flows (γ ≡ 0) and
flows with nonzero, constant vorticity.

2. Preliminaries. In this section we present the governing equations for cap-
illary-gravity waves [11, 19]. We consider two-dimensional waves propagating over
water with a flat bed. In its undisturbed state the equation for the flat surface is
y = 0 and the flat bottom is given by y = −d for some d > 0. The x-variable
represents the direction of propagation and the wavelength is 2π/k, where k ∈ R

+ is
the wave number. The equations of motion are the equation of mass conservation

ux + vy = 0(2.1)

and Euler’s equation {
ut + uux + vuy = −Px,
vt + uvx + vvy = −Py − g,

(2.2)

where P (t, x, y) denotes the pressure and g is the gravitational constant. The bound-
ary conditions for capillary-gravity waves are the dynamic boundary condition

P = P0 − σ
ηxx

(1 + η2
x)

3
2

on y = η(t, x),(2.3)

P0 being the constant atmospheric pressure and σ > 0 being the coefficient of surface
tension, as well as the kinematic boundary conditions

v = ηt + u ηx on y = η(t, x)(2.4)

and

v = 0 on y = −d;(2.5)

cf. [19].
We are looking for steady periodic waves traveling at speed c > 0, that is, the

space-time dependence of the free surface, the pressure, and the velocity field is of the
form (x− ct). The map x− ct �→ x transforms (2.2)–(2.5) into the stationary problem{

(u− c)ux + vuy = −Px

(u− c)vx + vvy = −Py − g
on − d < y < η(x)
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and ⎧⎪⎨
⎪⎩

v = (u− c)ηx at y = η(x),

P = P0 − σ ηxx

(1+η2
x)

3
2

at y = η(x),

v = 0 at y = −d.

The equation of mass conservation (2.1) allows us to introduce the (relative)
stream function ψ, satisfying ψx = −v, ψy = u−c. The kinematic boundary condition
then shows that ψ is constant on the free surface, and we determine it uniquely by
requiring that the constant value be zero. Field evidence indicates that for waves
not near the spilling or breaking state, the propagation speed c of the surface wave is
considerably larger than the horizontal velocity u of each individual water particle [28].
It follows that ψ is a strictly decreasing function of y for each fixed x. Let

p0 =

∫ η(x)

−d

[u(x, y) − c]dy

be the relative mass flux—it follows by differentiation, using (2.1) and (2.4), that
this expression is independent of x ∈ R. Then by construction ψ = −p0 on the flat
bottom. We can now pose problem (2.1)–(2.5) in terms of ψ:{

ψyψxy − ψxψyy = −Px

−ψyψxx + ψxψxy = −Py − g
on −d < y < η(x)

and ⎧⎪⎨
⎪⎩

ψ = 0 at y = η(x),

P = P0 − σ ηxx

(1+η2
x)

3
2

at y = η(x),

ψ = −p0 at y = −d,

where P , ψ, and η are 2π/k-periodic in the x-variable and ψy < 0.
The vorticity ω is defined by ω = vx−uy. The assumption u < c guarantees that

ω is a function of ψ, that is, ω = γ(ψ) (see [7]). Thus Δψ = −ω = −γ(ψ). Introduce
the function

Γ(p) =

∫ p

0

γ(−s)ds, p0 ≤ p ≤ 0,

and let Γmin ≤ 0 be its minimum value. Using the equations of motion and the
properties of ψ we obtain Bernoulli’s law, which states that

E =
(c− u)2 + v2

2
+ gy + P − Γ(−ψ)

is constant throughout the fluid. On the free surface we have

E =
(c− u)2 + v2

2
+ gη + P0 − σ

ηxx

(1 + η2
x)

3
2

,

so that letting Q = 2(E − P0 + gd) we obtain

(ψ2
x + ψ2

y) + 2g(y + d) − 2σ
ηxx

(1 + η2
x)

3
2

= Q
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on the free surface. This condition is equivalent to the dynamic boundary condition.
We have now obtained the following formulation of our problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Δψ = −γ(ψ) on −d < y < η(x),

|∇ψ|2 + 2g(y + d) − 2σ ηxx

(1+η2
x)

3
2

= Q at y = η(x),

ψ = 0 at y = η(x),
ψ = −p0 at y = −d.

The main difficulty with this formulation lies in the fact that η is not known a priori.
For this purpose, we make a change of variables due to Dubreil-Jacotin [13]. Since ψ
is constant on the free surface and on the bottom and strictly decreasing as a function
of y, we choose the new variables q = x, p = −ψ(x, y). A domain of one wavelength
is then transformed to R = {(q, p) ∈ R

2 : 0 < q < 2π/k, p0 < p < 0}. Introducing
the height function h(q, p) = y + d, we have

hq =
v

u− c
, hp =

1

c− u
.

Thus

v = −hq

hp
, u = c− 1

hp
, ∂x = ∂q −

hq

hp
∂p, ∂y =

1

hp
∂p.

Note also that ω = γ(−p) and that η(x) = h(q, 0) − d. We obtain the following
formulation of the capillary-gravity problem:⎧⎪⎪⎨

⎪⎪⎩
(1 + h2

q)hpp − 2hphqhpq + h2
phqq = −γ(−p)h3

p in p0 < p < 0,

1 + h2
q + (2gh−Q)h2

p − 2σ
h2
phqq

(1+h2
q)

3
2

= 0 on p = 0,

h = 0 on p = p0,

(2.6)

where h is 2π/k-periodic in the q-variable and hp > 0 throughout R.
So far we have derived (2.6) from (2.1)–(2.5). We shall now see that it is also

possible to derive (2.1)–(2.5) starting with (2.6). Denote the fluid domain

Dη = {(x, y) ∈ R
2 : −d < y < η(x)}.

For the Hölder-parameter α ∈ (0, 1), let Cm+α
per (Dη) be the space of functions f : Dη →

R with Hölder-continuous derivatives of exponent α up to order m, and with period
2π/k in the x-variable. Similarly, Cm+α

per (R) denotes the space of 2π/k-periodic real-
valued functions on R of class Cm+α. A small modification of the argument in [7]
yields the following.

Proposition 2.1. Problem (2.6) is equivalent to (2.1)–(2.5). Furthermore, if
h ∈ C2+α

per (R), then (u, v, η) ∈ C1+α
per (Dη)×C1+α

per (Dη)×C2+α
per (R), and if h is even in

the q-variable, then u and η are even in x while v is odd.

3. Main result.
Theorem 3.1. Let the wave speed c > 0, the relative mass flux p0 < 0, the

wave number k ∈ R
+, and the vorticity function γ ∈ Cα[0, |p0|], 0 < α < 1, be given.

Then there exist infinitely many C1 curves of small amplitude traveling wave solutions
(u, v, η) of (2.1)–(2.5) in the space C1+α

per (Dη) × C1+α
per (Dη) × C2+α

per (R), with period
2π/k, speed c, and relative mass flux p0, satisfying u < c throughout the fluid. In
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particular, for sufficiently large numbers n ∈ Z
+ there exist waves of minimal period

2π/(kn) with the property that (i) the wave profile η has precisely one crest and one
trough per period of length 2π/(kn); (ii) the wave profile is strictly monotone between
crest and trough; and (iii) the functions u and η are even, while v is odd.

Remark.

(i) We would like to point out that the depth varies along the solution contin-
uum.

(ii) In Theorems 3.11 and 4.1, we will present more details about the set of small
amplitude solutions.

Lemma 3.2. The trivial solutions (parallel shear flows with flat surfaces) h(q, p) =
H(p) of (2.6) are of the form

H(p) = H(p;λ) =

∫ p

0

ds√
λ + 2Γ(s)

+
Q− λ

2g
=

∫ p

p0

ds√
λ + 2Γ(s)

,

where 0 ≤ −2Γmin < λ and

Q(λ) = λ + 2g

∫ 0

p0

dp√
λ + 2Γ(p)

.

Proof. A solution of the form H(p) satisfies the ordinary differential equation

Hpp = −γ(−p)H3
p .

Integrating gives

Hp(p) = (λ + 2Γ(p))−
1
2

for λ > −2Γmin. The surface boundary condition 1 + (2gH(0) −Q)H2
p (0) = 0 yields

H(p) =
∫ p

0
ds√

λ+2Γ(s)
+ Q−λ

2g and the bottom boundary condition H(p0) = 0 gives the

expression for Q.

Note that the function Q(λ) is strictly convex for λ > −2Γmin with limλ→∞ Q′(λ) =
1, respectively, limλ→−2Γmin Q

′(λ) = −∞. It follows that there is a unique λ0 >
−2Γmin such that Q′(λ0) = 0, that is,

∫ 0

p0

dp

(λ0 + 2Γ(p))3/2
=

1

g
.(3.1)

For every Q > Q(λ0) there is exactly one λ > λ0 satisfying Q(λ) = Q, while for some
Q there is a second solution in (−2Γmin, λ0).

Our goal is to show that the curve of trivial solutions parameterized by λ bifur-
cates at certain points. To identify these bifurcation points we will use the following
tool.

Theorem 3.3 (see [9]). Let X and Y be Banach spaces, I an open interval in R

containing λ∗, and F : I ×X �→ Y a continuous map with the following properties:

(i) F(λ, 0) = 0 for all λ ∈ I;
(ii) Fλ, Fw, Fλw exist and are continuous;
(iii) N (Fw(λ∗, 0)) and Y/R(Fw(λ∗, 0)) are one-dimensional, with the null space

generated by w∗; and
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(iv) Fλw(λ∗, 0)w∗ 
∈ R(Fw(λ∗, 0)).
Then there exists a continuous local bifurcation curve {(λ(s), w(s)) : |s| < ε} with ε
sufficiently small such that (λ(0), w(0)) = (λ∗, 0) and

{(λ,w) ∈ U : w 
= 0, F(λ,w) = 0} = {(λ(s), w(s)) : 0 < |s| < ε}

for some neighborhood U of (λ∗, 0) ∈ I ×X. Moreover, we have

w(s) = sw∗ + o(s) in X, |s| < ε.

(v) If Fww is also continuous, then the curve is of class C1.
We will also need a slightly different bifurcation theorem based on the Morse

lemma [17].
Theorem 3.4 (see [30]). Let X, Y , and I be as in Theorem 3.3, and let F : I ×

X → Y be a Cm-map with m > 2. Suppose that for some λ∗ ∈ I we have
(i) F(λ∗, 0) = Fλ(λ∗, 0) = 0;
(ii) N (Fw(λ∗, 0)) and Y/R(Fw(λ∗, 0)) are one-dimensional, with the null space

spanned by w∗;
(iii) Fλλ(λ∗, 0) ∈ R(Fw(λ∗, 0)) and Fλw(λ∗, 0)w∗ /∈ R(Fw(λ∗, 0)).

Then the set of solutions of F(λ,w) = 0 near (λ∗, 0) consists of two Cm−2 curves
C1, C2 intersecting only at (λ∗, 0). Furthermore, C1 is tangent to the λ-axis at (λ∗, 0)
and may be parameterized by λ:

(λ,w(λ)), |λ− λ∗| < ε;

C2 may be parameterized by a variable s, |s| < ε, as

(λ(s), sw∗ + w(s)),

with w(0) = w′(0) = 0, λ(0) = λ∗.
If F is regular enough, Theorem 3.3 follows as a special case of Theorem 3.4.

In order to apply Theorems 3.3 and 3.4, we formulate our problem as an abstract
operator equation. Let R be the rectangle (0, 2π/k) × (p0, 0), let T = {p = 0} be the
top, and let B = {p = p0} be the bottom of its closure R, and define the spaces

X = {h ∈ C2+α
per (R) : h = 0 onB},

Y = Cα
per(R) × Cα

per(T ),

where the subscript “per” means periodicity and evenness in the variable q. We also
define the subspaces Xn ⊆ X and Yn ⊆ Y for n ∈ N, consisting of functions that are
2π/(kn)-periodic. For n = 0 we take this to mean that Xn and Yn consist of functions
that are independent of q.

We define the nonlinear operator G : R×X → Y by G(Q, h) = (G1(Q, h),G2(Q, h)),
where

G1(Q, h) = (1 + h2
q)hpp − 2hphqhpq + h2

phqq + γ(−p)h3
p

and

G2(Q, h) = 1 + h2
q + (2gh−Q)h2

p − 2σ
h2
phqq

(1 + h2
q)

3
2

.

Then (Q, h) solves (2.6) if and only if G(Q, h) = 0.
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In order to apply Theorem 3.3 we introduce the operator F(λ,w) = G(Q(λ),
H(λ)+w) for w ∈ X and λ ∈ I = (−2Γmin,∞). Thus F(λ,w) = (F1(λ,w),F2(λ,w)),
where

F1(λ,w) = (1 + w2
q)(Hpp + wpp) − 2(Hp + wp)wqwpq

+(Hp + wp)
2wqq + γ(−p)(Hp + wp)

3

and

F2(λ,w) = 1 + w2
q + (2g(H + w) −Q)(Hp + wp)

2 − 2σ
(Hp + wp)

2wqq

(1 + w2
q)

3
2

.

We have F(λ, 0) ≡ 0 by construction.
The Fréchet derivative of F with respect to w at w = 0 is the pair Fw(λ, 0) =

(F1w(λ, 0),F2w(λ, 0)), where

F1w(λ, 0) = ∂2
p + H2

p∂
2
q + 3γ(−p)H2

p∂p inR,

F2w(λ, 0) = 2(gλ−1 − λ
1
2 ∂p − λ−1σ∂2

q )
∣∣∣
T
,

since Hp(0) = λ− 1
2 , so that the linearization of the problem (2.6) at w = 0 is

Fw(λ, 0)w = 0, i.e.,⎧⎪⎨
⎪⎩

wpp + H2
pwqq + 3γ(−p)H2

pwp = 0 in p0 < p < 0,

gw − λ
3
2wp − σwqq = 0 on p = 0,

w = 0 on p = p0.

(3.2)

Introducing aλ = {λ + 2Γ(p)} 1
2 , we can write this in the form⎧⎪⎨

⎪⎩
{a3

λwp}p + aλwqq = 0 in p0 < p < 0,

a3
λwp + σwqq − gw = 0 on p = 0,

w = 0 on p = p0.

(3.3)

For each n ∈ N we let F (n) be the restriction of F to I × Xn. Note that
F (n)(I ×Xn) ⊆ Yn.

Lemma 3.5. For each fixed λ, the map F (n)
w (λ, 0) : Xn → Yn is a Fredholm

operator of index 0.
Proof. For a fixed λ ∈ I and μ ∈ R, define the operator S(μ) : Xn → Yn by

S1(μ) = ∂2
p + H2

p∂
2
q + 3γ(−p)H2

p∂p − μ,

S2(μ) = 2(gλ−1 − λ
1
2 ∂p − λ−1σ∂2

q + μ∂p)
∣∣∣
T
.

Then the map μ �→ S(μ) ∈ B(Xn, Yn) is continuous and the following estimate holds
for some C = C(μ) > 0:

‖w‖X ≤ C(‖w‖C0(R) + ‖S(μ)w‖Y );(3.4)

cf. [29]. It follows at once that for a fixed μ, S(μ) is semi-Fredholm, that is, it has
finite-dimensional null space and closed range. For μ > λ1/2 the map S(μ) is an
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isomorphism (see [29]) and therefore has index 0. By continuity of the index, we infer
that this is also true for μ = 0, whence the assertion follows.

For each λ we introduce the inner product

〈(A1,B1), (A2,B2)〉Y =

∫∫
R

a3A1A2 dq dp +
1

2

∫
T

a2B1B2 dq,

where a = aλ, on Y . Note that N = N (F (n)
w (λ, 0)) can be identified with the subspace

N̂ = {(A,B) ∈ Yn : A ∈ N , B = A|T } of Yn. We have the following characterization

of the range of F (n)
w (λ, 0) : Xn → Yn.

Lemma 3.6. The range of F (n)
w (λ, 0) is given by the orthogonal complement N̂⊥

of N̂ in Yn with respect to the inner product 〈·, ·〉Y .

Proof. Let (A,B) ∈ Yn belong to the range of F (n)
w (λ, 0), and let ϕ ∈ N =

N (F (n)
w (λ, 0)). Then ∫∫

R

A · a3ϕdq dp +
1

2

∫
T

B · a2ϕdq = 0.

Indeed, (A,B) belongs to R = R(F (n)
w (λ, 0)) if and only if A = a−3{a3vp}p + a−2vqq

in R, B = 2(ga−2v − avp − σa−2vqq) on T . We have∫∫
R

A · a3ϕdq dp =

∫∫
R

{{a3vp}p + avqq}ϕdq dp

=

∫∫
R

{{a3ϕp}p + aϕqq}v dq dp +

∫
T

a3{vpϕ− vϕp}dq

=

∫
T

a3{vpϕ− vϕp}dq,

where the integral over R vanishes because of the equation satisfied by ϕ.
On the top we have 2(vpϕ − vϕp) = 2vpϕ − 2v(ga−3ϕ − σa−3ϕqq) = −a−1Bϕ +

2σa−3(vϕqq − vqqϕ). Thus the last integral equals

−1

2

∫
T

a2Bϕdq + σ

∫
T

(vϕqq − vqqϕ) dq,

where the last term disappears after an integration by parts. Thus R(F (n)
w (λ, 0))

⊆ N̂⊥. Since codimR = dimN = dim N̂ = codim N̂⊥ < ∞ (see [1]), we have

R = N̂⊥.
Note that any function ϕ ∈ Xn can be naturally identified with an element

ϕ̂ = (ϕ,ϕ|T ) ∈ Yn.

Lemma 3.7. Let 0 
= ϕ ∈ N (F (n)
w (λ, 0)) be of the form ϕ = W (p) cos(knq),

n ∈ N. Then 〈Fwλ(λ, 0)ϕ, ϕ̂〉Y 
= 0 and thus F (n)
wλ (λ, 0)ϕ /∈ R(F (n)

w (λ, 0)).
Proof. Throughout the proof we let a = aλ. Let us first calculate Fwλ. We have

Fwλ(λ, 0) =

(
−a−4∂2

q − 3γa−4∂p, 2

(
a−4σ∂2

q − 1

2
a−1∂p − a−4g

)∣∣∣
T

)
.

This yields

〈Fwλ(λ, 0)ϕ, ϕ̂〉Y =

∫∫
R

a3ϕ · (−a−4ϕqq − 3γ(−p)a−4ϕp) dq dp

+

∫
T

a2ϕ · (a−4σϕqq − (2a)−1ϕp − a−4gϕ) dq.
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The first term equals

(kn)2
∫∫

R

a−1ϕ2 dq dp

due to the cosine. The second term equals

−3

2

∫∫
R

aϕ2
p dq dp−

3(kn)2

2

∫∫
R

a−1ϕ2 dq dp +
3

2

∫
T

aϕϕp dq.(3.5)

Indeed, using ap = γ(−p)a−1 (by definition) and (a3ϕp)p = (kn)2aϕ throughout R,
we have that ∫∫

R

γ(−p)a−1ϕϕp dq dp =

∫∫
R

apϕϕp dq dp

= −
∫∫

R

(aϕ2
p + aϕϕpp) dq dp +

∫
T

aϕϕp dq −
∫
B

aϕϕp dq

= −
∫∫

R

aϕ2
p dq dp− (kn)2

∫∫
R

a−1ϕ2 dq dp

+ 3

∫∫
R

γ(−p)a−1ϕϕp dq dp +

∫
T

aϕϕp dq

since ϕ = 0 on B. We now obtain∫∫
R

γ(−p)a−1ϕϕp dq dp =
(kn)2

2

∫∫
R

a−1ϕ2 dq dp +
1

2

∫∫
R

aϕ2
p dq dp−

1

2

∫
T

aϕϕp dq,

proving (3.5). The total contribution of the last three terms is

−3

2

∫
T

aϕϕp dq,

due to the boundary condition satisfied by ϕ on T .
Adding up all terms we find that

〈Fwλ(λ, 0)ϕ, ϕ̂〉Y = − (kn)2

2

∫∫
R

a−1ϕ2 dq dp− 3

2

∫∫
R

aϕ2
p dp < 0,

so that F (n)
wλ (λ, 0)ϕ /∈ R(F (n)

w (λ, 0)).
In order to prove bifurcation, we must investigate the null space of Fw(λ, 0). Note

that any function w in X can be expanded in a cosine series,

w(q, p) =

∞∑
n=0

wn(p) cos(knq).

We thus obtain Fw(λ, 0)w = 0 if and only if each component wn satisfies⎧⎪⎨
⎪⎩

(a3w′
n)′ = (kn)2awn, p0 < p < 0,

a3(0)w′
n(0) = ((kn)2σ + g)wn(0),

wn(p0) = 0,

(3.6)

where a = aλ.
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To study this spectral problem we introduce the (complex) Pontryagin space (see
[1, 18]) H = L2[p0, 0] × C, with the indefinite inner product

[ũ1, ũ2] = 〈au1, u2〉L2 − σb1b2,

where ũi = (ui, bi) ∈ H, i = 1, 2. It is clear that H is a π1-space, that is, any maximal
negative definite (or negative semidefinite) subspace of H has dimension one. On H

there is also an associated Hilbert space inner product, given by 〈ũ, ṽ〉H = [Jũ, ṽ],
where

J =
(

I 0
0 −1

)
.

Define the linear operator T by

T ũ =
(
−a−1(a3u′)′,−a3(0)σ−1u′(0) + gσ−1u(0)

)
,

where we take as domain of definition D(T ) = {ũ = (u, b) : u ∈ H2[p0, 0], u(p0) = 0,
b = u(0)}. Then (3.6) is equivalent with the eigenvalue problem T ũ = μũ for μ =
−(kn)2. It is clear that D(T ) is dense in H and that T is closed. The identity

[T ũ, ũ] = 〈a3u′, u′〉L2 − g|u(0)|2 ∈ R(3.7)

shows that T is symmetric.
Lemma 3.8. T is self-adjoint with discrete spectrum Σ(T ). Moreover, 0 ∈ Σ(T )

if and only if λ = λ0. For λ > λ0 the operator T is positive with one negative
eigenvalue.

Proof. Note that (T − μI)ũ = f̃ := (f, b) is equivalent to the system of equations⎧⎪⎨
⎪⎩

−(a3u′)′ − μau = af,

B1(u) := u(p0) = 0,

B2(u) := −a3(0)u′(0) + gu(0) − μσu(0) = σb.

(3.8)

Let u1 and u2 be solutions of the equation −(a3u′)′ − μau = 0 with initial data
u1(p0) = 0, u′

1(p0) = 1, respectively, u2(p0) = 1, u′
2(p0) = 0. The characteristic

determinant

Δ(μ) =

∣∣∣∣ B1(u1) B1(u2)
B2(u1) B2(u2)

∣∣∣∣
is an entire function of μ. If μ is not a zero of Δ(μ), (3.8) is solvable by means of the
formula

u(p) = c1u1(p) + c2u2(p) +

∫ 0

p0

G(p, r, μ)f(r) dr,

where G is the Green’s function for (3.8) and c1, c2 are chosen so that u satisfies the
boundary conditions. Clearly, (u, u(0)) ∈ D(T ). On the other hand any zero of Δ(μ)
is an eigenvalue of T . Since N (Fw(λ, 0)) is finite-dimensional, there exist integers
n such that −(kn)2 is not an eigenvalue of T . Thus Δ(μ) 
≡ 0 and Δ(μ) has only
isolated zeros of finite multiplicity. Since T is symmetric and closed, it is self-adjoint
with discrete spectrum. The eigenvalues are geometrically simple as an elementary
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consequence of the theory of ordinary differential equations. Moreover, since H is a π1-
space, T has a maximal invariant negative semidefinite subspace which is of dimension
one; cf. [18]. Accordingly, it has at least one negative semidefinite eigenvalue. There
are two possible cases: either there is a unique real negative semidefinite eigenvalue or
there are two complex conjugate negative semidefinite eigenvalues. In the latter case
the corresponding eigenspaces are neutral, that is, [·, ·] vanishes on each eigenspace.
If μ is a nonneutral eigenvalue, we have a decomposition H = N [+̇] N [⊥], where
N = N (T − μ−I) and N [⊥] = {ũ ∈ H : [ũ,N ] = 0}, as an orthogonal direct sum.
Since R(T − μ−I) ⊂ N [⊥], it follows that μ is simple. Thus μ can be nonsimple only
if it is neutral.

Note that Δ(μ) = −B2(u1) = a3(0)u′
1(0)− gu1(0) + μσu1(0), so that Δ(0) = 0 if

and only if ∫ 0

p0

dp

a3(p)
=

1

g
.

By (3.1) this is true if and only if λ = λ0.
For λ > λ0 we use the Cauchy–Schwarz inequality to conclude that if 0 
= ũ ∈

D(T ),

|u(0)|2 =
∣∣∣∫ 0

p0

up(p) dp
∣∣∣2 =

∣∣∣∫ 0

p0

a3/2(p)

a3/2(p)
up(p) dp

∣∣∣2

≤
∫ 0

p0

a−3(p) dp

∫ 0

p0

a3(p)|up(p)|2 dp <
1

g

∫ 0

p0

a3(p)|up(p)|2 dp.

It follows that [T ũ, ũ] > 0 for nonzero ũ, i.e., T is positive definite. Thus the negative
semidefinite eigenvalue is actually negative definite. For any eigenvector ũ correspond-
ing to the eigenvalue μ, we have

μ[ũ, ũ] = [T ũ, ũ] > 0.

It follows therefore that μ < 0 if and only if μ is of negative definite type. Hence the
eigenvalue of negative definite type is the unique negative eigenvalue for λ > λ0.

Remark. From the above proof it follows that the eigenvalues are always geomet-
rically simple. Moreover, they can only be algebraically nonsimple if they are neutral.
As we shall see in section 6, for λ ≤ λ0 one cannot exclude the existence of neutral
eigenvalues that are algebraically nonsimple. Nor can one exclude the existence of
nonreal neutral eigenvalues.

An immediate corollary of Lemma 3.8 is that for λ > λ0 the space N (Fw(λ, 0))
is at most one-dimensional. As we shall see in the following lemma it is in general at
most two-dimensional.

Lemma 3.9. The null space of Fw(λ, 0) is at most two-dimensional.
Proof. Let Z = {ũ = (u, b) ∈ H1[p0, 0] × C : u(p0) = 0} be endowed with the

indefinite inner product [ũ1, ũ2]Z = 〈a3u′
1, u

′
2〉L2 − g b1b2. Clearly Z is a π1-space

and on the subspace D(T ) of Z we have [ũ, ṽ]Z = [T ũ, ṽ]. We already know that T
has at most one negative semidefinite eigenvalue in (−∞, 0]. Suppose that there are
two different positive definite eigenvalues μ1, μ2 ≤ 0 and let ũ1, respectively, ũ2, be
corresponding eigenvectors. Then [ũi, ũi]Z = μi[ũi, ũi] ≤ 0 for i = 1, 2. Noting that
[ũ1, ũ2] = 0, we obtain a two-dimensional negative semidefinite subspace of Z. This
is a contradiction. Hence, there is at most one positive definite eigenvalue in (−∞, 0]
and in total at most two nonpositive eigenvalues.
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We next present a lemma on the behavior of μ−(λ) as λ → ∞, where μ−(λ) is
the negative definite eigenvalue of T (λ).

Lemma 3.10. We have μ−(λ) → −∞ as λ → ∞.
Proof. As in [41] it can be seen that for each λ > λ0

μ− = max
[ũ,ũ]<0

[T ũ, ũ]

[ũ, ũ]
, ũ ∈ D(T ).

For n > 0 let λ ≥ nσ + n−1g − 2Γmin. Then aλ(p) =
√

λ + 2Γ(p) ≥
√
nσ + n−1g.

This yields∫ 0

p0

(n2aλ|u|2 + a3
λ|up|2) dp ≥

√
nσ + n−1g

∫ 0

p0

(n2|u|2 + (nσ + n−1g)|up|2) dp

≥ n(nσ + n−1g)

∫ 0

p0

2Reuup dp = (n2σ + g)|u(0)|2

for ũ ∈ D(T ). It follows that if [ũ, ũ] < 0, [T ũ,ũ]
[ũ,ũ] ≤ −n2. Hence μ−(λ) ≤ −n2.

Before proving Theorem 3.1, we give a theorem which describes what happens at
every point λ∗ ∈ I where Fw(λ∗, 0) : X → Y has a nontrivial null space. At certain
points (cases 1a, 1b, and 2c) we can find the full structure of the solution set of (2.6)
close to (Q(λ∗), H(λ∗)), while at others (case 2a) we can only get a partial result.
Theorem 3.1 will follow by showing that case 1a occurs for infinitely many points
λ∗ ∈ I. In the next section we will show that all the other cases occur for special
values of k and σ (cf. Theorem 4.1 and the remark following the proof of Theorem 4.1).

Theorem 3.11. Let N be the null space of the operator Fw(λ∗, 0) : X → Y ,
and let (Q∗, H∗) = (Q(λ∗), H(λ∗)) be the corresponding point on the curve of trivial
solutions in the (Q, h)-variables. By Lemma 3.9 we know that N is at most two-
dimensional.

1. Suppose that dimN = 1.
(a) If λ∗ 
= λ0, then N is spanned by a function of the form W (p) cos(knq)

with n ∈ Z
+ (this follows from Lemma 3.8) and there exists a neighbor-

hood U of (Q∗, H∗) in R×X, such that the solution set of the equation
(2.6) in U consists of the trivial solution curve, and a curve of nontriv-
ial solutions of minimal period 2π/(kn), intersecting the trivial solution
curve at (Q∗, H∗) transversally.

(b) If λ∗ = λ0, there exists a neighborhood U of (Q∗, H∗) in R ×X, such
that the solution set of (2.6) in U consists only of the trivial solution
curve.

2. Suppose that dimN = 2.
(a) If λ∗ 
= λ0, it follows from Lemma 3.8 that N is spanned by two functions

ϕ1(q, p) = W1(q) cos(kn1q) and ϕ2(q, p) = W2(q) cos(kn2q) with 0 <
n1 < n2.
• If n1 | n2, then the solution set of (2.6) in a neighborhood of

(Q∗, H∗) consists of the trivial solution curve, and at least two
curves of nontrivial solutions having minimal period 2π/(kn1), re-
spectively, 2π/(kn2), intersecting the trivial curve at (Q∗, H∗) trans-
versally (and transversally to each other).

• If n1 � n2, then the solution set of (2.6) in a neighborhood of
(Q∗, H∗) consists of the trivial solution curve, and at least one curve
of nontrivial solutions having minimal period 2π/(kn2), intersecting
the trivial curve at (Q∗, H∗) transversally.
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(b) If λ∗ = λ0, then N is spanned by the function ϕ1(q, p) = Hλ(p;λ0) and a
function ϕ2(q, p) = W (p) cos(knq). The solution set of (2.6) in a neigh-
borhood of (Q∗, H∗) consists of the trivial solution curve, and a curve
of nontrivial solutions having minimal period 2π/(kn), intersecting the
trivial curve at (Q∗, H∗) transversally.

Proof.
Case 1a. If N is one-dimensional and λ 
= λ∗, then N is spanned by a function

ϕ(q, p) = W (p) cos(knq) for some n ∈ Z
+. We can then apply Theorem 3.3 to the

equation F(λ,w) = 0 directly. The regularity conditions (ii) and (v) are obvious, while
(iii) and (iv) follow from Lemmas 3.5 and 3.7 with n = 1. This provides us with a
C1 curve (λ(s), w(s)), |s| < ε, of solutions to F(λ,w) = 0, with (λ(0), w(0)) = (λ∗, 0)
and w′(0) = W (p) cos(knq). Since the bifurcation analysis can be carried out in Xn

and Yn (using Lemmas 3.5 and 3.7 with this n), by restricting the bifurcation curve
we can assume that the solutions are 2π/(kn)-periodic. These solutions correspond
to solutions of (2.6) by the transformations Q = Q(λ) and h = H(λ) + w. Note that
since Hp > 0 throughout R we obtain hp > 0 throughout R close to the bifurcation
point.

Case 1b. Note that N is in this case generated by the function Hλ(p;λ0). Indeed,
differentiating F(λ, 0) ≡ 0 gives

0 = Fλ(λ0, 0) = GQ(Q(λ0), H(λ0))Q
′(λ0) + Gh(Q(λ0), H(λ0))Hλ(λ0)

= Gh(Q(λ0), H(λ0))Hλ(λ0) = Fw(λ0, 0)Hλ(λ0).

Again one can apply Theorem 3.3 to the equation F(λ,w) = 0 to obtain a locally
unique curve of “nontrivial” solutions (in the sense that w 
= 0). However, we will now
show that this curve is just a copy of the trivial solution curve. Since Q attains its
minimum value at λ0, there exists for every λ close to λ0 a point λ̃ 
= λ with Q(λ̃) =
Q(λ). Letting w(λ) = H(λ̃) − H(λ), we see that (λ,w(λ)) maps to (Q(λ), H(λ̃)) =
(Q(λ̃), H(λ̃)), so that F(λ,w(λ)) = 0. By uniqueness, this is the solution curve found
by the Crandall–Rabinowitz theorem. From the above, we see that in the original
(Q, h)-variables, (λ,w(λ)) corresponds to a point on the trivial solution curve. The
reason why we get this copy of the trivial solution curve in the (λ,w)-variables is that
the trivial solution curve has a turning point in the (Q, h)-variables. We refer to [40]
for a more detailed discussion.

Case 2a. Let N be generated by the functions ϕ1, ϕ2 of modes n1, respectively,
n2, where 0 < n1 < n2 and n1 � n2. Denote by F (ni) the restriction of F to I ×Xni .

By hypothesis N (F (ni)
w (λ∗, 0)) is spanned by ϕi. By Lemma 3.7 with n = ni it follows

that F (ni)
wλ (λ∗, 0)ϕi 
∈ R(F (ni)

w (λ∗, 0)). Thus we can apply Theorem 3.3 to infer the
existence of two bifurcation curves Cni,λ∗ ⊂ Xni

, i = 1, 2. These curves are clearly
contained in X. Again, we can pass to solutions of (2.6) by letting Q = Q(λ) and
h = H(λ) + w.

Suppose that n1 | n2. Then we can apply the same considerations as above to
n2 but not to n1. Thus we can only infer the existence of the curve Cn2,λ∗ containing
solutions of mode n2.

Case 2b. In this case we must have μ+(λ0) = 0 while μ−(λ0) = −(kn)2 < 0.
Here μ+ denotes the smallest positive definite eigenvalue of T . The null space is then
two-dimensional and generated by the functions ϕ1(q, p) = Hλ(p;λ0) (see case 1b)
and ϕ2(q, p) = W (p) cos(knq). By identifying X with a subset of C2+α(R)×C2+α(T )
in the canonical way, we have the inner product 〈·, ·〉Y on X. The null space N =
N (Fw(λ0, 0)) can then be decomposed as the orthogonal sum N = N1 ⊕ N2, where
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Ni is the span of ϕi for i = 1, 2. The eigenfunction ϕ1 comes from the fact that
(Q(λ0), H(λ0)) is a turning point for the trivial solution curve (Q(λ), H(λ)). In order
to avoid the kind of problems that appeared in case 1b, we shall not use the (λ,w)-
coordinates.

We define the function

g(r,Q, v) = G(Q(λ0) + Q,H(λ0) + rϕ1 + v)

for r,Q ∈ R and v ∈ N⊥
1 . Our aim is to apply Theorem 3.4 to the function g, regarding

r as the bifurcation parameter. We have to verify properties (i)–(iii) of the theorem.
For notational convenience we let Q0 = Q(λ0) and H0 = H(λ0). The regularity of g
is obvious. We have g(0, 0, 0) = 0 and gr(0, 0, 0) = Gh(Q0, H0)ϕ1 = Fw(λ0, 0)ϕ1 = 0,
so that (i) is satisfied. Furthermore,

g(Q,v)(0, 0, 0)(Q, v) = GQ(Q0, H0)Q + Gh(Q0, H0)v.

Note that GQ(Q0, H0) = (0,−H2
p (λ0)) ∈ ϕ̂⊥

2 \R(Fw(λ0, 0)) and thus R(g(Q,v)(0, 0, 0))

= N̂1⊕R(Fw(λ0, 0)). It follows that R(g(Q,v)(0, 0, 0)) has codimension one. Moreover,
N (g(Q,v)(0, 0, 0)) = {0} × N2, since GQ(Q0, H0) /∈ R(Fw(λ0, 0)), so that the null
space is one-dimensional. This proves (ii). As for (iii), we clearly have grr(0, 0, 0) =
Ghh(Q0, H0)[ϕ1, ϕ1] ∈ R(g(Q,v)(0, 0, 0)) since Ghh(Q0, H0)[ϕ1, ϕ1] is independent of q
and thus orthogonal to ϕ̂2. Finally, we have

gr(Q,v)(0, 0, 0)(0, ϕ2) = Ghh(Q0, H0)[ϕ1, ϕ2].

On the other hand, using that Q′(λ0) = 0 we obtain

Fwλ(λ0, 0)ϕ2 = Ghh(Q(λ0), H(λ0))[ϕ1, ϕ2].

By Lemma 3.7, 〈Fwλ(λ0, 0)ϕ2, ϕ̂2〉Y 
= 0, so that

gr(Q,v)(0, 0, 0)(0, ϕ2) /∈ R(g(Q,v)(0, 0, 0)).

This takes care of (iii). We can now conclude that the zero set of g close to the
origin consists of two curves C1, C2 intersecting only at the origin, such that C1 is
of the form (r,Q(r), v(r)) and C2 is of the form (r(s), Q(s), sϕ2 + v(s)), |s| < ε,
with r(0) = Q(0) = Q′(0) = v(0) = v′(0) = 0. Clearly the first curve is a simply
a reparameterization of the trivial solution curve, while the second curve gives all
nontrivial solutions near (Q0, H0). Thus, even if the null space of Fw(λ0, 0) is two-
dimensional, the point (Q0, H0) is in some sense only a simple bifurcation point. The
first eigenfunction simply comes from the fact that the trivial solution curve turns at
this point.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Note that μ−(λ) is a real-analytic function for λ > λ0.

This is a simple consequence of the fact that, picking an appropriate branch of the
square root, T (λ) is an analytic family of unbounded operators on L2[p0, 0] × C and
that μ− is the only eigenvalue in the lower half plane for each λ > λ0 (cf. [25]). Using
Lemma 3.10, we see that for any sufficiently large integer n there exists a λ∗ > λ0

such that μ−(λ∗) = −(kn)2. Thus, we at least know that there are infinitely many
points λ∗ such that case 1a of Theorem 3.11 applies.

Proposition 2.1 allows us to pass from solutions of the problem (2.6) to solutions
of the water wave problem (2.1)–(2.5). For any mode n-bifurcation curve (that is, with
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solutions of minimal period 2π/(kn)), we have h(q, p) = H(p;λ(s))+sW (p) cos(knq)+
o(s) in X along the bifurcation curve close to (Q∗, H∗). It follows that hq(q, 0) =
−knsW (0) sin(knq)+o(s) in C1+α

per (T ), while hqq(q, 0) = −(kn)2sW (0) cos(knq)+o(s)
in Cα

per(T ). Choosing q0 ∈ (0, π/(2kn)), we can find an ε such that for 0 < s < ε,
hq(q, 0) < 0 for q ∈ (q0, π/(kn) − q0), hqq(q, 0) < 0 for q ∈ [0, q0), while hqq(q, 0) >
0 for q ∈ (π/(kn) − q0, π]. Since h(q, 0) is even and 2π/(kn)-periodic, it follows
that hq(0, 0) = hq(π/(kn), 0) = 0 and thus by construction hq < 0 in (0, π/(kn))
for 0 < s < ε. Due to the antisymmetry of hq with respect to q = π/(kn), it
follows for small positive s that hq > 0 in (π/(kn), 2π/(kn)) and that h|T is strictly
decreasing in (0, π/(kn)) and strictly increasing in (π/(kn), 2π/(kn)). For small s < 0
we have instead that h|T is strictly increasing in (0, π/(kn)) and strictly decreasing
in (π/(kn), 2π/(kn)). The nodal properties now follow from η = h|T .

Remark. The above result is incomplete in the sense that it doesn’t present the full
structure of the solution set at the double bifurcation points. What makes a double
bifurcation point different from a simple one is the presence of solutions of mixed
modes, that is, solutions that do not rise and fall once per period. Such phenomena
have been thoroughly studied in the irrotational case (see [20, 21, 22]), and the study
of the full structure of the solution set for other vorticity distributions is an interesting
problem, but is out of the scope of the present paper.

4. The distribution of the bifurcation points. We know from the previous
section that there are only simple bifurcation points for λ > λ0. In order to find
double bifurcation points, we must look in λ < λ0. The aim of this section is to
prove the following theorem, which gives a necessary and sufficient condition for the
existence of double bifurcation points.

Theorem 4.1.

1. If ∫ 0

p0

aλ0(p)

(∫ p

p0

a−3
λ0

(s) ds

)2

dp ≤ σ

g2
,(4.1)

there are only simple bifurcation points which lie in λ > λ0, one for each mode n ∈ Z
+.

2. If ∫ 0

p0

aλ0
(p)

(∫ p

p0

a−3
λ0

(s) ds

)2

dp >
σ

g2
,(4.2)

there exists for every sufficiently large rational number n2/n1, n1, n2 ∈ Z
+, a k ∈ R

+

such that F has a double bifurcation point λ∗ of mode (n1, n2) (N (Fw(λ∗, 0)) is
spanned by two solutions of mode n1, respectively, n2). If (4.2) holds and γ ≤ 0,
there exists for an arbitrary rational number n2/n1 > 1 (and some k ∈ R

+ depending
on n1, n2) a double bifurcation point of mode (n1, n2).

The proof of this theorem relies on three lemmas.
Lemma 4.2. The function μ− is strictly decreasing for λ > λ0.
Proof. We denote Lu = −(a3up)p, where a = aλ, and let W = W (p;λ) be defined

as a real-analytic curve of solutions to the problem

LW = μ−aW, W (p0) = 0, Wp(0) = (g − μ−σ)λ− 3
2W (0).

Denoting differentiation with respect to λ by a dot, ˙ , we have ȧ = 1/(2a). Fur-
thermore,

LẆ − 3

2
(aWp)p = μ̇−aW +

μ−
2a

W + μ−aẆ ,
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Ẇ (p0) = 0,

and

Ẇp(0) = −μ̇−λ
− 3

2σW (0) − 3

2
(g − μ−σ)λ− 5

2W (0) + (g − μ−σ)λ− 3
2 Ẇ (0).

Multiplying the W equation by Ẇ and vice versa yields, after integrating,

〈Ẇ , LW 〉L2 = μ−〈Ẇ , aW 〉L2

and

〈LẆ ,W 〉L2 +
3

2

∫ 0

p0

aW 2
p dp− 3

2
aWpW

∣∣∣0

= μ̇−

∫ 0

p0

aW 2 dp +

∫ 0

p0

μ−
2a

W 2 dp + μ−〈aẆ ,W 〉L2 ,

where 〈·, ·〉L2 denotes the L2[p0, 0] inner product. On the other hand

〈Ẇ , LW 〉L2 − 〈LẆ ,W 〉L2 =

∫ 0

p0

{−Ẇ (a3Wp)p + (a3Ẇp)pW}dp

= {−a3ẆWp + a3ẆpW}
∣∣0.

Combining the last three equations, we obtain

3

2

∫ 0

p0

aW 2
p dp− 3

2
aWpW |0

= μ̇−

∫ 0

p0

aW 2 dp +

∫ 0

p0

μ−
2a

W 2 dp + a3[ẆpW − ẆWp]
∣∣∣0.

The boundary terms, evaluated at p = 0, are

a3(ẆpW − ẆWp) +
3

2
aWpW

= λ
3
2

[
−μ̇−λ

− 3
2σW − 3

2
(g − μ−σ)λ− 5

2W + (g − μ−σ)λ− 3
2 Ẇ − (g − μ−σ)λ− 3

2 Ẇ
]
W

+
3

2
(g − μ−σ)λ−1W 2

= −μ̇−σW
2.

We thus have

μ̇−[W̃ , W̃ ] = μ̇−

(∫ 0

p0

aW 2 dp− σW 2(0)
)

= −μ−

∫ 0

p0

1

2a
W 2 dp +

3

2

∫ 0

p0

aW 2
p dp > 0,

so that μ− is strictly decreasing in view of [W̃ , W̃ ] < 0.
Lemma 4.3. Let W = W (p;λ) be the solution of −(a3W ′)′ = μaW with W (p0) =

0 and W ′(p0) = 1 for a fixed μ ≤ 0. Then

B(λ) = a3
λ(0)

W ′(0;λ)

W (0;λ)
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is a strictly increasing function of λ ∈ I.
Proof. We proceed as in Lemma 4.2 to establish the formula

a3(ẆpW − ẆWp) +
3

2
aWpW

∣∣∣0 =
3

2

∫ 0

p0

aW 2
p dp− μ

∫ 0

p0

1

2a
W 2 dp,

where the dot denotes differentiation with respect to λ. Noting that the left-hand
side is W 2(0)B′(λ), the assertion follows.

Note that by continuity, the negative semidefinite eigenvalue μ−(λ0) of T (λ0) must
be nonpositive. Since T (λ0) has the eigenvalue 0, we either have μ−(λ0) = 0, in which
case T (λ0) has no negative eigenvalues, or μ−(λ0) < 0, in which case μ+(λ0) = 0,
where μ+(λ0) is the first positive definite eigenvalue of T (λ0).

Lemma 4.4. If μ−(λ0) = 0, there are no negative eigenvalues of T (λ) for λ < λ0.
If μ−(λ0) < 0, there is a minimal point λ1 ∈ [−2Γmin, λ0) such that for each λ ∈ I ′ =
(λ1, λ0) there is exactly two negative eigenvalues of T . These are the negative definite
eigenvalue μ− and the lowest positive definite eigenvalue μ+. Moreover, μ− is a
strictly decreasing function of λ ∈ I ′, while μ+ is strictly increasing. If λ1 > −2Γmin,
then μ−(λ1) = limλ→λ1 μ+/−(λ) and there are no negative eigenvalues for λ < λ1. If
μ−(λ0) < 0 and γ ≤ 0, then λ1 > −2Γmin.

Proof. We begin with the first case. Note that μ is an eigenvalue of T (λ) if and
only if B(λ;μ) = −σμ + g, where B is the function in Lemma 4.3. By Lemma 3.10
and the assumption μ−(λ0) = 0, every μ ≤ 0 is an eigenvalue for some λ ≥ λ0. It
follows from Lemma 4.3 that B(λ;μ) < −σμ + g for λ < λ0. Hence, there are no
negative eigenvalues in this region.

In the second case we note that at λ0 the operator T has two simple nonpositive
eigenvalues μ−(λ0) < 0 and μ+(λ0) = 0. The fact that μ−(λ0) is simple follows from
the preservation of total algebraic multiplicity (see [25]) and from the simplicity of
μ−(λ) for λ > λ0. By analytic perturbation theory it follows that the two eigenvalues
can be represented as real-analytic functions μ− and μ+ of λ in a neighborhood of
λ0. Using the same argument as in Lemma 4.2, we see that

μ̇[W̃ , W̃ ] = −μ

∫ 0

p0

1

2a
W 2 dp +

3

2

∫ 0

p0

aW 2
p dp > 0(4.3)

for μ = μ+/−. We see from this that μ− is negative definite and that it is a strictly
decreasing function of λ close to λ0. Similarly μ+ is a strictly increasing function of
λ close to λ0. Thus μ−(λ) < μ+(λ) < 0 for λ < λ0 close to λ0.

We may now continue μ− and μ+ for λ < λ0 until eventually either (i) we
reach −2Γmin or (ii) we reach a point λ1 > −2Γmin such that limλ→λ+

1
μ−(λ) =

limλ→λ+
1
μ+(λ). In the latter case μ−(λ1) = limλ→λ+

1
μ+/−(λ) is neutral and has

algebraic multiplicity two. Note that it follows from (4.3) that μ̇+/−(λ) diverges at
λ1. Proceeding as for μ−(λ0) = 0, we see that there are no negative eigenvalues for
λ < λ1.

If γ ≤ 0, it can be shown (see [40]) that limλ→∞ B(λ;μ) = ∞, while B(λ;μ) → 0
as λ → −2Γmin for every μ < 0. Consequently, every negative μ is an eigenvalue
of T (λ) for some λ > −2Γmin. It follows that λ1 > −2Γmin, since otherwise there
would exist a μ with limλ→−2Γmin

μ−(λ) ≤ μ ≤ limλ→−2Γmin
μ+(λ), which was never

an eigenvalue of T (λ).
Remark. In section 6 we will see examples with μ−(λ0) = 0 as well as μ−(λ0) < 0.

In the latter case we will show that both λ1 = −2Γmin and λ1 > −2Γmin can happen.
Thus all the alternatives in Lemma 4.4 are possible.
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Proof of Theorem 4.1. Since the eigenfunction corresponding to the eigenvalue 0
at λ0 is

W (p) =

∫ p

p0

a−3
λ0

(s) ds,

with W (0) = 1/g (cf. (3.6)), we see that the integral condition in the statement of the
theorem corresponds to [W̃ , W̃ ] ≤ 0, respectively, [W̃ , W̃ ] > 0. In the first case the
eigenvalue 0 is of negative semidefinite type, that is, μ−(λ0) = 0, while in the second
case 0 is of positive definite type, that is, μ−(λ0) < 0 and μ+(λ0) = 0.

Suppose that the first case holds, that is, μ−(λ0) = 0. The first statement in
Theorem 4.1 is then a direct consequence of Lemma 4.2, Lemma 4.4, and the fact
that the bifurcation points for λ > λ0 are all simple.

Suppose instead that the second case holds, that is, μ−(λ0) < 0. With μ−
and μ+ as in Lemma 4.4, we then have μ−(λ)/μ+(λ) → ∞ as λ → λ−

0 . Hence
there exists for every sufficiently large rational number n2/n1 a point λ∗ < λ0 with
μ−(λ∗) = (n2/n1)

2μ+(λ∗). Letting k =
√

|μ+(λ∗)|/n1, we obtain μ+(λ∗) = −(kn1)
2

and μ−(λ∗) = −(kn2)
2. Thus λ∗ is a mode (n1, n2)-bifurcation point.

If in the second case λ1 > −2Γmin, where λ1 is as in Lemma 4.4, then μ−(λ)/μ+(λ)
→ 1 as λ → λ+

1 , so that μ−(λ)/μ+(λ), λ > λ1, ranges through all real numbers greater
than 1. Hence, there are bifurcation points of all modes (n1, n2), n1, n2 ∈ Z

+, with
n2 > n1. In particular, if γ ≤ 0, this is the case.

Remark. Theorem 4.1 shows that case 2a of Theorem 3.11 can occur, both with
n1 | n2 and n1 � n2. Case 1b occurs, for example, when (4.1) holds, while case 2b
occurs if (4.2) holds and we take k =

√
|μ−(λ0)|/n for an arbitrary n ∈ Z

+. Thus all
the cases in Theorem 3.11 are possible.

5. On the limiting cases g → 0 and σ → 0.

5.1. The case g → 0. We now investigate what happens if we consider g and
σ as parameters. First we consider for a fixed σ > 0 what happens as g → 0. Note
that λ0 is defined by (3.1), and that by letting g → 0 we obtain

∫ 0

p0

dp

(λ0 + 2Γ(p))3/2
→ ∞

and thus λ0 → −2Γmin. Furthermore, it is easy to see that Q(λ) → λ. Thus, at
a formal level we recover the results in [40] on bifurcation for pure capillary waves,
where the bifurcation parameter is Q and T is positive definite for every λ > −2Γmin.
In the case of pure capillary waves there are only simple bifurcation points.

5.2. The case σ → 0. If we instead fix g > 0 and let σ → 0, we see that the
value of λ0 doesn’t change. Note that for each μ ≤ 0, the function W = W (p;μ, λ)
satisfying {

−(a3W ′)′ = μaW, p0 < p < 0,

W (p0) = 0, W ′(p0) = 1
(5.1)

has the property W (0) > 0. By continuous dependence on parameters, it follows that
for each compact subset K of I and R > 0, there is an ε > 0 and a δ > 0 such that
W (0;μ, λ) 
= 0 and 〈aW,W 〉L2/|W (0)|2 ≥ δ for μ ∈ [−R, 0] + i[−ε, ε] and λ ∈ K.
In [λ0,∞) we already know that the negative definite eigenvalues are real and satisfy
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μ−(λ) ≤ μ−(λ0). Hence, for each ε > 0 and R > 0 there is a neighborhood U of
−R ≤ Reμ ≤ 0, Imμ = 0 such that for λ ≥ −2Γmin + ε and σ sufficiently small there
are no negative semidefinite eigenvalues in U .

For sufficiently small σ we are clearly in the second situation described in Lemma
4.4. We now prove that λ1 → −2Γmin as σ → 0. Indeed, if L = lim supσ→0 λ1 >
−2Γmin, we obtain for each k > 0 the existence of a sequence λj → λ∗ > −2Γmin and
σj → 0 such that −k2 is a positive definite eigenvalue of T (λj). The corresponding
eigenfunctions solve ⎧⎪⎨

⎪⎩
(a3

λj
W ′

j)
′ = k2aλj

Wj , p0 < p < 0,

a3
λj

(0)W ′
j(0) = (k2σj + g)Wj(0),

Wj(p0) = 0.

Letting j → ∞ we obtain a solution of the eigenvalue problem⎧⎪⎨
⎪⎩

−(a3
λ∗W ′)′ = μaλ∗W, p0 < p < 0,

a3
λ∗(0)W ′(0) = gW (0),

W (p0) = 0,

(5.2)

with μ = −k2. This would mean that for each k > 0 there is a λ∗ ∈ [L, λ0] such
that −k2 is an eigenvalue of the above problem. This is clearly not possible since it
is known that (5.2) has a unique nonpositive eigenvalue μ for each −2Γmin < λ ≤ λ0

and that μ(λ) is a continuous function of λ in this interval.
To summarize, as σ → 0 there is a family of intervals Iσ ⊂ I and real numbers Rσ

such that Iσ → I and Rσ → −∞ as σ → 0 and for λ ∈ Iσ with λ ≤ λ0 the nonpositive
part of the spectrum of T consists of the eigenvalues μ− and μ+ with μ− ≤ Rσ ≤ μ+,
while for λ ≥ λ0 the nonpositive part of the spectrum just consists of μ− ≤ Rσ. Thus
at a formal level we recover the results [7], where the bifurcation points are given by
the λ∗ ∈ I such that μ = −(kn)2 is an eigenvalue of (5.2). The eigenvalue problem
(5.2) has one negative eigenvalue for each λ ∈ (−2Γmin, λ0) (and none in λ > λ0)
and the negative eigenvalue is an increasing function of λ in this interval. This curve
of eigenvalues is simply the limit of the smallest positive definite eigenvalue of T for
λ < λ0 as σ → 0.

6. Examples.

6.1. Irrotational flow. We will now take a closer look at irrotational flows,
γ ≡ 0. In this case Γmin = 0 and the eigenvalue problem is, for λ > 0,⎧⎪⎨

⎪⎩
λW ′′ = (kn)2W in p0 < p < 0,

λ3/2W ′(0) = ((kn)2σ + g)W (0),

W (p0) = 0.

Letting W satisfy the boundary condition at p0 and Wp(p0) 
= 0, we get W (p) =

C sinh
(kn(p−p0)√

λ

)
. Thus the condition for −(kn)2 to be an eigenvalue is that

knλ cosh
(kn|p0|√

λ

)
= ((kn)2σ + g) sinh

(kn|p0|√
λ

)
,

that is,

f(kn;λ) :=
(kn)2σ + g

knλ
tanh

(kn|p0|√
λ

)
= 1.
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The depth corresponding to uniform flow is d = |p0|/
√
λ and λ0 = (g|p0|)2/3. Using

the integral condition in Theorem 4.1 with aλ0(p) = λ
1/2
0 , it is easy to see that

σ0 = 1/3(g|p0|4)1/3 is the unique value of σ for which 0 is a neutral eigenvalue of
T at λ0. For σ > σ0 the eigenvalue 0 at λ0 is negative definite, while it is positive
definite for σ < σ0. Note that f(x;λ) → ∞ as x → ∞ for each λ > 0, while f(x;λ) is
a strictly decreasing function of λ with f(x;λ) → ∞ uniformly as λ → 0. It follows
that if σ ≥ σ0, the operator T (λ) has no negative eigenvalues for λ < λ0, while if
σ < σ0, we are in the second situation described in Lemma 4.4 with λ1 > 0, and
T (λ) has no negative eigenvalues for λ < λ1. This could also be seen directly from
Lemma 4.4, since γ ≤ 0.

The uniform flow corresponding to the bifurcation point λ∗ has the velocity com-
ponents (c− u∗, v∗) = (

√
λ∗, 0), since

H(p;λ∗) =
p− p0√

λ∗
.

We thus obtain the dispersion relation [19, 28] for linearized small amplitude waves
traveling on a uniform current of velocity (u∗, 0):

c− u∗ =

√
(kn)2σ + g

kn
tanh(knd).

This relation was obtained for a fixed p0. However, for any real d > 0 we can choose
c − u∗ according to the above dispersion relation. Setting |p0| = d(c − u∗), this will
in principle yield a curve of solutions having minimal period 2π/(kn) bifurcating at
λ∗ = c − u∗. The problem is that we may be in case 2a of Theorem 3.11. The
bifurcation point is simple or double according to whether or not there exists an
m ∈ Z

+ such that m gives the same intrinsic wave speed c− u∗ as n. If furthermore
n | m, we cannot tell if there are solutions of minimal period 2π/(kn).

Let us now try to relate our results in the irrotational case with the work of
Jones [20]. In [20] the bifurcation parameter is the speed c and d is held fixed, while
|p0| is allowed to vary. Furthermore, the horizontal speed u of the trivial flow is taken
to be zero. For every n ∈ Z

+ a bifurcation point is obtained at

c2n = f(kn) :=
(kn)2σ + g

kn
tanh(knd),

and cn is double or simple depending upon whether there is an m ∈ Z
+ as above with

cn = cm. If σ/gd2 ≥ 1/3, the function f(x), x ≥ 0, is strictly increasing with the
minimum value gd at 0. In this case all bifurcation points are simple. If σ/gd2 < 1/3,
the function f has a single minimum at some point x0 > 0, is strictly decreasing
between 0 and x0, and is strictly increasing in x > x0. It follows that there is some
x1 > x0 with f(x1) = f(0) = gd. For every x ∈ (0, x0) there is an x′ ∈ (x0, x1),
depending continuously on x, with f(x′) = f(x). Moreover, as x → 0 we have
x′ → x1. Thus we can always choose x′ such that x′/x ∈ Q. In this way it is always
possible to find a double bifurcation point (for some wave number) if σ/gd2 < 1/3.

The condition on σ/gd2 is useful also in our setting, but it needs some explaining.
Replacing c by λ = c− u, we obtain precisely the same bifurcation points. However,
since we let the depth vary, while holding p0 fixed, the conditions σ/gd2 < 1/3 and
μ−(λ0) < 0 are related, but the correspondence is not one-to-one. What is true is
that μ−(λ0) < 0 if and only if σ/gd2

0 < 1/3, where d0 is the depth corresponding to
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the trivial solution at λ0. This follows from expressing |p0| in terms of d0 and g and
substituting this in the formula for σ0. If we start with any bifurcation point λ∗ such
that σ/gd2 ≥ 1/3, it follows that λ0 = (g|p0|)2/3 = (gd

√
λ∗)2/3 < λ∗. Hence, the

bifurcation point λ∗ is in this case simple. Note, however, that it does not follow that
μ−(λ0) = 0 for the point λ0 on our corresponding trivial solution curve (it is easy to
construct a counterexample). If σ/gd2 < 1/3 and we choose kn with λ∗ = f(kn) < gd,
then λ∗ < λ0. Hence, μ−(λ0) < 0 in this case.

6.2. Constant vorticity. In the case of constant vorticity γ 
= 0, the substitu-
tion

W (p) =
2γ√

λ + 2γp
W0

(√λ + 2γp

γ

)

transforms the differential equation (3.6) into W ′′
0 = (kn)2W0. We infer that

W (p) =
1√

λ + 2γp
sinh

(kn(
√
λ + 2γp−

√
λ + 2γp0)

γ

)
.

The boundary condition at p = 0 is then f(kn;λ) = 1, where

f(x;λ) :=
x2σ + g + γ

√
λ

xλ
tanh

( 2x|p0|√
λ +

√
λ + 2γp0

)
, x ≥ 0.

Note that limx→∞ f(x;λ) = ∞ for each λ > −2Γmin. As in the irrotational case,
there is a σ0 such that 0 is a neutral eigenvalue at λ0 exactly for σ = σ0. We discern
between the following two cases.

Case 1. Suppose that γ < 0. In this case Γmin = 0 and for x2σ+g+γ
√
λ > 0 the

function f is strictly decreasing in λ. Moreover, we have f(x;λ) → ∞ uniformly as
λ → 0. It follows that the situation is as in the case of γ ≡ 0, that is, if σ ≥ σ0, there
are no negative eigenvalues for λ < λ0, while if σ < σ0, we have λ1 > 0 and there are
no negative eigenvalues for λ < λ1.

Case 2. Suppose instead that γ > 0. In this case we have Γmin = γp0 so that f
is defined for λ > 2γ|p0|. The function f(x;λ) is now strictly decreasing in λ for all
x ≥ 0 and the limit as λ → 2γ|p0| is

f(x; 0) =
σx2 + g + γ

√
2γ|p0|

2xγ|p0|
tanh

(√
2|p0|
γ

x

)
.

If σ ≥ σ0, the situation is exactly as before. Suppose instead that σ < σ0. If the
minimum value of f(x; 0) is greater than one, then as earlier λ1 > −2Γmin and to the
left of λ1 the operator T (λ) has no negative eigenvalues. However, if min f(x; 0) ≤ 1,
then λ1 = −2Γmin so that for each λ ∈ (−2Γmin, λ0) the operator T (λ) has two
negative eigenvalues. Both alternatives can be achieved by varying σ while keeping
the other variables fixed.

The trivial flow corresponding to λ∗ has the velocity components (c − u∗, v∗) =
(
√
λ∗ + γy, 0) because uy = −γ. Note that

H(p;λ∗) =

√
λ∗ + 2γp−

√
λ∗ + 2γp0

γ
.
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From the definition of p0 we infer that
√
λ∗d− γ

2d
2 = |p0| and thus

d =
2|p0|√

λ∗ +
√
λ∗ + 2γp0

.

For y = 0 we obtain the dispersion relation

c− u∗
0 =

γ

2kn
tanh(knd) +

√
(kn)2σ + g

kn
tanh(knd) +

γ2

4(kn)2
tanh2(knd),

where u∗
0 is the speed of the trivial flow at the surface. This is the dispersion relation

for linearized small-amplitude waves traveling on a linearly sheared current of constant
vorticity γ.
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[13] M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques

d’ampleur finie, J. Math. Pures Appl., 13 (1934), pp. 217–291.
[14] M. Ehrnström, Uniqueness of steady symmetric deep-water waves with vorticity, J. Nonlinear

Math. Phys., 12 (2005), pp. 27–30.
[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, Berlin, 2001.
[16] M. D. Groves, Steady water waves, J. Nonlinear Math. Phys., 11 (2004), pp. 435–460.
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Abstract. We study the asymptotic behavior of one-dimensional functionals associated with
the energy of a thin nonlinear elastic spherical shell in the limit of vanishing thickness (proportional
to a small parameter) ε and under the assumption of radial deformations. The functionals are
characterized by the presence of a nonlocal potential term and defined on suitable weighted functional
spaces. The shell-membrane transition is studied at three different relevant scales. For each we give
a compactness result and compute the Γ-limit. In particular, we show that if the energies on a
sequence of configurations scale as ε3/2, then the limit configuration describes a (locally) finite
number of transitions between the undeformed and the everted configurations of the shell. We also
highlight a kind of “Gibbs phenomenon” by showing that nontrivial optimal sequences restricted
between the undeformed and the everted configurations must have energy scaling of at least ε4/3.
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energy minimization, Gibbs phenomenon
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1. Introduction. It is well known that a spherical shell under zero loads can
assume at least two configurations: the trivial reference configuration and the everted
configuration, as they are both stable solutions of the equilibrium problem. The
existence of everted shapes was first proved by Antman [1] for thick spherical shells.
Later, the analysis concerning the eversion of thin shells was carried out from the
theoretical and numerical points of view by Podio-Guidugli et al. [20] and Geymonat,
Rosati, and Valente [15, 16].

The energy functional corresponding to the axially symmetric deformations of a
spherical cap, without applied loads, may be written as

Fε(u) = ε2

∫ 1

0

θ3(u′(θ))2 dθ +

∫ 1

0

1

θ3

(∫ θ

0

ϕ3(u2(ϕ) − 1) dϕ

)2

dθ .

The unknown u, which is a function of the normalized polar angle θ, is related to the
slope of the deformed middle surface of the cap with respect to the initial spherical
shape, and ε is the thinness parameter of the shell (for the derivation of the model
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and physical interpretation of the variable, see the pioneering papers by Reiss [21],
Bauer, Reiss, and Keller [2], and Podio-Guidugli et al. [20]; see also the functional
approach introduced by Berger [4] for the mathematical study of the thin elastic plate
buckling).

In [20, 15, 16], under suitable boundary conditions, it has been proved that,
beside the trivial stable solution u = 1, for ε small enough there exists a second stable
solution, namely, the everted stressed solution. The sequence of everted configurations
tends toward an unstressed configuration (u = −1) that can be described as the
reflection of the cap reference configuration. More recently, the problem has been
further investigated. The existence of infinitely many stable solutions for the limit
problem has been predicted, and several numerical experiments have been proposed
by Geymonat and Leger [14].

Although the problem has been carefully studied in [20, 15, 16] for ε small, the
asymptotic analysis of Fε has remained an open problem, and it is the object of the
present work, analyzed using the notation and techniques of variational calculus.

To describe the asymptotic behavior of Fε we first focus on sequences (uε) such
that Fε(uε) = O(1). In that case we prove that (uε) is locally weakly compact
in L1(0, 1), and sequences giving the optimal lower bound may oscillate between
the values −1 and 1. This behavior is described by the Γ-limit F 0 (see the next
section for the precise form of the limit) that not only captures these oscillations
but also shows that the nonlocal character of the functional is maintained in the
limit. Minimizing sequences are responsible for folding effects, which are also observed
for flat membranes. The analytical reconstruction of the shell surface texture could
allow us to both understand the material elastic properties and study the interactions
between the two surfaces.

It must be noted that the Γ-limit F 0 coincides with the lower-semicontinuous
envelope of the functional

G(u) =

∫ 1

0

θ−3

(∫ θ

0

(u2 − 1)ϕ3 dϕ

)2

dθ,

with respect to the local weak L1-convergence, and that minimizers of this functionals
are all functions with |u| = 1 a.e. In terms of recovery sequences, we note that they
may develop oscillations, but the occurrence of these is due to a nonlocal effect (see
the example in Remark 3).

The minimum value for the Γ-limit F 0 is 0 and is achieved exactly on all functions
u with |u| ≤ 1. This large class of minimizers justifies the analysis at finer scales.
We show that the next meaningful scale occurs when Fε(uε) = O(ε3/2). If this is the
case, then we show that such a (uε) is strongly precompact in L1(0, 1), its limits u
are locally piecewise constant in (0, 1), and |u(θ)| = 1 a.e. We describe this behavior
by showing that the Γ-limit of the scaled energies ε−3/2Fε on those functions takes
the form

F 3/2(u) = c0
∑

θ∈S(u)

θ3,

where we denote by S(u) the set of discontinuities of u (see Theorem 3.3).
The mechanical interpretation of this energetic asymptotic description is that

minimal states of the energies Fε subjected to boundary conditions will be approxi-
mately described for ε small by a mixture of undeformed and everted configurations,
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the transitions between which are such as to minimize the energy F 3/2. A similar
analysis can be performed for suitably scaled forcing terms (in which case the corre-
sponding forcing term must be added to F 3/2).

The formal analogies with the corresponding functionals of the gradient theory of
phase transitions

Hε(u) = ε2

∫ 1

0

θ3(u′(θ))2 dθ +

∫ 1

0

θ3(u2(θ) − 1)2 dθ

must be noted. Upon a normalization factor, the functionals ε−1Hε also Γ-converge to
F 3/2. Apart from the different scaling ε−1, this analogy does not extend to the details
of the proof. First, it must be noted that the compactness properties for functions
with Fε(uε) = O(ε3/2) are much more difficult to prove by the cancellations that may

occur in the integral
∫ θ
0
ϕ3(u2

ε − 1) dϕ owing to the fact that u2
ε − 1 may change sign.

Second, the way the constant c0 is computed involves some optimal transitions that
exhibit a sort of Gibbs phenomenon: even though their limit takes only the value ±1,
these transitions must take values external to the interval [−1, 1].

In the final section, we show that this Gibbs phenomenon is substantial: if we
impose the constraint |uε| ≤ 1 onto a sequence (uε) converging to u, then the values
ε−3/2Fε(uε) cannot converge to the value F 3/2(u), and they must even diverge. We
show that with this additional constraint the correct scaling is ε−4/3. The scaled
energies still converge to a phase-transition functional, but this time in a nonlocal
form (see Theorem 4.2).

We believe that the techniques developed here can be adapted to other transition
problems in nonlinear elasticity, leading to the study of functionals with similar non-
local terms. Moreover, our analysis can be generalized to different weighted spaces.
For these reasons we report our results with reference to a more general weighted
functional (details follow in the next section).

Finally, we point out that functionals Fε are derived from the scaled energy

1

ε

∫
Cε

(
μ|D|2 +

λ

2
(traceD)2

)
dx,

where Cε parameterizes a thin spherical shell of thickness ε, D = 1
2 (∇u + ∇uT ) +

1
2 (∇u∇uT ) is the nonlinear deformation tensor related to the deformation u of the
shell, and λ, μ are the Lamé constants (we refer, e.g., to [20] for the precise derivation).
In this way, our paper may be partly related to recent works on dimension reduction
for thin structures by the use of Γ-convergence (see, e.g., Le Dret and Raoult [17]
for the limit analysis of thin shells, Friesecke, James, and Müller [13] and Conti and
Maggi [10] for the analysis under various scaling, Ben Belgacem et al. [3] for complex
patterns in recovery sequences, and Braides, Fonseca, and Francfort [9] for an example
of application of the localization methods of Γ-convergence to thin structures).

1.1. Analytical description of the results. We conclude this introduction
with a brief analytical description of the results in a more general setting, where we
replace the weight θ3 with a more general weight ρ(θ). We use the techniques of Γ-
convergence for the asymptotic analysis of our functionals; for the definition, notation,
and comprehensive study of Γ-convergence we refer to [6] and [11] (see also [7] and [8,
Part 2]).

Let ρ : [0, 1] �→ R be a nondecreasing, continuous function, strictly positive on
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(0, 1]. For all ε > 0 and α ≥ 0 we define

Fα
ε (u) = ε2−α

∫ 1

0

ρ (u′)2 dθ + ε−α

∫ 1

0

1

ρ(θ)

(∫ θ

0

ρ (u2 − 1) dϕ

)2

dθ

for u ∈ H1(0, 1). When needed, the functionals are understood to take the value
+∞ when not otherwise defined. We will isolate particular values of α for which the
Γ-limit is nontrivial.

We will consider separately the following cases.
Case 1 (section 2). α = 0. In this case, minimizing sequences are weakly pre-

compact in L2
loc(0, 1); hence, we compute the Γ-limit F 0 of F 0

ε with respect to that
convergence, and for every u ∈ L2

loc(0, 1) we get

F 0(u) = min

{∫ 1

0

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ
)2

dθ : μ ≥ ρ u2 dϕ

}
,

where the minimum is taken over all nonnegative measures μ. The set of the minimum
points of F 0 is {|u| ≤ 1}.

Case 2 (section 3). α = 3/2. In this case, we scale F 0
ε further and study the limit

of F
3/2
ε = ε−3/2F 0

ε . We prove that minimizing sequences are precompact with respect
to the strong L1

loc(0, 1)-convergence, and their limits u belong to BVloc((0, 1); {−1, 1});
i.e., u is locally piecewise constant on (0, 1) and takes only the values 1 and −1. We

compute the Γ-limit F 3/2 of F
3/2
ε with respect to that convergence and we get

F 3/2(u) = c0
∑

θ∈S(u)

ρ(θ)

for every u ∈ BVloc((0, 1); {−1, 1}), where S(u) is the set of points where u jumps
between the points 1 and −1, and

c0 = inf
T>0

inf

{∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ :

v ∈ H1(−T, T ), v(±T ) = ±1,

∫ T

−T

(v2 − 1) ds = 0

}
.

With this choice of the scaling we get a result of “Modica–Mortola” type with a
different characterization of the constant c0 (see [18, 19], or [5]).

Case 3 (section 4). In this case, we show that the characteristic scale changes if
we impose the restriction that u ∈ H1((0, 1); [−1, 1]), and there the correct scaling
power is α = 4/3. We treat only the case ρ = 1 for the sake of simplicity. By Case 1
above, we have that the Γ-limit of the restriction of F 0

ε to H1((0, 1); [−1, 1]), G0
ε, is

zero. We then rescale G0
ε to get a nontrivial limit problem, considering the family of

functionals G
4/3
ε = ε−4/3G0

ε, and we prove that the minimizing sequences are compact



948 NADIA ANSINI, ANDREA BRAIDES, AND VANDA VALENTE

with respect to the strong L1-convergence and its Γ-limit is nonlocal,

G4/3(u) = inf
T>0

inf

⎧⎪⎨
⎪⎩
∑
i∈I

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭ ,

for every u ∈ BVloc((0, 1); {−1, 1}), where we have labeled the points in S(u) by a set
of indices I ⊂ N in such a way that θi < θi+1.

2. The case α = 0: Oscillations. We consider the case α = 0 first; i.e.,

F 0
ε (u) = ε2

∫ 1

0

ρ (u′)2 dθ +

∫ 1

0

1

ρ(θ)

(∫ θ

0

ρ (u2 − 1) dϕ

)2

dθ

for u ∈ H1
loc(0, 1). In order to choose the topology in which to frame our limit problem

we have to examine the compactness properties of sequences with bounded energy.
Note that the presence of ε only in the first term of F 0

ε (u) suggests the use of the
weak L2-convergence.

Theorem 2.1 (compactness). Let (uε) be a sequence such that supε F
0
ε (uε) <

+∞; then, up to subsequences, the measures ρu2
ε dϕ converge weakly ∗ in (−∞, 1) and,

in particular, (uε) converges weakly in L2
loc(0, 1).

Proof. By assumption, supε

∫ 1

0
(1/ρ(θ))(

∫ θ
0
ρ (u2

ε − 1) dϕ)2 dθ < +∞, which im-

plies that supε

∫ 1

0
(
∫ θ
0
ρ u2

ε dϕ)2 dθ < +∞; hence, by Hölder’s inequality, there exists a
constant c independent of ε such that∫ 1

0

(∫ θ

0

ρ u2
ε dϕ

)
dθ ≤ c(2.1)

for every ε > 0. By the monotonicity of θ �→
∫ θ
0
ρ u2

ε dϕ we have that for a fixed
θ0 ∈ (0, 1), ∫ θ0

0

ρ u2
ε dϕ ≤

∫ θ

0

ρ u2
ε dϕ

for every θ ≥ θ0. Hence we get that∫ 1

θ0

(∫ θ0

0

ρ u2
ε dϕ

)
dθ ≤

∫ 1

θ0

(∫ θ

0

ρ u2
ε dϕ

)
dθ ≤

∫ 1

0

(∫ θ

0

ρ u2
ε dϕ

)
dθ,

and by (2.1) we can conclude that for every θ0 ∈ (0, 1) there exists a constant c(θ0)

depending only on θ0 such that
∫ θ0
0

ρ u2
ε dϕ ≤ c(θ0) for every ε > 0, which gives the

desired compactness properties.
Remark 1. The following example shows that we cannot expect weak com-

pactness, but only local weak compactness, in L2(0, 1) for a sequence (uε) with
supε F

0
ε (uε) < +∞. In fact, consider

uε(θ) = ε−7/5(θ − θε)
+
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with θε = 1 − ε4/5; then F 0
ε (uε) ≤ c for every ε > 0, but∫ 1

0

u2
ε dθ =

1

3
ε−2/5 .

Lemma 2.2. Let

G(u) =

∫ 1

0

1

ρ(θ)

(∫ θ

0

ρ (u2 − 1) dϕ

)2

dθ .

The lower-semicontinuous envelope of G with respect to the weak L2
loc topology is

G(u) := min

⎧⎨
⎩
∫ 1

0

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ : μ ≥ ρu2 dϕ

⎫⎬
⎭ ,

where the minimum is taken in the space M+([0, 1)) of locally finite positive measures
on [0, 1).

Proof. Let (uN ) be a sequence weakly converging to u in L2
loc such that

lim
N→+∞

G(uN ) < +∞

and the sequence of positive measures (ρu2
N dϕ) converges weakly∗ to μ in M+([0, 1)).

Then, by the lower semicontinuity of the L2-norm and the convergence of the measures
of almost all intervals, we have that

μ(θ − δ, θ + δ)

δ
= lim

N→+∞
−
∫ θ+δ

θ−δ

ρu2
N dϕ ≥ −

∫ θ+δ

θ−δ

ρu2 dϕ

for almost all (a.a.) δ ∈ (0, θ); by the Besicovitch derivation theorem, we conclude
that for a.e. θ,

dμ

dϕ
(θ) ≥ ρ(θ)u2(θ) .

Since μ has at most countably many atoms, by the weak∗-convergence in M+([0, 1)),
we have that

lim
N→+∞

∫ θ

0

ρu2
N dϕ = μ([0, θ)) for a.e. θ ∈ (0, 1) .(2.2)

It follows that

1√
ρ(θ)

(∫ θ

0

ρ (u2
N − 1) dϕ

)
L2

⇀
1√
ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)
,

and by the weak lower semicontinuity of the L2-norm, we get

lim
N→+∞

G(uN ) ≥ G(u) .

Note that the functional

μ �→
∫ 1

0

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ
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is weakly lower semicontinuous and coercive in M+([0, 1)). Moreover, the set {μ ≥
ρu2 dϕ} is convex; hence, the minimum is attained.

We now check the lim sup inequality for every u ∈ L2
loc(0, 1) such that G(u) <

+∞. Let μ ∈ M+([0, 1)) be such that

G(u) =

∫ 1

0

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ .

For 0 < a < 1 we define

ua(θ) =
{
u(θ), a ≤ θ ≤ 1 − a,
0 otherwise

and

μa
N ([0, θ)) =

⎧⎪⎨
⎪⎩

0 if θ < a− 1/N,
μ([0, a)) if a− 1/N ≤ θ < a,
μ([0, θ)) if a ≤ θ < 1 − a,
μ([0, 1 − a)) if 1 − a ≤ θ < 1

for N ∈ N and N > 1. Then, ua ∈ L2(0, 1), ua → u, in L2
loc(0, 1) as a → 0+, μa

N

converges to the measure μa defined by

μa([0, θ)) =

⎧⎨
⎩

0 if θ < a,
μ([0, θ)) if a ≤ θ < 1 − a,
μ([0, 1 − a)) if 1 − a ≤ θ < 1

(this can be checked, e.g., by using Theorem 1.16 in [12]), and

G(ua) ≤
∫ 1

a

1

ρ(θ)

(
μa([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ + o(1) ≤ G(u) + o(1)(2.3)

as a → 0+. Indeed, since by assumption G(u) < +∞, then we have

∫ 1

a

1

ρ(θ)

(
μa([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ

=

∫ 1−a

a

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ

+

∫ 1

1−a

1

ρ(θ)

(
μ([0, 1 − a)) −

∫ θ

0

ρ dϕ

)2

dθ

≤ G(u) + 2

∫ 1

1−a

μ([1 − a, θ))2

ρ(θ)
dθ

+ 2

∫ 1

1−a

1

ρ(θ)

(
μ([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ

= G(u) + o(1) ,

as a → 0+.
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We denote IN = {0, . . . , N − 1} and⎧⎪⎨
⎪⎩

uN (θ) = −
∫ (i+1)/N

i/N

ua dϕ , i/N ≤ θ ≤ (i + 1)/N , i ∈ IN ,

vN (θ) = N μa
N ([i/N, (i + 1)/N)) , i/N ≤ θ ≤ (i + 1)/N , i ∈ IN .

Note that, in particular,

uN (θ) = 0 , 0 ≤ θ ≤ [Na]/N,

and

vN (θ) =

⎧⎨
⎩

0, 0 ≤ θ ≤ ([Na] − 1)/N,

Nμ([0, a)), ([Na] − 1)/N ≤ θ ≤ [Na]/N .

Hence, we define

uN (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ θ ≤ ([Na] − 1)/N,

√
Nμ([0, a))/ρ(θ), ([Na] − 1)/N ≤ θ ≤ [Na]/N,

uN +
√

(vN/ρiN ) − (uN )2, i/N ≤ θ ≤ i/N + 1/2N ,
i = [Na], . . . , N − 1,

cN

(
uN −

√
(vN/ρiN ) − (uN )2

)
, i/N + 1/2N ≤ θ ≤ (i + 1)/N ,

i = [Na], . . . , N − 1,

(2.4)

where

cN (θ) = ρ(θ − 1/2N)/ρ(θ) , [Na]/N + 1/2N ≤ θ ≤ 1

([t] denotes the integer part of t). Finally, it remains to fix ρiN for i = [Na], . . . , N − 1
such that

vN (θ) ≥ ρiN (uN (θ))2 , i/N ≤ θ ≤ (i + 1)/N , i = [Na], . . . , N − 1 .

Since μa
N ≥ ρ (ua)2 dϕ, for every i = [Na], . . . , N−1, there exists ηiN ∈ [i/N, (i+1)/N)

such that

μa
N [i/N, (i + 1)/N) ≥

∫ (i+1)/N

i/N

ρ (ua)2 dϕ = ρ(ηiN )

∫ (i+1)/N

i/N

(ua)2 dϕ

≥ ρ(ηiN )N

(∫ (i+1)/N

i/N

ua dϕ

)2

= ρ(ηiN )
1

N
(uN )2 .

Hence, we choose ρiN = ρ(ηiN ) in (2.4).
By definition, (uN ) is bounded in L2; hence, up to subsequence, it converges

weakly in L2. To identify the weak limit function with ua it is sufficient to check that

limN→+∞
∫ d
b
uN =

∫ d
b
ua for every (b, d) ⊆ (0, 1). In fact,

∫ [Na]/N

0

uN dθ =
√
Nμ([0, a))

∫ [Na]/N

([Na]−1)/N

dθ√
ρ(θ)

≤ 1√
N

√
μ([0, a))

ρ(([Na] − 1)/N)
,(2.5)



952 NADIA ANSINI, ANDREA BRAIDES, AND VANDA VALENTE

while, for i = [Na], . . . , N − 1, we have that

∫ (i+1)/N

i/N

uN dθ =

∫ i/N+1/2N

i/N

uN +
√

(vN/ρiN ) − (uN )2 dθ

+

∫ (i+1)/N

i/N+1/2N

ρ(θ − 1
2N )

ρ(θ)

(
uN −

√
(vN/ρiN ) − (uN )2

)
dθ

=

∫ (i+1)/N

i/N

uN dθ +

∫ (i+1)/N

i/N+1/2N

uN

(
ρ(θ − 1

2N )

ρ(θ)
− 1

)
dθ

+

∫ (i+1)/N

i/N+1/2N

√
(vN/ρiN ) − (uN )2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)
dθ

=

(∫ (i+1)/N

i/N

ua dθ

)
+

∫ (i+1)/N

i/N+1/2N

uN

(
ρ(θ − 1

2N )

ρ(θ)
− 1

)
dθ(2.6)

+

∫ (i+1)/N

i/N+1/2N

√
(vN/ρiN ) − (uN )2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)
dθ .

If we sum up on i, by the Hölder inequality, we get that∣∣∣∣∣∣
∑

i≥[Na]

∫ (i+1)/N

i/N+1/2N

uN

(
ρ(θ − 1

2N )

ρ(θ)
− 1

)
dθ

∣∣∣∣∣∣(2.7)

≤
(∫ 1

0

(uN )2 dθ

)1/2
(∫ 1

a/2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)2

dθ

)1/2

and

(2.8)∣∣∣∣∣∣
∑

i≥[Na]

∫ (i+1)/N

i/N+1/2N

√
(vN/ρiN ) − (uN )2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)
dθ

∣∣∣∣∣∣
≤

⎛
⎝ ∑

i≥[Na]

∫ (i+1)/N

i/N+1/2N

(vN/ρiN ) + (uN )2 dθ

⎞
⎠

1/2(∫ 1

a/2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)2

dθ

)1/2

≤
(
μ([0, 1 − a))

ρ(a/2)
+

∫ 1

0

(uN )2 dθ

)1/2
(∫ 1

a/2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)2

dθ

)1/2

.

Note that the sequence (uN ) is bounded in the L2-norm since it converges to ua

strongly; moreover,

lim
N→+∞

∫ 1

a/2

(
1 −

ρ(θ − 1
2N )

ρ(θ)

)2

dθ = 0 .

Hence, by (2.5), (2.6), (2.7), and (2.8), we can easily conclude that limN→+∞
∫ d
b
uN =∫ d

b
ua for every (b, d) ⊆ (0, 1) and, therefore, we have the weak convergence of (uN )

to ua in L2(0, 1).
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We now examine

G(uN ) =

∫ a

0

1

ρ(θ)

(∫ θ

0

ρ u2
N −
∫ θ

0

ρ dϕ

)2

dθ(2.9)

+

∫ 1

a

1

ρ(θ)

(∫ θ

0

ρ u2
N −
∫ θ

0

ρ dϕ

)2

dθ ;

in particular, we have that

∫ [Na]/N

0

1

ρ(θ)

(∫ θ

0

ρ u2
N dϕ

)2

dθ

= N2μ([0, a))2
∫ [Na]/N

([Na]−1)/N

1

ρ(θ)

(
θ − [Na] − 1

N

)2

dθ

≤ 1

3N

μ([0, a))2

ρ(([Na] − 1)/N)
.(2.10)

Then, passing to the limit as N → +∞ in (2.10), we get that

lim sup
N→+∞

∫ a

0

1

ρ(θ)

(∫ θ

0

ρ u2
N −
∫ θ

0

ρ dϕ

)2

dθ = o(1) ,(2.11)

as a → 0+. It remains to study the second term in (2.10). For i = [Na], . . . , N − 1,
we have that∫ (i+1)/N

i/N

ρ u2
N dθ

=

∫ i/N+1/2N

i/N

ρ

(
vN
ρiN

+ 2uN

√
(vN/ρiN ) − (uN )2

)
dθ

+

∫ (i+1)/N

i/N+1/2N

ρ

(
θ − 1

2N

)(
vN
ρiN

− 2uN

√
(vN/ρiN ) − (uN )2

)
dθ

= 2

∫ i/N+1/2N

i/N

ρ(θ)

ρ(ηiN )
vN (θ) dθ ,(2.12)

where ηiN ∈ [i/N, (i+1)/N), i = [Na], . . . , N−1. We recall that ρu2
N = 0 in [0, ([Na]−

1)/N) ∪ [([N(1 − a)] + 1)/N, 1], while ρu2
N = Nμ([0, a)) in [([Na] − 1)/N, [Na]/N);

hence, by (2.12), we have that

lim
N→+∞

∫ θ

0

ρ u2
N dθ = μa([0, θ)), a.e. θ ∈ (a, 1) .

Moreover, as already observed, (uN ) is bounded in L2; hence,

1

ρ(θ)

(∫ θ

0

ρ u2
N dϕ−

∫ θ

0

ρ dϕ

)2

≤ c
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for every θ ∈ (a, 1) and for every N . Therefore, we can apply Lebesgue’s theorem in
the second term of (2.10), and by (2.11), (2.3) we have

lim sup
N→+∞

G(uN ) ≤
∫ 1

a

1

ρ(θ)

(
μa([0, θ)) −

∫ θ

0

ρ dϕ

)2

dθ + o(1)

≤ G(u) + o(1) as a → 0+ .(2.13)

Since ua → u in L2
loc(0, 1) as a → 0+, we can conclude that, passing to a further

subsequence, uN ⇀ u in L2
loc(0, 1) as N → +∞, and

lim sup
N→+∞

G(uN ) ≤ G(u),

as desired.
Remark 2. Note that the set of minimizers for G(u) is {|u| ≤ 1}.
Remark 3. The functional G can be estimated from above and from below as

G−(u) ≤ G(u) ≤ G+(u),(2.14)

where

G+(u) =

∫ 1

0

1

ρ(θ)

(∫ θ

0

ρ (u2 − 1)+ dϕ

)2

dθ

and

G−(u) =

∫ 1

0

1

ρ(θ)

⎛
⎝(∫ θ

0

ρ (u2 − 1) dϕ

)+
⎞
⎠

2

dθ .

The second inequality in (2.14) easily follows by testing the definition of G(u) with
the measure μ = ρ(u2 ∨ 1) dϕ. To check the first inequality from below, we first note
that G(u) ≥ G−(u), and by Fatou’s lemma and the weak L2

loc-lower semicontinuity

of the functional
∫ θ
0
ρ u2 dϕ for every θ ∈ (0, 1), we get that G− is weakly L2

loc-lower
semicontinuous. Hence, by Lemma 2.2 and the lower semicontinuity of G−, we have
that for every u ∈ L2

loc(0, 1) there exists a sequence uN weakly L2
loc converging to u

such that

G(u) = lim
N→+∞

G(uN ) ≥ lim inf
N→+∞

G−(uN ) ≥ G−(u) .

We show now an example of function u such that G(u) = G−(u). Let us consider for
simplicity ρ = 1. Let

u(ϕ) =

{√
2, ϕ ∈ (0, 1/4),

0, ϕ ∈ (1/4, 1) .
(2.15)

Note that ∫ θ

0

(u2 − 1) dϕ < 0 for all θ > 1/2 ,
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−1

1
Nuu

Fig. 1. Nonlocal oscillations.

so that

G−(u) =

∫ 1/4

0

θ2 dθ +

∫ 1/2

1/4

(
1

2
− θ

)2

dθ =

∫ 1

0

(μ([0, θ)) − θ)2dθ,

where the measure μ = v dϕ is defined by

v(ϕ) =

⎧⎨
⎩

2, ϕ ∈ (0, 1/4),
0, ϕ ∈ (1/4, 1/2),
1, (1/2, 1) .

Since μ ≥ u2 dϕ, we can test the definition of G(u) with μ getting G−(u) ≥ G(u), and
then we have that G−(u) = G(u) by (2.14). A recovery sequence (corresponding to
(2.4) with a = 0 and ρ = 1) for G(u) is shown in Figure 1; it highlights the nonlocal
nature of the oscillations that start at ϕ = 1/2, while the target function is 0 on the
whole (1/4, 1).

Note that u as in (2.15) is also an example of a function such that G(u) < G+(u).
Finally, we note that also the inequality G− ≤ G is sharp: if we consider

u(ϕ) =

{
0, ϕ ∈ (0, 1/2),√

2, ϕ ∈ (1/2, 1),

we have that G−(u) = 0 while G(u) > 0 by Remark 2.
Theorem 2.3 (Γ-convergence result). We have

Γ(w-L2
loc)- lim

ε→0
F 0
ε (u) = G(u)

for every u ∈ L2
loc(0, 1).

Proof. Let u ∈ L2
loc(0, 1). By the definition of G for every sequence (uε) weakly

L2
loc converging to u, we have

F 0
ε (uε) ≥ G(uε) ≥ G(uε) ;

hence by the weak lower semicontinuity of G we get the lim inf inequality.
Conversely, let u ∈ L2

loc(0, 1), and let

ua(θ) =
{
u(θ) if a ≤ θ ≤ 1 − a,
0 otherwise
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with 0 < a < 1; hence, ua ∈ L2(0, 1) and ua → u in L2
loc(0, 1) as a → 0+. By Lemma

2.2, there exists a sequence (uN ) ∈ L2(R) weakly converging to ua in L2(0, 1) such
that

G(ua) = lim
N→+∞

G(uN ) .

Let η : R �→ [0,+∞) be a mollifier; we define ηε(θ) = 1√
ε
η( θ√

ε
), then we have

uN
ε = uN ∗ ηε ∈ C∞

c (R) and uN
ε → uN in L2(0, 1) as ε → 0 for every N . Hence,

lim
ε→0

F 0
ε (uN

ε ) = lim
ε→0

(
ε2

∫ 1

0

ρ (uN ∗ η′ε)2 dθ + G(uN
ε )
)

= lim
ε→0

G(uN
ε ) = G(uN ),

and by the lower semicontinuity of the Γ-lim sup and (2.3), we have that

Γ- lim sup
ε→0

F 0
ε (ua) ≤ lim inf

N→+∞

(
Γ- lim sup

ε→0
F 0
ε (uN )

)
≤ lim inf

N→+∞
G(uN ) = G(ua) ≤ G(u) + o(1)

as a → 0+. We again use the lower semicontinuity of the Γ-lim sup to get, as a → 0+,
that

Γ- lim sup
ε→0

F 0
ε (u) ≤ G(u),

which concludes the proof of the lim sup inequality (see [6, Remark 1.29]).

3. The case α = 3/2: Phase transitions. In section 2 we showed that the
set of the minimum points of the Γ-limit F 0 is {|u| ≤ 1} and showed that minF 0 = 0.
To reduce the choice in the minimizers of the limit problem we may further rescale F 0

ε ;
the next meaningful scaling is α = 3/2. We then consider the family of functionals

F 3/2
ε (u) =

√
ε

∫ 1

0

ρ (u′)2 dθ + ε−3/2

∫ 1

0

1

ρ(θ)

(∫ θ

0

ρ (u2 − 1) dϕ

)2

dθ

for u ∈ H1(0, 1).
Theorem 3.1 (compactness). Let (uε) be a sequence of equibounded energy, i.e.,

supε F
3/2
ε (uε) < +∞; then (uε) is equibounded in L∞

loc(0, 1) and, up to subsequences,
(uε) converges to u ∈ BVloc((0, 1); {−1, 1}) strongly in L1

loc.
Proof. Let η±ε �= ±1 such that −1 < η+

ε , η
−
ε < 1 or η+

ε , η
−
ε > 1 or η+

ε , η
−
ε < −1.

We denote by (δ−ε , δ+
ε ) an interval such that uε(δ

−
ε ) = η−ε , uε(δ

+
ε ) = η+

ε and uε takes
values between η−ε and η+

ε . In what follows, we use η± = η±ε , δ± = δ±ε so that we do
not overburden notation. By assumption,

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ + ε−3/2

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ ≤ c .(3.1)

For any fixed 0 < a < 1, we assume δ− ≥ a.
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The crucial argument in the proof will be to estimate the length δ+ − δ− of any
such interval. We will show that

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ + ε−3/2

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

≥ ρ(a)|η+ − η−|2
(√

ε

δ

)
+ c(λ)

(
δ√
ε

)3

,

where λ is the minimum between |η2
− − 1| and |η2

+ − 1|, and c(λ) is a suitable positive
constant depending only on λ. From this estimate we will deduce that if |η+ − η−| ≥
ζ > 0, then δ+ − δ− is of the order

√
ε, and that

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ + ε−3/2

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ ≥ cζ3/2.

From this, we will finally obtain that frequent large oscillations are forbidden, and in
particular that the number of transitions from values close to 1 to values close to −1,
and conversely, is equibounded, and then deduce the L1

loc-convergence in (0, 1).
Step 1. We define the set

Aε =

⎧⎨
⎩θ ∈ (a, 1] :

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

≤ ε

⎫⎬
⎭ ,

and we denote by Ac
ε its complementary set. Since supε F

3/2
ε (uε) < +∞, we have

that

|Ac
ε|ε <

∫
Ac

ε

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

≤ cε3/2,

which implies that there exists c(ε) ≤ c such that

|Ac
ε| = c(ε)

√
ε .(3.2)

Let θε ∈ Aε be such that θε = max{θ ∈ Aε : θ ≤ δ−}; by definition,

ε ≥ 1

ρ(θε)

(∫ θε

0

ρ (u2
ε − 1) dϕ

)2

≥ 1

ρ(1)

(∫ θε

0

ρ (u2
ε − 1) dϕ

)2

.

It follows that there exists c1(ε) such that |c1(ε)| ≤
√
ρ(1) and∫ θε

0

ρ (u2
ε − 1) dϕ = c1(ε)

√
ε .(3.3)

Moreover, for every θ ∈ (θε, δ
−) ⊂ Ac

ε, we have that

|uε(θ) − η−| = |uε(θ) − uε(δ
−)| ≤

(
|Ac

ε|
∫ δ−

θε

(u′
ε)

2 dθ

)1/2

≤
(
|Ac

ε|
ρ(a)

∫ δ−

θε

ρ (u′
ε)

2 dθ

)1/2

.
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Since supε F
3/2
ε (uε) < +∞, by (3.2) we have that

|uε(θ)| ≤ |η−| + c̃ for all θ ∈ [θε, δ
−],(3.4)

which in turn implies ∣∣∣∫ δ−

θε

ρ (u2
ε − 1) dθ

∣∣∣ ≤ c(η−)
√
ε,

where c(η−) = c ρ(1)(1+(|η−|+c̃)2). Hence, there exists c2(ε, η
−) such that |c2(ε, η−)| ≤

c(η−) and ∫ δ−

θε

ρ (u2
ε − 1) dθ = c2(ε, η

−)
√
ε .(3.5)

By (3.3) and (3.5) we get that

(3.6)

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

=

∫ δ+

δ−

1

ρ(θ)

(∫ θε

0

ρ (u2
ε − 1) dϕ +

∫ δ−

θε

ρ (u2
ε − 1) dϕ +

∫ θ

δ−
ρ (u2

ε − 1) dϕ

)2

dθ

= c5(c1(ε) + c2(ε, η
−))2 ε δ +

∫ δ+

δ−

1

ρ(θ)

(∫ θ

δ−
ρ (u2

ε − 1) dϕ

)2

dθ

+ 2(c1(ε) + c2(ε, η
−))

√
ε

∫ δ+

δ−

1

ρ(θ)

(∫ θ

δ−
ρ (u2

ε − 1) dϕ

)
dθ ,

where c5 = −
∫ δ+

δ− (1/ρ) dθ and δ = δ+ − δ−.
By assumption, uε takes values between η− and η+ for every θ ∈ [δ−, δ+] (note

that either (u2
ε − 1) > 0 or (u2

ε − 1) < 0 for every θ ∈ [δ−, δ+]); hence,

|u2
ε − 1| ≥ λ := ||η−|2 − 1| ∧ ||η+|2 − 1|,

where we use the notation λ without an explicit dependence on η± since we want to
emphasize that λ does not depend on the values of η± but on the minimum distance
of |η±|2 from 1.

Moreover, on [δ−, δ+],

|u2
ε − 1| ≤ c(η±) := ||η−|2 − 1| ∨ ||η+|2 − 1|;

then there exist c3(ε, η
±) and c4(ε, λ) such that

0 < |c3(ε, η±)| ≤ c(η±)

2
, c4(ε, λ) ≥ λ2

3

ρ(a)2

ρ(1)
(3.7)

and ∫ δ+

δ−

1

ρ(θ)

(∫ θ

δ−
ρ (u2

ε − 1) dϕ

)
dθ = c3(ε, η

±) δ2 ,(3.8)

∫ δ+

δ−

1

ρ(θ)

(∫ θ

δ−
ρ (u2

ε − 1) dϕ

)2

dθ = c4(ε, λ) δ3 .(3.9)
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By (3.6), (3.8), and (3.9) we get that

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

= δ3

{
c4(ε, λ) + c5(c1(ε) + c2(ε, η

−))2
(√

ε

δ

)2

(3.10)

+ 2c3(ε, η
±)(c1(ε) + c2(ε, η

−))

(√
ε

δ

)}
.

Note that c4 and c5 are always strictly positive while c3 �= 0 with sign (c3) = sign (u2
ε−

1). Moreover, we claim that

c4 − (c23/c5) ≥ c(λ),(3.11)

where c(λ) := λ2 c(δ±)ρ(a)2/ρ(1) with 1/12 ≤ c(δ±) ≤ 1/3 for every δ±. Also in this
case we prefer to use the notation c(λ), omitting the dependence on δ± because of
the bound on c(δ±). We check now (3.11). Let us denote

f(θ) =

∫ θ

δ−
ρ |u2

ε − 1| dϕ ;

hence, f ′(θ) = ρ(θ)|u2
ε(θ) − 1| ≥ λρ(a). Then, there exists δ0 ∈ (δ−, δ+) such that

|c3| =
1

δ2

∫ δ+

δ−

f(θ)

ρ(θ)
dθ =

f(δ0)

δ2

∫ δ+

δ−

dθ

ρ(θ)
=

f(δ0)

δ
c5(3.12)

and

|f(θ) − f(δ0)| ≥ λρ(a) |θ − δ0| .

It follows that∫ δ+

δ−

(f(θ) − f(δ0))
2

ρ(θ)
dθ ≥ (λρ(a))2

∫ δ+

δ−

(θ − δ0)
2

ρ(θ)
dθ

≥ (λρ(a))2
(δ+ − δ0)

3 − (δ− − δ0)
3

3ρ(1)

= δ3

(
λ2 c(δ±)

ρ(a)2

ρ(1)

)
,(3.13)

where 1/12 ≤ c(δ±) ≤ 1/3 for every δ±. On the other hand, by (3.12) we have that∫ δ+

δ−

(f(θ) − f(δ0))
2

ρ(θ)
dθ

=

∫ δ+

δ−

f(θ)2

ρ(θ)
dθ + f(δ0)

2

∫ δ+

δ−

dθ

ρ(θ)
− 2f(δ0)

∫ δ+

δ−

f(θ)

ρ(θ)
dθ

= δ3

(
c4 − c5

(
f(δ0)

δ

)2
)

= δ3

(
c4 −

c23
c5

)
;(3.14)

hence, by (3.13) we get (3.11).
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We now estimate the term with the derivative in (3.1); by Hölder’s inequality we
get that

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ ≥ ρ(a) |η+ − η−|2

(√
ε

δ

)
.(3.15)

By (3.10) and (3.15) we have then

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ + ε−3/2

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

≥ ρ(a) |η+ − η−|2
(√

ε

δ

)
+

(
δ√
ε

)3
(
γ

(√
ε

δ

)2

± β

(√
ε

δ

)
+ α

)
,(3.16)

where

α = c4 , γ = c5(c1 + c2)
2 , β = 2|c3(c1 + c2)| .

Note that, as already observed, α > 0, γ ≥ 0, and c3(c1 + c2) may be ≥ 0 or ≤ 0
(γ = 0 if and only if β = 0). By (3.11), if we minimize γ(

√
ε/δ)2 ± β(

√
ε/δ) + α in

(
√
ε/δ), we have

ρ(a) |η+ − η−|2
(√

ε

δ

)
+

(
γ

(√
ε

δ

)2

± β

(√
ε

δ

)
+ α

)(
δ√
ε

)3

≥ ρ(a)|η+ − η−|2
(√

ε

δ

)
+

(
α− β2

4γ

)(
δ√
ε

)3

= ρ(a)|η+ − η−|2
(√

ε

δ

)
+

(
c4 −

c23
c5

)(
δ√
ε

)3

≥ ρ(a)|η+ − η−|2
(√

ε

δ

)
+ c(λ)

(
δ√
ε

)3

.(3.17)

Step 2. If

|η+ − η−| ≥ ζ > 0 ,

with ζ independent of ε, studying the function x �→ ρ(a)|η+ − η−|2x + c(λ)/x3 for
x > 0, by (3.1), (3.16), and (3.17) we have that δ/

√
ε is bounded; i.e., there exist two

positive constants α1, α2 such that α1
√
ε ≤ δ ≤ α2

√
ε.

Step 3. The minimum point of x �→ ρ(a)|η+ − η−|2x + c(λ)/x3 for x > 0 is
xm = cm/|η+ − η−|1/2; then by (3.16) and (3.17) we have that

√
ε

∫ δ+

δ−
ρ (u′

ε)
2 dθ + ε−3/2

∫ δ+

δ−

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ(3.18)

≥ c̃(λ) |η+ − η−|3/2 ≥ c̃(λ) ζ3/2 ,

where c̃(λ) = (ρ(a)cm + c(λ)/c3m). We recall that λ is the minimum distance of |η±|2
from 1. Since (uε) is a sequence with bounded energy, and estimate (3.18) depends on
λ only, we deduce that the number of transitions of uε from η− to η+ is equibounded
independently of ε.
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Conclusions. By (3.1) and (3.18) we conclude that (uε) is equibounded in L∞
loc(0, 1).

Moreover, by Steps 2 and 3, we have that for every fixed 0 < a < 1, (uε) converges
in measure in (a, 1) to u ∈ BVloc((0, 1); {−1, 1}); hence, up to subsequences, uε → u
a.e. θ ∈ (a, 1). Since (uε) is equibounded in L∞

loc(0, 1), we can conclude that, up to
subsequences, (uε) converges strongly in L1

loc(0, 1) to u ∈ BVloc((0, 1); {−1, 1}).
The following proposition gives an estimate of the measure of the set, where a

sequence of bounded energy is not close to ±1.
Proposition 3.2. Let (uε) be a sequence converging to u in L1

loc(0, 1) such that

supε F
3/2
ε (uε) < +∞. Then for every fixed 0 < a < 1 and η > 0, there exists c = c(η)

such that

|{θ ∈ [a, 1 − a] : |u2
ε(θ) − 1| > η}| ≤ c

√
ε .(3.19)

Proof. Let 0 < a < 1 and η > 0 be fixed. We define δ±i such that

{θ ∈ [a, 1 − a] : |u2
ε(θ) − 1| > η} ⊆

⋃
i

[δ−i , δ+
i ] ,

with δ−i < δ+
i , δ+

i ≤ δ−j for every i < j and⎧⎪⎪⎨
⎪⎪⎩

|(uε(δ
±
i ))2 − 1| = η/2 except if δ+

i = 1,

|u2
ε(θ) − 1| > η/2 if θ ∈ (δ−i , δ+

i ),

∃δi ∈ (δ−i , δ+
i ) such that |(uε(δi))

2 − 1| = η .

Hence, we may have two cases:

uε(δ
−
i ) �= uε(δ

+
i ), and hence uε(δ

±
i ) ∈

{
±
√

1 − η/2
}
,(3.20)

or

uε(δ
−
i ) = uε(δ

+
i ) ∈

{
±
√

1 − η/2 , ±
√

1 + η/2
}
.(3.21)

In case (3.20) we may apply Steps 1–3 from the proof of Theorem 3.1 with η± ∈
{±
√

1 − η/2}, λ = η/2, and ζ = 2
√

1 − η/2. If instead we are in case (3.21), we
consider

η− ∈
{
±
√

1 − η/2 , ±
√

1 + η/2
}
, η+ ∈

{
max

[δ−i ,δ+
i ]
uε , min

[δ−i ,δ+
i ]
uε

}
,

or the converse. For example, if uε(δ
−
i ) = uε(δ

+
i ) =

√
1 + η/2, then we apply Steps

1–3 two times: the first to

η− =
√

1 + η/2 , η+ = max
[δ−i ,δ+

i ]
uε,

and then to

η− = max
[δ−i ,δ+

i ]
uε , η+ =

√
1 + η/2 .

Hence, also in this case we may apply Steps 1–3 with ζ > 0.
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We can then conclude that the number of intervals [δ−i , δ+
i ] is finite (and inde-

pendent of ε) and that there exist α1
i , α

2
i > 0 such that α1

i

√
ε ≤ (δ+

i − δ−i ) ≤ α2
i

√
ε,

which proves (3.19).
Theorem 3.3 (Γ-convergence result). We have

Γ(L1
loc)- lim

ε→0
F 3/2
ε (u) = c0

∑
θ∈S(u)

ρ(θ)

for every u ∈ BVloc((0, 1); {−1, 1}), where

c0 = inf
T>0

inf

{∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ :

v ∈ H1(−T, T ), v(±T ) = ±1,

∫ T

−T

(v2 − 1) ds = 0

}
.

Proof (lim inf inequality). Let u ∈ BVloc((0, 1); {−1, 1}) and let (uε) be a se-

quence converging to u in L1
loc(0, 1) such that supε F

3/2
ε (uε) < +∞.

Step 1. We fix 0 < a < 1 and consider θi ∈ S(u) such that a < θi < 1 − a.
Without loss of generality, we may assume that u(θi±) = ∓1. Let θε → θi, as ε → 0,
and let M > 0 be such that

uε >
1

2
on I−ε := (θε − 2M

√
ε, θε −M

√
ε)

and

uε <
1

2
on I+

ε := (θε + M
√
ε, θε + 2M

√
ε) .

We claim that for every fixed η > 0, there exist a constant c > 0 and θ±ε ∈ I±ε of
the form θ±ε = θε ±Mε

√
ε, with M ≤ Mε ≤ 2M , such that∣∣∣∣∣
∫ θ±

ε

0

ρ (u2
ε − 1) dϕ

∣∣∣∣∣ ≤ c√
M

√
ε(3.22)

and

|u2
ε(θ

±
ε ) − 1| ≤ η .(3.23)

In fact, reasoning by contradiction, assume that for every constant c > 0 we cannot
find two points θ±ε ∈ I±ε such that (3.22) and (3.23) are satisfied at the same time. If
we denote

Bc =

{
θ : M

√
ε ≤ |θ − θε| ≤ 2M

√
ε,

∣∣∣∣∣
∫ θ

0

ρ (u2
ε − 1) dϕ

∣∣∣∣∣ > c√
M

√
ε

}
,

then by (3.19) we have |Bc| ≥
√
ε(2M − c), and hence

F 3/2
ε (uε) ≥ ε−3/2

∫
Bc

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

≥ ε−1/2 c2

ρ(1)

|Bc|
M

≥ c2

ρ(1)

(
2 − c

M

)
.
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Note that we can choose M large enough such that c < 2M . Since supε F
3/2
ε (uε) <

+∞, we get a contradiction by the arbitrariness of c > 0.
Step 2. We give an estimate on the contribution between θ−ε and θ+

ε . By (3.22),
there exists a sequence (cε−), bounded independently of ε, such that

(3.24)

√
ε

∫ θ+
ε

θ−
ε

ρ (u′
ε)

2 dθ + ε−3/2

∫ θ+
ε

θ−
ε

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

=
√
ε

∫ θ+
ε

θ−
ε

ρ (u′
ε)

2 dθ + ε−3/2

∫ θ+
ε

θ−
ε

1

ρ(θ)

(
cε−√
M

√
ε +

∫ θ

θ−
ε

ρ (u2
ε − 1) dϕ

)2

dθ

=

∫ Mε

−Mε

ρε (v′)2 ds +

∫ Mε

−Mε

1

ρε(σ)

(
cε−√
M

+

∫ σ

−Mε

ρε (v2 − 1) ds

)2

dσ,

where s = (ϕ−θε)/
√
ε, σ = (θ−θε)/

√
ε, ρε(t) = ρ(θε+t

√
ε) and v(s) = uε(θε+

√
εs).

By (3.22) there exists also a sequence (cε+), bounded independently of ε, such that

∫ θ+
ε

0

ρ (u2
ε − 1) dϕ =

cε+√
M

√
ε ;

hence,

1√
ε

∫ θ+
ε

θ−
ε

ρ (uε − 1)2 dϕ =

∫ Mε

−Mε

ρε (v2 − 1) ds =
cε+ − cε−√

M
.(3.25)

By (3.23) we get that |v2(±Mε) − 1| ≤ η. We consider v(s) = uε(θε +
√
εs) for

s ∈ [−Mε,Mε] and we extend it to [−3M, 3M ] in such a way that

v(±3M) = ∓1,

∫ 3M

−3M

ρε (v2 − 1) ds = 0,(3.26)

∫ −Mε

−3M

ρε (v2 − 1) ds =
cε−√
M

.

Note that by (3.25) and (3.26) we have that

∫ 3M

Mε

ρε (v2 − 1) ds = −
cε+√
M

.

We explicitly construct v on [−3M,−Mε], the construction on [Mε, 3M ] being anal-
ogous. We also suppose that cε− ≤ 0 and v(−Mε) ≥ 1 (the construction being the
same or simpler in the other cases). We define v on [−3M,−Mε] as

v(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s ∈ [−3M,−hε),

−s +
√

1 − η − k−ε if s ∈ [−hε,−k−ε ),
√

1 − η if s ∈ [−k−ε ,−k+
ε ),

s +
√

1 − η + k+
ε if s ∈ [−k+

ε ,−Mε],

(3.27)
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where

−k−ε = −hε + 1 −
√

1 − η, −k+
ε = −Mε − v(−Mε) +

√
1 − η .

Note that k+
ε is fixed by Step 1 while k−ε is fixed by (3.26). In fact, since |v2 − 1| ≤ η

on [−hε,−k−ε ) and [−k+
ε ,−Mε), we have that∣∣∣∣∣

∫ −k−
ε

−hε

ρε (v2 − 1) ds +

∫ −Mε

−k+
ε

ρε (v2 − 1) ds

∣∣∣∣∣ ≤ η ρ(1)
(
1 +
√

1 + η − 2
√

1 − η
)

;

hence, there exists r(η, ε) such that |r(η, ε)| ≤ ρ(1)(1 +
√

1 + η − 2
√

1 − η) uniformly
in ε and ∫ −Mε

−3M

ρε (v2 − 1) ds = η (−kε + r(η, ε)) =
cε−√
M

,

where kε := −k+
ε + k−ε . It follows that

kε =
|cε−|
η
√
M

+ r(η, ε) ,(3.28)

with limη→0+ |r(η, ε)| = 0. Reasoning as above, by (3.28), we can also observe that∫ −Mε

−3M

1

ρε(σ)

(∫ σ

−3M

ρε (v2 − 1) ds

)2

dσ

=

∫ −Mε

−hε

1

ρε(σ)

(∫ σ

−hε

ρε (v2 − 1) ds

)2

dσ

≤ η2 ρ(1)

3

(
kε + 1 +

√
1 + η − 2

√
1 − η

)3

= η2 ρ(1)

3

( |cε−|
η
√
M

+ r(η, ε) + 1 +
√

1 + η − 2
√

1 − η

)3

.

We can prove a similar estimate also for the contribution corresponding to the in-
terval [Mε, 3M ]; hence, we can conclude that there exists R(M,η, ε) > 0, bounded
independently of ε, such that

R(M,η, ε) =

∫ −Mε

−3M

1

ρε(σ)

(∫ σ

−3M

ρε (v2 − 1) ds

)2

dσ(3.29)

+

∫ 3M

Mε

1

ρε(σ)

(
cε+√
M

+

∫ σ

Mε

ρε (v2 − 1) ds

)2

dσ

and

lim sup
η→0+

lim sup
M→∞

lim sup
ε→0

R(M,η, ε) = 0 .(3.30)

By (3.29) we have that∫ Mε

−Mε

1

ρε(σ)

(
cε−√
M

+

∫ σ

−Mε

ρε (v2 − 1) ds

)2

dσ(3.31)

=

∫ 3M

−3M

1

ρε(σ)

(∫ σ

−3M

ρε (v2 − 1) ds

)2

dσ −R(M,η, ε) .
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The function v, constructed as in (3.27), gives the following contribution of the term
with the derivative:

∫ −Mε

−3M

ρε (v′)2 ds ≤ ρ(1)
(
1 +
√

1 + η − 2
√

1 − η
)

;

hence, reasoning similarly on [Mε, 3M ], there exists R1(η, ε) > 0, bounded indepen-
dently of ε, such that

∫ Mε

−Mε

ρε (v′)2 ds =

∫ 3M

−3M

ρε (v′)2 ds−R1(η, ε)(3.32)

and

lim sup
η→0+

lim sup
ε→0

R1(η, ε) = 0 .(3.33)

By (3.24), (3.32), and (3.31) we get that

√
ε

∫ θ+
ε

θ−
ε

ρ(θ)(u′
ε)

2 dθ + ε−3/2

∫ θ+
ε

θ−
ε

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

=

∫ 3M

−3M

ρε (v′)2 ds +

∫ 3M

−3M

1

ρε(σ)

(∫ σ

−3M

ρε (v2 − 1) ds

)2

dσ

− R1(η, ε) −R(M,η, ε)

≥ inf

{∫ T

−T

ρε (v′)2 ds +

∫ T

−T

1

ρε(σ)

(∫ σ

−T

ρε (v2 − 1) ds

)2

dσ :(3.34)

v ∈ H1(−T, T ), v(±T ) = ±1,

∫ T

−T

ρε (v2 − 1) ds = 0

}

+ δ(T, η, ε),

where T = 3M and δ(T, η, ε) = −R1(η, ε) − R̃(T, η, ε) with R̃(T, η, ε) = R(M,η, ε).
Note that in the last infimum problem we can take the boundary values indifferently
as v(±T ) = ±1 or v(±T ) = ∓1, by the symmetry of the problem, so that both types
of transitions are taken into account.
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By (3.30) and (3.33), we have that

lim sup
η→0+

lim sup
T→∞

lim sup
ε→0

|δ(T, η, ε)| = 0 ;

hence, it remains to study the behavior of the minimum problems as ε tends to 0.
By the uniform convergence of ρε to ρ(θi), as ε tends to 0, we have immediately the
Γ-convergence of the functionals with respect to the strong L2 convergence; i.e.,

Γ(L2)- lim
ε→0

(∫ T

−T

ρε (v′)2 ds +

∫ T

−T

1

ρε(σ)

(∫ σ

−T

ρε (v2 − 1) ds

)2

dσ

)

= ρ(θi)

(∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ

)
.

This Γ-convergence result is stable by adding the constraint; indeed, since the con-

straint
∫ T
−T

ρε (v2 − 1) ds = 0 is close for the strong L2-convergence, the lim inf

inequality is trivial. To check the lim sup inequality, let v ∈ H1(−T, T ) such that

v(±T ) = ±1 and
∫ T
−T

(v2 − 1) ds = 0. To obtain a recovery sequence we consider

vε(s) = v(s) + tεφ(s), s ∈ [−T, T ],(3.35)

where

φ(s) =

⎧⎨
⎩

(s + T )/T, s ∈ [−T, 0),

(T − s)/T, s ∈ [0, T ]
(3.36)

(note that vε ∈ H1(−T, T ) and vε(±T ) = ±1) and tε ∈ R is chosen such that (vε)
satisfies the constraint and converges to v in L2(−T, T ); i.e.,

∫ T

−T

ρε ((v + tεφ)2 − 1) ds = 0 and tε → 0 as ε → 0 .(3.37)

More precisely, (vε) satisfies the constraint in (3.37) if tε ∈ R is a solution of the
second order equation(∫ T

−T

ρε φ
2 ds

)
t2ε + 2

(∫ T

−T

ρε vφ ds

)
tε +

(∫ T

−T

ρε (v2 − 1) ds

)
= 0 .(3.38)

Since limε→0

∫ T
−T

ρε(v
2 − 1) ds = 0, for ε small enough, (3.38) has two solutions, real

and distinct, such that one of the two tends to 0 as ε tends to 0.
To conclude the proof of the lim sup inequality, we have to note that

lim
ε→0

(∫ T

−T

ρε (v′ε)
2 ds +

∫ T

−T

1

ρε(σ)

(∫ σ

−T

ρε (v2
ε − 1) ds

)2

dσ

)
(3.39)

= ρ(θi)

(∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ

)
.
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We go back now to (3.34); by the property of convergence of minima (see [6, Thm. 1.21])
we have that

lim inf
ε→0

⎛
⎝√ε

∫ θ+
ε

θ−
ε

ρ (u′
ε)

2 dθ + ε−3/2

∫ θ+
ε

θ−
ε

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

⎞
⎠

≥ ρ(θi) inf

{∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ : v ∈ H1(−T, T ),

v(±T ) = ±1,

∫ T

−T

(v2 − 1) ds = 0

}

− lim sup
ε→0

|δ(T, η, ε)|

≥ ρ(θi) inf
T>0

inf

{∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ :

v ∈ H1(−T, T ), v(±T ) = ±1,

∫ T

−T

(v2 − 1) ds = 0

}

− lim sup
T→+∞

lim sup
ε→0

|δ(T, η, ε)|

= ρ(θi) c0 − lim sup
T→+∞

lim sup
ε→0

|δ(T, η, ε)| ,

where

c0 := inf
T>0

inf

{∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ : v ∈ H1(−T, T ),

v(±T ) = ±1, and

∫ T

−T

(v2 − 1) ds = 0

}
.

Passing to the limit as η → 0+, we get

lim inf
ε→0

⎛
⎝√ε

∫ θ+
ε

θ−
ε

ρ (u′
ε)

2 dθ + ε−3/2

∫ θ+
ε

θ−
ε

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

⎞
⎠

≥ ρ(θi) c0 .

Step 3. If we repeat Steps 1–2 for every θ ∈ S(u)∩ (a, 1− a), we immediately get
that

lim inf
ε→0

F 3/2
ε (uε) ≥ c0

∑
θ∈S(u)∩(a,1−a)

ρ(θ)

and then the lim inf inequality taking the supremum in a.
Lim sup inequality. Let u ∈ BV ((0, 1); {−1, 1}). We denote S(u) = {θ1, · · · , θN}

with θi < θi+1. With fixed η > 0 there exist T > 0 and v ∈ H1(−T, T ) such that

v(±T ) = ±1,
∫ T
−T

(v2 − 1) ds = 0, and

∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ ≤ c0 + η .(3.40)
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1θ −δ

1θ

1θ +δ
 

ε

u

u

Fig. 2. Recovery sequence with a Gibbs phenomenon.

We denote δ = T
√
ε, Ki = [θi + δ, θi+1 − δ] for i = 1, . . . , N − 1, KN = [θN + δ, 1].

We construct a sequence uε by setting

uε(θ) =

⎧⎨
⎩

viε(±ε−1/2(θ − θi)) if θ ∈ [θi − δ, θi + δ], i = 1, . . . , N,

u(θ) if θ ∈ (0, θ1 − δ) ∪N
i=1 Ki,

(3.41)

where viε = v+ tiεφ is defined as in Step 2 with φ given by (3.36) and tiε ∈ R such that

∫ T

−T

ρiε ((v + tiεφ)2 − 1) ds = 0 and tiε → 0 as ε → 0(3.42)

for every i = 1, . . . , N , where ρiε(s) = ρ(θi + s
√
ε). Note that the choice between the

plus and minus sign, in (3.41), is made in such a way that the resulting function is
continuous. The construction of uε is illustrated in Figure 2.

Note that, reasoning as in Step 2, we get

lim
ε→0

(∫ T

−T

ρiε (viε)
′2 ds +

∫ T

−T

1

ρiε(σ)

(∫ σ

−T

ρiε ((viε)
2 − 1) ds

)2

dσ

)
(3.43)

= ρ(θi)

(∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ

)
.

Hence,

F 3/2
ε (uε) =

√
ε

N∑
i=1

∫ θi+δ

θi−δ

ρ (u′
ε)

2 dθ

+ ε−3/2
N∑
i=1

⎛
⎝∫

Ki

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

+

∫ θi+δ

θi−δ

1

ρ(θ)

(∫ θ

0

ρ (u2
ε − 1) dϕ

)2

dθ

⎞
⎠ .
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By the changes of variable s = ε−1/2(ϕ − θi), σ = ε−1/2(θ − θi) and (3.42), we get
that

F 3/2
ε (uε) =

N∑
i=1

∫ T

−T

ρiε (viε)
′2 ds

+ ε−1/2
N∑
i=1

(∫
Ki

dθ

ρ(θ)

)⎛⎝ i∑
j=1

∫ T

−T

ρjε ((vjε)
2 − 1) ds

⎞
⎠

2

+ ε−1/2
N∑
i=1

∫ θi+δ

θi−δ

1

ρ(θ)

(
i−1∑
j=1

∫ T

−T

ρjε ((vjε)
2 − 1) ds

+

∫ ε−1/2(θ−θi)

−T

ρiε ((viε)
2 − 1) ds

)2

dθ

=
N∑
i=1

∫ T

−T

ρiε (viε)
′2 ds +

∫ T

−T

1

ρiε(σ)

(∫ σ

−T

ρiε ((viε)
2 − 1) ds

)2

dσ .

By (3.40) and (3.43), we have

lim sup
ε→0

F 3/2
ε (uε) =

(
N∑
i=1

ρ(θi)

)(∫ T

−T

(v′)2 ds +

∫ T

−T

(∫ σ

−T

(v2 − 1) ds

)2

dσ

)

≤
(

N∑
i=1

ρ(θi)

)
(c0 + η) .

By the arbitrariness of η we get the lim sup inequality for every u ∈ BV ((0, 1); {−1, 1}).
We now consider u ∈ BVloc((0, 1); {−1, 1}); let ua ∈ BV ((0, 1); {−1, 1}) be such

that ua converges to u strongly in L1(0, 1) as a → 0+; e.g.,

ua(θ) =

⎧⎨
⎩

u(a), θ ∈ [0, a),
u(θ), θ ∈ [a, 1 − a],
u(1 − a), θ ∈ (1 − a, 1],

with 0 < a < 1 and a, 1− a /∈ S(u). By the lower semicontinuity of the Γ-lim sup, we
have that

Γ- lim sup
ε→0

F 3/2
ε (u) ≤ lim inf

a→0+

(
Γ- lim sup

ε→0
F 3/2
ε (ua)

)
≤ c0 lim inf

a→0+

∑
θ∈S(ua)

ρ(θ) ≤ c0
∑

θ∈S(u)

ρ(θ)

for every u ∈ BVloc((0, 1); {−1, 1}) (see [6, Remark 1.29]).

4. The case α = 4/3 with constrained phase transitions. If we define G0
ε

as the restriction of F 0
ε to the space of functions u : (0, 1) → [−1, 1], then by Remark

2 the Γ-limit of G0
ε is identically 0. Still, one may find another scaling, α = 4/3, such

that the Γ-limit of G
4/3
ε = ε−4/3G0

ε is not trivial. We consider for simplicity ρ ≡ 1 so
that

G4/3
ε (u) = ε2/3

∫ 1

0

(u′)2 dθ + ε−4/3

∫ 1

0

(∫ θ

0

(u2 − 1) dϕ

)2

dθ



970 NADIA ANSINI, ANDREA BRAIDES, AND VANDA VALENTE

for every u ∈ H1((0, 1); [−1, 1]). Note that since ε−4/3F 0
ε = ε1/6F

3/2
ε , by section 3

the Γ-limit of ε−4/3F 0
ε with respect to the strong L1-convergence is zero. Hence, the

constraint |u| ≤ 1 completely changes the characteristic scaling of the energy.
Theorem 4.1 (compactness). Let (uε) ∈ H1((0, 1); [−1, 1]) be a sequence such

that supε G
4/3
ε (uε) < +∞; then up to subsequences, (uε) converges strongly in L1(0, 1)

to u ∈ BVloc((0, 1); {−1, 1}).
Proof. Let η±ε �= ±1 such that −1 < η+

ε , η
−
ε < 1. We denote by (δ−ε , δ+

ε ) an
interval such that uε(δ

−
ε ) = η−ε , uε(δ

+
ε ) = η+

ε and uε takes values between η−ε and
η+
ε . In what follows, we use the notation η± = η±ε , δ± = δ±ε to not overburden

notation. By the constraint, (u2
ε − 1) never changes sign; hence, we can select in the

energy G
4/3
ε (uε) the most significant contribution which permits us to easily estimate

(δ+ − δ−). More precisely, for every fixed 0 < a < 1, we consider δ+ ≤ 1 − a; then,

G4/3
ε (uε) ≥ ε2/3

∫ δ+

δ−
(u′)2 dθ + ε−4/3

∫ 1

δ+

(∫ δ+

δ−
(u2

ε − 1) dϕ

)2

dθ

≥ |η+ − η−|2
(
ε2/3

δ

)
+ aλ2

(
δ

ε2/3

)2

,

where λ := ||η−|2−1|∧ ||η+|2−1|, i.e., the minimum distance of |η±|2 from 1. Hence,
if |η+ − η−| ≥ ζ > 0, with ζ independent of ε, we have that δ/ε2/3 is bounded; i.e.,
there exist two positive constants α1, α2 such that α1ε

2/3 ≤ δ ≤ α2ε
2/3. Moreover,

the number of intervals (δ−, δ+) is finite in [0, 1 − a] for every 0 < a < 1. Then (uε)
converges in measure to u ∈ BVloc((0, 1); {−1, 1}), and since |uε| ≤ 1 we can conclude
that, up to subsequences, (uε) converges strongly to u in L1.

Remark 4. Note that in general we cannot expect u ∈ BV ((0, 1); {−1, 1}). To

show this we construct a sequence (uε) with supε G
4/3
ε (uε) < +∞ and strongly con-

verging in L1 to u ∈ BVloc((0, 1); {−1, 1}) with infinitely many jump points. To this
end, consider a strictly increasing sequence (θi) ∈ (0, 1) such that supi∈N θi = 1, and
let vi(s) = (s+Ti/Ti)− 1 for s ∈ [−Ti, Ti]. With fixed k ∈ N and ε small enough, we
define the sequence (uk

ε) as

uk
ε(θ) =

⎧⎨
⎩

vi(±ε−2/3(θ − θi)), θ ∈ [θi − Tiε
2/3, θi + Tiε

2/3] , i = 1, . . . , k,

±1 otherwise in [0, 1],

where the choice between the plus and minus sign is made in such a way that the
resulting function uk

ε is continuous. For every k ∈ N, we have that

G4/3
ε (uk

ε) =

k∑
i=1

⎛
⎝ 2

Ti
+ (θi+1 − θi)

(
c
∑
j≤i

Tj

)2
⎞
⎠+ O(ε2/3)

≤
∑
i∈N

⎛
⎝ 2

Ti
+ (θi+1 − θi)

(
c
∑
j≤i

Tj

)2
⎞
⎠+ O(ε2/3)

(see a similar computation in Theorem 4.2 for the proof of the lim sup inequality). If
we fix Ti = iβ , with β > 1, and (θi) such that (θi+1−θi) = γ i(−3β−2), with γ satisfying

the condition γ
∑

i∈N i(−3β−2) = (1−θ1), then supε G
4/3
ε (uk

ε) ≤ c, with c independent
on k. Therefore, if (θi)i∈N is an increasing sequence of points distributed in (0, 1)
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as above, for every fixed k ∈ N, we can construct a suitable sequence (uk
ε) strongly

converging in L1 to uk ∈ BV ((0, 1); {−1, 1}), as ε → 0, with supε G
4/3
ε (uk

ε) ≤ c
and S(uk) = {θ1, . . . , θk}. We now consider u ∈ BVloc((0, 1); {−1, 1}) such that
S(u) = (θi)i∈N and u = uk in [0, θk+1); then uk converges strongly in L1 to u as k
tends to +∞. By a diagonal procedure we may extract from (uk

ε) a subsequence with
bounded energy and strongly converging to u in L1.

Theorem 4.2 (nonlocal Γ-limit). We have

Γ(L1)- lim
ε→0

G4/3
ε (u)

= inf
T>0

inf

{∑
i∈I

(∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

(
i∑

j=1

∫ T

−T

(v2
j − 1) ds

)2)
:

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

}

for every u ∈ BVloc((0, 1); {−1, 1}), where I = {i ∈ N : θi ∈ S(u) , θi < θi+1}.
Proof. Let u ∈ BVloc((0, 1); {−1, 1}), and let (uε) ∈ H1((0, 1); [−1, 1]) be a se-

quence strongly converging to u in L1 such that

lim inf
ε→0

G4/3
ε (uε) < +∞ .

For every fixed 0 < a < 1, by Theorem 4.1 the limit function u has a finite number of
discontinuity points in the interval (0, 1 − a]; i.e., S(u) ∩ (0, 1 − a] = {θ1, . . . , θN(a)}
with θi < θi+1. Up to subsequences, uε → u for a.e. θ ∈ (0, 1), as ε tends to 0; hence,
with fixed η ∈ (0, 1), we consider δ1

i , δ
2
i such that

uε(θi − δ1
i ) = −(1 − η) , uε(θi + δ2

i ) = 1 − η

or

uε(θi − δ1
i ) = 1 − η , uε(θi + δ2

i ) = −(1 − η)

for i = 1, . . . , N(a). The following estimate is obtained by eliminating all the con-
tributions of uε on the intervals where the sequence takes values “close” to {−1, 1};
this choice is justified by the construction of the optimal sequence, in the lim sup
inequality, that will be equal to {−1, 1} on such intervals (see (4.2)). We have then

G4/3
ε (uε) ≥ ε2/3

N(a)∑
i=1

∫
Ii

(u′
ε)

2dθ + ε−4/3

⎛
⎜⎝N(a)∑

i=1

∫
Ki

⎛
⎝ i∑

j=1

∫
Ij

(u2
ε − 1) dϕ

⎞
⎠

2

dθ

+

N(a)∑
i=1

∫
Ii

⎛
⎝i−1∑

j=1

∫
Ij

(u2
ε − 1) dϕ +

∫ θ

θi−δ1
i

(u2
ε − 1) dϕ

⎞
⎠

2

dθ

⎞
⎟⎠ ,

where Ii = [θi − δ1
i , θi + δ2

i ] for i = 1, . . . , N(a) and Ki = (θi + δ2
i , θi+1 − δ1

i+1) for
i = 1, . . . , N(a) − 1, KN(a) = (θN(a) + δ2

N(a), 1 − a). We make the change of variable

wj(s) = uε

(
ε2/3s + θj +

δ2
j − δ1

j

2

)
;
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hence, setting Tj = ε−2/3δj with δj =
(

δ2
j+δ1

j

2

)
and

Ti(θ) = ε−2/3

(
θ − θi −

(δ2
i − δ1

i )

2

)
,

we get

G4/3
ε (uε) ≥

N(a)∑
i=1

⎛
⎜⎝∫ Ti

−Ti

(w′
i)

2 ds +

∫
Ki

⎛
⎝ i∑

j=1

∫ Tj

−Tj

(w2
j − 1) ds

⎞
⎠

2

dθ

+

∫
Ii

⎛
⎝i−1∑

j=1

∫ Tj

−Tj

(w2
j − 1) ds +

∫ Ti(θ)

−Ti

(w2
i − 1) ds

⎞
⎠

2

dθ

⎞
⎟⎠ .

We denote now

Bi =

∫ Ti

−Ti

(w′
i)

2 ds , Aj =

∫ Tj

−Tj

(w2
j − 1) ds ;

by the change of variable σ = Ti(θ), we get

G4/3
ε (uε) ≥

N(a)∑
i=1

Bi +

N(a)∑
i=1

⎛
⎜⎝(2δi + θi+1 − θi − δ1

i+1 − δ2
i )

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2
⎞
⎟⎠

+ ε2/3

N(a)∑
i=1

⎛
⎝∫ Ti

−Ti

(∫ Ti

σ

(w2
i − 1) ds

)2

dσ

− 2

⎛
⎝ i∑

j=1

Aj

⎞
⎠∫ Ti

−Ti

(∫ Ti

σ

(w2
i − 1) ds

)
dσ

⎞
⎠

=

N(a)∑
i=1

⎛
⎜⎝Bi + (θi+1 − θi)

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2
⎞
⎟⎠+

N(a)∑
i=1

(δ1
i − δ1

i+1)

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2

+ ε2/3

⎛
⎝N(a)∑

i=1

∫ Ti

−Ti

(∫ Ti

σ

(w2
i − 1) ds

)2

dσ

− 2

⎛
⎝ i∑

j=1

Aj

⎞
⎠∫ Ti

−Ti

(∫ Ti

σ

(w2
i − 1) ds

)
dσ

⎞
⎠ ,

where θN(a)+1 = 1 − a and δ1
N(a)+1 = 0. Hence,

G4/3
ε (uε) ≥

N(a)∑
i=1

⎛
⎜⎝∫ Ti

−Ti

(w′
i)

2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ Tj

−Tj

(w2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ + O(ε2/3) ,
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where wi(±Ti) is equal to ±(1 − η) or ∓(1 − η), and

lim inf
ε→0

G4/3
ε (uε)

≥ inf
T>0

inf

⎧⎪⎨
⎪⎩

N(a)∑
i=1

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±(1 − η)

⎫⎬
⎭ ,

where, by symmetry, we may fix the boundary conditions as vi(±T ) = ±(1 − η). We
may now first pass to the limit as η → 0 and then take the supremum on a; i.e.,

lim inf
ε→0

G4/3
ε (uε)

≥ sup
0<a<1

inf
T>0

inf

⎧⎪⎨
⎪⎩

N(a)∑
i=1

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭

= inf
T>0

inf

⎧⎪⎨
⎪⎩
∑
i∈I

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭ ,

where we have labeled the points in S(u) by a set of indices I ⊂ N in such a way that
θi < θi+1.

We now check the lim sup inequality. Let u ∈ BV ((0, 1); {−1, 1}) with S(u) =
{θ1, . . . , θN} and θi < θi+1. We denote

G4/3(u) = inf
T>0

inf

⎧⎪⎨
⎪⎩

N∑
i=1

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭ .

With fixed η > 0, there exist T > 0 and (v1, . . . , vN ) ∈ H1((−T, T ); [−1, 1]) such that
vi(±T ) = ±1 and

N∑
i=1

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ ≤ G4/3(u) + η .(4.1)
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We denote δ = Tε2/3; Ii = [θi − δ, θi + δ] for i = 1, . . . , N ; Ki = (θi + δ, θi+1 − δ) for
i = 1, . . . , N − 1; and KN = (θN + δ, 1]. We construct a sequence uε by setting

uε(θ) =

⎧⎨
⎩

vi(±ε−2/3(θ − θi)) if θ ∈ Ii, i = 1, . . . , N,

u(θ) if θ ∈ (0, θ1 − δ) ∪
(
∪N
i=1Ki

)
,

(4.2)

where the choice between the plus and minus sign is made in such a way that the
resulting function is continuous. Hence, by the change of variables s = ε−2/3(θ − θi),
we get

G4/3
ε (uε) = ε2/3

N∑
i=1

∫
Ii

(u′
ε)

2 dθ + ε−4/3
N∑
i=1

⎛
⎝∫

Ki

(∫ θ

0

(u2
ε − 1) dϕ

)2

dθ

⎞
⎠

+ ε−4/3
N∑
i=1

⎛
⎝∫

Ii

(∫ θ

0

(u2
ε − 1) dϕ

)2

dθ

⎞
⎠

=
N∑
i=1

⎛
⎜⎝∫ T

−T

(v′i)
2 ds +

∫
Ki

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2

dθ

+

∫
Ii

⎛
⎝i−1∑

j=1

∫ T

−T

(v2
j − 1) ds +

∫ Ti(θ)

−T

(v2
i − 1) ds

⎞
⎠

2

dθ

⎞
⎟⎠ ,

where Ti(θ) = ε−2/3(θ − θi). Setting

Bi =

∫ T

−T

(v′i)
2 ds , Aj =

∫ T

−T

(v2
j − 1) ds,

we then have

G4/3
ε (uε) =

N∑
i=1

⎛
⎜⎝Bi + (θi+1 − θi − 2δ)

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2
⎞
⎟⎠

+
N∑
i=1

∫
Ii

⎛
⎝ i∑

j=1

Aj −
∫ T

Ti(θ)

(v2
i − 1) ds

⎞
⎠

2

dθ

=
N∑
i=1

⎛
⎜⎝Bi + (θi+1 − θi)

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2
⎞
⎟⎠+

N∑
i=1

∫
Ii

(∫ T

Ti(θ)

(v2
i − 1) ds

)2

dθ

− 2
N∑
i=1

⎛
⎝ i∑

j=1

Aj

⎞
⎠∫

Ii

(∫ T

Ti(θ)

(v2
i − 1) ds

)
dθ .
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By (4.1) and the change of variable σ = Ti(θ), we get that

G4/3
ε (uε) =

N∑
i=1

⎛
⎜⎝Bi + (θi+1 − θi)

⎛
⎝ i∑

j=1

Aj

⎞
⎠

2
⎞
⎟⎠+ O(ε2/3)

≤ G4/3(u) + η + O(ε2/3) .

Passing to the limit as ε tends to 0, by the arbitrariness of η, we get the lim sup
inequality for every u ∈ BV ((0, 1); {−1, 1}).

We now consider u ∈ BVloc((0, 1); {−1, 1}). There exists ua ∈ BV ((0, 1); {−1, 1})
such that ua converges to u strongly in L1(0, 1) as a → 0+; i.e.,

ua(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(a), θ ∈ [0, a),

u(θ), θ ∈ [a, 1 − a],

u(1 − a), θ ∈ (1 − a, 1],

with 0 < a < 1 and a, 1 − a /∈ S(u). Hence, by the lower semicontinuity of the
Γ-lim sup, we have that

Γ- lim sup
ε→0

G4/3
ε (u)

≤ lim inf
a→0+

(
Γ- lim sup

ε→0
G4/3

ε (ua)
)

≤ lim inf
a→0+

inf
T>0

inf

⎧⎪⎨
⎪⎩
∑

i∈I(a)

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭

≤ inf
T>0

inf

⎧⎪⎨
⎪⎩
∑
i∈I

⎛
⎜⎝∫ T

−T

(v′i)
2 ds + (θi+1 − θi)

⎛
⎝ i∑

j=1

∫ T

−T

(v2
j − 1) ds

⎞
⎠

2
⎞
⎟⎠ :

vi ∈ H1((−T, T ); [−1, 1]), vi(±T ) = ±1

⎫⎬
⎭ ,

where I(a) = {i ∈ N : θi ∈ S(ua) , θi < θi+1} and I = {i ∈ N : θi ∈ S(u) , θi <
θi+1}.
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POISSON KERNELS AS EXPANSIONS IN q-RACAH POLYNOMIALS∗
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Abstract. This paper concerns stochastic processes on chains of arbitrary length whose Poisson
kernel can be expressed in terms of the q-Racah polynomials, the most general q-deformed orthogonal
polynomials in the discrete series of the Askey scheme. We give a new interpretation of this kernel
as the probability transition density for a subordinated Markov process with only nearest neighbor
hops. As an application, we give an elementary proof and extend a positivity result for a class of
Poisson kernels which Gasper and Rahman established with direct methods.
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Markov chains, subordinators, positivity of Poisson kernels
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1. Introduction. In this paper, we give general conditions that allow one to
construct Markov processes whose infinitesimal generator admits the q-Racah poly-
nomials as eigenstates.

Definition 1.1. For 0 < q < 1, the q-Racah polynomials

Rn(μ(x)) := Rn(μ(x);α, β, γ, δ|q)

are defined using the q-deformed hypergeometric function 4φ3 as follows:

Rn(μ(x)) = 4φ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣∣ q; q
)

(1.1)

for n = 0, 1, . . . , N and where μ(x) = q−x + γδqx+1. Moreover, they must belong to
one of the three families defined by the additional condition that either α = q−N−1 or
βδ = q−N−1 or γ = q−N−1.

Definition 1.2. Let ΛN denote the set {0, 1, . . . , N} and let l2(ΛN ) be the Hilbert
space of the real valued functions on ΛN .

The objective of this paper is to construct a class of Markov processes supported
on the set ΛN whose transitional probability density can be expressed as a series in
the q-Racah polynomials. Whether this can be done is a natural question, as the q-
Racah polynomials satisfy an orthogonality relation with respect to a discrete weight
supported on the set ΛN (see [1], [10], [7], and the references therein for the properties
of orthogonal polynomials in the Askey scheme). Namely,

∑
x∈ΛN

Rm(μ(x))Rn(μ(x))w(x) = hnδnm,(1.2)

∗Received by the editors September 18, 2003; accepted for publication (in revised form) July 6,
2005; published electronically October 16, 2006.

http://www.siam.org/journals/sima/38-3/43503.html
†Department of Mathematics, Imperial College, London SW7 2AZ, UK (claudio.albanese@

imperial.ac.uk).
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where the weight is

w(x) =
(αq, βδq, γq, γδq; q)x

(q, α−1γδq, β−1γq, δq; q)x

1 − γδq2x+1

(αβq)x(1 − γδq)
(1.3)

and the normalization factor is

hn =
(α−1β−1γ, α−1δ, β−1, γδq2; q)∞

(α−1β−1q−1, α−1γδq, β−1γq, δq; q)∞

(1 − αβq)(γδq)n

1 − αβq2n+1

(q, αβγ−1q, αδ−1q, βq; q)n
(αq, αβq, βδq, γq; q)n

.

(1.4)

Following [7], we denote (a; q)k for the q-analogue of the Pochhammer symbols:

(a; q)0 = 1 and (a; q)k =

k−1∏
i=0

(1 − a qi)(1.5)

for k > 0, with (a1, . . . , ar; q)k = (a1; q)k · · · (ar; q)k.

Recall now the following definitions of the Markov semigroup and the Bernstein
function.

Definition 1.3. The one-parameter family of operators (Kt)t≥0 on l2(ΛN ) is
said to be a Markov semigroup if its kernel Kt(x, y) satisfies the following conditions
for all t, t′ ≥ 0, x, y ∈ ΛN :

(i) nonnegativity: Kt(x, y) ≥ 0;
(ii) initial condition: K0(x, y) = δx,y;
(iii) contraction property:

∑
y∈ΛN

Kt(x, y) ≤ 1;

(iv) semigroup property: Kt(x, y)Kt′(x, y) = Kt+t′(x, y).
Definition 1.4. Let Φ ∈ C∞([0,∞)) with Φ ≥ 0. Φ is a Bernstein function if

(−1)nΦ(n) ≤ 0 for all integer n > 0.
Our main result can be stated as follows.
Theorem 1.5. Assume that the parameters q, α, β, γ, δ satisfy the restrictions

of Definition 1.1 for the q-Racah polynomials. Assume also that the following two
functions are negative or zero:

B(x) =
(1 − αqx+1)(1 − βδqx+1)(1 − γqx+1)(1 − γδqx+1)

(1 − γδq2x+1)(1 − γδq2x+2)
,

D(x) =
q(1 − qx)(1 − δqx)(β − γqx)(α− γδqx)

(1 − γδq2x)(1 − γδq2x+1)
.

Then for all Bernstein functions Φ the following series represents the kernel of a
Markov semigroup:

KΦ
t (x, y) =

N∑
n=0

e−tΦ(−λn)

hn
Rn(μ(x))Rn(μ(y)) w(y),(1.6)

where

λn = (1 − q−n)(1 − αβqn+1).(1.7)

We also prove that there exists a Bernstein function such that Φ(−λn) = n for
all integers n = 1, 2, . . . , N so that we obtain the following corollary.
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Corollary 1.6. If in addition to the hypothesis of the theorem we also have that
αβ ≥ 0, then the function

Φ(z) =
1

| ln q| ln

⎛
⎝1 + αβq + z

2
+

√(
1 + αβq + z

2

)2

− αβq

⎞
⎠(1.8)

is a Bernstein function such that Φ(−λn) = n for all integers n = 1, 2, . . . , N , and
the following series represents the kernel of a Markov semigroup on ΛN :

KΦ
t (x, y) =

N∑
n=0

e−nt

hn
Rn(μ(x))Rn(μ(y)) w(y) − max

(
1 − (αβq)

− t
| ln q| , 0

)
w(y).

(1.9)

This corollary extends the result by Gasper and Rahman in [6], where positivity
of the Poisson kernel, defined as the series

N∑
n=0

e−nt

hn
Rn(μ(x))Rn(μ(y)),(1.10)

was established for the third family of q-Racah polynomials, i.e., γ = q−N−1, and
under the additional conditions that 0 < αq < 1, 0 ≤ βq < 1, and 0 < δ < αqN . The
proof in [6] is based on a term by term analysis of the series expansion and resumma-
tion formulas of independent interest. Our argument is instead more elementary and
based on probabilistic considerations.

2. Background and proofs. As a preparation to the proof of our results, we
recall the basics of the theory of Markov processes and Bochner subordination. Let
(Ω,F ,P) be a probability space equipped with the filtration {Ft}t≥0 satisfying the
usual conditions; i.e., the filtration is right continuous and F0 contains all events of
P-measure 0 in F . Let X = (Xt)t≥0 be an Ft-adapted stochastic process on D ⊆ R.

Definition 2.1. The stochastic process X is called a Markov process if

E
[
f(Xt) Fs

]
= E

[
f(Xt) Xs

]
(2.1)

for all bounded measurable function f : D → R and all t ≥ s ≥ 0.
The family of operators (Kt)t≥0 from Definition 1.3 defines the transitional prob-

ability density of a Markov process on l2(ΛN ) as follows:

Kt−sf(x) = E
[
f(Xt) Xs = x

]
=

∑
y∈ΛN

f(y)Kt−s(x, y).(2.2)

Subordinators are also Markov processes, but on R+, and can be thought of as
stochastic time changes. They must therefore satisfy a few additional conditions, such
as, if T = (Tt)t≥0 is a subordinator, then Tt ≥ 0 for each t > 0 almost surely (a.s.)
and Ts ≤ Tt whenever s ≤ t. Moreover, for the purpose of the present demonstration,
only subordinators with an infinite lifetime will be considered, i.e., inf{t ≥ 0 : Tt =
∞} = ∞ a.s. The formal definition, as given by Bertoin in [3], follows.

Definition 2.2. Let T = (Tt)t≥0 be a right-continuous increasing Ft-adapted
process started from 0 with values on [0,∞], where ∞ is an absorbing state. T is
called a subordinator if it has independent and homogeneous increments on [0,∞).
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That is, the increment Tt+s − Tt is independent of Ft and has the same distribution
as Ts.

A remarkable probabilistic application of subordinators is due to Bochner [4], who
proved the following.

Theorem 2.3. Let X = (Xt)t≥0 be a Markov process and T = (Tt)t≥0 be a
subordinator. Then the stochastic process Y = (Yt)t≥0 = (XTt

)t≥0 is again a Markov
process. Moreover, if X is stationary, then Y is stationary.

A way to characterize subordinators is through their Laplace transform. A con-
sequence of the independence and homogeneity of the increments is the following
property:

E
[
eλTt+s

]
= E

[
eλTt

]
E
[
eλTs

]
(2.3)

for every s, t ≥ 0 and λ ≤ 0. The Laplace transform can thus be expressed as

E
[
eλTt

]
= e−tΨ(−λ),(2.4)

where the function Ψ : [0,∞) → [0,∞) is called the Laplace exponent of the subor-
dinator. A theorem due to de Finetti, Lévy, and Khintchine (see Bertoin [3]) gives a
necessary and sufficient condition for a function to be the Laplace exponent of a sub-
ordinator. Moreover, one can establish a one-to-one correspondence between Laplace
exponents and Bernstein functions [2]. We summarize these results in the following
theorem.

Theorem 2.4. Let Φ ∈ C∞([0,∞)). Then, the following arguments are equiva-
lent:

1. Φ is a Bernstein function.
2. Φ is the Laplace exponent of a subordinator.
3. There exists a semigroup {ρt}t≥0 of positive measures on [0,∞) for which,

for all z ≥ 0,

e−tΦ(z) =

∫ ∞

0

e−szρt(ds).(2.5)

The next theorem comes as a corollary of the previous two.
Theorem 2.5. Let (Kt)t≥0 be a Markov semigroup on l2(ΛN ) with kernel Kt(x, y),

and let Φ be a Bernstein function. Then, the semigroup of the subordinated process,
denoted (KΦ

t )t≥0, is Markov and there exists a semigroup {ρt}t≥0 of positive measures
on [0,∞) such that for any f ∈ l2(ΛN ),

KΦ
t f(x) =

∫ ∞

0

Ksf(x) ρt(ds).(2.6)

This property extends to the transitional probability densities as follows:

KΦ
t (x, y) =

∫ ∞

0

Ks(x, y)ρt(ds).(2.7)

The following definition leads to the explicit relation between q-Racah polynomi-
als and Markov semigroups.

Definition 2.6. The operator L is the infinitesimal generator of a Markov
semigroup on l2(ΛN ) if its kernel, L(x, y) with x, y ∈ ΛN , satisfies the following two
conditions:
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(i) nonnegativity: L(x, y) ≥ 0 for all x �= y ∈ ΛN ;
(ii) probability conservation:

∑
y∈ΛN

L(x, y) = 0 for all x ∈ ΛN .
Let us recall the elementary result from probability theory according to which a

Markov semigroup (Kt)t≥0 on l2(ΛN ) can always be represented as follows in terms
of the infinitesimal generator L:

Kt = exp(tL).(2.8)

Definition 2.7. Let Δ and ∇ denote the difference operators on l2(ΛN ) defined
as follows:

Δf(x) = f(x + 1) − f(x), ∇f(x) = f(x) − f(x− 1),(2.9)

with f(N + 1) = f(−1) = 0.
The q-Racah polynomials introduced in Definition 1.1 satisfy the q-difference

eigenvalue equation

LRn(μ(x)) = λnRn(μ(x)),(2.10)

where the operator L is given by

L = −B(x)Δ + D(x)∇,(2.11)

with B(x), D(x), and λn defined in Theorem 1.5 (see [7] and the references therein
for a proof).

Proposition 2.8. If B(x) ≤ 0 and D(x) ≤ 0, then L is the infinitesimal gener-
ator of a Markov semigroup.

Proof. Since the off-diagonal entries of the kernel L(x, y) of L contain only
−B(x),−D(x), or 0, the nonnegativity condition in Definition 2.6 is satisfied by as-
sumption. The second condition is also satisfied since∑

y∈ΛN

L(x, y) = −D(x) + (B(x) + D(x)) −B(x) = 0 ∀x = 1, . . . , N − 1,

∑
y∈ΛN

L(0, y) = (B(0) + D(0)) −B(0) = D(0) = 0,

∑
y∈ΛN

L(N, y) = −D(N) + (B(N) + D(N)) = B(N) = 0.

Note that one property of the infinitesimal generator of a Markov process is that
it must satisfy the positive maximum principle [9],

sup{f(x) : x ∈ ΛN} = f(x0) ≥ 0 ⇒ (Lf)(x0) ≤ 0.(2.12)

In particular, sup{Rn(μ(x)) : x ∈ ΛN} = Rn(μ(x0)) ≥ 0 for some x0 ∈ ΛN . Hence

LRn(μ(x0)) = λnRn(μ(x0)) ≤ 0,(2.13)

which implies that the eigenvalues of the infinitesimal generator are negative or zero.
Proposition 2.9. The kernel of Kt = exp(tL) has the following representation

in terms of the q-Racah polynomials:

Kt(x, y) =

N∑
n=0

etλn

hn
Rn(μ(x))Rn(μ(y)) w(y),(2.14)
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where w(y) > 0 is the invariant measure density.
Proof. The q-Racah polynomials form an orthogonal basis of the Hilbert space

l2(ΛN ), with invariant measure density w(y). From (2.10), Kt satisfies the eigenvalue
equation

KtRn(μ(x)) = etλnRn(μ(x)).(2.15)

The kernel can thus be written as an expansion in the q-Racah polynomials, and
we recover (2.14) in the proposition. The invariant measure density w(y) can be
expressed recurrently as

w(0) = 1 and w(y + 1) =
B(y)

D(y + 1)
w(y) for y = 0, 1, . . . , N − 1,(2.16)

which proves its positivity since B(y) < 0 and D(y + 1) < 0 for y = 0, 1, . . . , N −
1.

We now proceed to the proof of our main result stated in the introduction. By
Theorem 2.4, there exists a semigroup {ρt}t≥0 of positive measures on [0,∞) asso-
ciated with the Bernstein function Φ of Theorem 1.5. Theorem 2.5, together with
Propositions 2.8 and 2.9, implies that the subordinated kernel takes the form

KΦ
t (x, y) =

N∑
n=0

∫ ∞

0

esλnρt(ds)
1

hn
Rn(μ(x))Rn(μ(y)) w(y),(2.17)

which gives (1.6) by definition of the measure ρt(ds). Furthermore, the associated
semigroup is again a Markov semigroup, so we proved Theorem 1.5.

Corollary 1.6 follows from the fact that the function

Φ(z) =
1

| ln q| ln

⎡
⎣1 + αβq + z

2
+

√(
1 + αβq + z

2

)2

− αβq

⎤
⎦

is a Bernstein function. One can indeed find an explicit expression for the semigroup
{ρt}t≥0 of positive measures that describes the subordinator. That is, for αβ > 0,
there exists a one-parameter family of positive measures

ρt(ds) =
t

s| ln q| (αβq)−
t

2| ln q| e−(1+αβq)s I t
| ln q|

(
2
√

αβq s
)
ds(2.18)

that entirely characterizes Φ by Theorem 2.4 (see [5] or formula (8), page 314 in [8]).
Notice that Φ is defined such that Φ(−λn) = n for n = 1, 2, . . . , N and is clearly non-
negative for all x ≥ 0. The eigenvalues λn being negative or zero implies in particular
that αβq2 ≤ 1. Φ(λ0) = Φ(0) thus depends on the value of αβq as follows:

Φ(0) = max

(
ln(αβq)

| ln q| , 0

)
,(2.19)

which leads to (1.9). Positivity of the Poisson kernel in (1.10) comes from (1.9) being

Markovian and hence positive, w(y) > 0, and max(1 − (αβq)
− t

| ln q| , 0) ≥ 0.
In the limiting case αβ = 0, while the q-Racah polynomials converge either to the

dual q-Hahn polynomials for α = 0 or β = 0, or to the dual q-Krawtchouk polynomials
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for α = β = 0, the semigroup of positive measures consists of the well-known Gamma
measures

ρt(ds) =
s

t
| ln q|−1e−s

Γ
(

t
| ln q|

) ds.(2.20)

Therefore, Φ is a Bernstein function for αβ ≥ 0, which completes the proof of Corollary
1.6.

Remark 2.10. Corollary 1.6 unravels an interesting connection with free probabil-
ity theory. Let τ = t

| ln q| be the renormalized time of the process; then the semigroup

of measure {ρτ}τ≥0 reads

ρτ (ds) =
τ

s
(αβq)−

τ
2 e−(1+αβq)s Iτ

(
2
√

αβq s
)
ds.(2.21)

In the limit q → 0, one recovers the Gamma measures

ρτ (ds) =
sτ−1e−s

Γ(τ)
ds,(2.22)

suggesting that the semigroup of Gamma measures defines a subordinator in the free
case.

We conclude with the proof that Corollary 1.6 extends the result of positivity of
the Poisson kernel given by Gasper and Rahman in [6].

Proposition 2.11. The set of conditions

0 < q < 1, γ = q−N−1, 0 < αq < 1, 0 ≤ βq < 1, 0 < δ < αqN(2.23)

is strictly stronger than

0 < q < 1, 0 ≤ αβ, B(x) ≤ 0, D(x) ≤ 0(2.24)

for all x ∈ ΛN and where B(x) and D(x) are defined as in Theorem 1.5.
Proof. Notice first that 0 < αq < 1 and 0 ≤ βq < 1 imply in particular αβ ≥ 0.

We show next that B(x) ≤ 0 for all x ∈ ΛN . With conditions (2.23), B(x) becomes

B(0) =
(1 − αq)(1 − βδq)(1 − q−N )

1 − δq1−N
,

B(x) =
(1 − αqx+1)(1 − βδqx+1)(1 − qx−N )(1 − δqx−N )

(1 − δq2x−N )(1 − δq2x+1−N )
, x ∈ {1, . . . , N − 1},

B(N) = 0.

For x ∈ {0, 1, . . . , N − 1} and since q < 1, we have

1 > 1 − αqx+1 > 1 − qx ≥ 0,

1 ≥ 1 − βδqx+1 > 1 − δqx > 1 − qN+x−1 > 0,

1 > 1 − δq2x+1−N > 1 − αq2x+1 > 1 − q2x ≥ 0.

For x ∈ {1, . . . , N − 1}, we have

1 > 1 − δqx−N > 1 − αqx > 1 − qx−1 ≥ 0,

1 > 1 − δq2x−N > 1 − αq2x > 1 − q2x−1 ≥ 0.
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Since the only negative factor in B(x) is 1 − qx−N for all x ∈ {0, 1, . . . , N − 1},
B(x) ≤ 0 for all x ∈ ΛN . With conditions (2.23), D(x) can be expressed as

D(0) = 0,

D(x) =
q(1 − qx)(1 − δqx)(β − qx−N−1)(α− δqx−N−1)

(1 − δq2x−N−1)(1 − δq2x−N )
, x ∈ {1, . . . , N − 1},

D(N) =
q(1 − qN )(β − q−1)(α− δq−1)

1 − δqN−1
.

For x ∈ {1, . . . , N}, we have

0 < δq−N < α ⇒ δqx−N−1 < α ⇒ α− δqx−N−1 > 0,

0 ≤ β < q−1 < qx−N−1 ⇒ β − qx−N−1 < 0

and, similarly as before,

1 > 1 − δqx > 1 − αqx+N > 1 − qx+N−1 > 0,

1 > 1 − δq2x−N > 1 − αq2x > 1 − q2x−1 > 0,

1 > 1 − δq2x−N−1 > 1 − αq2x−1 > 1 − q2x−2 ≥ 0.

Hence D(x) ≤ 0 since the only negative factor is β − qx−N−1. The condition αq < 1
implies furthermore that the denominators of B(x) and D(x), respectively, are never
zero. Finally, let

α = β = −δ = 1, γ = q−N−1.

The conditions in (2.24) are clearly satisfied, whereas δ > 0 in (2.23) fails, so the
inclusion is strict.
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Abstract. Considered herein is the stability problem of solitary wave solutions of a general-
ized Ostrovsky equation, which is a modification of the Korteweg–de Vries equation widely used to
describe the effect of rotation on surface and internal solitary waves or capillary waves.
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1. Introduction. The nonlinear dispersive equation(
ut − βuxxx + (u2)x

)
x

= γu, x ∈ R,(1.1)

was derived by Ostrovsky [20] in dimensionless space-time variables (x, t) as a model
for the unidirectional propagation of weakly nonlinear long surface and internal waves
of small amplitude in a rotating fluid. The liquid is assumed to be incompressible and
inviscid. Here u(t, x) represents the free surface of the liquid and the parameter γ > 0
measures the effect of rotation. The parameter β determines the type of dispersion,
namely, β < 0 (negative dispersion) for surface and internal waves in the ocean
or surface waves in a shallow channel with an uneven bottom and β > 0 (positive
dispersion) for capillary waves on the surface of liquid or for oblique magneto-acoustic
waves in plasma. See Benilov [2], Grimshaw [9], Galkin and Stepanyants [7], Gilman,
Grimshaw, and Stepanyants [8], and Ostrovsky and Stepanyants [21].

Considered herein is the generalization of the Ostrovsky equation

(ut − βuxxx + f(u)x)x = γu, x ∈ R,(1.2)

where f is a C2 function which is homogeneous of degree p ≥ 2, in the sense that
it satisfies sf ′(s) = pf(s). This includes, for instance, nonlinearities of the form
f(u) = ±|u|p and ±|u|p−1u. Certain equations of this class have a direct relation
to physical systems. In particular, when p = 3, (1.2) describes the propagation of
internal waves of even modes, which possess a cubic nonlinearity, in the ocean. See
Galkin and Stepanyants [7], Leonov [13], and Shrira [22, 23].

In this paper, we investigate the stability of solitary wave solutions of (1.2). Using
variational methods, we prove the existence of solitary waves (Theorem 2.1). Solitary
waves thus obtained are called ground states, and the set of all ground states is
denoted by G(β, c, γ). The variational characterization of the ground states permits
us to consider the limiting behavior of the solitary waves as the rotation parameter γ
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vanishes, and we show that the ground state solitary waves converge to solitary waves
of the Korteweg–de Vries (KdV) equation (Theorem 2.5).

The stability analysis makes use of the conserved quantities

E(u) =

∫
R

β

2
u2
x +

γ

2
|D−1

x u|2 + F (u) dx

and

V (u) =
1

2

∫
R

u2 dx,

where F ′ = f and F (0) = 0, and the operator D−1
x is defined via the Fourier transform

as

D̂−1
x f = (−iξ)−1f̂(ξ).

It was shown by Liu and Varlamov [18] that the classical Ostrovsky equation (1.1) is
well-posed in the space

Xs = {f ∈ Hs(R) | D−1
x f ∈ Hs(R)}

with norm

‖f‖Xs = ‖f‖s + ‖D−1
x f‖s

for s > 3/2. The methods therein also imply the same result for the generalized
Ostrovsky equation (1.2). We therefore make the following definition.

Definition 1.1. A set S ⊂ X is X-stable with respect to (1.2) if for any ε > 0
there exists δ > 0 such that for any u0 ∈ X ∩Xs, s > 3/2, with

inf
v∈S

‖u0 − v‖X < δ,(1.3)

the solution u(t) of (1.2) with initial value u(0) = u0 can be extended to a solution in
the space C([0,∞), X ∩Xs) and satisfies

inf
v∈S

‖u(t) − v‖X < ε(1.4)

for all t ≥ 0. Otherwise we say that S is X-unstable.
Our main results apply to the set G(β, c, γ), defined by (2.8). For each y ∈ R, we

define the translation operator by τyv = v(·+y). Given a ground state ϕ in G(β, c, γ),
the orbit of ϕ is the set Oϕ = {τyϕ | y ∈ R}. We show in Theorems 3.1 and 4.2 that
the function d defined by (3.1) determines the stability or instability of the solitary
waves in the sense that if d′′(c) > 0, then G(β, c, γ) is X1-stable and if d′′(c) < 0, then
Oϕ is X1-unstable. Although these results are not quite complementary, the only
difference is due to the possible nonuniqueness of ground states up to translation.
That is, if ground states are unique up to translation, then G(β, c, γ) = Oϕ.

One difficulty in applying these results is the fact that an explicit formula for d
is not available. It is also not known if d(c) is twice differentiable. To remedy this,
we also prove a second result, Theorem 4.3, which provides sufficient conditions for
instability directly in terms of the parameters β, c, γ, and p. The result is based
on the work of Gonçalves Ribeiro [10]. Another approach to dealing with the lack
of information about d(c) is to compute it numerically. We conclude the paper with
some numerical calculations of d′′ which approximately determine regions of stability
and instability in terms of the parameters.

Notation. The norm in the classical Sobolev spaces Hs(R) will be written ‖ · ‖s.
For 1 ≤ q ≤ ∞, the norm in Lq(R) will be written | · |q.
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2. Solitary waves. Solitary-wave solutions of the form u(x, t) = ϕ(x−ct) satisfy
the stationary equation

βϕxx + cϕ + γD−2
x ϕ = f(ϕ).(2.1)

We will prove existence of solitary waves in the space X1 by considering the following
variational problem. Define the functionals

I(u) = I(u;β, c, γ) =

∫
R

βu2
x − cu2 + γ(D−1

x u)2 dx(2.2)

and

K(u) = −(p + 1)

∫
R

F (u) dx,(2.3)

where F satisfies F ′ = f and F (0) = 0. Then if ψ ∈ X1 achieves the minimum

Mλ = inf{I(u) | u ∈ X1,K(u) = λ}(2.4)

for some λ > 0, then there exists a Lagrange multiplier μ such that

βψxx + cψ + γD−2
x ψ = μf(ψ).(2.5)

Hence ϕ = μ
1

p−1ψ satisfies (2.1). We call such solutions ground state solutions and
denote the set of all ground state solutions by G(β, c, γ). By the homogeneity of I
and K, ground states also achieve the minimum

m = m(β, c, γ) = inf

{
I(u)

(K(u))
2

p+1

: u ∈ X1,K(u) > 0

}
,(2.6)

and it follows that

Mλ = mλ
2

p+1 .(2.7)

We next note that the properties sf ′(s) = pf(s) and F ′ = f imply that sf(s) =
(p + 1)F (s), so that

K(u) = −
∫
R

uf(u) dx,

and therefore multiplying (2.1) by ϕ and integrating yields I(ϕ) = K(ϕ). Thus we
may characterize the set of ground state solutions G(β, c, γ) as

G(β, c, γ) =
{
ϕ ∈ X1 | K(ϕ) = I(ϕ;β, c, γ) = (m(β, c, γ))

p+1
p−1

}
.(2.8)

We now seek to prove that this set is nonempty. We say that a sequence ψk is a
minimizing sequence if for some λ > 0,

lim
k→∞

K(ψk) = λ and lim
k→∞

I(ψk) = Mλ.

Theorem 2.1. Let β > 0, γ > 0, and c < 2
√
βγ. Let ψk be a minimizing

sequence for some λ > 0. Then there exist a subsequence (renamed ψk) and scalars
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yk ∈ R and ψ ∈ X1 such that ψk(· + yk) → ψ in X1. The function ψ achieves the
minimum I(ψ) = Mλ subject to the constraint K(ψ) = λ.

Proof. The result is an application of the concentration compactness lemma
of Lions [16]. We outline the proof here. First, observe that by (2.7) the strict
subadditivity condition

Mα + Mλ−α > Mλ(2.9)

holds for any α ∈ (0, λ). Next, since β > 0, γ > 0, and c < 2
√
βγ, the functional I

satisfies the coercivity condition

I(u) ≥ A

∫
R

u2
x + (D−1

x u)2 dx = A‖u‖2
X1

,

where

A =

{
4βγ−c2

2(β+γ+
√

(β−γ)2+c2)
for 0 < c < 2

√
βγ

min{β, γ} for c ≤ 0

}
> 0.(2.10)

It is also clear that I(u) ≤ C‖u‖2
X1

for some constant C, so I(u)1/2 is equivalent to
the norm on X1. Now let ψk be a minimizing sequence. Then by coercivity of I, the
sequence ψk is bounded in X1, so if we define

ρk = |Dxψk|2 + |D−1
x ψk|2,

then after extracting a subsequence, we may assume

lim
k→∞

∫
R

ρk dx = L > 0.

We may assume further after normalizing that
∫
R
ρk dx = L for all k. By the con-

centration compactness lemma, a further subsequence ρk satisfies one of the following
three conditions.

1. Vanishing: For every R > 0,

lim
k→∞

sup
y∈R

∫
B(y,R)

ρk dx = 0.

2. Dichotomy: There exists some l ∈ (0, L) such that for any ε > 0 there exist
R > 0 and Rk → ∞, yk ∈ R and k0 such that∣∣∣∣∣

∫
B(yk,R)

ρk dx− l

∣∣∣∣∣ < ε and

∣∣∣∣∣
∫
R<|x−yk|<Rk

ρk dx

∣∣∣∣∣ < ε

for k ≥ k0.
3. Compactness: There exists yk ∈ R such that for any ε > 0 there exists R(ε)

such that ∫
B(yk,R(ε))

ρk dx ≥
∫
R

ρk dx− ε

for all k.



SOLITARY WAVES OF A GENERALIZED OSTROVSKY EQUATION 989

In the same manner as in [14], it follows from the coercivity of I, the Sobolev inequal-
ity, and the subadditivity condition (2.9) that both vanishing and dichotomy may be
ruled out, and therefore the sequence ρk is compact. Now set ϕk(x) = ψk(x + yk).
Since ϕk is bounded in X1, a subsequence ϕk converges weakly to some ψ ∈ X1, and
by the weak lower semicontinuity of I over X1, we have

I(ψ) ≤ lim
k→∞

I(ϕk) = Mλ.

Furthermore, weak convergence in X1, compactness of ρk, and the Sobolev inequality
imply strong convergence of ϕk to ψ in Lp+1. Therefore

K(ψ) = lim
k→∞

K(ϕk) = λ,

so I(ψ) ≥ Mλ. Together with the inequality above, this implies I(ψ) = Mλ, so ψ is a
minimizer of I subject to the constraint K(ϕ) = λ. Finally, since I is equivalent to
the norm on X1, φk ⇀ ψ, and I(φk) → I(ψ), it follows that φk converges strongly to
ψ in X1.

At this time it is unknown whether or not the ground states are unique up to
translation. Uniqueness would imply that if ϕ ∈ G(β, c, γ) is any ground state, then
G(β, c, γ) = Oϕ, in which case the stability and instability theorems (Theorems 3.1
and 4.2) are complementary. We suspect that the ground states are unique, at least
in the case c < −2

√
βγ, when the ground states have nonoscillatory tails.

The function m(β, c, γ) defined above plays an important role in our later results,
so we now will investigate some of its properties. The first is a simple scaling identity.

Lemma 2.2. Let β > 0, γ > 0, and c < 2
√
βγ. For any r > 0 and s > 0 we have

m(rs2β, rc, rs−2γ) = rs
p−1
p+1m(β, c, γ).

Proof. Let u ∈ X1 with K(u) �= 0. For any r > 0 we have

I(u; rβ, rc, rγ) = rI(u;β, c, γ),

so m(rβ, rc, rγ) = rm(β, c, γ). Next let v(x) = u(sx) for s > 0. Then

I(v;β, c, γ) =
1

s
I(u; s2β, c, s−2γ), K(v) =

1

s
K(u),

so

I(v;β, c, γ)

K(v)
2

p+1

= s
1−p
p+1

I(u; s2β, c, s−2γ)

K(u)
2

p+1

,

and consequently

m(s2β, c, s−2γ) = s
p−1
p+1m(β, c, γ).

Next, we show that m is continuous and monotone in each of its variables.

Lemma 2.3. The function m is continuous on the domain β > 0, γ > 0,
c < 2

√
γβ. Furthermore, m is strictly increasing in γ and β and strictly decreas-

ing in c.
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Proof. First, fix β > 0 and γ > 0 and consider c1 < c2 < 2
√
βγ. Let ϕc1 and ϕc2

be ground states with c = c1 and c = c2, respectively. Then

m(β, c2, γ) ≤ I(ϕc1 ;β, c2, γ)

K(ϕc1)
2

p+1

=
I(ϕc1 ;β, c1, γ) + (c1 − c2)

∫
ϕ2
c1 dx

K(ϕc1)
2

p+1

=
I(ϕc1 ;β, c1, γ)

K(ϕc1)
2

p+1

+ (c1 − c2)

∫
ϕ2
c1 dx

K(ϕc1)
2

p+1

= m(β, c1, γ) + (c1 − c2)

∫
ϕ2
c1 dx

K(ϕc1)
2

p+1

< m(β, c1, γ),

so m is strictly decreasing in c. On the other hand,

m(β, c1, γ) ≤ I(ϕc2 ;β, c1, γ)

K(ϕc2)
2

p+1

=
I(ϕc2 ;β, c2, γ) + (c2 − c1)

∫
ϕ2
c2 dx

K(ϕc2)
2

p+1

= m(β, c2, γ) + (c2 − c1)

∫
ϕ2
c2 dx

K(ϕc2)
2

p+1

,

so

0 ≤ m(β, c1, γ) −m(β, c2, γ) ≤ (c2 − c1)

∫
ϕ2
c2 dx

K(ϕc2)
2

p+1

.

Now since

I(ϕc2 ;β, c2, γ) ≥ A

∫
ϕ2
c2 dx,

where A is defined by (2.10), it follows that

|m(β, c2, γ) −m(β, c1, γ)| ≤ A−1m(β, c2, γ)(c2 − c1),

so m is locally Lipschitz continuous in c. By similar reasoning it follows that m is
increasing and locally Lipschitz in β and γ.

We now consider the effect of letting the rotation parameter γ approach zero.
Formally, this results in the generalized KdV equation

βϕxx + cϕ = f(ϕ).(2.11)

For c < 0, ground state solutions of (2.11) achieve the minimum

m(β, c, 0) = inf

{
I(u;β, c, 0)

K(u)
2

p+1

: u ∈ H1K(u) > 0

}
,

where

I(u;β, c, 0) =

∫
βu2

x − cu2 dx,
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and K is defined as before by (2.3). Thus the set of ground states may be characterized
as

G(β, c, γ) =
{
ϕ ∈ H1 | K(ϕ) = I(ϕ;β, c, 0) = (m(β, c, 0))

p+1
p−1

}
.

Moreover, it is well known that the ground states are unique up to translation, so
that G(β, c, 0) = {ϕ0(· − y) | y ∈ R} for some ϕ0. For example, in the case of the
nonlinearity f(u) = (−u)p, where p ≥ 2 is an integer, we have the explicit formula

ϕ0(x) = −
(
−c(p + 1)

2

) 1
p−1

sech
2

p−1

(
p− 1

2

√
−c

β
x

)
.

Therefore the analogue of Theorem 2.1 takes the following form.
Theorem 2.4. Let β > 0 and c < 0. Let ψk be a sequence in H1 such that

lim
k→∞

I(ψk;β, c, 0) = lim
k→∞

K(ψk) = (m(β, c, 0))
p+1
p−1 .

Then there exists a subsequence (renamed ψk), and there exist scalars yk ∈ R such
that ψk(· + yk) → ϕ0 in H1.

Theorem 2.5. Fix β > 0 and c < 0 and consider any sequence γk → 0+. Denote
by ϕk any element of G(β, c, γk). Then there exists a subsequence (renamed γk) and
translations yk so that

ϕk(· + yk) → ϕ0(2.12)

in H1, as γk → 0+. That is, the generalized KdV solitary waves are the limits in H1

of solitary waves of the generalized Ostrovsky equation.
To prove this theorem, we will show that the sequence of Ostrovsky solitary waves

is a minimizing sequence for the KdV variational problem. The following lemma is
proved in [15].

Lemma 2.6. The space X1 is dense in H1.
Using the lemma, we next prove that the function m is continuous at γ = 0.
Lemma 2.7. Fix β > 0 and c < 0. Then

lim
γ→0+

m(β, c, γ) = m(β, c, 0).(2.13)

Proof. Since m is strictly increasing in γ, it suffices to show that m(β, c, γk) →
m(β, c, 0) for some sequence γk → 0. By the density of X1 in H1 we may choose ψk

in X1 such that ‖ψk − ϕ0‖H1 < 1
k and define

γk = min

(
1

k
,

1

k
∫
|D−1

x ψk|2 dx

)
.

Then

m(β, c, γk) ≤
I(ψk;β, c, γk)

K(ψk)
2

p+1

=
I(ψk;β, c, 0) + γk

∫
|D−1

x ψk|2 dx
K(ψk)

2
p+1

≤
I(ψk;β, c, 0) + 1

k

K(ψk)
2

p+1

.
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Since I(·;β, c, 0) and K are both continuous on H1, we therefore have

lim sup
k→∞

m(β, c, γk) ≤
I(ϕ0;β, c, 0)

K(ϕ0)
2

p+1

= m(β, c, 0).

On the other hand, given ϕk ∈ G(β, c, γk) we have ϕk ∈ H1, so

m(β, c, 0) ≤ I(ϕk;β, c, 0)

K(ϕk)
2

p+1

=
I(ϕk;β, c, γk) − γk

∫
|D−1

x ϕk|2 dx
K(ϕk)

2
p+1

<
I(ϕk;β, c, γk)

K(ϕk)
2

p+1

= m(β, c, γk).

Thus

lim inf
k→∞

m(β, c, γk) ≥ m(β, c, 0),

and the lemma follows.
Proof of Theorem 2.5. By continuity of m at γ = 0, we have

lim
k→∞

K(ϕk) = lim
k→∞

m(β, c, γk)
p+1
p−1 = m(β, c, 0)

p+1
p−1

and

lim sup
k→∞

I(ϕk;β, c, 0) = lim sup
k→∞

I(ϕk;β, c, γk) − γk

∫
(D−1

x ϕk)
2 dx

≤ lim
k→∞

I(ϕk;β, c, γk)

= lim
k→∞

m(β, c, γk)
p+1
p−1

= m(β, c, 0)
p+1
p−1 .

Thus ϕk is a minimizing sequence for the KdV variational problem, and the result
follows from Theorem 2.4.

3. Stability. The main result of this section is the following.
Theorem 3.1. Let β > 0, γ > 0, and c < 2

√
βγ. Let d be defined as in (3.1). If

d′′(c) > 0, then the set of ground states G(β, c, γ) is X1-stable.
The proof is based on arguments in [14], which makes use of the method of [5].

We remark here that the condition d′′(c) > 0 may be replaced with strict convexity
of d in a neighborhood of c. See [24].

Given β > 0, γ > 0, and c < 2
√
βγ, we define

d(c) = d(β, c, γ) = E(ϕ) − cV (ϕ),(3.1)

where ϕ is any element of G(β, c, γ). Since

E(u) − cV (u) =
1

2
I(u) − 1

p + 1
K(u),(3.2)
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it follows from (2.8) that

d(β, c, γ) =
p− 1

2(p + 1)
I(ϕ) =

p− 1

2(p + 1)
K(ϕ) =

p− 1

2(p + 1)
(m(β, c, γ))

p+1
p−1 .(3.3)

Therefore d is well defined, and we may deduce its properties by examining the func-
tion m(β, c, γ). The following two lemmas are immediate corollaries of Lemmas 2.2
and 2.3.

Lemma 3.2. Let β > 0, γ > 0, and c < 2
√
βγ. For any r > 0 and s > 0, we have

d(rs2β, rc, rs−2γ) = r
p+1
p−1 sd(β, c, γ).

Lemma 3.3. The function d is continuous on the domain β > 0, γ > 0, c <
2
√
γβ. Furthermore, d is strictly increasing in γ and β and strictly decreasing in c.
Lemma 3.4. For each fixed β > 0 and γ > 0, the partial derivative ∂d/∂c(β, c, γ)

exists for all but countably many c < 2
√
βγ. Similarly, ∂d/∂β and ∂d/∂γ exist for all

but countably many β and γ, respectively. At points where the partials exist,

∂d

∂β
=

1

2

∫
(ϕx)2 dx,

∂d

∂c
= −1

2

∫
ϕ2 dx,

∂d

∂γ
=

1

2

∫
(D−1

x ϕ)2 dx.

Proof. Since d is continuous and monotone with respect to each variable, it
follows that the partial derivatives exist at all but countably many points. To verify
the formulas above, first fix β > 0 and γ > 0. Then by the inequalities in the proof
of Lemma 2.3,

−
∫
ϕ2
c2 dx

K(ϕc2)
2

p+1

≤ m(β, c2, γ) −m(β, c1, γ)

c2 − c1
≤ −

∫
ϕ2
c1 dx

K(ϕc1)
2

p+1

for c1 < c2 < 2
√
βγ. Let

gs(β, c, γ) = sup

{∫
ϕ2
c dx : ϕc ∈ G(β, c, γ)

}
,

gi(β, c, γ) = inf

{∫
ϕ2
c dx : ϕc ∈ G(β, c, γ)

}
.

Then, for c1 < c2 < 2
√
βγ,

− gi(β, c2, γ)

m(β, c2, γ)
2

p−1

≤ m(β, c2, γ) −m(β, c1, γ)

c2 − c1
≤ − gs(β, c1, γ)

m(β, c1, γ)
2

p−1

.

We now claim that

lim
c→c0

sup gi(β, c, γ) ≤ gs(β, c0, γ).

To see this, choose any ck → c0 and ϕk ∈ G(β, ck, γ). The continuity of m, the

characterization (2.8), and the relation (3.3) imply that I(ϕk) → 2(p+1)
p−1 d(β, c0, γ)
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and K(ϕk) → 2(p+1)
p−1 d(β, c0, γ). Therefore ϕk is a minimizing sequence, so by The-

orem 2.1, there is a translated subsequence (renamed ϕk) which converges in X1 to
some function ϕ in G(β, c0, γ). Hence

lim
k→∞

sup gi(β, ck, γ) ≤
∫

ϕ2 dx ≤ gs(β, c0, γ).

Consequently

∂m

∂c
(β, c+, γ) = − gs(β, c, γ)

m(β, c, γ)
2

p−1

.

Now, since d = p−1
2(p+1)m

p+1
p−1 , this implies

∂d

∂c
(β, c+, γ) = −1

2
gs(β, c, γ).

Likewise,

∂d

∂c
(β, c−, γ) = −1

2
gi(β, c, γ).

So at points where the partial derivative exists, we must have gs(β, c, γ) = gi(β, c, γ),
and the first formula above follows. The proofs of the other formulas are similar.

We note here that the preceding proof illustrates that uniqueness of ground states
up to translation would imply differentiability of d. For if G(β, c, γ) consists of trans-
lates of a single ground state, then gs(β, c, γ) = gi(β, c, γ), from which the differentia-
bility of d follows.

For the remainder of this section we will regard d only as a function of c for fixed
β and γ. So notation such as d′, d′′, or d−1 should be interpreted with respect to the
variable c. A key role in the stability analysis is played by the ε-neighborhood of the
set of ground states defined by

Uc,ε =

{
u ∈ X1 | inf

ϕ∈G(β,c,γ)
‖u− ϕ‖X1

< ε

}
.

Since d is strictly decreasing in c, we may define

c(u) = d−1

(
p− 1

2(p + 1)
K(u)

)
.

This associates a speed c(u) with any function u ∈ X1. The following lemma provides
the key estimate involving these speeds.

Lemma 3.5. If d′′(c) > 0, then there is some ε > 0 such that for any u ∈ Uc,ε

and ϕ ∈ G(β, c, γ), we have

E(u) − E(ϕ) − c(u)(V (u) − V (ϕ)) ≥ 1

4
d′′(c)|c(u) − c|2.

Proof. Since d′(c) = −V (ϕc), it follows from Taylor’s theorem that

d(c1) = d(c) − V (ϕc)(c1 − c) +
1

2
d′′(c)(c1 − c)2 + o

(
|c1 − c|2

)
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for c1 near c. By choosing ε sufficiently small, it then follows that

d(c(u)) ≥ d(c) − V (ϕc)(c(u) − c) +
1

4
d′′(c)(c(u) − c)2

= E(ϕc) − c(u)V (ϕc) +
1

4
d′′(c)(c(u) − c)2

for u ∈ Uc,ε. Now if ϕc(u) ∈ G(β, c(u), γ), then

K(ϕc(u)) =
2(p + 1)

p− 1
d(c(u)) = K(u),

and ϕc(u) minimizes I(·;β, c(u), γ) subject to this constraint, so

E(u) − c(u)V (u) =
1

2
I(u;β, c(u), γ) − 1

p + 1
K(u)

≥ 1

2
I(ϕc(u);β, c(u), γ) − 1

p + 1
K(ϕc(u))

= d(c(u)).

This completes the proof.
Proof of Theorem 3.1. Suppose G(β, c, γ) is X1-unstable, and choose initial data

uk
0 such that

inf
ϕ∈G(β,c,γ)

‖uk
0 − ϕ‖X1

<
1

k
,

and let uk(t) be the solution of (1.2) with uk(0) = uk
0 . By continuity in t, there are

some δ > 0 and some times tk such that

inf
ϕ∈G(β,c,γ)

‖uk(tk) − ϕ‖X1
= δ.(3.4)

By the initial assumption, we can find ϕk ∈ G(β, c, γ) such that

lim
k→∞

‖uk
0 − ϕk‖X1

= 0.

Therefore, since E and V are continuous on X1 and invariants of (1.2),

lim
k→∞

E(uk(tk)) − E(ϕk) = lim
k→∞

E(uk
0) − E(ϕk) = 0(3.5)

and

lim
k→∞

V (uk(tk)) − V (ϕk) = lim
k→∞

V (uk
0) − V (ϕk) = 0.(3.6)

By Lemma 3.5, if δ is sufficiently small, we have

(3.7)

E(uk(tk)) − E(ϕk) − c(uk(tk))(V (uk(tk)) − V (ϕk)) ≥
1

4
d′′(c)|c(uk(tk)) − c|2.

By (3.4) there is some ψk ∈ G(β, c, γ) such that ‖uk(tk)−ψk‖X1
< 2δ, and by (2.10),

we have

‖uk(tk)‖X1
≤ ‖ψk‖X1

+ 2δ ≤ 2δ + A−1I(ψk;β, c, γ) = 2δ +
2(p + 1)

A(p− 1)
d(c) < ∞.
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Thus since K is Lipschitz continuous on X1 and d−1 is continuous, it follows that
c(uk(tk)) is uniformly bounded in k. Thus by (3.5), (3.6), and (3.7) it follows that

lim
k→∞

c(uk(tk)) = c.

Continuity of K then implies

lim
k→∞

K(uk(tk)) = lim
k→∞

2(p + 1)

p− 1
d(c(uk(tk))) =

2(p + 1)

p− 1
d(c).(3.8)

By (3.2) and (3.1), we have

1

2
I(uk(tk)) = E(uk(tk)) − cV (uk(tk)) +

1

p + 1
K(uk(tk))

= d(c) + E(uk(tk)) − E(ϕk) − c(V (uk(tk)) − V (ϕk)) +
1

p + 1
K(uk(tk)),

(3.9)

so it follows from (3.5), (3.6), and (3.8) that

lim
k→∞

I(uk(tk)) =
2(p + 1)

p− 1
d(c).

Thus uk(tk) is a minimizing sequence and therefore has a subsequence which converges
in X1 to some ϕ ∈ G(β, c, γ). This contradicts (3.4), so the proof of the theorem is
complete.

4. Instability. In this section we present two theorems which provide conditions
for orbital instability of solitary waves. The first is complementary to the stability
theorem, in that it guarantees instability when d′′(c) < 0. The second does not involve
the function d, but rather gives a set of sufficient conditions for instability directly in
terms of the parameters β, γ, c, and p. While this result is not sharp, it does not rely
on detailed knowledge of the function d. The proof is based on the work of Gonçalves
Ribeiro [10], which is a modification of Shatah and Strauss’ method [25].

The first theorem requires the following assumption.
Assumption 4.1. For each fixed β > 0 and γ > 0, there exists a C1 map c �→ ϕc

from (−∞, 2
√
βγ) to X1 such that ϕc ∈ G(β, c, γ).

Theorem 4.2. Suppose β > 0, γ > 0, c < 2
√
βγ and Assumption 4.1 holds. If

d′′(c) < 0, then the orbit Oϕc is X1-unstable.
Theorem 4.3. Let β > 0, γ > 0, c < 2

√
βγ, and ϕ ∈ G(β, c, γ). Then the orbit

Oϕ is X1-unstable if
(i) c < 0, p > 5, and γ < γ0 for some small γ0 > 0;
(ii) c ≤ 0, p > 5 + 4

√
2, and γ > 0; or

(iii) c > 0 and p >
10+k+

√
(10+k)2+4(7+k)

2 , where k = 8
(

2
√

βγ
2
√

βγ−c
−1

)
.

Theorems 4.2 and 4.3 are actually both direct corollaries of Theorem 4.4, with
different choices of the “unstable direction” φ. The choices are given in Lemmas 4.10
and 4.11. As in the proof of the stability theorem, an important role will be played by
the ε-neighborhoods of the orbits of solitary waves. Given ϕ ∈ G(β, c, γ) and ε > 0,
we define

Uϕ,ε =

{
u ∈ X1 | inf

v∈Oϕ

‖u− v‖X1 < ε

}
.
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Theorem 4.4. Assume β > 0, γ > 0, and c < 2
√
βγ. Let ϕ ≡ ϕc ∈ G(β, c, γ)

and define M = {u ∈ X1;V (u) = V (ϕc)}. If there exists φ ∈ L2 such that φ′ ∈ Xs,
s > 3/2, φ′′ ∈ X1, φ

′ is tangent to M at ϕ, and

〈L′′(ϕ)φ′, φ′〉 < 0,(4.1)

then there exist an ε > 0 and a sequence {uj
0} in Uϕ,ε such that

(i) uj
0 → ϕ in X1 as j → ∞.

(ii) for all positive integers j, uj is uniformly bounded, but escapes Uϕ,ε in finite

time, where uj is the solution of (1.2) with uj(0) = uj
0.

The proof of Theorem 4.4 is approached via a series of lemmas. Define

J(u) =

∫
βu2

x + γ(D−1
x u)2 − cu2 + (p + 1)F (u) dx(4.2)

and

L(u) = E(u) − cV (u) =
1

2
J(u) +

p− 1

2(p + 1)
K(u).

Lemma 4.5. Assume c < 2
√
βγ. Then there exists a ground state ϕ ∈ X1

satisfying J(ϕ) = 0 such that

L(ϕ) = inf{L(u) | u ∈ X1, u �= 0, J(u) = 0}.(4.3)

Proof. The lemma follows by applying the arguments from the proof of Proposi-
tion 2.3 in [17].

Lemma 4.6. Fix c< 2
√
γβ and let ϕ∈G(β, c, γ). There are an ε0 > 0 and a

unique C2 map α : Uϕ,ε0 → R such that α(ϕ) = 0 and for all v ∈ Uϕ,ε0 , and any
r ∈ R,

(i)
〈
τα(v)ϕ

′, v
〉

= 0,
(ii) α(τrv) = α(v) + r, and
(iii) α′(v) = − 1

〈v, ϕ′′(·+α(v))〉ϕ
′(· + α(v)).

In particular, for any w ∈ Oϕ, we have 〈α′(w), w〉 = 0, and α′(w) = 1
|ϕ′|22

w′.

Proof. The proof is standard. See Theorem 3.1 in [10], Lemma 3.5 in [1], or
Lemma 3.5 in [3].

Consider a function φ ∈ L2 such that φ′ ∈ X1. Define another vector field Bφ by

Bφ(v) = τα(v)φ
′ −

〈
v, τα(v)φ

′〉〈
v, τα(v)ϕ′′

〉τα(v)ϕ
′′(4.4)

for v ∈ Uϕ,ε.
The vector field Bφ is an extension of formula (4.2) in Bona, Souganidis, and

Strauss [5], and a similar formula was also used in [1, 3, 10]. The important properties
of Bφ are expressed in the following auxiliary result and will be used in the proof of
Theorem 4.4.

Lemma 4.7.

(i) Assume that φ ∈ L2 such that φ′, φ′′ ∈ X1. The mapping Bφ : Uϕ,ε0 → X1

is C1 with bounded derivative.
(ii) Bφ commutes with translations.
(iii) 〈Bφ(v), v〉 = 0 for all v ∈ Uϕ,ε0 .
(iv) If 〈ϕ, φ′〉 = 0, then Bφ(ϕ) = φ′.
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Proof. Since φ′, ϕ′′ ∈ X1, it is easy to see from the definition of Bφ that Bφ(v) ∈
X1 for all v ∈ Uϕ,ε. We now prove that Bφ is C1 with bounded derivative. From part
(iii) of Lemma 4.6 and (4.4), we have

Bφ(v) = τα(v)φ
′ +

〈
v, τα(v)φ

′〉 d

dx
α′(v).

A simple calculation shows

B′
φ(v)w = 〈α′(v), w〉 τα(v)φ

′′ +
〈
v, τα(v)φ

′〉 d

dx
α′′(v)w(4.5)

+
(〈
w, τα(v)φ

′〉 + 〈α′(v), w〉
〈
v, τα(v)φ

′′〉) d

dx
α′(v)

for all w ∈ X1. To show that Bφ is a C1 function with bounded derivative, we need to
show that all terms in the right side of (4.5) are bounded in Uϕ,ε. In fact, for w ∈ X1

and v ∈ Uϕ,ε, we have

〈
v′, τα(v)ϕ

′〉 d

dx
α′′(v)w = 〈α′(v), w〉 τα(v)ϕ

′′′ +
〈
τα(v)ϕ

′′, w
〉 d

dx
α′(v)(4.6)

−〈α′(v), w〉
〈
v′, τα(v)ϕ

′′〉 d

dx
α′(v).

Setting v = ϕ in (4.6) and using the relation α(ϕ) = 0 yields

d

dx
α′′(ϕ)w =

ϕ′′′

|ϕ′|42
〈w, ϕ′〉 +

ϕ′′

|ϕ′|42
〈w, ϕ′′〉 .(4.7)

Therefore, ∥∥∥∥ d

dx
α′′(ϕ)

∥∥∥∥
L(X1, X1)

≤ C0 (‖ϕ‖4)

and ∥∥∥∥ d

dx
α′(ϕ)

∥∥∥∥
X1

≤ C1(‖ϕ‖3).

Since α is C2 and d
dxα

′ and d
dxα

′′ are continuous, by taking ε > 0 small enough, if
necessary, there exists a constant C2 > 0 such that

‖α′(v)‖X1 ≤ C2,

∥∥∥∥ d

dx
α′(v)

∥∥∥∥
X1

≤ C2, and

∥∥∥∥ d

dx
α′′(v)

∥∥∥∥
L(X1, X1)

≤ C2

with C2 = C2(‖ϕ‖4) and for all v ∈ Uϕ,ε0 . It follows that Bφ is a C1 function and the
derivative of Bφ is bounded by∥∥B′

φ(v)w
∥∥
X1

≤ C2 (‖φ′′‖X1
+ (ε + ‖ϕ‖X1

)|φ′|2) ‖w‖X1
,

which implies that

‖B′
φ(v)‖L(X1, X1) ≤ C ∀v ∈ Uϕ,ε,

where the constant C depends only on C2, ‖φ′′‖X1 , |φ′|2, and ‖ϕ‖X1 . This proves (i).
Statement (ii) can be obtained immediately from the relation α(τy(v)) = α(v) + y for
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any v ∈ X1 and y ∈ R. Statement (iii) can obtained directly from the definition of
Bφ. By α(ϕ) = 0 and by the assumption in (iv), 〈ϕ, φ′〉 = 0, we have

Bφ(ϕ) = φ′ +
〈ϕ, φ′〉
|ϕ′|22

ϕ′′ = φ′.

This completes the proof of Lemma 4.7.
Lemma 4.8. Let ϕ ∈ G(β, c, γ). Assume that φ ∈ L2 is defined in Theorem 4.4.

Then there exist ε3 > 0 and σ3 > 0 such that for each v0 ∈ Uϕ,ε3 ,

L(ϕ) ≤ L(v0) + P (v0)s(4.8)

for some s ∈ (−σ3, σ3), where P (v) = 〈L′(v), Bφ(v)〉 and L(v) = E(v) − cV (v).
Proof. Let Uϕ,ε be as in Lemma 4.6. For each v0 ∈ Uϕ,ε0 , consider the initial-value

problem

dv

ds
= Bφ(v),(4.9)

v(0) = v0.

By Lemma 4.7, it has a unique maximal solution v(v0, s) ∈ C2(Uϕ,ε0 , (−σ, σ)) with
σ = σ(v0) > 0. Moreover, for each ε1 < ε0, there exists σ1 > 0 such that σ(v0) ≥ σ1

for all v0 ∈ Uϕ,ε1 . Hence, for fixed ε1 and σ1, we can define the C2-mapping s ∈
(−σ1, σ1) �→ L(v(v0, s)). Let P (v) = 〈L′(v), Bφ(v)〉 and

R(v) = 〈L′′(v)Bφ(v), Bφ(v)〉 +
〈
L′(v), B′

φ(v)(Bφ(v))
〉
.(4.10)

Applying Taylor’s theorem yields

L(v(v0, s)) = L(v0) + P (v0)s +
1

2
R(v(v0, ξs))s

2(4.11)

for some ξ ∈ (0, 1). Since L′(ϕ) = 0 and R(ϕ) = 〈L′′(ϕ)φ′, φ′〉 < 0, it follows from
the continuity of P and R that there exist ε2 ∈ (0, ε1) and σ2 ∈ (0, σ1) such that

L (v(v0, s)) ≤ L(v0) + P (v0)s(4.12)

for v0 ∈ B(ϕ, ε2) and s ∈ (−σ2, σ2). On the other hand, a simple calculation shows
that

J(v(v0, s))

∣∣∣∣
(v0,s)=(ϕ,0)

= 0

and

∂

∂s
J(v(v0, s))

∣∣∣∣
(v0,s)=(ϕ,0)

= 〈J ′(ϕ), φ′〉 .(4.13)

We claim that 〈J ′(ϕ), φ′〉 �= 0. Otherwise, φ′ would be tangent to N at ϕ, where

N = {u ∈ X1 | u �= 0, J(u) = 0} .

Hence, 〈L′′(ϕ)φ′, φ′〉 ≥ 0 since ϕ minimizes L on N by Lemma 4.5. But this con-
tradicts (4.1). Therefore, by the implicit function theorem, there exist ε3 ∈ (0, ε2)



1000 STEVE LEVANDOSKY AND YUE LIU

and σ3 ∈ (0, σ2) such that for every v0 ∈ B(ϕ, ε3), there exists a unique s = s(v0) ∈
(−σ3, σ3) such that

J (v(v0, s(v0))) = 0.(4.14)

Applying (4.12) to (v0, s(v0)) given by (4.14) and taking into account that ϕ minimizes
L on N , we have

L(ϕ) ≤ L(v(v0, s)) ≤ L(v0) + P (v0)s(4.15)

for some s ∈ (−σ3, σ3). The above inequality can be extended to Uϕ,ε3 from the gauge
invariance.

Remark 4.9. From the relation

v(ϕ, s) = ϕ +

∫ s

0

τα(v(ϕ,t))φ
′dt−

∫ s

0

g(t)τα(v(ϕ, t))ϕ
′′ dt,

where

g(t) =

〈
v, τα(v)φ

′〉〈
v, τα(v)ϕ′′

〉 ,
it is easy to see that v(ϕ, s) ∈ Xl, l >

3
2 , for all s ∈ (−σ3, σ3).

Now we are in the position to prove Theorem 4.4.
Proof of Theorem 4.4. Since v(v0, s) commutes with τy, it follows by replacing v0

with v(ϕ, δ) in (4.15) that

L(v(v(ϕ, δ), s)) ≤ L(v(ϕ, δ)) + P (v(ϕ, δ))s(4.16)

for any s ∈ (−σ2, σ2) and δ ∈ (−σ3, σ3) with 0 < σ3 < σ2. Taking s = −δ, it thus
transpires from (4.16) that

L(ϕ) ≤ L(v(ϕ, δ)) − P (v(ϕ, δ))δ(4.17)

for all δ ∈ (−σ3, σ3). Moreover, it follows from (4.11) and the fact that P (ϕ) = 0 that
the mapping δ �→ L(v(ϕ, δ)) has a strict maximum locally at δ = 0. Hence, we have

L(v(ϕ, δ)) < L(ϕ)(4.18)

for all δ �= 0 and δ ∈ (−σ4, σ4) with 0 < σ4 ≤ σ3. This in turn implies from (4.17)
that

P (v(ϕ, δ)) < 0(4.19)

for all δ ∈ (0, σ4). Let δj ∈ (0, σ4) such that δj → 0 as j → ∞. Consider the sequences
of initial data u0,j = v(ϕ, δj). Then by Remark 4.9, u0,j ∈ Xs, s > 3/2 for all positive
integers j and u0,j → ϕ in X1 as j → ∞, which proves (i). For all integers j, we need
only verify that the solution uj(t) of (1.2) with uj(0) = u0,j escapes from Uϕ,ε3 for
some ε3 > 0 and for all positive integers j in finite time. To see this, let ε3 be defined
as in Lemma 4.8. Define

Tj = sup{λ > 0; uj(t) ∈ Uϕ,ε3 ∀t ∈ (0, λ)}
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and

P− = {v ∈ Uϕ,ε3 ; L(v) < L(ϕ), P (v) < 0 }.

Consider the case of the maximal existence time T = +∞ by the definition of stability.
It now follows from Lemma 4.8 that for all integers j and t ∈ (0, Tj), there exists
s = sj(t) ∈ (−σ3, σ3) satisfying

L(ϕ) ≤ L(uj(t)) + P (uj(t))s = L(u0,j) + P (uj(t))s.(4.20)

By (4.18) and (4.19), u0,j ∈ P−. Then we deduce that uj(t) ∈ P− for all t ∈ [0, Tj ].
In fact, if P (uj(t0)) > 0 for some t0 ∈ [0, Tj ], then the continuity of P implies that
there exists some t1 ∈ [0, Tj ] satisfying P (uj(t1)) = 0, and it thus follows from (4.20)
that L(ϕ) ≤ L(u0,j), which contradicts u0,j ∈ P−. Hence, by (4.20), P is bounded
away from zero and

−P (uj(t)) ≥
L(ϕ) − L(u0,j)

σ3
= ηj > 0 ∀t ∈ [0, Tj ].(4.21)

We now define a Liapunov function

A(t) =

∫
R

φ(x + α(uj(t)))uj(x, t)dx, t ∈ [0, Tj ].(4.22)

Then by the Cauchy–Schwarz inequality,

|A(t)| ≤ |φ|2|uj(t)|2 = |φ|2|u0,j |2 < +∞, t ∈ [0, Tj ].(4.23)

On the other hand, using the Hamiltonian formulation

duj

dt
= −∂xE

′(uj)

of (1.2), we have

dA

dt
= α′(uj(t))

∫
R

φ′ (x + α(uj(t)))uj(t) +

∫
R

φ (x + α(uj(t)))
duj

dt

=

〈
α′(uj(t)),

duj

dt

〉〈
τα(uj(t))φ

′, uj

〉
+

〈
τα(uj(t))φ,

duj

dt

〉

=

〈〈
τα(uj(t))φ

′, uj(t)
〉 dα′(uj(t))

dx
+ τα(uj(t))φ

′, E′(uj(t))

〉
= 〈Bφ(uj(t)), E

′(uj(t))〉
= 〈Bφ(uj(t)), L

′(uj(t))〉 + c 〈Bφ(uj(t)), uj(t)〉
= P (uj(t))

for t ∈ [0, Tj ], where 〈Bφ(uj(t)), uj(t)〉 = 0. Hence (4.21) yields the lower bound

−dA

dt
≥ ηj > 0 ∀t ∈ [0, Tj ].(4.24)

Comparing (4.23) and (4.24), we conclude that Tj < +∞ for all j. This completes
the proof.



1002 STEVE LEVANDOSKY AND YUE LIU

In view of Theorem 4.4 we now look for functions φ that satisfy the inequality
(4.1).

Lemma 4.10. Suppose β > 0, γ > 0, c < 2
√
βγ, and Assumption 4.1 holds. If

d′′(c) < 0, then there exists φ satisfying the conditions of Theorem 4.4.
Proof. By Assumption 4.1, d is differentiable and by Lemma 3.4, d′(c) = −V (ϕc).

So if we define

g(h, σ) = V (ϕh + σϕc),

then g(c, 0) = −d′(c) and

∂g

∂h
(c, 0) =

〈
V ′(ϕc),

∂ϕc

∂c

〉
= −d′′(c) > 0.

Thus the implicit function theorem implies there is a C2-mapping h : (−ε, ε) →
(−∞, 2

√
βγ) such that h(0) = c and

g(h(σ), σ) = V (ϕh(σ) + σϕc) = V (ϕc).

Therefore

0 =
d

dσ
g(h(σ), σ)

∣∣∣∣
σ=0

=

〈
V ′(ϕc), h

′(0)
∂ϕc

∂c
+ ϕc

〉
,(4.25)

so if we define

φ(x) =

∫ x

−∞
h′(0)

∂ϕc

∂c
(y) + ϕc(y) dy,

then φ′ is tangent to M at ϕc and it follows from Assumption 4.1 that φ ∈ L2,
φ′ ∈ Xs for some s > 3/2 and φ′′ ∈ X1. It remains to show that φ satisfies (4.1).
First, observe that

L′′(ϕ) = E′′(ϕc) − cV ′′(ϕc) = −β∂2
x − γD−2

x − c + f ′(ϕc),(4.26)

so

〈L′′(ϕc)φ
′, φ′〉 = 〈L′′(ϕc)ϕc, ϕc〉 + 2h′(0)

〈
L′′(ϕc)ϕc,

∂ϕc

∂c

〉
(4.27)

+ (h′(0))2
〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
.

We claim that

〈L′′(ϕc)ϕc, ϕc〉 = (1 − p)K(ϕc),(4.28)

〈
L′′(ϕc)ϕc,

∂ϕc

∂c

〉
= −2d′(c),(4.29)

and 〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
= −d′′(c).(4.30)
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To prove the first two identities, recall that sf ′(s) = pf(s) and F ′ = f . Thus

〈L′′(ϕc)ϕc, ϕc〉 =

∫
R

(−β(ϕc)xx − γD−2
x ϕc − cϕc + pf(ϕc))ϕc dx

=

∫
R

(p− 1)ϕcf(ϕc) dx

= (1 − p)K(ϕc)

and 〈
L′′(ϕc)ϕc,

∂ϕc

∂c

〉
=

∫
R

(−β(ϕc)xx − γD−2
x ϕc − cϕc + pf(ϕc))

∂ϕc

∂c
dx

=

∫
R

(p− 1)f(ϕc)
∂ϕc

∂c
dx

= (p− 1)
d

dc

∫
R

F (ϕc) dx

= −2d′(c).

For the third identity, differentiate the solitary wave equation with respect to c to find

β

(
∂ϕc

∂c

)
xx

+ c
∂ϕc

∂c
+ ϕc + γD−2

x

∂ϕc

∂c
= f ′(ϕ)

∂ϕc

∂c
,

so L′′(ϕc)
(

∂ϕc

∂c

)
= ϕc, and therefore

〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
=

〈
ϕc,

∂ϕc

∂c

〉
=

1

2

d

dc

∫
R

ϕ2
c dx = −d′′(c)

by Lemma 3.4. We next compute h′(0). Using (4.25) and Lemma 3.4, we have

0 = h′(0)

〈
ϕc,

∂ϕc

∂c

〉
+ 〈ϕc, ϕc〉 =

1

2
h′(0)

d

dc
〈ϕc, ϕc〉+ 〈ϕc, ϕc〉 = −1

2
h′(0)d′′(c)−d′(c)

and therefore

h′(0) = −2d′(c)

d′′(c)
.

Finally, (4.27), (4.28), and (4.29) give

〈L′′(ϕc)φ
′, φ′〉 = (1 − p)K(ϕc) + 4

(d′(c))2

d′′(c)
< 0

under the assumption that d′′(c) < 0. This proves the lemma.
Lemma 4.11. Assume c < 2

√
βγ and let ϕ ∈ G(β, c, γ). Define

φ(x) =

∫ x

−∞
(ϕ(y) + 2yϕ′(y)) dy.

Then
(i) φ ∈ L2, φ′ ∈ Xs, s > 3/2, φ′′ ∈ X1, and φ′ is tangent to M at ϕ.

(ii) 〈L′′(ϕ)φ′, φ′〉 = (p−1)(5−p)
p+1 K(ϕ) + 16γ

∫
R

(D−1
x ϕ)2 dx.
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Proof. The first part of statement (i) is obvious because ϕ ∈ Xs for s > 3/2 and
ϕ is exponentially decaying at infinity. On the other hand, a simple calculation shows
that

〈φ′, ϕ〉 =

∫
R

(ϕ(x) + 2xϕ′(x))ϕ(x) dx =

∫
R

(xϕ2)′ dx = 0.

This proves (i). Now we need to estimate the quantity 〈L′′(ϕ)φ′, φ′〉. Differentiating
the solitary wave equation

βϕxx + cϕ + γD−2
x ϕ = f(ϕ)(4.31)

gives

βϕxxx + cϕx + γD−1
x ϕ = f ′(ϕ)ϕx.(4.32)

We now claim that

〈L′′(ϕ)ϕ, xϕ′〉 =
p− 1

p + 1
K(ϕ)(4.33)

and

〈L′′(ϕ) (xϕ′) , xϕ′〉 =
p− 1

2(p + 1)
K(ϕ) + 4γ

∫
R

(D−1
x ϕ)2.(4.34)

To prove these, again recall that f ′(ϕ)ϕ = pf(ϕ) and F ′ = f , so that

〈L′′(ϕ)ϕ, xϕ′〉 =

∫
R

(−βϕxx − γD−2
x ϕ− cϕ + pf(ϕ))xϕ′ dx

=

∫
R

(p− 1)xϕ′f(ϕ) dx

= (1 − p)

∫
R

F (ϕ) dx

=
p− 1

p + 1
K(ϕ).

Next, we note that the identities∫
R

βϕ2
x − cϕ2 + γ(D−1

x ϕ)2 dx = K(ϕ)(4.35)

and ∫
R

1

2
βϕ2

x +
1

2
cϕ2 − 3

2
γ(D−1

x ϕ)2 dx = − 1

p + 1
K(ϕ)(4.36)

follow by multiplying (4.31) by ϕ and xϕ′, respectively, and integrating. Combining
these yields ∫

R

cϕ2 dx− 2γ

∫
R

(D−1
x ϕ)2 dx +

p + 3

2(p + 1)
K(ϕ) = 0.(4.37)

Next, we observe that

L′′(ϕ)(xϕ′) = −β(xϕ′)′′ − γD−2
x (xϕ′) − cxϕ′ + f ′(ϕ)xϕ′

= −β(xϕ′′′ + 2ϕ′′) − γxD−1
x ϕ + 2γD−2

x ϕ− cxϕ′ + xf ′(ϕ)ϕ′

= −x(βϕ′′′ + cϕ′ + γD−1
x ϕ− f ′(ϕ)ϕ′) − 2βϕ′′ + 2γD−2

x ϕ.
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Using (4.31) and (4.32), this simplifies to

L′′(ϕ)(xϕ′) = 2cϕ + 4γD−2
x ϕ− 2f(ϕ),

so

〈L′′(ϕ) (xϕ′) , xϕ′〉 =

∫
R

(2cϕ + 4γD−2
x ϕ− 2f(ϕ))xϕ′ dx

=

∫
R

−cϕ2 + 2F (ϕ) + 6γ(D−1
x ϕ)2 dx.

Together with (4.37), this implies

〈L′′(ϕ) (xϕ′) , xϕ′〉 = 4γ

∫
R

(D−1
x ϕ)2 dx +

(
p + 3

2(p + 1)
− 2

p + 1

)
K(ϕ)

= 4γ

∫
R

(D−1
x ϕ)2 dx +

p− 1

2(p + 1)
K(ϕ),

as claimed. Therefore we deduce from (4.28), (4.33), and (4.34) that

〈L′′(ϕ)φ′, φ′〉 = 〈L′′(ϕ)ϕ,ϕ〉 + 4 〈L′′(ϕ)ϕ, xϕ′〉 + 4 〈L′′(ϕ) (xϕ′) , xϕ′〉

= (1 − p)K(ϕ) +
4(p− 1)

p + 1
K(ϕ) +

2(p− 1)

p + 1
K(ϕ) + 16γ

∫
R

(
D−1

x ϕ
)2

dx

=
(p− 1)(5 − p)

p + 1
K(ϕ) + 16γ

∫
R

(
D−1

x ϕ
)2

dx.

This completes the proof of the lemma.
Corollary 4.12. Let φ be defined as in Lemma 4.11. Then 〈L′′(ϕ)φ′, φ′〉 < 0 if

(i) c < 0, p > 5, and γ < γ0 for some small γ0 > 0;
(ii) c ≤ 0, p > 5 + 4

√
2, and γ > 0; or

(iii) 0 < c < 2
√
γβ and p > p0 with

p0 =
10 + k +

√
(10 + k)2 + 4(7 + k)

2

and

k = 8

(
2
√
βγ

2
√
βγ − c

− 1

)
> 0.

Proof. To prove (i), we first claim that

lim
γ→0

γ

∫
R

(
D−1

x ϕ
)2

dx = 0.

In fact, in view of (4.35), we have

γ

∫
R

(
D−1

x ϕ
)2

dx =

∫
R

cϕ2 − βϕ2
x dx + K(ϕ)

=

∫
ϕ

cϕ2 − βϕ2
x dx + (m(β, c, γ))

p+1
p−1 .
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It is thereby inferred from Lemma 2.7 and Theorem 2.5 that

lim
γ→0

γ

∫
R

(
D−1

x ϕ
)2

dx =

∫
R

cϕ2
0 − β (∂xϕ0)

2
dx + (m(β, c, 0))

p+1
p−1

= −I(ϕ0;β, c, 0) + (m(β, c, 0))
p+1
p−1 = 0,

where ϕ0 is the ground state solution of the KdV equation with c < 0. This in turn
implies that

lim
γ→0

〈L′′(ϕ)φ′, φ′〉 =
(p− 1)(5 − p)

p + 1
(m(β, c, 0))

p+1
p−1 < 0

for c < 0 and p > 5. This proves (i). To prove (ii) and (iii), we use (4.37) to write

2γ

∫
R

(
D−1

x ϕ
)2

dx =
p + 3

2(p + 1)
K(ϕ) + c

∫
R

ϕ2 dx

=
p + 3

2(p + 1)
K(ϕ) −K(ϕ) +

∫
R

βϕ2
x + γ

(
D−1

x ϕ
)2

dx

≤
(

p + 3

2(p + 1)
− 1 + max

{
1,

2
√
βγ

2
√
βγ − c

})
K(ϕ).

Therefore it follows from formula (ii) in Lemma 4.11 that

〈L′′(ϕ)φ′, φ′〉 ≤
(

(p− 1)(5 − p)

p + 1
+

4(p + 3)

p + 1
− 8(1 − ρ)

)
K(ϕ),(4.38)

where

ρ = max

{
1,

2
√
βγ

2
√
βγ − c

}
.

If c ≤ 0, then ρ = 1 and it follows that

〈L′′(ϕ)φ′, φ′〉 ≤
(

(p− 1)(5 − p)

p + 1
+

4(p + 3)

p + 1

)
K(ϕ)

= − 1

p + 1

(
p− (5 − 4

√
2)
)(

p− (5 + 4
√

2)
)
K(ϕ) < 0

under the assumption of p in (ii). If assumption (iii) is satisfied, then

p2 − (10 + k)p− (7 + k) > 0,

where k = 8(ρ− 1) > 0. It thus follows from (4.34) that

〈L′′(ϕ)φ′, φ′〉 = − 1

p + 1

(
p2 − (10 + k)p− (7 + k)

)
K(ϕ) < 0.

The proof of the corollary is complete.

5. Numerical results. We now present some numerical computations of d(c)
for the nonlinearity f(u) = (−u)p, where p ≥ 3 is an integer. The case p = 2 is
(1.1) and was considered in [15]. The strategy for computing d is to first compute
numerically the solutions of the solitary wave equation (2.1) using a shooting method.
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Then, using (3.3), we compute d(c) and use a difference quotient to approximate
d′′(c). The scaling property of d in Lemma 3.2 helps to reduce the calculations from
the domain c < 2

√
βγ to two finite line segments. To see this, substitute r = 1/2

√
βγ

and s = (4γ/β)1/4 in the relation in Lemma 3.2 to get

d(β, c, γ) = β
p+1

2(p−1)+
1
4 (4γ)

p+1
2(p−1)−

1
4 d

(
1,

c

2
√
βγ

,
1

4

)
.(5.1)

Thus the value of d along any surface of the form

Sα = {(β, c, γ) | c/2
√
βγ = α}

is determined by its value at any single point on that surface. We therefore need only
compute d along some set of paths which crosses every such surface. We make the
following choice. Let Γ1 = {(1, c, 1/4) | −1 ≤ c < 1} and Γ2 = {(1,−1, γ) | 0 < γ ≤
1/4}. Then Γ1 crosses Sα for −1 ≤ α < 1, and Γ2 crosses Sα for α ≤ −1. The paths
Γ1 and Γ2 are shown below in the plane β = 1.

Γ1 : γ = 1/4

Γ2 : c = −1

c

γ

−2 −1 0 1 2

We now consider the sign of dcc along these curves.
Along Γ1. Differentiating (5.1) twice with respect to c gives

dcc(β, c, γ) = β
p+1

2(p−1)−
3
4 (4γ)

p+1
2(p−1)−

5
4 dcc

(
1,

c

2
√
βγ

,
1

4

)
.

Since β > 0 and γ > 0, it follows that the sign of dcc within Sα is determined by the
sign of dcc(1, α, 1/4).

Along Γ2. Using Lemma 3.2 again, we deduce that

d(1, c, γ) = (−c)
p+3

2(p−1) d

(
1,−1,

γ

c2

)

for c < 0, so setting q = p+3
2(p−1) and differentiating with respect to c gives

dc(1, c, γ) = −q(−c)q−1d

(
1,−1,

γ

c2

)
− 2γ

c3
(−c)qdγ

(
1,−1,

γ

c2

)

= −q(−c)q−1d

(
1,−1,

γ

c2

)
+ 2γ(−c)q−3dγ

(
1,−1,

γ

c2

)

and
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dcc(1, c, γ) = q(q − 1)(−c)q−2d

(
1,−1,

γ

c2

)
+

2qγ

c3
(−c)q−1dγ

(
1,−1,

γ

c2

)

− 2γ(q − 3)(−c)q−4dγ

(
1,−1,

γ

c2

)
− 4γ2

c3
(−c)q−3dγγ

(
1,−1,

γ

c2

)

= q(q − 1)(−c)q−2d

(
1,−1,

γ

c2

)
− 2γ(2q − 3)(−c)q−4dγ

(
1,−1,

γ

c2

)

+ 4γ2(−c)q−6dγγ

(
1,−1,

γ

c2

)
.

Setting r = γ/c2, this simplifies to dcc(1, c, γ) = (−c)q−2g(r), where

g(r) = 4r2dγγ(1,−1, r) − 2(2q − 3)rdγ(1,−1, r) + q(q − 1)d(1,−1, r).

So it suffices to determine the sign of g(r) for 0 < r ≤ 1
4 . In the following 10 graphs,

we consider the nonlinearity f(u) = (−u)p for several values of p. We remark that
the case p = 2 is the classical Ostrovsky equation (1.1), for which it was shown by
the authors in [15] using the same numerical method that d′′(c) is positive for all β,
γ, and c < 2

√
βγ.

dcc, p = 3, β = 1, γ = 0.25

c
1−1

5

g(r), p = 3, β = 1, c = −1

r

1/40

0.5

dcc, p = 4, β = 1, γ = 0.25

c
1−1

0.5

−5

g(r), p = 4, β = 1, c = −1

r

1/40

0.12
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dcc, p = 5, β = 1, γ = 0.25

c
1−1

0

−1

g(r), p = 5, β = 1, c = −1

r

1/40

−0.003

0

dcc, p = 6, β = 1, γ = 0.25

c
1−1

0

−4

g(r), p = 6, β = 1, c = −1

r

1/40

−0.06

0

dcc, p = 7, β = 1, γ = 0.25

c
1−1

0

−5

g(r), p = 7, β = 1, c = −1

r

1/40

−0.1

0
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Using Theorems 3.1 and 4.3, we arrive at the following conclusions.

1. When p = 3, all solitary waves are stable for c < 2
√
βγ.

2. When p = 4, there exists α0 (≈ 0.88) such that solitary waves are stable for
c

2
√
βγ

< α0 and solitary waves are unstable for α0 < c
2
√
βγ

< 1.

3. When p = 5, 6, or 7, all solitary waves are unstable for c < 2
√
βγ.

The case p = 4 seems most interesting due to the change of stability. We conjecture
that for all p ≥ 5, solitary waves are unstable.

Acknowledgments. The authors are grateful for the constructive suggestions
made by the referees.
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THE DISCRETE PULSE TRANSFORM∗

C. H. ROHWER† AND D. P. LAURIE†

Abstract. We investigate a recent algorithm, here called a discrete pulse transform (DPT), for
the multiresolution analysis of a sequence. A DPT represents a sequence as a sum of pulses, where
a pulse is a sequence which is zero everywhere except for a certain number of consecutive elements
which have a constant nonzero value. Unlike the discrete Fourier and wavelet transforms, the DPT
is not a discretization of an underlying continuous model, but is inherently discrete. The DPT is
composed of nonlinear morphological filters based only on the order relations between elements of
the sequence. It is comparable to, but computationally more efficient than, the median transform,
and more amenable to theoretical analysis. In particular, we show that a DPT has remarkable shape
preserving and consistency properties.

Key words. nonlinear smoothing, variation preservation, fully trend preserving, multiresolution
decomposition
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1. Introduction. The discrete Fourier transform (DFT) has often been called
the most important mathematical tool of modern technology. There are three main
reasons for this high esteem:
Multiresolution. The DFT allows us to decompose a given finite sequence into a sum

of component subsequences, each of which can be interpreted as a feature
appearing at a particular frequency level.

Predictability. The theoretical properties of the DFT are well understood, making it
possible to predict its behavior over a wide range of typical applications.

Efficiency. There exists a very efficient procedure (the fast fourier transform) for the
computation of the DFT whenever the period of the sequence has no large
prime factors.

However, the DFT is primarily intended for the analysis of smooth periodic phe-
nomena and is ineffective when the data contains discontinuities (as attested by the
well-known Gibbs phenomenon) or is mainly composed of local features. In an at-
tempt to overcome these problems, wavelet decompositions were developed over the
last twenty years (an excellent overview of the state of the art is [Chu97]) to the point
where it would be fair to say that all three of the reasons for using the DFT are largely
applicable to wavelet decompositions too.

In addition, wavelets have the following desirable property:
Locality. The component sequences are local in a precisely definable sense.
In particular, B-splines [Sch67] fit very well into the wavelet framework. Instead of
frequency levels, as in the case of the FFT, we have resolution levels, so that a wavelet
decomposition is a technique for multiresolution analysis (MRA). The aim of MRA
is to decompose a signal as a sum of separate signals, each of which is meaningful
at its own resolution level. Ideally, the signal at each resolution level is undisturbed
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by those at the other resolution levels, allowing easy recognition of local features at
each level.

In some crucial applications, such as image processing, the expectations raised by
the more local nature of wavelet decompositions may have been too high. Wavelet
transforms are conceptually based on orthogonality properties of continuous func-
tions, and their application to discrete data can be thought of as a discretization of
a process in which an underlying continuous function is decomposed into a sum of
other continuous functions. Discontinuities can be handled, but only if their location
can be pinpointed. The combination of an implied smooth model with a linear filter
causes the well-known phenomenon of erosion of edges, which in image processing is
a most undesirable side effect.

In these applications wavelet transforms are not fully satisfactory, and one must
look elsewhere. Unavoidably, linearity of the transform must be sacrificed. The
consensus among practitioners [BMS98] seems to be that the median transform works
better than wavelet transforms.

Conceptually, the averaging filters of wavelet decomposition are replaced by me-
dian smoothers, and the analogy with wavelet decomposition is heuristically devel-
oped [BMS98]. The idea for the median transform stems from the theory of nonlinear
smoothers, where running medians have for a long time [Vel77, Mal80] (longer, in
fact, than wavelets) been the method of choice for the removal of impulsive noise.

A median filter has one very important property from the point of view of image
processing:
Incisiveness. A sharp spike is recognized as impulsive noise that can be surgically

removed without harming the signal; that same ability can be exploited to
detect an edge as an important feature that should not be blurred.

In other words, a median filter does not exhibit the Gibbs phenomenon. Despite
this obvious advantage, median transforms have some serious drawbacks. In partic-
ular, they fail in comparison to wavelets on two counts: they are computationally
expensive and, perhaps more serious, there is almost no theory which can predict
their behavior. In particular, they do not even have the property of idempotence,
as can be seen from the well-known example where x is the square wave consisting
of alternating trains of k zeros and k ones: if n = 2k + 1, the median-of-n operator
produces Mnx = 1 − x.

In this paper we investigate a recent morphological transform which we call the
discrete pulse transform (DPT). The DPT was proposed and motivated (although not
under that name) in [Roh02b], and has among others the following notable properties:
Multiresolution. The DPT is a multiresolution decomposition in a precise sense. A

sequence of nonlinear smoothing operators from the LULU family [Roh89,
Roh99, Roh02a, Roh02c, Roh03, Roh02b, RT91, RW02] are used to strip off
the features of a sequence at different resolution levels.

Efficiency. There exists an efficient procedure for the computation of the DPT, much
faster than the median transforms.

Locality. The component sequences are local in the following precisely definable sense:
each can be seen as a pulse train, that is, a sum of (block-) pulses of the same
sign and of equal width n, separated by at least n zeros. (A (block-) pulse
of width n is a sequence that has a constant nonzero value at n contiguous
elements and is zero elsewhere.)

Incisiveness. It behaves at least as well as the median transforms in the presence of
discontinuities.
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Predictability. The DPT is consistent in the following sense: if you analyze a sequence
x by the DPT, form a new sequence z by a linear combination of those com-
ponents with all components multiplied by arbitrary nonnegative constants,
and analyze z by the DPT, you will recover the same components. Roughly
speaking, one can say that this property is the analogue of the orthogonality
property of the DFT.

In view of the nonlinearity of the smoothing operators used, the consistency of
the DPT is perhaps the most surprising result of all. The main reason for it is that
the underlying LULU filters are stable in the sense that there is a clearly identifiable
set of sequences (the n-monotone sequences, defined below) which pass unchanged
through the first n filters. This property is shared by the median filters, but unlike
the DPT, they do not necessarily generate such sequences.

Some of these properties were already given in earlier work [Roh89, Roh99,
Roh02a, Roh02c, Roh03, Roh02b, RT91, RW02]. Others will be demonstrated in
this article. The new results in this article deal with:

• some remarkable shape preserving properties of the smoothers involved in the
decomposition,

• consistency of the decomposition: since it is not obvious in advance what is
meant by a component, we work gradually towards a definition. Our main
result, Theorem 8, shows that the DPT is consistent when a component is
defined as a positive or negative pulse train filtered off at each resolution
level.

We end with some remarks on the pulse structure of the decomposition, including
the conjecture that in fact a component could be defined as an individual pulse without
impairing the consistency of the decomposition.

2. A sneak preview. In this section, we show what the DPT can do, before
going into details of what it is and how it does it, for the sake of those readers who
believe that one example is worth a hundred theorems.

The research leading to the DPT was originally motivated by a particular appli-
cation: that of recovering the time of arrival of an impulsive signal from a background
of white noise. For example, any piece of equipment that relies on pulse length mod-
ulation (such as radio-controlled aircraft) leads to this problem.

In Figure 1 we show simulated data of this type: a time series with 100 points
consisting of Gaussian white noise with mean 0 and variance 1 added to a positive
pulse with amplitude 2 and length 11 in positions 63–73. Note that the amplitude of
the noise occasionally exceeds that of the signal. The width of the pulse, and that it
is positive, is in practice known, but not its position or amplitude.

Following the advice of Bijaoni, Murtagh, and Starck [BMS98], we dismiss all lin-
ear filters and try a median filter. In Figure 2 we show the results of the median-of-n
filters with n = 11, with the original signal superimposed. This does not look very
good, so we also try the idea of applying median-of-n filters with n = 3, 5, 7, 9, 11
successively. This looks better, and many people might be satisfied with the re-
sult, particularly those who have the advantage of knowing what the correct sig-
nal is. One could continue to n = 13, 15, 17, 19, 21, since all these filters should
pass the signal through unharmed, and some of those look even better to the well-
prepared human eye. However, there is no theory that tells us in advance where
to stop. Moreover, the mere fact that all these smoothed values look good im-
plies that little useful information can be had by scrutinizing the differences between
them.
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Fig. 1. Observed time series of simulated data obtained by adding Gaussian random noise to
a piecewise constant signal.

There are two main flavors of the DPT:

C = (C1, C2, C3, . . . ) and F = (F1, F2, F3, . . . ),

each of which works like the iterated median in the sense that Fnx is obtained by
applying a certain nonlinear filter to Fn−1x, etc. In general, Fnx � Cnx; in an
application, as in this example, one would apply both DPTs and base one’s conclusion
on what they agree on. In Figure 3 we show the result of the DPT filters C9 and
F9, also with the original signal superimposed. The reason for stopping at this stage,
before pulses of length 10 have been stripped off, will be given shortly, when we
discuss conservation of variation. One could argue that both cases show a slightly
sharper leading edge than the iterated median filter, but the argument would hardly
be conclusive, as here, too, it would be based on knowledge of the actual signal.

However, the main point of the DPT is not the quality of the individual filters
but the information given by the pulse decomposition, obtained from the differences
Fnx− Fn−1x, Cnx− Cn−1x.

First, we look at the decomposition of total variation, shown in Table 1. This
decomposition is analogous to the power spectrum of Fourier analysis. Note the
property that the total variation of the various decomposition levels sums to the total
variation of the data, in the same way that the squared norm of the components of
a Fourier analysis sums to the squared norm of the data. The variation conservation
property explains why the DPT is in practice found to be stable, even though it relies
on order information.

Each component in the decomposition naturally splits into positive and negative
pulses, analogous to the way that Fourier components split into odd and even parts.
We expect a pulse of length 11 to show up at monotonicity level 11, with some spillover
to levels 10 and 12. In fact, both DPT decompositions show no positive pulses at levels



1016 C. H. ROHWER AND D. P. LAURIE

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100

11-point median filter

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100

Iterated median filters

Fig. 2. Median filters applied to the time series in Figure 1. In the first graph, the 11-point
median filter was applied directly to the original time series; in the second graph, median filters of
length 3, 5, 7, 9, and 11 were applied successively.

9 and 12, so we form our reconstruction of the signal by combining the positive parts
of levels 10 and 11. The result is shown in Figure 4.

It is not necessary to know in advance where to look to recognize a clear and
unambiguous agreement between the two DPT transforms that a signal of the required
kind is present. Although the DPT has not recovered the full amplitude of the signal,
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DPT filter F9

Fig. 3. DPT filters applied to the time series in Figure 1.

its position has been pinpointed. Also note that noise has been almost completely
eliminated.

Now have another look at the figures arising from the median transform. Sure,
there is a pulse somewhere in the midsixties. But can one say with confidence where
it starts? Or how wide it is?

For this application, we are not aware of any other filter, linear or nonlinear, that
can rival the DPT.
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Table 1

Total variation vm of the pulses, and pm of the positive pulses, of width m identified by the
DPT. Width ∞ refers to the final monotonic sequence. The omission of a width level means that
no pulses were identified at that level. Note that in both cases

∑
vm equals the total variation of

the original observed sequence.

DPT using Cn DPT using Fn

m vm pm m vm pm
1 84.00 24.43 1 87.57 65.15
2 24.87 5.91 2 18.60 13.59
3 7.69 3.51 3 6.24 3.31
4 2.01 0.54 4 4.56 1.30
6 0.71 0.00 5 1.01 1.01
7 0.60 0.00 6 1.82 0.00
8 0.98 0.69 7 0.47 0.00
9 0.37 0.00 8 1.26 1.26

10 2.84 2.84 10 0.69 0.69
11 0.37 0.37 11 1.58 1.58
12 0.07 0.00 14 0.43 0.00
13 0.07 0.00 17 0.37 0.37
17 0.01 0.01 20 0.31 0.31
22 0.92 0.00 26 0.95 0.00
25 0.53 0.53 33 0.18 0.00
∞ 1.98 ∞ 1.98

3. Analogy with the FFT. The easiest way to understand the DPT is by
analogy with the well-known DFT. For the purpose at hand it is convenient to view
the DFT in the following framework.

Conceptually, a finite sequence of length N ,

x = 〈xi, i = 1, 2, . . . , N〉,(1)

is extended to an infinite periodic sequence by the stipulation that xi = xi+N holds
for all i. The periodic extension is required for theoretical purposes: all computations
involve only a sequence of length N. The practical implementation of the DFT is
known as the FFT when all prime factors of N are small, but for our theoretical
discussion we have no need for that hypothesis.

The DFT decomposes x into M = �N
2 + 1� component sequences,

x = s(0) + s(1) + · · · + s(M),

where s(0) is a constant sequence and s(n) is a periodic sequence with frequency n
times the fundamental frequency. As is well known, the mappings Dn that map x onto
s(n) are projections onto a one-dimensional space when n = 0 (and for even N, also
when n = N/2) and onto a two-dimensional space otherwise. The typical component
sequence can thus be represented by one complex number, or by two real numbers,
interpreted either as coefficients with respect to a chosen basis or an amplitude and
phase pair. It is convenient to view the DFT as a vector of sequences

D(x) = DFT (x) = [D0(x), D1(x), . . . , DM (x)],

where s(i) = Di(x).
Since the process is essentially a basis transformation it is obvious that the DFT

is component consistent in the following sense:

If z =

M∑
i=0

αiDi(x), then Dn(z) = αnDn(x) for each n = 0, 1, . . . ,M .
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Fig. 4. Positive pulses extracted from DPT filters applied to the time series in Figure 1. The
pulses of length 10 and 11 have been added together.

Furthermore, the orthonormal basis yields the so-called energy preservation law

‖x‖2
2 =

M∑
i=0

‖Di(x)‖2
2,

so that it is possible to allocate a percentage of the energy in x to each frequency
level.
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In the same way, in deriving the DPT we aim to decompose a sequence into
a sum of component sequences, but replacing periodic components with sequences
consisting of pulses of length n at each resolution level n. From this point of view, the
DPT proposed here can be seen as a mapping of a sequence x onto a vector of M + 1
component sequences, r(n) = Dn(x), representing the different resolution levels, such
that

x = D1(x) + D2(x) + · · · + DM (x) + D∞(x),

which we write as

D(x) = DPT (x) = [D1(x), D2(x), . . . , DM (x), D∞(x)].(2)

The final resolution level is numbered D∞ rather than DM+1, since the final sequence
is constant and equal to zero if x ∈ �1, which we shall assume.

There are two equivalent natural primary choices for such a decomposition pro-
cedure, which we call C and F , starting respectively from one of the smoothers LnUn

or UnLn that will be defined below. To avoid saying everything twice, we describe
only the case where DPT (x) = C(x).

The decomposition proceeds recursively. In the first step, the operator L1U1 is
applied to x to yield a sequence L1U1x smoother than x; the residual (I − L1U1)x
= D1(x), where I is the identity operator, is the component of x at the finest resolution
level. Thus L1U1 is not only a smoother, but also a separator (these terms will be
defined precisely later). The smoothed part L1U1x is then separated by L2U2 to yield
the second resolution component r(2) = D2(x) = (I −L2U2)L1U1x and the smoothed
part L2U2L1U1x, etc. The process is continued until only a constant sequence D0(x)
remains.

Note that the DPT components are numbered in order of increasing smoothness,
whereas the DFT components are numbered in order of decreasing smoothness.

The theory holds with certain changes if the periodicity condition is replaced
by defining xi = x1 for i < 1 and xi = xN for i > N : such sequences are ultimately
constant. For example, the lowest resolution component D0(x) will then be monotone,
but constant only when x1 = xN . For the sake of clarity of exposition, we will restrict
ourselves in this paper to the periodic case.

In the course of the paper we shall refine this preliminary formulation of the DPT
as more and more of its properties are discovered.

4. Properties of the LULU operators. Clearly the properties of the DPT
depend crucially on those of the LULU smoothers LnUn and UnLn. The properties
listed in this section have been explored in previous papers [Roh89, Roh99, Roh02a,
Roh02c, Roh03, Roh02b, RT91, RW02] and will not be rederived here. To start with,
we need some definitions.

Definition 1. TheLn andUn (mnemonic: lower and upper) operators are given by

(Unx)i = min{max{xi−n, . . . , xi}, . . . ,max{xi, . . . , xi+n}},
(Lnx)i = max{min{xi−n, . . . , xi}, . . . ,min{xi, . . . , xi+n}}.

Definition 2. The sequence x is n-monotone if either

xi � xi+1 � · · · � xi+n � xi+n+1

or

xi � xi+1 � · · · � xi+n � xi+n+1



THE DISCRETE PULSE TRANSFORM 1021

for all values of i such that xi and xi+n+1 are both members of the sequence. The set
of all n-monotone sequences is denoted by Mn.

M0 is just the set of all sequences. Note that

M0 ⊃ M1 ⊃ M2 ⊃ · · · ,(3)

and that the set Mn is not a vector space except when n = 0.
Definition 3. An operator A is idempotent if A2 = A and coidempotent if

I −A is idempotent.
Note that the condition A(I − A) = 0 (we do not use a different notation than

0 for the zero operator) is equivalent to coidempotence, even when A is not a linear
operator.

Definition 4. An operator A is a smoother if AE = EA, where Exi = xi+1,
A(x + b) = Ax + b for all constant sequences b, and A(cx) = c(Ax) for all scalars
c � 0.

In other words, a smoother is location invariant and scale invariant. Our definition
differs from that of Mallows [Mal80] in disallowing negative scale factors.

Definition 5. A smoother A is a separator if it is both idempotent and co-
idempotent.

Definition 6. When x ∈ M0 and y ∈ M0, x � y means that xi � yi for each
i; when A and B are operators on a sequence, A � B means that Ax � Bx for all
x ∈ M0.

Definition 7. The nth median smoother Mn is given by

(Mnx)i = median{xi−n, . . . , xi, . . . , xi+n}.

Definition 8. An operator A is syntone if Ax � Ay whenever x � y. Serra
[Ser84] uses the term “monotone” for this property.

Definition 9. An operator A is neighbor trend preserving (NTP) if for each
sequence x,

xi � xi+1 =⇒ (Ax)i � (Ax)i+1,

xi � xi+1 =⇒ (Ax)i � (Ax)i+1.

Definition 10. An operator A is fully trend preserving (FTP) if A is NTP and

|(Ax)i − (Ax)i+1| � |xi − xi+1|.

Definition 11. An operator A is total variation preserving if T (x) = T (Ax) +
T (x−Ax) for each x, where

T (x) =
∑

|xi−1 − xi|

is the total variation of the sequence x. In the case of a periodic sequence, the sum is
taken over one period.

It can be shown [Roh03] that the property of total variation preservation is equiv-
alent to that of being FTP.

Definition 12. The Cn and Fn operators (mnemonic: ceiling and floor) are
given by

C0 = L0U0 = I = U0L0 = F0,

Cn+1 = Ln+1Un+1Cn, Fn+1 = Un+1Ln+1Fn.

Here, then, is a list of properties of the LULU operators, referred to below as
property 1, etc.:



1022 C. H. ROHWER AND D. P. LAURIE

1. For each integer n, Unx = Lnx = x whenever x ∈ Mn [Roh89].
2. Ln � UnLn � Cn � Fn � LnUn � Un.
3. For each integer n, the operators LnUn (and UnLn) map onto Mn [Roh89].
4. UnUk = Um and LnLk = Lm, where m = max{n, k} [RW02].
5. LnUn (and UnLn) are idempotent and coidempotent, and therefore are sep-

arators [Roh99].
6. UnLn � Mn � LnUn [Roh89].
7. LnUn (and UnLn) are syntone operators [Roh89].
8. LnUn (and UnLn) are NTP operators [Roh02c].
9. LnUn (and UnLn) are FTP operators [Roh02c].

10. Un and Ln are variation preserving.
11. (I − Ln+1Un+1)LnUnx ∈ Mn (and (I − Un+1Ln+1)LnUnx ∈ Mn) for each

x ∈ M0.
12. The operators Ln and Un are duals in that Un(−x) = −Ln(x) [Roh89].
13. Un(x + c) = Unx + c (and Ln(x + c) = Lnx + c) for any constant sequence c

[Roh89].
14. Un(αx) = αUn(x) (and Ln(αx) = αLnx) for any α � 0 [Roh89].
15. Fn and Cn are separators.
16. If x ∈ Mn−1 and A is FTP, then UnAUnx = AUnx and LnALnx = ALnx.

Also CjCk = Cmax{j,k} and FjFk = Fmax{j,k}.

5. How does one define consistency? For the DPT to be of practical (or
theoretical) use, the heuristics that lead to its construction have to be supported by
consistency in behavior and properties. But what do we mean by “consistency”?

In the case of a linear decomposition like the DFT, which is just a basis trans-
formation, there is only one way to define consistency. The decomposition should
recover the coordinates, given any linear transformation of basis vectors.

In the case of a nonlinear decomposition, it is not at all obvious what we should
aim for. There is no vector space and therefore no basis. A level of consistency that
is certainly out of our reach is that one of the two properties of linear operators might
hold in general. If one checks whether DPT (x+ y) = DPT (x) +DPT (y) with some
random sequences, a counterexample will be found quickly. Consistent scaling (i.e.,
DPT (αx) = αDPT (x)) is true (by property 14) when α � 0 but not when α < 0.
Nevertheless, this rather weak property of consistent nonnegative scaling contains the
germ of a strong consistency property.

The concept of consistency of a two-level decomposition can be made unambigu-
ous. If an operator S is to separate a sequence into a “signal” Sx and (additive)
“noise” (I − S)x, then consistency means that S and (I − S) applied to the compo-
nents separately should leave that component unchanged. For example, an idempo-
tent linear operator (i.e., a projection) is a consistent separator: S(Sx) = Sx and
(I − S)Sx = 0. Similarly (I − S)((I − S)x) = (I − S)x as a projection is linear and
S(I − S)x = 0.

Nonlinear operators are much more intractable: the well-known median operators
are not even idempotent. Idempotence by itself gives only consistent signal extraction
(i.e., S(Sx) = Sx), not consistent noise extraction: S(I − S)x does not necessarily
equal Sx − S2x. For consistent separation, both idempotence and coidempotence
(the idempotence of (I − S)) are required; i.e., the operator must be a separator
(Definition 5). A separator can be shown [Roh99] to have only two eigenvalues 1 and
0, with eigensequences corresponding respectively to signal and noise. Since LnUn

and UnLn are separators (property 5), we hope to find some nontrivial consistency
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Fig. 5. A schematic representation of the sequential separation in the DPT.

properties of the DPT.
But first some words of caution.
Although Mn is exactly the set of eigensequences with respect to 1 of both LnUn

and UnLn, it is not a subspace, since the sum of two sequences in Mn need not be
in Mn. Moreover (and this may come as a surprise), the operators I − LnUn and
I − UnLn do not share their eigensequences w.r.t. the eigenvalue 0. In other words,
LnUn and UnLn do not always agree on what is noise, although they agree on what
is signal, since LnUn(UnLn) = UnLn and UnLn(LnUn) = LnUn.

In general, C(x) and F(x) are not the same. This is true even when the input
is only a single resolution component: if the nth resolution component r(n) of C(x)
is fed to the F decomposition, then it will in general not be its own nth resolution
component!

All of this makes the following innocent question highly problematic:
When C(x) or F(x) is viewed as separating a given sequence x into
a number of component sequences at different resolution levels, what
should “consistency” mean?

Even so modest a demand as that when an individual resolution component r(n)

of x is fed to the same DPT, its decomposition should yield r(n) at level n and zero
at the other levels, is not obvious.

At this stage it is illuminating to consider the DPT in Figure 5, to illustrate the
sequential separation by the separators LnUn.

In [Roh03] it is shown that the sequence r(n) at resolution level n consists of a
sum of pulses of length n, far enough apart so that LnUnr

(n) = 0. In fact, [Roh03]
gives a stricter characterization, but the latter property is all that is required here.
An example of a randomly generated sequence x decomposed into the highest three
resolution levels and the rest is depicted in Figure 6, to illustrate the concepts used.

The example demonstrates some essential features of what is achieved in prac-
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x

C1x + (I − C1)x

C2x + (I − C2)C1x

C3x + (I − C3)C2x

Fig. 6. The sequence of Figure 1 decomposed into the three highest resolution components.

tice. A sequence is decomposed into sequences of different resolution levels. F yields
similar-looking decompositions that are usually very close to those obtained by C. In
Figure 3 we show both DPT transformations to illustrate the general observation that
the differences are mainly due to, and proportional to, the random noise present.

It is necessary to proceed very carefully. Some of the theorems in the next sec-
tions may look very innocuous to an eye trained on linear operators, but each is an
important step on the way to a remarkable consistency that to our knowledge is not
shared generally by decomposition based on nonlinear morphological operators.
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6. Basic consistency properties. We put

Dnx = (Cn−1 − Cn)x = (I − LnUn)Cn−1x(4)

in (2) to fix the definition of the DPT; in other words, we work with the C(x) form
of the DPT. In view of the duality property (property 12), corresponding results and
proofs hold also for F .

Most of the rest of this article is devoted to answering the question of how to
define consistency. We start with the most modest of aims, and each time that we
achieve our aim the goalposts are shifted, until we reach a conjecture that as yet we
cannot prove.

For a start, we demand that a signal consisting of only the output of a single
resolution level should be reproduced by the DPT at that level, with zero components
elsewhere. This is easy to show.

Theorem 1. Let the decomposition DPT be defined by

DPT (x) = [D1x,D2x, . . . ,DNx,D0x].

Then Dj(Dix) = δijDix, where δij is the Kronecker delta.
Proof. Let n � 1 and z = Dnx. Then z ∈ Mn−1 by (4) and property 11, which

by (3) and property 1 implies that LkUkz = z for k = 1, 2, . . . , n − 1, and there-
fore that Ckz = z for k = 1, 2, . . . , n − 1. It follows from (4) that Dkz = (I − Ck)z
for k = 1, 2, . . . , n, giving Dkz = 0 for k = 1, 2, . . . , n − 1 and Dnz = z − Cnz.
But since Cn is coidempotent, we have Cn(I − Cn) = 0, by property 15 and hence
Cnz = Cn(I − Cn)Cn−1x = 0. Thus Dnz = z. Since Dkz for k > n is obtained
by applying operators to Cnz, it follows that the higher resolution levels are all
zero.

Thus individual resolution components of a sequence are consistently decomposed.
We now ask more: is the DPT consistent as a “low-pass” smoother? In other words,
if z consists of all but the first n components of x, does the DPT applied to z yield
the same later components as when applied to x? This is also easy.

Theorem 2. Let r(m) = Dm(x) and z = x−
∑n

i=1 r
(i). Then

Dm(z) =

{
0 for m < n,

r(m) for m � n.

Proof. The same argument as in the proof of Theorem 1 gives Dkz = 0 for
k = 1, 2, . . . , n − 1. Thus, Cn−1z = Cn−1x, so that the n-stage of the DPT of z has
the same input as the nth stage of the DPT of x.

Emboldened by these quick successes, we now ask whether the DPT is also con-
sistent as a high-pass smoother; i.e., if the input consists of the sum of only the first
n resolution levels, are these levels reproduced unchanged?

Such a result cannot be derived in the same way as Theorem 2. It is true that
when x has only two nonzero resolution levels, r(1) = D1x and r(2) = D2x, since if
we omit either of the resolution levels to form a sequence z, the decomposition would
by Theorem 1 be consistent with that of x. But if there are more than two nonzero
resolution levels, it is not so simple, as the following example shows.

Assume z = r(1) + r(2) = x− r(3). Then

D1z = (I − L1U1)(I − L1U1)x + (I − L2U2)(C1x),
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and since neither L1U1 nor I − L1U is linear, it is not clear that D1z = D1x =
r(1). This seems to hinge on the fact that L1U1 acts linearly on the particular sum
r(1) + r(2) = x − C2x = (I − C2)x. Omitting the resolution component r(2) yields
similar problems in the proof of the consistent decomposition of the partial sum. Since
experimentation suggests consistency of this type, there must exist some theory not
yet explored. The observed consistency seems too good not to be true!

The clue to further development of the theory is suggested by a remarkable prop-
erty, shared by any composition of different operators Ln and Un [Roh02c]. The
following lemma for ftp operators (which by property 9 includes all the LULU oper-
ators) is as important as it may be surprising. The proof from [Roh02c] is repeated
here to illustrate the concepts involved.

Lemma 1. (a) If A is FTP, then I −A is FTP.
(b) If A and B are FTP, the composition, or any convex combination of A and

B, is also FTP.
Proof. For each sequence x, consider any index i. Suppose first that xi � xi+1.

Since A is FTP, Axi � Axi+1 and |Axi −Axi+1| � |xi −xi+1| = xi −xi+1. Therefore
Axi − Axi+1 � xi − xi+1, giving xi − Axi � xi+1 − Axi+1, so that (I − A)xi �
(I − A)xi+1; in other words, (I − A) is NTP. Then |(I − A)xi − (I − A)xi+1| =
(I −A)xi − (I −A)xi+1 = xi −xi+1 − (Axi −Axi+1) � xi −xi+1 = |xi −xi+1|, which
shows that (I −A) is FTP. The rest is easy.

A similar argument holds if xi � xi+1, completing the proof of (a). The proof of
(b) is simple and is left as an exercise for the reader.

Corollary 1. A is FTP ⇐⇒ I−A is FTP; a convex combination of any finite
number of FTP operators is FTP; and αA is NTP if 0 � α.

It is interesting to note that the only linear smoothers that have full trend preser-
vation are the trivial ones I and O. This may explain the fact that the concept of
FTP operators is unfamiliar.

In order to progress further, we need two results proved in [Roh03].
Result 1. If x ∈ Mn−1 and A is FTP, then

Un(I −AUn)x = Unx− UnAUnx = Unx−AUnx,

Ln(I −ALn)x = Lnx− LnALnx = Lnx−ALnx.

Result 2. Cj(I − Cn) = Cj − Cn and Fj(I − Fn) = Fj − Fn for all j � n.
Note that the expressions appearing in Result 2 are clearly equal to 0 if j � n,

thus proving the coidempotence of Fn and Cn.
Theorem 3. Let z = Dm(x) + Dm+1(x) + · · · + Dn(x) = (Cm−1 − Cn)x. Then

z decomposes consistently.
Proof. The same argument as in the proof of Theorem 1 gives Djz = 0 for

j = 1, 2, . . . ,m− 1. For m � j � n, we have

Cj(z) = (I − Cn)CjCm−1x = (I − Cn)Cj(x)

and therefore, since CkCl = Cmax{k,l},

Dj(z) = (Cj−1 − Cj)z

= (I − Cn)Cj−1x− (I − Cn)Cjx

= Cj−1x− Cjx− CnCj−1x + CnCjx

= Cj−1x− Cjx

= Dj(x).
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Finally Cn(z) = Cn(I − Cn)Cm−1x = 0, since Cn(I − Cn) = 0 by the coidempotence
of Cn. Thus the components of z come out fully consistently.

This theorem shows that the DPT is consistent as a “high-pass” smoother (the
case where m = 1) and as a “band pass” smoother (general m < n).

7. Pseudolinearity. The difficulty in proving stronger consistency results comes
as might be expected from the nonlinear nature of the filters used. We now establish
some properties of the filter operators that resemble those of linear operators, but
only in certain special circumstances.

The first of these theorems describes the interaction between Un (or Ln) and NTP
operators when applied to sequences known to be (n− 1)-monotone.

Theorem 4. Let x ∈ Mn−1, and A,B be NTP. Then for all α, β � 0 the
following hold:

(a) Un(αA + βBUn)x � αUnAx + βBUnx;
Ln(αA + βBLn)x � αLnAx + βBLnx.

(b) If AUnx = UnAx, then Un(αA + βBUn)x = αUnAx + βBUnx.
(c) If ALnx = LnAx, then Ln(αA + βBLn)x = αLnAx + βBLnx.
Proof. (a) With the notation U = Un, let x ∈ Mn−1 and i be an index. Con-

sider first the case when Uxi = xi. Then there is an index j ∈ [i − n, i] such that
max{xj , . . . , xj+n} � xi. However, the subsequences {xj , . . . , xi} and {xi, xj+n} are
monotone. Thus

xj � xj+1 � · · · � xi−1 � xi � xi+1 · · · � xj+n.

A,BU,UA,UBU,αA+ βB, and U(αA+ βBU) all transfer these inequalities to their
respective outputs, since they are NTP. Therefore

UAxi = Axi,

UBUxi = BUxi,

U(αA + βBU)xi = αAxi + βBUxi = αUAxi + βUBUxi.

This establishes the first part of (a) in the case where Uxi = xi.
The other possibility is that Uxi �= xi (and therefore Uxi > xi). Since each of

the sets {xj , xj+1, . . . , xj+n} containing xi has a maximum larger than xi (from the
definition of Un) and the sequence x is (n− 1)-monotone, there is a j ∈ [i− n, i] such
that

xj−1 > xj = xj+1 = · · · = xi = · · · = xj+n−1 < xj+n,

so that Uxj = min{xj−1, xj+n}. But since U is NTP,

Uxj−1 � Uxj = Uxj+1 = · · · = Uxi = · · · = Uxj+n−1 � Uxj+n,

and we obtain Uxi = min{xj−1, xj+n}.
All the operators in question are NTP so that again the inequalities are inherited

by the outputs and

UAxi = min{Axj−1, Axj+n},
UBUxi = min{BUxj−1, BUxj+n} = BUxi since B is NTP.

Therefore

U(αA + βBU)xi = min{(αA + βBU)xj−1, (αA + βBU)xj+n}
= min{αAxj−1 + βBUxj−1, αAxj+n + βBUxj+n}.
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Now αUAxi + βBUxi � αAxj−1 + βBUxj−1 and αUAxi + βBUxi � αAxj+n +
βBUxj+n. The inequality therefore also holds for the minimum of the two, proving
that αUAxi + βBUxi � U(αA + βB)xi. A similar argument proves the other part.

(b) Noting that UAxi = min{Axj−1, Axj+1}, assume that Axj−1 � Axj+1 so
that UAxi = Axj−1 (a similar argument holds if the other is smaller). Then Uxj−1 =
Uxj = · · · = Uxi = · · · = Uxj+n−1 � Uxj+n. Since A and B are NTP the equalities
are inherited by AUx and BUx, so that AUxi = AUxj−1 � AUxj+n and BUxi =
BUxj−1 � BUxj+n, so that

U(αA + βBU)xi � αAxj−1 + βBUxj−1 � αUAxj−1 + βBUxi.

If now UAxj−1 = AUxj−1, then since AUxj−1 = AUxi, we get

U(αA + βBU)xi � αAUxi + βBUxi = αUAxi + βBUxi.

This, together with the inequality of part (a) of the proof yields the result U(αB +
βBU)xi = αUAxi + βBUxi, which proves part (b) of the theorem.

(c) A similar proof to the above, or using a duality argument, yields the required
equality.

The next result says that Un behaves like a linear operator when applied to a
positive linear combination of the signal and noise obtained by separating an (m−1)-
monotone sequence with LnUn. For completeness, we state the corresponding result
with Ln and Un interchanged.

Theorem 5. Let x ∈ Mn−1 and α, β � 0. Then

Un(α(I − LnUn) + βLnUn)x = αUn(I − LnUn)x + βLnUnx,

Ln(α(I − UnLn) + βUnLn)x = αLn(I − UnLn)x + βUnLnx.

Proof. Ln and I−LnUn are FTP and thus NTP. By result 1, I−LnUn commutes
with Un, and by Theorem 4(b) the first equality holds. A similar proof holds for the
other equality.

Now we prove that under the same conditions, LnUn also acts like a linear oper-
ator.

Theorem 6. Let x ∈ Mn−1 on α, β � 0. Then LnUn(α(I −LnUn) + βLnUn) =
βLnUn and UnLn(α(I − UnLn) + βUnLn) = βUnLn.

Proof.

Ln(Un(α(I − LnUn) + βLnUn))x

= Ln(αUn(I − LnUn) + βLnUn)x by Theorem 5

= Ln(α(Un − LnUn) + βLnUn)x by Theorem 4

= Ln(α(I − Ln) + βLn)Unx

= (αLn(I − Ln) + βLn)Unx by Theorem 4

= βLnUnx by the co-idempotence of Ln.

A similar proof holds for the other equality.

8. Strong consistency properties. We are now in a position to prove the
following strong result: the DPT acts like a basis transformation when the input is a
linear combination of outputs from another application of the DPT, provided that the
coefficients involved are nonnegative.
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Theorem 7. Let x ∈ M0 and DPT (x) = [D1x,D2x, . . . ,DNx,D0x], with D0x =

CNx. If αi � 0 and
∑N

i=1 αi = 1, then z =
∑N

i=1 αiDix is decomposed consistently.
Proof. Let z =

∑n
i=1 αiDix. Define Am = (

∑n
i=m αi(I − Ci)Ci−1). Since Di =

(I − Ci)Ci−1, i = 1, 2, . . . , n, are all FTP, it follows from Lemma 1 that Am is FTP.
Therefore

n∑
i=m

αiDix =

(
n∑

i=m

αi(I − Ci)Ci−1

)
x

= AmCm−1x ∈ Mm−1

since Cm−1x ∈ Mm−1. Consider the induction hypothesis that Cj−1z = (
∑n

i=j αiDi)

Cj−1x for j < n. (Clearly it is true for j = 1.) The operators Ak =
∑n

i=k αiDi are
all FTP, as they are convex combinations of FTP operators. Thus

Cjz = LjUj

⎛
⎝αjDj +

⎛
⎝ n∑

i=j+1

αiDi

⎞
⎠
⎞
⎠Cj−1x

= LjUj

⎛
⎝αj(I − LjUj) +

⎛
⎝ n∑

i=j+1

αiDi

⎞
⎠LjUj

⎞
⎠Cj−1x

= Lj(αjUjDj + (Aj+1)LjUj)Cj−1x by Theorem 4

= Lj(αjUj(I − LjUj) + (Aj+1)LjUj)Cj−1x

= Lj(αj(I − Lj)Uj + (Aj+1)LjUj)Cj−1x by result 1

= Lj(αj(I − Lj) + (Aj+1)Lj)UjCj−1x

= (αjLj(I − Lj) + (Aj+1)Lj)UjCj−1x

= 0 + Aj+1Cjx.

Thus Djz = (Cj−1 − Cj)z = αjDjx and Cjz = (
∑n

i=j+1 αiDi)Cjx, which completes
the induction.

Corollary 2. Any sequence
∑N

i=0 αiDix, with αi � 0, is decomposed consis-
tently.

The F form of the DPT has a similar consistency, and this can be proved in the
same way as above or by using property 12. What is important to note is that the
F and C forms generally give different resolution components, with a corresponding
“interval of ambiguity.” When the sequence is strongly correlated, the two decomposi-
tions yield essentially similar results, but the addition of additive random noise yields
some separation, proportional to the amplitude of this noise. Practical experience
and initial theoretical analysis demonstrates that this ambiguity will occur mainly in
the first few (highest) resolution levels, becomes small in the middle resolutions, and
may appear lower down again, especially if there is a strong specific frequency in the
sequence.

An important side effect of the theorems proved here is that we can provide
some theoretical support for the popular median decomposition, which hitherto has
been motivated purely heuristically. The two DPT processes produce level 1 outputs
that bracket the resolution 1 output that would appear out of an equivalent median
decomposition, since the median operators involved are in the LULU interval, i.e.,
UnLn � Mn � LnUn [RT91].

However, at later resolution levels this strict inclusion need not hold. The most
we can say is that some order holds on average, since the sequence that is passed on
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from the mth separator to the (m+1)th separator lies between those of the other two.
The median decomposition has in fact almost none of the strong consistency involved
in the LULU cases. Consensus is that it “works well” [BMS98]. Our analysis suggests
that it can be expected to work well when both LULU transforms work well, and give
decompositions close to each other.

9. Consistent one-sided scaling. Although the result of the previous section
appears to be what we sought, there is still further room for improvement.

We again turn to the DFT as a source for analogy. In the DFT, each “resolution
level” (read: frequency level) is a two-dimensional space of sequences. Since the
mapping from a sequence x onto the component sequence s(n),

s
(n)
i = α−

n sin(niθ) + α+
n cos(niθ),

where θ = π/N for some natural number N, simply involves a particular choice of basis
for the two-dimensional subspace, it is clear that a sequence consisting of arbitrary
linear combinations of the sine and cosine components is decomposed consistently, so
that each component comes out with its corresponding amplitude.

The pulse decomposition decomposes a sequence x onto different resolution levels.
As noted before, the output at each resolution level is a union of nonoverlapping (in
fact, progressively more well-separated) pulses. Here, too, it is possible to think of
the output as two-dimensional, given the importance that the sign of the coefficients
has in the theorems we have been able to prove.

Define the positive part B+ and the negative part B− of an operator B by

(B+x)i =

{
Bxi if Bxi > 0,

0 otherwise,

(B−x)i =

{
Bxi if Bxi < 0,

0 otherwise.

At each resolution level, Dn(x) can uniquely be decomposed into a positive and
a negative part:

Dn(x) = D+
n (x) + D−

n (x).

Thus D+
n x contains all the positive pulses, and D−

n x contains all the negative pulses.
We can thus refine the meaning of “component” so that D+

n x and D−
n x are re-

garded as separate components. This immediately raises the question of whether
the DPT is consistent in terms of these components. That is, is it true that for all
α−
j , α

+
j � 0 the input z =

∑n
i=1 α

−
i D

−
i (x) + α+

i D
+
i (x) is decomposed consistently to

yield D−
n (z) = α−

nD
−
n (x) and D+

n (z) = α+
nD

+
n (x) for each n > 0?

Theorem 8, our main result, states precisely this. We shall need the following
lemma.

Lemma 2.

D−
n = ((I − LnUn)Cn−1)− = (I − Un)Cn−1,

D+
n = ((I − LnUn)Cn−1)+ = (I − Ln)UnCn−1.

Proof. The first equation in each case follows from the definition of Dn. Let

D̂−
n = ((I − Un)Cn−1) and D̂+

n = (I − Ln)UnCn−1.
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Clearly D̂−
n + D+

n = Dn, since

(I − Un)Cn−1 + (I − Ln)UnCn−1 = (I − LnUn)Cn−1.

Now (I −Un)Cn−1 � 0, since I −Un � 0; and (I −Ln)UnCn−1 � 0, since I −Ln � 0.
What is needed to complete the proof is to show that the set of indices i where
D̂−

n xi < 0 and the set of indexes where D̂+
n xi > 0 are disjoint.

Let x be a sequence. Then Cn−1x = z is in Mn−1. Assume that D̂−
n zi < 0 and

D̂−
n zi−1 = zi−1. Then

(Unz)i = min{max{zi−n, . . . , zi}, . . . ,max{zi, . . . , zi+n}} > zi.

To the left of zi and to the right of zi there are z�, zr > zi with |r − �| < n +
1. Since z ∈ Mn−1 we have a constant section zi = zi+1 = · · · = zi+n−1, with
Unzi = min{zi−1, zi+n} > zi. This is because z� > zi are both in {zi−n, . . . zi},
which is therefore monotone decreasing as z ∈ Mn−1. Similarly {zi, . . . , zr, . . . , zi+n}
is monotone increasing, and the intersection must be constant. But if j ∈ [i, i + n],
then

(LnUnz)j = max{min{Unzi−n, . . . , Unzi}, . . . ,min{Unzi, . . . , Unzi+n}};

therefore LnUnzj = Unz and D̂+
n zj = 0.

Thus D̂+
n z is zero where D̂−

n is negative, and D̂+
n z can be positive only where

D̂−
n z is zero. Thus D̂−

n = D−
n and D̂+

n = D+
n .

The second part is proved by a generally similar argument, or by appealing to
duality.

Since (I −Un)Cn−1 and (I −Ln)UnCn−1 are FTP, the following theorem is easy
to prove in analogy with the previous one.

Theorem 8. Let x ∈ M0 and DPT (x) = [D1x,D2x, . . . ,DNx,D0x], with D0x =

CN (x). Then z =
∑N

i=1(α
−
i D

−
n (x) + α+

i D
+
n (x)) is decomposed consistently.

Proof. The proof proceeds as in Theorem 7, with αiDix replaced by α−
i D

−
i x +

α+
i D

+
i x, giving

Cjz = LjUj

⎛
⎝α−

j D
−
j + α+

j D
+
j +

N∑
i=j+1

(α−
i D

−
i + α+

i D
+
i )

⎞
⎠Cj−1(x).

Applying Uj first, we get

Ujz = Uj

⎛
⎝α−

j D
−
j +

⎛
⎝α+

j D
+
j +

N∑
i=j+1

(
α−
i D

−
i + α+

i D
+
i

)⎞⎠
⎞
⎠Cj−1(x)

= Uj(α
−
j (I − Uj) + (Aj+1Lj)Uj)Cj−1(x)

with Aj+1 FTP. This implies by Theorem 4 (since Cj−1(x) ∈ Mj−1) that

Ujz = (α−
j Uj(I − Uj) + Aj+1LjUj)Cj−1(x)

= Aj+1LjUjCj−1(x)

since Uj(I − Uj) = 0.
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Applying Lj to Ujz yields in a similar fashion that

Cjz =

n∑
i=j+1

(α−
i D

−
i + α+

i D
+
i )Cj−1(x).

The resolution components that are removed at resolution layer j are therefore
α−
j D

−
j Cj−1(x) = α−

j D
−
j (x) and α+

j Dj+(x), and the induction argument used in
Theorem 6 completes the proof.

10. The pulse structure of a DPT. Each individual component Dnx decom-
poses into a number of nonoverlapping pulses of width exactly n. Moreover, we can
show [Roh02c] that the pulses in D+

n x and D−
n x are separated from each other by at

least n zeros.
It is easy to obtain an upper bound on the total number of pulses in the de-

composition. The difference sequence of x, i.e., {di = xi − xi−1, i = 1, 2, . . . , N},
obviously contains at most N distinct values. It is shown in [Roh02c] that for every
pulse appearing in Dnx, the number of distinct values that the difference set of Cnx
can take is reduced by at least one. Thus, there can be at most N pulses in total in
the entire decomposition.

Once the DPT of x has been computed, it is therefore possible to represent it by
K � N triples (pj , wj , hj), j = 1, . . . ,K, representing position, width, and height of
each pulse. That is,

x =
K∑
j=1

hjP (pj , wj),

where

Pi(p, w) =

{
1, p � i < p + w,

0 elsewhere.

This economical representation in terms of at most 3N numbers is important from
the point of view of storage and transmission of the data.

The temptation is strong to refine the notion of a component still further, pro-
voking the audacious idea:

Can we define each individual pulse in a resolution level as a compo-
nent and still obtain a consistent decomposition?

This would give the DPT a consistency comparable to that of a wavelet decomposition,
in which each individual wavelet is a member of a basis for a vector space. But that a
similar property might hold for a transform as nonlinear as the DPT seems incredible.

Yet, if this idea is correct, the implications for image processing would be enor-
mous. For example, if a square white slab were barely visible against a background
that is nearly as white, a pulse decomposition on the rows (or columns) of a matrix of
luminosity values obtained from a photo can locate the slab by its expected ratio of
width to height. Amplifying this particular pulse would make the slab clearly visible,
without distorting any of the surroundings.

To get a feeling for what is meant here, let us look at a simple example. A random
sequence x is generated, and one level of the DPT is applied; the components D−

1 x
and D+

1 x are shown in Figure 7. Then each separate pulse is amplified by its own
random positive factor. All the resolution levels are then added together again, and
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Fig. 7. The sequences (I − U1)x and (I − L1)U1x and their modified versions.

the sum is decomposed. Comparing the first resolution levels demonstrates that the
modified sequences have pulses in exactly the same positions.

We have overwhelming evidence from computer simulations that this behavior
always occurs, but a general proof eluded us until this article was in revision. We
think we now have a proof [LR06] based on a totally different approach to the problem,
but the correctness of this proof is still to be checked. Therefore, we do not claim
here that this idea is more than a formal conjecture, as follows.

Conjecture. Let (pj , wj , hj), j = 1, . . . ,K, be pulses in the DPT of

x, and let z =
∑K

j=1 h
′
jP (pj , wj), where hjh

′
j � 0. Then the pulses

in the DPT of z are (pj , wj , h
′
j), j = 1, . . . ,K.

Of course, h′
j = 0 is understood to mean that the pulse is absent from the DPT of z.

11. Conclusion. We have shown that the discrete pulse transform has many
of the properties of consistent component identification that are normally associated
with linear transforms like the discrete Fourier transform. In particular, despite its
essential nonlinearity, it acts like a basis transformation in a positive cone, with the
basis comprising the positive and negative components extracted at each resolution
level. This property already has significant potential in the field of image processing.

One area for future research is the characterization problem: what are the condi-
tions under which some set of pulses forms a possible set of basis components? In the
DFT and wavelet transforms, the basis is chosen in advance. In the DPT, the basis
is constructed by the process itself. We know how to characterize the set of pulse
trains that could appear as outputs at any particular resolution level n—pulses of the
same sign must be at least n positions from each other—but we do not know how the
various levels interact. In fact, the only way we know to find out whether a given set
of pulse trains forms a “basis” is to combine them and to analyze that combination
by the DPT to see whether they are recovered.

More work is required to establish the conjecture that the true basis components
in the DPT are the individual pulses, in the sense that any nonnegative linear com-
bination of them can be recovered by the DPT. Such a result would not only neatly
round off the theory, but also provide compelling theoretical backing for the use of
the DPT as a device for image enhancement. We are working on a promising idea
that may also shed light on the characterization problem.
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Abstract. This paper is dedicated to the formation of singularities of the solutions of L2-
critical nonlinear Schrödinger equations. We prove a refined compactness lemma adapted to the
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1. Introduction. We consider the L2-critical nonlinear Schrödinger equation:{
i∂tu + Δu + |u| 4du = 0, x ∈ R

d, t > 0,

u(0, x) = u0(x).
(1.1)

Here, Δ =
∑d

i=1 ∂
2
xi

is the Laplace operator on R
d and u0 : R

d −→ C. It is well known
(see [5], for instance) that the Cauchy problem (1.1) is locally well-posed in Hs for
every s ≥ 0. The unique solution has the following conservation law:∫

Rd

|u(t, x)|2dx =

∫
Rd

|u0(x)|2dx.(1.2)

Also, if s ≥ 1, the energy

E(t) =
1

2

∫
Rd

|∇u(t, x)|2dx− d

4 + 2d

∫
Rd

|u(t, x)| 4d+2dx

is conserved as t varies. For s > 0, (1.1) is subcritical: the lifespan of the solution
depends only on the Hs norm of the data. This yields the following blowup alternative:
either T ∗ = ∞ or T ∗ < +∞ and

lim
t↑T∗

‖u(t, ·)‖Hs = +∞.

The space L2 and the equation have the same scaling. More precisely, if u solves
(1.1), then for every λ > 0, so does uλ(x, t) = λd/2u(λ2t, λx) with data uλ(0, x) =
λd/2u0(λx). But ‖uλ(0, ·)‖L2 = ‖u0‖L2 , and from this point of view (1.1) is L2-critical.
In this case the situation is more subtle, and the time of existence depends on the
shape of the data.

The local theory relies heavily on some integrability properties of the solution of
the associated linear Schrödinger equation, called Strichartz estimates. In fact, by
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using Fourier analysis in connection with the work by Tomas [23], as in [22], or an
abstract operators theory as in [9], it was proved that

‖eitΔu0‖
L

4
d

+2(Rd+1)
≤ C‖u0‖L2(Rd).(1.3)

The local solution follows from solving the equivalent integral equation

u(t, x) = eitΔu0(x) + i

∫ t

0

ei(t−s)Δ|u| 4du(s, x)ds,

by a standard Picard iteration method. The small data theory asserts that there
exists a δ > 0 (related to the constant C in (1.3)) such that if

‖u0‖L2(Rd) < δ,

the initial value problem (1.1) has a unique global solution. This follows by solving the
Cauchy problem (1.1) directly in the whole space (the first step of the iteration method
suffices to reach T ∗ = ∞). However, for large data, blowup may occur. The blowup
or “wave collapse” corresponds to self-trapping of beams in laser propagation. A lot
of theoretical and numerical works are dedicated to this subject when the initial data
belongs to H1. In fact, in this space energy arguments apply, and a blowup theory has
been developed in the last two decades (see [5], [21], [16] and the references therein).
This theory is connected to the notion of ground state: the unique positive radial
solution of the elliptic problem

ΔQ−Q + |Q| 4dQ = 0.

In [25], Weinstein exhibited the following refined Gagliardo–Nirenberg inequality:

‖ψ‖
4
d+2

L
4
d

+2
≤ Cd‖ψ‖

4
d

L2‖∇ψ‖2
L2 ∀ψ ∈ H1,(1.4)

with Cd = d+2
d ‖Q‖−

4
d

L2 . Combined with the conservation of energy, this implies that
‖Q‖L2 is the critical mass for the formation of singularities: for every u0 ∈ H1 such
that

‖u0‖L2 < ‖Q‖L2

the solution of (1.1) with initial data u0 is global. Also, this bound is optimal. By
using the conformal invariance, one constructs

S(t, x) = (T ∗ − t)−d/2e[(i/(T∗−t))+(−i|x|2/T∗−t)]Q

(
x

T ∗ − t

)
,

a solution of (1.1) with ‖u‖L2 = ‖Q‖L2 that blows up in a finite time T ∗. In [14], Merle
has proved that S(t) is the unique minimal blowup solution in H1 in the following
sense: let u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 , and assume that u(t) blows up at finite
time; then u(t) = S(t) up to symmetries of the equation in H1. It is also proved
(see [18] and [24]) that at the blowup there is a concentration phenomenon in the L2

norm: there exist continuous functions x(t) such that

∀R > 0, lim inf
t→T∗

∫
|x−x(t)|≤R

|u(t, x)|2dx ≥
∫

Q2.(1.5)
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For the case u0 ∈ Hs, with 0 ≤ s < 1, the classical energy arguments don’t work.
Nevertheless, the general consensus is that, in this case too, the same concentration
phenomenon happens (the blowup solutions concentrate a minimal amount of mass
which is equal to ‖Q‖L2). The first result in this direction is due to Bourgain [3]
in the case of two dimensions and u0 ∈ L2. In fact, by using a refined version of
the Strichartz inequality (1.3) proved in [20] and harmonic analysis techniques, this
author proved that if u is a blowup solution of (1.1) at finite time T ∗ > 0, then

lim
t↑T∗

(
sup
y∈R2

∫
{|x−y|<

√
T∗−t}

|u(t, x)|2dx
)

> α(‖u0‖L2) > 0,

with α(λ) → 0 as λ → ∞. Using the work by Bourgain [3], Merle and Vega [19] have
proved, among other things, an asymptotic compactness property in L2(R2) up to the
invariance of the equation.

In [11] the second author defined the minimal mass δ0 as the L2 norm necessary
to ignite a wave collapse1 and stressed its role in the blowup mechanism. This yields a
better description of the blowup solutions of (1.1) in one and two space dimensions (see
also [4]). It is worth noting that these results can be generalized to higher dimensions,
thanks to recent work by Bégout and Vargas [2]. However, unlike the H1-case, in this
level of regularity there was no result connecting the blowup mechanism to the ground
state Q, and an explicit quantification of the minimal amount of mass concentrated
remains an open problem. Recently, very important progress in this direction has
been made by Colliander et al. [6]. These authors have proved that blowup solutions,
which are radially symmetric, concentrate at least the mass of the ground state, for
an intermediate case 1 > s > sQ.2 Their proof is based on the so-called I-method
introduced by Colliander et al. (see [7] and the references therein).

In this paper we prove a compactness lemma adapted to the analysis of the blowup
phenomenon of the nonlinear Schroödinger equation, and we use it to improve the
results of [6]: we remove the assumption of radial symmetry of the initial data, and
we prove that Q is a profile for the singular solutions with minimal mass. The main
tools of the proof of this compactness lemma are an argument of profile decomposition,
introduced by Gérard [8] to study the defect of compactness for Sobolev embedding,
and the sharp Gagliardo–Nirenberg inequalities (1.4). We prove the following result.

Theorem 1.1. Let {vn}∞n=1 be a bounded family of H1(Rd) such that

lim sup
n→∞

‖∇vn‖L2 ≤ M and lim sup
n→∞

‖vn‖
L

4
d

+2 ≥ m.(1.6)

Then there exists {xn}∞n=1 ⊂ R
d such that, up to a subsequence,

vn(· + xn) ⇀ V ∈ H1 weakly

with ‖V ‖L2 ≥ ( d
d+2 )d/4 m

d
2

+1

Md/2 ‖Q‖L2 .

Remark 1.2. The lower bound on the L2 norm of V is optimal. In fact, if we
take vn = Q, then we get equality.

Remark 1.3. If d = 2, then we can interchange the roles of ‖∇vn‖L2 and ‖vn‖L2 .
More precisely, if we assume that lim sup ‖vn‖L2 ≤ M and that lim sup ‖vn‖L4 ≥ m,

1We have δ0 ≤ ‖Q‖L2 , and the equality is strongly conjectured.
2Some nonoptimal index ≤ 1+

√
11

5
.



1038 TAOUFIK HMIDI AND SAHBI KERAANI

then we get the same conclusion with ‖∇V ‖L2 ≥ 1√
2
m2

M ‖Q‖L2 instead of the lower

bound on the L2 norm.
Remark 1.4. In the H1 context this theorem allows us to easily obtain the

results on the concentration and uniqueness of the profile of concentration proved by
Weinstein [26] using the concentration-compactness lemma of Lions [13]. To see this,
take u0 ∈ H1 such that the corresponding solution u of (1.1) blows up in finite time
T ∗ > 0 and tn ↑ T ∗ as n → ∞. We set

vn(x) = λd/2
n u(tn, λnx), λn = 1/‖∇u(tn, .)‖L2 .

Using conservation of energy, we get trivially that {vn}∞n=1 satisfies the assumptions

of Theorem 1.1 with M = 1 and m = (d+2
d )

d
2d+4 , which implies that

λd/2
n u(tn, λn(· − xn)) ⇀ V,

with ‖V ‖L2 ≥ ‖Q‖L2 . This yields, in particular, the concentration estimate (1.5). If
we assume, in addition, that ‖u0‖L2 = ‖Q‖L2 , then the limit above becomes strong in
H1, and the variational characterization of the ground state Q implies the universality
of the profile of the blowup solutions with minimal mass. It is worth noting that these
arguments are indeed standard, and the novelty is just the use of Theorem 1.1 to avoid
discussion of the concentration, vanishing, and dichotomy cases of the concentration-
compactness lemma of Lions and then simplifying the proof.

As an application of Theorem 1.1 and the results of [6] we obtain the following
result.

Theorem 1.5. Assume d = 2 and s > sQ. Let u0 ∈ Hs(R2) be such that the
corresponding solution u of (1.1) blows up in finite time T ∗ > 0. Then there exists a
sequence tn −→ T ∗ such that the following holds true: there exists a function V ∈ H1

with ‖V ‖L2 ≥ ‖Q‖L2 , and a sequence {ρn, xn}∞n=1 ⊂ R
∗
+ × R

2 satisfying

ρn ≤ A(T ∗ − tn)s/2

for some A > 0, such that

ρnu(tn, ρnx + xn) ⇀ V weakly.

Remark 1.6. We do not know if ψ or ‖ψ‖L2 depends on the time sequence
{tn}∞n=1. Recently, Merle and Raphael [17] have proved that, in the H1 context, Q
is the universal blowup profile (for the strong Ḣ1 convergence) for the near-critical
mass solutions.

Remark 1.7. Note that, despite the fact that {u(tn, ·)}∞n=1 belongs to Hs, the
blowup profile V is in H1. This fact corroborates the expectation that V = Q.

Theorem 1.5 and the variational characterization of the ground state allow us to
prove the following theorem.

Theorem 1.8. Assume d = 2 and s > sQ. Let u0 ∈ Hs(R2) with ‖u0‖L2 =
‖Q‖L2 such that the solution u of (1.1) blows up in finite time T ∗ > 0. Then there
exists a sequence tn −→ T ∗ satisfying

ρn ≤ A(T ∗ − tn)s/2

for some A > 0, and a sequence {ρn, θn, xn}∞n=1 ⊂ R
∗
+ × [0, 2π[×R

2 such that

ρne
iθnu(tn, ρnx + xn) −→ Q
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strongly in H s̃−, where s̃ = s+1
4−2s .

Remark 1.9. This result is the analogue of the one proved by Weinstein [26] in
the H1 case.3 However, contrary to our case, the H1 result of Weinstein holds for all
t instead of along the sequence tn, and the scaling parameter ρn is explicitly given by
ρ = ‖∇Q‖L2/‖∇u(t, .)‖L2 .

As an application we obtain the next claim.
Corollary 1.10. Under the assumptions of Theorem 1.5, let λ(t) > 0 such that

(T∗−t)s/2

λ(t) −→ 0 as t → T ∗. There exists x(t) ∈ R
2 such that

lim sup
t→T∗

∫
|x−x(t)|≤λ(t)

|u(t, x)|2dx ≥
∫

Q2.

Remark 1.11. As already remarked in [6], the fact that Theorems 1.5 and 1.8
hold for only a time sequence {tn} and the lim sup (instead of lim inf) in Corollary
1.10 is due to the lack of information on the monotonicity of the Hs norm of the
blowup solutions near the collapse time.

The rest of this paper is structured as follows. In section 2 we prove Theorem
1.1. Section 3 is devoted to the proofs of blowup results.

2. Proof of Theorem 1.1. In what follows we set 2∗ = ∞ if d = 1, 2, and
2∗ = 2d

d−2 if d ≥ 3. Theorem 1.1 is a consequence of a profile decomposition of the

bounded sequences in H1 following the work by Gérard [8] (see also [1] and [10]).
More precisely, we have the following result.

Proposition 2.1. Let v = {vn}∞n=1 be a bounded sequence in H1(Rd). Then
there exist a subsequence of {vn}∞n=1 (still denoted {vn}∞n=1), a family {xj}∞j=1 of

sequences in R
d, and a sequence {V j}∞j=1 of H1 functions such that

(i) for every k �= j, |xk
n − xj

n| −→
n→∞

+∞;

(ii) for every � ≥ 1 and every x ∈ R
d,

vn(x) =

�∑
j=1

V j(x− xj
n) + v�n(x),

with

lim sup
n→∞

‖v�n‖Lp(Rd) −→
�→∞

0,(2.1)

for every p ∈ ]2, 2∗[.
Moreover, we have, as n → +∞,

‖vn‖2
L2 =

�∑
j=1

‖V j‖2
L2 + ‖v�n‖2

L2 + o(1)(2.2)

and

‖∇vn‖2
L2 =

�∑
j=1

‖∇V j‖2
L2 + ‖∇v�n‖2

L2 + o(1).(2.3)

3The asymptotic result by Weinstein was completed by the result of Kwong on the uniqueness
of the ground state [12].
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Proof. Let V(v) be the set of functions obtained as weak limits of subsequences
of the translated vn(. + xn) with {xn}∞n=1 ⊂ R

d. We denote

η(v) = sup{‖V ‖H1 , V ∈ V(v)}.

Clearly

η(v) ≤ lim sup
n→∞

‖vn‖H1 .

We will prove the existence of a sequence {V j}∞j=1 of V(v) and a family {xj}∞j=1 of

sequences of R
d such that

k �= j =⇒ |xk
n − xj

n| −→
n→∞

∞,

and, up to extracting a subsequence, the sequence {vn}∞n=1 can be written as

vn(x) =

�∑
j=1

V j(x− xj
n) + v�n(x), η(v�) −→

�→∞
0,

such that the identities (2.2)–(2.3) hold. Indeed, if η(v) = 0, we can take V j ≡ 0 for
all j; otherwise we choose V 1 ∈ V(v) such that

‖V 1‖H1 ≥ 1

2
η(v) > 0.

By definition, there exists some sequence x1 = {x1
n}∞n=1 of R

d such that, up to ex-
tracting a subsequence, we have

vn(· + x1
n) ⇀ V 1 weakly.

We set

v1
n = vn − V 1(· − x1

n).

Since v1
n(· + x1

n) ⇀ 0, we get, as n → ∞,

‖vn‖2
L2 = ‖V 1‖2

L2 + ‖v1
n‖2

L2 + o(1),

‖∇vn‖2
L2 = ‖∇V 1‖2

L2 + ‖∇v1
n‖2

L2 + o(1).

Now, we replace v by v1 and repeat the same process. If η(v1) > 0, we get V 2, x2,
and v2. Moreover, we have

|x1
n − x2

n| −→ ∞ as n → ∞.

Otherwise, up to extracting of a subsequence, we get

x1
n − x2

n −→ x0

for some x0 ∈ R
d. Since

v1
n(· + x2

n) = v1
n(· + (x2

n − x1
n) + x1

n)

and v1
n(· + x1

n) converge weakly to 0, then V 2 = 0. A contradiction. An argument
of iteration and orthogonal extraction allows us to construct the families {xj}∞j=1
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and {V j}∞j=1 satisfying the claims above. Furthermore, the convergence of the series∑∞
j=1 ‖V j‖2

H1 implies that

‖V j‖H1 −→
j→∞

0.

However, by construction, we have

η(vj) ≤ 2‖V j−1‖H1 ,

which proves that η(vj) → 0k, as claimed. To complete the proof of Proposition 2.1,
(2.1) remains to be proved. For that purpose let us introduce χR ∈ S(Rd) such that

χ̂R(ξ) = 1 if |ξ| ≤ R, χ̂R(ξ) = 0 if |ξ| ≥ 2R.

Here ˆ denotes the Fourier transform. One has

v�n = χR ∗ v�n + (δ − χR) ∗ v�n,

where ∗ stands for the convolution and δ for the Dirac distribution.
Let p ∈ ]2, 2∗[ be fixed. On the one hand, using Sobolev embedding, we get

‖(δ − χR) ∗ v�n‖Lp � ‖(δ − χR) ∗ v�n‖Ḣβ � Rβ−1‖v�n‖H1

for β = d( 1
2 − 1

p ) < 1. On the other hand, one can estimate

‖χR ∗ v�n‖Lp � ‖χR ∗ v�n‖
2/p
L2 ‖χR ∗ v�n‖

1−2/p
L∞

� ‖v�n‖
2/p
L2 ‖χR ∗ v�n‖

1−2/p
L∞ .

Now, observe that

lim sup
n→∞

‖χR ∗ v�n‖L∞(Rd) = sup
{xn}∞

n=1

lim sup
n→+∞

|χR ∗ v�n(xn)|.

Thus, in view of the definition of V(v�), we infer

lim sup
n→∞

‖χR ∗ v�n‖L∞(Rd) ≤ sup

{∣∣∣∣
∫

Rd

χR(−x)V (x)dx

∣∣∣∣ , V ∈ V(v�)

}
.

Therefore, by Hölder’s inequality, it follows that

lim sup
n→∞

‖χR ∗ v�n‖L∞(Rd) ≤ C(R) sup{‖V ‖L2(Rd), V ∈ V(v�)}.

Thus, we obtain

lim sup
n→∞

‖χR ∗ v�n‖L∞(Rd) ≤ C(R)η(v�)

for every � ≥ 1. Finally, we get

‖v�n‖Lp(Rd) � Rβ−1‖v�n‖H1 + C(R)‖v�n‖
2/p
L2 η(v�)1−2/p.

We successively let � and R go to infinity, and since η(v�) −→
�→∞

0 and the family of

sequences {v�n} are uniformly bounded in H1(Rd), we infer

lim sup
n→∞

‖v�n‖Lp −→ 0
�→∞

,
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as claimed. This completes the proof of Proposition 2.1.
Let us now prove Theorem 1.1. By extracting a subsequence, we may replace

lim sup in the assumptions (1.6) by lim. According to Proposition 2.1, the sequence
{vn}∞n=1 can be written, up to a subsequence, as

vn(x) =

�∑
j=1

V j(x− xj
n) + v�n(x)

such that (2.1), (2.2), and (2.3) hold. This implies, in particular, that

m
4
d+2 ≤ lim sup

n→∞
‖vn‖

4
d+2

L
4
d

+2
= lim sup

n→∞

∥∥∥∥∥∥
∞∑
j=1

V j(· − xj
n)

∥∥∥∥∥∥
4
d+2

L
4
d

+2

.

The elementary inequality∣∣∣∣∣
∣∣∣∣∣

l∑
j=1

aj

∣∣∣∣∣
4/d+2

−
l∑

j=1

|aj |4/d+2

∣∣∣∣∣ ≤ C
∑
j 
=k

|aj ||ak|4/d+1,

and the pairwise orthogonality of the family {xj}∞j=1 leads the mixed terms in the
sum above to vanish, so that we get

m
4
d+2 ≤

∞∑
j=1

‖V j‖
4
d+2

L
4
d

+2
.

However, in view of the precise version of the Gagliardo–Nirenberg inequality (1.4),
we have

∞∑
j=1

‖V j‖
4
d+2

L
4
d

+2
≤ Cd sup{‖V j‖4/d

L2 , j ≥ 1}
∞∑
j=1

‖∇V j‖2
L2 .

Also, from (2.3), we infer

∞∑
j=1

‖∇V j‖2
L2 ≤ lim sup

n→∞
‖∇vn‖2

L2 ≤ M2.

Therefore,

sup
j≥1

‖V j‖4/d
L2 ≥ m

4
d+2

(M2Cd)d/4
.

Since the series
∑

‖V j‖2
L2 converges, the supremum above is attained. In particular,

there exists j0 such that

‖V j0‖L2 ≥ m
d
2 +1

(CdM2)d/4
=

(
d

d + 2

)d/4
m

d
2 +1

Md/2
‖Q‖L2 .

On the other hand, a change of variables gives

vn(x + xj0
n ) = V j0(x) +

∑
1≤j≤�
j 
=j0

V j(x + xj0
n − xj

n) + ṽ�n(x),
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where ṽ�n(x) = v�n(x+ xj0
n ). The pairwise orthogonality of the family {xj}∞j=1 implies

V j(· + xj0
n − xj

n) ⇀ 0 weakly

for every j �= j0. Hence, we get

vn(· + xj0
n ) ⇀ V j0 + ṽ�,

where ṽ� denote the weak limit of {ṽ�n}∞n=1. However, we have

‖ṽ�‖
L

4
d

+2 ≤ lim sup
n→∞

‖ṽ�n‖L 4
d

+2 = lim sup
n→∞

‖v�n‖L 4
d

+2 −→
l→∞

0.

Thereby, by the uniqueness of the weak limit, we get

ṽ� = 0

for every � ≥ j0. Thus

vn(· + xj0
n ) ⇀ V j0 .

The sequence {xj0
n }∞n=1 and the function V j0 now fulfill the conditions of Theorem

1.1.

3. Proof of the main results.

3.1. The modified energy. Here we recall the result of almost conservation of
the modified energy proved in [6].

IN stands for the smoothing operators4 IN : Hs → H1:

ÎNu(ξ) = m(ξ)û(ξ),

where

m(ξ) =

{
1, |ξ| ≤ N,

( |ξ|N )s−1, |ξ| > 3N,

with m(ξ) smooth, radial, and monotone in |ξ|. The following properties of IN are
easily verified:

‖INu‖L2 ≤ ‖u‖L2 ,

‖u‖Hs ≤‖INu‖H1 ≤ N1−s‖u‖Hs .
(3.1)

The blowup parameter associated with the Hs norm of the solution is

Λ(t) = sup
0≤τ≤t

‖u(t)‖Hs .

The following proposition is a restatement of the part of [6] which is relevant for us.
Proposition 3.1 (see [6]). There exists sQ ≤ 1

5 + 1
5

√
11 such that for all s > sQ

there exists p(s) < 2 with the following holding true: if Hs � u0 �−→ u(t) solves (1.1)
on a maximal (forward) finite existence interval [0, T ∗), then for all T < T ∗ there
exists N = N(T ) such that

|E[IN(T )u(T )]| ≤ C0(Λ(T ))p(s)(3.2)

4See [7] for more properties of this operator.
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with C0 = C0(s, T
∗, ‖u0‖Hs). Moreover, N(T ) = C(Λ(T ))

p(s)
2(1−s) .

In [6], p(s) is explicitly given by

p(s) =
6+

2− − 4+(1 − s)
2(1 − s),(3.3)

where α± = α± ε for some ε > 0.

3.2. Proof of Theorem 1.5. As in [6], we choose {tn}∞n=1 to be a sequence
such that tn ↑ T ∗ and for each tn

‖u(tn)‖Hs = Λ(tn).

We set

ψn = ρnINu(tn, ρnx),

where

ρn =
‖∇Q‖L2

‖∇INu(tn, ·)‖L2

.

The estimate (3.1) yields

ρn ≤ 1

‖u(tn, ·)‖Hs

=
1

Λ(tn)
.

Also, from Corollary 3.6 in [6], it holds that

ρn ≤ A(T ∗ − tn)s/2

for some constant A > 0. The sequence {ψn}∞n=1 satisfies

‖ψn‖L2 ≤ ‖u0‖L2 , ‖∇ψn‖L2 = ‖∇Q‖L2 .

Furthermore, in view of Proposition 3.1,

E(ψn) = ρ2
nE[IN(tn)u(tn)] ≤ ρ2

n(Λ(tn))p(s) ≤ (Λ(tn))p(s)−2.

Since ‖u(tn)‖Hs −→ +∞ and p(s) < 2, it holds that

E(ψn) −→ 0 as n → ∞,

which yields, in particular,

‖ψn‖4
L4 −→ 2‖∇Q‖2

L2 as n → ∞.(3.4)

The family {ψn}∞n=1 satisfies the conditions of Theorem 1.1 with

m = (2‖∇Q‖2
L2)1/4 and M = ‖∇Q‖L2 .

Thus, there exists {xn}∞n=1 ⊂ R
2 such that, up to a subsequence,

ψn(· + xn) ⇀ V ∈ H1,(3.5)
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with ‖V ‖L2 ≥ ‖Q‖L2 . Coming back to {ψn}∞n=1, one obtains

ρnINu(tn, ρnx + xn) = V + εn,

where εn ⇀ 0 in H1.
However, for every s̄ < s, one has

‖ρn(INu(tn) − u(tn))(ρn · +xn)‖Ḣ s̄(R2) ≤ ρs̄nN
s̄−s‖u(tn, ·)‖Hs(R2)

≤ (Λ(tn))
p(s)(s̄−s)
2(1−s)

+1−s̄.

Using the explicit formula of p(s), an easy calculus yields that

p(s)(s̄− s)

2(1 − s)
+ 1 − s̄ < 0 ⇐⇒ s̄ < s̃ :=

s + 1

4 − 2s
.

Under this choice, we get

‖ρn(INu(tn) − u(tn))(ρn · +xn)‖H s̃−(R2) −→ 0 as n → ∞.

Thus

ρnu(tn, ρnx + xn) = V + hn,(3.6)

where hn ⇀ 0 in H s̃−. This concludes the proof of Theorem 1.5.

3.3. Proof of Theorem 1.8. If, in the context of the proof of Theorem 1.5, we
assume also that ‖u0‖L2 = ‖Q‖L2 , we get trivially (remember that we have already
proved that ‖V ‖L2 ≥ ‖Q‖L2)

‖V ‖L2 = ‖Q‖L2 .

Then the convergence (3.5) is strong in L2 and, since {vn} is bounded in H1, we have

vn(· + xn) −→ V in L4.

Combined with (3.4) and the precise version of the Gagliardo–Nirenberg inequality
(1.4), this leads to

‖∇V ‖L2 ≥ ‖∇Q‖L2 .

However, one has

‖∇V ‖L2 ≤ lim sup ‖∇vn‖L2 = ‖∇Q‖L2 ,

which means that ‖∇V ‖L2 = ‖∇Q‖L2 . As a result we get

vn(· + xn) −→ V in H1

and E(V ) = 0.
Let us summarize the properties of the profile V :

‖V ‖L2 = ‖Q‖L2 , ‖∇V ‖L2 = ‖∇Q‖L2 , and E(V ) = 0.

The variational characterization of the ground state implies that

V (x) = eiθQ(x + x0)

for some θ ∈ [0, 2π[ and x0 ∈ R
2.

Coming back to (3.6), one obtains

ρnu(tn, ρnx + xn) = λeiθQ(λx + x0) + εn,

where hn → 0 in H s̃−. This ends the proof of Theorem 1.8.
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3.4. Proof of Corollary 1.10. Let u be a blowup solution of (1.1) at finite time
T ∗ > 0. According to Theorem 1.5, there exists a time sequence such that tn −→ T ∗,
a profile V ∈ H1(R2) with ‖V ‖L2 ≥ ‖Q‖L2 , and a sequence {ρn, xn}∞n=1 ⊂ R

∗
+ × R

2

such that

ρnu(tn, ρnx + xn) ⇀ V(3.7)

and

lim
n→∞

ρn
(T ∗ − tn)s/2

≤ A(3.8)

for some A ≥ 0. From (3.7), it follows that

lim
n→∞

1

(ρn)2

∫
|x|≤R

|u(tn, ρnx + xn)|2dx ≥
∫
|x|≤R

|V |2dx

for every R > 0. Thus,

lim
n→∞

sup
y∈R2

∫
|x−y|≤Rρn

|u(tn, x)|2dx ≥
∫
|x|≤R

|V |2dx.(3.9)

Since (T∗−t)s/2

λ(t) → 0 as t → T ∗, it follows from (3.8) that ρn

λ(tn) → 0, and then

lim
n→∞

sup
y∈R2

∫
|x−y|≤λ(tn)

|u(tn, x)|2dx ≥
∫
|x|≤R

|V |2dx

for every R. We let R go to infinity to obtain

lim
n→∞

sup
y∈R2

∫
{|x−y|≤λ(tn)}

|u(tn, x)|2dx ≥
∫

R2

|V |2dx ≥ ‖Q‖2
L2 .

This yields finally

lim sup
t↑T∗

sup
y∈R2

∫
{|x−y|≤λ(t)}

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

Since, for every t, the function y �−→
∫
{|x−y|≤λ(t)} |u(t, x)|2dx is continuous and goes

to 0 at infinity, there exists a family x(t) such that

sup
y∈R2

∫
{|x−y|≤λ(t)}

|u(t, x)|2dx =

∫
{|x−x(t)|≤λ(t)}

|u(t, x)|2dx,

which concludes the proof of Corollary 1.10.

Remark 3.2. While this manuscript was under review, we were informed that N.
Tzirakis has written a paper following [6] in which he removed the radial symmetry
assumption and established corresponding results for the focusing quintic nonlinear
Schrödinger equation on R.

Acknowledgments. The authors thank the anonymous referees for their very
relevant and detailed comments, which helped to improve the manuscript.
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Abstract. A multiscale characterization of the field concentrations inside composite and poly-
crystalline media is developed. We focus on gradient fields associated with the intensive quantities
given by the temperature and the electric potential. In the linear regime these quantities are modeled
by the solution of a second order elliptic partial differential equation with oscillatory coefficients. The
characteristic length scale of the heterogeneity relative to the sample size is denoted by ε and the
intensive quantity is denoted by uε. Field concentrations are measured using the Lp norm of the
gradient field ‖∇uε‖Lp(D) for 2 ≤ p < ∞. The analysis focuses on the case when 0 < ε � 1. Explicit
lower bounds on lim infε→0 ‖∇uε‖Lp(D) are developed. These bounds provide a way to rigorously
assess field concentrations generated by the microgeometry without having to compute the actual
field uε.
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1. Introduction. The initiation of failure inside heterogeneous media is a mul-
tiscale phenomenon. Loads applied at the structural scale are often amplified by the
microstructure, creating local zones of high field concentration. The local amplifica-
tion of the applied field creates conditions that are favorable for failure initiation [8].
This paper focuses on gradient fields associated with the intensive quantities given
by the temperature and the electric potential inside heterogeneous media. The lo-
cal integrability of the gradient directly correlates with singularity strength, which
influences the onset of failure such as dielectric breakdown.

In this work it is shown how to assess the Lp integrability of the gradient fields in
microstructured media by investigating the multiscale integrability of suitably defined
quantities. The analysis is carried out with minimal regularity assumptions on the
coefficients describing the local properties inside the heterogeneous media. The results
are described in terms of the pth order moments of the solution of two-scale corrector
problems. The quantities are sensitive to microscopic field concentrations and can
become divergent for p > 2. This is in contrast to the well-known effective constitutive
properties, which are based upon local averages and are bounded above independently
of the microgeometry.

The results given here are presented in the context of two-scale homogenization
[1], [18]. We consider a bounded domain Ω in Rn, n ≥ 2. A common microstructure
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that admits a two-scale description is a simple generalization of a uniformly periodic
microstructure and is described as follows. Consider a partition of the domain Ω made
up of measurable subsets Ω�, � = 1, 2, . . . ,K, such that Ω = ∪K

�=1 Ω�. Inside each
subdomain Ω� we place a different periodic microstructure made from N anisotropic
heat conductors. This type of microstructure will be referred to as a piecewise periodic
microstructure [4]. Well-known engineering composites that are modeled by piecewise
periodic microstructures include fiber reinforced laminates [6], [19], [21].

The thermal conductivity tensor for the piecewise periodic microstructure is de-
scribed as follows. The indicator function for each of the subdomains Ω� is denoted
by χΩ�

(x), taking the value 1 for points in Ω� and 0 outside. In order to describe the
periodic microstructure inside the �th subdomain we introduce the unit period cell
Q. The configuration of the N phases inside Q is described by the indicator functions
χi
�(y), i = 1, . . . , N , associated with each phase. Here χi

�(y) = 1 for points inside the
ith phase and 0 outside. The length scale of the microstructure relative to the size of
the domain Ω is given by εk = 1/k, k = 1, 2 . . . . The microstructure is obtained by
rescaling the configuration inside the unit period cell. The indicator function of the
ith conductor in the microstructured composite is given by

χεk
i (x) = χi(x,x/εk) =

K∑
�

χΩ�
(x)χi

�(x/εk).(1.1)

The local conductivity tensor Aεk has a two-scale structure and is given by

Aεk(x) = A(x,x/εk) =

N∑
i

Aiχi(x,x/εk).(1.2)

Other heterogeneous media that are amenable to similar or more general two-scale
descriptions include polycrystalline materials such as metals and ceramics. We state
the general hypotheses under which the two-scale homogenization theory applies; see
[1] and [2]. It is assumed that A(x,y) is a matrix defined on Ω × Q and there exist
positive numbers α < β such that for every vector η in Rn,

α|η|2 ≤ A(x,y)η · η ≤ β|η|2.(1.3)

The conductivity Aij(x,y) is Q-periodic in the second variable, Aij(x,x/εk) is
measurable and satisfies

lim
εk→0

∫
Ω

∣∣∣∣Aij

(
x,

x

εk

)∣∣∣∣
2

dx =

∫
Ω×Q

|Aij(x,y)|2 dxdy,(1.4)

and for any suitable two-scale trial field ψ(x,y),

lim
εk→0

∫
Ω

Aij

(
x,

x

εk

)
ψ

(
x,

x

εk

)
dx =

∫
Ω×Q

Aij(x,y)ψ(x,y) dxdy.(1.5)

The convergence given by (1.5) is a weak convergence and is known as two-scale con-
vergence [1], [18]. The space of suitable two-scale trials is denoted by L2[D;Cper(Q)].
Here Cper(Q) denotes Q-periodic continuous functions defined on R3, and the space
L2[D;Cper(Q)] is the space of functions h : Ω → Cper(Q) which are measurable and
satisfy

∫
Ω
‖h(x)‖2

Cper(Q)dx < ∞. The norm ‖h(x)‖Cper(Q) is defined by supy∈Q |h(x,y)|.
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In what follows, no other regularity hypothesis on the conductivity matrix A(x,y) is
made.

The temperature field uεk associated with the conductivity tensor field Aεk(x) =
A(x,x/εk) is the solution of the equilibrium equation

−div (Aεk(x)∇uεk) = f in Ω(1.6)

with the boundary conditions given by uεk = 0 on ∂ΩD and n ·Aεk∇uεk = g on ∂ΩN

with ∂ΩD ∩ ∂ΩN = ∅ and ∂Ω = ∂ΩD ∪ ∂ΩN .
In what follows, we consider the limit as εk tends to zero. We fix a subdomain D

of Ω and derive lower bounds on

lim inf
εk→0

‖∇uεk‖Lp(D).(1.7)

The lower bound is expressed in terms of a two-scale integral that encodes the field
amplification properties of the microstructure. It is formulated in terms of the solution
of the homogenized problem together with a local corrector matrix that captures the
interaction between the periodic microstructure and the gradients of the homogenized
temperature field. The bounds introduced here provide a rigorous way to assess field
concentrations generated by the microgeometry without having to compute the full
solution uεk .

We consider an orthonormal basis for Rn and denote the basis vectors by ei,
i = 1, . . . , n. The lower bound is given in terms of the solutions wi(x,y) to the local
periodic problem. For each x in Ω, the function wi(x,y) is a Q-periodic function of
the second variable y and is a solution of

divy

(
A(x,y)(∇yw

i(x,y) + ei)
)

= 0,(1.8)

with
∫
Q
wi(x,y) dy = 0. The corrector matrix P (x,y) is defined by

Pij(x,y) = ∂yjw
i(x,y) + δij ,(1.9)

where δij = 1 for i = j and 0 otherwise. The associated effective conductivity tensor
AE(x) is given by

AE(x) =

∫
Q

A(x,y)P (x,y) dy.(1.10)

The two-scale homogenization theory gives the following theorem [1].
Theorem 1.1 (two-scale homogenization theorem). The sequence of solutions

{uεk}εk>0 of (1.6) converges weakly to uH(x) in H1(Ω), where uH is the solution of
the homogenized problem

−div
(
AE(x)∇uH(x)

)
= f(x) in Ω,

uH(x) = 0 on ∂ΩD, and

n ·AE∇uH = g on ∂ΩN .(1.11)

The field concentration functions of order p are defined by

fp(x,∇uH(x)) ≡
(∫

Q

|P (x,y)∇uH(x)|p dy
)1/p

, 2 ≤ p ≤ ∞,(1.12)
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and fp(x,∇uH(x)) ≤ fq(x,∇uH(x)) for p ≤ q. It is clear that fp corresponds to a
pth order moment of the corrector matrix (1.9) and that

f∞(x,∇uH(x)) ≡ lim
p→∞

(∫
Q

|P (x,y)∇uH(x)|p dy
)1/p

.(1.13)

Theorem 1.2 (lower bounds on field concentrations). For 2 ≤ p < ∞,

(∫
D

(
fp(x,∇uH(x))

)p
dx

)1/p

≤ lim inf
εk→0

‖∇uεk‖Lp(D).(1.14)

For multiphase conductivity problems with coefficients described by (1.2), the
field concentration functions of order p are defined for each phase and are given by

f i
p(x,∇uH(x)) ≡

(∫
Q

χi(x,y)|P (x,y)∇uH(x)|p dy
)1/p

, i = 1, . . . , N, 2 ≤ p ≤ ∞,

(1.15)

and f i
p(x,∇uH(x)) ≤ f i

q(x,∇uH(x)) for p ≤ q. As before, one defines

f i
∞(x,∇uH(x)) ≡ lim

p→∞

(∫
Q

χi(x,y)|P (x,y)∇uH(x)|p dy
)1/p

.(1.16)

For this case, lower bounds on

lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D)(1.17)

are given by the following theorem.
Theorem 1.3 (lower bounds for multiphase composites). For 2 ≤ p < ∞,

(∫
D

(
f i
p(x,∇uH(x))

)p
dx

)1/p

≤ lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D).(1.18)

The bounds can be applied to develop a Chebyshev inequality for the distribu-
tion functions associated with the sequence {χεk

i |∇uεk |}εk>0. Here the distribution
function λεk

i (D, t) gives the measure of the set inside D, where χεk
i |∇uεk | > t.

Arguing as in Proposition 2.1 of [12] and combining with (1.18) gives the following.
Theorem 1.4 (homogenized Chebyshev inequality).

lim sup
εk→0

λεk
i (D, t) ≤ t−p

(∫
D

(
f i
p(x,∇uH(x))

)p
dx

)
≤ t−p lim inf

εk→0
‖χεk

i ∇uεk‖pLp(D).

(1.19)

We point out that Theorems 1.2 and 1.3 are obtained using the minimum regular-
ity assumptions on the coefficients Aεk . Because of this, the hypotheses of Theorem 2.6
in [1] do not apply, and one cannot take advantage of the strong convergence given
in that theorem. Instead, the theorems are proved using a perturbation approach
introduced in [11] and [13]; see also our section 2.

The lower bounds are sensitive to the presence of singularities generated by the
microstructure. To illustrate this we consider a microstructure made from a periodic
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1

Fig. 1. Unit period cell with Schulgasser crystallites embedded inside a material with unit
thermal conductivity.

distribution of uniaxial crystallites embedded in an isotropic matrix of unit conduc-
tivity. The period cell for the composite is illustrated in Figure 1. Each crystallite
occupies a sphere and has conductivity λ1 in the radial direction and λ2 in the tan-
gential direction. The dispersion of the N crystallites is specified by ∪N

� B(y�, r�),
where B(y�, r�) denotes the �th sphere centered at y� with radius r�. Each crystallite
has a conductivity tensor given by

A(y) = λ1n ⊗ n + λ2(I − n ⊗ n),(1.20)

where n = (y−y�)/|y−y�| for y in B(y�, r�) and I is the 3× 3 identity. Outside the
crystallites we set A(y) = I. It is assumed that the aggregate of crystallites occupy a
portion of the unit cell Q of volume 0 < θ < 1. It is noted that the conductivity inside
each crystallite is precisely the one employed in the Schulgasser sphere assemblage [22].

When a constant gradient field is applied to a single isolated crystallite and when
λ1 > λ2, the crystallite exhibits a gradient field singularity at its center. In what
follows, we use the lower bound (1.14) to show how this local information affects
the integrability of the sequence {∇uεk}εk>0. We form Aεk = A(x/εk) and consider
solutions uεk of (1.6). To fix ideas we choose f to be in Lr(Ω) for r > 3 and g to
be in L2(∂ΩN ). In what follows, λ2 is restricted to lie in the interval 1/2 < λ2 < 1,
and λ1 = 1/(2λ2 − 1). For this choice it is shown in section 3 that the homogenized
temperature field uH is the solution of (1.11) with AE = I.

For D compactly contained in Ω, it follows from the Lp theory [15] that
‖∇uH‖Lp(D) < ∞ for every 1 ≤ p < ∞. On the other hand, calculation and ap-
plication of Theorem 1.2 show that

LB(p) × ‖∇uH‖Lp(D) ≤ lim inf
εk→0

‖∇uεk‖Lp(D),(1.21)

where

LB(p) =

{
3pθ(2λ2−1)

2(1−λ2)(
3

2(1−λ2)−p)
+ (1 − θ) for p < 3

2(1−λ2)
,

+∞ for p ≥ 3
2(1−λ2)

.
(1.22)
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For a fixed choice of λ2, the value pc = 3
2(1−λ2)

satisfies 3 < pc < +∞, and we have

lim inf
εk→0

‖∇uεk‖Lp(D) = +∞ for p ≥ pc.(1.23)

This is in stark contrast to the Lp integrability of the gradient of the homogenized
solution, which holds for any p < +∞. It is clear from this example that the infor-
mation carried by the homogenized problem is not adequate and misses the singular
behavior exhibited by the sequence {∇uεk}εk>0. This example shows that failure
initiation criteria based solely upon the solution of the homogenized equations will be
optimistic. The inequalities given above are established in section 3.

The maximum integrability exponent for the gradient of the solution of the local
problem (1.8) is referred to as the threshold exponent for the composite. The threshold
exponent is introduced in the work of Milton [16] and measures the worst singularity
of the gradient field. The threshold exponent is precisely pc for the local problem
considered here and corresponds to the divergence in the lower bound for p ≥ pc.

Next we consider an example for which the sequence {∇uεk}εk>0 is uniformly
bounded in Lp for some class of coefficients and right-hand sides f . For this case we
show that the lower bound given in Theorem 1.2 is attained. In this example we make
use of the a priori estimates for {∇uεk}εk>0 developed in Theorem 4 of Avellaneda
and Lin [3]. Let Ω be a C1,α domain (0 < α ≤ 1) and suppose for 0 < γ ≤ 1, C > 0,
that A(y) ∈ Cγ(Rn) and ‖A(y)‖Cγ(Rn) ≤ C. Then we choose Aεk = A(x/εk). For
δ > 0 suppose 2 ≤ q ≤ n + δ and f ∈ Lq and set 1/q̂ = 1/q − 1/(n + δ). Given these
choices, we consider the W 1,2

0 (Ω) solutions uεk of

−div (Aεk(x)∇uεk) = f in Ω.(1.24)

It is shown in section 4 that (1.14) holds with equality for every p such that p < q̂.
In fact, it is seen more generally that, for p < q̂ and any Carathéodory function
ψ : D × Rn → R satisfying

|ψ(x, η)| ≤ |η|p for a.e. x ∈ D and η ∈ R3,(1.25)

we have

lim
εk→0

∫
D

ψ(x,∇uεk(x)) dx =

∫
D

∫
Q

ψ(x, P (y)∇uH(x)) dydx.(1.26)

This is established in section 4.

It is anticipated that there are several classes of conductivity coefficients and
right-hand sides f for which the lower bounds are attained. In this direction we point
out the a priori estimates given in [7], [9], [10], and [23].

We conclude by noting that the analogues of the field concentration functions
(1.12) and (1.15) have appeared earlier in the contexts of G-convergence and random
media; see [11] and [12]. In those treatments they are shown to provide upper bounds
for the distribution function of the local stress and electric field for G-convergent
sequences of elasticity tensors and random dielectric tensors.

2. Derivation of the lower bounds. We recall the weak formulation of the
εk > 0 problem given by (1.6). Let V denote the closure in H1(Ω) of all smooth
functions that vanish on ∂ΩD. We suppose that f is in L2(Ω) and g belongs to
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L2(∂ΩN ). The function uεk belonging to V is the solution of the weak formulation of
the boundary value problem given by∫

Ω

A(x,x/εk)∇uεk · ∇ϕdx =

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.1)

for every ϕ in V . Here ds is an element of surface area.
In order to express the two-scale weak formulation of (1.11) we introduce the fol-

lowing function spaces. The space of square integrable Q-periodic mean zero functions
with square integrable derivatives is denoted by H1

per(Q)/R. The norm of an element
v in this space is denoted by ‖v‖H1

per(Q)/R. The space of measurable functions h from Ω

to H1
per(Q)/R for which

∫
Ω
‖h(x)‖2

H1
per(Q)/R

dx < ∞ is denoted by L2[Ω;H1
per(Q)/R].

This function space was introduced for the description of the two-scale homogenized
problem in [18]. The weak formulation of the two-scale homogenized problem (1.11)
is given by the unfolded variational principle [1], [5], [14].

Theorem 2.1 (unfolded variational principle). The pair (uH , u1) is the unique
solution in V × L2[Ω;H1

per(Q)/R] of∫
Ω

∫
Q

A(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

=

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.2)

for every (ϕ,ϕ1) in V × L2[Ω;H1
per(Q)/R]. Moreover,

∇uH + ∇yu1(x,y) = P (x,y)∇uH(x).(2.3)

In order to establish Theorems 1.2 and 1.3 we recall the function spaces used in the
description of two-scale convergence [14]. The space Cper(Q) denotes Q-periodic con-
tinuous functions defined on R3. For 1 ≤ r < ∞, the space Lr[D;Cper(Q)] is the space
of functions h : D → Cper(Q), which are measurable and satisfy

∫
D
‖h(x)‖rCper(Q)dx <

∞. Here ‖h(x)‖Cper(Q) = supy∈Q |h(x,y)|. The intersection of the spaces L∞(D×Q)
and Lr[D;Cper(Q)] is denoted by V r. For 1 < r < ∞ we introduce 1 < r′ < ∞ such
that 1

r + 1
r′ = 1. We establish Theorems 1.2 and 1.3 with the aid of the following

lemmas.
Lemma 2.1 (localization lemma). Fix a domain of interest D inside Ω. Let

q(x,y) be any test function in V r; then one can pass to the limit εk → 0 in the
sequence of solutions {uεk}εk>0 of (1.6) to obtain

lim
εk→0

∫
D

q(x,x/εk) |∇uεk |2 dx =

∫
D

∫
Q

q(x,y) |P (x,y)∇uH(x)|2 dy dx.(2.4)

For multiphase composites with coefficients described by (1.2) we restrict our
attention to the inside of each phase and state the following lemma.

Lemma 2.2 (localization lemma in multiphase composites). Let q(x,y) be any
test function in V r; then one can pass to the limit εk → 0 in the sequence of solutions
{uεk}εk>0 of (1.6) to obtain

lim
εk→0

∫
D

q(x,x/εk)χ
εk
i (x) |∇uεk |2 dx

=

∫
D

∫
Q

q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx.(2.5)
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The proofs of Lemmas 2.1 and 2.2 are given at the end of this section.
To illustrate the ideas, we use Lemma 2.2 to establish Theorem 1.3, noting that

Theorem 1.2 follows from Lemma 2.1 in the same way.
Proof of Theorem 1.3. For each εk > 0, we apply Hölder’s inequality to the left

side of (2.5) to obtain∫
D

∫
Q

q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx

≤ lim
εk→0

(∫
D

|q(x,x/εk)|r dx
)1/r

lim inf
εk→0

(∫
D

χεk
i (x) |∇uεk |2r′ dx

)1/r′

.(2.6)

Noting [14] that

lim
εk→0

(∫
D

|q(x,x/εk)|r dx
)1/r

=

(∫
D

∫
Q

|q(x,y)|r dy dx

)1/r

≡ ‖q(x,y)‖Lr(D×Q),

(2.7)

we obtain

∫
D

∫
Q
q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx

‖q(x,y)‖Lr(D×Q)

≤ lim inf
εk→0

(∫
D

χεk
i (x)|∇uεk |2r′dx

)1/r′

.

(2.8)

Since V r is dense in Lr(D ×Q), we substitute an approximation of

χi(x,y) |P (x,y)∇uH(x)|2r′−2

for q in (2.8) to find that

(∫
D

∫
Q

χi(x,y) |P (x,y)∇uH(x)|2r′dy dx

)1/r′

≤ lim inf
εk→0

(∫
D

χεk
i (x)|∇uεk |2r′dx

)1/r′

.

(2.9)

Theorem 1.3 follows for 2 < p < ∞ upon taking the square root on both sides of (2.9).
The case p = 2 follows immediately upon choosing q(x,y) = 1 in Lemma 2.2.

We conclude by providing the proof of Lemma 2.2; note that the proof of Lemma
2.1 is identical.

Proof of Lemma 2.2. The indicator function of the set of interest D is denoted by
χD(x). We choose a test function q(x,y) in V r and set p(x,y) = χD(x)χi(x,y)q(x,y).
For δβ > 0 we form the perturbed conductivity tensor Ãij(x,y) = Aij(x,y) +

δβp(x,y)δij . We choose δβ sufficiently small so that Ã(x,y) satisfies (1.3). By

construction, Ã(x,x/εk) is measurable and satisfies (1.4) and (1.5). Consider the
associated solution ũεk in V of the weak formulation of the boundary value problem
given by ∫

Ω

Ã(x,x/εk)∇ũεk · ∇ϕdx =

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds for every ϕ in V.(2.10)

Set ũεk = uεk + δuεk ; subtraction of (2.1) from (2.10) gives∫
Ω

Ã(x,x/εk)∇δuεk · ∇ϕdx +

∫
Ω

δβ p(x,x/εk)∇uεk · ∇ϕdx = 0.(2.11)
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Choosing ϕ = uεk in (2.11) and applying the identity∫
Ω

A(x,x/εk)∇uεk · ∇δuεk dx =

∫
Ω

fδuεk dx +

∫
∂ΩN

gδuεk ds(2.12)

gives

δβ ×
∫

Ω

p(x,x/εk)|∇uεk |2 dx + T εk = −
∫

Ω

fδuεk dx −
∫
∂ΩN

gδuεk ds,(2.13)

where

T εk = δβ ×
∫

Ω

p(x,x/εk)(∇δuεk) · ∇uεk dx.(2.14)

Next set ϕ = δuεk in (2.11); it then follows from Cauchy’s inequality and (1.3) that

‖∇δuεk‖L2(Ω) ≤ Cδβ,(2.15)

where here and throughout C denotes a generic constant independent of εk. From
this it is evident that

|T εk | < Cδβ2.(2.16)

Next we pass to the εk → 0 limit and apply Theorems 1.1 and 2.1 to find that the
sequence {ũεk}εk>0 converges weakly in H1(Ω) to ũH , where (ũH , ũ1) is the solution
in V × L2[Ω;H1

per(Q)/R] of∫
Ω

∫
Q

Ã(x,y)(∇ũH(x) + ∇yũ1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

=

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.17)

for every (ϕ,ϕ1) in V × L2[Ω;H1
per(Q)/R]. Set ũH − uH = δuH , ũ1 − u1 = δu1;

subtraction of (2.2) from (2.17) gives∫
Ω

∫
Q

Ã(x,y)(∇δuH(x) + ∇yδu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

+

∫
Ω

∫
Q

δβp(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx = 0.(2.18)

Choosing (ϕ,ϕ1) = (uH , u1) in (2.18) together with the identity∫
Ω

∫
Q

A(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇δuH(x) + ∇yδu1(x,y)) dy dx

=

∫
Ω

fδuH dx +

∫
∂ΩN

gδuH ds(2.19)

gives

δβ ×
∫

Ω

∫
Q

p(x,y)|P (x,y)∇uH(x)|2 dy dx + T̃

= −
∫

Ω

fδuH dx −
∫
∂ΩN

gδuH ds,(2.20)
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where

T̃ = δβ ×
∫

Ω

∫
Q

p(x,y)(∇δuH + ∇yδu1(x,y)) · (∇uH + ∇yu1(x,y)) dx.(2.21)

Next set (ϕ,ϕ1) = (δuH , δu1) in (2.18); it then follows from Cauchy’s inequality and
(1.3) that

‖∇δuH + ∇yδu1‖L2(Ω×Q) ≤ Cδβ,(2.22)

and it follows easily that

|T̃ | < Cδβ2.(2.23)

Taking the εk → 0 limit in (2.13), noting that limεk→0 δu
εk = δuH (weakly in H1(Ω)),

and recalling (2.16) gives

δβ × lim
εk→0

∫
Ω

p(x,x/εk)|∇uεk |2 dx + O(δβ2) = −
∫

Ω

fδuH dx −
∫
∂ΩN

gδuH ds.

(2.24)

Lemma 2.2 now follows immediately from (2.20), (2.23), and (2.24) and from identi-
fying like powers of δβ.

3. Explicit lower bounds for aggregates of Schulgasser crystallites. In
this section we derive the lower bound (1.22) for the microstructure consisting of
Schulgasser crystallites embedded within a homogeneous matrix with unit thermal
conductivity. The temperature field inside the unit period cell Φi(y) = wi(y) + yi is
the solution of the local problem

divy

(
A(y)(∇yw

i(y) + ei)
)

= 0,(3.1)

with wi Q-periodic and
∫
Q
wi(y) dy = 0. For this microstructure, A(y) is given by

(1.20) for y in B(y�, r�) and A(y) = I outside. Here we restrict λ2 to the interval
(1/2, 1) and choose λ1 so that λ1 = 1/(2λ2−1). A calculation shows that the solution
Φi(y) is given by

Φi =

{
yi, y ∈ Q \ ∪N

�=1 B(y�, r�),
r1−α
� |y − y�|α−1(yi − y�

i ) + y�
i , y ∈ B(y�, r�),

(3.2)

where α = 2λ2 − 1. The corrector matrix P (y) is given by

P (y) =

{
I, y ∈ Q \ ∪N

�=1 B(y�, r�),
r1−α
� |y − y�|α−1(I + (α− 1)n ⊗ n), y ∈ B(y�, r�),

(3.3)

where n = (y − y�)/|y − y�| for y ∈ B(y�, r�). A direct calculation shows that

AE =

∫
Q

A(y)P (y) dy = I.(3.4)

Next we provide the lower bound for
∫
Ω

∫
Q
|P (y)∇uH(x)|p dy dx. Note for any η in

R3 that PT (y)P (y)η · η = |P (y)η|2. The smallest eigenvalue λ(y) of PT (y)P (y)
delivers the lower bound λ(y)|η|2 ≤ |P (y)η|2 and∫

Ω

∫
Q

λ(y)p/2|∇uH(x)|p dy dx ≤
∫

Ω

∫
Q

|P (y)∇uH(x)|p dy dx.(3.5)
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Calculation shows that

λ(y) = α2r
2(1−α)
� |y − y�|2(α−1)(3.6)

for y ∈ B(y�, r�) and λ(y) = 1 for y ∈ Q \ ∪N
� B(y�, r�). The lower bound (1.22)

follows upon substitution of (3.6) into (3.5).

4. Optimality of the lower bounds. Conditions are presented on f and A(y)
for which the lower bound (1.14) is attained for a range of exponents 2 < p < q̂.
We suppose, as in Avellaneda and Lin [3], that Ω is a C1,α domain (0 < α ≤ 1)
and suppose for 0 < γ ≤ 1, 0 < C, that A(y) ∈ Cγ(Rn) and ‖A(y)‖Cγ(Rn) ≤ C.
We set Aεk = A(x/εk). For δ > 0 suppose 2 ≤ q ≤ n + δ and f ∈ Lq and set
1/q̂ = 1/q− 1/(n+ δ). Given these choices, we consider the W 1,2

0 (Ω) solutions uεk of

−div (Aεk(x)∇uεk) = f in Ω.(4.1)

Theorem 4 of [3] shows that there exists a constant independent of εk for which

‖∇uεk‖Lq̂(Ω) ≤ C‖f‖Lq(Ω)(4.2)

holds for every εk > 0. Subject to these hypotheses it will be shown that the lower
bound (1.14) is attained for p < q̂.

Passing to a subsequence if necessary we start by considering the Young measure ν
associated with the sequence {P (x/εk)∇uH(x)}εk>0. Here ν is represented by a fam-
ily of probability measures ν = {νx}x∈Ω depending measurably on x. We denote by
C0(R

n) the set of continuous functions ϕ defined on Rn such that limη→∞ ϕ(η) = 0.
Elementary arguments show that

〈νx, ϕ〉 =

∫
Rn

ϕ(η)dνx(η) =

∫
Q

ϕ(P (z)∇uH(x))dz a.e. x ∈ Ω,(4.3)

for every ϕ in C0(R
n). From corrector theory [17] there exists an exponent r ≥ 1 for

which one has the strong convergence

lim
εk→0

‖∇uεk − P (x/εk)∇uH‖Lr(Ω) = 0.(4.4)

The strong convergence (4.4) shows that both sequences

{∇uεk}εk>0 and {P (x/εk)∇uH(x)}εk>0

share the same Young measure; see, for example, Lemma 6.3 of [20]. From (4.2) it fol-
lows, on passage to a subsequence if necessary, that {|∇uεk |p}εk is weakly convergent
in L1(Ω); thus,

lim
εk→0

∫
D

|∇uεk |p dx =

∫
D

∫
Rn

|η|p dνx(η) dx =

∫
D

∫
Q

|P (z)∇uH(x)|p dz dx,(4.5)

and optimality follows. Last, it follows immediately from Proposition 6.5 of [20] that
for every Carathéodory function ψ(x, η) satisfying the growth condition (1.25) (on
passage to a subsequence if necessary)

lim
εk→0

∫
D

ψ(x,∇uεk) dx =

∫
D

∫
Rn

ψ(x, η) dνx(η) dx,(4.6)

and (1.26) follows since (4.3) implies that∫
D

∫
Rn

ψ(x, η) dνx(η) dx =

∫
D

∫
Q

ψ(x, P (z)∇uH(x)) dz dx.(4.7)
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ON THE SEMIRELATIVISTIC HARTREE-TYPE EQUATION∗
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Abstract. We study the global Cauchy problem and scattering problem for the semirelativistic
Hartree-type equation in R

n, n ≥ 1, with nonlocal nonlinearity F (u) = λ(|x|−γ ∗ |u|2)u, 0 < γ < n.
We prove the existence and uniqueness of global solutions for 0 < γ < 2n

n+1
, n ≥ 2 or γ > 2,

n ≥ 3, and the nonexistence of asymptotically-free solutions for 0 < γ ≤ 1, n ≥ 3. We also specify
asymptotic behavior of solutions as the mass tends to zero and infinity.

Key words. semirelativistic Hartree-type equation, global solution, scattering, nonexistence of
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AMS subject classifications. 35Q40, 35Q55, 47J35

DOI. 10.1137/060653688

1. Introduction. In this paper we consider the following Cauchy problem:{
i∂tu =

√
m2 − Δu + F (u) in R

n × R, n ≥ 1,
u(x, 0) = ϕ(x) in R

n,
(1.1)

where m > 0 denotes the mass of bosons in units � = c = 1, F (u) is a nonlinear func-
tional of Hartree type such that F (u) = (Vγ ∗ |u|2)u, where ∗ denotes the convolution
in R

n, Vγ(x) = λ|x|−γ for some fixed constant λ ∈ R, and 0 < γ < n.
Equation (1.1) is called a semirelativistic Hartree equation which was used to

describe Boson stars. See [8, 9, 20] and the references therein.
The purpose of this paper is to establish the local and global existence theory to

(1.1) and the scattering theory of the global solutions. In this paper we study the
Cauchy problem (1.1) in the form of the integral equation

u(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′)dt′,(1.2)

where

U(t)ϕ(x) = (e−it
√
m2−Δϕ)(x) =

1

(2π)n

∫
Rn

ei(x·ξ−t
√

m2+|ξ|2)ϕ̂(ξ) dξ.

Here ϕ̂ denotes the Fourier transform of ϕ such that ϕ̂(ξ) =
∫

Rn e−ix·ξϕ(x) dx.
One of the key tools for the existence and scattering is the conservation law. If

the solution u of (1.1) has sufficient decay at infinity and smoothness, it satisfies two
conservation laws:

‖u(t)‖L2 = ‖ϕ‖L2 ,

E(u) ≡ Km(u) + V (u) = E(ϕ),
(1.3)
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where Km(u) = 1
2 〈
√
m2 − Δu, u〉, V (u) = 1

4 〈F (u), u〉, and 〈, 〉 is the complex inner
product in L2. For actual proof of (1.3) a regularizing method is simply applicable,
as in [21] in the case of 0 < γ ≤ 1. For local solutions constructed by a contraction
argument based on the Strichartz estimate stated below, the case of 1 < γ ≤ 2
is treated by exactly the same method as in [29] without using approximate or a
regularizing approach.

In section 2, local existence is shown for 0 < γ < n and ϕ ∈ Hs with s ≥ γ
2

by the Plancherel theorem and the standard contraction mapping theorem without
resorting to a Strichartz estimate. Then we use the conservation laws to obtain the
global existence for s ≥ 1

2 , 0 < γ ≤ 1, n ≥ 2, and 0 < γ < 1, n = 1. This
result is an extension of the work of Lenzmann [21] in which global well-posedness is
considered for a Coulomb-type potential in three space dimensions. From the energy
conservation, we get a bound of a solution, which is uniform in the mass m on any
finite time interval, if m is bounded from above, and then get a strong convergence
of solutions of (1.1) to a solution of the equation without mass. However, if m is
large, then the kinetic energy Km(u) is no longer bounded globally in time. Instead,
we can get a uniform bound of local solutions in Hs, provided s ≥ γ

2 . Then after a
phase modulation, we prove that the modulated solution is closely approximated by
a solution of a Schrödinger equation of Hartree type if m is sufficiently large. This
phenomenon can be interpreted as a kind of nonrelativistic limit and eventually as a
semiclassical or vanishing dispersion limit. See Proposition 2.5 below.

The second tool is the Strichartz estimate. We consider the following Strichartz
estimate for the unitary group U(t) (see [22, 23]):

‖U(t)ϕ‖
L

q0
T H

s0−σ0
r0

� ‖ϕ‖Hs0 ,∥∥∥∥
∫ t

0

U(t− t′)f(t′) dt′
∥∥∥∥
L

q1
T H

s1−σ1
r1

� ‖f‖L1
THs1 ,

(1.4)

where (qi, ri), i = 0, 1, satisfy that for any θ ∈ [0, 1]

2

q i

= (n− 1 + θ)

(
1

2
− 1

r i

)
, 2σi = (n + 1 + θ)

(
1

2
− 1

r i

)
,

2 ≤ qi, ri ≤ ∞, (qi, ri) �= (2,∞).

(1.5)

We call the pair (q, r, σ) satisfying (1.5) the admissible pair. If θ = 0, it is called
wave admissible, and if θ = 1, then it is called Schrödinger admissible. Here Hs

r =
(1 − Δ)−s/2Lr is the usual Sobolev space, and Hs = Hs

2 . Hereafter, we denote the
space Lq

T (B) by Lq(0, T ;B) and its norm by ‖ · ‖Lq
TB for some Banach space B, and

also denote Lq(B) with norm ‖ · ‖LqB by Lq(0,∞;B), 1 ≤ q ≤ ∞.
In section 3, we consider the global existence and scattering in the case when

0 < γ < n. We first show the local existence for 0 < γ < n, n ≥ 1, and s slightly less
than γ

2 by the Strichartz estimate of non–endpoint wave admissible pairs. Then we
extend the local solution to the global one for 0 < γ < 2n

n+1 by the energy conservation

and continuation procedure. The gain of upper bound 2n
n+1 follows from the fact that

the Sobolev exponent s can be made smaller than γ
2 , which enables us to use the

continuation procedure. Second, we get a small data global existence result and
scattering for the case when 2 < γ < n and n ≥ 3 by using the endpoint Strichartz
estimate for the Schrödinger admissible pair.

In the last section, as the usual case of nonlinearity with long range poten-
tial, nonexistence of nontrivial asymptotically free solutions is shown for the cases
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0 < γ ≤ 1, n ≥ 3, and 0 < γ < n
2 , n = 1, 2, by a similar method applied to a large

class of dispersive equations. See [2, 6, 14, 15, 24, 36].
Until now, it remains open to show the global existence for 2n

n+1 ≤ γ ≤ 2 as well
as the scattering for 1 < γ ≤ 2. For the blow-up result, we refer to [10] of Fröhlich
and Lenzmann in which the finite time blow-up of radially symmetric solutions was
shown in the case when γ = 1, λ < 0, n = 3, and E(ϕ) < 0.

There is a large literature on partial differential equations with Hartree-type non-
linearity. We refer the reader to [5, 11, 12, 16, 17, 18, 28, 26, 27] for Schrödinger-related
equations and, to [1, 25, 31, 32, 35, 34, 37] for Klein–Gordon-related equations in both
massive and massless cases.

If not specified, throughout this paper the notation A � B and A � B denote
A ≤ CB and A ≥ C−1B, respectively. Different positive constants possibly depending
on n, m, λ, and γ might be denoted by the same letter C. A ∼ B means that both
A � B and A � B hold.

2. Global existence I. In this section, we study the global existence and the
limiting problem as m → 0 or as m → ∞ with 0 < γ ≤ 1.

Let us first introduce the following local existence result.
Proposition 2.1. Let 0 < γ < n and n ≥ 1. Suppose ϕ ∈ Hs(Rn) with s ≥ γ

2 .
Then there exists a positive time T independent of m such that (1.2) has a unique
solution u ∈ C([0, T ];Hs) with ‖u‖L∞

T Hs ≤ C‖ϕ‖Hs , where C does not depend on m.
Proof. Let (Xs

T,ρ, d) be a complete metric space with metric d defined by

Xs
T,ρ = {u ∈ L∞

T (Hs(Rn)) : ‖u‖L∞
T Hs ≤ ρ}, d(u, v) = ‖u− v‖L∞

T L2 .

Now we define a mapping N : u �→ N(u) on Xs
T,ρ by

N(u)(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′) dt′.(2.1)

Our strategy is to use the standard contraction mapping argument. To do so, let us
introduce a generalized Leibniz rule (see Lemmas A1–A4 in the appendix of [19]).

Lemma 2.2. For any s ≥ 0 we have

‖Ds(uv)‖Lr � ‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1‖Dsv‖Lr2 ,

where Ds = (−Δ)s/2

and
1

r
=

1

r1
+

1

q2
=

1

q1
+

1

r2
, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

Then for all u ∈ X(T, ρ) we have

‖N(u)‖L∞
T Hs ≤ ‖ϕ‖Hs + T‖F (u)‖L∞

T Hs

� ‖ϕ‖Hs + T
(
‖In−γ(|u|2)‖L∞

T L∞‖u‖L∞
T Hs

+‖In−γ(|u|2)‖L∞
T Hs

2n
γ

‖u‖
L∞

T L
2n

n−γ

)

� ‖ϕ‖Hs + T

(
‖u‖2

L∞
T H

γ
2
‖u‖L∞

T Hs + ‖u‖2

L∞
T L

2n
n−γ

‖u‖L∞
T Hs

)
� ‖ϕ‖Hs + T‖u‖2

L∞
T H

γ
2
‖u‖L∞

T Hs � ‖ϕ‖Hs + Tρ3,

(2.2)
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where Iα is the fractional integral operator given by Iα(v)(x) =
∫

Rn |x−y|α−nv(y) dy.
It is well known that Iα satisfies the inequality (see [33], for instance)

‖Iα(ψ)‖Lq � ‖ψ‖Lp ,
1

q
=

1

p
− α

n
, 1 < p < q < ∞.

For the third inequality we used the fractional integral inequality, generalized Leibniz
rule (Lemma 2.2), and the fact that

sup
x∈Rn

∣∣∣∣
∫

Rn

|u(x− y)|2
|y|γ dy

∣∣∣∣ � ‖u‖2

Ḣ
γ
2
.(2.3)

For the last one, we used the Sobolev embedding H
γ
2 ↪→ L

2n
n−γ .

If we choose ρ and T such that ‖ϕ‖Hs ≤ ρ/2 and CTρ3 ≤ ρ/2, then N maps Xs
T,ρ

to itself.

Now we have only to show that N is a Lipschitz map for sufficiently small T . Let
u, v ∈ Xs

T,ρ. Then we have

d(N(u), N(v))

� T
∥∥In−γ(|u|2)u− In−γ(|v|2)v

∥∥
L∞

T L2

� T
(∥∥In−γ(|u|2)(u− v)

∥∥
L∞

T L2 +
∥∥In−γ(|u|2 − |v|2)v

∥∥
L∞

T L2

)
� T

(
‖u‖2

L∞
T H

γ
2
d(u, v) + ‖In−γ(|u|2 − |v|2)‖

L∞
T L

2n
γ
‖v‖

L∞
T L

2n
n−γ

)

� T

(
ρ2d(u, v) + ρ‖|u|2 − |v|2‖

L∞
T L

2n
2n−γ

)

� T

(
ρ2 + ρ

(
‖u‖

L∞
T L

2n
n−γ

+ ‖v‖
L∞

T L
2n

n−γ

))
d(u, v)

� Tρ2d(u, v).

The above estimate implies that the mapping N is a contraction if T is sufficiently
small.

The uniqueness and time continuity follows easily from (1.2) and the contraction
argument. This completes the proof of the proposition.

From the conservation laws (1.3), we get the following global well-posedness.

Theorem 2.3. Let 0 < γ ≤ 1 for n ≥ 2, 0 < γ < 1 for n = 1, and s ≥ 1
2 .

Let T ∗ be the maximal existence time of the solution u as in Theorem 2.1. Then
if λ ≥ 0, or if λ < 0 and ‖ϕ‖L2 is sufficiently small, then T ∗ = ∞. Moreover,

‖u(t)‖Hs ≤ C‖ϕ‖HseC(|E(ϕ)|+‖ϕ‖2
L2 )t, where C does not depend on m.

Proof. From the estimate (2.3) and L2 conservation, we have

|V (u)| � ‖u‖2

Ḣ
γ
2
‖u‖2

L2 � ‖u‖2γ

Ḣ
1
2
‖ϕ‖4−2γ

L2 .(2.4)

Hence if λ ≥ 0 or if λ < 0 and ‖ϕ‖L2 is sufficiently small, then

‖u(t)‖2

Ḣ
γ
2
≤ C(|E(u)| + ‖ϕ‖2

L2) = C(|E(ϕ)| + ‖ϕ‖2
L2).(2.5)
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From (2.5) and a similar estimate to (2.2), we have

‖u(t)‖Hs � ‖ϕ‖Hs +

∫ t

0

‖u‖2

H
γ
2
‖u‖Hs dt′

� ‖ϕ‖Hs + (|E(ϕ)| + ‖ϕ‖2
L2)

∫ t

0

‖u‖Hs dt′.

Gronwall’s inequality shows that

‖u(t)‖Hs ≤ C‖ϕ‖Hs exp(C(|E(ϕ)| + ‖ϕ‖2
L2)t).

This completes the proof.

Remark 1. If λ < 0, 0 < γ < 2, and n ≥ 2, then

|V (u)| � ‖Vγ ∗ |u|2‖Ln‖u‖2

L
2n

n−1
� ‖u‖2

L
2n

n−γ+1
‖u‖2

L
2n

n−1

� ‖u‖θL2‖u‖4−θ

L
2n

n−1
= ‖ϕ‖θL2‖u‖4−θ

Ḣ
1
2

for some small positive number θ < 2. Hence

E(u) ≥ Km(u) − |V (u)| ≥ m

2
‖ϕ‖2

L2 +
1

2
‖u‖2

Ḣ
1
2
− C‖ϕ‖θL2‖u‖4−θ

Ḣ
1
2
.

Thus we can always make E(u) strictly positive, provided ‖ϕ‖L2 is sufficiently small,
and with smaller ‖ϕ‖L2 than in Theorem 2.3, |E(ϕ)| is changed by E(ϕ). Using (2.4),
the same argument holds for n = 1.

If m is bounded above, then the energy E(ϕ) is also bounded, and hence the Hs

norm of solution u is bounded in a finite time interval uniformly on small m. This
enables us to treat a limit problem as m → 0. We have the following. See [1] for
related second-order equations.

Proposition 2.4. If um ∈ (C∩L∞)(Hs) is the global solution of (1.2) satisfying
the same condition as in Theorem 2.3, then for any finite time T , um → u0 in L∞

T (Hs)
with s ≥ 1

2 as m → 0, where u0 is the global solution to the Cauchy problem

i∂tu0 =
√
−Δu0 + F (u0), u0(x, 0) = ϕ(x) ∈ Hs.(2.6)

Proof. One can easily show the global existence of (2.6) by the same argument
as in the proof of Theorem 2.3. The solution u0 can be written as

u0(t) = U0(t)ϕ− i

∫ t

0

U0(t− t′)F (u0)(t
′) dt′,

where U0(t) = e−it
√
−Δ.

For any T > 0 there exists M such that sup0<m≤1(‖um‖L∞
T Hs +‖u0‖L∞

T Hs) ≤ M .
Then observing that for any t ∈ [0, T ]

‖(U(t) − U0(t))ϕ‖Hs ≤ ‖|1 − eit(
√

m2+|ξ|2−|ξ|)|(1 + |ξ|2) s
2 |ϕ̂|‖L2

≤ t‖|
√
m2 + |ξ|2 − |ξ||(1 + |ξ|2) s

2 |ϕ̂|‖L2

≤ tm‖ϕ‖Hs ,
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we have that

‖um(t) − u0(t)‖Hs

≤ ‖(U(t) − U0(t))ϕ‖Hs

+

∫ t

0

(‖F (um) − F (u0)‖Hs + ‖(U(t− t′) − U0(t− t′))F (u0)‖Hs) dt′

� Tm‖ϕ‖Hs +

∫ t

0

‖In−γ(|um|2 − |u0|2)um‖Hs dt′

+

∫ t

0

‖In−γ(|u0|2)(um − u0)‖Hs) dt′ + mT

∫ t

0

‖F (u0)‖Hs dt′.

(2.7)

From Lemma 2.2, fractional integration, and the estimate (2.3), it follows that

‖In−γ(|um|2 − |u0|2)um‖Hs

� ‖In−γ(|um|2 − |u0|2)‖L∞‖um‖Hs + ‖In−γ(|um|2 − |u0|2)‖Hs
2n
γ

‖um‖
L

2n
n−γ

� ‖um − u0‖H γ
2
(‖um‖

H
γ
2

+ ‖u0‖H γ
2
)‖um‖Hs

+ ‖|um|2 − |u0|2‖
L

2n
2n−γ

‖um‖
H

γ
2

� M2‖um − u0‖Hs

and similarly that

‖In−γ(|u0|2)(um − u0)‖Hs

� ‖u0‖2

H
γ
2
‖um − u0‖Hs + ‖In−γ(|u0|2)‖Hs

2n
γ

‖um − u0‖
L

2n
n−γ

� M2‖um − u0‖Hs .

Substituting these into (2.7), we have for any t ∈ [0, T ] that

‖um(t) − u0(t)‖Hs � MTm + M3mT 2 + M2

∫ t

0

‖um(t′) − u0(t
′)‖Hs dt′.

Then Gronwall’s inequality implies the strong convergence um → u0 in L∞
T (Hs).

In the case of large mass, the situation is different. Since E(u) = E(ϕ) =
1
2 〈
√
m2 − Δϕ,ϕ〉 + V (ϕ) diverges as m → ∞, it is difficult to obtain the uniform

bound for ‖u‖
H

1
2

from the energy conservation law. However, from Proposition 2.1

we see that the local existence time T and the constant C can be chosen independently
of the mass m if s ≥ γ

2 . To be more specific, we have ‖um(t)‖Hs ≤ C‖ϕ‖Hs , where
um is the solution of the equation with mass m. Now using the phase modulation
vm = eimtum, the function vm satisfies the equation

i∂tvm = (
√
m2 − Δ −m)vm + F (vm), vm(0) = ϕ,

and equivalently

vm(t) = Um(t)ϕ− i

∫ t

0

Um(t− t′)F (vm)(t′) dt′,(2.8)

where Um(t) = e−it(
√
m2−Δ−m). Let Ũm be the unitary group eit

1
2mΔ. As was first

observed by Segal [32] at a formal level, we expect that the linear solutions Umϕ
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and Ũmϕ become very close in the L∞
T (Hs) norm if T is finite and ϕ ∈ Hs. That

observation is in fact justified by

‖(Um(t) − Ũm(t))ϕ‖2
L∞

T Hs

≤ sup
0<t<T

∫
|ξ|≤√

m

∣∣∣∣1 − eit(
√

m2+|ξ|2−m− |ξ|2
2m )

∣∣∣∣
2

(1 + |ξ|)2s|ϕ̂|2 dξ

+ 2

∫
|ξ|≥√

m

(1 + |ξ|)2s|ϕ̂|2 dξ

≤ T

∫ ∣∣∣2m/(
√
m2 + |ξ|2 + m) − 1

∣∣∣2 (1 + |ξ|)2s|ϕ̂|2 dξ

+ 2

∫
|ξ|≥√

m

(1 + |ξ|)2s|ϕ̂|2 dξ

→ 0 as m → ∞.

Hence we can expect that vm is very close to a function wm in L∞
T (Hs), where wm is

a solution of the nonlinear Schrödinger equation:

i∂twm = − 1

2m
Δwm + F (wm), wm(0) = ϕ.(2.9)

Of course, by the same argument as the proof of Proposition 2.1, we find T and C
independently of m and a unique solution wm ∈ C([0, T ];Hs) of (2.9) for s ≥ γ

2 such
that ‖wm‖L∞

T Hs ≤ C‖ϕ‖Hs .

Now let T ∗
vm

and T ∗
wm

be the maximal existence times of the solutions um and
wm, respectively. Then from the local existence result (Proposition 2.1) we deduce
that T ∗ ≡ infm>1 min(T ∗

vm
, T ∗

wm
) is strictly positive and has the following.

Proposition 2.5. If s ≥ γ
2 and T < T ∗, then vm − wm → 0 in L∞

T (Hs) as
m → ∞.

Proof. First we consider the integral equation

u∞ = ϕ− i

∫ t

0

F (u∞) dt′,

which is equivalent to the ordinary differential equation i∂tu∞ = F (u∞), u∞(x, 0) =

ϕ. This equation has an exact solution u∞(x, t) = ϕ(x)e−iλt(|·|−γ∗|ϕ|2)(x) for any
t ≥ 0. If s ≥ γ

2 , then the uniqueness of u∞ is guaranteed.

To prove vm − wm → 0 in L∞
T (Hs), we have only to prove that vm − u∞ → 0 in

L∞
T (Hs) and wm − u∞ → 0 in L∞

T (Hs). At first we have

‖vm(t) − u∞(t)‖Hs

≤ ‖ (Um(t) − 1)ϕ‖Hs +

∫ t

0

‖(Um(t− t′) − 1)F (u∞)‖Hs dt′

+

∫ t

0

‖F (vm) − F (u∞)‖L∞ dt′
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and

‖ (Um(t) − 1)ϕ‖2
Hs

=

∫ ∣∣∣e−it(
√

m2+|ξ|2−m) − 1
∣∣∣2 |ϕ̂(ξ)|2 dξ

=

∫
|ξ|≤m

1
4

+

∫
|ξ|>m

1
4

≤
∫
|ξ|≤m

1
4

t2|ξ|4

(
√
m2 + |ξ|2 + m)2

(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ + 4

∫
|ξ|>m

1
4

(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ

=
T 2

4m
‖ϕ‖2

Hs + 4

∫
|ξ|>m

1
4

(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ

→ 0 as m → ∞.

We take M = M(T ) such that supm≥1(‖vm‖L∞
T Hs + ‖wm‖L∞

T Hs + ‖u∞‖L∞
T Hs) ≤ M .

Then since F (u∞) ∈ L∞
T (Hs), we have

∫ T

0

‖(Um(t− t′) − 1)F (u∞)‖Hs dt′ → 0 as m → ∞.

We also have

‖F (vm) − F (u∞)‖Hs ≤ CM2‖vm − u∞‖Hs .

Thus

‖vm(t) − u∞(t)‖Hs ≤ o(1) + CM2

∫ t

0

‖vm − u∞‖Hs dt′,(2.10)

and as for wm, by the same argument as that of vm

‖wm(t) − u∞(t)‖Hs ≤ o(1) + CM2

∫ t

0

‖wm − u∞‖Hs dt′.(2.11)

Therefore Gronwall’s inequality yields the claim.

3. Global existence II. In this section, we re-examine the existence result and
get a slightly lower regularity by using the Strichartz estimate. The first result is the
following local existence for 0 < γ < n.

Proposition 3.1. Let 0 < γ < n and n ≥ 2. Then there is a number α with

0 < α < min(γ, 2n
n+1 ) satisfying that given s > γ

2 − (n−1)α
4n and ϕ ∈ Hs there exists a

positive time T such that (1.2) has a unique solution u ∈ C([0, T ];Hs) ∩ Lq
T (Hs−σ

r ),

where q = 4n
(n−1)α , r = 2n

n−α , and σ = (n+1)α
4n .

Proof. Given n and γ, choose a number α with 0 < α < min(γ, 2n
n−1 ) and fix

s > γ
2 − (n−1)α

4n . Then for some positive number T to be chosen later, let us define a
complete metric space (Y s

T,ρ, dT ) with metric dT by

Y s
T,ρ =

{
v ∈ L∞

T (Hs) ∩ Lq
T (Hs−σ

r ) : ‖v‖L∞
T Hs + ‖v‖Lq

THs−σ
r

≤ ρ
}
,

dT (u, v) = ‖u− v‖L∞
T Hs∩Lq

THs−σ
r

,
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where q, r, σ are the same indices as in Proposition 3.1.
From now on, we will prove that the nonlinear mapping N defined as (2.1) is

a contraction on Y s
T,ρ, provided T is sufficiently small. We will use the following

lemma instead of (2.3), which follows by estimating the (fractional) integral inside
and outside the ball with radius R > 0 separately by Hölder’s inequality and by
minimizing the resulting estimates with respect to R.

Lemma 3.2. Let 0 < γ < n. Then for any 0 < ε < n− γ we have∥∥In−γ(|u|2)
∥∥
L∞ � ‖u‖

L
2n

n−γ−ε
‖u‖

L
2n

n−γ+ε
.

If we take θ = 0 in the Strichartz estimate (1.4), then the pair (q, r, σ) =

( 4n
(n−1)α ,

2n
n−α ,

(n+1)α
4n ) becomes an admissible one. Hence the Strichartz estimate to-

gether with the Plancherel theorem, Lemma 3.2, and generalized Leibniz rules (Lemma
2.2), enables us to deduce that for sufficiently small ε

‖N(u)‖L∞
T Hs∩Lq

THs−σ
r

� ‖ϕ‖Hs + ‖F (u)‖L1
THs

� ‖ϕ‖Hs + ‖In−γ(|u|2)‖L1
TL∞‖u‖L∞

T Hs

+

∫ T

0

‖In−γ(|u|2)‖Hs
2n
γ+ε

‖u‖
L

2n
n−(γ+ε)

dt

� ‖ϕ‖Hs + ‖u‖
L2

TL
2n

n−(γ+ε)
‖u‖

L2
TL

2n
n−(γ−ε)

‖u‖L∞
T Hs

+

∫ T

0

‖|u|2‖Hs
2n

2n−(γ−ε)

‖u‖
L

2n
n−(γ+ε)

dt

� ‖ϕ‖Hs + ‖u‖
L2

TL
2n

n−(γ+ε)
‖u‖

L2
TL

2n
n−(γ−ε)

‖u‖L∞
T Hs .

(3.1)

Using Hölder’s inequality for time integral, we have

‖N(u)‖L∞
T Hs∩Lq

THs−σ
r

� ‖ϕ‖Hs + T 1− 2
q ‖u‖

Lq
TL

2n
n−(γ+ε)

‖u‖
Lq

TL
2n

n−(γ−ε)
‖u‖L∞

T Hs .
(3.2)

Now if we choose ε > 0 so small that ε < min(γ − α, 2(s + (n−1)α
4n ) − γ), then since

2n

n− α
≤ 2n

n− (γ − ε)
<

2n

n− (γ + ε)
≤ 2n

n− α− 2(s− σ)
,

we have from (3.2) and the Sobolev embedding Hs−σ
r ↪→ Lr ∩ L

2n
n−α−2(s−σ) that

‖N(u)‖L∞
T Hs∩Lq

THs−σ
r

≤ C(‖ϕ‖Hs + T 1− 2
q ‖u‖L∞

T Hs‖u‖2
Lq

THs−σ
r

)

≤ C(‖ϕ‖Hs + T 1− 2
q ρ3)

for some constant C. Here we used the conventional embedding that if 2(s−σ) ≥ n−α,
then Hs−σ

r ↪→ Lr1 for any r1 ≥ r. Thus if we choose ρ and T so that C‖ϕ‖Hs ≤ ρ
2

and CT 1− 2
q ρ3 ≤ ρ

2 , then we conclude that N maps from Y s
T,ρ to itself.

For any u, v ∈ Y s
T,ρ, we have

dT (N(u), N(v)) � ‖F (u) − F (v)‖L1
THs

� ‖In−γ(|u|2 − |v|2)u‖L1
THs + ‖In−γ(|v|2)(u− v)‖L1

THs .
(3.3)
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By Lemma 3.2 and Hölder’s inequality, we have for sufficiently small ε > 0

‖In−γ(|u|2 − |v|2)u‖L1
THs

� ‖In−γ(|u|2 − |v|2)‖L2
TL∞‖u‖L∞

T Hs

+ ‖In−γ(|u|2 − |v|2)‖L2
THs

2n
γ+ε

‖u‖
L2

TL
2n

n−(γ+ε)

� ρ‖|u|2 − |v|2‖
1
2

L1
TL

n
n−(γ+ε)

‖|u|2 − |v|2‖
1
2

L1
TL

n
n−(γ−ε)

+ ρ‖u− v‖L∞
T Hs

(
‖u‖

L2
TL

2n
n−(γ−ε)

+ ‖v‖
L2

TL
2n

n−(γ−ε)

)
+ ρ‖u− v‖

L2
TL

2n
n−(γ−ε)

(‖u‖L∞
T Hs + ‖v‖L∞

T Hs).

(3.4)

Now by another Hölder’s inequality with respect to the time variable, we have

‖In−γ(|u|2 − |v|2)u‖L1
THs � T 1− 2

q ρ2dT (u, v).

Similarly,

‖In−γ(|v|2)(u− v)‖L1
THs

� ‖In−γ(|v|2)‖L1
TL∞‖u− v‖L∞

T Hs + ‖In−γ(|v|2)‖
L2

TL
2n
γ+ε

‖u− v‖
L2

TL
2n

n−(γ+ε)

� ‖v‖
L2

TL
2n

n−(γ−ε)
‖v‖

L2
TL

2n
n−(γ+ε)

dT (u, v)

+ ‖v‖L∞
T Hs‖v‖

L2
TL

2n
n−(γ−ε)

‖u− v‖
L2

TL
2n

n−(γ+ε)
.

(3.5)

Hence we get

‖In−γ(|v|2)(u− v)‖L1
THs � T 1− 2

q ρ2dT (u, v).

Substituting these two estimates into (3.3) and then using the fact that CT 1− 2
q ρ2 ≤ 1

2
for small T , we conclude that N is a contraction mapping.

Remark 2. If we follow the proof above with the Schrödinger admissible pairs,
we conclude that Proposition 3.1 holds for n ≥ 3, 0 < α < γ, α ≤ 2, s > γ

2 − n−2
4n α,

q = 4
α , r = 2n

n−α , and σ = (n+2)α
4n .

Now we show that the local solutions can be extended globally in time by using
the energy conservation law.

Theorem 3.3. Let 0 < γ < 2n
n+1 , n ≥ 2. Then there exists an α with 0 < α < γ

such that if ϕ ∈ H
1
2 and if λ > 0, or λ < 0 but ‖ϕ‖L2 is sufficiently small, then (1.2)

has a unique solution u ∈ C([0,∞);H
1
2 ) ∩ Lq

loc(H
1
2−σ
r ), where q = 4n

(n−1)α , r = 2n
n−α ,

and σ = (n+1)α
4n .

Proof. Let T ∗ be the maximal existence time. We will prove that T ∗ is infi-
nite by contradiction. Suppose that T ∗ < ∞. Then the local theory shows that
‖u‖

Lq
T∗H

1
2
−σ

r

= ∞. Since γ < 2, from the local existence proposition, Proposition 3.1,

we see that the energy conservation law (1.3) holds. Thus at any t < T ∗, the solution
u satisfies that for λ > 0

1

2
‖u(t)‖2

H
1
2
≤ 1

2
‖u(t)‖2

L2 + E(u) =
1

2
‖ϕ‖2

L2 + E(ϕ)
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and for λ < 0

1

2
‖u(t)‖2

H
1
2
≤ 1

2
‖u(t)‖2

L2 + |E(u)| + |V (u)|

≤ 1

2
‖ϕ‖2

L2 + |E(ϕ)| + C‖u‖2

L
2n

n−γ+1
‖u‖2

H
1
2

≤ 1

2
‖ϕ‖2

L2 + |E(ϕ)| + C‖u‖2−γ
L2 ‖u‖1+γ

H
1
2

=
1

2
‖ϕ‖2

L2 + |E(ϕ)| + C‖ϕ‖2−γ
L2 ‖u‖1+γ

H
1
2
.

Hence by Young’s inequality and the smallness of ‖ϕ‖L2

‖u(t)‖2

H
1
2
≤ C(‖ϕ‖2

L2 + |E(ϕ)|).(3.6)

From the estimates (3.6) and (3.2), which are used with s = 1
2 , we have

‖u‖
Lq

TH
1
2
−σ

r

� ‖ϕ‖2
L2 + |E(ϕ)| + T 1− 2

q (‖ϕ‖2
L2 + |E(ϕ)|) 1

2 ‖u‖2

Lq
TH

1
2
−σ

r

.

Thus for sufficiently small T depending on ‖ϕ‖2
L2 + |E(ϕ)|,

‖u‖
Lq(Tj−1,Tj ;H

1
2
−σ

r )
≤ C(‖ϕ‖2

L2 + |E(ϕ)|),

where Tj − Tj−1 = T for j ≤ k − 1 and Tk = T ∗. This means that

‖u‖q
Lq(0,T∗;H

1
2
−σ

r )
≤

∑
1≤j≤k

‖u‖q
Lq(Tj−1,Tj ;H

1
2
−σ

r )
≤ (kC(‖ϕ‖2

L2 + |E(ϕ)|))q < ∞.

This is the contradiction to the hypothesis T ∗ < ∞.
The condition γ < 2n

n+1 is necessary for the existence of α satisfying s = 1
2 >

γ
2 − (n−1)α

4n , and α < γ. This completes the proof.
Remark 3. If we choose θ = 1, then we deduce the same result as in Theorem 3.3

with 0 < γ < 2n
n+2 , q = 4

α , r = 2n
n−α , and σ = (n+2)α

4n .
Now we consider the small data global existence and scattering for 2 < γ < n.
Theorem 3.4. Let 2 < γ < n, n ≥ 3, and s > γ

2 − n−2
2n . Then there exists

ρ > 0 such that for any ϕ ∈ Hs with ‖ϕ‖Hs ≤ ρ, (1.2) has a unique solution u ∈
(C ∩ L∞)(Hs) ∩ L2(H

s−n+2
2n

2n
n−2

). Moreover, there is ϕ+ ∈ Hs such that

‖u(t) − U(t)ϕ+‖Hs → 0 as t → ∞.

Proof. We will use the Strichartz estimate (1.4) with θ = 1 and endpoint admis-
sible pair (q, r, σ) = (2, 2n

n−2 ,
n+2
2n ) (see Remark 2).

Let us define a complete metric space (Y s
ρ , d) with metric d by

Y s
ρ =

{
v ∈ L∞(Hs) ∩ L2(Hs−σ

r ) : ‖v‖L∞Hs∩L2Hs−σ
r

≤ ρ
}
,

d(u, v) = ‖u− v‖L∞Hs∩L2Hs−σ
r

,

Then from the estimate (3.2), we have

‖N(u)‖L∞Hs∩L2Hs−σ
r

≤ C‖ϕ‖Hs + C‖u‖2
L2Hs−σ

r
‖u‖L∞Hs .
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If we choose sufficiently small ρ such that C‖ϕ‖Hs ≤ ρ
2 and Cρ3 ≤ ρ

2 , then N maps
Y s
ρ to itself. Similarly, from (3.3)–(3.5), one can show that d(N(u), N(v)) ≤ 1

2d(u, v).
This proves the existence part.

To prove the scattering, let us define a function ϕ+ by

ϕ+ = ϕ− i

∫ ∞

0

U(−t′)F (u)(t′) dt′.

Then since the solution u is in Y s
ρ , ϕ+ ∈ Hs, therefore it holds that

‖u(t) − u+(t)‖Hs �
∫ ∞

t

‖F (u)‖Hs dt′

� ‖u‖L∞Hs

∫ ∞

t

‖u‖2
Hs−σ

r
dt′ → 0 as t → ∞.

4. Nonexistence of scattering. We prove the nonexistence of nontrivial asymp-
totically free solution.

Theorem 4.1. Assume that 0 < γ ≤ 1 for n ≥ 3 and 0 < γ < n
2 for n = 1, 2.

Suppose that u is a smooth global solution in C(0,∞;H
1
2 ) ∩ C1(0,∞;H− 1

2 ) to (1.1)

and there exists a smooth function ϕ+ ∈ H
1
2 ∩B

n+2
2

1,1 such that

‖u(t) − u+(t)‖L2 → 0 as t → ∞,

where u+(t) = U(t)ϕ+. Then u = u+ = 0. Here Bs
1,1 is the standard inhomogeneous

Besov space.
Proof. Let us define a function of H(t) by

H(t) = sgn(λ)Re〈u(t), u+(t)〉.

Then from the condition of u and u+, H(t) is uniformly bounded on t and

d

dt
H(t) = |λ|Im〈In−γ(|u|2)u, u+〉.(4.1)

Suppose ϕ+ �= 0. Then we derive a contradiction to the uniform boundedness of
H on t.

The integration in (4.1) is rewritten as

〈In−γ(|u|2)u, u+〉 = J1 + J2 + J3,

where

J1 = 〈In−γ(|u+|2)u+, u+〉,
J2 = 〈In−γ(|u|2 − |u+|2)u+, u+〉,
J3 = 〈In−γ(|u|2)(u− u+), u+〉.

To estimate each Ji, we need the following time decay estimate; for its proof see
[4, 13, 30].

Lemma 4.2. If ϕ+ ∈ B
n+2

2
1,1 , then

‖U(t)ϕ+‖L∞ � t−
n
2 ‖ϕ+‖

B
n+2

2
1,1

.
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As for J2, from Lemma 3.2, we have

|J2(t)|
= |〈(|u|2 − |u+|2), In−γ(|u+|2)〉|
≤ ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖In−γ(|u+|2)‖L∞

� ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
L

2n
n−γ−ε

‖u+‖
L

2n
n−γ+ε

� ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
n−γ−ε

n +n−γ+ε
n

L2 ‖u+‖2−n−γ−ε
n +n−γ+ε

n

L∞

� ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
2(n−γ)

n

L2 ‖u+‖
2γ
n

L∞ .

(4.2)

For the fourth inequality we used Hölder’s inequality

‖u‖Lr ≤ ‖u‖
2
r

L2‖u‖
1− 2

r

L∞ .(4.3)

Now from Lemma 4.2 we get

|J2(t)| = o(t−γ).(4.4)

Since γ ≤ 1 for n ≥ 3 and γ < n
2 for n = 1, 2, we can take ε > 0 such that

γ + ε < n
2 . Hence by the same argument for J2 we have for J3 that

|J3(t)| = |〈|u|2, In−γ((u− u+)u+)〉|
≤ ‖u‖2

L2‖In−γ((u− u+)u+)‖L∞

� ‖u‖2
L2

∥∥∥|(u− u+)u+| 12
∥∥∥
L

2n
n−γ−ε

∥∥∥|(u− u+)u+| 12
∥∥∥
L

2n
n−γ+ε

� ‖u‖2
L2

∥∥∥(u− u+)u+
∥∥∥ 1

2

L
n

n−γ−ε

∥∥∥(u− u+)u+
∥∥∥ 1

2

L
n

n−γ+ε

� ‖u‖2
L2‖u− u+‖L2‖u+‖

1
2

L
2n

n−2(γ+ε)
‖u+‖

1
2

L
2n

n−2(γ−ε)

� ‖u‖2
L2‖u− u+‖L2‖u+

∥∥∥n−2γ
n

L2

∥∥∥u+‖1−n−2γ
n

L∞

= o(t−γ).

(4.5)

As for J1, if |x| ≤ At for some A > 1, then for any t > 0

In−γ(|u+|2)(x) ≥
∫
|y|≤At

|x− y|−γ |u+(y)|2 dy

≥ 1

(2At)γ

∫
|y|≤At

|u+(y)|2 dy.

Now we prove ∫
|y|≤At

|u+(y)|2 dy � ‖ϕ+‖2
L2(4.6)

for large t, provided ϕ+ is sufficiently smooth. Choose a large R such that ‖ηRϕ+‖2
L2 ≥

2
3‖ϕ+‖2

L2 , where ηR is a smooth cut-off function supported in the ball of radius 2R
with center at the origin. Then

‖u+‖2
L2(|x|≤At) ≥

∣∣∣‖U(t)(ηRϕ
+)‖2

L2(|x|≤At) − ‖ϕ+‖2
L2(|x|>R)

∣∣∣ .
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Since the linear solution u+ has the finite propagation speed (actually speed 1), one
can easily show that |U(t)(ηRϕ

+)(x)| � |x|−N‖ϕ+‖L2 for any N , provided |x| >
1+2R+t. Hence we deduce that if N > n

2 and t is large enough so that At > 1+3R+t,
then

‖U(t)(ηRϕ
+)‖2

L2(|x|≤At) = ‖U(t)(ηRϕ
+)‖2

L2 −
∫
|x|>At

|U(t)ηRϕ
+|2 dx

≥ ‖ηRϕ+‖L2 − C

∫
|x|>At

|x|−2N dx‖ϕ+‖2
L2

≥ 2

3
‖ϕ+‖2

L2 − C(At)n−2N‖ϕ+‖2
L2 .

Therefore for t large enough,

‖u+‖2
L2(|x|≤At) ≥

1

3
‖ϕ+‖2

L2

and hence

J1(t) � t−γ .(4.7)

Now combining (4.7) with (4.4) and (4.5), we deduce that for t sufficiently large

d

dt
H(t) � t−γ ≥ t−1.

This is a contradiction to the uniform boundedness of H(t) on t.
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Abstract. We prove that uniformly random packings of copies of a certain simply connected
figure in the plane exhibit global connectedness at all sufficiently high densities, but not at low
densities.
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1. Introduction. The densest way to cover a large area with nonoverlapping
unit disks is as in Figure 1, in which the disk centers form the vertices of a triangular
lattice.

Fig. 1. The densest packing of unit disks in the plane.

A packing is a collection of congruent copies of a subset with pairwise disjoint interiors.
See [5] for a proof that the above packing is indeed the densest possible for unit disks.

It is an old unsolved problem to understand whether densest packings of spheres,
simplices, or other shapes, in a Euclidean or hyperbolic space of any dimension, exhibit
crystallographic symmetry, such as that of Figure 1. This is the spirit, for instance,
of Hilbert’s eighteenth problem; see [5, 10] for background.

Using physics models of two- and three-dimensional matter as a guide, we are
tempted to try to gain insight into densest packings by considering packings at den-
sities below the maximum. (For an example concerning spheres in R

3, see [9].) In
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effect, we are emphasizing not so much that densest packings and low density packings
differ by their symmetry, but rather that they differ in some fundamental geometric
fashion. Indeed, it is commonly suggested in the physics literature (see, for instance,
[1]) that two-dimensional models of matter do not exhibit crystallographic symmetry,
and it is sometimes said by mathematicians that in high-dimensional Euclidean space,
densest packings of spheres may not have crystallographic symmetry. So perhaps it is
appropriate to re-examine the precise manner in which densest packings differ funda-
mentally from low density packings, and to use packings at less than optimum density
as a guide.

In this work we replace round disks with deformed disks, which are copies of a
“zipper” tile; see Figure 2. This tile can cover the plane completely, in which case the
packing has density 1, and is completely connected in any sense. What we show is that
even at somewhat lower densities, the uniform random packing still has rigid structure;
in particular it has a form of connectedness associated with site percolation [7]. What
this means for packing large but finite boxes (with torus boundary conditions) is that
the necessary gross irregularities of most packings at such high densities disconnect
the packings, if at all, along fault lines whose density tends to 0 as the size of the box
tends to infinity. Although we define “uniform random packing” of the plane by limits
of measures on packings of finite boxes, the key to our proof is to examine isometry-
invariant probability measures on packings of the whole plane and to show that the
ones that maximize “degrees of freedom per tile” are unique for high densities.

We show that at high density in our model there is a nonzero probability of an
infinite linked component, and that this probability is zero at low density. Thus,
there are different “phases” of the packings [2]. (This is closely related to continuum
percolation, where one looks at overlapping disks with random independent centers,
but our methods are quite different.)

Although we believe that such a result also holds for packings of disks or of
spheres—pairs of which would be called “linked” if sufficiently close—we are able to
prove the result only for our tiles, which are shaped to allow three well-defined levels
of pairwise separation. (We discuss the appropriate notion of linking for collections of
disks in the last section of the paper.) It is generally understood that true crystalline
symmetry is not seen below optimal density in two dimensions—see [11]—so the form
of connectedness we use may be useful in understanding the role of geometry in
Hilbert’s problem.

2. Description of the tile. We consider packings by a deformed disk denoted
by t, referred to as “the tile” and depicted in Figure 2. In this section, we define it
precisely.

Let H be a regular hexagon of area 1. Let r be the radius of the in-circle of H.
Let D be a disk concentric with the in-circle and of radius r + ρ, where 0 < ρ � 1
is a number we shall choose more precisely later. We shall construct the shape t by
modifying H as follows; D will be called the shadow disk of t.

As shown in Figure 2, the tile t equals H with each side modified by a “fringe”
and each corner modified by a hook and inlet, where a hook is about half an element
of the fringe. As shown in Figure 3, the fringe height is 2ρ. The elements of the fringe
have two different size “necks,” one of size ρ2 and one of size 2ρ2, allowing neighboring
tiles to be linked in either of two well-defined modes, “tightly linked” and “loosely
linked”; the former is illustrated in Figure 4 and the latter in Figure 5. We say that
two tiles t are linked (tightly or loosely) if, when one is held fixed, the other can be
moved continuously only by a bounded amount (without overlapping the first). A
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Fig. 2. The zipper tile.

Fig. 3. Close-up view of the fringe.

tight link is one that permits no movement of one tile while fixing the other, while a
link that is not tight is called loose. A key feature of our model is that when two tiles
are tightly linked, any motion of one would necessitate a corresponding motion of the
other. As we shall explain, the uniform probability distribution on packings of the
plane at given density is a limit of such a distribution on packings of larger and larger
tori. In our model, these distributions on packings of finite tori are concentrated
on packings with the largest number of degrees of freedom, and therefore, roughly
speaking, the fewest tiles bound by tight links. This gives us useful control on the
packings in the support of our distributions.

A tile is called fully linked on one side if it is linked with another tile on that side
in such a way that either they are tightly linked, and the line joining their centers
goes through the midpoint of the sides of the corresponding hexagons, or they are not
tightly linked but can be moved continuously so that their shadow disks touch each
other. A tile is fully linked if it is fully linked on all sides. We note that the fully
tightly linked packing (Figure 4) corresponds to a tiling by the original hexagon and
has density 1, and that the tile has area 1 by construction.



1078 L. BOWEN, R. LYONS, C. RADIN, AND P. WINKLER

Fig. 4. Tightly linked tiles.

3. Statement of results. To state our results we need some notation. Let X
be the space of all packings of the plane by the tile t. Given a compact subset K
of the plane and two packings of the plane, we consider the distance between the
two packings with respect to K to be the Hausdorff distance between the unions of
the tiles in the respective packings intersected with K. Then X is endowed with the
topology of Hausdorff convergence on compact subsets; X is compact. Intuitively,
two packings are close in X if they are close in the Hausdorff sense in a large ball
centered at the origin. We shall define a probability measure on X that is “uniform”
on the set of all packings of a fixed density. For this, we shall need the space Xn of
all packings by the tile of the n× n torus R

2/(nZ)2.
For any integer m, let Xn,m ⊂ Xn consist of those packings which contain exactly

m tiles (Xn,m is empty if m is large enough). To each tile, we assign the set of six
unit vectors based on its center and pointing toward the center of each of its edges.
Through this assignment, we can view Xn,m as a subset of Tm

n /Σm, where Tn is the
unit tangent bundle of the n × n torus modulo a 2π/6 rotation and the symmetric
group Σm acts by permuting the factors.

When m/n2 is small, Xn,m is (3m)-dimensional. However, when m/n2 is suffi-
ciently large, the dimension of Xn,m inside Tm

n /Σm is less than 3m. This is because
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Fig. 5. Loosely linked tiles.

at least two tiles in any packing of Xn,m will have to be tightly linked, so that it is
impossible to move one continuously without moving the other. Thus, it is useful to
decompose Xn,m into a (finite) disjoint union of sets Xn,m,k of packings containing
exactly k tight links. Generically, the dimension of Xn,m,k is 3(m−k). The dimension
can be strictly less than this if the packings are jammed in the sense of [4], although
this fact will not be important for us. The top dimension of Xn,m means the maxi-
mum dimension of all Xn,m,k. Let μn,m be the probability measure on Xn,m obtained
by normalizing the Hausdorff measure on Xn,m in the top dimension of Xn,m with
respect to the natural metric inherited from Tm

n /Σm. We interpret μn,m as being a
uniform measure. The fact that μn,m is supported on those packings with the fewest
tight links will be crucial in the analysis to follow.

Let X̃n be the space of all (n×n)-periodic packings of the plane. In other words,

X̃n consists of those packings that are preserved under translations by nZ×nZ. Under
the quotient map, this space is naturally identified with Xn. Therefore, we can view
the measures μn,m as living on X̃n ⊂ X.

For a fixed density d ∈ [0, 1], let μ(d) be any measure obtained as the weak* limit
of measures of the form μn,m such that n → ∞ and m/n2 → d. (Note that m/n2

is the density of every packing in the support of μn,m and d is the average density
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of a packing chosen with respect to μ(d); see Lemma 5.1.) A priori, μ(d) may not be
unique, although we shall prove that it is for large enough d.

A linked component of a packing is a maximal subpacking in which for every
two tiles t, t′, there is a sequence t = t1, t2, . . . , tn = t′ such that ti is linked to ti+1

(i = 1, . . . , n − 1). A tightly linked component is defined similarly, except that we
require ti to be tightly linked to ti+1.

We say that a measure on the space X of packings is invariant if it is preserved un-
der the full isometry group of the plane. All the measures we consider are probability
measures unless stated otherwise.

Let λ0 be the unique invariant measure on tilings (packings that cover R
2) by

our tile. Let λ1 be the unique invariant measure on packings by t such that all tiles
are fully loosely linked, are as close as possible to each other, and the packing has
hexagonal symmetry. Write λs := sλ1 + (1 − s)λ0.

Our main results are the following.
Theorem 3.1. There exists 0 < d1 < 1 such that if d ≥ d1, μ

(d) is unique and
equals λs, where s := (1 − d)/(1 − d1).

Corollary 3.2. The μ(d)-probability that the origin is inside a tile belonging to
an infinite linked component is nonzero for d ≥ d1.

Proposition 3.3. For some d2 > 0, the probability (with respect to any μ(d) for
any d < d2) that the origin is inside an infinite linked component is zero.

4. Tile properties.
Lemma 4.1. For small ρ, if tiles t1 and t2 are not tightly linked and do not

overlap, then the distance between their centers is at least 2r + 2ρ.
Proof. Consider the line segment from the center of t1 to the center of t2. If

this segment traverses near a corner of t1 or t2, then it must be longer than 2r + 2ρ
for small enough ρ. Suppose it crosses a fringe of t1 and of t2. If the tiles are not
linked, then the claim is obvious. If they are linked, then to minimize the distance,
it must be that their fringes match up (so they are fully linked on one side). Thus,
they can come closest to each other when pushed flat up against each other so that
their shadow disks touch. In this case, the distance between the centers is exactly
2r + ρ.

We shall say that two tiles are densely loosely linked if they are loosely linked and
their shadow disks touch. There is a unique invariant measure on maximally dense
packings by congruent disks [3]. Hence the probability measure λ1 that we defined
earlier is the unique invariant measure on packings by t such that all tiles are fully
and densely loosely linked. Let d1 be the density of such a packing.

Given a tile t in a packing P , we denote by V (t) the Voronoi cell of the center of
t with respect to the centers of the other tiles; that is, V (t) is the open set of points
closer to the center of t than to the center of any other tile. We denote the area of a
region A of the plane by |A|.

Lemma 4.2. The following holds for small enough ρ > 0. For any packing
P , if t ∈ P is a tile that has no tight links, then the area of V (t) is at least 1/d1.
Moreover, equality holds iff the configuration of tiles determining V (t) is congruent to
a corresponding configuration of a packing in the support of λ1.

Proof. For a tile t, let H(t) denote the hexagon from which t is created. For
x > 0, let Hx(t) denote the homothetic copy r+x

r H(t) about the center of H(t).
Suppose t is a tile of P without any tight links. Consider the rays R1, . . . , R6 from

the center of the hexagon H(t) through each of its six vertices. These rays divide the
plane into six sectors, S1, . . . , S6.
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By construction, if t and t1 are loosely linked, then |Hρ(t)∩Hρ(t1)| = O(ρ2): The
hexagon interiors do not intersect if they are parallel, while if they are not parallel,
they can intersect only very slightly at a corner. The openings at which a corner can
enter have area O(ρ2) as ρ → 0.

Thus, we have proved that whenever t is loosely linked in the sector Si, then
|V (t) ∩ Si| ≥ |Hρ(t)|/6 − δ1, with δ1 = O(ρ2) as ρ → 0.

Similarly, if t and t2 are not linked at all, then |H2ρ(t)∩H2ρ(t2)| = O(ρ2): Again,
their interiors do not intersect if they are parallel, while if they are not parallel, they
can intersect only very slightly at a corner. So there exists δ2 > 0 such that whenever
t is not linked in the sector Si, we have |V (t)∩Si| ≥ |H2ρ(t)|/6− δ2, with δ2 = O(ρ2)
as ρ → 0.

Therefore, if t has no tight links but is not fully linked, then

|V (t)| ≥ j
( |Hρ(t)|

6
− δ1

)
+ (6 − j)

( |H2ρ(t)|
6

− δ2

)

for some j with 0 ≤ j ≤ 5. Given that δ1, δ2 are of order ρ2 while |H2ρ(t)| − |Hρ(t)|
is of order ρ, for ρ small enough we may conclude that |V (t)| > |Hρ(t)| in this case.

On the other hand, the geometry of a tile is such that for small ρ, if t1 and
t2 are two tiles loosely linked to t, then t1 cannot be tightly linked to t2. Now
suppose that t is fully loosely linked. Then the Voronoi cell of the center of t is
determined by six tiles t1, . . . , t6 all loosely linked to t and all with the property that
their shadow disks D,D1, . . . , D6 do not overlap (by the previous lemma). It follows
[6] that |V (t)| ≥ |Hρ(t)|, with equality iff each of the disks D1, . . . , D6 touches D. But
there is only one way in which this can occur (up to isometry). So V (t) = Hρ(t) in this
case. This implies that the configuration t, t1, . . . , t6 is congruent to a corresponding
configuration of a packing in the support of λ1.

It is easy to see that given ρ > 0, there exists ε > 0 such that for any finite
component c of tightly linked tiles in any packing, the union Vc of the Voronoi cells
of the centers of the tiles of c has area at least jc + εPerc. Here jc is the number
of tiles in c and Perc is the perimeter of the union of hexagons corresponding to c.
Let ε be the largest such constant. Let δ > 0 be such that the area of the Voronoi
cell in the fully densely loosely linked packing equals 1 + εPer1 + δ, where Per1 is the
perimeter of the hexagon of a single tile. Since ε = ρ+O(ρ2) and δ = O(ρ2), we have
the following.

Lemma 4.3. For sufficiently small ρ, there are ε, δ > 0 such that for any finite
tightly linked component c,

d1 =
1

1 + Per1ε + δ
,

|Vc| ≥ jc + εPerc,

and
δ ≤ ε/100.

5. High density. Recall that X is the compact space of all packings of the plane
by the tile (with the topology of Hausdorff-metric convergence on compact subsets).

Let M̃ be the space of isometry-invariant Borel probability measures on X. For any
μ ∈ M̃ , we denote by |μ| := μ(A0) the density of μ, where A0 is the set of all packings
P ∈ X, one of whose tiles contains the origin. Since a tile is the closure of its interior,
A0 is a closed set.
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Lemma 5.1. If μi ∈ M̃ converges to μ in the weak* topology, then |μi| converges
to |μ|.

Proof. Let P̂ denote the union of tiles in a packing, P . For any invariant proba-
bility measure ν and any z ∈ R

2, we have

|ν| =

∫
1{0∈P̂} dν(P ) =

∫
1{z∈P̂} dν(P ).

Integrating over z in a unit-area disk, D, with respect to the Lebesgue measure and
using Fubini’s theorem gives the identity |ν| =

∫
|P̂ ∩ D| dν(P ). Since the function

P 
→ |P̂ ∩D| is continuous on X, the lemma follows.
Recall that λ0 is the unique invariant measure on tilings by our tile, so that

|λ0| = 1. Recalling that d1 is the density of a fully densely loosely linked tiling, fix a
density d with d1 ≤ d ≤ 1. Let μN be the uniform measure on configuration of tiles at
density dN in an N ×N torus, where dN → d as N → ∞. To prove Theorem 3.1, we
shall show that the weak* limit of μN exists and equals λs, where s := (1−d)/(1−d1).

We shall use several lemmas that depend on the following notation. Given a
packing P ∈ X, let

• tP be the tile of P such that the origin belongs to V (tP ) (this exists as long
as the origin is not on the boundary of a Voronoi cell),

• KP be the tightly linked component containing tP ,
• jP be the number of tiles in KP , and
• f(P ) := 3/jP if jP is finite and tP contains the origin, and 0 otherwise.

Thus f(P ), in a sense, measures the number of degrees of freedom per tile near the
origin.

Lemma 5.2. If ν is any measure in M̃ , then
∫
f dν(f) ≤ 3|ν|, with equality iff

tP has no tight links for ν-almost every packing P .
The proof is immediate.
Lemma 5.3. If a sequence 〈νn〉 ⊂ M̃ converges to ν in the weak* topology, then∫

f dνn converges to
∫
f dν.

Lemma 5.3 is proved in a manner similar to Lemma 5.1.
Given a finite tightly linked component c, let the congruence class of c be C and

let XC ⊂ X be the space of all packings P for which tP exists and KP is in C. Let
X ′′ be the space of all packings P with density 1, where “density” refers to the usual
concept of the limit of the proportion of the area of P inside a large disk centered at
the origin as the radius tends to infinity. Let X ′ ⊂ X be the space of all packings
P such that KP is infinite and either the density of P is less than 1, the density is
not defined, or tP does not exist. Thus, X is the disjoint union of X ′, X ′′ and the
collection of XC for all C.

Let ν be any invariant probability measure with density d. Let νC be ν conditioned
on XC , ν′ be ν conditioned on X ′, and ν′′ be ν conditioned on X ′′. Since λ0 is the
only invariant probability measure with support in X ′′, we have ν′′ = λ0. Thus,

ν = ν(X ′)ν′ + ν(X ′′)λ0 +
∑
C

ν(XC)νC .

Define the density |ω| := ω(A0) as before, but for any (invariant or noninvariant)
probability measure ω on X. We have

d = |ν| = ν(X ′) |ν′| + ν(X ′′) +
∑
C

ν(XC) |νC |



A SOLIDIFICATION PHENOMENON IN RANDOM PACKINGS 1083

and ∫
f dν =

∑
C

ν(XC)

∫
f dνC =

∑
C

ν(XC)
3

jC
|νC |,

where jC is the number of tiles in C.
Lemma 5.4. Let ν ∈ M̃ and C be a finite-component class. Suppose that 0 ≤ s ≤

1 is such that |λs| = |νC |. Then
∫
f dλs ≥

∫
f dνC . Moreover, equality holds only if

jC = 1.
Proof. As in the proof of Lemma 5.1, we have that |νC | =

∫
jC/|V (tP )| dνC(P ).

First suppose that jC = 1. Then |νC | =
∫

1/|V (tP )| dνC(P ) ≤ d1 by Lemma 4.2.
This means that s = 1 and

∫
f dνC = 3 |νC | = 3 |λs| =

∫
f dλs.

Now assume that j = jC > 1 and put p := PerC . By definition,∫
f dλs = s

∫
f dλ1 + (1 − s)

∫
f dλ0 = s

∫
f dλ1 = 3sd1.

Since νC(f) = 3|νC |/jC = 3|λs|/jC = 3(sd1 + 1 − s)/j, it suffices to show that

sd1 >
sd1 + (1 − s)

j
,

which is equivalent to

s(jd1 − d1 + 1) > 1.

Now sd1 + (1 − s) = |νC | ≤ j
j+εp , where ε is from Lemma 4.3. Solving for s gives

s ≥
1 − j

j+εp

1 − d1
,

whence it is enough to show that

(jd1 − d1 + 1)
1 − j

j+εp

1 − d1
> 1.

This boils down to

d1(pε + 1) > 1.

Now, j > 1 implies that p ≥ (7/6)Per1, where Per1 is the perimeter of a single tile.
Since ε/100 > δ (by Lemma 4.3), this implies that pε + 1 > 1 + εPer1 + δ = 1/d1,
proving the last inequality.

Lemma 5.5. We have
∫
f dν ≤

∫
f dλs for all ν ∈ M̃ with |ν| = |λs|. Equality

holds only if
• ν(XC) = 0 for every component class C with jC > 1, and
• whenever ν(XC) > 0 and jC = 1, we have |νC | = d1.

Proof. Recall that ∫
f dν =

∑
C

ν(XC)

∫
f dνC .
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For each component class C, let sC be defined as follows:
• If there exists s ∈ [0, 1] such that |νC | = sd1 + (1 − s), then set sC := s;
• otherwise, set sC := 1.

Let ωC := sCλ1 + (1 − sC)λ0 and

σ :=
(
ν(X ′) + ν(X ′′)

)
λ0 +

∑
C

ν(XC)ωC .

From the previous lemma, if |νC | ≥ d1, then
∫
f dνC ≤

∫
f dωC , with equality only if

jC = 1. If |νC | < d1, then sC = 1 and∫
f dνC =

3 |νC |
jC

< 3d1 =

∫
f dωC .

Summing up, we obtain∫
f dσ =

∑
C

ν(XC)

∫
f dωC

≥
∑
C

ν(XC)

∫
f dνC =

∫
f dν.

Moreover, equality holds only if ν(XC) = 0 for every component C with jC > 1 and
|νC | = d1 whenever jC = 1. Since |ωC | ≥ |νC |, we have

|σ| = ν(X ′) + ν(X ′′) +
∑
C

ν(XC) |ωC |

≥ ν(X ′) |ν′| + ν(X ′′) +
∑
C

ν(XC) |νC |

= |ν|
= |λs|.

Since σ and λs are both convex combinations of λ0 and λ1, this implies that
∫
f dσ ≤∫

f dλs with equality iff σ = λs. Thus,
∫
f dν ≤

∫
f dλs. In the equality case we must

have
∫
f dν =

∫
f dσ =

∫
f dλs and σ = λs. This implies that ν(XC) = 0 if jC > 1

and |νC | = d1 if jC = 1.

Lemma 5.6. Let ν ∈ M̃ . If |ν| = |λs|, then
∫
f dν ≤

∫
f dλs. Equality holds iff

ν = λs.
(Informally, λs uniquely maximizes the number of degrees of freedom per tile for

invariant measures of a fixed density.)
Proof. The previous lemma implies

∫
f dν ≤

∫
f dλs. Assume

∫
f dν =

∫
f dλs;

then

ν = ν(X ′)ν′ + ν(X ′′)λ0 + ν(XC)νC ,

where C is the component of size 1 and |νC | = d1. This gives
∫
f dν = ν(XC)3d1 =∫

f dλs = 3sd1. Hence ν(XC) = s. Since ν′ has density strictly less than 1 = |λ0| but
|ν| = |λs|, we must have ν(X ′) = 0. That is,

ν = ν(X ′′)λ0 + ν(XC)νC .

Since ν and λ0 are isometry invariant, νC must also be isometry invariant. By
Lemma 4.2, λ1 is the unique isometry-invariant measure with support in XC and
with density d1. Hence νC = λ1. This implies ν = λs, and the proof is finished.
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Proof of Theorem 3.1. It is easy to see that one can pack the N ×N torus in such
a way that there is a large region of tightly linked tiles and a large region of densely
loosely linked tiles, and in such a way that the interface between the two regions has
a density which approaches zero as N tends to infinity, and the density dN of the
packing PN tends to d. Let ωN be the invariant measure supported on isometric
copies of P̃N (a pull-back of PN to the plane). Then ωN tends to λs in the weak*
topology. By Lemma 5.3, this implies that

∫
f dωN →

∫
f dλs.

Now μN , the uniform measure of density dN on the N × N torus, satisfies∫
f dμN ≥

∫
f dωN . This is because μN is by definition supported on packings

with the maximal number of degrees of freedom for the given density dN . Hence
lim infN

∫
f dμN ≥ lim infN

∫
f dωN =

∫
f dλs.

Therefore, if μ∞ is any weak* subsequential limit of 〈μN 〉N , then
∫
f dμ∞ ≥∫

f dλs. But dN → d, so |μ∞| = |λs| by Lemma 5.1. The previous lemma now
implies that μ∞ = λs.

Returning to the discussion of the introduction, we note that from simulations of
hard disks, one would expect the corollary to hold even for a range of densities below
d1, but we do not know how to prove this.

Remark on higher dimensions. The basic features of our argument can be
generalized to dimension 3 or higher, except for our use in Lemma 4.2 of [6] on the
minimal Voronoi region in disk packings in the plane. It would be of interest if this
part of our proof could be replaced with an argument insensitive to dimension, since
the Voronoi regions of, say, the spheres in a face-centered cubic lattice do not minimize
volume per site [8].

6. Low density. In this final section, we confirm the intuition that at low den-
sities there will be no infinite loosely linked component. It is obvious that there is no
infinite tightly linked component at densities smaller than d1.

We begin with a lemma that holds for any tile shape (in fact, for any collection
of shapes and sizes, as long as each can be fit into a disk of some fixed radius s, and
“density” is interpreted as the number of tiles per unit area).

Lemma 6.1. For small enough density d, if a packing P is drawn from μ(d), then
the probability that the disk BR of radius R about the origin contains more than 9R2d
tile centers goes to zero as R → ∞.

Proof. Let s be the radius of the smallest disk containing the tile (in our case, s
is about 21/2 · 3−3/4 · (1+2ρ)) and choose

0 < d <
.05

13πs2
;

for our zipper tiles with small enough ρ, d ≤ .003 suffices. Let T be the set of tiles
whose centers fall in BR, k := πR2d�, and 
 > 9R2d. Letting μ(d)(·) denote the
probability of an event with respect to the measure μ(d), we shall show that

μ(d)(|T |=
)

μ(d)(|T |=k)
≤ γ�−k

for some constant γ < 1. It then follows that

μ(d)(|T | > 9R2d) ≤ μ(d)(|T |=k)

∞∑
�=�9R2d�

γ�−k ≤ μ(d)(|T |=k)
γ	(9−π)R2d


1−γ
→ 0

as R → ∞, as desired.
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The measure μ(d) is the limit of uniform distributions of configurations on the
N × N torus TN , in turn obtainable by choosing a sequence of n = �N2d� points
from the Lebesgue distribution λ on Tn

N as the centers of the tiles, orienting each
tile independently and uniformly at random, and finally conditioning on no overlap.
We denote by λ(|T |= j) the a priori probability that exactly j points fall inside BR

(which we take to be some fixed disk in the torus).
Let Φ be the event that there is no overlap among the tiles whose centers lie in

BR, and Ψ be the event that there is no overlap involving any tile whose center falls
outside BR. Then

μ(d)(|T |=
)

μ(d)(|T |=k)
=

λ(|T |=
)

λ(|T |=k)
·
λ(Φ

∣∣ |T |=
)

λ(Φ
∣∣ |T |=k)

·
λ(Ψ

∣∣ |T |=
 ∧ Φ)

λ(Ψ
∣∣ |T |=k ∧ Φ)

,

and our job is to bound the three fractions on the right.
For the first, we note that |T | is binomially distributed in the measure λ; hence

λ(|T |=
)

λ(|T |=k)
=

(
n
�

) (
πR2

N2

)� (
1 − πR2

N2

)n−�

(
n
k

) (
πR2

N2

)k (
1 − πR2

N2

)n−k
≤ (n−k)!/(n−
)!


!/k!

(
k
n

1 − k
n

)�−k

<
(n−k)�−k

(
/e)�−k
· k�−k

(n−k)�−k
=

(
ek




)�−k

≤ 0.95�−k

for large R.
The next fraction is easy: Since we may throw the first k centers into BR, then

for the remaining 
−k, we have that

λ(Φ
∣∣ |T |=
)

λ(Φ
∣∣ |T |=k)

is the probability that the additional 
−k centers do not cause a collision, which is at
most 1.

For the (inverse of) the third fraction, we throw n− 
 centers into the region
outside BR, then throw the remaining 
−k. A new point, if it lands at a distance
greater than 2s from any previous point or from the disk BR, causes no new overlap,
and at each stage there are fewer than n−k points already placed. Hence

λ(Ψ
∣∣ |T |=k ∧ Φ)

λ(Ψ
∣∣ |T |=
 ∧ Φ)

>

(
N2 − π(R + 2s)2 − (n−k)4πs2

N2 − πR2

)�−k

≥
(

1 − 4πs2d− 4πsR + 4πs2

N2 − πR2

)�−k

>
(
1 − 13s2d

)�−k

for N � R.
Putting the inequalities together, we have

μ(d)(|T |=
)

μ(d)(|T |=k)
≤

(
.95

1 − 13s2d

)�−k

= γ�−k,

where γ := .95/(1 − 13s2d) < 1 by choice of d.
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Proposition 6.2. For some d2 > 0, the μ(d)-probability that the origin is inside
an infinite connected component of loosely linked tiles is zero for d < d2.

Proof. Let d ∈ (0, .003) be a density to be chosen later. Let P be a packing
drawn from μ(d); we aim to show that the probability that the origin is connected by
a loosely linked chain of tiles of P to some point at distance R approaches zero as
R → ∞.

We again choose some large radius R and let T be the set of tiles of P whose
centers fall inside the disk BR.

Fig. 6. An unlikely configuration of tiles in and around BR.

Fix the positions of the tiles of P \T (the black tiles of Figure 6) and consider the
space of packings having these tiles plus n tiles whose centers fall in BR. We think of
this space as being a subset of T1(BR)n/Σn, where T1(BR) is the unit tangent bundle
of BR (modulo a 2π/6 rotation to take into account the symmetries of the tile) and
the symmetric group acts by permuting the factors.

If αn is the volume (in T1(BR)n/Σn-space) of this space and m < n, then by
packing n−m tiles into BR and then the remaining m in the leftover space, we have

αn ≥ 1(
n

n−m

)αn−m
1

m!

[
π(R− 2s)2 − nπ(2s)2

]m
,

where s is, as before, the radius of the circle circumscribing a tile. This takes into
account possible intrusion of tiles in P − T into BR, and the fact that a tile center at
point x can exclude nearby centers, but only within distance 2s of x.

Let β denote the “wiggle room” of a tile t loosely linked to a stationary tile t′,
that is, the three-dimensional volume of the space of positions of t; then β = O(ρ3)
(but we use only that β is bounded by a constant). If a packing “percolates,” that
is, contains a chain of loosely linked tiles connecting the center to the boundary of
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BR, let t1, . . . , tm be a shortest such chain (the dark grey tiles of Figure 6). Note
that m ≥ R/(2s). For each i > 2, the tile ti is linked to one of the three sides of
ti−1 farthest from the side of ti−1 linked to ti−2, and has wiggle room at most β with
respect to ti−1. Accounting for the orientation of t1 and allowing the remaining n−m
tile centers to fall anywhere in BR, we have that the 3n-dimensional volume of the set
of percolating packings is bounded by (π/3) · 6 · 3m−2 ·βm−1 ·αn−m < 3mβm−1αn−m.

Comparing with the lower bound for αn, we find that given |T | = n ≤ 9dR2, the
probability of percolation is less than

3mβm−1αn−m

αn
≤ 3mβm−1 n!/(n−m)![

π(R− 2s)2 − nπ(2s)2
]m <

(
27βdR2

π
[
(R− 2s)2 − 36dR2s2

]
)m/

β,

which goes to zero as R (thus also m) increases, for suitably chosen d. Since we know
from Lemma 6.1 that μ(d)(|T | ≤ 9dR2) approaches 1 as R → ∞, the proposition
follows.

A more careful argument would prove Proposition 6.2 for any density below
1/
(
4π(2/3

√
3)
)

= .2067+ for sufficiently small ρ, but clearly the probability of perco-
lation will remain 0 for much higher densities than that.

7. A conjecture. We have shown that high-density random packings of zipper
tiles in the plane contain an infinite loosely linked component with positive probability,
while low-density random packings do not. What happens in the case of ordinary
disks, where there is no apparent linking mechanism? We believe, but cannot prove,
the following.

Conjecture. Suppose μ(d) is defined as above, but for geometric disks of radius
1. Join two centers by an edge if their distance is at most 2 + ε for some fixed ε � 1.
Then for sufficiently high-density d below the maximum, the graph resulting from a
configuration drawn from μ(d) will contain an infinite connected component a.s.

This connectedness property can in fact be proven by a standard Peierls-type
argument for large ε. This may be known already, though we do not know a reference;
it is a straightforward extension of the traditional percolation proof to a situation with
a new length scale given by the size of the disks. In general, there is some parameter
set of (ε, d) ⊂ (0,∞) × (0, 1) for which there is an infinite component. For small d or
for large ε, the problem is quite similar to continuum percolation, where one connects
by an edge two points of a Poisson point process if their distance is at most r. Because
of homotheties, one may fix the intensity of the point process to be 1. Then there
is a phase transition in r. Our situation is quite different in that we really have two
parameters, due to the size of the disks, but our conjecture is that there is a phase
transition in d for every ε nevertheless.

There is a fundamental difference between the connectedness property for small
ε and for large ε. An infinite set of disks connected or linked in the sense of small
ε would resist shearing in a sense not true for a set linked only in the sense of large
ε. We prove the connectedness property for the zipper model for small ε, using in an
essential way special features of the nonconvex zipper tiles.

Acknowledgment. We gratefully acknowledge learning of [11] from an anony-
mous referee.
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Abstract. We prove existence and multiplicity of small amplitude periodic solutions for the
wave equation with small “mass” and odd nonlinearity. Such solutions bifurcate from resonant finite
dimensional invariant tori of the fourth order Birkhoff normal form of the associated Hamiltonian
system. The number of geometrically distinct solutions and their minimal periods go to infinity when
the “mass” goes to zero. This is the first result about long minimal period for the autonomous wave
equation.
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1. Introduction and main results. Let us consider the nonlinear wave equa-
tion on the interval [0, π] with Dirichlet boundary conditions

(1)

⎧⎨
⎩

utt − uxx + μu + f(u) = 0,

u(t, 0) = u(t, π) = 0,

where μ > 0 and f(0) = f ′(0) = 0.
Equation (1) can be studied as an infinite dimensional Hamiltonian system. De-

noting v = ut, the Hamiltonian is

H(v, u) =

∫ π

0

(
v2

2
+

u2
x

2
+ μ

u2

2
+ g(u)

)
dx,

where g =
∫ u

0
f(s)ds. The Hamiltonian equations are

ut =
∂H

∂v
= v, vt = −∂H

∂u
= uxx − μu− f(u).

Introducing coordinates q = (q1, q2, . . .), p = (p1, p2, . . .) through the relations

(2) v(x) =
∑
i≥1

√
ωipiχi(x), u(x) =

∑
i≥1

qi√
ωi

χi(x),

where χi(x) :=
√

2/π sin ix and ωi :=
√

i2 + μ, the Hamiltonian takes the form

(3) H =
1

2

∑
i≥1

ωi(q
2
i + p2

i ) + higher order terms.
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Since we are interested in small amplitude periodic solutions, the higher order terms in
(3) may be neglected in first approximation, and we can consider only the Hamiltonian
Λ :=

∑
i≥1 ωi(q

2
i + p2

i )/2. The origin is an elliptic equilibrium point for Λ, and the
Λ-orbits are the superpositions of the harmonic oscillations qi(t) = Ai cos(ωit + ϕi)
of the basic modes χi, where Ai ≥ 0, ϕi ∈ R, and ωi are, respectively, the amplitude,
the phase, and the frequency of the ith harmonic oscillator ωi(q

2
i + p2

i )/2, i ≥ 1.
Analogously, by neglecting the term f(u) in (1), we see that every solution of the

linear equation utt − uxx + μu = 0 is of the form

(4) u(t, x) =
∑
i≥1

ai cos(ωit + ϕi) sin ix,

with ai = Ai

√
2/πωi ≥ 0. These solutions, in general, are periodic if only one basic

mode is excited, namely, if ai = 0 for any i �= i0, for a suitable i0 ≥ 1, while ai0 > 0. If
two basic modes are excited, the situation changes: Except a countable set of μ > 0,
for any I := {i1, . . . , iN} ⊂ N

+, N ≥ 2, the vector ω := (ωi1 , . . . , ωiN ) is rationally
independent,1 and, therefore, any solutions of the form

∑
i∈I ai cos(ωit+ ϕi) sin ix is

quasi periodic. Consequently, if at least two amplitudes in (4) are different from zero,
the solution u(t, x) cannot be periodic. One can conclude that, except a countable set
of μ > 0, the only periodic solutions of utt − uxx + μu = 0 are of the form u(t, x) =
ai0 cos(ωi0t + ϕi0) sin i0x, for i0 ≥ 1.

In light of these considerations, a natural way to find periodic solutions of (1) (see,
for example, [K87], [W90], [K93], [CW93], [Bou99], [B00]) is to extend the Lyapunov
center theorem for finite dimensional Hamiltonian systems in a neighborhood of an
elliptic equilibrium. Namely, for any fixed i0 ≥ 1, one constructs a family of small
amplitude periodic orbits of the Hamiltonian H bifurcating from the i0th basic mode.
This can be done since, for μ far away from zero, the linear frequency ωi0 is not
resonant with the other ones. The frequencies ω̃ of the solutions will be close to the
linear frequency ω := ωi0 , and the corresponding periods 2π/ω̃ will be close to the
linear period 2π/ω.

Here we look for solutions having large minimal period. Such solutions are inter-
esting as examples of the complexity of the dynamics and because they come up only
as nonlinear phenomena.

A classical way to find long-period orbits, close to an elliptic equilibrium point2

in finite dimensional systems, was carried out by Birkhoff and Lewis in [BL34] (see
also [L34], [Mo77]). Their procedure consists of putting the system into fourth order
Birkhoff normal form: the truncated Hamiltonian obtained by neglecting the five or
higher order terms is integrable. If the so-called “twist” condition on the action-to-
frequency map holds, there exist infinitely many resonant tori on which the motion
of the truncated Hamiltonian is periodic. By the implicit function theorem and topo-
logical arguments, Birkhoff and Lewis showed the existence of a sequence of resonant
tori accumulating at the origin with the property that at least two periodic orbits
bifurcate from each of them.

In our paper we apply the Birkhoff–Lewis procedure to the nonlinear wave
equation seen as an infinite dimensional Hamiltonian system. Such an extension to
the Hamiltonian PDEs was recently carried out in [BaB] for the beam equation and
the nonlinear Schrödinger (NLS) equation (see Remark 3.9 below for comparison).

1See Lemma A.1 in the appendix for a proof.
2Actually [BL34] considers a neighborhood of an elliptic, nonconstant, periodic orbit, but the

scheme is essentially the same for elliptic equilibria.
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We point out that, in the infinite dimensional case, one meets two difficulties
that do not appear in the finite dimensional case: the generalization of the Birkhoff
normal form, and a small divisors problem. Concerning the first difficulty, we consider
only a “seminormal form” following [P96]. We suppose that f is a real analytic odd
function f =

∑
m≥3 fmum with f3 �= 0 and fix a finite subset I ⊂ N. Then we put

the Hamiltonian H in (3) into the form

H = Λ + Ḡ + Ĝ + K,

where Λ =
∑

i≥1 ωi(p
2
i + q2

i )/2, Ḡ + Ĝ is the fourth order term, with Ḡ depending

only on the “actions” Ji :=(p2
i + q2

i )/2, i ∈ N
+, and Ĝ depending only on pi, qi, i /∈ I,

and K is the sixth order term. However, to put the Hamiltonian into normal form,
the linear frequencies ωi must satisfy a suitable nonresonance condition (see Lemma
2.6), which deteriorates for μ going to zero.

The truncated Hamiltonian Λ + Ḡ + Ĝ possesses the 2N -dimensional invariant
manifold {pi = qi = 0, i /∈ I}, which is foliated by N -dimensional invariant tori.
Due to the “twist” property of Ḡ, which follows from f3 �= 0, the linear frequencies
of such tori are an open set of R

N . We focus on completely resonant frequencies
ω̃ := (ω̃i1 , . . . , ω̃iN ), namely, ω̃’s such that there exist T ’s with ω̃T/2π ∈ Z

N . Then
the (Λ + Ḡ + Ĝ)-flow on the associated N -dimensional tori is periodic with periods
T . Such lower dimensional tori are highly degenerate. Hence, in order to show the
persistence of periodic orbits for the whole Hamiltonian H, we have to impose some
nondegeneracy conditions to avoid resonances between the torus frequencies and the
frequencies of the normal oscillations. This is the point in which the small divisors
problem appears.

The estimate on the small divisors is the crucial step. To overcome this problem,
we have decided to impose a strong condition on the small divisors, avoiding KAM
analysis (see Remark 3.12). For such a (technical) reason we can consider only periods
T which are multiples of 2π (as in the classical variational approach of Rabinowitz,
Brezis, Nirenberg, etc.), and we also need∣∣∣∣μ T

2π
− 2m

∣∣∣∣ ≥ 1

2
∀m ∈ N

and

μ2T � 1.

We will denote by T the set of periods verifying the above properties.

Therefore we consider the “mass” μ > 0 as a small parameter and we make our
analysis perturbative with respect to it. On the other hand, for μ → 0 the frequencies
ωi tend to the completely resonant frequencies i, and the above described normal
form degenerates in the sense that its domain of definition shrinks to zero while the
remainder term K blows up.

We note that the set T of admissible periods is finite, but its cardinality goes to
infinity, when μ goes to zero. μ2-close to ω = (ωi1 , . . . , ωiN ), we construct a set of
completely resonant frequencies ω̃ = ω̃(T ) ∈ R

N , parametrized by the periods T ∈ T ,
with ω̃T/2π ∈ Z

N . At the same time, we construct a set of actions J̃i = J̃i(T )
≈ μ2, i ∈ I, parametrized by T ∈ T , such that ω̃i is the image of J̃i through the
action-to-frequency map ∂JiH on {pi = qi = 0, i /∈ I}. We will prove the existence
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of T -periodic solutions of H, μ2-close to the T -periodic solutions of the truncated
Hamiltonian Λ + Ḡ + Ĝ defined as

(5)

{
pi(t) =

√
2J̃i sin(ω̃it + ϕi), qi(t) =

√
2J̃i cos(ω̃it + ϕi) for i ∈ I,

pi(t) = qi(t) = 0 for i ∈ Ic,

where the angles ϕi, i ∈ I, have to be determined.
We perform a Lyapunov–Schmidt reduction as in [BBiV], [BaB], splitting the

problem into two equations: the kernel (or bifurcation) equation on the N -dimensional
torus {ϕi1 , . . . , ϕiN } and the range equation on its orthogonal space. We first solve
the infinite dimensional range equation by the contraction mapping theorem, using
the above estimate on the small divisors and controlling the blow-up of the remainder
term K for μ going to zero. Critical points of the action functional restricted to
the solutions of the range equation satisfy the kernel equation. Since the restricted
action functional is defined on an N -dimensional torus, existence of critical points
and, therefore, of solutions of H, follows.

Before stating our main result, we return to the PDE formulation. Recalling (2)
and (5), for every T ∈ T , we find T -periodic solutions of (1), μ2-close to the T -periodic
“pseudosolution”

ũ(t, x) := μ
∑
i∈I

ai cos(ω̃it + ϕi) sin ix,

where μai :=
√
J̃i/πωi, ai ≈ 1. We note that the minimal period of ũ is T̃min =

T/gcd(ki1 , . . . , kiN ), where ki := ω̃iT/2π ∈ N, for i ∈ I. Since ω̃ is μ2-close to the
rationally independent3 frequency ω, T̃min will be large for μ small. Because u− ũ ≈
μ2, we obtain an analogous estimate on the minimal period Tmin of u. Not all the
solutions of (1), corresponding to different T ’s belonging to T , have to be geometrically
distinct. However, by the very precise estimate u − ũ ≈ μ2, we prove that the total
number of geometrically distinct solutions found here is also large for μ small.

We now state our main result.
Theorem 1.1. Let f be a real analytic, odd function of the form f(u) =∑

m≥3 fmum, f3 �= 0. Let N ≥ 2 and I := {i1, . . . , iN} ⊂ N
+. Then there exists

a constant 0 < c = c(I) < 1 such that, if 0 < μ ≤ c, there exist at least c/μ
geometrically distinct smooth periodic solutions u(t, x) of (1), verifying

(6) sup
t∈R, x∈[0,π]

∣∣∣∣∣u(t, x) − μ
∑
i∈I

ai cos(ω̃it + ϕi) sin ix

∣∣∣∣∣ ≤ c−1μ2,

for suitable ai ≥ c, ϕi ∈ R, and ω̃i ∈ R, verifying

(7) |ω̃i − ωi| ≤ c−1μ2.

The minimal period Tmin of any solution belongs to πQ and satisfies

(8)
c

μ
≤ Tmin ≤ c

μ2
.

Remark 1.1. The solutions u(t, x) found in Theorem 1.1 are infinitely differen-
tiable. Actually, they are analytic in the spatial variable. Estimate (6) can be im-
proved and, in particular, one can obtain analogous estimates on the derivative of u

3Except a countable set of μ’s.



1094 LUCA BIASCO AND LAURA DI GREGORIO

of any order k ≥ 1. However, in this case, the constant c will depend on k. See also
Remark 3.19 for further details.

We stress that this is the first result about periodic solutions of large minimal
period for the autonomous nonlinear wave equation (for a different type of results on
large minimal period, in the forced case, see [T]).

We also mention the following substantial difference between the periodic solu-
tions found by analogy of the Lyapunov center theorem and the theorems we construct.
The “Lyapunov-type” orbits are obtained as the continuation of one linear mode to
the nonlinear system; they involve only one of the linear harmonic oscillators, and the
amplitudes on the other modes are much smaller (except in the resonant case μ = 0,
discussed in [BP01], [BBo03], [BBo04], [BBo06]). On the other hand, the periodic
solutions constructed here involve N ≥ 2 harmonic oscillators, oscillating with the
same order of magnitude, and are a truly nonlinear phenomenon, as they do not have
any analogue in the linear case, where all periodic orbits are the oscillation of only
one basic mode and do not have long minimal period (see also [BBiV], [BaB]).

The results proved here have been announced in [BDG].

2. Hamiltonian setting and Birkhoff normal form. We study (1) as an
infinite dimensional Hamiltonian system with coordinates u and v = ut. Denoting
g =

∫ u

0
f(s)ds, the Hamiltonian is

H(v, u) =

∫ π

0

(
v2

2
+

u2
x

2
+ μ

u2

2
+ g(u)

)
dx.

The equations of motion are

ut =
∂H

∂v
= v, vt = −∂H

∂u
= uxx − μu− f(u).

Let us rewrite the Hamiltonian in infinite coordinates (p, q) ∈ �a,s × �a,s, where

�a,s = �a,s(R) :=

{
q = (q1, . . .), qi ∈ R, i ≥ 1 s.t. ‖q‖2

a,s =
∑
i≥1

|qi|2i2se2ai < ∞
}
,

by the transformation

(9) v = S ′p =
∑
i≥1

√
ωipiχi, u = Sq =

∑
i≥1

qi√
ωi

χi,

with ωi =
√
i2 + μ and χi =

√
2/π sin ix. We get

(10) H = Λ + G =
1

2

∑
i≥1

ωi(q
2
i + p2

i ) +

∫ π

0

g(Sq) dx,

where we denote with Λ the integrable part and with G the nonintegrable part. The
equations of motion are

(11) ṗi = −∂H

∂qi
= −ωiqi −

∂G

∂qi
, q̇i =

∂H

∂pi
= ωipi

with respect to the symplectic structure
∑

dpi ∧dqi on �a,s× �a,s. Here, “ ˙ ” denotes
the time derivative.
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For k ∈ N, we consider the space Ck(R, �a,s) of all the functions R � t �→ q(t) ∈
�a,s with finite norm

(12) ‖q‖Ck(R,�a,s) :=

k∑
h=0

sup
t∈R

‖∂h
t q(t)‖a,s.

Similarly, for a Ck function R � t �→
(
p(t), q(t)

)
∈ �a,s × �a,s we consider the norm

‖(p, q)‖Ck(R,�a,s×�a,s) := ‖p‖Ck(R,�a,s) + ‖q‖Ck(R,�a,s).

Lemma 2.1. Let us assume that a > 0 and that s is arbitrary. Let be R � t �→(
p(t), q(t)

)
∈ �a,s × �a,s a solution of (11) of class Ck, 2 ≤ k ≤ ∞; then

(13) u(t, x) :=
∑
i≥1

qi(t)√
ωi

χi(x)

is a classical solution of (1) of class Ck.
Proof. See the appendix.
Let us note that χi, for i ≥ 1, is a complete orthonormal basis for the L2 functions

on [0, π], but not for all analytic functions on [0, π]. Indeed, only the analytic functions
on [0, π], whose odd extension on [−π, π] is still analytic, can be expanded in sine-series
converging in the analytic norm ‖ · ‖a,s.

We now discuss the regularity of the Hamiltonian vectorfield generated by G
in (10). Let us consider �2b and L2, which are, respectively, the Hilbert spaces of
all bi-infinite, square-integrable sequences with complex coefficients and all square-
integrable complex valued functions on [−π, π]. To identify the two spaces we can
consider the inverse discrete Fourier transform,

F : �2b → L2, q �→
[
Fq
]
(x) :=

1√
2π

∑
i∈Z

qie
iix,

which defines an isometry between the two spaces. Let a ≥ 0 and s ≥ 0. The
subspaces �a,sb ⊂ �2b contain all bi-infinite sequences, whose norm is defined by

‖q‖2
a,s := |q0|2 +

∑
i∈Z

|qi|2|i|2se2a|i|.

In this way we obtain, through the Fourier transform F , the subspaces W a,s ⊂ L2

endowed with the norm

‖Fq‖a,s = ‖q‖a,s.

For a > 0, the subspaces W a,s consist of all 2π-periodic functions which are analytic
and bounded in the complex strip |Imz| < a with trace functions on |Imz| = a
belonging to the standard Sobolev space Hs. In this way, we obtain an orthonormal
basis for all analytic functions on [0, π].

The following two results were proved in [P96].
Lemma 2.2. For a ≥ 0 and s > 1/2, the space �a,sb is a Hilbert algebra with

respect to convolution of the sequences

‖q ∗ p ‖a,s ≤ const ‖q‖a,s ‖p ‖a,s

with a constant depending only on s.
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Lemma 2.3. For a ≥ 0 and s > 0, the gradient Gq := ( ∂G
∂q1

, ∂G
∂q2

, . . .) is a real

analytic map from a neighborhood of the origin in �a,s into �a,s+1. Moreover,

‖Gq‖a,s+1 = O(‖q3‖a,s).

In light of these considerations, we have the real analytic Hamiltonian H in (10),
defined in some neighborhood of the origin in the Hilbert space �a,s×�a,s with standard
symplectic structure

∑
i≥1 dpi∧dqi. The parameters a and s may be fixed arbitrarily;

in particular we take a > 0 and s > 1. The term G is independent of p, so the
associated Hamiltonian vectorfield,

XG :=
∑
i≥1

(
∂G

∂pi

∂

∂qi
− ∂G

∂qi

∂

∂pi

)
,

is smoothing of order 1; that is, it defines a real analytic map from �a,s × �a,s into
�a,s+1 × �a,s+1. In particular, for the nonlinearity u3 one finds

G =
1

4

∫ π

0

|u(x)|4 dx =
1

4

∑
i,j,k,l

Gijklqiqjqkql

with

Gijkl =
1

√
ωiωjωkωl

∫ π

0

χiχjχkχl dx.

In [P96] it is proved that Gijkl = 0, unless i± j ± k ± l = 0, for some combination of
plus and minus signs. In particular,

(14) Giijj =
1

2π

2 + δij
ωiωj

.

From now on, we focus our attention on the nonlinearity f(u) = u3, since terms of
order five or more do not make any difference.

2.1. Partial Birkhoff normal form. For the rest of this paper we introduce
the complex coordinates

(15) zi =
1√
2
(qi + ipi), z̄i =

1√
2
(qi − ipi)

that live in the now complex Hilbert space

�a,s = �a,s(C) :=

{
z = (z1, . . .), zi ∈ C, i ≥ 1 s.t. ‖z‖2

a,s =
∑
i≥1

|zi|2i2se2ai < ∞
}
,

with symplectic structure −i
∑

i≥1 dzi ∧ dz̄i =
∑

i≥1 dpi ∧ dqi. The Hamiltonian be-
comes

(16) H = Λ + G =
∑
i≥1

ωi|zi|2 + G(z, z̄),

where, with abuse of notation, we have still denoted by G the function G(z, z̄) =
G(p, q). The Hamiltonian equations write ż = −i∂z̄H, ˙̄z = i∂zH. The Hamiltonian H
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is real analytic. Real analytic means that H is a function of z and z̄, real analytic
in the real and imaginary parts of z; we denote by A(�a,s, �a,s+1) the class of all real
analytic maps from some neighborhood of the origin in �a,s into �a,s+1.

Notation. Given a finite subset I = {i1, . . . , iN} of N
+, we will denote by ẑ

the infinite vector obtained by excising z = (z1, z2, . . .) of its I-components, namely,
ẑ := (. . . , zi1−1, zi1+1, . . . , zij−1, zij+1, . . . , ziN−1, ziN+1, . . .) = (zi)i∈Ic , where Ic :=
N

+ \ I. The symbol “∨” will mean “or” in the sense of the Latin “vel”; for example,
i∨ j ∈ I means that one of the following three cases holds: (1) i ∈ I, j /∈ I; (2) i /∈ I,
j ∈ I; (3) i, j ∈ I. Fix a > 0, s > 1. We will denote by const > 0 and 0 < ci < 1,
i = 1, 2, . . . , suitable constants depending only on I, a, s; moreover, y = O(x) means
that |y| ≤ constx. In the following, we will often omit the explicit expressions for z̄,
since they can be derived by analogous expressions for z.

Next, following [P96], we transform the Hamiltonian H in (16) into some partial
Birkhoff normal form of order four so that, in a small neighborhood of the origin, it
appears as a perturbation of a nonlinear integrable system. However, as we have just
said in the introduction, the normal form degenerates when μ is close to zero, in the
sense that its domain shrinks to zero and the remainder blows up. Then, we need a
quantitative version of the Birkhoff normal form, in which we explicitly investigate
the dependence on μ, for μ small. Such an analysis is not available in literature.

Proposition 2.4 (Birkhoff normal form). Let be 0 < μ < 1, I ⊂ N
+. There

exists a real analytic, close to the identity, symplectic change of coordinates z := Γ(z∗)
defined in Br ⊂ �a,s into B2r ⊂ �a,s with

(17) r := c1
√
μ,

verifying

(18) ‖z − z∗‖a,s+1 = O

(
‖z∗‖3

a,s

μ

)
,

transforming the Hamiltonian H = Λ + G in (16) into seminormal form up to order
six. That is,

H ◦ Γ = Λ + Ḡ + Ĝ + K,

where

(19) XḠ, XĜ, XK ∈ A(�a,s, �a,s+1),

Ḡ =
1

2

∑
i∨j ∈I

Ḡij |z∗i|2|z∗j |2,

with uniquely determined coefficients Ḡij = (3/8π) (4 − δij/ωiωj), and

|Ĝ| = O(‖ẑ∗‖4
a,s), |K| = O

(
‖z∗‖6

a,s

μ

)
.

Remark 2.5. It is worth pointing out that the Hamiltonian Λ + Ḡ is integrable
with integrals |z∗i|2, i = 1, 2, . . . . Moreover, although the fourth order term Ĝ is not
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integrable, it depends only on ẑ∗ := (z∗i)i∈Ic ; namely, it is independent of the I-
modes.

Proof. Let us introduce another set of coordinates (. . . , w−2, w−1, w1, w2, . . .) in
�a,sb defined by z∗i = wi and z̄∗i = w−i. The Hamiltonian becomes

H = Λ + G

=
∑
i≥1

ωi z∗iz̄∗i +
1

16

∑
i,j,k,�

Gijk�(z∗i + z̄∗i) · · · (z∗� + z̄∗�)

=
∑
i≥1

ωi wiw−i +
1

16

∑
i,j,k,�

′
Gijk� wiwjwkw�,

where the prime means that the summation is over all nonzero integers. The coef-
ficients are defined for arbitrary integers by setting Gijk� = G|i|,|j|,|k|,|�|. We notice
that Gijkl = 0, unless i± j±k± l = 0, for some combination of plus and minus signs.
The transformation Γ is obtained as the time-1-map of the flow of the Hamiltonian
vectorfield XF given by a Hamiltonian

(20) F =
∑
i,j,k,�

′
Fijk� wiwjwkw�,

with coefficients

(21) iFijk� =

⎧⎨
⎩

Gijk�

16(ω′
i + ω′

j + ω′
k + ω′

�)
for

(i, j, k, �) ∈ LI
NI

,

0 otherwise.

Here ω′
i = sign i · ω|i|,

LI =
{

(i, j, k, �) ∈ Z
4 s.t. |i| ∨ |j| ∨ |k| ∨ |�| ∈ I

}
,

and NI ⊂ LI is the subset of all (i, j, k, �) = (p,−p, q,−q) or some permutation of
it. For these indices the denominator ω′

i + ω′
j + ω′

k + ω′
� vanishes identically in μ. In

[P96] the following is proved.
Lemma 2.6. Let i, j, k, � be nonzero integers such that i ± j ± k ± l = 0, but

(i, j, k, �) �= (p,−p, q,−q); then

|ω′
i + ω′

j + ω′
k + ω′

�| ≥
constμ

(M2 + μ)3/2
, M = min(|i|, . . . , |�|),

with some absolute const > 0.
Moreover, we note that F is real. Indeed,

F̄ =
∑
i,j,k,�

′
F ijk� w̄iw̄jw̄kw̄�

=
∑
i,j,k,�

′
i

Gijk�

ω′
i + ω′

j + ω′
k + ω′

�

w−iw−jw−kw−�

= −
∑
i,j,k,�

′
i

Gijk�

ω′
i + ω′

j + ω′
k + ω′

�

wiwjwkw� = F,
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where we used that Gijk� = G−i,−j,−k,−� = G|i|,|j|,|k|,|�| and ω′
−i = −ω′

i. Expanding
at t = 0 with the Taylor’s formula we obtain

H ◦ Γ = H ◦Xt
F

∣∣
t=1

= H + {H,F} +

∫ 1

0

(1 − t)
{
{H,F}, F

}
◦Xt

F dt

= Λ + G + {Λ, F} + {G,F} +

∫ 1

0

(1 − t)
{
{H,F}, F

}
◦Xt

F dt,

where {·, ·} denote the Poisson brackets. We can compute

{Λ, F} = −i
∑
i,j,k,�

′
(ω′

i + ω′
j + ω′

k + ω′
�)Fijk� wiwjwkw�;

thus

G + {Λ, F} =
1

16

( ∑
(i,j,k,�)∈NI

+
∑

(i,j,k,�)/∈LI

Gijk� wiwjwkw�

)
= Ḡ + Ĝ,

where Ĝ is independent of the I-coordinates.
In the variables z∗,z̄∗ we find, from (14) and counting the multiplicities, that

Ḡ =
1

2

∑
i∨j∈I

Ḡij |z∗i|2|z∗j |2,

with uniquely determined coefficients

(22) Ḡij =

⎧⎪⎪⎨
⎪⎪⎩

24Giijj =
3

2π

1

ωiωj
for i �= j,

12Giiii =
9

8π

1

ωiωj
for i = j.

Hence, we have H ◦ Γ = Λ + Ḡ + Ĝ + K, where

(23) K = {G,F} +

∫ 1

0

(1 − t)
{
{H,F}, F

}
◦Xt

F dt

is composed by all the terms of order six or more.
Claim. The vectorfield of the Hamiltonian F is analytic, that is

(24) XF ∈ A(�a,sb , �a,s+1
b ).

In fact, from Lemma 2.6, it results in∣∣∣∣ ∂F∂w�

∣∣∣∣ ≤∑′

±i±j±k=l
|Fijk�| |wiwjwk|

≤ const

μ
√
�

∑′

±i±j±k=l

|wiwjwk|√
|ijk|

≤ const

μ
√
�

∑′

i+j+k=l
w̃iw̃jw̃k =

const

μ
√
�

(w̃ ∗ w̃ ∗ w̃)�,
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where w̃i=
|wi|+|w−i|√

|i|
. If w ∈ �a,sb , then w̃ ∈ �

a,s+1/2
b , which is a Hilbert algebra for s > 0

by Lemma 2.2; thus w̃ ∗ w̃ ∗ w̃ also belongs to �
a,s+1/2
b . Therefore Fw ∈ �a,s+1

b , with

(25) ‖Fw‖a,s+1 ≤ const

μ
‖w̃ ∗ w̃ ∗ w̃‖a,s+1/2 ≤ const

μ
‖w̃‖3

a,s+1/2 ≤ const

μ
‖w‖3

a,s.

The analyticity of Fw follows from the analyticity of each component function and its
local boundedness, proving (24). From (24) and (25) it follows that the Hamiltonian
flow Xt

F is well defined, in a sufficiently small neighborhood of the origin in �a,s for

all 0 ≤ t ≤ 1; in particular, by (25), for
‖w‖a,s

2 = ‖z∗‖a,s ≤ r the map Γ := X1
F verifies

(26) ‖Γ(z∗) − z∗‖a,s+1 ≤ const

μ
‖z∗‖3

a,s ≤ const c31
√
μ ≤ c1

√
μ = r,

taking c1 small enough in (17). In the same way (taking c1 small enough),

‖DΓ − I‖op
a,s+1,s ≤

const

μ
r2 = const c21 ≤ 1

2
,

where the operator norm ‖ · ‖op
a,r,s, is defined by

‖ · ‖op
a,r,s = sup

w 
=0

‖Aw‖a,r
‖w‖a,s

.

Accordingly, Γ : �a,s ⊃ Br → B2r ⊂ �a,s is a real analytic, symplectic change
of coordinates, and (18) follows from (26); moreover, since ‖DΓ − I‖op

a,s+1,s+1 ≤
‖DΓ − I‖op

a,s+1,s, DΓ defines an isomorphism of Br ⊂ �a,s+1. It follows that with

XH ∈ A(�a,s, �a,s+1), we also have

DΓ−1XH ◦ Γ = XH◦Γ ∈ A(�a,s, �a,s+1).

The same holds for the Lie bracket: the boundedness of ‖DXF ‖op
a,s+1,s implies that

[XF , XH ] = X{H,F} ∈ A(�a,s, �a,s+1).

These two facts show that XK ∈ A(�a,s, �a,s+1). The analogue claims for XḠ and XĜ

are obvious.
Finally, recalling (23), we can write

(27) K = {G,F} +

∫ 1

0

(1 − t)
[{
{Λ, F}, F

}
+
{
{G,F}, F

}]
◦Xt

F dt.

It results in

{G,F} = O

(
‖w‖6

a,s

μ

)

and

(28)
{
{Λ, F}, F

}
= O

(
‖w‖6

a,s

μ

)
,
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since {Λ, F} = Ḡ + Ĝ−G = O(‖w‖4
a,s). Moreover,

(29)
{
{G,F}, F

}
= O

(
‖w‖8

a,s

μ2

)
;

hence, by (27)–(29),

|K| = O

(
‖w‖6

a,s

μ

)
for ‖w‖a,s ≤ const

√
μ.

Since we are looking for small amplitude solutions it is convenient to introduce
the small parameter 0 < η < 1 and perform the following rescaling:

(30) z∗ =: ηz, z̄∗ =: ηz̄, H ◦ Γ −→ η−2
(
H ◦ Γ

)
=: H,

by which the Hamiltonian is written

(31) H(z, z̄; η) = Λ + η2(Ḡ + Ĝ) + η4K̃(z, z̄; η), ‖z‖a,s, ‖z̄‖a,s ≤ c1

√
μ

η
,

where

(32) K̃(z, z̄; η) := η−2K(ηz, ηz̄), |K̃| = O

(
‖z‖6

a,s

μ

)
.

Remark 2.7. We note that the rescaling in (30) does not introduce a rescaling of
time. In fact if

(
z(t), z̄(t)

)
is a solution of the Hamiltonian equations for H,⎧⎨

⎩
ż(t) = −i∂z̄H

(
z(t), z̄(t)

)
= −iη−1∂z̄∗H

(
ηz(t), ηz̄(t)

)
,

˙̄z(t) = i∂zH
(
z(t), z̄(t)

)
= iη−1∂z∗H

(
ηz(t), ηz̄(t)

)
,

then (z∗(t), z̄∗(t)) = (ηz(t), ηz̄(t)) is a solution of the Hamiltonian equations for H.
We now introduce action-angle variables (I, φ) ∈ R

N
+ × T

N on the I-modes by
the following symplectic change of variables:

(33) zi :=
√

Ii(cosφi − i sinφi), z̄i :=
√

Ii(cosφi + i sinφi), i ∈ I.

The action I := (Ii)i∈I , Ii := ziz̄i, is defined for

(34) |I| ≤ c2
μ

η2
.

We note that
∑

i∈I dIi ∧ dφi = −i
∑

i∈I dzi ∧ dz̄i =
∑

i∈I dpi ∧ dqi, and the phase
space is4

(35) Pa,s := R
N
+ × T

N × �a,s � (I, φ, ẑ).

In these variables the Hamiltonian becomes

H̃(I, φ, ẑ, ¯̂z; η) = ω · I + Ω · ẑ ¯̂z + η2

[
1

2
(AI, I) + (BI, ẑ ¯̂z) + Ĝ(ẑ, ¯̂z)

]
(36)

+ η4K̃(I, φ, ẑ, ¯̂z; η),

4Clearly here �a,s = �a,s(C).
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where

ω := (ωi1 , . . . , ωiN ),

Ω := (. . . , ωi1−1, ωi1+1, . . . , ωij−1, ωij+1, . . . , ωiN−1, ωiN+1, . . .);

Ω · ẑ ¯̂z is short for
∑

i∈Ic ωiẑi ¯̂zi , A is the N ×N matrix

A = AI :=
(
Ḡij

)
i,j∈I ,

and B is the ∞×N matrix

B = BI :=
(
Ḡij

)
i∈Ic, j∈I .

Moreover, (·, ·) denotes the standard scalar product, and we have denoted again by

K̃ the function K̃(I, φ, ẑ, ¯̂z; η) = K̃(z, z̄; η). Recalling (22), we have

A =
3

8π

⎛
⎜⎜⎜⎜⎜⎝

3
ω2

i1

4
ωi1ωi2

. . . 4
ωi1ωiN

4
ωi2ωi1

3
ω2

i2

. . . 4
ωi2ωiN

...
...

. . .
...

4
ωiN

ωi1

4
ωiN

ωi2
. . . 3

ω2
iN

⎞
⎟⎟⎟⎟⎟⎠ ,

B =
3

8π

⎛
⎜⎜⎜⎜⎜⎝

...
...

...
4

ωij−1ωi1
. . . 4

ωij−1ωiN
4

ωij+1ωi1
. . . 4

ωij+1ωiN

...
...

...

⎞
⎟⎟⎟⎟⎟⎠ .

Defining the matrices

(37) D = DI := diag [ω] ∈ MatN×N , E = EI := diag [Ω] ∈ Mat∞×∞,

we can rewrite A and B as

(38) A =
3

8π
D−1ÃD−1, B =

3

2π
E−1B̃D−1,

where

(39) Ã :=

⎛
⎜⎜⎜⎝

3 4 . . . 4
4 3 . . . 4
...

...
. . .

...
4 4 . . . 3

⎞
⎟⎟⎟⎠ ∈ MatN×N , B̃ =

⎛
⎜⎝

1 . . . 1
1 . . . 1
...

...
...

⎞
⎟⎠ ∈ Mat∞×∞.

We note that the matrix A is invertible, since

(40) det Ã =: dN = 3dN−1 +(−1)N (1−N)42 = (−1)N (1−4N) �= 0 (dN is odd).

Moreover,

(41) Ã−1 =
1

4N − 1

⎛
⎜⎜⎜⎝

5 − 4N 4 . . . 4
4 5 − 4N . . . 4
...

...
. . .

...
4 4 . . . 5 − 4N

⎞
⎟⎟⎟⎠ .
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3. Long-period orbits. We will find periodic solutions of the Hamiltonian H̃
in (36) close to the ones of the integrable Hamiltonian

(42) H̃int = ω · I + Ω · ẑ ¯̂z + η2

[
1

2
(AI, I) + (BI, ẑ ¯̂z)

]
,

in which Ĝ and K̃ have been neglected. The equations of motion for H̃int,

(43)

⎧⎨
⎩

İ = 0,

φ̇ = ω + η2AI + η2Btẑ ¯̂z,
˙̂zi = −i(Ω + η2BI)i ẑi, i ∈ Ic,

can be easily integrated:

(44)

⎧⎨
⎩

I(t) = I0
φ(t) = φ0 + ω̃t + η2Btẑ0

¯̂z0t

ẑi(t) = e−iΩ̃it (ẑ0)i, i ∈ Ic,

where

(45) ω̃ := ω̃(I0, η) = ω + η2AI0

is the vector of the shifted linear frequencies, and

(46) Ω̃i := Ω̃i(I0, η) = Ωi + η2(BI0)i = ωi + η2(BI0)i, i ∈ Ic,

are the shifted elliptic frequencies. Consequently, for (42) {ẑ = 0} is an invariant
manifold which is completely foliated by the N -dimensional invariant tori

T (I0) :=
{
I = I0, φ ∈ T

N , ẑ = 0
}
.

On T (I0) the flow

t �→ (I0, φ0 + ω̃t, 0)

is T -periodic, T > 0, if and only if

(47) ω̃(I0, η)τ =: k ∈ Z
N ,

where

τ :=
T

2π

is the rescaled period. Hence, if (47) holds, the torus T (I0) is completely resonant
and supports the infinitely many T -periodic orbits of the family

(48) F :=
{
I(t) = I0, φ(t) = φ0 + ω̃t, ẑ(t) = 0

}
.

The family F will not persist in its entirety for the Hamiltonian H̃. However, we claim
that if the period T is “sufficiently nonresonant” with the shifted elliptic frequencies,
we can prove the persistence of at least N geometrically distinct T -periodic solutions
of H̃ close to F . More precisely, the required nonresonance condition is

(49)
∣∣�− Ω̃i(I0, η)τ

∣∣ ≥ const

i
∀ � ∈ Z, ∀ i ∈ Ic.
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We now consider the periodicity condition (47). As we have said in the in-
troduction, we construct a set of actions and of completely resonant frequencies,
parametrized by the (rescaled) periods τ . Such actions and frequencies are related

by the action-to-frequency map I → (∂IH̃int)|ẑ=0 = ω + η2AI. Indeed, since A is
invertible we can choose I0 and k as functions of τ and η so that (47) is always satisfied:

I0 :=
1

η2τ
A−1 (κ− {ωτ}) ,(50)

k := [ωτ ] + κ,(51)

where [(x1, . . . , xN )] := ([x1], . . . , [xN ]), {(x1, . . . , xN )} := ({x1}, . . . , {xN}), and

(52) κ := (κi)i∈I ∈ Z
N , κi := i−1κ̃, κ̃ := 10

∏
j∈I

j.

Here the functions [·] : R → Z and {·} : R → [0, 1) denote the integer part and the
fractional part, respectively.

In order to have I0 ≈ 1 in (50), we choose the parameter η, which is related to
the amplitude of the solution, as a function of the rescaled period τ such that

(53) η2τ = 1, namely, η := 1/
√
τ .

Consequently, we can express I0, k, and Ω̃i in (50), (51), (46) as functions of τ only:

I0 := I0(τ) = A−1 (κ− {ωτ}) ,(54)

k := k(τ) = [ωτ ] + κ,(55)

Ω̃i := Ω̃i(τ) = ωi + η2
(
BI0(τ)

)
i

for i ∈ Ic.(56)

We point out that the constant vector κ defined in (52) has been added to have
(I0)i > 0 in view of (35). In particular the following lemma holds.

Lemma 3.1. If μ is small enough, then (I0)i > πωi for all i ∈ I.
Proof. By (38) and (54) we get

I0 =
8π

3
DÃ−1D

(
κ− {ωt}

)
.

Recalling (37) and (41) we have, for all i ∈ I,

(I0)i =
8πωi

3(4N − 1)

(
(1 − 4N)

(
ωiκi − ωi{ωit}

)
+ 4
∑
j∈I

(
ωjκj − ωj{ωjt}

))

=
8πωi

3(4N − 1)

(
(1 − 4N)

(
κ̃− i{ωit}

)
+ 4
∑
j∈I

(
κ̃− j{ωjt}

)
+ O(μ)

)

since, recalling (52), ωiκi = i−1ωiκ̃ and 1 < i−1ωi = i−1
√
i2 + μ < 1 + μ. Taking μ

small enough we get

(I0)i =
8πωi

3(4N − 1)

(
κ̃ + (4N − 1)i{ωit} − 4

∑
j∈I

j{ωjt} + O(μ)

)

≥ 8πωi

3(4N − 1)

(
κ̃− 4

∑
j∈I

j + O(μ)

)
=

8πωi

3(4N − 1)

(
10
∏
j∈I

j − 4
∑
j∈I

j + O(μ)

)

≥ 8πωi

3(4N − 1)

(
2
∏
j∈I

j + O(μ)

)
≥ 8πωi

3(4N − 1)

(
2N + O(μ)

)
≥ 8πωi

3(4N − 1)

3N

2

> πωi,
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where we used that 2
∏

j∈I j ≥
∑

j∈I j and
∏

j∈I j ≥ N.

We note that by the choice of η made in (53), it results that |I0| ≤ const. Then

I0 belongs to the domain of definition of the Hamiltonian H̃, namely, it verifies (34),
making the hypothesis

(57) μτ ≥ c−1
3 .

We finally remark that, by (53) and (56), the quantities that we have to estimate in
the crucial nonresonance condition (49) are

(58) �− Ω̃iτ = �− τωi −
(
BA−1

(
κ− {ωτ}

))
i
, � ∈ Z, i ∈ Ic.

In this form, (49) clearly appears as a nonresonance condition between the frequency
of the torus ω and the normal frequencies {ωi}i∈Ic .

3.1. Small divisors estimate. In order to estimate the quantities in (58) we

will perform the expansion τωi = τ
√
i2 + μ = iτ + μτ

2i + O(μ2τ), requiring that μ2τ
is small, namely,

μ2τ ≤ c4.

The other aspect of such a request is that, for any fixed μ, we have only a finite
number of (rescaled) periods τ. Moreover, we note that the smallness of μ2τ implies
that of μ since μ ≤ c3μ

2τ by (57). Hence, since for μ close to zero the Birkhoff
normal form degenerates, it is not obvious that we can make μ2τ small for some fixed
τ ≥ 1. Moreover, even if it is not necessary, for simplicity we limit our consideration
to τ ∼ μ−2, namely, c4/2μ

2 ≤ τ ≤ c4/μ
2. Again for technical reasons, we will need

that τ is an integer and that μτ is far away from even integers. Let us define

(59) Tμ :=

{
τ ∈ N

+,
c4

2μ2
≤ τ ≤ c4

μ2
s.t. μτ ∈ N

}
,

where

(60) N :=

{
x > 0 s.t. |x− 2m| ≥ 1

2
∀m ∈ Z

}
=

⋃
n>0 odd

[
n− 1

2
, n +

1

2

]
.

The constant c4 will be choose suitably small in the following.
Proposition 3.2. If μ is small enough and τ ∈ Tμ, then the following estimate

holds:

(61)
∣∣�− Ω̃iτ

∣∣ ≥ c5
i

∀ � ∈ Z, i ∈ Ic.

Proof. We will prove that

(62)
∣∣�− τ

√
i2 + μ−

(
BI0(τ)

)
i

∣∣ ≥ 1

6(4N − 1) i
∀ � ∈ Z, i ∈ Ic.

Recalling (58), we see that the crucial estimate (61) follows from (62) taking c5 :=
1

6(4N−1) . We first consider the term BI0(τ). From (38) we have BA−1 = 4(E−1B̃Ã−1D),

while, by (41), B̃Ã−1 = d−1B̃, where d := 4N − 1. Recalling (54), we get

BI0(τ) = BA−1
(
κ− {ωτ}

)
= 4d−1 E−1B̃D

(
κ− {ωτ}

)
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and, in particular, for i ∈ Ic,

(BI0)i =
4

d

(
E−1B̃D

(
κ− {ωτ}

))
i
=

4

dωi

(
B̃D
(
κ− {ωτ}

))
i

=
4

dωi

(
κ̂−

∑
h∈I

ωh{ωhτ}
)
,(63)

where

(64) κ̂ :=
(
B̃Dκ

)
i
=

⎛
⎜⎜⎜⎝B̃

⎛
⎜⎜⎜⎝

...
ωh

h
κ̃

...

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

i

=
∑
h∈I

ωh

h
κ̃ = κ̃N + O(μ).

Now we need the following lemma.

Lemma 3.3. Let 0 < μ < 1. Then for all h ∈ N
+ there exist δ

(k)
h > 0, k = 1, 2, 3,

such that

ωh = h + δ
(1)
h , δ

(1)
h <

μ

2h
(65)

= h +
μ

2h
− δ

(2)
h , δ

(2)
h <

μ2

8h3
.(66)

Moreover, if τ ∈ N
+, there exists nh := nh(μ, τ) ∈ Z such that

(67)
∣∣∣ωh{ωhτ} −

μτ

2
− nh

∣∣∣ ≤ μ

2h
+

μ2τ

8h2
∀h ∈ N

+.

By the elementary inequality 0 < 1 − (1 + x)−1 < x for all x > 0, we get, using
(65),

0 <
1

i
− 1

ωi
=

1

i

(
1 − 1

1 + δ
(1)
i /i

)
<

δ
(1)
i

i2
<

μ

2i3
,

namely,

(68)
1

ωi
− 1

i
= O

(
μ

i3

)
.

Since |{ωhτ}| ≤ 1, by substituting (68) into (63) we get

(BI0)i =
4

di

(
κ̂−

∑
h∈I

ωh{ωhτ}
)

+ O

(
μ

i3

)
;

hence, by (67) and (64),

(69) (BI0)i =
4

di

(
κ̃N −

∑
h∈I

(
μτ

2
+ nh

))
+ O

(
μ

i
+

μ2τ

i

)
.

Moreover, since by (66) we get

τ
√
i2 + μ = τi +

μτ

2i
+ O

(
μ2τ

i3

)
,
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using (69) we have

�− τ
√
i2 + μ−

(
BI0(τ)

)
i
= �− τi− μτ

2i
+

4

di

(∑
h∈I

(
μτ

2
+ nh

)
− κ̃N

)
(70)

+O

(
μ

i
+

μ2τ

i

)
.

From the hypothesis τ ∈ Tμ and for μ small enough, it follows that

μ

i
+

μ2τ

i
<

2c4
i
.

Hence, by (70) and choosing c4 small enough, in order to prove (62) it is sufficient to
show that

(71)

∣∣∣∣∣�− τi− μτ

2i
+

4

di

(∑
h∈I

(
μτ

2
+ nh

)
− κ̃N

)∣∣∣∣∣ ≥ 1

4(4N − 1) i
.

Now, since d = 4N − 1 and
∑

h∈I 1 = N , (71) is equivalent to

(72)

∣∣∣∣∣μτ + 2

(
id(�− τi) − 4κ̃N + 4

∑
h∈I

nh

)∣∣∣∣∣ ≥ 1

2
.

Since

2

(
id(�− τi) − 4κ̃N + 4

∑
h∈I

nh

)

is an even integer, (72) follows by hypothesis τ ∈ Tμ.
Proof of Lemma 3.3. Since ωh = h

√
1 + x with x := μ/h2, 0 < x < 1, (65) and

(66) directly follow by the elementary inequalities

1 <
√

1 + x, −x2

8
<

√
1 + x− 1 − x

2
< 0,

holding for any 0 < x < 1. We now prove (67). Because |{ωhτ}| ≤ 1, we have

(73) |ωh{ωhτ} − h{ωhτ}| = |(ωh − h){ωhτ}| ≤ |ωh − h| ≤ μ

2h
,

where in the last inequality we have used (65). Moreover, by (66)

{ωhτ} = ωhτ − [ωhτ ] = hτ +
μτ

2h
− δ

(2)
h τ − [ωhτ ],

from which we get∣∣∣∣h{ωhτ} −
μτ

2
− nh

∣∣∣∣ ≤ μ2τ

8h2
, where nh := h2τ − h[ωhτ ].

Then the proof follows by the previous inequality and (73).
We now give a lower estimate on the cardinality of Tμ.
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Lemma 3.4. For μ small enough,

 Tμ ≥ c4
6μ2

.

Proof. We first claim that

(74) 

{
τ ∈ N s.t. μτ ∈

[
n− 1

2
, n +

1

2

]}
≥
[

1

μ

]

for any n odd. Indeed, if τ0 := min{τ ∈ N s.t. μτ ≥ n− 1/2}, then μτ0 < μ+n− 1/2,
and therefore μτ0 + μm ≤ n + 1/2 for any 0 ≤ m ≤ −1 + 1/μ, proving (74). Since



{
n odd s.t.

c4
2μ

+
1

2
≤ n ≤ c4

μ
− 1

2

}
≥ c4

4μ
− 2 ≥ c4

5μ
,

then

 Tμ ≥ c4
5μ

[
1

μ

]
≥ c4

6μ2
,

for μ small enough.

3.2. Functional setting. Since the problem is Hamiltonian, any T -periodic
solution of the Hamiltonian equations for H̃ in (36), namely,

(75)

⎧⎪⎨
⎪⎩

İ = −η4∂φK̃(I, φ, ẑ, ¯̂z),

φ̇ = ω + η2AI + η2Btzz̄ + η4∂IK̃(I, φ, ẑ, ¯̂z),
˙̂zi = −i(Ω + η2BI)i ẑi − iη2∂z̄iĜ(ẑ, ¯̂z) − iη4∂z̄iK̃(I, φ, ẑ, ¯̂z), i ∈ Ic,

is a critical point of the Lagrangian action functional

(76) S(I, φ, ẑ) =

∫ T

0

(
I · φ̇− i

∑
i∈Ic

zi ˙̄zi − H̃(I, φ, ẑ, ¯̂z)

)
dt,

in the space of T -periodic, Pa,s-valued curves
(
I(t), φ(t), ẑ(t)

)
.

In particular we are looking for periodic orbits of the Hamiltonian H̃ near the
family F defined in (48); namely, we seek solutions of the form

(77)

⎧⎨
⎩

I(t) = I0 + J(t),
φ(t) = φ0 + ω̃t + ψ(t),
ẑ(t) = 0 + w(t),

where I0 was defined in (54); φ0 ∈ T
N is a parameter to determine. Recalling (75),

ζ(t) = (J(t), ψ(t), w(t)) and φ0 ∈ T
N must satisfy

(78)⎧⎪⎨
⎪⎩

ψ̇ − η2AJ = η2Btww̄ + η4∂IK̃(I0 + J, φ0 + ω̃t + ψ,w, w̄),

J̇ = −η4∂φK̃(I0 + J, φ0 + ω̃t + ψ,w, w̄),

ẇi + iΩ̃iwi = −iη2∂z̄iĜ(w, w̄) − iη4∂z̄iK̃(I0 + J, φ0 + ω̃t + ψ,w, w̄), i ∈ Ic.

We will look for ζ(t) as a T -periodic curve taking values in the covering space R
N ×

R
N × �a,s (that for simplicity we will still denote by Pa,s) with

∫ T

0
ψ(t)dt = 0. For
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ζ = (J, ψ,w) ∈ R
N × R

N × �a,s we define the norm5

‖ζ‖Pa,s = ‖(J, ψ,w)‖Pa,s := |J | + |ψ| + ‖w‖a,s.

With this norm, Pa,s is a Banach algebra, recalling that s > 1 and Lemma 2.2.
In particular we will look for Hk-solutions ζ(t) in the Banach space

H
k

T,a,s :=

{
ζ ∈ Hk

T,a,s,

∫ T

0

ψ(t)dt = 0

}
,

where k ∈ N, T > 0,

Hk
T,a,s :=

{
ζ ∈ Hk(R,Pa,s), ζ(t + T ) = ζ(t)

}
,

and Hk(R,Pa,s) is the Sobolev space of the functions ζ : R → Pa,s with k weak
derivatives in L2(R,Pa,s) (for k = 0, H0(R,Pa,s) = L2(R,Pa,s)).

The space Hk
T,a,s is endowed with the norm

‖ζ‖Hk
T,a,s

:=

k∑
h=0

Th‖∂h
t ζ‖T,a,s,

where

‖ζ‖T,a,s := |J |L2,T + |ψ|L2,T + ‖w‖L2,T,a,s + ‖w̄‖L2,T,a,s,

|J |2L2,T :=
1

T

∫ T

0

|J(t)|2dt, |ψ|2L2,T :=
1

T

∫ T

0

|ψ(t)|2dt,

‖w‖2
L2,T,a,s :=

1

T

∫ T

0

‖w(t)‖2
a,sdt.

Note that Hk
T,a,s = H

k

T,a,s ⊕ R
N .

Remark 3.5. With the above definitions the following result holds:

(79) ‖ζ(t)‖Pa,s ≤ ‖ζ‖H1
T,a,s

∀ t ∈ R.

Hence the spaces Hk
T,a,s, for k ≥ 1, are Banach algebras, and the Hk

T,a,s-norm of
the product of any component of a vector ζ with any component of a vector ζ ′ is
bounded by ‖ζ‖Hk

T,a,s
‖ζ ′‖Hk

T,a,s
. We will consider system (78) as a functional equation

in Hk
T,a,s.
To simplify notation we rewrite (78) in the form

(80) Lζ = N(ζ;φ0),

where L is the linear operator

(81) Lζ = L(J, ψ,w) := (ψ̇ − η2AJ, J̇, ẇi + iΩ̃iwi)

and N is the nonlinearity

(82) N(ζ;φ0) :=
(
NI(ζ;φ0), Nφ(ζ;φ0), Nẑ(ζ;φ0)

)
5Here | · | is the standard Euclidian norm on R

N , ‖w‖2
a,s =

∑
i∈Ic |wi|2i2se2ai.
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defined by

NI := η2Btww̄ + η4∂IK̃(I0 + J, φ0 + ω̃t + ψ,w),(83)

Nφ := −η4∂φK̃(I0 + J, φ0 + ω̃t + ψ,w),

(Nzi) := −iη2(BJ)iwi − iη2∂z̄iĜ(w) − iη4∂z̄iK̃(I0 + J, φ0 + ω̃t + ψ,w), i ∈ Ic.

We note that by (19) and Remark 3.5, we get that for all φ0 ∈ T
N

(84) N(·;φ0) ∈ C∞(Hk
T,a,s, H

k
T,a,s+1

)
∀ k ≥ 1.

Since A is invertible and the nonresonance condition (49) holds by Proposition 3.2,
the kernel of the linear operator L is

K =
{
ζ(t) = (J(t), ψ(t), w(t)) s.t. ψ(t) ≡ const, J(t) ≡ 0, w(t) ≡ 0

}
.

On the other hand, the range of L is composed by the curves ζ̃(t) := (J̃(t), ψ̃(t), w̃(t))

with
∫ T

0
ψ̃ = 0, as we will show in the next subsection concerning the inversion of L.

3.3. Inversion of the linear operator. Recall that τ = T/(2π) = η−2. By the
theory of the symmetric operators, and since A is invertible, it possesses an orthonor-
mal basis of eigenvectors e(1), . . . , e(N) ∈ R

N with respective eigenvalues ν1, . . . , νN
∈ R \ {0}. In these coordinates we can write

J̃(t) =

N∑
j=1

J̃ (j)(t)e(j) =

N∑
j=1

e(j)
∑
�∈Z

J̃
(j)
� exp

(
i�t

τ

)
,

ψ̃(t) =
N∑
j=1

ψ̃(j)(t)e(j) =

N∑
j=1

e(j)
∑
�∈Z

ψ̃
(j)
� exp

(
i�t

τ

)
,

w̃i(t) =
∑
�∈Z

w̃i� exp

(
i�t

τ

)
, i ∈ Ic.

We define the linear operator

(85) Lζ̃ = L(J̃ , ψ̃, w̃) := (J, ψ,w) = ζ

in the following way:

J(t) := τ

N∑
j=1

e(j)

(
− 1

νj
J̃

(j)
0 +

∑
� 
=0

1

i�
ψ̃

(j)
� exp

(
i�t

τ

))
,(86)

ψ(t) := τ
N∑
j=1

e(j)
∑
� 
=0

1

i�

(
νj
i�
ψ̃

(j)
� + J̃

(j)
�

)
exp

(
i�t

τ

)
,(87)

wi(t) := τ
∑
�∈Z

1

i(�− Ω̃iτ)
w̃i� exp

(
i�t

τ

)
, i ∈ Ic.(88)

The following proposition not only states that L is the inverse of L but also gives an
upper bound of its norm. However, because of the small divisors �− Ω̃iτ , appearing
in (88), it turns out that L “loses one spatial derivative.” On the other hand, L also
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“gains one time derivative” if one gives up “two spatial derivatives.” Estimate (61)
will be crucial.

Proposition 3.6. Suppose τ ∈Tμ and μ small enough. Take k∈N
+. If ζ̃ ∈

H
k

T,a,s+1, then ζ = Lζ̃ ∈ H
k

T,a,s ∩H
k+1

T,a,s−1 and

(89) ‖ζ‖Hk
T,a,s

+ ‖ζ‖Hk+1
T,a,s−1

≤ c−1
6 τ ‖ζ̃‖Hk

T,a,s+1
.

Moreover,

(90) LLζ̃ = Lζ = ζ̃.

Proof. First we note that the average of ψ is zero as it follows by (87). We now
prove (89). Since

(91)
1

T

∫ T

0

∣∣∣∣∣
∑
�∈Z

a� exp

(
i�t

τ

)∣∣∣∣∣
2

dt =
∑
�∈Z

|a�|2

and ({e(j)}1≤j≤N being an orthonormal basis)
∣∣∑N

j=1 bje
(j)
∣∣2 =

∑N
j=1 |bj |2, we have

that

f(t) =
N∑
j=1

e(j)
∑
�∈Z

f
(j)
� exp

(
i�t

τ

)
=⇒ |f |2L2,T =

1

T

∫ T

0

|f(t)|2dt =

N∑
j=1

∑
�∈Z

|f (j)
� |2.

Hence, if C̃ := 2 max1≤j≤N{|νj |2, 1/|νj |2}, from (87) we get

|ψ|2L2,T ≤ C̃τ2
N∑
j=1

∑
� 
=0

�−2
(
|ψ̃(j)

� |2 + |J̃ (j)
� |2

)
≤ C̃τ2

(
|ψ̃|2L2,T + |J̃ |2L2,T

)
,(92)

|∂h
t ψ|2L2,T ≤ C̃τ2(1−h)

N∑
j=1

∑
� 
=0

�2(h−1)
(
|ψ̃(j)

� |2 + |J̃ (j)
� |2

)

≤ C̃τ2
(
|∂h−1

t ψ̃|2L2,T + |∂h−1
t J̃ |2L2,T

)
for h ≥ 1.(93)

Similar estimates hold for J defined in (86), namely,

|J |2L2,T ≤ C̃τ2

(
N∑
j=1

|J̃ (j)
0 |2 +

N∑
j=1

∑
� 
=0

�−2|ψ̃(j)
� |2

)
≤ C̃τ2

(
|J̃ |2L2,T + |ψ̃|2L2,T

)
,(94)

|∂h
t J |2L2,T = |∂h−1

t ψ̃|2L2,T for h ≥ 1.(95)

We now go on to estimate w defined in (88) in which the small divisors �−Ω̃jτ appear.
By (91) we have that if w(t) = (wi(t))i∈Ic with wi(t) =

∑
�∈Z

wi� exp(i�t/τ), then

‖w‖2
L2,T,a,s =

1

T

∫ T

0

‖w(t)‖2
a,s =

1

T

∫ T

0

∑
i∈Ic

i2se2ai|wi(t)|2dt

=
∑
i∈Ic

i2se2ai 1

T

∫ T

0

|wi(t)|2dt =
∑
i∈Ic

i2se2ai
∑
�∈Z

|wi�|2.
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Hence, recalling (88), we get

‖∂h
t w‖2

L2,T,a,s = τ2
∑
i∈Ic

i2se2ai
∑
�∈Z

|�|2h
τ2h

|w̃i�|2

|�− Ω̃iτ |2

≤ τ2

c25

∑
i∈Ic

i2(s+1)e2ai
∑
�∈Z

|�|2h
τ2h

|w̃i�|2 =
τ2

c25
‖∂h

t w̃‖2
L2,T,a,s+1(96)

by the crucial estimate (61). Moreover, we claim that by (61)

(97)
|�|

|�− Ω̃iτ |
≤ 4τi2

c5
.

To prove (97) we distinguish two cases, � ≤ 2Ω̃iτ and � > 2Ω̃iτ . In the first case we
have by (61)

|�|
|�− Ω̃iτ |

≤ |�|i
c5

≤ 2Ω̃iτi

c5
≤ 4τi2

c5

since Ω̃i ≤ 2i. On the other hand, if � > 2Ω̃iτ , we have |�− Ω̃iτ | ≥ |�|/2, which implies

|�|
|�− Ω̃iτ |

≤ 2 ≤ 4τi2

c5
,

and (97) follows. Using (97) we get

‖∂h
t w‖2

L2,T,a,s−1 = τ2
∑
i∈Ic

i2(s−1)e2ai
∑
�∈Z

|�|2h
τ2h

|w̃i�|2

|�− Ω̃iτ |2

≤ 16τ2

c25

∑
i∈Ic

i2(s+1)e2ai
∑
�∈Z

|�|2(h−1)

τ2(h−1)
|w̃i�|2

=
16τ2

c25
‖∂h−1

t w̃‖2
L2,T,a,s+1.(98)

Therefore (89) follows from (92)–(96) and (98).
Finally we note that (90) directly follows from the definition of L given in (85)–

(88).
We also remark that the constant c6 does not depend on k, a, s.

3.4. Lyapunov–Schmidt reduction. From the previous section it results that

the kernel K and the range R of the linear operator L are
{
ψ̃ ≡ const

}
and

{∫ T

0
ψ̃ =

0
}
, respectively. For ζ̃ = (J̃ , ψ̃, w̃) let us define the projections

ΠKζ̃ :=
(
0, 〈ψ̃〉, 0

)
, ΠRζ̃ :=

(
J̃ , ψ̃ − 〈ψ̃〉, w̃

)
,

where 〈ψ̃〉 :=
∫ T

0
ψ̃. In such a way the equation Lζ = N(ζ;φ0) decomposes into the

equation on the kernel,

(99) 0 = ΠKN(ζ;φ0), namely,
〈
Nφ(ζ, φ0)

〉
= 0,

and the one on the range,

(100) Lζ = ΠRN(ζ;φ0),
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respectively. The idea is to solve first the range equation for any fixed φ0, finding a
solution ζ(t) = ζφ0(t) by the contraction mapping theorem, and thereafter the kernel
equation (99) for ζ = ζφ0 , namely the finite dimensional equation

(101)
〈
Nφ(ζφ0

;φ0)
〉

= 0,

determining φ0 by a variational argument.

3.5. Range equation. We rewrite the range equation (100) in a fixed-point
form:

ζ = Φ(ζ;φ0)

with

Φ(ζ;φ0) := LΠRN(ζ;φ0).

By Proposition 3.6, the operator L “loses one derivative,” but, by the smoothing
property (84), the nonlinearity N gains exactly one derivative. In particular, we have
that, for any φ0 ∈ T

N fixed,

(102) Φ(·;φ0) ∈ C∞(Hk

T,a,s, H
k

T,a,s

)
∀ k ≥ 1.

In the following lemma we prove that Φ is a contraction on a suitable closed ball of

H
1

T,a,s.

Lemma 3.7. Suppose τ ∈ Tμ and μ small enough. For any φ0 ∈ T
N the map

Φ(·;φ0) is a contraction on the closed ball of radius ρ := c−1
7 μ of H

1

T,a,s.

Proof. Let ζ, ζ ′, h ∈ H
1

T,a,s and ‖ζ‖H1
T,a,s

, ‖ζ ′‖H1
T,a,s

≤ ρ. From (82), (83), (84),

and (32), and recalling Proposition 2.4 and Remark 3.5, we get the following estimates
on the nonlinearity:

‖N(ζ)‖H1
T,a,s+1

≤ c−1
8

(
η2ρ2 +

η4

μ

)
,(103)

‖DN(ζ)[h]‖H1
T,a,s+1

≤ c−1
8

(
η2ρ +

η4

μ

)
‖h‖H1

T,a,s
.(104)

Using Proposition 3.6 and (103), we obtain

‖Φ(ζ)‖H1
T,a,s

≤ (c6c8)
−1

(
ρ2 +

η2

μ

)
= (c6c8)

−1ρ2 +
ρ

2
≤ ρ,

taking c7 := c4c6c8/4 and μ small enough. Hence Φ maps the ball in itself. Nothing
remains but to show that Φ is a contraction. By (104) we get

‖N(ζ) −N(ζ ′)‖H1
T,a,s+1

≤ c−1
8

(
η2ρ +

η4

μ

)
‖ζ − ζ ′‖H1

T,a,s
,

and by Proposition 3.6 we have

‖Φ(ζ) − Φ(ζ ′)‖H1
T,a,s

≤ (c6c8)
−1

(
ρ +

η2

μ

)
‖ζ − ζ ′‖H1

T,a,s
.
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Since, for μ small enough,

(c6c8)
−1

(
ρ +

η2

μ

)
≤
(

1

c6c8
+

1

2

)
μ

c7
< 1,

Φ is a contraction.
By the contraction mapping theorem and noting that the dependence of the non-

linearity N , and therefore of Φ, on the parameter φ0 is smooth, we conclude that

there exists a smooth function T
N � φ0 �→ ζφ0 ∈ H

1

T,a,s solving ζφ0 = Φ(ζφ0 ;φ0). By
(90), ζφ0

also solves the range equation (100), as the following corollary states.
Corollary 3.8. Suppose τ ∈ Tμ and μ small enough. Then there exists a

smooth function T
N � φ0 �→ ζφ0 ∈ H

1

T,a,s solving (100) and satisfying

‖ζφ0‖H1
T,a,s

≤ μ

c7
.

Remark 3.9. In [BaB], instead of (49) the authors imposed the weaker
“diophantine-type” condition |� − Ω̃iτ | ≥ const i−σ, σ > 1, on the small divisors.
Then the operator L “loses σ derivatives.” If the nonlinearity N is smoothing of
order d > 1, namely it “gains d derivatives,” taking 1 < σ < d, the contraction map-
ping theorem can still be used in solving the range equation for almost every rescaled
period τ . In particular, d = 2 for the beam equation and d > 1 for the NLS. Since we
have exactly d = 1 for the wave equation, in order to have a positive measure set of
rescaled periods, a KAM analysis is necessary (see Remark 3.12).

3.6. Kernel equation. Once we have solved the range equation (100) by finding
the smooth function

T
N � φ0 �→ ζφ0

=: (Jφ0
, ψφ0

, wφ0
) ∈ H

1

T,a,s,

we still have to solve the “reduced” kernel equation (101). As the solutions of the
Hamiltonian equations (75) are critical points of the action functional S defined in
(76), so the solutions of the “reduced” kernel equation (101) are critical points of the
reduced action functional

(105) S(φ0) := S(Iφ0 , φφ0
, ẑφ0) =

∫ T

0

(
Iφ0 φ̇φ0 − iẑφ0

˙̂̄zφ0 − H̃(φφ0 , Iφ0 , ẑφ0 ,
¯̂zφ0)
)
dt,

where

(106) Iφ0
(t) := I0 +Jφ0

(t), φφ0
(t) := φ0 + ω̃t+ψφ0

(t), ẑφ0
(t) := wφ0

(t).

Actually we are claiming that〈
Nφ(ζφ0 ;φ0)

〉
= 0

or equivalently

(107) ∂φ0S(φ0) = 0.

Indeed, (107) is a corollary of (36), (83), and the following.
Lemma 3.10. The reduced action functional satisfies

∂φ0S(φ0) = −T
〈
∂φH̃(Iφ0 , φφ0 , ẑφ0 ,

¯̂zφ0)
〉
.
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Proof. We have

∂φ0S(φ0) =

∫ T

0

[(
φ̇φ0

− ∂IH̃
)
∂φ0

Iφ0
+ Iφ0

∂φ0 φ̇φ0
− ∂φH̃ ∂φ0

φφ0

−
(
i ˙̄wφ0

+ ∂ẑH̃
)
∂φ0

wφ0
− iwφ0

∂φ0
˙̄wφ0

− ∂¯̂zH̃ ∂φ0
w̄φ0

]
dt

= Iφ0
∂φ0

φφ0

∣∣∣T
0
− iwφ0

∂φ0
w̄φ0

∣∣∣T
0
−
∫ T

0

〈
∂φH̃

〉
∂φ0

φφ0
dt

by an integration by parts and since ζφ0 satisfies the range equation (100). Moreover,

since ζφ0 is periodic and
∫ T

0
ψφ0 = 0, we get

Iφ0∂φ0φφ0

∣∣∣T
0

= Iφ0(0)∂φ0

(
φφ0(T ) − φφ0(0)

)
= Iφ0∂φ0 ω̃T = 0,

wφ0∂φ0w̄φ0

∣∣∣T
0

= wφ0(0)∂φ0

(
w̄φ0

(T ) − w̄φ0
(0)
)

= 0∫ T

0

φφ0(t) dt =

∫ T

0

(
φ0 + ω̃t

)
dt +

∫ T

0

ψφ0(t) dt = φ0T + ω̃
T 2

2
.

Finally

∂φ0S(φ0) = −
∫ T

0

〈
∂φH̃

〉
∂φ0φφ0 dt = −

〈
∂φH̃

〉
∂φ0

∫ T

0

φφ0(t) dt = −
〈
∂φH̃

〉
T.

3.7. Existence. By (107) every critical point φ0 ∈ T
N of the reduced action

functional S defined in (105) solves the “reduced” kernel equation (101) and, therefore,
the curve

(
Iφ0(t), φφ0(t), ẑφ0(t)

)
defined in (106) is a solution of the Hamiltonian

equations (75). In particular we expect the existence of at least N geometrically
distinct T -periodic solutions, namely solutions not obtained from each other simply
by time translations.

Indeed, let us consider the restriction of S to the plane E := [ω̃]⊥. The set
Z
N ∩ E is a lattice of E; hence S can be defined on the quotient space Γ := E/

(ZN ∩ E) ∼ T
N−1. Due to the invariance of S with respect to the time shift, any

critical point of S|Γ : Γ → R is also a critical point of S : T
N → R. By the Lusternik–

Schnirelman category theory (see, for example, [A]), since cat Γ = cat T
N−1 = N , we

can define the N min-max critical values c1 ≤ c2 ≤ · · · ≤ cN for the reduced action
functional S|Γ. If the critical levels ci are all distinct, the corresponding T -periodic
solutions are surely geometrically distinct, since their actions ci are different. On the
other hand, if some min-max critical levels coincide, then S|Γ possesses infinitely many
critical points. Although not all the corresponding T -periodic solutions are necessarily
geometrically distinct, since a periodic solution can cross Γ at most a finite number of
times, the existence of infinitely many geometrically distinct orbits follows (see [BBiV]
for further details).

Proposition 3.11. Suppose τ ∈ Tμ and μ small enough. Then system (75)
possesses (at least) N geometrically distinct T -periodic solutions

(108)(
I
φ

(j)
0

(t), φ
φ

(j)
0

(t), ẑ
φ

(j)
0

(t)
)

=
(
I0(τ), φ

(j)
0 + ω̃t, 0

)
+ ζ

φ
(j)
0

(t), ζ
φ

(j)
0

∈ H
1

T,a,s,

parametrized by suitable φ
(j)
0 ∈ T

N , 1 ≤ j ≤ N. Moreover,

(109) ‖ζ
φ

(j)
0
‖H1

T,a,s
≤ μ

c7
∀ 1 ≤ j ≤ N.
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Remark 3.12. In (49) we have imposed a strong condition on the small divisors
in order to use the standard contraction mapping theorem in solving the range equa-
tion. The other side of such a condition is that we are able to consider only a finite
number of periods. The natural way to deal with the small divisors problem (49),
in order to obtain a positive measure set of periods, should be via a KAM analysis.
The range equation should be solved by a Nash–Moser implicit function theorem.
Thereafter, one should prove that, for any fixed value of the perturbative parameter
η, the bifurcation equation 0 = ΠKN(ζφ0 ;φ0) has a solution for φ0 belonging to a
suitable η-dependent Cantor set Cη (see [BBo06] and [GMPr05], where the extension
of Weinstein’s theorem [We73] for completely resonant wave equation is considered).
A standard way to proceed is to develop the reduced action functional in powers of
the perturbative parameter and to prove that the first nontrivial term in the devel-
opment has a nondegenerate critical point. Such nondegeneracy is used to show that,
for any η in a suitable positive measure set, there exists a critical point φ0 = φ0(η) of
the whole reduced action functional, belonging to Cη. However, in the present case,
while the perturbative parameter η goes to zero, the period T goes to infinity. Then,
in the computation of S in (105), one has to average over an infinite time. As a con-
sequence, all the low order terms in the development of S vanish; the first nontrivial
terms appear only at a very high order in η, and it is difficult to deal with them.

3.8. Regularity. The solutions (I0(τ), φ
(j)
0 + ω̃t, 0) + ζ

φ
(j)
0

(t) of system (75) de-

scribed in (108) belong to H1
T,a,s and verify estimate (109). With the same procedure,

for any fixed k ≥ 1, we can also find solutions in Hk
T,a,s verifying

(110) ‖ζ
φ

(j)
0
‖Hk

T,a,s
≤ μ

c7
.

Indeed, we can solve the range equation (100) in H
k

T,a,s, adapting Lemma 3.7. How-
ever, in this case, the constant c7 depends on k.

On the other hand, giving up the Hk
T,a,s-estimate in (110), it is possible to prove,

by a bootstrap argument, that the solutions (108) of Proposition 3.11 actually belong
to Hk

T,a,s for any k ≥ 1. In particular we show that ζφ0 of Corollary 3.8 belongs to

H
k

T,a,s.

Indeed, ζφ0 ∈ H
1

T,a,s solves the fixed point equation ζφ0 = Φ(ζφ0
;φ0) = LΠRN

(ζφ0
;φ0). Since N(ζφ0

;φ0) ∈ H1
T,a,s+1 by (84), then ζφ0

∈ H
2

T,a,s−1 by Proposition

3.6. Noting that H
k

T,a,s−1 ⊂ H
k

T,ã,s for any k ≥ 1 and 0 < ã < a, we have ζφ0 ∈
H

2

T,ã,s. Defining ak := a
(

1
2 + 1

2k

)
, we prove that ζφ0 ∈ H

k

T,ak,s
for any k ≥ 1 and

finally, ζφ0 ∈ H
k

T,a/2,s for any k ≥ 1. However, in this fashion, the Hk
T,a,s-estimates

deteriorate while k increases.
Summarizing, by the Sobolev immersions we have that ζφ0 ∈ Ck(R,Pa/2,s) for

any k ≥ 1. We have shown the following.
Corollary 3.13. The solutions (108) of (75) belong to C∞(R,Pa/2,s).

3.9. Minimal period.
Lemma 3.14. Let h, k ∈ N

+, h < k. We have

(111) [ωkτ − kτ ] ≤ [ωhτ − hτ ] <
μτ

2h
.



LONG TIME PERIODIC SOLUTIONS FOR THE NLW 1117

Proof. We first proof that

(112) ωk − k < ωh − h,

which implies ωkτ − kτ < ωhτ − hτ and the first inequality in (111). Dividing by k,
(112) is equivalent to

f(x) :=
√
x2 + μ/k2 − x−

√
1 + μ/k2 + 1 > 0 for 0 < x < 1,

where x := h/k. Since f(1) = 0 and f ′(x) = x(x2 + μ/k2)−1/2 − 1 < 0 for 0 < x < 1,
we get f(x) > 0, and (112) follows. Then the second inequality in (111) directly
follows from (65).

Lemma 3.15. Let Tmin be the minimal period of a T -periodic orbit (108) of
Proposition 3.11. If N ≥ 2, then

(113) Tmin ≥ c9
μ
.

Proof. Let
(
I(t), φ(t), ẑ(t)

)
be a T -periodic solution of Proposition 3.11. We know

that φ(T ) − φ(0) = 2πk with k ∈ Z
N defined in (55). Denoting by Tmin

φ ≤ Tmin the

minimal period of φ(t), we have that there exist n ∈ N
+ such that nTmin

φ = T and

k̃ ∈ Z
N such that φ(Tmin

φ ) − φ(0) = 2πk̃, verifying nk̃ = k. Hence we deduce that n
divides g := gcd(ki1 , . . . , kiN ), and we get that

(114) Tmin ≥ Tmin
φ =

T

n
≥ T

g
.

We claim that

(115) g̃ := gcd(ki1 , ki2) <
μτi2
i1

.

Then the lemma follows by (114) and (115), noting that g̃ ≥ g and recalling that
T = 2πτ (with c9 = 2πi1/i2).

We now prove (115). Since τ ∈ N we have ki = [ωiτ ] + κi = iτ + [ωiτ − iτ ] + κi

for all i ∈ I and

i2ki1 − i1ki2 = i2[ωi1τ − i1τ ] − i1[ωi2τ − i2τ ] + i2κi1 − i1κi2

≥ (i2 − i1)[ωi1τ − i1τ ] +

(
i2
i1

− i1
i2

)
κ̃ > 0(116)

by (111) and recalling (52). Moreover, since g̃ = gcd(ki1 , ki2) there exist h1, h2 ∈ N

such that ki1 = h1g̃ and ki2 = h2g̃. From (116) we have that i2ki1 − i1ki2 > 0, and
therefore

(117) i2ki1 − i1ki2 =
(
i2h1 − i1h2

)
g̃ ≥ g̃.

Finally, by (111)

i2ki1 − i1ki2 = i2[ωi1τ − i1τ ] − i1[ωi2τ − i2τ ] + i2κi1 − i1κi2

< i2[ωi1τ − i1τ ] +
i2
i1
κ̃ ≤ i2

i1

(
μτ

2
+ κ̃

)
≤ i2μτ

i1
(118)

for μ small enough. Then (115) follows from (117) and (118).
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3.10. Distinct orbits. Take τ, τ ′ ∈ Tμ. For μ small enough, τ, τ ′ satisfy the
hypotheses of Proposition 3.11. Therefore, let(

I(t), φ(t), ẑ(t)
)

:=
(
I0(τ), φ0 + ω̃t, 0

)
+ ζ(t), φ0 ∈ T

N , ζ ∈ H
1

T,a,s, T = 2πτ,(
I ′(t), φ′(t), ẑ′(t)

)
:=
(
I0(τ

′), φ′
0 + ω̃t, 0

)
+ ζ ′(t), φ′

0 ∈ T
N , ζ ′ ∈ H

1

T ′,a,s, T ′ = 2πτ ′,

be two solutions of (75) found in Proposition 3.11; we recall that by (109),

(119) ‖ζ‖H1
T,a,s

≤ μ

c7
, ‖ζ ′‖H1

T ′,a,s
≤ μ

c7
.

Suppose that they are geometrically the same solution, namely, up to a time transla-
tion,

(120)
(
I(t), φ(t), ẑ(t)

)
=
(
I ′(t), φ′(t), ẑ′(t)

)
∀ t ∈ R.

We claim that

(121) |I0(τ) − I0(τ
′)| ≤ 2μ

c7
.

Indeed, using I(t) = I ′(t),

|I0(τ) − I0(τ
′)| = |J(t) − J ′(t)| ≤ |J(t)| + |J ′(t)|

≤ ‖ζ(t)‖Pa,s + ‖ζ ′(t)‖Pa,s
≤ ‖ζ‖H1

T,a,s
+ ‖ζ ′‖H1

T ′,a,s
≤ 2μ

c7
,

recalling (79) and (119).
Moreover, we claim that (120) implies also

(122) {ωi1(τ
′ − τ)} <

μ

c10
or {ωi1(τ − τ ′)} <

μ

c10
,

with c10 := c7/2‖A‖. Indeed, since |A−1v| ≥ ‖A‖−1|v| for any v ∈ R
N , recalling (54)

and choosing v := {ωτ ′} − {ωτ}, we have I0(τ) − I0(τ
′) = A−1v, and therefore

(123) |I0(τ) − I0(τ
′)| ≥ ‖A‖−1|{ωτ ′} − {ωτ}| ≥ ‖A‖−1|{ωi1τ

′} − {ωi1τ}|.

Noting that6

|{ωi1τ
′} − {ωi1τ}| = {ωi1(τ

′ − τ)} or |{ωi1τ
′} − {ωi1τ}| = {ωi1(τ − τ ′)},

(122) follows by (121) and (123).
Lemma 3.16. Let

(124) M :=

{
n ∈ Z, |n| ≤ c4

2μ2
s.t. {ωi1n} ≤ μ

c10

}
.

Then

M ≤ 10c4
c10μ

.

6Indeed, if {x} ≥ {y}, then

|{x} − {y}| = {x} − {y} =
{
{x} − {y}

}
=
{
x− y − [x] + [y]

}
= {x− y};

on the other hand, if {y} ≥ {x}, then |{x} − {y}| = {y − x}.
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Proof. We first note that, for μ small enough, we get[
2c4
i1μ

] [
i1
μ

]
≥
(

2c4
i1μ

− 1

)(
i1
μ

− 1

)
≥ c4

μ2
+ 1,

and therefore,

(125)

[
− c4

2μ2
,
c4

2μ2

]
⊆

⋃
1≤m≤

[
2c4
i1μ

]
[ [

− c4
2μ2

]
+ (m− 1)

[
i1
μ

]
,

[
− c4

2μ2

]
+ m

[
i1
μ

])
.

Now we claim that

(126) 

(
M∩

[
n̄, n̄ +

[
i1
μ

]])
≤ 4i1

c10
+ 1 ∀ n̄ ∈ Z.

Then from (125) and (126) we have

M ≤
(

4i1
c10

+ 1

)[
2c4
i1μ

]
≤ 5i1

c10

2c4
i1μ

≤ 10c4
c10μ

,

and the lemma follows.
Nothing remains but to prove (126). If M ∩

[
n̄, n̄ + [i1/μ]

)
= ∅, then (126) is

trivially true. Otherwise let

n0 := min
(
M∩

[
n̄, n̄ + [i1/μ]

))
.

By definition, n /∈ M for any n̄ ≤ n < n0. Moreover, by (65), (66) we have

(127) {ωi1n} = {δ(1)
i1

n} with
μ

4i1
< δ

(1)
i1

<
μ

2i1
.

We now prove that

(128) n ∈ M∩
[
n̄, n̄ + [i1/μ]

)
=⇒ n = n0 + n′, 0 ≤ n′ < 4i1/c10,

from which (126) follows. By definition of n0 it is obvious that n′ ≥ 0. Let us consider
n′ ∈ N such that

4i1/c10 ≤ n′ < n̄− n0 + [i1/μ].

For such n′ we will show that {ωi1(n0 + n′)} > μ/c10. We have that

(129) {ωi1(n0 + n′)} = {δ(1)
i1

n0 + δ
(1)
i1

n′} = {{δ(1)
i1

n0} + δ
(1)
i1

n′}.

By (127)

(130)
μ

c10
=

μ

4i1

4i1
c10

< {δ(1)
i1

n0} + δ
(1)
i1

n′ < {ωi1n0} +
μ

2i1
n′ <

μ

c10
+

1

2
≤ 1.

Therefore

{δ(1)
i1

n0} + δ
(1)
i1

n′ =
{
{δ(1)

i1
n0} + δ

(1)
i1

n′} = {ωi1(n0 + n′)}
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from (129). Finally, by (130),

{ωi1(n0 + n′)} >
μ

c10
.

Hence n0 + n′ /∈ M, and (128) follows.
Lemma 3.17. Fix τ ∈ Tμ. For μ small enough


{
τ ′ ∈ Tμ s.t. (120) holds

}
≤ 10c4

c10μ
.

Proof. If (120) holds, then τ and τ ′ verify (122). Hence τ − τ ′ ∈ M, defined in
(124). We conclude by Lemma 3.16.

By Lemmas 3.4 and 3.17 we conclude that the number of geometrically distinct
solutions found in Proposition 3.11 is greater than

c4
6μ2

(
10c4
c10μ

)−1

=
c10
60μ

.

Actually, since in Proposition 3.11 N geometrically distinct orbits correspond to any
τ , then the total number of geometrically distinct solutions is greater than c11/μ with
c11 := c10N/60.

Corollary 3.18. The total number of geometrically distinct solutions found in
Proposition 3.11 is greater than c11/μ.

3.11. Proof of Theorem 1.1. Suppose that τ ∈ Tμ, μ small enough, and
consider a solution found in Proposition 3.11. Such a solution is of the form

(131)
(
I(t), φ(t), ẑ(t)

)
=
(
I0(τ), ω̃t+φ0, 0

)
+ζ(t) =

(
I0(τ)+J(t), ω̃t+φ0+ψ(t), w(t)

)
with

(132) |J(t)| + |ψ(t)| + ‖w(t)‖a,s ≤
μ

c7
∀ t ∈ R,

by (109) and (79). We now want to rewrite such a solution in the z variables defined
in (30); by (33) and recalling that ẑi = zi for i ∈ Ic we get{

zi(t) =
√

Ii(t)
(
cosφi(t) − i sinφi(t)

)
for i ∈ I,

zi(t) = wi(t) for i ∈ Ic.

In the z∗ variables of Proposition 2.4 we have{
z∗i(t) = η

√
Ii(t)

(
cosφi(t) − i sinφi(t)

)
for i ∈ I,

z∗i(t) = ηwi(t) for i ∈ Ic

by (30) and

(133) sup
t∈R

‖z∗(t)‖a,s = O(η).

We define ž := (ži)i≥1 by

ži(t) :=

{ √
(I0)i

(
cos
(
ω̃t + (φ0)i

)
− i sin

(
ω̃t + (φ0)i

))
for i ∈ I,

0 for i ∈ Ic.
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By (132) we get

(134) sup
t∈R

‖z∗(t) − ηž(t)‖a,s = O (ημ) .

Concerning the z variables defined in (15) we have, recalling (18), (133), and (134),

(135) sup
t∈R

‖z(t) − ηž(t)‖a,s = O
(
ημ + η3

)
= O (ημ) = O

(
μ2
)
,

since

(136) η2 = 1/τ ≤ 2μ2/c4,

recalling (53) and (59). Regarding the q variables defined in (9) we have, recalling
(15) and (135),

(137) sup
t∈R

‖q(t) − ηq̌(t)‖a,s = O
(
μ2
)
,

where q̌ := (q̌i)i≥1 and

q̌i(t) :=

{√
2(I0)i cos

(
ω̃t + (φ0)i

)
for i ∈ I,

0 for i ∈ Ic.

We note that, by Corollary 3.13, the solution in (131) belongs to C∞(R,Pa/2,s), and

therefore, q ∈ C∞(R, �a/2,s). Finally, by Lemma 2.1, we have that

u(t, x) :=
∑
i≥1

qi(t)

√
2

πωi
sin ix

belongs to C∞(R × [0, π],R) and is a solution of (1). Defining

(138) ũ(t, x) := η
∑
i∈I

2

√
(I0)i
πωi

cos
(
ω̃t + (φ0)i

)
sin ix,

we have, for any t ∈ R and x ∈ [0, π],

|u(t, x) − ũ(t, x)| =

∣∣∣∣∣∣
∑
i≥1

(
qi(t) − ηq̌i(t)

)√ 2

πωi
sin ix

∣∣∣∣∣∣
≤
∑
i≥1

∣∣qi(t) − ηq̌i(t)
∣∣√ 2

πωi

≤ c12‖q(t) − ηq̌(t)‖a,s,

where, in the last line, we have used the Cauchy–Schwarz inequality. Therefore, by
(137), we get

(139) sup
t∈R, x∈[0,π]

|u(t, x) − ũ(t, x)| = O
(
μ2
)
.

Define, for i ∈ I,

(140) ai := 2
η

μ

√
(I0)i
πωi

.
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Since η = 1/
√
τ ≥ μ/

√
c4 (recall (53) and (59)), by Lemma 3.1 we get

ai ≥
2

√
c4

.

Defining ϕi := (φ0)i for i ∈ I, (6) follows by (138), (139), and (140).
Estimate (8) follows from Lemma 3.15, while (7) follows from (45) and (136). Fi-

nally, the statement about the total number of geometrically distinct solutions follows
from Corollary 3.18.

Remark 3.19. We can improve estimate (6) or, equivalently, (139). Indeed,
for any fixed k ≥ 1 and ζ in (131), by (110), we have ‖ζ‖Hk

T,a,s
≤ const(k)μ, where

const(k) is a suitable large constant depending on I, a, s, and k. Arguing as above and
using the Sobolev immersion Hk ⊂ Ck−1, we get ‖q − ηq̌‖Ck−1(R,�a,s) ≤ const(k)μ2.

Therefore sup
R×[0,π]

∣∣∂h
t (u−ũ)

∣∣ ≤ const(k)μ2 for any h ≤ k−1. Since the estimates on
the x-derivatives directly follows by the analyticity, we conclude that ‖u−ũ‖Ck(R×[0,π])

≤ const(k)μ2. We remark that, if one needs the previous Ck-estimate, the constant
c in Theorem 1.1 must depend on k.

Appendix.
Lemma A.1. Except a countable set of μ> 0 for any I = {i1 < · · · <iN} ⊂ N

+,

N ≥ 1, the vector ω = (ωi1 , . . . , ωiN ), ωi =
√
i2 + μ, is rationally independent.

Proof. For any n ∈ Z
N \ {0} let us define En :=

{
μ > 0 s.t. ω · n = 0

}
.

We claim that En is at the most countable. Indeed, for μ > −1, let us consider the
analytic function

fn(μ) :=

N∑
j=1

√
i2j + μ · nj = ω · n.

It is enough to show that fn is not identically zero, so that the set of its zeros is
at the most countable. Suppose, by contradiction, that fn(μ) ≡ 0 for any μ > −1,

then dkfn/dμ
k(0) = 0 for any k ≥ 1, and therefore

∑N
j=1 nj i

1−2k
j = 0 for any k ≥ 1.

Hence, multiplying for i2k−1
1 , we have

n1 +

N∑
j=2

nj

(
i1
ij

)2k−1

= 0 ∀ k ≥ 1.

Noting that ij > i1 for any j ≥ 2, and taking the limit for k → ∞, we get n1 = 0.
In the same way one can prove that n2 = 0 and, by induction, that n1 = · · · = nN

= 0.
Proof of Lemma 2.1. We first prove that u(t, x) is Ck. Moreover, for any fixed

t ∈ R, the function x �→ ∂h
t u(t, x), h < k+1, is real analytic with an analytic extension

in the complex strip |Imx| < a. Since q ∈ Ck(R, �a,s), we have that for all t ∈ R,

(141)
∑
i≥1

|qi(t)|2i2se2ai = ‖q(t)‖2
a,s ≤ ‖q‖2

Ck(R,�a,s) < ∞.

For any fixed ã < a by (141), the Cauchy–Schwarz inequality, and

sup
|Im x|≤ã

|χi(x)| ≤ sup
|Im x|≤ã

| sin ix| ≤ eãi,
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we get, for i0 ≥ 1,

sup
|Im x|≤ã

∣∣∣∣∣∣
∑
i≥i0

qi(t)√
ωi

χi(x)

∣∣∣∣∣∣
2

≤
∑
i≥i0

|qi(t)|2i2se2ai
∑
i≥i0

ω−1
i i−2se−2(a−ã)i

≤ ‖q‖2
Ck(R,�a,s)

∑
i≥i0

ω−1
i i−2se−2(a−ã)i i0→∞−→ 0,

from which we have that, for any t ∈ R, the series in (13) uniformly converges to a
2π-periodic real analytic odd function with analytic extension on the complex strip
|Imx| < a. Moreover, again by the Cauchy–Schwarz inequality, we get

|∂h
xu(t, x)| ≤ ‖q(t)‖2

a,s

∑
i≥1

ω−1
i i2(h−s)e−2ai ∀ (t, x) ∈ R × [0, π], h ∈ N,

and, from (141), we have that

(142) ∀h ∈ N ∃ ch,a,s > 0 s.t. sup
(t,x)∈R×[0,π]

|∂h
xu(t, x)| ≤ ch,a,s.

By similar arguments one proves that for any x ∈ [0, π], the function

R � t �→ u(t, x) =
∑
i≥1

qi(t)√
ωi

χi(x)

is continuous since the series uniformly converges on R (and the functions t �→ qi(t)
are continuous since q ∈ C0(R, �a,s)). The continuity in both variables follows by
(142) and the continuity in t for x0 fixed:

|u(t, x) − u(t0, x0)| ≤ |u(t, x) − u(t, x0)| + |u(t, x0) − u(t0, x0)|
≤ c1,a,s|x− x0| + |u(t, x0) − u(t0, x0)|.

Arguing as above one proves that, for any fixed x ∈ [0, π], the series

∑
i≥1

1
√
ωi

∂tqi(t)χi(x)

uniformly converges for t ∈ R; hence we can differentiate inside the summation in
(13), obtaining

∂tu(t, x) =
∑
i≥1

1
√
ωi

∂tqi(t)χi(x).

Carrying on the above arguments we finally have that u ∈ Ck and that

(143) ∂h
t u(t, x) =

∑
i≥1

1
√
ωi

∂h
t qi(t)χi(x), h < k + 1,

is, for any fixed t ∈ R, a 2π-periodic real analytic odd function with analytic extension
on the complex strip |Imx| < a.
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We now prove that u, defined in (13), is a classical solution of (1). From (9)
and (10),

(144)
∂G

∂qi
=

1
√
ωi

∫ π

0

f(u)χi dx;

hence, we have, by (143) and (11),

utt =
∑
i≥1

q̈i(t)√
ωi

χi(x)

=
∑
i≥1

1
√
ωi

(
−ω2

i qi − ωi
∂G

∂qi

)
χi

= −
∑
i≥1

qi(t)√
ωi

(μ− ∂xx)χi(x) −
∑
i≥1

χi

∫ π

0

f(u)χi dx,

because ω2
i are the eigenvalues of the operator μ− ∂xx. Moreover, as χi for i ≥ 1 is a

complete orthonormal basis for the L2 functions on [0, π], we obtain

utt = −(μ− ∂xx)u−
∑
i≥1

χi

∫ π

0

f(u)χi dx = −(μ− ∂xx)u− f(u).
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Panor. Synthèses 9, Société Mathématique de France, Paris, 2000.

[CW93] W. Craig and C. E. Wayne, Newton’s method and periodic solutions of nonlinear
wave equations, Comm. Pure Appl. Math., 46 (1993), pp. 1409–1498.

[GMPr05] G. Gentile, V. Mastropietro, and M. Procesi, Periodic solutions for completely
resonant nonlinear wave equations with Dirichlet boundary conditions, Comm.
Math. Phys., 256 (2005), pp. 437–490.



LONG TIME PERIODIC SOLUTIONS FOR THE NLW 1125

[K87] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with
imaginary spectrum, Funktsional. Anal. i Prilozhen., 21 (1987), pp. 22–37. (In
Russian.)

[K93] S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture
Notes in Math. 1556, Springer-Verlag, Berlin, 1993.

[L34] D. C. Lewis, Sulle oscillazioni periodiche d’un sistema dinamico, Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur., 19 (1934), pp. 234–237.

[Mo77] J. Moser, Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff, in
Geometry and Topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura
Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer,
Berlin, 1977, pp. 464–494.
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ON THE GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR THE
NAVIER–STOKES EQUATIONS OF COMPRESSIBLE FLUID FLOWS∗

MIKHAIL PEREPELITSA†

Abstract. We study the Cauchy problem for the two dimensional Navier–Stokes equations of
compressible fluid flows with periodic initial data. We assume that the bulk viscosity coefficient
depends on the density of the flow. The global existence of a weak solution with uniform lower
and upper bounds on the density, as well as the decay of the solution to an equilibrium state,
is proved when the initial datum, (ρ0, u0), does not contain vacuum and belongs to the space

L∞ (
T

2
)
×

[
W 1,2

(
T

2
)]2

, where T
2 = R

2/Z
2.

Key words. compressible Navier–Stokes equations, Orlicz spaces, commutator operators

AMS subject classifications. 76N10, 35Q30

DOI. 10.1137/040619119

1. Introduction. In the mathematical model of the motion of a compressible,
viscous, isentropic gas, the gas is described by its density (scalar), ρ(t, x), and velocity
(vector), u(t, x), both being functions of time t and position in physical space x ∈ R

3.
If there are no external forces acting on the gas, the flow of the gas is plane-parallel
and does not depend on the displacement in the transversal direction. The model is
described by the following system of the two dimensional compressible Navier–Stokes
equations:

ρt + div ρu = 0,(1)

(ρu)t + div ρu ⊗ u = div S,(2)

(t, x) ∈ R
+ × R

2,

where u = (u1(t, x), u2(t, x)), u ⊗ u is a tensor with components {u ⊗ u}ij = uiuj ,
i, j = 1, 2, and the stress tensor, S, is given by the Stokes formula:

S = (−P + ζdivu)I + 2μ

(
D − 1

3
divu I

)
.(3)

In the above formula, μ > 0 and ζ ≥ 0 are the shear and the bulk viscosity coefficients,
P = aργ , γ > 1, a > 0, is the pressure, I is the identity tensor, and D is the rate
of strain tensor that has components Dij = 1

2 (∂iuj + ∂jui), i, j = 1, 2. We stress
here that the condition on the flow to be isentropic holds only approximately, since
the entropy is generated in the irreversible process set up in the flow by the friction;
see [1, section 3.4]. Nevertheless, the full understanding of this model is essential in
studying compressible flows and is not yet complete; see Feireisl [4], Hoff [7], Lions
[11], [10], and Novotný and Straskraba [12] for detailed treatment of various models
of motion of compressible flows.

The viscosity coefficients, in general, depend on the thermodynamic parameters.
For example, for polyatomic gases it is expected that ζ, μ are proportional to θβ ,

∗Received by the editors November 18, 2004; accepted for publication (in revised form) November
9, 2005; published electronically December 11, 2006.

http://www.siam.org/journals/sima/38-4/61911.html
†Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240

(mikhail.perepelitsa@vanderbilt.edu).
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β > 0, where θ is the temperature; see [1, section 1.7]. Since for isentropic flows
θ ∼ ργ−1, we are led to the following hypothesis:

ζ = bρβ , μ = const. > 0, b > 0, β > 0.(4)

The assumption on the shear viscosity being a constant is the technical restriction that
reflects the fact that at present we do not have tools to treat a nontrivial dependence
μ = μ(ρ).

We consider the Cauchy problem with the given initial data ρ0 and u0, which are
periodic with period 1 in each space direction xi, i = 1, 2, i.e., functions defined on
T

2 = R
2/Z

2. We require that

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ T
2.(5)

There is a well-developed theory of weak solutions for the system of the mul-
tidimensional compressible Navier-Stokes equations with both viscosity coefficients,
μ > 0, ζ ≥ 0, being constants. In Lions [11], the global in time existence of weak
solutions of the multidimensional isentropic Navier–Stokes equations is proved for the
large values of γ. Later, Feireisl, Novotný, and Petzeltová [5] proved the existence
of weak solutions for the physical range of γ, i.e., γ > 1 if N = 2 and γ > 5

3 if
N = 3. Weak solutions considered in those works have a minimal amount of regular-
ity, and there are some important questions, such as formation of vacuum or blow up
of uniform bounds on density, that are still unanswered.

A development in this direction was made in Desjardins [3], where the author
proves that in dimensions N = 2, 3, with the assumption on the initial data, ρ0 ∈
L∞(TN ), u0 ∈

[
W 1,2(TN )

]N
, there exists a weak solution such that the L∞ norm

of the density does not blow up and no vacuum forms at small times t ∈ [0, T0[. A
related result of Hoff [7] establishes the global in time existence of weak solutions
that are small perturbations of an equilibrium state, measured in weak norms. The
weak solution constructed in the later work has a fair amount of regularity, and in
particular, the density is a L∞ function and no vacuum occurs at positive times.

In contrast, under the assumptions (4), which have a certain physical background
behind them, the problem (1)–(5) admits a globally defined solution with no restric-
tions on the size of initial data, and its regularity is controlled by the regularity of
initial data. This result was proved in Kazhikhov and Waigant [8] and is stated be-
low. Some extensions of these theorems that take into account the presence of external
forces are possible; see [8].

The existence of the classical solution is established in the following theorem.
Theorem A (see [8]). Let β > 3 and γ ≥ 0. Let ρ0(x), u0(x) be such that

0 < m < ρ0(x) < M < +∞, x ∈ T
2,

(ρ0, u0) ∈ C1+ω
(
T

2
)
×
[
C2+ω

(
T

2
)]2

, 0 < ω < 1,

for some m, M . Then, there exists the unique, classical solution of the problem (1)–
(5),

ρ ∈ C1+ω/2,1+ω
(
[0,+∞) × T

2
)
,

u ∈
[
C1+ω/2,2+ω

(
[0,+∞) × T

2
)]2

.

The solution exists for all times t > 0, and the density is bounded away from vacuum.
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The existence of a weak solution is established in the next theorem.
Theorem B (see [8]). Let β > 3 and γ ≥ 0. Let ρ0(x), u0(x) be such that

0 < m < ρ0(x) < M < +∞, x ∈ T
2,

(ρ0, u0) ∈ W 1,q
(
T

2
)
×
[
W 2,2

(
T

2
)]2

, q > 2,

for some m, M . Then, there exists a strong solution of the problem (1)–(5). The
solution exists for all times t > 0, and the density is an L∞ function and is bounded
away from vacuum.

The existence of weak solutions for which the density is an element of Lp, p > 1,
spaces is proved in the next theorem.

Theorem C (see [8]). Let β > 3 and γ ≥ 0. Let ρ0(x), u0(x) such that

(ρ0, u0) ∈ L∞ (
T

2
)
×
[
W 1,2

(
T

2
)]2

.

Then, there exists a weak solution of the problem (1)–(5). The solution exists for all
times t > 0.

In Theorems A and B it is shown that the solution does not admit vacuum at
positive times and the density of the flow is uniformly bounded. At the same time,
the density at time t = 0 must be differentiable, in the classical or weak sense, ruling
out the solutions with jump discontinuities.

On the other hand, in Theorem C, there is only one assumption on the density,
ρ0 ∈ L∞, but it is not known if the solution is bounded at positive times and/or
there are vacuum zones appearing in the flow. This is the question we address in the
present paper.

We derive new a priori estimates that provide the uniform bounds on the density
form above and below.

We investigate, as well, the long time behavior and obtain a weak solution that
converges in time to a constant state (

∫
T2 ρ0(·), 0) in the norm ‖ · ‖L∞ ×‖·‖Lp , p > 1,

in the case that the bulk viscosity is comparable with the pressure (β = γ). We prove
the following theorem.

Theorem. Let β > 3 and γ > 1. Let

(ρ0, u0) ∈ L∞ (
T

2
)
×
[
W 1,2

(
T

2
)]2

and

0 < m < infess T2ρ0(·) ≤ supess T2ρ(·) < M(6)

for some m, M . Then, there exists a global weak solution of the problem (1)–(5) with
the following properties.

(ρ, u) ∈ C
(
[0,+∞);L2

(
T

2
))

×
[
C
(
[0,+∞);L2

w

(
T

2
))]2

,

and for any T > 0 there are M̄ = M̄(T ) and m̄ = m̄(T ) > 0 such that

m̄ < ρ(t, x) < M̄, t ∈ (0, T ), x a.e. T
2.

If β = γ, then there exists a weak solution such that, for any p > 1,

‖ρ(t, ·) −
∫

T2

ρ0(s) ds‖L∞(T2) + ‖u(t, ·)‖Lp(T2) → 0, t → +∞.(7)
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Remark 1. L2
w is the space of L2 functions with L2 weak topology. The additional

regularity for velocity u is available. The complete list of properties of u can be found
in section 6.

The central point of the proof is contained in the analysis of the rate of production
of the density given by the quantity

−ρdivu = − ρ(4/3μ + ζ)−1B − ρ(4/3μ + ζ)−1P,

where B = (4μ/3+ ζ)divu−P , the effective viscous flux, solves the following Poisson
equation:

ΔB = ∂t(div ρu) + div div ρu ⊗ u.

Accordingly, we can write

B +
d

dt
(−Δ)−1[div ρu] = u · (−Δ)−

1
2∇(−Δ)−

1
2 div [ρu](8)

− (−Δ)−
1
2 div (−Δ)−

1
2 div [ρu ⊗ u],

and the terms on the right-hand side can be written as a sum of commutators of Riesz
transforms and the operators of multiplication by ui. The framework of this analysis
originates in the works of Hoff [7] and Lions [11]. Using the smoothing properties of
the commutators we obtain an estimate on the L∞ norm of the commutators in terms
of L∞ norm of ρ and ‖∇u‖L2 . This is a delicate point of the analysis, as we have
to use Poincaré–Sobolev type estimates stated in terms of Orlicz norms determined
by the convex functions r2 logp(2 + r) to show that the right-hand side of (8) can be
bounded by ‖ρ‖L∞ logα(2 + ‖∇u‖L2), α > 2.

On the other hand, using energy type estimates (at this point it is essential to
work with function defined on R

2) and dvi-curl lemma we show that log(2+ ‖∇u‖L2)
does not exceed a linear function of ‖ρ‖L∞ . Both estimates lead to the a priori
estimate on ‖ρ‖L∞ when β > 3 and consequently on ‖∇u‖L2 .

In the above argument (ρ, u) is the classical solution which exists globally in time
if initial data are smooth; see Theorem A. Naturally, the next step is the study of the
compactness properties of the sequence of such solutions, (ρn, un), which correspond

to the initial data approximating the given pair (ρ0,u0) from L∞ ×
(
W 1,2

)2
. Note

that in the case when the viscosity coefficient depends on density, the argument of
Lions [11] cannot be applied here since the effective viscous fluxes, Bn, incorporate
the term ζ(ρn)divun that is not in general weakly continuous. This difficulty was
resolved in Kazhikhov and Waigant [8] by utilizing a uniform boundedness of the
norms ‖∇Bn‖L2((0,T )×T2), T > 0, which provides the strong compactness of {Bn}. For
the purpose of completeness of the work we present the proof of strong compactness
of the sequence of smooth solutions in the last section.

The work is organized as follows. Section 2 contains notations, the necessary
mathematical apparatus, and the derivation of the complimentary system of equa-
tions. In section 3 we obtain estimates based on the first energy inequality. Section
4 deals with additional energy type estimates. Section 5 is devoted to the derivation
of uniform upper and lower bounds on the density. In section 6 we establish the
existence of a weak solution as limit of smooth solutions for which bounds from the
previous sections apply.
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2. Notations and preliminary lemmas. We use the following notation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂i = ∂
∂xi

, i = 1, 2, ∇ = (∂1, ∂2),

∇⊥ = (∂2,−∂1),
d
dt

= ∂
∂t

+ u · ∇,

divu = ∇ · u, rotu = ∇⊥ · u,
Π =

[
− 1

2 ,
1
2

]
×
[
− 1

2 ,
1
2

]
⊂ R

2, fΠ = 1
|Π|

∫
T2 f(x) dx.

Let T
2 = R

2/Z
2 be a two dimensional torus. We identify functions defined on T

2 with
their periodic counterparts defined on R

2. By ‖·‖p, 1 ≤ p ≤ +∞, we denote Lebesgue
Lp(T2) norms of a function. We use standard notation W k,q

(
T

2
)
, q ∈ [1,+∞], k an

integer, for Sobolev spaces of functions that possess weak derivative up to the kth
order, which belong to Lq(T2). W−k, q

q−1
(
T

2
)
, q ∈ [1,+∞) is the dual space of

W k,q
(
T

2
)
. We use the same notation for norms of scalar and vector functions.

The material on Fourier series and integral operators presented below can be
found, for example, in [14] and [15]. Let f ∈ L1

(
T

2
)
. The set of Fourier coefficients

of f , {cn}n∈Z2 , where

cn =

∫
Π

f(y)e−2πi(n·y) dy,

is well defined, and we formally write f ∼
∑

n∈Z2 cne
2πi(n·x). For i = 1, 2, the ith

Riesz transform of f is defined as a multiplier

Ri(f) ∼
∑

n∈Z2,n �=0

−i
ni

|n|cne
2πi(n·x).

It is well known that Ri is a linear continuous operator from any Lp(T2) to itself, for
1 < p < +∞. We use this property in the following form.

Lemma 1. There is C = C(p), p ∈]1,+∞[, such that for any f = (f1, f2), a
vector function with components in L1(T2) such that F = (F1, F2) = (div f , rot f)

belongs to
(
Lp(T2)

)2
, it holds that

‖∇f‖p ≤ C‖F‖p.(9)

Proof. Indeed, for i = 1, 2 we can formally write

−∂if1 = Ri ◦ (R1(F1) + R2(F2)),

−∂if2 = Ri ◦ (R2(F1) −R1(F2)).

Therefore, Lp estimates on singular integral operators apply, and using a suitable
approximation argument we conclude.

Let L1
0 be the space of integrable functions with zero mean. Define normed spaces

H1 =
{
f ∈ L1

0

(
T

2
)

: ||f ||H1 � ||f ||1 + ||R1(f)||1 + ||R2(f)||1 < +∞
}
,

where Ri, i = 1, 2, are Riesz transforms introduced above, and

BMO =
{
f ∈ L1

loc

(
T

2
)

: ||f ||BMO < +∞
}
,

where ||f ||BMO = sup{0<ε<1, x∈Π}
1

|Bε(0)|
∫
Bε(x)

|f(y)−fBε(x)| dy. In the case of BMO
space, functions are defined modulo additive constants.
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We will use standard notation for operators (Δ)−1 : Lp
0

(
T

2
)
→ W 2,p

(
T

2
)
, the

inverse Laplace operator, and (−Δ)−1div : Lp
(
T

2
)
→ W 1,p

(
T

2
)
, where 1 < p < +∞

and Lp
0 is the space of Lp integrable functions with zero mean. In terms of Fourier

series these operators are defined as follows:{
(−Δ)−1(f) ∼

∑
n∈Z2,n �=0

1
4π2|n|2 cne

2πi(n·x),

(−Δ)−1div (f) ∼
∑

n∈Z2,n �=0 − i
2π

n1+n2

|n|2 cne
2πi(n·x).

Consider the composition of two Riesz transforms, Ri ◦ Rj , i, j = 1, 2. There is a
representation of this operator as a singular integral

Ri ◦Rj(f)(x) = p.v.

∫
T2

Kij(x− y)f(y) dy,

where the kernel Kij(x), i, j = 1, 2, has a singularity of the second order at 0 and

|Kij(x)| ≤ C|x|−2, x ∈ T
2,

for some constant C > 0. Given function g, define the linear operator

[g,RiRj ](f) ≡ gRi ◦Rj(f) −Ri ◦Rj(gf), i, j = 1, 2.

This operator can be written as a convolution with the singular kernel Kij ,

[g,RiRj ](f)(x) = p.v.

∫
T2

Kij(x− y)(g(x) − g(y))f(y) dy, i, j = 1, 2.

The commutator possesses a number of remarkable properties. We will use the fol-
lowing result of Coifman et al. [2].

Lemma 2. Let g, f ∈ C∞(T2), and p > 1. Then, there is C = C(p) such that

‖[g,RiRj ](f)‖p ≤ C‖g‖BMO‖f‖p, i, j = 1, 2.(10)

We will use Orlicz norms of functions as they arise naturally from the type of
methods we use, i.e., energy estimates for gradients of functions defined on T

2. The
extensive study of these spaces is contained in [9].

Definition 1. Convex, even function Φ : R → R
+ is called a Young function if

Φ(0) = 0 and limr→∞ Φ(r) = +∞.
Let Φ be a Young function.
Definition 2. The functional NΦ : L1(T2) → R

+ defined by

NΦ(f) = inf

{
λ > 0 :

∫
T2

Φ

(
f

λ

)
dx ≤ 1

}
(11)

is called an Orlicz norm of function f .
NΦ(·) is a norm. There is an analogue of Hölder inequalities for Orlicz norms. It

is contained in the next lemma. The proof is an easy consequence of the definition of
NΦ(·) and the convexity of the defining function Φ.

Lemma 3. Let Φi, i = 1, 2, 3, be left-continuous Young functions that satisfy the
following inequality for all x, y > 0 and some positive constants C1, C2:

Φ3(xy) ≤ C1Φ1(x) + C2Φ2(y).(12)
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Then, for all f1, f2, f3 ∈ L1(T2), and some constant C > 0,

NΦ3
(f1f2) ≤ CNΦ1

(f1)NΦ2
(f2).(13)

The use of Lemma 3 will be limited to the Young functions appearing in the next
lemma, the proof of which is omitted.

Lemma 4. There are constants Ci, i = 1, . . . , 3, such that for all x, y ≥ 0 the
following inequalities hold:

xy ≤ C1(p)x
2
[
log(e2 + x)

]p
+ C1(p)y

2
[
log(e2 + y)

]−p
, p > 0,(14)

xy ≤ C2(p) [exp(xp) − 1] + C2(p)y
[
log(e2 + y)

] 1
p , p > 0,(15)

(xy)2
[
log(e2 + xy)

]p ≤ C3Ψs(x) + C3y
2
[
log(e2 + y)

]r
(16)

with r > p > 1, s > 0, and a Young function Ψs such that

lim
x→+∞

exp exp(2x
1
s )

Ψs(x)
= 1.(17)

In what follows we use notation Φp(x) = x2
[
log(e2 + x)

]p
and Υp(x) = ex

p − 1,
p > 1, x ≥ 0. We now derive Poincaré–Sobolev type inequalities.

Lemma 5. For any p ∈]1,+∞[ there are C and ε0 such that for any g ∈ C∞(T2)
and x ∈ T

2 it holds that

|g(x + z) − g(x)| ≤ C [− log ε]
− p−1

2 NΦp
(∇g : B3ε(x)), |z| < ε < ε0.

Proof. Indeed, for all y ∈ Bε(x), the integration by parts can be used to establish
the inequality

|g(y) − gBε(x)| ≤
1

|Bε(0)|

∫
B3ε(0)

|∇g|(y + z)

|z| dz,

where gBε(x) is the average of g(x) over the ball Bε(x) = {|y − x| < ε}. We now apply
Lemma 3 together with Lemma 4, where we set f1(z) = |z|−1, f2(z) = |∇g|(y+z) with
Φ1(r) = Φ−p(r), Φ2(r) = Φp(r) and Φ3(r) = r. Let us compute NΦ1

(|z|−1 : B3ε(0)):

NΦ1(|z|−1 : B3ε(0))

= inf

{
λ > 0 :

∫
B3ε(0)

1

|z|2λ2 logp(e2 + (|z|λ)−1)
< 1

}

≤ inf

{
0 < λ < (3ε)−1 : 2π

∫ 3ε

0

1

rλ2 logp(rλ)−1
dr < 1

}
.

Then, there is C = C(p) such that

NΦ1
(|z|−1 : B3ε(0)) ≤ C [− log ε]

− p−1
2 ,

when ε is sufficiently small (depending on p), and this concludes the proof.
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With the help of the last lemma we establish the L∞ estimates on the commuta-
tors that have been introduced above.

Lemma 6. Let g, f ∈ C∞(T2). Let Υω(r) = exp(rω) − 1, ω > 0. Then, if

p− 1

2
− 1

ω
> 1,

there is C > 0, independent of f and g, with the property

sup
T2

|[g,RiRj ](f)(·)| ≤ CNΥω (f)NΦp (∇g) .

Proof. The proof is a simple application of the Hölder inequality given by Lemma
3. Let us use the letter C to denote the generic constant that is independent of
functions f and g. In formula (2) we split the integral in two: one taken over the set
|y − x| > ε and the singular part |y − x| < ε, for some ε > 0:

[g,RiRj ](f)(x) =

∫
T2∩{|x−y|>ε}

Kij(x− y)(g(x) − g(y))f(y) dy

+ p.v.

∫
T2∩{|x−y|<ε}

Kij(x− y)(g(x) − g(y))f(y) dy.

By the fact that Kij(x) has a singularity of the second order at 0, and using the
estimate on g(x) − g(y) from Lemma 5, we obtain

|[g,RiRj ](f)(x)| ≤ C(ε)NΦp
(|∇g|)

∫
T2

|f(y)|

+ CNΦp (|∇g| : B3ε(x))

∫
Bε(0)

|z|−2[− log |z|]−
p−1
2 f(x + z).

Young functions Υω(r) and r log
1
ω (e2 + r) satisfy conditions of Lemma 3 which we

apply for the last integral. It is easy to see that there is C > 0 for which

N
r log

1
ω (e2+r)

(
|z|−2[− log |z|]−

p−1
2 : Bε(0)

)
< C.

This proves the lemma, since
∫

T2 |f(x)| dx ≤ CNΥω (f), for suitable constant C.
The next two lemmas are the well-known Poincaré–Sobolev inequalities. Proofs

can be found, for example, in Ziemer [17].
Lemma 7. Let 2 < p < +∞, and A ⊂ T

2 of a nonzero Lebesgue measure. There
is a constant C = C(p, |A|) for which

‖f − fA‖p ≤ C‖∇f‖ 2p
2+p

holds for any f ∈ C∞(T2). We use notation fA = |A|−1
∫
A f(·).

Lemma 8. For any p > 2 there is a C = C(p) > 0 such that

sup
T2

|f | ≤ |f2
T
| + C‖∇f‖p

holds for any f ∈ C∞(T2). Also, there are absolute constants c1, c2 > 0, such that
for any cube C it holds that∫

C

exp

(
|f(x) − fC |2
c1‖∇f‖2

2

)
dx ≤ c2|C|
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for any f ∈ C∞(T2), provided f �≡ const.
Remark 2. The last inequality in the previous lemma can be used to show that

NΥ2
(f) ≤ C‖∇f‖2 + |f̄ |,(18)

with f̄ =
∫

T2 f(·) and some C > 0 independent of f .
Lemma 1 can also be stated for Orlicz norms if the underlying Young functions

are “comparable” with power functions. In particular, the next lemma holds.

Lemma 9. Let f = (f1, f2) ∈
[
C∞ (

T
2
)]2

and F = (F1, F2) = (div f , rot f)
Then, for 1 ≤ p < +∞, there is a C = (p) > 0 such that

NΦp (∇f) ≤ CNΦp
(F) .

Proof. We just have to notice that Φp(r) can be approximated by the linear
combinations αr2 + βr3, r > 0, and use Lemma 1 along with the definition of norm
NΦp (·).

Let us now assume that ρ0 and u0 are C∞ (
T

2
)

functions. Let ρ̄ =
∫

T2 ρ0(·) and
P̄ = P (ρ̄). By Theorem A, there exists the unique, global in time, classical solution
(ρ, u) of the problem (1)–(5). From (1) and (2) we derive equations needed for
studying higher regularity of the solution. Note that in R

2, div D = ∇divu+ 1
2∇⊥ rotu

and system (2) can be written in the following form:

du

dt
+

1

ρ
∇
(
P − P̄ − (4μ/3 + ζ)divu

)
− 1

ρ
μ∇⊥ rotu = 0.(19)

Introducing the shorthand notation{
A = rotu,
B = (4μ/3 + ζ)divu − P + P̄ ,

(20)

and after applying differential operators rot and div to the above system, we obtain

dA

dt
− (∂1u · ∇)u2 + (∂2u · ∇)u1 = rot

1

ρ

(
∇B + μ∇⊥A

)
,(21)

d

dt
divu + (∂1u · ∇)u1 + (∂2u · ∇)u2 = div

1

ρ

(
∇B + μ∇⊥A

)
.(22)

Consequently, (22) can be written as

d

dt

(
B

4μ/3 + ζ

)
+ (∂1u · ∇)u1 + (∂2u · ∇)u2 −

d

dt

P − P̄

4μ/3 + ζ

= div
1

ρ

(
∇B + μ∇⊥A

)
.(23)

The next equation is essential for the analysis of compressible, viscous flows and was
studied in [7], [11], [13]. Let us apply operator (−Δ)−1div to system (2). With the
notation

ψ = (−Δ)−1div ρu, B̄ =

∫
T2

B(t, ·),(24)

we have

(4μ/3 + ζ)divu = B̄ + P − P̄ − d

dt
ψ +

∑
i,j=1,2

[ui, RiRj ](ρuj),(25)
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where we used the fact that u · ∇ψ − (−Δ)−1div div ρu ⊗ u can be written as a sum
of commutators:

∑
i,j [ui, RiRj ](ρuj). Using this in (1) we obtain

4μ/3 + ζ

ρ

d

dt
ρ− d

dt
ψ + P − P̄ = − B̄ +

∑
i,j=1,2

[ui, RiRj ](ρuj).(26)

Finally, by Calderón–Zygmund estimates of singular integral operators, for any 1 <
p < +∞, there is C = C(p) > 0 such that

‖∇ψ(t, ·)‖p ≤ C‖ρ(t, ·)u(t, ·)‖p,(27)

and consequently, there is C = C(p) such that

‖∇ψ(t, ·)‖Φp ≤ C‖ρ(t, ·)u(t, ·)‖Φp .(28)

In analyzing the system of equations, we encounter the problem of obtaining a
“good” estimate for the term

∫
T2 B∇u1 ·∇⊥u2 dx. One sees directly that it is bounded

by ‖B‖∞‖∇u‖2
2. Unfortunately, ‖B‖∞ is not controlled by the ‖∇B‖2, the quantity

naturally arising in energy estimates. This leads us to a more subtle estimate that
takes into account the structure of the product term ∇u1 · ∇⊥u2. The estimate is
obtained by using the duality between Hardy H1 and BMO spaces. In [6], Fefferman
proved that BMO is the dual space of H1. In particular, there is an absolute constant
C such that ∣∣∣∣

∫
T2

B∇u1 · ∇⊥u2 dx

∣∣∣∣ ≤ C||B||BMO||∇u1 · ∇⊥u2||H1 .(29)

One readily notices that rot∇u1 = div∇⊥u2 = 0 and one can use the so-called
“div-curl” lemma of compensated compactness; see [2, Theorem II.1]. It yields the
following estimate with the suitable choice of an absolute constant C:

||∇u1 · ∇⊥u2||H1 ≤ C||∇u1||2||∇⊥u2||2.

Finally, from Lemma 8 and definition of || · ||BMO it follows that there is a constant
C > 0 such that

||B||BMO ≤ C||∇B||2.

Combining the last two estimates in (29) we obtain

∣∣∣∣
∫

T2

B∇u1 · ∇⊥u2 dx

∣∣∣∣ ≤ C||∇B||2||∇u||22.(30)

3. The first energy inequality. It follows from the equation of conservation
of mass that ρ(t, x) ≥ 0 and

∫
T2 ρ(t, ·) dx =

∫
T2 ρ0(·) dx = ρ̄. By multiplying (2) by u,

integrating over the domain Π, and using periodicity of the flow we obtain

d

dt

∫
T2

ρ
|u|2
2

dx +

∫
T2

(−P + (4μ/3 + ζ)divu) divu + μ( rotu)2 dx = 0.
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Since P = aργ , γ > 1 we deduce from (1) that −(γ − 1)Pdivu = (P )t + div (Pu).
Substituting this in the last equation we get

sup
t∈[0,+∞)

∫
T2

ρ(t, ·) |u(t, ·)|2
2

+
P (t, ·)
γ − 1

dx

+

∫∫
(0,+∞)×T2

(4μ/3 + ζ)(divu)2 + μ( rotu)2 dxdt

≤ C

∫
T2

ρ0(·)
|u0(·)|2

2
+

P (ρ0(·))
γ − 1

dx.

Let E(t) =
∫

T2 ρ(t, ·) |u(t,·)|2
2 + P (t,·)

γ−1 dx denote the total energy of the gas and E0 =

E(0). We will refer to the next inequality as the first energy inequality,

(31) sup
t∈[0,+∞)

E(t) +

∫∫
(0,+∞)×T2

(4μ/3 + ζ)(divu)2 + μ( rotu)2 dx dt ≤ E0.

For the purpose of studying long time behavior of the solutions we will need a
variant of the first energy inequality. Following [7] we introduce G(ρ) = P (ρ)−P (ρ̄)−
P ′(ρ̄)(ρ− ρ̄). Then, using the same arguments that lead to (31) we obtain

(32)
d

dt

∫
T2

ρ(t, x)
|u|(t, x)2

2
+ G(ρ(t, x)) dx

+

∫
T2

(4μ/3 + ζ(ρ(t, x)))|divu|2(t, x) + μ( rotu)2(t, x) dx = 0.

For the purpose of using imbedding theorems we will need bounds on averages of
various functions. They are obtained in the following way. First,∣∣∣∣

∫
T2

(u − ū) ρ dx

∣∣∣∣ ≤ ‖ρ‖γ‖u − ū‖γ/(γ−1)

≤ C‖∇u‖2,∣∣∣∣
∫

T2

(u − ū) ρ dx

∣∣∣∣ ≥ |ū|
∫

T2

ρ0 dx−
∣∣∣∣
∫

T2

ρu dx

∣∣∣∣
= |ū|

∫
T2

ρ0 dx−
∣∣∣∣
∫

T2

ρ0u0 dx

∣∣∣∣ ,
where we used the fact that the momentum is conserved; d

dt

∫
T2 ρu dx = 0. Assume

that
∫

T2 ρ0u0 dx = 0. This is a harmless assumption since system (1)–(2) is invariant
under Galilean transformations, and it is satisfied in the reference frame (coordinate

system) that moves with the constant velocity
∫

T2 ρ0u0 dx∫
T2 ρ0 dx

relative to the initially chosen

frame. Then, since
∫

T2 ρ(t) dx is positive and independent of time, we conclude that

|ū| ≤ C‖∇u‖2.(33)

By the definition of function A and periodicity of the flow,∫
T2

A(t, ·) = 0.(34)
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4. The second energy inequality.

Remark 3. We will prove the theorem only for the case β ≥ γ. The case
β > 3, γ > 1 is a straightforward adaptation of the proof if one takes into account the
following estimate proved in [8]:

sup
s∈(0,T )

‖ρ(s, ·)‖p ≤ C(T, p), 1 ≤ p < +∞.

In this case all estimates become time dependent.

Let

Y 2(t) =
∫

T2 A
2(t, ·) +

B2(t, ·)
4μ
3 + ζ(t, ·) ,

X2(t) =
∫

T2

(∇B(t, ·) + μ∇⊥A(t, ·))2
ρ(t, ·) ,

D2(t) =
∫

T2

(
4μ
3 + ζ(t, ·)

)
|divu(t, ·)|2 + μ| rotu(t, ·)|2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

and |ρ|(t) = 1 + ‖ρ(t, ·)‖∞.

Lemma 10. For any ω ∈]0, 1[ there is C = C(ω, μ, β, γ, b, E0) such that

d

dt
Y 2(t) + X2(t) ≤ Cω

(
Y (t)D(t) + Y 2(t)D(t)

+ D(t)(Y (t) + D(t))X(t)|ρ|(t)
1+βω

2

)
.(36)

Proof. Multiplying (21) by 2A and using the fact that −(∂1u·∇)u2+(∂2u·∇)u1 =
Adivu, we get

dA2

dt
+ 2A2 divu = 2A rot

1

ρ
(∇B + μ∇⊥A).(37)

Multiplying (23) by 2B, using the fact that

(∂1u · ∇)u1 + (∂2u · ∇)u2 = (divu)2 − 2∇u1 · ∇⊥u2,

and using the equation of mass conservation (1), we get

d

dt

(
B2

4μ/3 + ζ

)
+

B2

4μ/3 + ζ
divu(38)

− B2

4μ/3 + ζ
divu + B2 d

dt

1

4μ/3 + ζ
− 2B

d

dt

P − P̄

4μ/3 + ζ

+ 2B(divu)2 − 4B∇u1 · ∇⊥u2 = 2Bdiv
1

ρ
(∇B + μ∇⊥A).

Using identity (55) in (39) and adding (37) and (39), after the integration of the result
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over T
2, we get

(39)
d

dt

[∫
T2

A2 +
B2

4μ/3 + ζ
dx

]
+ 2

∫
T2

(∇B + μ∇⊥A)2

ρ
dx

= −
∫

T2

A2divu dx +

∫
T2

−2B(divu)2 + 4B∇u1 · ∇⊥u2

−
∫

T2

(β − 1)ζ − 4μ/3

(4μ/3 + ζ)2
B2divu dx +

∫
T2

(P − P̄ )
2βζ

(4μ/3 + ζ)2
Bdivu

− 2γP

4μ/3 + ζ
Bdivu dx +

∫
T2

(P − P̄ )divu

∫
T2

2(γ − 1)B

4μ/3 + ζ
dx.

By the Young inequality there is C > 0 such that for all t > 0

Y 2(t) ≤ CD2(t) + C

∫
T2

(P − P̄ )2

4μ/3 + ζ
.(40)

Also, from the energy inequality (31) and β ≥ γ it follows that there is C > 0,
independent of t > 0, that verifies the inequality

Y 2 − C ≤ 2D2(t) ≤ 4Y 2(t) + C.(41)

Our goal will be to find the optimal estimate of the right-hand side of (39) in terms
of Y , X, and ‖ρ‖∞.

We will use the following result, based on Lemma 1, applied to the function
f = (B,μA), and F = (div f , rot f) = ∇B + μ∇⊥A. The next estimate holds:

‖∇A‖2 + ‖∇B‖2 ≤ C‖∇B + μ∇⊥A‖2.(42)

Consider terms in (39). Using the estimate (31) and notation (20) we get

(43)

∣∣∣∣
∫

T2

B

4μ/3 + ζ
dx

∣∣∣∣
∣∣∣∣
∫

T2

Pdivu dx

∣∣∣∣
≤ C

∥∥∥∥∥ B√
4μ/3 + ζ

∥∥∥∥∥
2

‖
√

4μ/3 + ζdivu‖2 ≤ CY (t)D(t).

The set of the following estimates is obtained by using the appropriate Young inequal-
ities and the definition of B, (20):∫

T2

|B|(divu)2 dx =

∫
T2

|B|
∣∣∣∣B + P − P̄

4μ/3 + ζ

∣∣∣∣ |divu| dx(44)

≤ C

∥∥∥∥ B2

4μ/3 + ζ

∥∥∥∥
2

D(t) + CY (t)D(t),

∫
T2

B2ζ

(4μ/3 + ζ)2
|divu| dx ≤ C

∥∥∥∥ B2

4μ/3 + ζ

∥∥∥∥
2

D(t),(45)

∫
T2

|B(P − P̄ )divu|ζ
(4μ/3 + ζ)2

dx ≤ CY (t)D(t),(46) ∫
T2

|BPdivu|
4μ/3 + ζ

dx ≤ CY (t)D(t).(47)



WEAK SOLUTIONS OF THE COMPRESSIBLE FLUID FLOW 1139

Let us take 0 < ω < 1 and use the Hölder inequality to estimate the term∥∥∥∥ B2

4μ/3 + ζ

∥∥∥∥
2

≤ C

∥∥∥∥ B

4μ/3 + ζ

∥∥∥∥
1−ω

2

‖|B|1+ω‖ 2
ω
.(48)

Then, by Lemma 7, the Hölder inequality, and the estimate (42), we get with a number
K > 0,

‖|B|1+ω‖ 2
ω
≤

∣∣∣|B|1+ωχ{ρ(t,·)<K}

∣∣∣ + ‖|B|1+ω − |B|1+ωχ{ρ(t,·)<K}‖ 2
ω

(49)

≤
∣∣∣|B|1+ωχ{ρ(t,·)<K}

∣∣∣ + C‖|B|ω∇B‖ 2
1+ω

≤ CY 1+ω + C‖B‖ω2 ‖∇B‖2 ≤ CY 1+ω + CY ωX|ρ|
1+βω

2 ,

where we used the fact that |{ρ(t, ·) < K}| > 1
2 when K > 2

∫
T2 ρ(t, ·) = 2

∫
T2 ρ0(·).

Substituting the last inequality in (48) we get∥∥∥∥ B2

4μ/3 + ζ

∥∥∥∥
2

≤ CY 2 + CY X|ρ|
1+βω

2 ,(50)

where C > 0 depends upon ω ∈ (0, 1) among other parameters.
Consider now the term

∫
T2 |A|2divu. By the same type of arguments that were

used in derivation of the last estimates we obtain that∣∣∣∣
∫

T2

A2divu

∣∣∣∣ ≤ ‖A2‖2D(t)

≤ CY 2(t)D(t) + Y (t)D(t)X(t)|ρ|(t)
1+βω

2 ,(51)

with ω ∈]0, 1[ and some C > 0. The term
∫

T2 B∇u1 · ∇⊥u2 dx is estimated by using
the duality between BMO and Hardy H1 space, followed by “div-curl” lemma as it
is explained in section 2,∫

T2

|B∇u1 · ∇⊥u2| dx ≤ C‖∇B‖2‖∇u‖2 ≤ CD2(t)X(t)|ρ| 12 (t).(52)

Using estimate (43) in (45) and (45) and combining (43)–(47), (51), and (52) in (39)
we get the inequality (36).

We will use the estimate obtained in the following lemma.
Lemma 11. Let β = γ. There are C = C(μ, β, γ, b, E0) > 0 such that for all

t > 0, it holds that (modulo a constant)∫
T2

|P (t, ·) − P̄ |2
4μ/3 + ζ(t, ·) � D2(t) +

d

dt
Ψ(t),(53)

where |Ψ(t)| ≤ C.
Proof. Equation (25) multiplied by (P − P̄ )(4μ/3 + ζ)−1 can be written as

(P − P̄ )2

4μ/3 + ζ
= −B̄

P − P̄

4μ/3 + ζ
− ψ

d

dt

P − P̄

4μ/3 + ζ

+ ∂t
ψ(P − P̄ )

4μ/3 + ζ
+ div

(
ψ(P − P̄ )

4μ/3 + ζ
u

)

− ψ(P − P̄ )

4μ/3 + ζ
divu + [u, RR](ρu)

P − P̄

4μ/3 + ζ
,(54)
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where we used the shorthand notation [u, RR](ρu) to mean
∑

i,j [ui, RiRj ](ρuj). Us-
ing the equation of mass conservation (1), we can write

ψ
d

dt

P − P̄

4μ/3 + ζ
= ψ(P − P̄ )

βζ

(4μ/3 + ζ)2
divu − ψ

γP

4μ/3 + ζ
divu.

+ ψ
(γ − 1)

4μ/3 + ζ

∫
T2

(P − P̄ )divu dx.(55)

Then, by the repeated use of Hölder inequalities, Lemma 7, the estimate (27), and
(33) we derive the following inequalities:∣∣∣∣

∫
T2

ψ
(P − P̄ )βζ

(4μ/3 + ζ)2
divu dx

∣∣∣∣ ≤ C

∫
T2

|ψdivu| dx ≤ C‖ψ‖2‖divu‖2(56)

≤ C‖∇ψ‖1+ γ−1
2
‖divu‖2 ≤ C‖ρu‖1+ γ−1

2
‖divu‖2

≤ C‖ρ‖γ‖u‖ γ(γ+1)
γ−1

‖divu‖2 ≤ C‖∇u‖2
2.

Similarly, ∣∣∣∣
∫

T2

ψ
γP

4μ/3 + ζ
divu dx

∣∣∣∣ ≤ C‖∇u‖2
2.

Collecting the above estimates in (55) we obtain∣∣∣∣
∫

T2

ψ
d

dt

P − P̄

4μ/3 + ζ

∣∣∣∣ ≤ 1

8

∫
T2

(P − P̄ )2

4μ/3 + ζ
+ CD2(t).

Since, by Hölder inequalities, Lemma 7, and the estimate (31),

‖ψ‖1 ≤ C‖∇ψ‖ 2γ
γ+1

≤ C‖ρu‖ 2γ
γ+1

≤ C‖√ρu‖2‖ρ‖
1
2
γ ≤ C(E0),

we get that for t ≥ 0,∣∣∣∣
∫

T2

ψ
P (t, ·) − P̄

4μ/3 + ζ(t, ·) dx
∣∣∣∣ ≤ C‖ψ(t, ·)‖1 ≤ C(57)

and ∣∣∣∣
∫

T2

ψ
P (t, ·) − P̄

4μ/3 + ζ(t, ·)divu dx

∣∣∣∣ ≤ CD2(t).(58)

We denote Ψ(t) =
∫

T2 ψ
P (t,·)−P̄

4μ/3+ζ(t,·) dx.

By Lemmas 2 and 7 we obtain that

‖[u, RR](ρu)‖1 ≤ C‖[u, RR](ρu)‖ 2γ
γ+1

≤ C‖∇u‖2‖ρu‖ 2γ
γ+1

≤ C‖∇u‖2‖u‖ 2γ
γ−1

‖ρ‖γ ≤ C‖∇u‖2
2‖ρ‖γ .

In this way we obtain ∫
T2

|[u, RR](ρu)| |P − P̄ |
4μ/3 + ζ

≤ CD2.(59)
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Finally, with Young’s inequality we deduce that∣∣∣∣
∫

T2

−B̄(t)
P (t, ·) − P̄

4μ/3 + ζ(t, ·)

∣∣∣∣ ≤ CD2(t) +
1

8

∫
T2

|P (t, ·) − P̄ |2
4/3μ + ζ(t, ·) .(60)

Collecting estimates (??)–(60) we conclude the proof.
Corollary 1. If ρ(t, x) is uniformly bounded in space and time, using the fact

that G(ρ) � |P − P̄ |2, we obtain the following estimate:∫ +∞

0

∫
T2

G(ρ(·, ·)) � 1 +

∫ +∞

0

D2(·).(61)

Corollary 2. After dividing the inequality (36) by e2 + Y 2(t) and integrating
over time interval ]0, T [, we deduce, using (31), (40), (41), and (53), that for ω ∈]0, 1[
there is Cω > 0 independent of T and such that

log(e2 + Y 2(T )) +

∫ T

0

X2(s)

e2 + Y 2(s)
≤ log(e2 + Y 2(0))(62)

+ Cω

(
1 + sup

[0,T ]

|ρ|
∫ T

0

D2(·) +

∫ T

0

D2(·)|ρ|1+ωβ(·)
)
.

Note that from the first energy inequality (31) and (62) it follows that if ρ(t, x)
is bounded uniformly in space and time, then Y (t) and consequently D(t), the rate
of energy dissipation, are bounded uniformly in time.

5. Uniform bounds on density. We use (26) to get pointwise bounds on
ρ(t, x). Let us fix time t ∈]0,+∞[ and estimate the L∞(T2) norm of the terms
on the right-hand side of this equation.

Consider the first term on the right-hand side of (26). We have

|B̄(t)| =
∣∣∣(4μ/3 + ζ)divu

∣∣∣
≤ δ + CδD(t)2(63)

for any δ > 0 and some Cδ > 0. Lemma 6 and Remark 2 are used to get estimates
on the commutator [u, RR](ρu). Specifically, in Lemma 6 we set g(·) = u(t, ·), f(·) =
ρu(t, ·), p > 4, and ω = 2. Then, there is C = C(p) such that

‖[u, RR](ρu)‖∞ ≤ CNΦp(|∇u|)NΥ2(ρu)(64)

≤ C|ρ|∞NΦp(|∇u|)NΥ2(u) ≤ C|ρ|∞NΦp(|∇u|)D.

Next, consider the term NΦp
(|∇u|). By the estimate (28) we have

NΦp(|∇u|) ≤ CNΦp(|divu|) + CNΦp(| rotu|)(65)

= CNΦp
(A) + CNΦp

(
B + P − P̄

4μ/3 + ζ

)
≤ CNΦp

(A)

+ CNΦp

(
B

4μ/3 + ζ

)
+ CNΦp

(
P − P̄

4μ/3 + ζ

)
.

From the first energy estimate (31) and condition β ≥ γ it follows that there is C > 0
independent of time with the property

NΦp

(
P (t, ·) − P̄

4μ/3 + ζ(t, ·)

)
≤ C.(66)
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The NΦp
norms of functions appearing in the above inequalities can be interpolated

between the norms of L2 and NΨs , where Ψs(x) is defined in Lemma 4. Indeed, using
Lemmas 3 and 4 with r > p > 4 and 2s > r we have

NΦp(A) = NΦp

(
A

logs(e2 + |A|) logs(e2 + |A|)
)

≤ NΦr

(
A

logs(e2 + |A|)

)
NΨs

(
logs(e2 + |A|)

)
.(67)

Both norms appearing in the last inequality are estimated in the next lemma.
Lemma 12. Let p, r, s be chosen such that 4 < r < 2s < r + 4. There is

C = C(r, s, μ) such that

NΦr

(
A

logs(e2 + |A|)

)
≤ C

(
1 +

||A||2
[log(e2 + ||A||2)]s−r/2

)
,

NΨs

(
logs(e2 + |A|)

)
≤ C logs(e2 + ||∇A||2).

Proof. By definition of NΦr
,

NΦr

(
A

logs(e2+|A|)

)
= inf

{
λ > 0 :

∫
T2

A2

λ2 log2s(e2+|A|) logr
(
e2 + |A|

λ logs(e2+|A|)

)
≤ 1

}
.

For any λ > 1,

∫
T2

A2

λ2 log2s(e2+|A|) logr
(
e2 + |A|

λ logs(e2+|A|)

)
dx

≤
∫

T2
A2

λ2 log2s−r(e2+|A|) dx ≤ 22s−r
∫

T2
A2

λ2 log2s−r(e2+|A|2) dx

≤ 22s−r 1
λ2

y
log2s−r(e2+y)

◦
∫

T2 A
2 dx,

where the last inequality is Jensen’s inequality. Note that function

y log−2s+r(e2 + y)

for y > 0 and 2s < r+4 is concave and meas(T2) = 1. Thus, there is C > 0 such that

NΦr

(
A

logs(e2 + |A|)

)
≤ 1 + C

(∫
T2 A

2
) 1

2

logs−r/2(e2 +
∫

T2 A2)
.

Next, we have

NΨs

(
logs(e2 + |A|)

)
= inf

{
λ > 0 :

∫
T2

(
exp exp

(
2 log(e2+|A|)

λ
1
s

)
− e

)
dx ≤ 1

}
.

Let c1 be the constant from Lemma 8. Let

λ = 2sNs logs(e2 +
√
c1N‖∇A(t, ·)‖2),

where N > 1 will be chosen later and

A =
{
x ∈ T

2 : |A(t, x)| < √
c1N ||∇A(t, ·)||2

}
.
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Chebyshev’s inequality and Lemma 8 are used to obtain the next bound,

|T2 \ A| ≤ ||A||1√
c1N ||∇A||2

≤ C

N
(68)

for some C > 0 independent of A. Then, for x ∈ T
2 \ A, it holds that

log(e2 + |A(t, x)|)
λ

1
s

≤ log

(
|A(t, x)|

√
c1N‖∇A(t, ·)‖2

)
.(69)

Thus, we have

(70)

∫
T2

exp exp

(
2
log(e2 + |A|)

λ
1
s

)
≤

∫
A
ee

N−1

+

∫
T2\A

exp

(
A2

c1N2‖∇A‖2
2

)
.

Jensen’s inequality and Lemma 7 can be used to show that (note that Ā = 0, |T2| = 1)

∫
T2\A

exp

(
A2

c1N2‖∇A‖2
2

)
≤ |T2 \ A|1−N−2

(∫
T2

exp

(
A2

c1‖∇A‖2
2

))N−2

≤ |T2 \ A|1−N−2

(c2)
N−2

.

From this inequality, (70), and (68), it follows that

∫
T2

exp exp

(
2
log(e2 + |A|)

λ
1
s

)
− e dx ≤ ee

N−1

+

(
C

N

)1−N−2

(c2)
N−2 − e.

The right-hand side of the above inequality is smaller than 1 for N big enough (inde-
pendently of A). With this choice of N we conclude that

NΨs

(
logs(e2 + |A|)

)
≤ λ(N).

This finishes the proof of the lemma.
We apply this lemma to (67). For (p, r, s), such that r + 4 > 2s > r > p > 4,

and a suitable C = C(p, r, s, μ) > 0, it holds that

NΦp(A) ≤ C

(
1 +

‖A‖2

logs−
r
2 (e2 + ‖∇A‖2)

)
logs(e2 + ‖∇A‖2

2).(71)

The estimates for B are just slightly more involved because of the fact that B may not
have a zero average over T

2. With the same choice of (p, r, s) the following inequality
holds:

(72) NΦp

(
B

4μ/3 + ζ

)
= NΦp

(
B

(4μ/3 + ζ) logs(e2 + |B|) logs(e2 + |B|)
)

≤ NΦr

(
B

(4μ/3 + ζ) logs(e2 + |B|)

)
×

(
NΨs

(
logs(e2 + |B − B̄|)

)
+ C logs(e2 + |B̄|)

)
.

By arguments almost identical to those from the last lemma we get

NΦp

(
B

4μ/3 + ζ

)
≤ C

(
1 +

‖B/
√

(4μ/3 + ζ)‖2

logs−
r
2 (e2 + ‖B/

√
(4μ/3 + ζ)‖2)

)

× C
(
logs(e2 + ‖∇B‖2

2) + C logs(e2 + |B̄|)
)
.(73)



1144 MIKHAIL PEREPELITSA

By using notation (35) and estimates (42) we derive

‖A‖2 ≤ Y, ‖B/
√

(4μ/3 + ζ)‖ ≤ Y,

logs(e2 + ‖∇A‖2
2) ≤ C logs

(
e2 + X2

(e2+Y 4)(e2+‖ρ‖∞)

)
+ 12s logs(e2 + Y 2)

+ 6s logs(e2 + |ρ|
1
2∞),

logs(e2 + ‖∇B‖2
2) ≤ C logs

(
e2 + X2

(e2+Y 4)(e2+‖ρ‖∞)

)
+ 12s logs(e2 + Y 2)

+ 6s logs(e2 + |ρ|
1
2∞).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Systematic use of the set of the above inequalities and a Young inequality xy ≤
Cex

s−1

+ Cy logs(e2 + y), x, y > 0, which is contained in Lemma 4, in (71) and (73)
results in the following:

NΦp
(A) + NΦp

(
B

4μ/3 + ζ

)
� 1 + |B̄| + |ρ|

1
2∞ + Y log

r
2 (e2 + Y 2)

+
X2

(e2 + Y 4)(e2 + |ρ|∞)
,(74)

where by � we mean that the inequality holds modulo some positive, multiplicative
constant C that depends on (p, r, μ, γ, b, β, E0), but not time t (from now on we fix s
in the interval ]r, r + 4[). Then, using the last inequality and (66) in (66), we get

NΦp(|∇u|) � 1 + |B̄| + |ρ|
1
2∞ + Y log

r
2 (e2 + Y 2)

+
X2

(e2 + Y 4)(e2 + |ρ|∞)
,

with r > p > 4. Now we can continue estimate (65) by making use of the last
inequality, the inequality xy ≤ δx2 + y2/(4δ), δ > 0, and (??). We derive

(75) ‖[u, RR](ρu)‖∞ − δ � D2|ρ|∞ + D2|ρ|2∞ + D2|ρ| 94

+ D2|ρ|
β−γ+2

2 + DY log
r
2 (e2 + Y 2)|ρ|∞ +

X2

e2 + Y 2
.

The inequality holds modulo some positive multiplicative constant

C = C(δ, p, r, μ, γ, b, β, E0).

(δ, p, r) will be set later. Upon using inequality (41) and the fact that β > 3, we can
write

‖[u, RR](ρu)‖∞ − δ � D2|ρ|β + D2 log
r
2 (e2 + Y 2)|ρ|(76)

+
X2

e2 + Y 2
.
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Summarizing the result, we can write (26) and the estimates (63), (66), and (76) as

(4μ/3+ζ)
ρ

dρ
dt −

dψ
dt + P − P̄ = F,

sup
T2 |F (t, ·)| ≤ δ + C

(
D2(t)|ρ|β(t) + X2(t)

e2+Y 2(t)

+ D2(t) log
r
2 (e2 + Y 2(t))|ρ|(t)

)
,

t > 0, x ∈ T
2, C = C(δ, p, r, μ, γ, b, β, E0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(77)

Consider the function ψ(t, ·) = (−Δ)−1div ρ(t, ·)u(t, ·) that appears in (26). The
elliptic estimate (28) that involves the Orlicz norm defined by the function Φk(x) =
x2 logk(e2 + x), k > 1, asserts that

NΦk
(∇ψ(t, ·)) ≤ CNΦk

(ρ(t, ·)u(t, ·)) .(78)

Lemma 8 can be used to provide the following estimate on the sup |ψ| (note that
ψ(t, ·) = 0):

sup
T2

|ψ(t, ·)| ≤ CNΦk
(∇ψ(t, ·)) ≤ CNΦk

(ρ(t, ·)u(t, ·)) .

For some 2l > m > k we write

NΦk
(ρ(t, ·)u(t, ·)) ≤ |ρ| 12NΦk

(
ρ

1
2 |u|

logl(e2 + |u|)
logl(e2 + |u|)

)

≤ |ρ| 12NΦm

(
ρ

1
2 |u|

logl(e2 + |u|)

)
NΨl

(
logl(e2 + |u|)

)
,(79)

where Ψl was defined in Lemma 4. Proceeding with the same arguments as in the
proof of Lemma 12 and using the first energy estimate (31) we obtain the following
bounds for 2l > m > k:

NΦm

(
ρ

1
2 |u|

logl(e2+|u|)

)

= inf

{
λ > 0 :

∫
T2

ρ|u|2
λ2 log2l(e2+|u|) logm

(
e2 + ρ

1
2 |u|

λ logl(e2+|u|)

)
dx ≤ 1

}
.

For any λ > 1,

∫
T2

ρ|u|2
λ2 log2l(e2+|u|) logm

(
e2 + ρ

1
2 |u|

λ logl(e2+|u|)

)
dx

≤
∫

T2

ρ|u|2
λ2 log2l−m(e2+|u|) dx + logm(e2+‖ρ‖

1
2∞)

λ2

∫
T2 ρ|u|2 dx

≤ Cλ−2E0|ρ|
1
2 .

Thus, there is a constant C(m, l, E0) such that

NΦm

(
ρ

1
2 |u|

logl(e2 + |u|)

)
≤ C|ρ| 14 .(80)
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Also, using the same arguments as in the proof of the second estimate of Lemma 12
and estimate (33) we obtain that

NΨl

(
logl(e2 + |u − uT2 |)

)
≤ NΨl

(
logl(e2 + |u|)

)
+ C logl(e2 + |uT2 |)

≤ C
(
logl(e2 + |uT2 |) + logl(e2 + ‖∇u‖2)

)
≤ C logl(e2 + ‖∇u‖2).

We now apply Lemma 1 with f = u and use definition of A and B to get

‖∇u‖2 ≤ C (‖divu‖2 + ‖ rotu‖2) ≤ C‖ B
4μ/3+ζ ‖2 + C‖A‖2

+ C‖ P−P̄
4μ/3+ζ ‖2 ≤ C (1 + Y ) .

And thus,

NΨl

(
logl(e2 + |u|)

)
≤ C logl(e2 + Y 2).(81)

In the view of (80) and (81) the estimate (79) can be written as

sup
T2

|ψ(t, ·)| ≤ C|ρ|(t) logl(e2 + Y 2(t)),

and consequently, using the fact that β > 3 we obtain

sup
T2

|ψ(t, ·)| ≤ ε|ρ|β(t) + Cε log2l(e2 + Y 2), 2l > 1,(82)

where Cε depends on l, ε, and other parameters, but not time.

Let us go back to (26). Let θ = θ(ρ) be the solution of the Cauchy problem

dθ

dρ
=

(
4μ

3
+ ζ(ρ)

)
ρ−1, θ(1) = 1.

θ(ρ) is uniquely defined and smooth for ρ ∈ (0,+∞). In fact,

θ = 4μ/3 log ρ + bβ−1ρβ + 1 − bβ−1.(83)

Let θ̄ = θ ◦
(
a−2P̄

) 1
γ . Let Xt(x0) be a trajectory of the flow generated by u, i.e.,

d

dt
Xt(x0) = u (t, Xt(x0)) , Xt(x0) = x0, t = 0, x0 ∈ T

2, t > 0,

and consider (26) at points (t, x) = (t, Xt(x0)). Let w(t) = θ ◦ρ(t,Xt(x0))− θ̄. Then

P (ρ(t, x)) − P̄ =
a2γργ

1

4μ/3+ζ(ρ1)
w(t), where ρ1 is a value in the interval with endpoints

(a−2P̄ )
1
γ and ρ(t, Xt(x0)). Let S = {t |w(t) > 0}. Note that P̄ = a2ρ̄γ , where ρ̄ is

the total mass of the gas, and so the inequality w(t) > 0 implies ρ(t,Xt(x0)) ≥ ρ̄. For

t ∈ S, factor e−1(t) ≡ 4μ/3+ζ(ρ1)
aγργ

1
is bounded by c|ρ|β−γ(t) with some constant c. Set

S is open and consists of a countable disjoint union of intervals. Let (α, α1) be one
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of those intervals. After multiplying the equation in (77) by exp
∫ t

α
e(t) dτ we get

(
w(t) exp

∫ t

α

e(τ) dτ

)′

≤ d

dt

[
(ψ − θ̄) exp

∫ t

α

e(τ) dτ

]

− (ψ − θ̄)
d

dt
exp

∫ t

α

e(τ) dτ

+ δ exp

∫ t

α

e(τ) dτ +

(
sup
T2

|F (t, ·)| − δ

)
exp

∫ t

α

e(τ) dτ,

where δ > 0 will be chosen later. Integrate above inequality over (α, t), t < α1 to get

w(t) ≤ C(δ)|ρ|β−γ(t) + 4 sup
(0, t)×T2

|ψ(·, ·)| + 4|θ̄|(84)

+

∫ t

α

max{|F (τ)| − δ, 0} dτ.

Note that the right-hand side does not depend on x0. Using the estimate (82) in (84)
we can write for t > 0

|ρ|β(t) ≤ C

(
1 + sup

(0, t)

log2l(e2 + Y 2(·))(85)

+

∫ t

0

max{|F (τ)| − δ, 0} dτ
)
, 2l > 1.

We use the estimates for |F | obtained in (77) with δ = 1 and the bounds for log(e2 +

Y 2) and
∫ t

0
X2

e2+Y 2 contained in the second energy inequality (62). Choose r and ω
such that 4 < r < 2(β − 1) and 0 < rβω < 2(β − 1) − r. This is possible only when
β > 3. Then, we can derive the following estimate for t > 0, using the fact that∫ +∞
0

D2(·) ≤ E0:∫ t

0

max{|F (t)| − 1, 0} dt ≤ C sup
[0,t]

|ρ|1+ r
2(86)

+ C

∫ t

0

D2(s) sup
[0,s]

|ρ|β(s) ds.

Returning to (85) we have

|ρ|β(t) ≤ C sup
[0,t]

|ρ|1+ r
2 + C

∫ t

0

D2 sup
[0,s]

|ρ|β

+ C

[∫ t

0

D2

(
sup
[0,s]

|ρ|
β−1

2 + sup
[0,s]

|ρ|β−γ

)]2l

,

where
∫ +∞
0

D2 ≤ E0. Finally, let us choose l that satisfies conditions 1 < 2l < β
β−γ

and l(β − γ) < β. Then, using Gronwall type estimates we obtain the global in time
upper bound for density,

‖ρ(t, ·)‖∞ ≤ M̄, t > 0.(87)
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Now we revisit the second energy estimate (62) to derive global in time bounds
on

∫
T2 |∇u|2(t, ·). It follows from (62) and (87) that

Y 2(t) +

∫ t

0

X2(s) ds ≤ C, t > 0,(88)

with some C > 0 independent of time.
Let us now derive the lower bound on density. The equation of evolution of

density (77) can be used to obtain the inequality

d

dt
θ ≥ d

dt
ψ + a2(M̄)γ − |F |,(89)

where θ is defined by (83). Inequality (82) together with estimates (87) and (88)
imply that

sup
]0,+∞[×T2

|ψ(·, ·)| ≤ C.(90)

The estimate for |F | is contained in (77), where we set δ = a2(M̄)γ . We integrate
inequality (89) along a trajectory, and after using estimates (87) and (88) we obtain
that

θ(ρ(t,Xt(x0)) ≥ θ(ρ0(x0)) − C, t ∈]0,+∞[, x0 ∈ T
2,(91)

with C > 0 independent of (t, x0). Since θ(ρ) behaves like a log ρ for small ρ > 0 and
ρ0(x0) > m > 0 we conclude the existence of m̄ > 0 such that

ρ(t, x) ≥ m̄, (t, x) ∈]0,+∞[×T
2.(92)

Let us prove the decay estimate (7). First, we prove that the kinetic energy∫
T2 ρ(t, ·)|u|2(t, ·) decays to 0 with time. Indeed, by Lemma 7 and estimates (33) and

(87) we can write

C

∫
T2

ρ(t, ·)|u|2(t, ·) ≤ D2(t), t > 0,

for some C > 0 independent of time. We use the last inequality in (32) to get

d

dt

∫
T2

ρ(t, ·) |u|
2(t, ·)
2

+ C

∫
T2

ρ
|u|2(t, ·)

2
≤ − d

dt

∫
T2

G(ρ(t, ·)), t > 0.

Integrating this inequality we get∫
T2

ρ(t2, ·)
|u|2(t2, ·)

2
≤ e−C(t2−t1)E0(93)

+ C

∫ t2

t1

∫
T2

G(·, ·), t2 > t1 > 0.

Consider the equation in (77). With notation w = θ(ρ) − θ(ρ̄), we get some ρ1 ∈
(m̄, M̄), such that

P (ρ) − P̄ =
a2γ(ρ1)

γ

4μ/3 + ζ(ρ1)
w � m(t, x0)w.
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In view of uniform bounds (87) and (92) there exist C, c > 0 independent of time t
and position x0 such that

c ≤ m(t, x0) ≤ C.

The equation in (77) can be integrated to yield

w(t2, x0) = e
−

∫ t2
t1

m(·),x0(w(t1, x0) − ψ(t1, x0)) + ψ(t2, Xt2(x0))(94)

+

∫ t2

t1

ψ(s,Xs(x0))m(s, x0)e
−

∫ t2
s

m(·,x0) ds

+

∫ t2

t1

F (s,Xs(x0))e
−

∫ t2
s

m(·,x0) ds.

In the view of uniform bounds on m(t, x0) stated above and bounds on ρ we derive

|w(t2, x0)| ≤ e−c(t2−t1)w|(t1, x0)| + Cδ + C sup
s∈(t1,t2)

‖ψ(s, ·)‖∞(95)

+

∫ t2

t1

max{|F (s,Xs(x0))| − δ, 0}|.

The estimate for max{|F | − δ, 0}| is given by (77). Employing bounds (87), (88) we
derive ∫ t2

t1

max{|F | − δ, 0}| ≤ Cδ

∫ t2

t1

D2(·) + X2(·).

Using Lemma 7, estimate (27), the Hölder inequality, and uniform in time bounds
(87), (88) we can write

‖ψ(t, ·)‖∞ ≤ C‖∇ψ(t, ·)‖4 ≤ C‖ρ(t, ·)u(t, ·)‖4

≤ C‖
√
ρ(t, ·)u(t, ·)‖

1
3
2 ‖u(t, ·)‖

2
3
4 ≤ C‖

√
ρ(t, ·)u(t, ·)‖

1
3
2 ,

with C independent of t. Collecting the last two estimates in (95) we get

‖w(t2, ·)‖∞ ≤ e−c(t2−t1)‖w(t1, ·)‖∞ + Cδ

+ C sup
s∈(t1,t2)

‖√ρ(s, ·)u(s, ·)‖
1
3
2 + Cδ

∫ t2

t1

D2(·) + X2(·).(96)

The last inequality and (93) were derived for the approximate smooth solution (ρ,u),
but in the view of the convergence results that will be established in the next chapter
these inequalities are also true for the weak solution itself. Moreover, for a weak
solution, as it follows from (31), (61), and (62), it holds that

D2, X2,

∫
T2

G(ρ(·, x)) dx ∈ L1 (]0,+∞[) ,

and consequently (93) and (96) imply that

‖θ(ρ(t, ·)) − θ(ρ̄)‖∞ + ‖√ρ(t, ·)u(t, ·)‖2 → 0, t → +∞,

which in turn implies (7) since ρ is bounded from below and above as well as ‖∇u(t, ·)‖2.
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6. Convergence of approximate solutions. In this section we consider the
limit of classical solutions, for which bounds derived in the last section hold. These
solutions solve the problem with smooth initial datum (ρn0 , un

0 ), n > 0, that converges
strongly to (ρ0, u0).

Let (ρn0 , un
0 ) ∈ C∞ (

T
2
)
×
[
C∞ (

T
2
)]2

be such that

m < ρn0 (x) < M, x ∈ T
2,

ρn0 → ρ0 in L2(T2),

un
0 → u in

[
W 1,2

(
T

2
)]2

,

n → +∞.

Let (ρn, un) be the classical solution of the problem with (ρn0 , un
0 ) as the initial datum

that exists by Theorem A. The bounds obtained in the previous section apply for
these solutions so that

un is bounded in L∞ ∩ L2
(
(0, T );

[
W 1,2

(
T

2
)]2)

,

An, Bn is bounded in L2
(
(0, T ); W 1,2

(
T

2
))

,

bounded in L∞ (
(0, T ); L2(T2)

)
,

m̄ < ρn(t, x) < M̄, (t, x) ∈ (0, T ) × T
2,

T > 0,

for some m̄, M̄ that are independent of T in the case β ≥ γ. Here An = rotun,
Bn = (4μ/3 + ζ(ρn))divun. Moreover, using the system of equations (19), (21), (23)
and Lemma 8 we deduce

∂tρ
n is bounded in L2

(
(0, T ); W−1,2

(
T

2
))

,

∂tu
n is bounded in L2

(
(0, T );

[
W−1,2

(
T

2
)]2)

,

∂tA
n, ∂tB

n is bounded in L2
(
(0, T ); W−1, 43

(
T

2
))

,

T > 0.

The embedding W 1,2
(
T

2
)

⊂ L2
(
T

2
)

is compact and L2
(
T

2
)

⊂ W−1, 43
(
T

2
)

(or

W−1,2
(
T

2
)
) is continuous. Aubin’s lemma can be used; see [16, Theorem 2.1, Chapter

III] to conclude that there are

u ∈ L∞ ∩ L2
(
(0, T );

[
W 1,2

(
T

2
)]2)

,

A, B ∈ L2
(
(0, T ); W 1,2

(
T

2
))

∩ L∞ (
(0, T ); L2(T2)

)
,

such that ⎧⎪⎨
⎪⎩

un → u in L2
(
(0, T );

[
L2(T2)

]2)
,

An → A in L2
(
(0, T ); L2(T2)

)
,

Bn → B in L2
(
(0, T ); L2(T2)

)
.

(97)

From the uniform boundedness of ρn we conclude that there is ρ(t, x) such that

m̄ ≤ ρ(t, x) ≤ M̄,(t, x) ∈ (0, T ) × T
2,

ρn → ρ, * - weakly in L∞ (
(0, T ) × T

2
)
.(98)
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This information is sufficient for passing to the limit in (1). We obtain

{
∂tρ + div ρu = 0 in D′ ((0,+∞) × T

2
)
,

ρ(0, x) = ρ0(x) a.e. x ∈ T
2.

(99)

Also, since ρ ∈ L∞, ρ is a renormalized solution of (2), i.e., for any b = b(z) ∈ C∞ (R)
it holds that{

∂tb(ρ) + div b(ρ)u + (ρb′(ρ) − b(ρ))divu = 0, D′ ((0,+∞) × T
2
)
,

b(ρ(0, x)) = b(ρ0(x)) a.e. x ∈ T
2,

(100)

where b′(z) is the derivative of b. Also,

ρ ∈ C
(
[0,+∞); Lp

(
T

2
))

, 1 < p < +∞

(see the proof of Theorem 2.4 in [10]).

Due to the presence of nonlinear terms ζ(ρ)divu and P (ρ), convergence results
established in (97) and (98) are not enough to conclude that (ρ, u) solves (2) in the
weak sense. The missing ingredient is a.e. convergence of ρn. If we assume for a
moment that, additionally to (97) and (98),

ρn → ρ a.e. in (0,+∞) × T
2, n → +∞,(101)

holds, then it is easy to see that

ζ(ρn)divun → ζ(ρ)divu weakly in L2
(
(0, T ) × T

2
)
,

P (ρn) → P (ρ) in L2
(
(0, T ) × T

2
)
, T > 0,

and (ρ, u) is a weak solution of (1)–(5).

Let us prove (101). Let b(z) be as above. The sequence b(ρn) is uniformly bounded
and so there is b̄ ∈ L∞ (

(0, T ) × T
2
)
, T > 0 such that b(ρn) → b̄ * - weakly in this

space. Also we can write

divun =
Bn + P (ρn)T2

4μ/3 + ζ(ρn)
− P (ρn)

4μ/3 + ζ(ρn)
,

and thus

divu = (B + P̄T2)

(
1

4μ/3 + ζ(ρ)

)
−
(

P (ρ)

4μ/3 + ζ(ρ)

)
,(102)

where ¯ stays for the * - weak limit of the functions and the equality holds a.e. in
space and time. Let b(z) = z2 and ν = (4μ/3 + ζ(ρ))−1. The pair (ρn, un) satisfies
(1) in the classical sense and so it holds that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t(ρ
n)2 + div (ρn)2un

= −(ρn)2divun

= − (Bn+P (ρn)
T2 )(ρn)2

4μ/3+ζ(ρn) + (ρn)2P (ρn)
4μ/3+ζ(ρn) ,

(ρn)2(0, x) = (ρn0 )2(x), x ∈ T
2.

(103)
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Taking the limit in the above equation, in the view of (97) and (98), we obtain (note
that initial datum converges strongly)⎧⎪⎪⎨

⎪⎪⎩
∂tρ2 + div ρ2u = −(B + PT2)ρ2ν + ρ2P (ρ)ν

in D′ ((0,+∞) × T
2
)
,

ρ2(0, x) = ρ2
0(x) a.e. x ∈ T

2.

(104)

Also, from (100) and (102) it follows that⎧⎪⎪⎨
⎪⎪⎩

∂tρ
2 + div ρ2u = −(B + PT2)ρ2ν + ρ2P (ρ)ν

in D′ ((0,+∞) × T
2
)
,

ρ2(0, x) = ρ2
0(x) a.e. x ∈ T

2.

(105)

Setting ψ = ρ2 − ρ2 ≥ 0, and subtracting the last two equations we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tψ + divψu = (B + PT2)
(
ρ2ν − ρ2ν

)
−
(
ρ2Pν − ρ2Pν

)
in D′ ((0,+∞) × T

2
)
,

ψ(0, x) = 0 a.e. x ∈ T
2.

(106)

By writing (ρn)2 − ρ2 = 2ρ(ρn − ρ) + (ρn − ρ)2, we see that

lim
n→∞

∫
T2

φ(·)(ρn(t, ·) − ρ(t, ·))2 dx =

∫
T2

φ(·)ψ(t, ·),

t > 0, for any test function φ. Also, for b—a smooth function—we have

(ρn)2b(ρn) − ρ2b(ρn) = (ρn)2b(ρn) − ρ2b(ρ) − ρ2(b(ρn) − b(ρ))

= (ρ2b(ρ))′
∣∣∣
ρ(t,x)

(ρn − ρ) + (ρ2b(ρ)/2)′′
∣∣∣
ρ̃n

(ρn − ρ)2

− ρ2

(
b(ρ)′

∣∣∣
ρ(t,x)

(ρn − ρ) + (b(ρ)/2)′′
∣∣∣
ρ̂n

(ρn − ρ)2
)

for some ρ̃n and ρ̂n in between ρn and ρ. Multiplying the above equality by B +
PT2 , integrating over domain T

2, taking the limit n → +∞, and using the uniform
boundedness of ρn we obtain

∣∣∣∣
∫

T2

(B(t, ·) + PT2(t))
(
ρ2ν(t, ·) − ρ2ν(t, ·)

)∣∣∣∣
≤ C|PT2(t) + B̄(t)|

∫
T2

ψ(t, ·) + C

∫
T2

|B − B̄|(t, ·)ψ(t, ·)

for some constant C > 0. By estimating the second term on the right-hand side in
(106) in similar fashion and integrating the equation in (106) over T

2 we derive the
inequality⎧⎨

⎩
d
dt

∫
T2 ψ(t, ·) ≤ C

(
1 + |B̄|(t)

∫
T2 ψ(t, ·) +

∫
T2 |B − B̄|(t, ·)ψ(t, ·)

)
in D′ ((0,+∞)) ,∫

T2 ψ(0, x) = 0.
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We use the Hölder inequality for Orlicz spaces defined by functions exp(x2) − 1 and

x log
1
2 (e2 + x) followed by Remark 2 to get the estimate∫

T2

|B − B̄|ψ ≤ Nex2−1

(
B − B̄

)
N

x log
1
2 (e2+x)

(ψ)

≤ C||∇B||2Γ
(∫

T2

ψ

)
,

where Γ(r), r ≥ 0 is the inverse function of r
log1/2(e2+c/r)

, with some c > 0 that bounds∫
T2 ψ(t, ·) for all t > 0. Note that ||∇B(t, ·)||2, |B̄|(t) belong to L1 ((0, T )) for any
T > 0. Also, ∫

0+

1

Γ(r)
dr = +∞.

Thus, it follows that ψ(t, x) = ρ2 − ρ2 = 0 a.e. (0,+∞)×T
2, and consequently (101).

The proof of Theorem is now complete.
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ON A HELE–SHAW TYPE DOMAIN EVOLUTION WITH
CONVECTED SURFACE ENERGY DENSITY:

THE THIRD-ORDER PROBLEM∗

MATTHIAS GÜNTHER† AND GEORG PROKERT‡

Abstract. We investigate a moving boundary problem with a gradient flow structure which
generalizes Hele–Shaw flow driven solely by surface tension to the case of nonconstant surface ten-
sion coefficient taken along with the liquid particles at boundary. The resulting evolution problem
is first order in time, contains a third-order nonlinear pseudodifferential operator and is degenerate
parabolic. Well-posedness of this problem in Sobolev scales is proved. The main tool is the con-
struction of a variable symmetric bilinear form so that the third-order operator is semibounded with
respect to it. Moreover, we show global existence and convergence to an equilibrium for solutions
near trivial equilibria (balls with constant surface tension coefficient). Finally, numerical examples
in 2D and 3D are given.

Key words. free boundary motion, degenerate nonlocal parabolic evolution

AMS subject classifications. 35R35, 76B07
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1. Introduction. It is the aim of the present paper to consider the generalization
of the well-investigated Hele–Shaw flow problem to the case of nonconstant surface
tension coefficient (or surface energy density). While experiments on such situations
have been reported in the literature (e.g., [3, 12]), theoretical investigations of this
seem to be lacking. A first step in this direction has been made in [10] where short-
time solvability was proved for a Hele–Shaw problem with nonconstant surface tension
coefficient and so-called kinetic undercooling. Here we discuss the problem without
this regularization, using again the simple assumption that the surface energy density
is convectively transported along the moving boundary.

This leads to the following moving boundary problem: For a given bounded
domain Ω(0) ⊂ R

m and a given nonnegative function γ0 defined on ∂Ω(0) one looks
for a family of C2-domains Ω(t) ⊆ R

m, t > 0 and functions ϕ(·, t) ∈ C2
(
Ω(t)

)
,

ψ(·, t) ∈ C2
(
Ω(t)

)
, γt ∈ C2

(
Γ(t)

)
such that

Δϕ(·, t) = 0 in Ω(t),

Δψ(·, t) = 0 in Ω(t),

∂nψ(·, t) = ΔΓ(t)γt on Γ(t),

ϕ(·, t) = γtκ(t) − ψ(·, t) on Γ(t),

Vn = ∂nϕ(·, t) on Γ(t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

Here γt represents the variable surface tension coefficient (local surface energy density)
on Γ(t), ϕ(·, t) is the velocity potential inside the flow domain Ω(t), and ψ is an
auxiliary function describing the nonlocal influence of the spatial variation of γt.
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Furthermore, κ(t) is the (m−1)-fold mean curvature of Γ(t), with the sign taken such
that κ is negative for convex domains, ∂n is the outer normal derivative, and Vn(t)
is the (outer) normal velocity of Γ(t), determining its time evolution. Note that by
setting Φ = ϕ + ψ, (1.1) simplifies to

ΔΦ(·, t) = 0 in Ω(t),

Φ(·, t) = γtκ(t) on Γ(t),

Vn = ∂nΦ(·, t) − ΔΓ(t)γt on Γ(t).

⎫⎪⎬
⎪⎭(1.2)

This problem generalizes the well-known Hele–Shaw flow with surface tension
regularization in the following way: Any solution represents a gradient flow with
respect to the usual energy functional

E(γ,Γ) :=

∫
Γ

γ dΓ,

where γ > 0 is now variable on Γ, and to the Riemannian metric gΓ on the infinite-
dimensional manifold M of surfaces Γ enclosing a fixed volume given by

gΓ(v1, v2) :=

∫
Ω

∇ϕ1∇ϕ2 dx,(1.3)

where the ϕi, i = 1, 2 are (weak) solutions of the Neumann problems

Δϕi = 0 in Ω, ∂nϕi = vi on Γ.

The functions vi can be identified with tangent vectors of M; note that the conser-
vation of volume implies

∫
Γ
vi = 0 dΓ. For more details and references, see [1, 7, 10].

Kinetic undercooling regularization corresponds to adding in (1.3) a boundary integral
term β

∫
Γ
v1v2 dΓ with β > 0, this case is discussed in [10].

As mentioned already, we assume that the values of the function Γ are transported
with the liquid particles: Introducing Lagrangian coordinates x = x(ξ, t), ξ ∈ Γ(0)
corresponding to the velocity field via

∂tx(ξ, t) = ∇ϕ
(
x(ξ, t), t

)
for t ≥ 0, x(ξ, 0) = ξ,(1.4)

we obtain that x = x(·, t) is a diffeomorphism from Γ(0) onto Γ(t), and the transport
law for γt takes the form

γt
(
x(ξ, t)

)
= γ0(ξ), ξ ∈ Γ(0), t ≥ 0.(1.5)

This assumption is reasonable, for example, when γ depends on temperature and heat
diffusion is negligible compared to convection. While it certainly oversimplifies the
physical situation in the case when, for example, surfactants play a role, it seems
that the mathematical character of the problem is essentially the same there as in
our case. Note, however, that the situation here is qualitatively different from other
models like anisotropic Hele–Shaw flow (cf. [6]) because in our case the evolution is
not determined solely by the shape of the evolving domain but there is a coupling
with a transport problem in the moving boundary.

Our approach is based on reformulating (1.1) as a vector-valued evolution equa-
tion for a diffeomorphism mapping a fixed reference manifold to the moving boundary,
i.e., we work with “Lagrangian cordinates” for the boundary. This approach which
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might appear unnatural at first glance has two advantages: The transport problem
for γ is simply solved by prescribing a fixed smooth positive function on this reference
manifold and pushing it forward to the moving boundary. Moreover, the invariance
of the problem with respect to reparametrizations of the boundary can be used to
derive nonlocal analogues of Leibniz’ rule of differentiation (3.10) which we will use in
the course of our estimates. On the other hand, however, our approach implies that
the resulting vector valued evolution equation (2.2), cannot be strictly parabolic, even
for strictly positive γ. Instead, the (linearized) problem is degenerate in tangential
directions, and although we have a third-order parabolic operator in normal direction,
straightforward coercivity estimates for the vector valued problem are not available.
Therefore we work with energy estimates with respect to a variable inner product
(4.26) which is specifically constructed for this purpose. (This is similar to the usual
treatment of symmetrizable hyperbolic systems.)

The paper is organized as follows.

After announcing our main results on short-time existence in section 2, we start
the proofs in section 3 by investigating mapping properties of the occurring nonlocal
operators in Sobolev scales. In particular, we derive flexible multilinear estimates for
their Fréchet derivatives in low norms and extend them to higher norms by a general-
ized chain rule based on invariance properties. For related considerations concerning
the analytic dependence of the Dirichlet–Neumann operator on the domain we refer
to [5] and the references given there. Section 4 is devoted to the proof of the crucial
estimate providing the semiboundedness of the evolution operator with respect to our
variable inner product.

Technically, we use the natural decomposition of the right-hand side into a second-
order operator mapping vectors to scalars and a first-order operator mapping scalars
to vectors. Furthermore, we use the fact that the right-hand side is—in a sense to be
made precise later—coercive with respect to the normal component. The semibound-
edness enables us to invoke an abstract existence result based on Galerkin approxima-
tions and Rothe’s method. This is done in section 5. In this way, we prove our main
result (Theorems 2.1 and 2.2) on short-time wellposedness of the moving boundary
problem (1.1), (1.4), (1.5). We will omit certain details as they are parallel to the
discussion in [10]. However, the right-hand side of the evolution problem obtained
there is of order two. As we are concerned here with an evolution equation whose
right-hand side is of order three, we have to refine the construction of our variable
inner product from [10] by including certain lower-order terms. Differing from the
situation there, here we have to demand strict positivity of γ because its inverse γ−1

enters one of these terms.

Finally, in section 6 we investigate the evolution near the equilibrium solutions
given by balls with constant γ. In this situation, Theorem 6.8 gives global existence
in time and the evolving domain approaches a nontrivial equilibrium configuration
depending on the given (nonconstant) γ and the initial domain. In contrast to the
classical case of constant γ where the equilibria are given only by balls, any shape
near a ball occurs as an equilibrium configuration for a certain function γ near the
constant. Due to the degeneracy of our problem, the proof of long-time existence is
more involved compared to the known proofs for the case of constant γ, cf. [4, 8, 13].

2. Statement of the local existence results. We begin by listing some nota-
tion. C,C1, . . . etc. denote generic constants; their dependencies on other quantities
is only indicated if not obvious from the context. Let E ⊆ R

m, m ≥ 2 be a bounded
domain with smooth boundary S := ∂E and ν the outer unit normal on S. For
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M = S or M = E, we make constant use of the usual L2-based Sobolev spaces
Hs(S), Hs(S,Rm) of order s with values in R and R

m, respectively. The norms of
these spaces will be denoted by ‖ · ‖Ms ; for M = S the upper index M is dropped
in most cases. When Fréchet derivatives of operator-valued mappings are considered,
the additional arguments describing the variations are written in accolades ({}).

Now, as already mentioned in the introduction, we reformulate the moving bound-
ary problem (1.1)—(1.5) by describing Γ(t) as an embedding u(·, t) : S → R

m such
that the curves t 	→ u(y, t) for fixed y ∈ S are trajectories belonging to the velocity
field and γt is constant along these curves. This approach enables us to consider γt as
a known function during the evolution at the cost of describing the moving boundary
by m functions. To do so, let

U :=
{
u : S → R

m
∣∣ u = w|S with w ∈ Diff(Ē,Ωu ∪ Γu)

}
,(2.1)

where

Ωu = w(E) and Γu = ∂Ωu = u(S).

Throughout this paper, we use the abbreviation

Us := U ∩Hs(S,Rm).

Now, (1.1)—(1.5) is reduced to the following Cauchy problem, which will be investi-
gated afterwards. For a given u0 ∈ Us, s sufficiently large, we look for T > 0 and a
mapping [0, T ] � t 	→ u(t) ∈ Us, such that

u′(t) = F
(
u(t)

)
, t ∈ [0, T ],(2.2)

u(0) = u0.(2.3)

Thereby, for u ∈ U , we have set

F(u) := F (u)G(u) with G(u) := H(u) + G(u),(2.4)

where, for any given function f on S,

F (u)f := ∇ϕ(u, f) ◦ u(2.5)

and ϕ = ϕ(u, f) denotes the solution of the Dirichlet problem

Δϕ = 0 in Ωu, ϕ = f ◦ u−1 on Γu.(2.6)

Further, H(u), G(u) are given by

H(u) := γ(κΓu ◦ u), G(u) := −A(u)Δ(u)γ.(2.7)

Here γ ∈ C∞(S) is a fixed and given positive function, κΓu denotes the mean curvature
of Γu with sign and scaling conventions as above, and

Δ(u)w := ΔΓu
(w ◦ u−1) ◦ u(2.8)

is the pullback to S of the Laplace–Beltrami operator ΔΓu on Γu and

A(u)f := ϕN

(
u, f) ◦ u(2.9)
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is the Neumann–Dirichlet operator, i.e., ϕN = ϕN (u, f) solves the Neumann problem

ΔϕN = 0 in Ωu, ∂nϕN = c + f ◦ u−1 on Γu,
∫
Γu

ϕN dx = 0.(2.10)

The constant c = c(u, f) ∈ R in (2.10) is determined by the solvability condition∫
Γu

(f ◦ u + c) dΓu = 0;(2.11)

clearly c(u, f) = 0 for f = Δ(u)γ. For fixed smooth γ on S, the mapping u 	→
H(u) constitutes a quasilinear second order differential operator on S. Moreover,
the solutions of the boundary value problems (2.6), (2.10) depend smoothly on the
domain Ωu, i.e., on u ∈ Hs, s > (m + 1)/2 and f 	→ F (u)f , f 	→ A(u)f represent
pseudodifferential operators of order one and minus one, respectively. In particular,
G is a pseudodifferential operator of lower order than H and may be considered as a
correction term to ensure the gradient flow structure of the evolution problem. We
will show later that

[u 	→ F(u)] ∈ C∞(
Us, H

s−3(S,Rm)
)

(2.12)

for s > (m + 3)/2, s ≥ 3. Now we are in position to formulate our main results.
Theorem 2.1 (short-time existence and uniqueness). Fix an even integer s0 >

(m + 7)/2, s0 ≥ 6 and assume γ ∈ C∞(S) strictly positive on S. Let s ≥ s0 be an
even integer and u0 ∈ Us. Then there exist T > 0 and a unique solution

u ∈ C
(
[0, T ], Us

)
∩ C1

(
[0, T ], Hs−3(S,Rm)

)
(2.13)

of the initial value problem (2.2), (2.3). Additionally, any given ū0 ∈ Us0 has a
suitable Hs0-neighborhood K, such that for initial values u0 varying in K ∩Hs, there
are T > 0 and C independent of u0 such that

‖u(t)‖s ≤ C(1 + ‖u(0)‖s) for all t ∈ [0, T ].(2.14)

Theorem 2.2 (regularity and continuous dependence on initial values). Under
the assumptions of Theorem 2.1 let u be a any solution to (2.2) in the class (2.13)
with some T > 0. Then there holds the following:

(i) u(0) ∈ Hs+1(S,Rm) implies u(t) ∈ Hs+1(S,Rm) for all t ∈ [0, T ].
(ii) Assume un

0 → u0 in Hs(S,Rm) for n → ∞. Then, for n sufficiently large,
there exist solutions un of (2.2) in the class (2.13) with initial values un(0) = un

0 and
there holds un → u in C

(
[0, T ], Hs(S,Rm)

)
.

The proof of both theorems is given in section 5.
Remark 2.3. The restriction to even integers s is due purely to the construction

of our bilinear form involving integer powers of a generalized Laplacian. This restric-
tion can be lifted afterwards by using the nonlinear interpolation result given in [2,
Proposition A.1 and Remark A.2]. The dimension independent restriction s0 ≥ 6 is
needed as we use dual estimates for elliptic boundary value problems in norms with
negative index.

3. Smooth domain dependence of the nonlocal operators. We start by
gathering some properties of the nonlocal operators F , A, and G defined by (2.4)–
(2.11). The multilinear estimates for the Fréchet derivatives can be seen as counter-
parts to the product estimate

‖u1 . . . uk‖t ≤ C‖u1‖s1 . . . ‖uk‖sk
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holding if 0 ≤ t ≤ si ≤ σ, σ > (m− 1)/2,
∑k

i=1 si ≥ t + (k − 1)σ. Here, however, we
have to deal with nonlocal operators of various orders involving differentiations and
the solution of elliptic BVP.

The statements and their proofs are essentially parallel to Corollary 4.4 and
Lemma 4.5 in [10], therefore proofs will be omitted. Note, however, that f 	→ F (u)f
is an operator of order one here as (2.6) is a Dirichlet problem. In fact, the normal
component of F is given by the Dirichlet–Neumann operator while the tangential
component is given by the tangential gradient of f .

Due to the variability in the choice of the si, the estimates will be flexible enough
to control various lower order terms that will occur in what follows.

Lemma 3.1. (i) Let s > (m + 1)/2 and t ∈ [1, s] be given. Then

F ∈ C∞(
Us,L(Ht(S), Ht−1(S,Rm))

)
,

A ∈ C∞(
Us,L(Ht−1(S), Ht(S,Rm))

)
,

and for any u ∈ Us and any choice of s1, . . . sk+1 ∈ [t, s] with s1 + · · ·+ sk+1 ≥ t+ ks
there exists a constant C > 0 such that for all f ∈ Hs(S) and all u1, . . . , uk ∈
Hs(S,Rm) there holds∥∥F (k)(u){u1, . . . , uk}f

∥∥
t−1

≤ C‖u1‖s1 · · · ‖uk‖sk‖f‖sk+1
,(3.1) ∥∥A(k)(u){u1, . . . , uk}f

∥∥
t
≤ C‖u1‖s1 · · · ‖uk‖sk‖f‖sk+1−1.(3.2)

(ii) Let s > (m + 3)/2 and t ∈ [2, s] be given. Then

G ∈ C∞(
Us, H

s−2(S)
)

and for any u ∈ Us and any choice of s1, . . . sk ∈ [t, s] with s1 + · · · + sk+1 ≥ t + ks
there exists a constant C > 0 such that for all u1, . . . , uk ∈ Hs(S,Rm) there holds∥∥G(k)(u){u1, . . . , uk}

∥∥
t−1

≤ C‖u1‖s1 · · · ‖uk‖sk .(3.3)

The constants may be chosen independently of u as u varies in bounded and weakly
closed subsets of Us.

Remark 3.2. Note that a bounded subset of Hs(S) is weakly closed if and only
if it is closed in Ht(S) for some t < s. Then it is compact in all Ht(S) with t < s.

Remark 3.3. The estimate (3.3) is not optimal as we do not use the quasilinear
character of G. For our purposes, however, it will be sufficient.

Note that Lemma 3.1 implies the smoothness assertion (2.12).
Next, we prove some related estimates in norms with negative index. The use

of such norms implies a loss of flexibility. Essentially, these estimates are parallel to
product estimates of the type

‖u1 . . . uk‖t ≤ C‖u1‖s . . . ‖uk−1‖s‖uk‖t,

t ∈ [−s, s], s > (m− 1)/2, which can be proved by duality arguments if t < 0.
Lemma 3.4. Assume s > (m + 1)/2, s ≥ 4, t ∈ [−3, s− 1]. Then

F ∈ C∞(
Us,L(Ht+1(S), Ht(S))

)
,

A ∈ C∞(
Us,L(Ht−1(S), Ht(S))

)
,
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and for u ∈ Us

‖F ′(u)u1‖t ≤ C‖u1‖s‖f‖t+1,(3.4)

‖A(u)f‖t ≤ C‖f‖t−1,(3.5)

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s . . . ‖uk‖s‖f‖t−1,(3.6)

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s . . . ‖uk−1‖s‖uk‖t‖f‖s,(3.7)

u1, . . . , uk ∈ Hs(S,Rm), k ∈ N. The constants C can be chosen independently of u as
u varies in bounded, weakly closed subsets of Us.

Proof. We will restrict ourselves to the assertions concerning A. Fix s0 ∈ ((m +
1)/2, s) and an extension operator E ∈ L(Ht(S), Ht+1/2(E)), t > 0. Pick v ∈ Us and
choose an Hs0-neighborhood Vs0 ⊂ Us and u0 ∈ C∞(E,Rm) such that

ũ := u0 + E(u− u0) ∈ Diff(E,Ωu).

This is possible by Lemma 4.1 in [10].
For u ∈ Vs0 , let the transformed operators L(u) and B(u) be defined by

L(u)ψ := ∂i(
√
ggij∂jψ), B(u)ψ := νi

√
ggij∂jψ,

where
√
g, gij are the volume element and the (inverse) coefficients of the metric on

E induced by ũ, respectively, and ν is the outer unit normal on S. We consider the
transformed boundary value problem

L(u)ψ = Φ1, B(u)ψ = ω(u)(Φ2 + c),

∫
s

ω(u)(Φ2 + c) dS =

∫
E

√
gΦ1 dx,(3.8)

c = c(u,Φ1,Φ2) ∈ R. Here ω(u) = dΓu/dS is the surface element belonging to
the transformation induced by u which is given by a nonlinear first-order differential
operator in ũ.

For τ > 0 and v ∈ L2(E) define

‖v‖τ := sup
z∈Hτ (E),‖z‖τ=1

∣∣∣∣
∫

vz dx

∣∣∣∣ .
(This differs from the usual norm in H−τ (E) := (Hτ

0 (E))′.) The BVP (3.8) is uniquely
solvable and ψ satisfies an estimate

‖ψ‖t + ‖ψ‖Et+1/2 ≤ C
(
‖Φ1‖Et−3/2 + ‖Φ2‖t−1

)
(3.9)

(cf. [9, Lemma 3.1]).
As A(u)f is the trace of the solution ψ of (3.8) with Φ1 = 0, Φ2 = f , we get (3.5)

immediately from (3.9).
Note that A′(u){u1}f is given as the solution ψ′ of

L(u)ψ′ = −L′(u){u1}ψ,
B(u)ψ′ = −B′(u){u1}ψ + ω′(u){u1}(f + c(u, 0, f)) + ω(u)∂uc(u, 0, f){u1}.

As f 	→ c(u, 0, f) and v 	→ ∂uc(u, 0, f){v} are given by smoothing operators, to obtain
(3.6) and (3.7) it is sufficient to use (3.9) and estimate either

‖L′(u){u1}ψ‖Ω
t−3/2 ≤ C

(
‖Eu1‖Ω

t+1/2 + ‖u1‖t
)
‖ψ‖s+1 ≤ C‖u1‖t‖f‖s
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or

‖L′(u){u1}ψ‖Ω
t−3/2 ≤ C

(
‖ψ‖Ω

t+ 1
2

+ ‖ψ‖t
)
‖u1‖s ≤ C‖u1‖s‖f‖t−1,

together with analogous estimates for ‖B′(u)ψ‖t−1 and ‖ω′(u){u1}f‖t−1. The general
case now follows by induction over k, cf. [10, Lemma 4.5].

The estimate (3.4) can be obtained in a similar fashion, discussing a Dirichlet
problem instead of (3.8).

Finally, the uniformity of the estimates follows from the fact that bounded, weakly
closed subsets of Us are compact in Hs0(S).

We choose m smooth vector fields D1, . . . , Dm on S such that

Span{D1, . . . , Dm} = Tx for all x ∈ S

and use the multi-index notation Dα = Dα1
1 · · ·Dαm

m , α = (α1, . . . , αm) for higher
order derivatives; for simplicity we assume that (D1, . . . , Dm) coincides with the tan-
gential gradient on S. Note that, for any integer s ≥ 0, we can use

(u, v)s =
∑
|α|≤s

(Dαu,Dαv)L2(S)

as a scalar product generating the norm in Hs(S). Moreover, as an immediate con-
sequence of the invariance properties(

F (u)f
)
◦ τ = F (u ◦ τ)(f ◦ τ)

for any diffeomorphism τ on S, we have a differentiation rule which resembles Leibniz’
rule at an abstract level, cf. [10]: For any multi-index α and u ∈ Us, f ∈ Hs(S),
s > |α| + (m + 1)/2 there holds

DαF (u)f =
∑

cβ1,...,βk+1
F (k)(u){Dβ1u, . . . ,Dβku}Dβk+1f,(3.10)

where the sum has to be extended over all integers k and systems of nonnegative
multi-indices β1, . . . , βk+1 with

0 ≤ k ≤ |α|, 1 ≤ |β1|, . . . , |βk|, β1 + · · · + βk+1 = α.(3.11)

The coefficients are nonnegative integers, in particular cα = cα,0 = 1.
Combining the differentiation rule for F with the estimate of the derivatives in

lower norms we obtain the following proposition.
Proposition 3.5. (i) Let s ≥ s0 > (m + 1)/2, s integer, u ∈ Us. Then

‖F (u)f‖s−1 ≤ C
(
‖u‖s‖f‖s0 + ‖f‖s

)
(3.12)

with a uniform constant as long as u varies in Hs0-bounded and weakly Hs0-closed
subsets of Us.
(ii) Assume additionally that s ≥ s0 + 2 and let α be any multi-index with |α| = s.
Writing Dα = Dα1 · · ·Dαs with |α1| = · · · = |αs| = 1, we have

DαF (u)f = F (u)Dαf + F ′(u){Dαu}f +

s∑
i=1

F ′(u){Dαiu}Dβif + Rα(u)f,(3.13)
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where α = αi + βi and the remainder term allows the estimate

‖Rα(u)f‖0 ≤ C
(
‖u‖s‖f‖s0+1 + ‖f‖s−1

)
.

The constant can be chosen uniformly as u varies in Hs0+2-bounded, weakly Hs0+2-
closed subsets of Us.

Proof. We consider the more complicated situation (ii) only. According to (3.10),
the remainder term has a representation as a sum of terms

Iβ = F (k)(u){Dβ1u, . . . ,Dβku}Dβk+1f,

where the multi-indices satisfy (3.11) and additionally

|β1|, . . . , |βk| ≤ s− 1, |βk+1| ≤ s− 2.

Hence k ≥ 1. For each of the terms Iβ , we will choose numbers θ1, . . . , θk+1 ∈ [0, 1]
such that θ1 + · · · + θk+1 = 1 and set

si := (1 − θi)s0 + θi.

If k = 1 we choose θ1, θ2 such that θ1 + θ2 = 1 and |β2| = θ1 + θ2(s − 2). If k = 2
and |β3| = 0 we choose θi := (|βi| − 1)/(s− 2) for i = 1, 2 and θ3 := 0. If k = 2 and
|β3| ≥ 1 or k ≥ 3 we choose

θi := (|βi| − 1)/(s− 3) for i = 1, 2, 3, θi := |βi|/(s− 3) for i ≥ 4.

In all cases, we have

|βi| + si ≤ (1 − θi)(s0 + 2) + θis, i = 1, . . . , k,

|βk+1| + sk+1 ≤ (1 − θk+1)(s0 + 1) + θk+1(s− 1).

}
(3.14)

Set λ := θ1 + · · · + θk. Using (3.1) with t = 1, s = s0, (3.14), norm convexity, and
Young’s inequality we get

‖Iβ‖0 ≤ C‖u‖|β1|+s1 . . . ‖u‖|β1|+sk‖f‖|βk+1|+sk+1

≤ C‖u‖k−1
s0+2

(
‖u‖s0+2‖f‖s−1

)1−λ(‖u‖s‖f‖s0+1

)λ
≤ C‖u‖k−1

s0+2

(
‖u‖s0+2‖f‖s−1 + ‖u‖s‖f‖s0+1

)
,

and the result follows.
The following lemma provides an explicit characterization for the linearization of

F , namely up to terms of order zero in v,

F ′(u)f ≈ −F (u)(v · F (u)f).

This structure will be important later. It can be verified in an informal way by
performing the variation on Ωu itself instead of transforming the problem to the
reference domain.

Lemma 3.6. Let s > (m+3)/2. Then for u ∈ Us, v ∈ Hs(S,Rm), and f ∈ Hs(S)
there holds

‖F ′(u){v}f + F (u)(v · F (u)f)‖0 ≤ C‖f‖s‖v‖0.
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Proof. From (2.5) we get

F ′
i (u){v}f = ∂iφ

′ ◦ u + vj∂i∂jφ ◦ u

with φ = φ(u, f) from (2.6) and φ′ = φ′(u, f){v} given by

φ′(u, f){v}(x) = ∂ε(φ(u + εv, f)(x))|ε=0, x ∈ Ωu.

The function φ′ satisfies

Δφ′ = 0 in Ωu, φ′ = −∇φ · v on Γu,(3.15)

therefore ∂iφ
′ ◦ u = −Fi(u)(v · F (u)f).

Parallel to the proof of Lemma 5.1 in [10] one obtains

‖vj∂i∂jφ ◦ u‖0 ≤ C‖v‖0‖φ(u, f)‖C2(Ωu) ≤ C‖f‖s‖v‖0.

This proves the assertion.

4. The main estimate. In this section we prove a priori estimates in Hs for the
nonlinear operator F w.r.t. variable bilinear forms which we define in what follows.
As already mentioned in the introduction, these estimates are the main ingredient in
the existence proof.

To begin with, for u ∈ Us, s > (m + 1)/2 we define

P (u)v := v ·
(
n(u) ◦ u

)
, N(u)w := w

(
n(u) ◦ u

)
,(4.1)

Λ(u)w := ∇Γu(w ◦ u−1) ◦ u(4.2)

as the Euclidean scalar product and multiplication with outer normal n(u) of Γu and
pullback of tangential gradient ∇Γu along Γu, respectively. Considered as operators
in v and w, the coefficients of P (u), N(u) and Λ(u) are smooth functions of u and its
first derivatives. Thus,

P (u) ∈ L
(
Ht(S,Rm), Ht(S)

)
, N(u) ∈ L

(
Ht(S), Ht(S,Rm)

)
,(4.3)

Λ(u) ∈ L
(
Ht(S), Ht−1(S,Rm)

)
(4.4)

depend smoothly on u ∈ Us for |t| ≤ s − 1 and |t − 1| ≤ s − 1, respectively. Clearly,
the operators P,N,Λ satisfy invariance properties as stated for F in [10]. As a conse-
quence, the differentiation rule (3.10) is also true for P,N,Λ; we make use of that with-
out explicit mention. Further more, recall that the pullback Δ(u)w of the Laplace–
Beltrami operator ΔΓu

on Γu according to (2.8) and the operator H(u) according to
(2.7) may be expressed as

Δ(u)w = Λi(u)
(
Λi(u)w

)
, H(u) = −γΛi(u)

(
ni(u) ◦ u

)
,(4.5)

respectively.
In the further considerations of this section we fix s0 to be the smallest integer

such that s0 ≥ 6 and s0 > (m + 7)/2 and set

Ũs := Us ∩K for all s ≥ s0

with a fixed Hs0-bounded and weakly Hs0-closed subset K ⊆ Us0 . Note that

1 ≤ C‖u‖s0 ≤ C ′‖u‖s, ‖u‖C3(S) ≤ C

for all u ∈ Ũs, s ≥ s0.
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Furthermore, we have the estimates

‖G(u)‖s−2, ‖F(u)‖s−3 ≤ C‖u‖s for all u ∈ Ũs, s ≥ s0,

and the operators defined in (4.3), (4.4) are bounded uniformly with respect to u ∈ Ũs.
Due to our choice of the differential operators Di, the Laplace–Beltrami operator

on the compact reference manifold S is given by Δ0 := DiDi. It has an approximate
inverse, i.e., there is an operator Δ+

0 ∈ L
(
Hτ (S), Hτ+2(S)

)
, τ ∈ R, such that

Δ0Δ
+
0 = Δ+

0 Δ0 = id + Q0,

with a smoothing operator Q0 simply given by orthogonal projection in L2(S) onto
the subspace of functions which are constant on each connectivity component of S; in
particular, Q0 ∈ L(Hτ (S), Hσ(S)) for any σ, τ ∈ R. In the same manner, we define
the approximate inverse Δ+(u) for Δ(u). In this case we have

[u 	→ Δ+(u)] ∈ C∞(
Us,L

(
Ht(S), Ht+2(S)

))
, t ∈ [0, s− 2]

and

Δ(u)Δ(u)+ = Δ(u)+Δ(u) = id + Q(u),(4.6)

where Q(u) ∈ L
(
Hτ (S), Hσ(S)

)
for any σ ∈ R, τ ≥ 1 − s, and the corresponding

norms are bounded independently of u ∈ Ũs.
Lemma 4.1. Let s ≥ s0 with s = 2k, k ∈ N, and u ∈ Us. Then we have

Δk
0F(u) = F̃ (u)

(
G̃(u)(Δk

0u)
)

+ F (u)
(
Ra(u)

)
+ Rb(u),(4.7)

where the abbreviations

F̃ (u)f := F (u)f + F0(u)f, G̃(u)v := γΔ(u)(P (u)v) + G1(u)v

have been used. Here f 	→ F0(u)f and v 	→ G1(u)v are operators of order zero and
one, respectively,

F0(u) ∈ L
(
Ht(S), Ht(S,Rm)

)
, G1(u) ∈ L

(
Ht(S,Rm), Ht−1(S)

)
,(4.8)

t ∈ [−1, s−1] and t ∈ [−2, s−3], respectively, and the remainder terms Ra, Rb satisfy

‖Ra(u)‖0 ≤ C‖u‖s−1,(4.9)

‖Rb(u)‖0 ≤ C
(
‖G̃(u)(Δk

0u)‖−1 + ‖F(u)‖s0−3‖u‖s + ‖u‖s−1

)
.(4.10)

The constants are independent of u and the operator norms of F0(u) and G1(u) are
bounded independently of u as long as u varies in a set Ũs.

Proof. The operator F (u) vanishes on constants and, by elliptic regularity,

‖f‖s0−2 ≤ C‖F (u)f‖s0−3, u ∈ Ũs(4.11)

if f has zero mean value over S. We define

G̃(u) := G(u) − 1

|S|

∫
S

G(u) dS.(4.12)
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Using Proposition 3.5 (ii), we write Δk
0F(u) = Δk

0F (u)G̃(u) in the form

F (u)
(
Δk

0 G̃(u)
)

+ F ′(u)
{
Δk

0u
}
G̃(u) + 2

k−1∑
j=0

F ′(u)
{
Diu

}
Δj

0DiΔ
k−1−j
0 G̃(u) + R1(u)

= F (u)
(
Δk

0G(u)
)

+ F ′(u)
{
Δk

0u
}
G̃(u) + 2kF ′(u)

{
Diu

}
DiΔ

k−1
0 G(u)

+ R1(u) + R2(u).

According to this proposition and (4.11), R1(u) allows the estimate

‖R1(u)‖0 ≤ C
(
‖u‖s‖G̃(u)‖s0−2 + ‖G̃(u)‖s−1

)
≤ C

(
‖u‖s‖F(u)‖s0−3 + ‖G(u)‖s−1

)
.

For R2(u) we find from Lemma 3.1 (with t = 1) that

‖R2(u)‖0 ≤ 2

k−1∑
j=0

∥∥F ′(u)
{
Diu, [Δ

j
0, Di]Δ

k−1−j
0 G(u)

}∥∥
0

≤ C
∑
i,j

∥∥[Δj
0, Di]Δ

k−1−j
0 G(u)

∥∥
1
≤ C‖G(u)‖s−1.

Further, by Lemma 3.6 we have

F ′(u)
{
Δk

0u
}
G̃(u) = −F (u)

(
Δk

0u · F(u)
)

+ R3(u)

with

‖R3(u)‖0 ≤ C‖Δk
0u‖0‖G̃(u)‖s0−2 ≤ C‖u‖s‖F(u)‖s0−3.

Defining F0(u) by

F0(u)v := 2kF ′(u)
{
Diu

}
DiΔ

+
0 v,

we get

Δk
0F(u) =

(
F (u) + F0(u)

)(
Δk

0G(u) − Δk
0u · F(u)

)
+ R4(u)

with a remainder term

R4(u) = F0(u)
(
Δk

0u · F(u)
)

+ R1(u) + R2(u) + R3(u) − 2kF ′(u){Diu}DiQ0Δ
k−1
0 G̃(u).

Hence, using ∥∥F0(u)
(
Δk

0u · F(u)
)∥∥

0
≤ C‖u‖s‖F(u)‖s0−3

and the above estimates for R1, R2, R3, we obtain

‖R4(u)‖0 ≤ C
(
‖G(u)‖s−1 + ‖u‖s‖F(u)‖s0−3

)
.(4.13)

Recall that G(u) depends linearly on γ. Slightly abusing notation, we write G(u)γ
etc. in the remaining part of this proof (see (6.6)). Note that in analogy to (3.10),
we get, for sufficiently smooth u,

DαG(u)γ =
∑

cβ1,...,βk+1
G(k)(u){Dβ1u, . . . ,Dβku}Dβk+1γ
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with (3.11) holding for k and the multi-indices β1, . . . , βk+1. Applying this differenti-
ation rule, we get

Δk
0G(u)γ = G′(u)

{
Δk

0u
}
γ + G1(u)γ + R5(u),

where G1(u) contains all terms where derivatives of u of order s− 1 and s− 2 occur.
Consequently, it is a sum of terms of the forms

G′(u)
{
Δj

0DiΔ
k−1−j
0 u

}
Diγ, G′′(u)

{
Diu,Δ

j
0DiΔ

k−1−j
0 u

}
γ,

with j ∈ {0, . . . , k − 1}, and

G′(u){z}DiDlγ, G′′(u){Diu, z}Dlγ, G′′(u){DiDlu, z}γ, G′′′(u){Diu,Dlu, z}γ,

with z := Δj
0DiΔ

μ
0DlΔ

k−2−j−μ
0 u and j, μ ∈ {0, . . . , k − 2}, j + μ ≤ k − 2. Using the

estimates (3.3) and the assumption s ≥ s0 > (m + 7)/2, one obtains from analogous
arguments as in the proof of Proposition 3.5 (ii) that

‖R5(u)‖0 ≤ C‖u‖s−1.(4.14)

Writing in the above terms,

Δk−1−j
0 u ≈ (Δ+

0 )j+1Δk
0u, Δk−2−j−μ

0 u ≈ (Δ+
0 )j+μ+2Δk

0u(4.15)

up to smoothing remainder terms, we get

Δk
0G(u)γ = G′(u)

{
Δk

0u
}
γ + G2(u){Δk

0u}γ + R6(u)(4.16)

with a first-order operator v 	→ G2(u){v}γ and a remainder term R6(u) satisfying the
estimate (4.14) again. Hence, using that the linearization of the mean curvature H(u)
has Δ(u)(P (u)v) as its main part, i.e.,

G′(u){v}γ = γΔ(u)P (u)v + G3(u){v}γ(4.17)

with a first-order operator v 	→ G3(u){v}γ, we get the representation (4.7) with

G1(u)v := G2(u){v}γ + G3(u){v}γ − v · F(u)

and with the remainder terms

Ra(u) := R6(u), Rb(u) := R4(u) + F0(u)
(
R6(u)

)
.

Now the estimate (4.9) of Ra coincides with (4.14), whereas the estimate (4.10) of Rb

follows from

‖Rb(u)‖0 ≤ C
(
‖R4(u)‖0 + ‖R6(u)‖0

)
≤ C

(
‖G(u)‖s−1 + ‖u‖s‖F(u)‖s0−3 + ‖u‖s−1

)
by (4.13), (4.14) and

‖G(u)‖s−1 ≤ C
(
‖Δk

0G(u)‖−1 + ‖G(u)‖0

)
= C

(
‖G̃(u)(Δk

0u) + R6(u)‖−1 + ‖G(u)‖0

)
≤ C

(
‖G̃(u)(Δk

0u)‖−1 + ‖u‖s−1

)
.
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The statements (4.8) are consequences of Lemma 3.4 and (3.4). This becomes clear if
G1 is written out explicitly in terms of differential operators and Fréchet derivatives
of A.

Now fix s ≥ s0 with s = 2k, k ∈ N. Taking F0 and G1 as in Lemma 4.1 we set
for u ∈ Us that

F̃(u)v :=
(
F (u) + F0(u)

)
G̃(u)v.

We are now ready to define the variable inner product for which we will prove the
semiboundedness of F . For u ∈ Us let M(u) be the operator defined by

M(u)v := M0(u)v + M̃0(u)v, M̃0(u)v = M1(u)P (u)v + N(u)M2(u)v.(4.18)

Here, the main part M0 of M is given by

M0(u)v := v − Λ(u)A(u)P (u)v(4.19)

with A from (2.9) (cf. [10]), whereas the lower order terms are given by

M1(u)w := −M0(u)F0(u)A(u)w,(4.20)

M2(u)v := Δ(u)+
(
γ−1G1(u)v

)
.(4.21)

From (3.5) and (4.8) we get

M0(u) ∈ L
(
Ht(S,Rm), Ht(S,Rm)

)
, −4 ≤ t ≤ s− 2,

M1(u) ∈ L
(
Ht(S), Ht+1(S,Rm)

)
, −2 ≤ t ≤ s− 3,

M2(u) ∈ L
(
Ht(S,Rm), Ht+1(S)

)
, −2 ≤ t ≤ s− 3.

The operators depend smoothly on u ∈ Us and have uniformly bounded norms as u
varies in Ũs.

Because of P (u)Λ(u) = 0, the operator M0(u) constitutes an isomorphism in
L2(S,Rm) with inverse

M0(u)−1v = v + Λ(u)A(u)P (u)v.(4.22)

In particular, we have

c‖v‖0 ≤ ‖M0(u)v‖0 ≤ C‖v‖0,(4.23)

c‖v‖0 − C‖v‖−1 ≤ ‖M(u)v‖0 ≤ C‖v‖0(4.24)

with suitable positive constants c, C independent of u ∈ Ũs and v ∈ L2.
The main motivation for our choice of M0 is the easily checked identity(

M0(u)F (u)f,M0(u)v
)
0

=
(
B(u)f, P (u)v

)
0
,(4.25)

where f 	→ B(u)f := P (u)(F (u)f) is the Dirichlet–Neumann operator. Note that
on the left we have an inner product for a vector-valued function while there is an
inner product for scalar functions on the right; this will enable us to make use of the
coercivity in the normal direction. The choice of M1 and M2 results from the need
to control certain lower order terms that will appear in our estimates, in particular,
(4.34).
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For the sake of completeness, we gather some properties of B which we will need
in what follows. We will use the commutator notation [Q1, Q2] := Q1Q2 − Q2Q1

for operators, in particular, if f is a function we will write [f,Q]w := fQw −Q(fw).
Note that property (b) is in fact the L2-symmetry of B(u) with respect to the measure
induced from Γu.

Lemma 4.2. Assume u ∈ Ũs, f ∈ C1(S), w ∈ H2(S), v ∈ H1(S). Then:
(i) If f ≥ α > 0, then∫

S

fwB(u)w dS ≥ c‖w‖2
1/2 − C‖w‖2

0

with c = c(α) > 0, C = C(‖f‖C1). Moreover,
(ii) ∫

S

wB(u)v dS =

∫
S

ω(u)v B(u)(ω(u)−1w) dS,

(iii)

‖B(u)w‖−2 ≤ C‖w‖−1,

(iv)

‖[f,B(u)]w‖0 ≤ C‖w‖0

with C = C(‖f‖C1),
(v)

‖[Λi(u), B(u)]w‖0 ≤ C‖w‖1.

All constants are independent of u ∈ Ũs.
Proof. (i) As in the proof of Lemma 3.4 we extend u to a diffeomorphism from

E to Ωu and denote the coefficients of the corresponding induced metric by gij and
the corresponding volume element by

√
g. Let ν denote the outer unit normal on S

and let E denote the harmonic extension from S into E. Let φ be the solution of the
Dirichlet problem

L(u)φ := ∂i(
√
ggij∂jφ) = 0 in E, φ|S = w.

Then

B(u)w = ω(u)−1νi
√
ggij∂jφ,

and by integration by parts∫
S

fwB(u)w dS

=

∫
S

fφω(u)−1νi
√
ggij∂jφdS =

∫
E

∂i(E(fω(u)−1)φ
√
ggij∂jφ) dx

=

∫
E

E(fω(u)−1)
√
ggij∂iφ∂jφdx +

∫
E

∂i(E(fω(u)−1)
√
ggij)φ∂jφdx

≥ c‖φ‖E1
2 − C‖φ‖E1 ‖φ‖E0 ≥ c‖φ‖E1

2 − C‖φ‖E0
2 ≥ c‖w‖2

1/2 − C‖w‖2
0.
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The uniformity of these estimates with respect to u ∈ Ũs follows by a compactness
argument as in [10].

(ii) The assertion follows from transforming the integral to Γu, applying Green’s
formula and transforming back.

(iii) Using (ii), the assertion follows from a standard duality argument and the
fact that B(u) ∈ L(H2(S), H1(S)).

(iv) Maintaining the notation from the proof of (i), we have

[f,B(u)]w = ω(u)−1νi
√
ggij(f∂jφ− ∂jψ),

where ψ satisfies

L(u)ψ = 0 in E, ψ|S = fw = fφ|S .

Therefore, by estimates parallel to Lemma 4.3 in [10],

‖[f,B(u)]w‖1/2 ≤ ‖ω(u)−1νi
√
ggij∂j(φEf − ψ)‖1/2 + C‖φ‖1/2

≤ C
(
‖L(u)(φEf)‖E0 + ‖φ‖1/2

)
≤ C

(
‖φ‖E1 + ‖φ‖1/2

)
≤ C‖w‖1/2.

As both multiplication by f and B(u) are symmetric with respect to the L2-inner
product induced from Γu, we get by duality that

‖[f,B(u)]w‖−1/2 ≤ C‖w‖−1/2,

and the result follows by interpolation.
(v) We have, by the chain rule for the operators Dk,

[Λi(u), B(u)] = [αi
k(u)Dk, B(u)] = [αi

k(u), B(u)]Dk + αi
k(u)[Dk, B(u)]

= [αi
k(u), B(u)]Dk + αi

k(u)B′(u){Dku}.

The result now follows from (ii) and the estimate

‖B′(u){Dku}w‖0 ≤ C‖w‖1,

which is a simple consequence of (3.1).
The next lemma will be crucial in the proof of the main estimate as it will provide

coercivity for the normal component.
Lemma 4.3. There are positive constants c, C such that

(Δ(u)+(γ−1w), B(u)w)0 ≤ −c‖w‖2
−1/2 + C‖w‖2

−2

for all u ∈ Ũs, w ∈ H1(S).
Proof. Set z := Δ(u)+(γ−1w). Then w = γΔ(u)z + γQ(u)(γ−1z); see (4.6). By

Lemma 4.2 (ii),

I :=
(
Δ(u)+(γ−1w), B(u)w

)
0
≤

(
z,B(u)γΔ(u)z

)
0

+ ‖z‖1‖B(u)(γQ(u)(γ−1z))‖−1

≤
(
ω(u)γΔ(u)z,B(u)(ω(u)−1z)

)
0

+ C‖w‖2
−1.

Setting z̃ := ω(u)−1z, γ̃ := ω(u)2γ and using (4.5) we get

I ≤
(
γ̃Δ(u)z̃, B(u)z̃

)
0

+
(
ω(u)γ[ω(u),Δ(u)]z̃, B(u)z̃

)
0

+ C‖w‖2
−1

≤
(
γ̃Λi(u)Λi(u)z̃, B(u)z̃

)
0

+ C‖z‖2
1 + C‖w‖2

−1.
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By integration by parts, one obtains an estimate∣∣∣∣
∫
S

Λi(u)f dS

∣∣∣∣ ≤ C

∫
S

|f | dS,

cf. [10, (5.5)]. This yields

I ≤ −(Λi(u)z̃,Λi(u)γ̃B(u)z̃)0 + C‖z‖2
1 + C‖w‖2

−1

≤ −(Λi(u)z̃, γ̃Λi(u)B(u)z̃)0 + C‖z‖1

∑
i

‖[Λi(u), γ]B(u)z̃‖0 + C‖w‖2
−1

≤ −(Λi(u)z̃, γ̃B(u)Λi(u)z̃)0 + C‖z‖1

∑
i

‖[B(u),Λi(u)]z̃‖0 + C‖w‖2
−1

≤ −c‖Λi(u)z̃‖2
1/2 + C‖z‖2

1 + C‖w‖2
−1

≤ −c‖z̃‖2
3/2 + C‖w‖2

−1 ≤ −c‖w‖2
−1/2 + C‖w‖2

−2,

where parts (i) and (v) of Lemma 4.2 have been used together with interpolation in
the scale Ht(S).

In view of (4.23), (4.24) for every fixed u ∈ Us, s ≥ s0, s = 2k, k ∈ N, and λ

sufficiently large (independent of u ∈ Ũs),

(v, w)s,u := λ
(
M0(u)v,M0(u)w

)
0

+
(
M(u)Δk

0v,M(u)Δk
0w

)
0

(4.26)

defines a scalar product on Hs(S,Rm) which is equivalent to the usual one.
The next two lemmas provide properties of the inner product (·, ·)s,u, which will

be used when we apply the abstract existence result of Theorem 5.2 to our situation.
They are parallel to Lemmas 5.3 and 5.4 in [10], therefore the proofs are omitted here.
Note the uniformity of all estimates with respect to u ∈ Ũs.

Lemma 4.4. Assume s ≥ s0.
(i) There exists a C > 0 such that for all v ∈ Hs+3(S,Rm), w ∈ Hs(S,R),

u ∈ Ũs

(v, w)s,u ≤ C‖v‖s+3‖w‖s−3.

(ii) There exist λ0, c0 > 0 such that for all v ∈ Hs+6(S,Rm), λ ≥ λ0(
v, (−Δ3

0 + λ)v
)
s,u

≥ c0‖v‖2
s+3.

As an immediate consequence of Lemma 4.4 (i) we get the existence of a contin-
uous bilinear form 〈·, ·〉s,u on Hs+3(S,Rm) × Hs−3(S,Rm) compatible with (·, ·)s,u,
i.e., there holds 〈v, w〉s,u = (v, w)s,u for all v, w ∈ Hs+3(S,Rm). Further, we put for
ε ∈ (0, 1]

〈v, w〉εs,u := 〈v, w〉s0,u + ε2〈v, w〉s,u.(4.27)

Lemma 4.5. We assume as above that s ≥ s0, ε ∈ (0, 1].
(i) For fixed u∈Us, the mapping 〈·, ·〉εs,u :Hs+3(S,Rm)×Hs−3(S,Rm)→R con-

stitutes a continuous, nondegenerate bilinear form whose restriction to Hs+3(S,Rm)×
Hs+3(S,Rm) is symmetric.

(ii) With constants C > 0 independent of ε, u, v, w, one has for u,w ∈ Ũs and
v ∈ Hs+3(S,Rm):

C−1
(
‖v‖2

s0 + ε2‖v‖2
s

)
≤ 〈v, v〉εs,u ≤ C

(
‖v‖2

s0 + ε2‖v‖2
s

)
,(4.28)

〈v, v〉εs,u ≤ 〈v, v〉εs,w
(
1 + C‖u− w‖s0−3

)
.(4.29)
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(iii) Weak convergences un ⇀ u in Hs, wn ⇀ w in Hs−3 imply

〈v, wn〉εs,un
→ 〈v, w〉εs,u

for all v ∈ Hs+3.
Now we are prepared to formulate and prove the following a priori estimates for

F w.r.t. the bilinear forms (·, ·)s,u.
Proposition 4.6. Let s ≥ s0 be an even integer. Then(

u,F(u)
)
s,u

≤ C‖u‖2
s(4.30)

for all u ∈ Ũs ∩ C∞(S,Rm) with a constant C independent of u.
Proof. For later use, we prove the estimate in the following stronger form: For

every ε > 0 there exists a constant C(ε) such that(
u,F(u)

)
s,u

≤ C‖u‖s
(
(ε + ‖F(u)‖s0−3)‖u‖s + C(ε)‖u‖s−1

)
.(4.31)

Setting v := Δk
0u and using the notations of Lemma 4.1 we have(

M(u)Δk
0u,M(u)Δk

0F(u)
)
0

= I(u)v2 + J(u) +
(
M(u)v,M(u)Rb(u)

)
0

with

I(u)v2 :=
(
M(u)v,M(u)F̃(u)v

)
0

J(u) :=
(
M(u)v,M(u)F (u)Ra(u)

)
0
.

From (4.10) we obtain(
M(u)v,M(u)Rb(u)

)
0
≤ C‖u‖s

(
‖G̃(u)v‖−1 + ‖F(u)‖s0−3‖u‖s + ‖u‖s−1

)
.

To estimate J(u), we write this term as J1(u) + · · · + J4(u) with

J1(u) =
(
M0(u)v,M0(u)F (u)Ra(u)

)
0
, J2(u) =

(
M̃0(u)v,M0(u)F (u)Ra(u)

)
0
,

J3(u) =
(
M0(u)v, M̃0(u)F (u)Ra(u)

)
0
, J4(u) =

(
M̃0(u)v, M̃0(u)F (u)Ra(u)

)
0
.

Using (4.25) and (4.9), we obtain for J1

J1(u) = (B(u)Ra(u), P (u)v
)
0
≤ C‖Ra(u)‖0‖P (u)v‖1 ≤ C‖u‖s−1‖P (u)v‖1.

As

P (u)v = Δ(u)+
(
γ−1(G̃(u)v −G1(u)v)

)
−Q(u)(P (u)v)(4.32)

we see from (4.8) that

‖P (u)v‖1 ≤ C
(
‖G̃(u)v‖−1 + ‖v‖0

)
,(4.33)

and consequently

J1(u) ≤ C‖u‖s−1

(
‖G̃(u)v‖−1 + ‖u‖s

)
.

For J2 we have

J2(u) ≤ C‖M̃0(u)v‖1‖M0(u)F (u)Ra(u)‖−1 ≤ C‖v‖0‖Ra(u)‖0 ≤ C‖u‖s‖u‖s−1,
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and the same estimates are valid for J3, J4, thus

J(u) ≤ C‖u‖s−1

(
‖G̃(u)v‖−1 + ‖u‖s

)
.

Further, we decompose I according to I(u)v2 = I1(u)v2 + · · · + I4(u)v2 in the same
manner as J , i.e.,

I1(u)v2 =
(
M0(u)v,M0(u)F̃(u)v

)
0
, I2(u)v2 =

(
M̃0(u)v,M0(u)F̃(u)v

)
0
,

I3(u)v2 =
(
M0(u)v, M̃0(u)F̃(u)v

)
0
, I4(u)v2 =

(
M̃0(u)v, M̃0(u)F̃(u)v

)
0

and each term is estimated separately. We start with the leading order term I1(u)v2.
Using (4.25) again, it can be written as

I1(u)v2 =
(
M0(u)v,M0(u)F (u)G̃(u)v

)
0

+
(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0

=
(
P (u)v,B(u)G̃(u)v

)
0

+
(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0
.

In the first summand we insert (4.32) and use∣∣(Q(u)P (u)v,B(u)G̃(u)v
)
0

∣∣ ≤ C‖v‖0‖G̃(u)v‖−1,

and by Lemma 4.3(
Δ(u)+(γ−1G̃(u)v), B(u)G̃(u)v

)
0
≤ −c0‖G̃(u)v‖2

−1/2 + C‖G̃(u)v‖2
−1.

Remembering the definitions (4.20), (4.21) of M1 and M2, we have(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0

= −
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0
,(

Δ(u)+(γ−1G1(u)v), B(u)G̃(u)v
)
0

=
(
M2(u)v,B(u)G̃(u)v

)
0
,

and consequently we arrive at

I1(u)2v ≤ −
(
M2(u)v,B(u)G̃(u)v

)
0
−
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

− c0‖G̃(u)v‖2
−1/2 + C

(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1.

(4.34)

This coercive estimate of I1(u)v2 with respect to G̃(u)v is the crucial “leading order
estimate” here and will be used below to control the lower order terms.

From Lemma 4.2 (iii) we get F ∈ L(H−1(S), H−2(S,Rm)) and therefore for I4
we have the estimate

|I4(u)v2| ≤ C‖M̃0(u)v‖1‖M̃0(u)F̃(u)v‖−1

≤ C‖v‖0‖(F (u) + F0(u))G̃(u)v‖−2 ≤ C‖v‖0‖G̃(u)v‖−1,
(4.35)

where (4.8) has been applied again. Further, concerning I3 we have

I3(u)v2 =
(
M0(u)v, M̃0F (u)G̃(u)v

)
0

+
(
M0(u)v, M̃0F0(u)G̃(u)v

)
0
,

where the last summand allows the estimate∣∣(M0(u)v, M̃0(u)F0(u)G̃(u)v
)
0

∣∣ ≤ C‖v‖0‖‖G̃(u)v‖−1.

Remembering M̃0(u) = M1(u)P (u) + N(u)M2(u), the first summand is written(
M0(u)v, M̃0(u)F (u)G̃(u)v

)
0

=
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

+
(
P (u)v,M2(u)F (u)G̃(u)v

)
0
.
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Using (4.33) we get∣∣(P (u)v,M2(u)F (u)G̃(u)v
)
0

∣∣ ≤ C‖P (u)v‖1‖G̃(u)v‖−1

≤ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1,

and consequently

I3(u)v2 ≤
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

+ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1.(4.36)

Arguing along the same lines for I2 we obtain

I2(u)v2 =
(
M̃0(u)v,M0(u)F (u)G̃(u)v

)
0

+
(
M̃0(u)v,M0(u)F0(u)G̃(u)v

)
0
,

where again ∣∣(M̃0(u)v,M0F0(u)G̃(u)v
)
0

∣∣ ≤ C‖v‖0‖G̃(u)v‖−1

and (
M̃0(u)v,M0(u)F (u)G̃(u)v

)
0

=
(
M2(u)v,B(u)G̃(u)v

)
0

+
(
M1(u)P (u)v,M0(u)F (u)G̃(u)v

)
0

with ∣∣(M1(u)P (u)v,M0(u)F (u)G̃(u)v
)
0

∣∣
≤ ‖M1(u)P (u)v‖2‖M0(u)F (u)G̃(u)v‖−2 ≤ C‖P (u)v‖1‖G̃(u)v‖−1

≤ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1.

Thus we have

I2(u)v2 ≤
(
M2(u)v,B(u)G̃(u)v

)
0

+ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1.(4.37)

Summarizing, we get

(u,F(u))s,u ≤ −c1‖G̃(u)v‖2
−1/2 + C1

(
‖G̃(u)v‖2

−1 + ‖u‖s(‖G̃(u)v‖−1

+‖F(u)‖s0−3‖u‖s + ‖u‖s−1)
)

and, estimating further,

‖u‖s‖G̃(u)v‖−1 ≤ ε

C1
‖u‖2

s + C2(ε)‖G̃(u)v‖2
−1,

‖G̃(u)v‖2
−1 ≤ c1

C1(1 + C2(ε))
‖G̃(u)v‖2

−1/2 + C(ε)‖G̃(u)v‖2
−3,

‖G̃(u)v‖2
−3 ≤ C‖u‖2

s−1

we obtain (4.31).
Remark 4.7. Reinspecting the estimates in the previous proofs it is straightfor-

ward to check that for fixed s ≥ s0 the occurring constants, in particular in (4.30),
(4.31), are independent of γ as long as γ varies in some fixed set{

γ ∈ C∞(S) | γ ≥ γ∗ > 0, ‖γ‖s1 ≤ M
}

(4.38)

with some sufficiently large s1 = s1(s).
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Using Lemma 3.6, we write for u ∈ Ũs, v ∈ Hs, s ≥ s0

F ′(u)v = F (u)
(
γΔ(u)(P (u)v) + G2(u)v

)
+ R(u)v,(4.39)

where v 	→ G2(u)v := G3(u)v − F(u) · v and v 	→ R(u)v are operators of order one
and zero, respectively. Note that F ′(u) coincides with F̃(u) if G1 is replaced by G2

and F0 is replaced by 0. Hence, by defining (cf. (4.18)–(4.21))

M3(u) := Δ(u)+(γ−1G2(u)v), M̃(u) := M0(u) + M3(u),

we find that M̃ has the same properties as M above, and we obtain, parallel to (4.31),
the following estimate which will be used in the uniqueness proof.

Lemma 4.8. Let s ≥ s0. Then there exists a constant C such that for all u ∈ Ũs,
v ∈ Hs we have (

M̃(u)F ′(u)v, M̃(u)v
)
0
≤ C‖v‖2

0.

5. Proof of short time existence and uniqueness. We are now ready to
prove our main results as announced in Theorems 2.1 and 2.2. As the existence proof
is in some respects analogous to the corresponding considerations in [10], we restrict
ourselves to an outline and refer to that paper for details.

Fix an even integer s0 > (m + 7)/2, s0 ≥ 6, and let s ≥ s0 be an even integer
as well. Let Ũs be defined as above. The notations Cw([0, T ], X) and C1

w([0, T ], X)
will denote the spaces of weakly continuous and weakly continuously differentiable
functions, respectively, with values in some subset X of a normed space.

At first an estimate which provides uniqueness and Lipschitz continuous depen-
dence on the initial value in the L2-norm is given.

Proposition 5.1. Let u, v ∈ Cw([0, T ], Ũs0) ∩ C1
w([0, T ], Hs0−3(S,Rm)) be two

solutions of (2.2). Then

‖v(t) − u(t)‖0 ≤ C‖v(0) − u(0)‖0(5.1)

with C depending only on Ũs0 and on T .
Proof. Set w(t) := v(t) − u(t) and note that

w(t) ∈ C([0, T ], Hσ(S,Rm)) ∩ C1([0, T ], Hσ−3(S,Rm))

for σ < s0. In particular, the map

t 	→ g(t) := ‖M̃(u(t))w(t)‖2
0

is differentiable and has the derivative

g′(t) = 2
(
M̃ ′(u(t)){u′(t)}w(t), M̃(u(t))w(t)

)
0

+ 2
(
M̃(u(t))(F(v(t)) −F(u(t))), M̃(u(t))w(t)

)
0
.

To estimate the first term we note that, parallel to the estimates in Lemma 3.1,

‖M̃ ′(u(t)){u′(t)}w(t)‖0 ≤ C‖u′(t)‖s0−3‖w(t)‖0

≤ C‖F(u(t))‖s0−3‖w(t)‖0 ≤ C‖w(t)‖0.
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The second term can be estimated by using

F(v(t)) −F(u(t)) = F ′(u(t))w(t) + R,

where

R :=

∫ 1

0

∫ τ

0

F ′′(θv(t) + (1 − θ)u(t)){w(t), w(t)} dθdτ

allows an estimate

‖R‖0 ≤ C‖w(t)‖3‖w(t)‖s0−3 ≤ C‖w(t)‖s0‖w(t)‖0 ≤ C‖w(t)‖0,

where estimates on F ′′ parallel to Lemma 3.1 and norm convexity have been used.
Thus, by Lemma 4.8,

g′(t) ≤ 2
(
M̃(u(t))F ′(u(t))w(t), M̃(u(t))w(t)

)
0

+ C‖w(t)‖2
0

≤ ‖w(t)‖2
0 ≤ Cg(t).

Therefore, by Gronwall’s inequality,

‖v(t) − u(t)‖2
0 ≤ Cg(t) ≤ Cg(0) ≤ C‖v(0) − u(0)‖2

0.

To prove existence, we will rely on an abstract existence theorem whose proof has
been given in [10]. It generalizes an existence theorem concerning evolution equations
with semibounded operators by Kato and Lai [11] to the case of variable bilinear
forms. The setting is the following:

Let X ⊆ Y ⊆ Z be real and separable Banach spaces with dense
and continuous embeddings and U ⊆ Y be open. For every u ∈ U ,
let 〈·, ·〉u : X × Z → R be a continuous and nondegenerate bilinear
form, such that with fixed constants C ≥ 1, M ≥ 0:
(H1) 〈v, w〉u = 〈w, v〉u for all v, w ∈ X;
(H2) C−1‖v‖2

Y ≤ 〈v, v〉u ≤ C‖v‖2
Y for all v ∈ X, u ∈ U ;

(H3) 〈v, v〉u ≤ 〈v, v〉w
(
1 + M‖u− w‖Z

)
for all v ∈ X, u,w ∈ U ;

(H4) weak convergences un ⇀ u in Y , un, u ∈ U , and wn ⇀ w in
Z imply 〈v, wn〉un → 〈v, w〉u for all v ∈ X.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(H)

Assuming (H) holds, by the dense embedding X ⊆ Y and

∣∣〈v, w〉u∣∣2 ≤ 〈v, v〉u〈w,w〉u ≤ C2‖v‖2
Y ‖w‖2

Y for v, w ∈ X

there exists to each u ∈ U a scalar product (·, ·)u on Y , which is compatible with
〈·, ·〉u, i.e., we have

(v, w)u = 〈v, w〉u for v ∈ X,w ∈ Y.

Moreover, for un, u ∈ U , un ⇀ u, wn ⇀ w in Y implies

(v, wn)un → (v, w)u for all v ∈ X.

For the sake of brevity we put

‖v‖u = (v, v)1/2u , |||u||| = (u, u)1/2u .
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Theorem 5.2. Assume (H) is satisfied with some ball

U = B :=
{
u ∈ Y

∣∣ ‖u‖Y < R
}
, R > 0,

and F : B → Z is a weakly sequentially continuous mapping such that

2〈u,F(u)〉u + M ‖F(u) ‖Z |||u||| ≤ β
(
|||u|||2

)
for all u ∈ X ∩B(5.2)

with a C1-function β : R+ → R+ = [0,∞). Let u0 ∈ B,

|||u0||| < r := R/(2C3)1/2,

and T > 0 such that the solution ρ of the scalar Cauchy problem

dρ/dt = β
(
ρ(t)

)
, ρ(0) = |||u0|||2(5.3)

exists on [0, T ] and satisfies ρ(t) < r2 there. Then the Cauchy problem

u′(t) = F(u(t)), u(0) = u0(5.4)

possesses a solution u ∈ Cw([0, T ],U) ∩ C1
w([0, T ], Z) for which additionally

|||u(t)|||2 ≤ ρ(t) for all t ∈ [0, T ],

u(t) → u0 in Y for t → +0.

Proof of Theorems 2.1, 2.2 (outline): Instead of (2.2), (2.3) we consider the
Cauchy problem

v′(t) = F̂(v) := F(v + w0),
v(0) = u0 − w0,

}
(5.5)

where w0 is smooth and near u0.
To apply Theorem 5.2, we set for ε ∈ (0, 1]

X := Hs+3(S,Rm), ‖ · ‖X := ‖ · ‖s0+3 + ε‖ · ‖s+3,
Y := Hs(S,Rm), ‖ · ‖X := ‖ · ‖s0 + ε‖ · ‖s,
Z := Hs−3(S,Rm), ‖ · ‖X := ‖ · ‖s0−3 + ε‖ · ‖s−3.

For u ∈ Ũs0 , let 〈·, ·〉εu be the bilinear form compatible to the inner product on Y
given by

(v, w)εu := (v, w)s0,u + ε2(v, w)s,u

with (v, w)s0,u, (v, w)s,u given by (4.26). Lemma 4.5 ensures that this bilinear form
satisfies the assumptions (H), with constants independent of ε. Thus Theorem 5.2
yields existence of a solution

u ∈ Cw([0, T ], Ũs) ∩ C1
w([0, T ], Hs−3(S,Rm))

and an estimate

‖u(t)‖s ≤ C(1 + ‖u0‖s)(5.6)

with C independent of u0 and t.
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The uniqueness result from Proposition 5.1 enables us to define an evolution
operator Tt by setting Ttu0 := u(t). By a nonlinear interpolation result given in [2,
Proposition A.1 and Remark A.2], the estimates (5.1) and (5.6) imply Hτ -continuity
of Tt for τ ∈ [0, s), uniformly in t ∈ [0, T ]. Approximation of the initial value u0 by
un

0 ∈ Hs+1 and of the solution u by the corresponding solutions un
0 ∈ C([0, T ], Ũs) ∩

C1([0, T ], Hs−3(S,Rm)) then yields

u ∈ C([0, T ], Ũs) ∩ C1([0, T ], Hs−3(S,Rm))

by uniform convergence. Finally, the existence time T can be shown to be independent
of s by standard continuation arguments. For further details we refer to [10].

6. Nontrivial equilibria and long-time existence. In this section we will
investigate the existence of equilibrium points and the long-time dynamic of the evo-
lution problem (2.2). Our considerations are restricted to situations near trivial equi-
libria; i.e., we will assume that the domain is near a ball and γ is near a constant.
Therefore in the following we specialize the reference domain to

E := {x ∈ R
m

∣∣ |x| < 1}, S := ∂E = {x ∈ R
m

∣∣ |x| = 1}.

First we show that for any given domain Ωu near a ball there exists a corresponding
γ such that (u, γ) yields an equilibrium point for (2.2). Of course, the opposite
question is more interesting for our evolution: Given a surface energy density, find
a corresponding class of equilibrium shapes, and for given initial shape show global
existence of the solution in time and convergence to some member of this class. Our
proof of this is organized as follows. Using the refined semiboundedness estimate of
Proposition 4.6 we obtain weak exponential growth of a solution in higher Sobolev
norms provided the solution remains near the trivial equilibrium with respect to some
lower norms. This enables us to show that the scalar function f(t), which is defined
by (6.11) below, controls the evolution. Then a simple discussion of the spectral
properties of the evolution equation for f yields global existence.

We start by stating some simple integral identities needed later on; in particular,
assertion (ii) of the following lemma together with volume conservation implies that
the center of gravity remains fixed during evolutions under consideration.

Lemma 6.1. (i) We have

∫
S

ω(u)Ni(u)uj dS = δij |Ωu|,(6.1)

where δij denotes the Kronecker symbol, and

∫
S

ω(u)N(u)
(
G(u)γ

)
dS = 0.(6.2)

(ii) For any solution u = u(t) of (2.2) the vector of first moments

M(t) :=

∫
Ωu(t)

x dx(6.3)

is independent of t.
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Proof. (i) After retransformation onto Γu with outer normal n, (6.1) follows from∫
Γu

nixj dΓu =

∫
Ωu

∂ixj dx = δij |Ωu|,

whereas (6.2) reads ∫
Γu

n(γκ− ψ) dΓu = 0,

where ψ is harmonic in Ωu with Neumann boundary condition ∂nψ = ΔΓuγ on Γu.
By Green’s formula we get ∫

Γu

nψ dΓu =

∫
Γu

x∂nψ dΓu;

hence, writing nκ = ΔΓux on Γu we obtain∫
Γu

n(γκ− ψ) dΓu =

∫
Γu

(
γΔΓux− xΔΓuγ

)
dΓu = 0(6.4)

by an integration by parts.
(ii) Consider the solution to (1.1) corresponding to u. We have, using Green’s formula
and (6.4),

Ṁ(t) =

∫
Γ(t)

xVn dΓ(t) =

∫
Γ(t)

x ∂nφdΓ(t)

=

∫
Γ(t)

∂nxφ dΓ(t) =

∫
Γ(t)

n(γκ− ψ) dΓ(t) = 0,

which is the assertion.
Remark 6.2. Note that the presence of the correction term G is crucial not only

for the generalized gradient flow property but also for the validity of Lemma 6.1.
In further considerations we assume s ≥ s0 with s0 ∈ N fixed as in section 4, set

Ũs :=
{
u ∈ Hs(S,Rm)

∣∣ ‖u− w0‖s0 ≤ δ0
}
, w0(x) := x for x ∈ S(6.5)

and assume δ0 > 0 sufficiently small, whenever necessary. Moreover, to stress the
dependency on γ, we consider now F(u) and G(u) as linear operators defined by

F(u)v := F (u)
(
G(u)v

)
, G(u)v := −vΛi(u)

(
ni(u) ◦ u

)
−A(u)Δ(u)v;(6.6)

for s ≥ s0 und 2 ≤ t ≤ s the operators

G(u) ∈ L
(
Ht(S), Ht−1(S)

)
, F(u) ∈ L

(
Ht(S), Ht−2(S)

)
(6.7)

depend smoothly on u ∈ Ũs. For a given surface energy density γ ∈ C∞(S) and
u0 ∈ Ũs the Cauchy problem (2.2), (2.3) reappears as

u̇ = F(u)γ, u(0) = u0.(6.8)

We call a function γ on S an equilibrium surface energy density for a given u ∈ Ũs if
and only if

F(u)γ = 0 on S or equivalently G(u)γ = const. on S.(6.9)
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The latter condition yields a nonlocal first-order elliptic equation for the determi-
nation of an equilibrium surface energy density γ. By straightforward perturbation
arguments and expansion into spherical harmonics in case of u = w0, the next lemma
ensures the existence of a solution of this equation, uniquely determined up to a
scaling factor and a linear combination of m functions.

Lemma 6.3. Assume δ0 > 0 sufficiently small. Then for any given u ∈ Ũs, s ≥ s0

there exists a uniquely determined positive function γ(u) ∈ Hs−1(S) such that

G(u)γ(u) = −1 on S,

∫
S

N(u)γ(u) dS = 0.

Proof. By elliptic regularity it suffices to consider the case s = s0. If a ∈ R
m,

u ∈ Ũs, and γ ∈ Hs−1(S) such that

G(u)γ = −1 + a · u on S,

then (6.2) implies ∫
S

ω(u)N(u)(a · u) dS = 0,

and further a1 = · · · = am = 0 by (6.1). Hence it suffices to show the invertibility of
the operator

[(γ, a) 	→ L(u)(γ, a)] ∈ L
(
Hs−1(S) × R

m, Hs−2(S) × R
m
)

given by

L(u)(γ, a) :=
(
G(u)γ − a · u, c

)
, c :=

∫
S

N(u)γ dS.

As L(u) depends smoothly on u ∈ Ũs it remains to show the existence of

L(w0)
−1 ∈ L

(
Hs−2(S) × R

m, Hs−1(S) × R
m
)
.(6.10)

In this case we have

G(w0)γ = −(m− 1)γ −ASΔSγ,

where AS and ΔS denote the Neumann–Dirichlet operator and the Laplace–Beltrami
operator on the unit sphere S, respectively. Hence, if we expand

γ =
∞∑
l=0

γl, γ1 = b · x,

where γl is a spherical harmonic of degree l and b ∈ R
m, it follows from

ΔSγl = −l(l + m− 2)γl, ASγl = l−1γl (l > 0)

that

L(w0)(γ, a) =
(
−(m− 1)γ0 − a · x +

∞∑
l=2

(l − 1)γl,
|S|
m

b
)
.
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This immediately gives (6.10). Clearly, the equilibrium surface energy density belong-
ing to w0 is the constant function

γ := γ(w0) = L(w0)
−1(−1, 0) = −1/κ0 on S

with the curvature κ0 = −(m− 1) on S. The proof is complete.
In the following considerations, to derive a priori estimates independent of the

existence interval [0, T ], let

u ∈ C0
(
[0, T ], Ũs0+4

)
∩ C1

(
[0, T ], Hs0+1(S,Rm)

)
be any solution of (6.8). Thereby, without explicit mentioning, we always assume
that

‖u0‖s0+4 = ‖u(0)‖s0+4 ≤ M

and γ is taken from some set of the form (4.38) with fixed positive constants γ∗, M
and with a sufficiently large s1 ∈ N, such that, in view of Remark 4.7, the constants
in the estimates of section 4 are independent of γ for s ≤ s0 + 4. Further, we define
(cf. (4.12))

f(t) := G̃
(
u(t)

)
γ = G

(
u(t)

)
γ − 1

|S|

∫
S

G
(
u(t)

)
γ dS.(6.11)

Note that F
(
u(t)

)
v ≡ 0 for v ≡ const implies

u̇(t) = F
(
u(t)

)
γ = F

(
u(t)

)
f(t).(6.12)

Lemmas 6.4 and 6.5 show in which sense the evolution of u can be controlled by
f(t), t ∈ [0, T ] with constants independent of the existence time T . As the main step,
we find from the improved semiboundedness estimate (4.31) that ‖u(t)‖ has only slow
exponential growth; more precisely, we have the following lemma.

Lemma 6.4. Let ε > 0, a > 0, c > 0 be given. There are constants C = C(a, c, ε),
δ = δ(ε) > 0 such that each of the assumptions

(i) ‖f(t)‖s0−2 ≤ δ, t ∈ [0, T ], or
(ii) ‖f(t)‖s0−2 ≤ ce−at, t ∈ [0, T ],

implies

‖u(t)‖s0+4 ≤ Ceεt for all t ∈ [0, T ].(6.13)

The constants C and δ may be chosen independently of u and T .
Proof. In view of Theorem 2.2 it is sufficient to prove (6.13) for any sufficiently reg-

ular solution u = u(t) of (6.8). In particular, the mapping t 	→ g(t) :=
(
u(t), u(t)

)
s,u(t)

with s := s0 + 4 may be assumed to be differentiable. From Proposition 4.6, estimate
(4.31) we get for any given ε > 0,

(
u(t),F(u(t))γ

)
s,u(t)

≤
(
C‖F(u(t))γ‖s0−3 +

ε

2

)
g(t) + C(ε)

and, using D(u){w}v2 as abbreviation for the derivative of the mapping u 	→ (v, v)s,u,∣∣D(u(t)){F(u(t))γ}u(t)2
∣∣ ≤ C‖F(u(t))γ‖s0−3‖u(t)‖2

s.
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Consequently, by differentiating g, we have

g′(t) = 2
(
u(t), u̇(t)

)
s,u(t)

+ D
(
u(t)

){
u̇(t)

}
u(t)2

≤
(
C‖F(u(t))γ‖s0−3 +

ε

2

)
g(t) + C(ε) ≤

(
C1‖f(t)‖s0−2 +

ε

2

)
g(t) + C(ε).

Defining

α(t) :=
ε

2
t + C1

∫ t

0

‖f(s)‖s0−2 ds

and noting that under the assumptions (i) or (ii) we have

0 ≤ α(t) ≤ εt + C(a, c)

and we get from Gronwall’s inequality that

‖u(t)‖2
s ≤ Cg(t) ≤ Ceαt

(
g(0) + C(ε)

∫ t

0

e−α(s) ds

)
≤ C(ε)eεt(g(0) + t) ≤ C(ε)e2εt(g(0) + 1) ≤ C(ε)(M2 + 1)e2εt.

This implies the assertion.
Lemma 6.5. Let ε > 0 and a > 0 be given. Then there exists δ > 0 such that

‖u(0) − w0‖s0 ≤ δ, ‖f(t)‖s0+1 ≤ δe−at for all t ∈ [0, T ](6.14)

imply

‖u(t) − w0‖s0 ≤ ε for all t ∈ [0, T ].

The constant δ may be chosen independently of T and u.
Proof. We assume according to Lemma 6.4 that

‖u(t)‖s0+1 ≤ Ceat/2 for t ∈ [0, T ].

Define g(t) := ‖u(t) − w0‖2
s0 . Then

g′(t) = 2
(
F(u(t))γ, u(t) − w0

)
s0

≤ C‖F(u(t))γ‖s0
= C‖F (u(t))f(t)‖s0 ,

and, consequently,

g′(t) ≤ C‖u(t)‖s0+1‖f(t)‖s0+1 ≤ C ′δeat/2e−at.

Hence, for δ sufficiently small,

g′(t) ≤ 1
4aε

2e−at/2 and g(0) ≤ 1
2ε

2.

This implies

g(t) ≤ 1
2ε

2(2 − e−at/2) ≤ ε2,

which is the assertion.
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Now, to obtain estimates of f(t) we derive the evolution equation satisfied by f .
Differentiation of (6.11) with respect to t gives

ḟ(t) = G
(
u(t)

){
u̇(t)

}
γ − 1

|S|

∫
S

G
(
u(t)

){
u̇(t)

}
γ dS,

hence inserting (6.12) we obtain

ḟ(t) = H
(
u(t), γ

)
f(t),(6.15)

where the operator H is given by

H(u, γ)w := G′(u){F (u)w}γ − 1

|S|

∫
S

G′(u){F (u)w}γ dS.(6.16)

The operator H is negative semibounded in L2 in the following sense.
Lemma 6.6. For ‖u − w0‖s0 and ‖γ − γ‖s0 sufficiently small we have with a

positive constant c independent of u and γ:(
H(u, γ)w,w

)
0
≤ −c‖w‖2

3/2(6.17)

for all w ∈ C∞(S) with∫
S

w dS = 0,

∫
S

ω(u)Ni(u)w dS = 0.

Proof. Instead of (6.17) we prove the estimate in the form(
H(u, γ)w,w

)
0
≤ −c1‖w‖2

3/2 + c2R(u,w)(6.18)

for all w ∈ C∞(S) with some constants c1, c2 > 0, where

R(u,w) :=

(∫
S

w dS

)2

+

m∑
i=1

(∫
S

ω(u)Ni(u)w dS

)2

.

Further, by perturbation arguments using

‖H(u, γ)w −H(w0, γ̄)w‖−3/2 ≤ C‖w‖3/2

(
‖u− w0‖s0 + ‖γ − γ‖s0

)
,

it suffices to show (6.18) for u = w0, γ = γ̄. For γ = γ̄ we have

G(u)γ = γH(u),

therefore the linearization of the mean curvature at a sphere yields

G′(w0){v}γ = γ
(
(m− 1)(x · v) + ΔS(x · v)

)
.

As [w 	→ x · F (w0)w] = BS is the Dirichlet–Neumann operator on the unit sphere S,
this implies (6.18).

Lemma 6.7. There exists a > 0 with the property that for any ε > 0 there exists
δ > 0 such that ‖u(0) − w0‖s0 ≤ δ and ‖γ − γ̄‖s0 ≤ δ imply

‖f(t)‖s0+1 ≤ εe−at for all t ∈ [0, T ].

δ may be chosen independently of u and T > 0.
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Proof. First, note that by definition of f(t) and Lemma 6.1 (i) we have∫
S

f(t) dS = 0,

∫
S

ω
(
u(t)

)
Ni

(
u(t)

)
f(t) dS = 0.

Consequently (6.15) and Lemma 6.6 imply

d

dt

(
‖f(t)‖2

0

)
= 2

(
H(u(t), γ)f(t), f(t)

)
0
≤ −c‖f(t)‖2

0,

with some c > 0, hence

‖f(t)‖0 ≤ e−ct‖f(0)‖0.

Further, as

‖f(t)‖s0−2 ≤ C
(
‖u(t) − w0‖s0 + ‖γ − γ̄‖s0

)
≤ C(δ0 + δ),

we get from Lemma 6.4 (i) by assuming δ and the constant δ0 in the definition (6.5)
of Ũs sufficiently small,

‖u(t)‖s0+4 ≤ Ceμt, μ := c/(2(s0 + 1))

and, moreover, using the estimate (2.14),

‖f(t)‖s0+2 = ‖G(u(t))γ‖s0+2 ≤ C‖u(t)‖s0+4 ≤ C ′eμt.

Now we have by interpolation

‖f(t)‖s0+1 ≤ C
(
eμt

) s0+1

s0+2
(
e−ct‖f(0)‖0

) 1
s0+2 = C‖f(0)‖

1
s0+2

0 e−at

with a = c/(2(s0 + 2)). This implies the assertion.

Now we are in position to formulate our main result about the long-time existence
and convergence to an equilibrium configuration for t → ∞.

Theorem 6.8. Let M > 0 be given. Then there exists an ε > 0 such that for
γ ∈ C∞(S) with ‖γ‖s1 ≤ M , ‖γ − γ̄‖s0 ≤ ε and for any initial value u0 ∈ Hs0+4

with ‖u0‖s0+4 ≤ M , ‖u0 − w0‖s0 ≤ ε the solution of the Cauchy problem (6.8) exists
for all t > 0. Moreover, u(t) converges exponentially to some u� = u�(u0, γ) in Hs,
s < s0 + 4 for t → ∞, i.e.,

‖u(t) − u�‖s ≤ Ce−at(6.19)

with suitable C, a > 0 (depending on s < s0 + 4). Finally, we have G(u�)γ = const
on S, i.e., γ is an equilibrium surface energy density for u�.

Proof. First, choose δ ∈ (0, δ0) and T > 0 such that, by our local existence
theorems, initial values u0 ∈ Hs0+4 with ‖u0 − w0‖s0 ≤ δ guarantees the (unique)
solvability of (6.8) on the time interval [0, T ] with u(t) ∈ Ũs0+4, t ∈ [0, T ]. Then,
for ε > 0 sufficiently small, Lemmas 6.5 and 6.7 ensure ‖u(T ) − w0‖s0 ≤ δ, hence
the solution can be continued to the interval [T, 2T ] with u(t) ∈ Ũs0+4, t ∈ [0, 2T ].
Applying now Lemma 6.5 and 6.7 to the time interval [0, 2T ] (note the independence of
the constants in these lemmas of the time interval length), we obtain ‖u(2T )−w0‖s0 ≤
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δ0 again and the solution can be continued to the interval [2T, 3T ]. Repeating these
arguments yields global existence of the solution. Moreover, Lemma 6.7 implies

‖f(t)‖s0+1 ≤ Ce−at for all t ≥ 0

with a > 0. Consequently, for any ε > 0 there exists a constant C(ε) such that

‖u(t)‖s0+4 ≤ C(ε)eεt for all t ≥ 0(6.20)

by Lemma 6.4 (ii). Further, for 0 ≤ t ≤ θ < ∞,

‖u(t) − u(θ)‖0 ≤
∫ θ

t

‖F (u(τ))f(τ)‖0 dτ ≤ C

∫ θ

t

‖f(τ)‖s0+1 dτ ≤ Ce−at,

and by interpolation using (6.20) with ε sufficiently small,

‖u(t) − u(θ)‖s ≤ Cse
−ast for s < s0 + 4

with suitable constants Cs, as > 0. This implies convergence of u(t) to some u� in
Hs(S), s < s0 + 4 as t → ∞ and the estimate (6.19). The final statement follows
from letting t → ∞ in (6.11).

Remark 6.9. It is not hard to see the following regularity property of u�: if the
initial value u0 belongs additionally to Hs with some s > s0 +4, then u�(u0, γ) ∈ Hs′

for s′ < s (recall that we have always assumed γ ∈ C∞). The question whether or
not u� belongs to Hs remains open and requires more sophisticated estimates.

To illustrate possible equilibrium shapes Γu� according to Theorem 6.8 we have
performed several numerical test calculations for m = 2, 3. In a 2D situation, starting
from a circle S = Γw0 and a surface energy density of form

γ(x) = 1 + 0.8 cos(6ϕ), x = (cosϕ, sinϕ) ∈ S, 0 ≤ ϕ < 2π,

we obtain an equilibrium shape Γu� as pictured by the solid line in Figure 1. In
contrast, if the correction term G(u), which ensures the gradient flow structure of the
evolution problem, is dropped in the definition (2.4), then the resulting shape Γu� is
given by the dotted line in Figure 1. Clearly, in the latter situation the center of gravity
remains fixed due to the symmetries of the chosen initial values and every equilibrium
configuration (u, γ) is characterized by γκ = const on Γu, hence Γu must be convex.
(This is similar to a Hele–Shaw evolution where the values of γ are transported only
in normal direction to the moving boundary, as this also leads to a dropping of the
term G(u).) As Figure 1 shows, this convexity is not true for the full problem. The
second example concerns an axisymmetric situation in 3D. Here the evolution starts
from the unit sphere S = Γw0 with the surface energy density

γ(x) = 1.0 + 0.8x1(4.0x
2
1 − 3.0), x = (x1, x2, x3) ∈ S

and results in a equilibrium shape as shown in Figure 2. To indicate the length scale
we have added grid lines with distance 0.25 in each direction.
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Abstract. We prove uniform existence results for the full Navier–Stokes equations for time
intervals which are independent of the Mach number, the Reynolds number, and the Péclet number.
We consider general equations of state and give an application for the low Mach number limit
combustion problem introduced by Majda in [Compressible Fluid Flow and Systems of Conservation
Laws in Several Space Variables, Springer-Verlag, NewYork, 1984].

Key words. low Mach limit, uniform stability, combustion equation

AMS subject classifications. 35B25, 35B40, 35B65

DOI. 10.1137/050644100

1. Introduction. For a fluid with density �, velocity v, pressure P , temperature
T , internal energy e, Lamé coefficients ζ, η, and coefficient of thermal conductivity k,
the full Navier–Stokes equations, written in a nondimensional way, are

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +
∇P

ε2
= μ

(
2 div(ζDv) + ∇(η div v)

)
,

∂t(ρe) + div(ρve) + P div v = κdiv(k∇T ) + Q,

where ε ∈ (0, 1], (μ, κ) ∈ [0, 1]2, and Q is a given source term (see [11, 16, 18]). In
order to be closed, the system is supplemented with a thermodynamic closure law, so
that ρ, P, e, T are completely determined by only two of these variables. Also, it is
assumed that ζ, η, and k are smooth functions of the temperature.

This paper is devoted to the asymptotic limit where the Mach number ε tends
to 0. We are interested in proving results independent of the Reynolds number 1/μ
and the Péclet number 1/κ. Our main result asserts that the classical solutions of (1.1)
exist and are uniformly bounded on a time interval independent of ε, μ, and κ.

This is a continuation of our previous work [1], where the study was restricted
to perfect gases and small source terms Q of size O(ε). We refer to the introduction
of [1] for references and a short historical survey of the background of these problems
(see also the survey papers of Danchin [9], Desjardins and Lin [10], Gallagher [13],
Schochet [24], and Villani [26]).

The case of perfect gases is interesting in its own: first, perfect gases are widely
studied in the physical literature; and second, it contains the important analysis
of the singular terms. Yet, modeling real gases requires general equations of state
(see [4, 19]). Moreover, we shall see that it is interesting to consider large source
terms Q for it allows us to answer a question addressed by Majda in [18] concerning
the combustion equations.
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1.1. The equations. To be more precise, we begin by rewriting the equations
under the form L(u, ∂t, ∂x)u + ε−1S(u, ∂x)u = 0, which is the classical framework of
a singular limit problem.

Before we proceed, three observations are in order. First, for the low Mach number
limit problem, the point is not so much to use the conservative form of the equations,
but instead to balance the acoustics components. This is one reason it is interesting
to work with the unknowns P, v, T (see [18]). Second, the general case must allow for
large density and temperature variations as well as very large acceleration of order of
the inverse of the Mach number (see section 5 in [16]). Since ∂tv is of order ε−2∇P ,
this suggests that we seek P under the form P = const +O(ε). As in [20], since P
and T are positive functions, it is pleasant to set

(1.2) P = Peεp, T = Teθ,

where P and T are given positive constants, say the reference states at spatial infinity.
Finally, the details of the following computations are given in the appendix.

From now on, the unknown is (p, v, θ) with values in R×R
d×R. We are interested

in the general case where p and θ are uniformly bounded in ε (so that ∇T = O(1)
and ∂tv = O(ε−1)).

By assuming that ρ and e are given smooth functions of (P, T ), it is found that,
for smooth solutions of (1.1), (P, v, T ) satisfies a system of the form

(1.3)

⎧⎪⎪⎨
⎪⎪⎩

α(∂tP + v · ∇P ) + div v = κβ div(k∇T ) + βQ,

ρ(∂tv + v · ∇v) +
∇P

ε2
= μ

(
2 div(ζDv) + ∇(η div v)

)
,

γ(∂tT + v · ∇T ) + div v = κδ div(k∇T ) + δQ,

where the coefficients α, β, γ, and δ are smooth functions of (P, T ). Then, by writing
∂t,xP = εP∂t,xp, ∂t,xT = T∂t,xθ and redefining the functions k, ζ, and η, it is found
that (p, v, θ) satisfies a system of the form

(1.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(φ)(∂tp + v · ∇p) +
1

ε
div v =

κ

ε
χ1(φ) div(k(θ)∇θ) +

1

ε
χ1(φ)Q,

g2(φ)(∂tv + v · ∇v) +
1

ε
∇p = μB2(φ, ∂x)v,

g3(φ)(∂tθ + v · ∇θ) + div v = κχ3(φ) div(k(θ)∇θ) + χ3(φ)Q,

where φ := (θ, εp) and B2(φ, ∂x) = χ2(φ) div(ζ(θ)D·) + χ2(φ)∇(η(θ) div ·).
We are now in position to explain the main differences between ideal gases and

general gases. First, we note that the source term Q introduces an arbitrary un-
signed large term of order 1/ε in the equations. Second, to emphasize the role of
the thermodynamics, we suppose now that Q = 0 and mention that, for perfect
gases, the coefficient χ1(φ) is a function of εp alone (see Proposition A.8). Hence,
for perfect gases, the limit constraint is linear in the sense that it reads div ve = 0
with ve = v − κχ1(0)k(θ)∇θ. By contrast, for general equations of state, the limit
constraint is nonlinear.

1.2. Assumptions. To avoid confusion, we denote by (ϑ, ℘) ∈ R
2 the place

holder of the unknown (θ, εp). Hereafter, it is assumed that:
(H1) The functions ζ, η, and k are C∞ functions of ϑ ∈ R, satisfying k > 0, ζ > 0,

and η + 2ζ > 0.
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(H2) The functions gi and χi (i = 1, 2, 3) are C∞ positive functions of (ϑ, ℘) ∈ R
2.

Moreover,

χ1 < χ3,

and there exist F , G such that (ϑ, ℘) �→ (F (ϑ, ℘), ℘) and (ϑ, ℘) �→ (ϑ,G(ϑ, ℘))
are C∞ diffeomorphisms from R

2 onto R
2, F (0, 0) = G(0, 0) = 0, and

g1
∂F

∂ϑ
= −g3

∂F

∂℘
> 0, g1χ3

∂G

∂ϑ
= −g3χ1

∂G

∂℘
< 0.

Remark 1.1. Assumption (H2) is used to prove various energy estimates. The
main hypothesis is the inequality χ1 < χ3. In the appendix, it is proved that the
inequality χ1 < χ3 holds whenever the density ρ and the energy e are C∞ functions
of (P, T ) ∈ (0,+∞)2, such that ρ > 0 and

(1.5) P
∂ρ

∂P
+ T

∂ρ

∂T
= ρ2 ∂e

∂P
, ∂ρ

∂P
> 0,

∂ρ

∂T
< 0,

∂e

∂T

∂ρ

∂P
>

∂e

∂P

∂ρ

∂T
·

1.3. Main result. We are interested in the case without smallness assumption
and consider general initial data, general equations of state, and large source terms Q.
To get around the above mentioned nonlinear features of the penalization operator,
we establish a few new qualitative properties. These properties are enclosed in various
uniform stability results, which assert that the classical solutions of (1.4) exist and
are uniformly bounded for a time independent of ε, μ, and κ. We concentrate below
on the whole space problem or the periodic case and work in the Sobolev spaces Hσ

endowed with the norms ‖u‖Hσ := ‖(I − Δ)σ/2u‖L2 .
The following result is the core of all our other uniform stability results. On

the technical side, it contains the idea that one can prove uniform estimates without
uniform control of the L2

x norm of the velocity v.
Theorem 1.2. Let d = 1 or d � 3 and N 	 s > 1 + d/2. For all source term

Q = Q(t, x) ∈ C∞
0 (R × R

d) and all M0 > 0, there exist T > 0 and M > 0 such
that for all (ε, μ, κ) ∈ (0, 1] × [0, 1] × [0, 1] and all initial data (p0, v0, θ0) ∈ Hs+1(Rd)
satisfying

(1.6) ‖(∇p0,∇v0)‖Hs−1 + ‖(θ0, εp0, εv0)‖Hs+1 � M0,

the Cauchy problem for (1.4) has a unique solution (p, v, θ) in C0([0, T ];Hs+1(Rd))
such that

(1.7) sup
t∈[0,T ]

‖(∇p(t),∇v(t))‖Hs−1 + ‖(θ(t), εp(t), εv(t))‖Hs � M.

A refined statement is proved in section 3.
A notable corollary of Theorem 1.2 is Theorem 4.1, which is the requested result

for application to the low Mach number limit. Detailed discussions of the periodic
case and the combustion equations are included in sections 5 and 6. The assumption
d 
= 2 is explained in Remark 2.6.

2. Preliminaries. In order not to interrupt the proofs later on, we collect here
some estimates. The main result of this section is Proposition 2.4, which complements
the Friedrichs’-type estimate

(2.1) ‖∇v‖Hs � ‖div v‖Hs + ‖curl v‖Hs ,
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which is immediate using Fourier transform. We prove a variant where div v is replaced
by div(ρv) where ρ is a positive weight.

Notation. The symbol � stands for � up to a positive, multiplicative constant,
which depends only on parameters that are considered fixed.

2.1. Nonlinear estimates. Throughout the paper, we will make intensive and
often implicit uses of the following estimates.

For all σ � 0, there exists K such that, for all u, v ∈ L∞ ∩Hσ(Rd),

(2.2) ‖uv‖Hσ � K ‖u‖L∞ ‖v‖Hσ + K ‖u‖Hσ ‖v‖L∞ .

For all s > d/2, σ1 � 0, σ2 � 0 such that σ1 + σ2 � 2s, there exists a constant K
such that, for all u ∈ Hs−σ1(Rd) and v ∈ Hs−σ2(Rd),

(2.3) ‖uv‖Hs−σ1−σ2 � K ‖u‖Hs−σ1 ‖v‖Hs−σ2 .

For all s > d/2 and for all C∞ function F vanishing at the origin, there exists a
smooth function CF such that, for all u ∈ Hs(Rd),

(2.4) ‖F (u)‖Hs � CF (‖u‖L∞) ‖u‖Hs .

2.2. Estimates in RRR
3. Consider the Fourier multiplier ∇Δ−1 with symbol

−iξ/ |ξ|2. This operator is, at least formally, a right inverse for the divergence op-
erator. The only thing we will use below is that ∇Δ−1u is well defined whenever
u = u1u2 with u1, u2 ∈ L∞ ∩Hσ(Rd) for some σ � 0.

Proposition 2.1. Given d � 3 and σ ∈ R, the Fourier multiplier ∇Δ−1 is
well defined on L1(Rd) ∩Hσ(Rd) with values in Hσ+1(Rd). Moreover, there exists a
constant K such that, for all u ∈ L1(Rd) ∩Hσ(Rd),

(2.5)
∥∥∇Δ−1u

∥∥
Hσ+1 � K ‖u‖L1 + K ‖u‖Hσ .

Proof. Set 〈ξ〉 := (1 + |ξ|2)1/2. It is enough to check that the L2-norm of
(〈ξ〉σ+1/ |ξ|) |û(ξ)| is estimated by the right-hand side of (2.5). To do that we write∫

|ξ|�1

〈ξ〉2σ+2

|ξ|2
|û(ξ)|2 dξ � ‖u‖2

L1 ,

∫
|ξ|�1

〈ξ〉2σ+2

|ξ|2
|û(ξ)|2 dξ � ‖u‖2

Hσ ,

where we used 1/ |ξ|2 ∈ L1({|ξ| � 1}) for all d � 3.
The next proposition is well known. Its corollary is a special case of a general

estimate established in [5].
Proposition 2.2. Given d � 3 and s > d/2, there exists a constant K such

that, for all u ∈ Hs(Rd),

(2.6) ‖u‖L∞ � K ‖∇u‖Hs−1 .

Proof. Since Hs(Rd) ↪→ L∞(Rd), it suffices to prove the result for u in the
Schwartz class S(Rd). Now, starting from the Fourier inversion theorem, the Cauchy–
Schwarz inequality yields the desired estimate:

‖u‖L∞ �
(∫

dξ

|ξ|2 〈ξ〉2(s−1)

)1/2 (∫
〈ξ〉2(s−1) |ξû(ξ)|2 dξ

)1/2

� ‖∇u‖Hs−1 .
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Corollary 2.3. Given d � 3 and N 	 s > d/2, there exists a constant K such
that, for all u1, u2 ∈ Hs(Rd),

(2.7) ‖u1u2‖Hs � K ‖∇u1‖Hs−1 ‖u2‖Hs .

Proof. One has to estimate the L2-norm of ∂α
x (u1u2), where α ∈ N

d satisfies
|α| � s. Rewrite this term as u1∂

α
x u2 + [∂α

x , u1]u2. Since the commutator is a sum of
terms of the form ∂β

xu1∂
γ
xu2 with β > 0, the product rule (2.3) implies that

(2.8) ‖[∂α
x , u1]u2‖L2 � ‖∇u1‖Hs−1 ‖u2‖Hs .

Moving to the estimate of the first term, we write

‖u1∂
α
x u2‖L2 � ‖u1‖L∞ ‖u2‖Hs � ‖∇u1‖Hs−1 ‖u2‖Hs.

2.3. Friedrichs’ lemma. With these preliminaries established, we are prepared
to prove the following.

Proposition 2.4. Let d � 3 and N 	 s > d/2. There exists a function C such
that, for all ϕ ∈ Hs+1(Rd) and all vector field v ∈ Hs+1(Rd),

‖∇v‖Hs � C ‖div(eϕv)‖Hs + C ‖curl v‖Hs ,(2.9)

where C := (1 + ‖ϕ‖Hs+1)C(‖ϕ‖Hs , ‖∇ϕ‖L∞).
Proof. For this proof, we use the notation

R = ‖div(eϕv)‖Hs + ‖curl v‖Hs ,

and we denote by Cϕ various constants depending only on ‖ϕ‖Hs + ‖∇ϕ‖L∞ .
All the computations given below are meaningful since it is sufficient to prove

(2.9) for C∞ functions with compact supports. We begin by setting

ṽ = v + ∇Δ−1
(
∇ϕ · v

)
.

The reason to introduce ṽ is that

eϕ div ṽ = div(eϕv), curl ṽ = curl v.

Hence, by using (2.1), we have

(2.10) ‖∇ṽ‖Hs �
∥∥e−ϕ div(eϕv)

∥∥
Hs + ‖curl v‖Hs � CϕR.

The proof of (2.9) thus reduces to estimating v1 := v − ṽ, which satisfies

div(eϕv1) = −eϕ∇ϕ · ṽ, curl v1 = 0.

Again, to estimate v1 we introduce ṽ1 := v1 + ∇Δ−1
(
∇ϕ · v1

)
, which solves

div ṽ1 = −∇ϕ · ṽ, curl ṽ1 = 0.

The estimate (2.1) implies that ‖∇ṽ1‖Hs � ‖∇ϕ · ṽ‖Hs . By using (2.10) and the
product rule (2.7), applied with u1 = ṽ and u2 = ∇ϕ, we find that

(2.11) ‖∇ṽ1‖Hs � ‖∇ϕ · ṽ‖Hs � ‖ϕ‖Hs+1 ‖∇ṽ‖Hs−1 � ‖ϕ‖Hs+1 CϕR.
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Hence, it remains only to estimate v2 = v1 − ṽ1, which satisfies

div(eϕv2) = −eϕ∇ϕ · ṽ1 and curl v2 = 0.

To estimate v2 the key point is the estimate

(2.12) ‖∇ϕ · ṽ1‖Ld� � CϕR with d
 = 2d/(d + 2).

Let us assume (2.12) for a moment and continue the proof.
The constraint curl v2 = 0 implies that v2 = ∇Ψ, for some Ψ satisfying

div(eϕ∇Ψ) = −eϕ∇ϕ · ṽ1.

This allows us to estimate ∇Ψ by a duality argument. We denote by 〈 · , · 〉 the scalar
product in L2 and write

〈 eϕ∇Ψ , ∇Ψ 〉 = 〈 eϕ∇ϕ · ṽ1 , Ψ 〉.

Denote by d the conjugate exponent of d
, d = d
/(d
−1) = 2d/(d−2). The Hölder’s
inequality yields

〈 eϕ∇Ψ , ∇Ψ 〉 � ‖eϕ∇ϕ · ṽ1‖Ld� ‖Ψ‖Ld .

The first factor is estimated by means of the claim (2.12). In view of the Sobolev’s
inequality ‖Ψ‖Ld � ‖∇Ψ‖L2 , we obtain

〈 eϕ∇Ψ , ∇Ψ 〉 � CϕR ‖∇Ψ‖L2 .

By using the elementary estimate ‖∇Ψ‖2
L2 � ‖e−ϕ‖L∞ 〈 eϕ∇Ψ , ∇Ψ 〉, we get

(2.13) ‖v2‖L2 = ‖∇Ψ‖L2 � CϕR.

The end of the proof is straightforward. We write

ΔΨ = e−ϕ div(eϕ∇Ψ) −∇ϕ · ∇Ψ = −∇ϕ · ṽ1 −∇ϕ · ∇Ψ,

to obtain, for all σ ∈ [0, s− 1],

‖∇Ψ‖Hσ+1 � ‖∇Ψ‖L2 + ‖ΔΨ‖Hσ � ‖∇ϕ · ṽ1‖Hσ + (1 + ‖ϕ‖Hs) ‖∇Ψ‖Hσ .

To estimate the first term on the right-hand side, we verify that the analysis estab-
lishing (2.7) also yields

‖∇ϕ · ṽ1‖Hs−1 � ‖ϕ‖Hs ‖∇ṽ1‖Hs−1 � CϕR,

hence, by induction on σ,

‖∇Ψ‖Hs � CϕR + Cϕ ‖∇Ψ‖L2 .

Exactly as above, one has

‖∇Ψ‖Hs+1 � ‖∇Ψ‖L2 + ‖ΔΨ‖Hs � ‖∇ϕ · ṽ1‖Hs + (1 + ‖ϕ‖Hs+1) ‖∇Ψ‖Hs

‖∇ϕ · ṽ1‖Hs � ‖ϕ‖Hs+1 ‖∇ṽ1‖Hs−1 � ‖ϕ‖Hs+1 CϕR.
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As a consequence, we end up with

‖∇Ψ‖Hs+1 � ‖ϕ‖Hs+1 (CϕR + Cϕ ‖∇Ψ‖L2).

Therefore, the L2 estimate (2.13) implies that

‖v2‖Hs+1 = ‖∇Ψ‖Hs+1 � ‖ϕ‖Hs+1 CϕR.

By combining this estimate with (2.11), we find that

‖∇v1‖Hs � ‖ϕ‖Hs+1 CϕR.

From the definition of v1 and (2.10), we obtain the desired bound (2.9).
We now have to establish the claim (2.12).
With d = 2d/(d− 2) as above, the Sobolev’s inequality and (2.10) imply that

‖ṽ‖Ld � ‖∇ṽ‖L2 � CϕR.

On the other hand, the Hölder’s inequality yields

‖∇ϕ · ṽ‖Lδ � ‖∇ϕ‖L2 ‖ṽ‖Ld with δ =
2d

2 + d
=

d

d− 1
·

By interpolating this estimate with ‖∇ϕ · ṽ‖Ld � ‖∇ϕ‖L∞ ‖ṽ‖Ld , we obtain

∀p ∈ [δ, d], ‖∇ϕ · ṽ‖Lp � ‖∇ϕ‖L2∩L∞ ‖ṽ‖Ld � CϕR.

Because curl v1 = 0, one can write v1 = ∇Ψ1 for some function Ψ1 satisfying
ΔΨ1 = −∇ϕ · ṽ. Hence, the Calderon–Zygmund inequality and the previous estimate
imply that

‖∇v1‖Lδ =
∥∥∇2Ψ1

∥∥
Lδ � ‖ΔΨ1‖Lδ � CϕR.

Therefore, the Sobolev’s inequality yields

‖v1‖LD � CϕR with D =
δd

d− δ
=

d

d− 2
,

hence, exactly as above, the Hölder’s inequality gives

(2.14) ∀p ∈ [d, d], ‖eϕ∇ϕ · ṽ1‖Lp � CϕR with d =
2D

2 + D
=

2d

3d− 4
·

The key estimate (2.12) is now a consequence of the previous one. Indeed, the estimate
(2.14) applies with p = d
 = 2d/(d + 2) since

∀d � 3, d =
2d

3d− 4
� 2d

d + 2
� 2d

d− 2
= d.

This completes the proof of (2.9).
For later references, we will need the following version of (2.9).
Corollary 2.5. Let d = 1 or d � 3 and N 	 s > d/2. There exists a function

C such that, for all ϕ ∈ Hs+1(Rd) and all vector field v ∈ Hs+1(Rd),

‖∇v‖Hs � C(‖ϕ‖Hs+1)
(
‖div v‖Hs + ‖curl(eϕv)‖Hs

)
.(2.15)
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Proof. The case d = 1 is obvious. If d � 3, Proposition 2.4 (applied with (ϕ, v)
replaced with (−ϕ, eϕv)) yields

‖∇(eϕv)‖Hs � C(‖ϕ‖Hs+1)
(
‖div v‖Hs + ‖curl(eϕv)‖Hs

)
.

Hence, to prove (2.15) we need only prove that

(2.16) ‖∇v‖Hs � C(‖ϕ‖Hs+1) ‖∇(eϕv)‖Hs .

To do that we write ∂iv = e−ϕ∂i(e
ϕv)− (e−ϕ∂iϕ)(eϕv). The usual product rule (2.3)

implies that the Hs norm of the first term is estimated by the right-hand side
of (2.16). Moving to the second term, we use the product rule (2.7) to obtain
‖(e−ϕ∂iϕ)(eϕv)‖Hs � (1 + ‖ϕ‖Hs) ‖∂iϕ‖Hs ‖∇(eϕv)‖Hs−1 . This proves the desired
bound (2.16).

Remark 2.6. The fact that Theorem 1.2 precludes the case d = 2 is a consequence
of the fact that we do not know if (2.15) holds for d = 2.

3. Uniform stability. In this section, we prove Theorem 1.2. We follow closely
the approach given in [1] and recall the scheme of the analysis and indicate the points
at which the argument must be adapted.

Hereafter, we use the notations

a := (ε, μ, κ) ∈ A := (0, 1] × [0, 1] × [0, 1], ν :=
√
μ + κ,

‖u‖Hσ+1
α

:= ‖u‖Hσ + α ‖u‖Hσ+1 (α � 0, σ ∈ R).

Step 1: A refined statement. We first give our main result a refined form
where the solutions satisfy the same estimates as the initial data. Also, to prove
estimates independent of μ and κ, an important point is to seek the solutions in
spaces which take into account an extra damping effect for the penalized terms.

Definition 3.1. Let T > 0, a = (ε, μ, κ) ∈ [0, 1]3 and set ν =
√
μ + κ. The

space X s
a (T ) consists of these (p, v, θ) ∈ C0([0, T ];Hs(Rd)) such that

ν(p, v, θ) ∈ C0([0, T ];Hs+1(Rd)), (μv, κθ) ∈ L2(0, T ;Hs+2(Rd)).

The space X s
a (T ) is given the norm

‖(p, v, θ)‖X s
a (T ) := ‖(∇p,∇v)‖L∞

T (Hs−1) + ‖(θ, εp, εv)‖L∞
T (Hs+1

ν )

+
√
μ ‖∇v‖L2

T (Hs+1
εν ) +

√
κ ‖∇θ‖L2

T (Hs+1
ν )

+
√
μ + κ ‖∇p‖L2

T (Hs) +
√
κ ‖div v‖L2

T (Hs) ,

with ‖·‖Lp
T (X) denoting the norm in Lp(0, T ;X).

For the study of nonlinear problems, it is important to relax the assumption that
Q ∈ C∞

0 . We will consider source terms Q in the following spaces.
Definition 3.2. The space F s consists of the function Q such that, for all

N 	 m � s, ∂m
t Q ∈ C0

b (R;Hs+1−2m(Rd)), where C0
b stands for C0 ∩ L∞.

Given a normed space X, we set B(X;M) = {x ∈ X : ‖x‖ � M}.
Theorem 3.3. Assume that d = 1 or d � 3 and let N 	 s > 1 + d/2. Given

M0 > 0 and Q ∈ F s, there exist T > 0 and M > 0 such that, for all a = (ε, μ, κ) ∈ A
and all initial data (p0, v0, θ0) ∈ Hs+1(Rd) satisfying

(3.1) ‖(∇p0,∇v0)‖Hs−1 + ‖(θ0, εp0, εv0)‖Hs+1 � M0,
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the Cauchy problem for (1.4) has a unique solution (p, v, θ) ∈ B(X s
a (T );M).

This theorem implies Theorem 1.2.
Remark 3.4. (i) The hybrid norm ‖·‖Hs+1

εν
was already used by Danchin in [8].

(ii) A close inspection of the proof indicates that Theorem 3.3 remains valid with
(3.1) replaced by

‖(p0, v0, θ0)‖X s
a (0) := ‖(∇p0,∇v0)‖Hs−1 + ‖(θ0, εp0, εv0)‖Hs+1

ν
� M0.

Step 2: Local well posedness. We explain here how to reduce matters to
proving uniform bounds. To do so, our first task is to establish the local well posedness
of the Cauchy problem for fixed a = (ε, μ, κ) ∈ A.

Lemma 3.5. Let d � 1, s > 1 + d/2, and a ∈ A. For all initial data U0 =
(p0, v0, θ0) ∈ Hs(Rd), there exists a positive time T such that the Cauchy problem
for (1.4) has a unique solution U = (p, v, θ) ∈ C0([0, T ];Hs) such that U(0) = U0.
Moreover, the interval [0, T 
), with T 
 < +∞, is a maximal interval of Hs existence
if and only if lim supt→T� ‖U(t)‖W 1,∞(Rd) = +∞.

Lemma 3.5 is a special case of Proposition 4.5 established in section 4.
As in [1, 20], on account of the previous local existence result for fixed a ∈ A,

Theorem 1.2 is a consequence of the following uniform estimates.
Proposition 3.6. Let d = 1 or d � 3, N 	 s > 1 + d/2, and M0 > 0. Set

H∞(Rd) := ∩σ�0H
σ(Rd). There exist a constant C0 and a nonnegative function C(·)

such that, for all T ∈ (0, 1] and all a ∈ A, if (p, v, θ) ∈ C∞([0, T ];H∞(Rd)) is a
solution of (1.4) with initial data satisfying (3.1), then the norm Ωa(T ) := ‖U‖X s

a (T )

satisfies

(3.2) Ωa(T ) � C0 exp
(
(
√
T + ε)C(Ωa(T ))

)
.

To prove Proposition 3.6, as usual, a key step is to study the linearized system.
This is the purpose of Theorem 3.10. With this result in hand, to establish the de-
sired nonlinear estimates (3.2), the analysis is divided into four steps. This happens
for two reasons. First, on the technical side, most of the work concerns the sepa-
ration of the estimates into high and low frequency components, where the division
occurs at frequencies of order of the inverse of ε (since the second-derivative terms
with O(1) coefficients and the first-derivative terms with O(ε−1) coefficients balance
there). Second, there is a division into terms whose evolution is estimated directly by
eliminating large terms of size O(ε−1) (see Lemmas 3.18 and 3.19), and terms whose
size is estimated by means of Theorem 3.10 and the special structure of the equations
(see Lemma 3.16).

This scheme of estimates has two useful properties. First, it avoids estimating the
L2 norm of p and v (to obtain a closed set of estimates, we will use the preliminary
estimates from section 2). Second, it allows us to overcome the factor 1/ε in front
of the source term Q. Indeed, the linear estimate in Theorem 3.10 is applied only
to high-frequencies and weighted time derivatives (ε∂t)

m. Hence, the fact that the
source term is assumed to be neither of high frequency nor have rapid time oscillations
allows us to recover the lost factor of ε in the nonlinear estimates. Note that, in the
combustion case, the assumptions on the source term Q may be verified directly from
the equations. Also, we mention that the L2 norm of (p, v) will later be estimated in
section 4 under an additional hypothesis.

Notation 3.7. From now on, we consider an integer s > 1 + d/2, a fixed time
0 < T � 1, a fixed triple of parameters a = (ε, μ, κ) ∈ A, a bound M0, a fixed smooth
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solution U = (p, v, θ) ∈ C∞([0, T ];H∞(Rd)) of (1.4) with initial data satisfying (3.1),
and we set

Ω := ‖U‖X s
a (T ) .

With these notations, Proposition 3.6 can be formulated concisely as follows: if d 
= 2,
there exist constants C0 depending only on M0 and C depending only on Ω such that

Ω � C0e
(
√
T+ε)C .

Hereafter, we use the notations φ := (θ, εp) and ν :=
√
μ + κ.

Notation 3.8. For later application to the nonlinear case when Q = F (Y ) for
some unknown function Y , we also give precise estimates in terms of norms of Q.
For our purposes, the requested norm is the following:

(3.3) Σ :=
∑

0�m�s

∥∥(I − (εν)2Δ)−m/2
(
ε(∂t + v · ∇)

)m
Q
∥∥
L∞(0,T ;Hs+1−m

ν )
.

Remark 3.9. To use nonlinear estimates, it is easier to work in Banach alge-
bras. If d � 3, Proposition 2.2 shows that we can supplement the X s

a estimates with
L∞ estimates for the velocity: it suffices to prove (3.2) with C(Ωa(T )) replaced by
C(Ω+

a (T )), where Ω+
a (T ) := Ωa(T ) + ‖v‖L∞((0,T )×Rd). Similarly, if d � 3, all the

estimates involving the source term Q remain valid with Σ replaced by∑
0�m�s

∥∥(I − (εν)2Δ)−m/2(ε∂t)
mQ

∥∥
L∞(0,T ;Hs+1−m

ν )
.

Step 3: An energy estimate for linearized equations. A key step in the
analysis is to estimate the solution (p̃, ṽ, θ̃) of linearized equations. As alluded to
above, a notable fact is that we can see unsigned large terms ε−1fε(t, x) in the equa-
tions for p and v as source terms provided that: (1) they do not convey fast oscillations
in time ∂tf

ε = O(1); (2) it does not imply a loss of derivatives. To be more precise, in
the nonlinear estimates, we will see the term ε−1χ1(φ)Q as a source term. Similarly,
we can see terms of the form ε−1F (εp, θ,

√
κ∇θ) as source terms. As a result, it is

sufficient to consider the following linearized system:

(3.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(φ)(∂tp̃ + v · ∇p̃) +
1

ε
div ṽ − κ

ε
div(k1(φ)∇θ̃) = F1,

g2(φ)(∂tṽ + v · ∇ṽ) +
1

ε
∇p̃− μB2(φ, ∂x)ṽ = F2,

g3(φ)(∂tθ̃ + v · ∇θ̃) + G(φ,∇φ) · ṽ + div ṽ − κχ3(φ) div(k(φ)∇θ̃) = F3,

where the unknown (p̃, ṽ, θ̃) is a smooth function of (t, x) ∈ [0, T ] × R
d.

The following result establishes estimates on

‖(p̃, ṽ, θ̃)‖a,T := ‖(p̃, ṽ)‖L∞
T (H1

εν) + ‖θ̃‖L∞
T (H1

ν)

+
√
κ‖∇θ̃‖L2

T (H1
ν) +

√
μ ‖∇ṽ‖L2

T (H1
εν)

+
√
μ + κ ‖∇p̃‖L2

T (L2) +
√
κ ‖div ṽ‖L2

T (L2) ,

(3.5)

in terms of the norm ‖(p̃, ṽ, θ̃)‖a,0 := ‖(p̃, ṽ)(0)‖H1
εν

+ ‖θ̃(0)‖H1
ν

of the data.
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Theorem 3.10. Let d � 1 and assume that G, k1, and k3 are C∞ functions such
that, for all (ϑ, ℘) ∈ R

2, 0 < k1(ϑ, ℘) < χ3(ϑ, ℘)k(ϑ). Set

R0 := ‖φ(0)‖Hs−1 , R := sup
t∈[0,T ]

∥∥(φ, ∂tφ + v · ∇φ,∇φ, ν∇2φ,∇v)(t)
∥∥
Hs−1 .

There exist constants C0 depending only on R0 and C depending only on R such that,

‖(p̃, ṽ, θ̃)‖a,T � C0e
TC ‖(p̃0, ṽ0, θ̃0)‖a,0 + C

∫ T

0

‖(F1, F2)‖H1
εν

+ ‖F3‖H1
ν
dt.

In [1] we established the previous theorem with R0 and R replaced by

R′
0 = ‖φ(0)‖L∞ , R′ = sup

t∈[0,T ]

∥∥(φ, ∂tφ, v,∇φ, ν∇2φ,∇v)(t)
∥∥
L∞ .

To prove the above variant, we need only check two facts. First, in the proof of
Theorem 4.3 in [1], the terms ∂tφ and v always come together within terms involving
the convective derivative ∂tφ + v · ∇φ.

Second, we have to verify that the L∞
t,x norms of the coefficients (gi(φ), . . .) are

estimated by constants of the form C0e
TC . In [1] we used the estimate

sup
t∈[0,T ]

‖F (φ(t))‖L∞ � ‖F (φ(0))‖L∞ + T sup
t∈[0,T ]

‖∂tF (φ(t))‖L∞ � C ′
0 + TC ′,

for some constants depending only on R′
0 and R′. Here, based on an usual estimate

for hyperbolic equations, we can prove a similar bound.
Lemma 3.11. Let F ∈ C∞(R2) be such that F (0) = 0. There exist constants

C0 depending only on R0 and C depending only on R such that, for all t ∈ [0, T ],
‖F (φ(t))‖Hs−1 � C0e

TC .
Proof. Since s− 1 > d/2, the Moser’s estimates (2.2) and (2.4) imply that there

exists a function C depending only on the function F such that

‖(∂t + v · ∇)F (φ)‖Hs−1 �
(
1 + ‖F ′(φ) − F ′(0)‖Hs−1

)
‖(∂t + v · ∇)φ(t)‖Hs−1 ,

� C(‖(φ, ∂tφ + v · ∇φ)‖Hs−1) � C(R),

and ‖F (φ(0))‖Hs−1 � C(‖φ(0)‖Hs−1).
Hence, the desired estimate follows from the following estimate: there exists a

constant V depending only on ‖∇v‖L∞
T Hs−1 such that

sup
t∈[0,T ]

‖F (φ(t))‖Hs−1 � ‖F (φ(0))‖Hs−1 + TV sup
t∈[0,T ]

‖(∂t + v · ∇)F (φ(t))‖Hs−1 .

To prove this result we set ũ := ∂α
xF (φ), where α ∈ N

d is such that |α| � s− 1. Then
ũ solves

∂tu + v · ∇u = f := ∂α
x

(
(∂t + v · ∇)F (φ)

)
+ [v, ∂α

x ] · ∇F (φ).

Since s− 1 > d/2, the product rule (2.3) implies that

‖[v, ∂α
x ] · ∇F (φ)‖L2 �

∑
β+γ=α, β>0

‖∂β
xv∂

γ
x∇F (φ)‖L2

�
∑

β+γ=α, β>0

‖∂β
xv‖Hs−1−(|β|−1) ‖∂γ

x∇F‖Hs−1−(|γ|+1) ,

hence, ‖f‖L2 � ‖(∂t + v · ∇)F (φ)‖Hs−1 + ‖∇v‖Hs−1 ‖F (φ)‖Hs−1 .
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We next use an integration by parts argument yielding

d

dt
‖ũ‖2

L2 � (1 + ‖div v‖L∞) ‖ũ‖2
L2 + ‖f‖2

L2 .

Gronwall’s lemma concludes the proof.

Step 4: High frequency estimates. We begin by estimating the high fre-
quency component

ΩHF := ‖(I − Jεν)U‖X s
a (T ) ,

where {Jh |h ∈ [0, 1]} is a Friedrichs’ mollifier: Jh = j(hDx) is the Fourier multiplier
with symbol j(hξ), where j is a C∞ function of ξ ∈ R

d satisfying

0 � j � 1, j(ξ) = 1 for |ξ| � 1, j(ξ) = 0 for |ξ| � 2, j(ξ) = j (−ξ) .

Proposition 3.12. Let d � 1. There exist constants C0 depending only on M0

and C depending only on Ω, such that

(3.6) ΩHF � C0e
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ) .

Proof. Introduce P := (I − Jεν)Λ
s and Ũ := (Pp, Pv, Pθ). Then, Ũ satisfies

system (3.4) with

k1(φ) := χ1(φ)k(θ), G(φ,∇φ) := g3(φ)∇θ,

and F = (F1, F2, F3)
T := fHF + fQ + fχ, where

fQ :=

⎛
⎝ε−1P

(
χ1(φ)Q

)
0

P
(
χ3(φ)Q

)
⎞
⎠ , fχ :=

⎛
⎝−κε−1∇χ1(φ) · (k(θ)∇θ̃)

0
0

⎞
⎠ ,

and fHF is given by

f1,HF =
[
g1(φ), P

]
(∂t + v · ∇)p + g1(φ)

[
v, P

]
· ∇p − κ

ε

[
B1(φ, ∂x), P

]
θ,

f2,HF =
[
g2(φ), P

]
(∂t + v · ∇)v + g2(φ)

[
v, P

]
· ∇v − μ

[
B2(φ, ∂x), P

]
v,

f3,HF =
[
g3(φ), P

]
(∂t + v · ∇)θ + g3(φ)

{
v;P

}
· ∇θ − κ

[
B3(φ, ∂x), P

]
θ,

where Bi(φ, ∂x) = χi(φ) div(k(θ)∇·) (i = 1, 3), [A,B] = AB −BA, and{
v;P

}
· ∇θ := v · ∇Pθ + (Pv) · ∇θ − P (v · ∇θ).

Estimate for fHF. We use the following analogue of Lemma 5.3 in [1]: there exists a
constant K = K(d, s) such that∥∥[f, P ]

u
∥∥
H1

εν
� ενK ‖∇f‖L∞ ‖u‖Hs + ενK ‖∇f‖Hs ‖u‖L∞ ,∥∥[f, P ]

u
∥∥
H1

ν
� νK ‖∇f‖L∞ ‖u‖Hs + νK ‖∇f‖Hs ‖u‖L∞ .

The fact that the right-hand side only involves ∇f follows from the most simple of all
the sharp commutator estimates established in [17]: for all s > 1+d/2 and all Fourier
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multiplier A(Dx) ∈ OpSs
1,0, there exists a constant K such that, for all f ∈ Hs(Rd)

and all u ∈ Hs(Rd),

(3.7) ‖[f,A(Dx)]u‖L2 � K ‖∇f‖L∞ ‖u‖Hs−1 + K ‖∇f‖Hs−1 ‖u‖L∞ .

As in [1], from this and the usual nonlinear estimates (2.2) and (2.4), it can be
verified that there exists a generic function C (depending only on parameters that are
considered fixed) such that,

‖f1,HF‖H1
εν

� C
(
‖(θ, εp, εv)‖Hs+1

ν

)
{1 + ‖ε(∂t + v · ∇)p‖Hs

ν
+ κ ‖θ‖Hs+2},

‖f2,HF‖H1
εν

� C
(
‖(θ, εp, εv)‖Hs+1

ν

)
{1 + ‖ε(∂t + v · ∇)v‖Hs

ν
+ μ ‖εv‖Hs+2},

‖f3,HF‖H1
ν

� C
(
‖(θ, εp, εv)‖Hs+1

ν

)
{1 + ‖(∂t + v · ∇)θ‖Hs

ν
+ κ ‖θ‖Hs+2}·

Set ψ = (θ, εp, εv). The key point is that

‖(∂t + v · ∇)ψ‖Hs
ν

� C(‖ψ‖Hs+1
ν

)
{
1 +

∥∥(ν∇p, ν div v, εμ∇2v, κ∇2θ)
∥∥
Hs + ‖Q‖Hs

ν

}
·

(3.8)

This estimate differs from the one that appears in Lemma 5.14 in [1] in that the right-
hand side does not involve v itself but only its derivatives. Yet, as the reader can verify,
the same proof applies since we do not estimate ∂tψ, but instead ∂tψ + v · ∇ψ.

Estimate for fQ and fχ. By using the elementary estimate

‖(I − Jεν)u‖Hσ+1
εν

� εν ‖u‖Hσ+1 ,

we find that

1

ε
‖P (χ1(φ)Q)‖H1

εν
+ ‖P (χ3(φ)Q)‖H1

ν
� ‖χ1(φ)Q‖Hs+1

ν
+ ‖χ3(φ)Q‖Hs+1

ν
.

The tame estimates (2.2) and (2.4) (see also Lemmas 5.5 and 5.6 in [1]) imply that

‖χi(φ)Q‖Hs+1
ν

� (1 + ‖χi(φ) − χi(0)‖Hs+1
ν

) ‖Q‖Hs+1
ν

� C(‖φ‖Hs+1
ν

) ‖Q‖Hs+1
ν

so that ‖f1,Q‖L∞
T (H1

εν) + ‖f3,Q‖L∞
T (H1

ν) � C ‖Q‖L∞
T (Hs+1

ν ). The technique for estimat-

ing fχ is similar; we find that ‖f1,χ‖L∞
T (H1

εν) � C.

By definition of ‖·‖X s
a (T ), the previous estimates imply that there exists a constant

C depending only on Ω such that

∫ T

0

‖(F1, F2)‖H1
εν

+ ‖F3‖H1
ν
dt �

√
T

(∫ T

0

‖(F1, F2)‖2
H1

εν
+ ‖F3‖2

H1
ν
dt

)1/2

�
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ).

From here we can parallel the rest of the argument of section 5 in [1], to prove
that ‖(Pp, Pv, Pθ)‖a,T � C0 exp(

√
TC) +

√
TC ‖Q‖L∞

T (Hs+1
ν ), where the norm ‖·‖a,T

is as defined in (3.5). Since ΩHF � ‖(Pp, Pv, Pθ)‖a,T , this completes the proof.
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Step 5: Low frequency estimates. The following step is to estimate the low
frequency part of the fast components:

ΩLF := ‖div Jενv‖L∞
T (Hs−1) + ν ‖div Jενv‖L2

T (Hs)

+ ‖∇Jενp‖L∞
T (Hs−1) + ν ‖∇Jενp‖L2

T (Hs) .

Proposition 3.13. Let d � 1. There exist constants C0 depending only on M0,
C depending only on Ω, and C ′ depending only on Ω + Σ, such that

(3.9) ΩLF � C0e
(
√
T+ε)C +

√
TC ′.

By contrast with the high frequency regime, the estimate (3.9) cannot be ob-
tained from the L2 estimates by an elementary argument using differentiation of the
equations (see [20, 24]). To overcome this problem, we first give estimates for the
time derivatives, and next we use the special structure of the equations to estimate
the spatial derivatives.

For the case of greatest physical interest (d = 3), the proof given in [1] applies with
only minor changes. Indeed, as alluded to in Remark 3.9, it suffices to check that all
the estimates involving ‖v‖Hs remain valid with ‖v‖Hs replaced by ‖v‖L∞+‖∇v‖Hs−1 .
Yet, if d � 2, because of the lack of L2 estimates for the velocity, we cannot use the
time derivatives. For this problem, we use an idea introduced by Secchi in [25].
Namely, we replace ∂t by the convective derivative

Dv := ∂t + v · ∇.

For the reader’s convenience, we indicate how to adapt the three main calculus in-
equalities in [1] when ∂t is replaced by Dv.

First, to localize in the low frequency region we use the following commutator
estimate. The thing of interest is the gain of an extra factor ε.

Lemma 3.14. Given s > 1 + d/2, there exists a constant K such that for all
ε ∈ [0, 1], all ν ∈ [0, 2], all T > 0, all m ∈ N such that 1 � m � s, and all f, u, and v
in C∞([0, T ];H∞(D)),

∥∥[f, Jεν(εDv)
m]u

∥∥
Hs−m+1

εν
� Kε

{
‖f‖Hs +

m−1∑
=0

‖Λ−
εν (εDv)

Dvf‖Hs−1−


}

×
{
‖Λ−m

εν (εDv)
mu‖Hs−m

ν
+

m−1∑
=0

‖Λ−
εν (εDv)

u‖Hs−1−


}
,

where Λσ
εν := (I − (εν)2Δ)σ/2.

To apply the previous lemma, we need estimates of the coefficients f and Dvf .
Since, for system (1.4), the coefficients are functions of the slow variable (θ, εp, εv),
the main estimates are the following.

Lemma 3.15. Let s > 1 + d/2 be an integer. There exists a function C(·)
such that, for all a = (ε, μ, κ) ∈ A, all T > 0, and all smooth solution (p, v, θ) ∈
C∞([0, T ];H∞(D)) of (1.4), if ν ∈ [(μ + κ)/2, 2], then the function Ψ defined by

Ψ :=
(
ψ,Dvψ,∇ψ

)
where ψ := (θ, εp, εv)
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satisfies ∑
0��s

‖Λ−
εν (εDv)

Ψ‖Hs−
−1 � C
(
‖Ψ‖Hs−1 + Σ

)
,(3.10)

∑
0��s

‖Λ−
εν (εDv)

Ψ‖Hs−

ν

� C
(
‖Ψ‖Hs−1 + Σ

)
‖Ψ‖Hs

ν
,(3.11)

where Σ is as defined in (3.3).
Once this is granted, we are in position to estimate the commutator of the equa-

tions (1.4) and P := Jεν(εDv)
s:

f1,LF =
[
g1(φ),P

]
Dvp + g1(φ)

[
v,P

]
· ∇p − κ

ε

[
B1(φ, ∂x),P

]
θ,

f2,LF =
[
g2(φ),P

]
Dvv + g2(φ)

[
v,P

]
· ∇v − μ

[
B2(φ, ∂x),P

]
v,

f3,LF =
[
g3(φ),P

]
Dvθ + g1(φ)

[
v,P

]
· ∇θ − κ

[
B3(φ, ∂x),P

]
θ.

It is found that

‖f1,LF‖H1
εν

+ ‖f2,LF‖H1
εν

+ ‖f3,LF‖H1
ν

� (1 + ‖Ψ‖Hs
ν
)C(‖Ψ‖Hs−1 + Σ).

Note that Ψ is estimated by means of (3.8).
As in the high frequency regime, we have to estimate source terms of the form

ε−1PF (Ψ, Q). The fact that these large source terms cause no difficulty comes
from the fact that ε−1Jεν(εDv)

sF (Ψ, Q) = Jεν(εDv)
s−1DvF (Ψ, Q) together with

DvF (Ψ, Q) = O(1) (the norm Σ introduced in (3.3) is the requested norm to give this
statement a precise meaning).

With these results in hand, one can estimate Jεν(εDv)
s(p, v, θ) by means of

Theorem 3.10. Next, we estimate for div Jενv and ∇Jενp from the estimate of
Jεν(εDv)

s(p, v, θ) by means of the following induction argument.
Lemma 3.16. Set ‖u‖Kσ

ν (T ) := ‖u‖L∞
T (Hσ−1) + ν ‖u‖L2

T (Hσ).

Let Ũ := (p̃, ṽ, θ̃) solve

(3.12)

⎧⎪⎪⎨
⎪⎪⎩

g1(φ)(∂tp̃ + v · ∇p̃ ) + ε−1 div ṽ − κε−1χ1(φ) div(k(θ)∇θ̃) = f1,

g2(φ)(∂tṽ + v · ∇ṽ) + ε−1∇p̃− μB2(φ, ∂x)ṽ = f2,

g3(φ)(∂tθ̃ + v · ∇θ̃) + div ṽ − κχ3(φ) div(k(θ)∇θ̃) = f3.

If support of the Fourier transform of Ũ is included in the ball {|ξ| � 2/εν}, then
there exist constant C0 depending only on M0 and C depending only on Ω such that,
for all σ ∈ [1, s],

‖∇p̃‖Kσ
ν (T ) + ‖div ṽ‖Kσ

ν (T )

� C̃ ‖(εDv)p̃ ‖Kσ
ν (T ) + C̃ ‖(εDv) div ṽ‖Kσ−1

ν (T )

+ C̃ ‖∇p̃ ‖L∞
T (L2) + C̃ ‖θ̃(0)‖Hσ+1

ν
+ εC ‖μṽ‖Kσ+1

ν (T )

+ εC ‖(f1, f2)‖Kσ
ν (T ) + νC̃ ‖f3‖L2

T (Hσ),

(3.13)

where C̃ := C0e
(
√
T+ε)C .
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Step 6: Estimates for the slow components. To complete the proof of (3.2),
it remains to estimate curl v and θ. Yet, this is not straightforward. Following Métivier
and Schochet [20], we begin by estimating curl(γv) for some appropriate positive
weight γ = Γ(θ, εp).

Lemma 3.17. Let d � 1. There exist constants C0 depending only on M0 and
C depending only on Ω, and there exists a function Γ ∈ C∞(R2) such that, with
γ = Γ(θ, εp), there holds

‖curl(γv)‖L∞
T (Hs−1) +

√
μ ‖curl(γv)‖L2

T (Hs) � C0e
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ).

Lemma 3.18. Let d � 1. There exist constants C0 depending only on M0 and C
depending only on Ω, such that

‖Jενθ‖L∞
T (Hs+1

ν ) +
√
κ ‖Jενθ‖L2

T (Hs+2
ν ) � C0e

√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ) .

The proofs of Lemmas 3.17 and 3.18 follow from a close inspection of the proofs
of Lemmas 6.25 and 6.26 in [1]. We mention that this is where we use the function F
of Assumption (H2) in section 1.2 (γ is related to the fluid entropy).

Lemma 3.19. Assume d � 3. There exist constants C0 depending only on M0

and C depending only on Ω such that, with γ0 = Γ(θ0, εp0), where Γ is as above, there
holds

‖curl(γ0v)‖L∞
T (Hs−1) +

√
μ ‖curl(γ0v)‖L2

T (Hs) � C0e
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ) .

Proof. Set γ̃ := γ − γ0. By Lemma 3.17, all we need to prove is that

(3.14) ‖curl(γ̃v)‖L∞
T (Hs−1) +

√
μ ‖curl(γ̃v)‖L2

T (Hs) �
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ) .

To do so, we claim that γ̃ is small for small times:

(3.15) ‖γ̃‖L∞
T (Hs) + ν ‖γ̃‖L2

T (Hs+1) �
√
TC +

√
TC ‖Q‖L∞

T (Hs+1
ν ) .

Let us assume this and continue the proof.
We have to estimate curl(γ̃v) = γ̃ curl v + (∇γ̃) × v. By combining the Cauchy–

Schwarz estimate with the usual product rule (2.3) and the product rule (2.7), we find
that

‖γ̃ curl v‖L∞
T (Hs−1) � ‖γ̃‖L∞

T (Hs−1) ‖∇v‖L∞
T (Hs−1) ,

√
μ ‖γ̃ curl v‖L2

T (Hs) � ‖γ̃‖L∞
T (Hs) ‖

√
μ∇v‖L2

T (Hs) ,

‖∇γ̃ × v‖L∞
T (Hs−1) � ‖γ̃‖L∞

T (Hs) ‖∇v‖L∞
T (Hs−1) ,

√
μ ‖∇γ̃ × v‖L2

T (Hs) � ‖√μγ̃‖L2
T (Hs+1) ‖∇v‖L∞

T (Hs−1) .

The claim (3.15) then yields the desired bound (3.14).
We now have to prove the claim (3.15). We first note that

ν ‖γ̃‖L2
T (Hs+1) � ν

√
T ‖γ̃‖L∞

T (Hs+1)

� ν
√
TC(‖(θ, εp)‖L∞

T (L∞
x ))(1 + ‖(θ, εp)‖L∞

T (Hs+1))

�
√
TC(‖(θ, εp)‖L∞

T (Hs+1
ν )) �

√
TC.
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To prove the second half of (3.15), we verify that, directly from the definitions, γ̃
satisfies an equation of the form ∂tγ̃+v·∇γ̃ = f with f bounded in L2(0, T ;Hs(Rd)) by
a constant depending only on Ω+‖Q‖L∞

T (Hs+1
ν ). Then, we apply the above mentioned

estimate for hyperbolic equations:

(3.16) ‖γ̃‖L∞
T (Hs) � eTV ‖γ̃(0)‖Hs +

∫ T

0

e(T−t)V ‖f‖Hs dt,

where V = K
∫ T

0
‖∇v‖Hs−1 dt with K = K(s, d). Since γ̃(0) = 0, by applying the

Cauchy–Schwarz inequality, it is found that the L∞
T (Hs) norm of γ̃ is estimated by√

TeTV ‖f‖L2
T (Hs), thereby obtaining the claim.

Step 7: Closed set of estimates. To complete the proof of Proposition 3.6, it
remains to check that we have proved a closed set of estimates.

The obvious estimate ‖u‖Hσ � ‖Jενu‖Hσ + ‖(I − Jεν)u‖Hσ implies that

‖(∇p,div v)‖L∞
T (Hs−1) +

√
μ + κ ‖(∇p,div v)‖L2

T (Hs) � ΩLF + ΩHF,

and, similarly, ‖θ‖L∞
T (Hs+1

ν ) +
√
κ ‖∇θ‖L2

T (Hs+1
ν ) is estimated by

‖Jενθ‖L∞
T (Hs+1

ν ) +
√
κ ‖Jεν∇θ‖L2

T (Hs+1
ν ) + ΩHF.

The estimate ‖εu‖Hσ+1
ν

� ‖εu‖L2 + ‖∇u‖Hσ−1 + ‖(I − Jεν)u‖Hσ+1
ν

yields

‖(εp, εv)‖L∞
T (Hs+1

ν ) +
√
μ ‖∇v‖L2

T (Hs+1
εν ) � ‖(εp, εv)‖L∞

T (L2) + ‖(∇p,∇v)‖L∞
T (Hs−1)

+
√
μ ‖∇v‖L2

T (Hs) + ΩHF.

(3.17)

On the other hand, Corollary 2.5 implies that, if d 
= 2, there exists a constant C0

depending only on M0 such that

‖∇v‖L∞
T (Hs−1) +

√
μ ‖∇v‖L2

T (Hs) � C0 ‖(div v, curl(γ0v))‖L∞
T (Hs−1)

+ C0
√
μ ‖(div v, curl(γ0v))‖L2

T (Hs) .

By using the estimate (3.8), one can verify that the term ‖(εp, εv)‖L∞
T (L2) (in the

left-hand side of (3.17)) can be estimated as in the proof of Lemma 3.11. Therefore,
according to Propositions 3.12–3.13 and Lemmas 3.18–3.19, we have proved that, if

d 
= 2, then Ω � C̃ where C̃ = C0e
(
√
T+ε)C +

√
TC ′ for some constants C0, C, and C ′

depending only on M0, Ω and Ω + Σ, respectively.
This concludes the proof of Proposition 3.6 and hence Theorem 3.3.

4. Uniform estimates in the Sobolev spaces. With regards to the low Mach
number limit problem, we mention that the convergence results1 proved in [1] apply
to general systems (not only for perfect gases). To avoid repetition, we only mention
that one can rigorously justify the low Mach number limit for general initial data
provided that one can prove that the solutions are uniformly bounded in Sobolev
spaces (see Proposition 8.2 in [1]). The problem presents itself: Theorem 1.2 only

1These results are strongly based on a theorem of Métivier and Schochet [20] about the decay to
zero of the local energy for a class of wave operators with variable coefficients.
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gives uniform estimates for the derivatives of p and v. In this section, we give uniform
bounds in Sobolev norms.

Theorem 4.1. Let d � 1 and N 	 s > 1 + d/2. Assume that Q = 0. Also,
assume that either χ1 = χ1(ϑ, ℘) is independent of ϑ or that d � 3. Then, for all
M0 > 0, there exist T > 0 and M > 0 such that, for all a = (ε, μ, κ) ∈ A and all
initial data (p0, v0, θ0) ∈ Hs+1(Rd) satisfying

‖(p0, v0, θ0)‖Hs+1 � M0,

the Cauchy problem for (1.4) has a unique solution (p, v, θ) in C0([0, T ];Hs+1(Rd))
such that

sup
t∈[0,T ]

‖(p(t), v(t), θ(t))‖Hs � M.

The first half of this result is proved in [1]. Indeed, the assumption that χ1(ϑ, ℘)
does not depend on ϑ is satisfied by perfect gases. Therefore, we concentrate on the
second half (d � 3). In view of Theorem 3.3, it remains only to prove a posteriori
uniform L2 estimates. More precisely, the proof of Theorem 4.1 reduces to establishing
the following result.

Lemma 4.2. Let d � 3. Consider a family of solutions (pa, va, θa) of (1.4) (for
some source terms Qa) uniformly bounded in the sense of the conclusion of Theo-
rem 3.3:

(4.1) sup
a∈A

‖(pa, va, θa)‖X s
a (T ) < +∞,

for some s > 1 + d/2 and fixed T > 0. Assume further that the source terms Qa are
uniformly bounded in C1([0, T ];L1∩L2(Rd)) and that the initial data (pa(0), va(0)) are
uniformly bounded in L2(Rd). Then the solutions (pa, va, θa) are uniformly bounded
in C0([0, T ];L2(Rd)).

Remark 4.3. We allow Qa 
= 0 for application to the combustion equations. To
clarify matters, we note that one can replace (4.1) by

sup
a∈A

sup
t∈[0,T ]

‖(∇pa(t),∇va(t))‖Hs + ‖θa(t)‖Hs+1 < +∞,

for some s > 2 + d/2.
Proof. For this proof, we set

R := sup
a∈A

{
‖(pa, va, θa)‖X s

a (T ) + ‖(pa(0), va(0))‖L2 + ‖Qa‖C1([0,T ];L1∩L2)

}
,

and we denote by C(R) various constants depending only on R.
The strategy of the proof consists of transforming the system (1.4) so as to obtain

L2 estimates uniform in ε by a simple integration by parts argument.
To do that we claim that there exist Ua ∈ C1([0, T ];L2(Rd)) satisfying the fol-

lowing properties:

sup
a∈A

‖(pa, va)‖L∞
T (L2) � sup

a∈A
‖Ua‖L∞

T (L2) + C(R),(4.2)

sup
a∈A

‖Ua(0)‖L2 � C(R),(4.3)
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and Ua solves a system having the form

(4.4) Ea∂tU
a + ε−1S(∂x)Ua = F a,

where S(∂x) is skew-symmetric, the symmetric matrices Ea = Ea(t, x) are positive
definite, and one has the uniform bounds

(4.5) sup
a∈A

‖∂tEa‖L∞([0,T ]×Rd) +
∥∥(Ea)−1

∥∥−1

L∞([0,T ]×Rd)
+ ‖F a‖L1

T (L2) � C(R).

Before we prove the claim, let us prove that it implies Lemma 4.2. To see this,
we combine two basic ingredients:

1

2

d

dt
〈EaUa , Ua 〉 = −ε−1〈S(∂x)Ua , Ua 〉 + 〈F a , Ua 〉 +

1

2
〈(∂tEa)Ua , Ua 〉

� ‖F a‖2
L2 + C(R) ‖Ua‖2

L2 ,

and
∥∥Ua

∥∥2

L2 �
∥∥(Ea)−1

∥∥−1

L∞〈EaUa , Ua 〉. Hence, by (4.3) and (4.5), the Gronwall’s

lemma implies that
∥∥Ua

∥∥
L∞

T (L2)
� C(R). The estimate (4.2) thus implies the desired

result.
To prove the claim, we set Ua := (pa, va − V a)T , where

V a := κχ1(φ
a)k(θa)∇θa + ∇Δ−1

(
−κ∇χ1(φ

a) · k(θa)∇θa + χ1(φ
a)Qa

)
.

The fact that V a is well defined follows from Proposition 2.1. We next verify that Ua

satisfies (4.4) with

Ea =

(
g1(φ

a) 0
0 g2(φ

a)

)
, S(∂x) =

(
0 div
∇ 0

)
,

F a =

(
−g1(φ

a)va · ∇pa

−g1(φ
a)va · ∇va + μB2(φ

a, ∂x)va − g2(φ
a)∂tV

a

)
.

By (2.3), (2.4), and (2.6), to prove that the bounds (4.2) and (4.5) hold, it suffices
to prove that ‖∂tφa‖Hs−1 � C(R). Yet, this is nothing new. Indeed, we first observe
that, directly from the equations,

‖∂tφa + va · ∇φa‖Hs−1 � C(R).

On the other hand, the product rule (2.7) implies that ‖va · ∇φa‖Hs−1 is estimated
by ‖∇va‖Hs−1 ‖φa‖Hs � C(R). This completes the proof.

Remark 4.4. For our purposes, one of the main differences between R
3 and R is

the following. For all f ∈ C∞
0 (R3), Proposition 2.5 implies that there exists a vector

field u ∈ H∞(R3) such that div u = f . In sharp contrast, the mean value of the
divergence of a smooth vector field u ∈ H∞(R) is zero. This implies that Lemma 4.2
is false with d = 1.

The following result contains an analysis of the easy case where initially θ0 = O(ε).
This regime is interesting for the incompressible limit (see [3]).

Proposition 4.5. Let d � 1 and R 	 s > 1 + d/2. For all M0 > 0, there exists
T > 0 and M > 0 such that for all a ∈ A and all initial data (p0, v0, θ0) ∈ Hs(Rd)
satisfying

(4.6) ‖(p0, v0)‖Hs + ε−1 ‖θ0‖Hs � M0,
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the Cauchy problem for (1.4) has a unique solution (p, v, θ) in C0([0, T ];Hs(Rd)) such
that

(4.7) sup
t∈[0,T ]

‖(p(t), v(t))‖Hs + ε−1 ‖θ(t)‖Hs � M.

Proof. The proof of this result is based on the change of unknown (p, v, θ) �→
(G(θ, εp), v, θ), where G is as given by Assumption (H2) in section 1.2. By setting
ρ = G(θ, εp) it is found that (p, v, θ) satisfies (1.4) if and only if

(4.8)

⎧⎪⎨
⎪⎩

χ3(∂tρ + v · ∇ρ) + (χ3 − χ1) div v = 0,

g2(∂tv + v · ∇v) + ε−2γ1∇θ + ε−2γ2∇ρ− μB2v = 0,

g3(∂tθ + v · ∇θ) + div v − κχ3 div(k∇θ) = 0,

where γ1 = (χ1g3)/(χ3g1) and γ2 = 1/g1. Notice that Assumption (H2) implies that
the coefficients gi, γi, χ3 and χ3 − χ1 are positive.

The key point is that the assumption (4.6) allows us to symmetrize the equations
by setting u := (ρ̃, v, θ̃), where

ρ̃ := ε−1ρ, θ̃ := ε−1θ.

The fact that this change of unknowns is singular in ε causes no difficulty. Indeed,
directly from the assumption (4.6), we have ‖θ̃(0)‖Hs � M0. On the other hand, the
assumption G(0, 0) = 0 implies that there is a function CG such that ‖G(u)‖Hσ �
CG(‖u‖L∞) ‖u‖Hσ for all u ∈ Hσ with σ > d/2. Therefore, we have

‖ρ̃‖Hs = ε−1 ‖G(θ, εp)‖Hs � ε−1CG(‖(θ, εp)‖L∞) ‖(θ, εp)‖Hs

� CG(‖(θ, εp)‖L∞)‖(θ̃, p)‖Hs ,
(4.9)

hence, ‖ρ̃(0)‖Hs � C0 for some constant depending only on M0.
Because (ϑ, ℘) �→ (ϑ,G(ϑ, ℘)) is a C∞ diffeomorphism with G(0, 0) = 0, one can

write εp = P
(
θ,G(θ, εp)

)
= P (θ, ρ), for some C∞ function P vanishing at the origin.

Therefore one can see the coefficients (gi, χi, γi . . .) as functions of (θ, ρ). Hence, with
u = (ρ̃, v, θ̃) as above, one can rewrite system (4.8) under the form

(4.10) A0(εu)∂tu +
∑

1�j�d

Aj(u, εu)∂ju +
1

ε

∑
1�j�d

Sj(εu)∂ju−B(εu, ∂x)u = 0,

where the matrices Sj , Aj are symmetric (with A0 positive definite) and the viscous
perturbation B(εu, ∂x) is as in (4.8).

Note that one can always assume that the matrices Sj have constant coefficients.
Furthermore, since the matrix A0 multiplying the time derivative depends only on
the unknown through εu, and since the initial data u(0) are uniformly bounded in
Hs, the proof of the uniform existence theorem of [15] applies. By that proof, we
conclude that the solutions of (4.10) exist and are uniformly bounded for a time T
independent of ε. Once this is granted, it remains to verify that the solutions (p, v, θ)
of system (1.4) exist and are uniformly bounded in the sense of (4.7). To see this, as
for ρ̃ in (4.9), we note that

‖p‖Hs = ‖P (θ, ρ)‖Hs

� ε−1CP (‖(θ, ρ)‖L∞) ‖(θ, ρ)‖Hs = CP (‖(θ, ρ)‖L∞)‖(θ̃, ρ̃)‖Hs

� C(‖(θ̃, ρ̃)‖Hs),

so that ‖(p, v)‖Hs + ε−1 ‖θ‖Hs � C(‖u‖Hs). This completes the proof.
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Remark 4.6. Consider the Euler equations (μ = 0 = κ and ε = 1). By a
standard rescaling, Proposition 4.5 just says that the classical solutions with small
initial data of size δ exist for a time of order of 1/δ. Following the approach initiated
by Alinhac in [2], several much more precise results have been obtained. In particular,
the interested reader is referred to the recent advance of Godin [14] (for the 3D non-
isentropic Euler equations).

5. Spatially periodic solutions. In this section, we consider the case where x
belongs to the torus T

d.
Theorem 5.1. Let d � 1 and N 	 s > 1 + d/2. For all source term Q ∈

C∞(R×T
d) and for all M0 > 0, there exist T > 0 and M > 0 such that, for all a ∈ A

and all initial data (p0, v0, θ0) ∈ Hs+1(Td) satisfying

‖(p0, v0)‖Hs + ‖(θ0, εp0, εv0)‖Hs+1 � M0,

the Cauchy problem for (1.4) has a unique solution (p, v, θ) in C0([0, T ];Hs+1(Td))
such that

sup
t∈[0,T ]

‖∇p(t)‖Hs−1 + ‖v(t)‖Hs + ‖(θ(t), εp(t))‖Hs � M.

The proof follows from two observations: first, the results proved in Steps 1–6 in
section 3 apply mutatis mutandis in the periodic case; and second, as proved below,
the periodic case is easier in that one can prove uniform L2 estimates for the velocity.
This in turn implies that (as in [1, 20]) one can directly prove a closed set of estimates
by means of the estimate

‖v‖Hs(Td) � C ‖div v‖Hs−1(Td) + C ‖curl(γv)‖Hs−1(Td) + C ‖v‖L2(Td) ,

for some constant C depending only on ‖log γ‖Hs(Td) (compare with (2.15)).
Let us concentrate on the main new qualitative property.
Lemma 5.2. Let d � 1. Consider a family of solutions (pa, va, θa) of (1.4) (for

some source terms Qa) such that

sup
a∈A

‖(pa, va, θa)‖X s
a (T ) < +∞,

for some s > 1+d/2 and fixed T > 0. If Qa is uniformly bounded in C1([0, T ];L2(Td))
and (pa(0), va(0)) is uniformly bounded in L2(Td), then va is uniformly bounded in
C0([0, T ];L2(Td)).

Proof. The main new technical ingredient is, as used by Schochet in [23], an
appropriate ansatz for the pressure.

Again, the proof makes use of the Fourier multiplier ∇Δ−1. Note that ∇Δ−1 is
bounded from L2

� (T
d) to H1(Td), where L2

� (T
d) consists of these functions u ∈ L2(Td)

such that 〈u〉 :=
∫

Td u(x) dx = 0.
Set

F a := κχ1(φ
a) div(k(θa)∇θa) + χ1(φ

a)Qa,

and introduce the functions V a = V a(t, x) and P a = P a(t) by

P a :=
〈F a〉

〈g1(φa)〉 and V a := ∇Δ−1
(
F a − g1(φ

a)P a
)
,
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so that

F a = g1(φ
a)P a + div V a.

This allows us to rewrite the first equation in (1.4) as

g1(φ
a)(∂tp

a + va · ∇pa) + ε−1 div(va − V a) = g1(φ
a)P a.

Therefore, by introducing

Ua := (qa, va − V a)T with qa(t, x) = pa(t, x) − P a(t),

we are back in the situation of Lemma 4.2: Ua satisfies

(5.1) Ea(∂tU
a + va · ∇Ua) + ε−1S(∂x)Ua = F a,

where S(∂x) is skew-symmetric, the matrices Ea are positive definite, and

‖(Ea, ∂tE
a + va · ∇Ea)‖L∞([0,T ]×Rd) +

∥∥(Ea)−1
∥∥−1

L∞([0,T ]×Rd)
+ ‖F a‖L1

T (L2)

is uniformly bounded.
As before, the proof proceeds by multiplying by Ua and integrating on T

d. We
find that ∂t〈EaUa , Ua 〉 is given by

〈((∂t + va · ∇)Ea)Ua , Ua 〉 + 〈Ea(div va)Ua , Ua 〉 + 2〈F a , Ua 〉,

and hence conclude that Ua is uniformly bounded in C0([0, T ];L2(Td)). Since V a is
uniformly bounded in C0([0, T ];L2(Td)), this yields the desired result.

Remark 5.3. In the periodic case, as shown by Métivier and Schochet [21, 22]
as well as Bresch, Desjardins, Grenier, and Lin [6], the study of the behavior of the
solutions when ε → 0 involved many additional phenomena.

6. Low Mach number combustion. The system (1.1) is relevant whenever all
nuclear or chemical reactions are frozen, which is the case in many treatments of fluid
mechanics. By contrast, for the combustion, one has to replace the energy evolution
equation by

∂t(ρe) + div(ρve) + P div v = κdiv(k∇T ) + F (Y ),

with Y := (Y1, . . . , YL), where the Y’s denote the relative concentrations of nuclear
or chemical species. The new unknown Y satisfies

(6.1) ∂t(ρY) + div(ρvY) = λ div(D∇Y) + ρω(t, x),

where ω is a given source term, D > 0, and λ measures the importance of diffusion
processes.

Many results have been obtained for the reactive gas equations (see [7] and the ref-
erences therein). Yet, the previous studies do not include the dimensionless numbers.
Here we consider the system

(6.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(∂tP + v · ∇P ) + div v = κβ div(k∇T ) + F1(Y, T, P ),

ρ(∂tv + v · ∇v) +
∇P

ε2
= μ

(
2 div(ζDv) + ∇(η div v)

)
,

γ(∂tT + v · ∇T ) + div v = κδ div(k∇T ) + F3(Y, T, P ),

ρ(∂tY + v · ∇Y ) = λ div(D∇Y ),

where α, β, γ, and δ are given functions of (Y, T, P ).
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As explained in the introduction, it is convenient to introduce (p, θ, y) by P =
Peεp, T = Teθ, Y = Y ey, where (P , T , Y ) ∈ [0,+∞)2+L. For smooth solutions,
(p, v, θ, y) satisfies a system of the form

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g1(Φ)(∂tp + v · ∇p) +
1

ε
div v =

κ

ε
χ1(Φ) div(k(θ)∇θ) +

1

ε
Q1(Φ),

g2(Φ)(∂tv + v · ∇v) +
1

ε
∇p = μχ2(Φ)

(
div(ζ(θ)Dv) + ∇(η(θ) div v)

)
,

g3(Φ)(∂tθ + v · ∇θ) + div v = κχ3(Φ) div(k(θ)∇θ) + Q3(Φ),

g4(Φ)(∂ty + v · ∇y) = λχ4(Φ) div(D(θ)∇y),

where Φ = (y, θ, εp).
Assumption 6.1. Denote by (y, ϑ, ℘) ∈ R

N the place holder of the unknown
(y, θ, εp). Parallel to Assumption (H2) in section 1.2, we suppose that gi and χi (i =
1, 2, 3) are C∞ positive functions of (y, ϑ, ℘) ∈ R

N , χ1 < χ3, and there exist two func-
tions F and G such that (y, ϑ, ℘) �→ (y, F (y, ϑ, ℘), ℘) and (y, ϑ, ℘) �→ (y, ϑ,G(ϑ, ℘))
are C∞ diffeomorphisms from R

N onto R
N , F and G vanish at the origin, and

g1
∂F

∂ϑ
= −g3

∂F

∂℘
> 0, g1χ3

∂G

∂ϑ
= −g3χ1

∂G

∂℘
< 0.

Moreover, Q1 and Q3 are C∞ functions of (y, ϑ, ℘) vanishing at the origin.
Introduce

B :=
{
(ε, μ, κ, λ) ∈ (0, 1] × [0, 1] × [0, 1] × [0, 2] |λ �

√
μ + κ

}
·

Definition 6.2. Let T > 0, s ∈ R, b = (ε, μ, κ, λ) ∈ B, and set a := (ε, μ, κ).
The space Zs

b (T ) consists of these (p, v, θ, y) ∈ C0([0, T ];Hs(Rd)) such that

(p, v, θ) ∈ X s
a (T ), νy ∈ C0([0, T ];Hs+1(Rd)), λy ∈ L2(0, T ;Hs+2

ν (Rd)),

where ν :=
√
μ + κ and X s

a (T ) is as defined in Definition 3.1. The space Zs
b (T ) is

given the norm

‖(p, v, θ, y)‖Zs
b (T ) := ‖(p, v, θ)‖X s

a (T ) + ‖y‖L∞
T (Hs+1

ν ) +
√
λ ‖y‖L2

T (Hs+2
ν ) .

Having proved estimates for the solutions of system (1.4) with precised estimates
in terms of the norm Σ of the source term Q (see (3.3)), we are now in position to
assert the following.

Theorem 6.3. Assume that d 
= 2. Given M0 > 0 and N 	 s > 1 + d/2, there
exist T > 0 and M > 0 such that, for all b ∈ B and all initial data (p0, v0, θ0, y0) ∈
Hs+1(Rd) satisfying

‖(∇p0,∇v0)‖Hs−1 + ‖(y0, θ0, εp0, εv0)‖Hs+1 � M0,

the Cauchy problem for (1.4) has a unique solution (p, v, θ, y) in the ball B(Zs
b (T );M).

Remark 6.4 (low Mach number limit). For the case of greatest physical interest
(d = 3), notice that Lemma 4.2 implies that, if, in addition, (p0, v0) belongs uniformly

to L2(R3) and Q1 satisfies |Q1(y, ϑ, 0)| � K(y, ϑ)(|y|2 + |ϑ|2) for some smooth func-
tion K, then the solutions (p, v, θ, y) are uniformly bounded in C0([0, T ];Hs(R3)).
This result has two corollaries. As alluded to in section 4, it allows us to rigorously
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justify, at least in the whole space case, the computations given by Majda in [18].
By the way, this proves the well posedness of the Cauchy problem for the zero Mach
number combustion in the whole space (this was known only in the periodic case [11]).
Moreover, note that the solutions given by Theorem 6.3 satisfy uniform estimates re-
covering in the limit ε → 0 those obtained by Embid for the limit system. Finally,
we mention that a close inspection of the high frequency regime indicates that the
previous analysis applies with Qi(Φ) (i = 1, 3) replaced by χi(Φ)Q(Φ,∇y,∇2y) for
some smooth function Q, yet we will not address this issue.

Appendix. General equations of state. Recall that in order to study the
full Navier–Stokes equations (1.1), we chose to work with the unknown (P, v, T ). In
order to close this system, we must relate (ρ, e) to (P, T ) by means of two equations
of state: ρ = ρ(P, T ) and e = e(P, T ). The purpose of this section is to show that
Assumption (H2) in section 1.2 is satisfied under general assumptions on the partial
derivatives of ρ and e with respect to P and T .

A.1. Computation of the coefficients. We begin by expressing the coeffi-
cients gi and χi, which appear in (1.4), in terms of the partial derivatives of ρ and e
with respect to P and T . To do that it is convenient to introduce the entropy. Here
is where the first identity in (1.5) enters.

Assumption A.1. The functions ρ and e are C∞ functions of (P, T ) ∈ (0,+∞)2,
satisfying

P
∂ρ

∂P
+ T

∂ρ

∂T
= ρ2 ∂e

∂P
·

Introduce the 1-form ω defined by Tω := d e + P d(1/ρ), where we started using
the notation d f = (∂f/∂T ) dT +(∂f/∂P ) dP . Assumption A.1 implies that dω = 0.
Hence, the Poincaré lemma implies that there exists a C∞ function S = S(P, T ),
defined on (0,+∞)2, satisfying the second principle of thermodynamics:

(A.1) T dS = d e + P d(1/ρ).

By combining the evolution equations for ρ and e with (A.1) written in the form
ρT dS = ρd e− (p/ρ) d ρ, we get an evolution equation for S, so that

(∂t + v · ∇)

(
ρ
S

)
=

(
−ρ 0
0 (ρT )−1

)(
div v

κdiv(k∇T ) + Q

)
.

On the other hand, one has

(∂t + v · ∇)

(
ρ
S

)
= J(∂t + v · ∇)

(
P
T

)
with J =

(
∂ρ/∂P ∂ρ/∂T
∂S/∂P ∂S/∂T

)
.

Equating both right-hand sides and inverting the matrix J , we obtain

(A.2)

{
(∂tP + v · ∇P ) + adiv v − κb div(k∇T ) = bQ,

(∂tT + v · ∇T ) + cdiv v − κd div(k∇T ) = dQ,

where

a =
ρ(∂S/∂T )

det(J)
, b = − ∂ρ/∂T

ρT det(J)
, c = −ρ(∂S/∂P )

det(J)
, d =

∂ρ/∂P

ρT det(J)
·
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To express the coefficients gi and χi in terms of physically relevant quantities, we
need some more notations. We introduce

(A.3)

KT :=
1

ρ

∂ρ

∂P
, KP := −1

ρ

∂ρ

∂T
, R := −ρ

∂S/∂P

∂ρ/∂P
,

CP := T
∂S

∂T
, CV := T

(∂S/∂T )(∂ρ/∂P ) − (∂S/∂P )(∂S/∂T )

∂ρ/∂P
·

The functions KT , KP , CV , and CP are known as the coefficient of isothermal com-
pressibility, the coefficient of thermal expansion, and the specific heats at constant
volume and pressure, respectively (see section 2 in [12]). The function R generalizes
the usual gas constant: for perfect gases one can check that R = R.

We now have to convert system (A.2) into equations for the fluctuations p and θ
as defined by (1.2). Performing a little algebra we find that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

KTCV P

CP
(∂tp + v · ∇p) +

1

ε
div v − κ

ε

KP

ρCP
div(kT∇θ) =

1

ε

KP

ρCP
Q,

ρ(∂tv + v · ∇v) +
1

ε
P∇p = μ

(
2 div(ζDv) + ∇(η div v)

)
,

ρCV T (∂tθ + v · ∇θ) + RρT div v − κdiv(kT∇θ) = Q.

Hence, (p, v, θ) satisfies (1.4) with

(A.4) g∗1 =
KTCV P

CP

, g∗2 =
ρ

P
, g∗3 =

CV

R
, χ∗

1 =
KP

ρCP

, χ∗
2 =

1

P
, χ∗

3 =
1

RρT
,

where we used the following notation: for all f : (0,+∞)2 → R,

(A.5) f∗(ϑ, ℘) := f(Teϑ, Pe℘).

A.2. Properties of the coefficients.
Assumption A.2. The functions ρ and e are C∞ functions of (P, T ) ∈ (0,+∞)2

such that ρ > 0 and

(A.6)
∂ρ

∂P
> 0,

∂ρ

∂T
< 0 and

∂e

∂T

∂ρ

∂P
>

∂e

∂P

∂ρ

∂T
·

Remark A.3. This assumption is satisfied by general equations of state. Indeed,
(A.6) just means that the coefficients KT , KP , and CV are positive.

The following result proves that Assumptions A.1 and A.2 imply that our main
structural assumption is satisfied.

Proposition A.4. If Assumptions A.1 and A.2 are satisfied, then χ1 < χ3 and
gi, χi (i = 1, 2, 3) are C∞ positive functions.

Proof. In view of (A.4), the proof reduces to establishing that

0 < KT , 0 < KP , 0 < CV < CP and 0 < R <
CP

TKP
·

The first two inequalities follow from the definitions of KT and KP . To prove the
last two, we first establish the Maxwell identity ∂S/∂P = ρ−2(∂ρ/∂T ). To see this,
by (A.1), we compute

∂S

∂P
dT ∧ dP = d

(
T dS

)
= d

{
d e + P d

(
1

ρ

)}
= − 1

ρ2

∂ρ

∂T
dP ∧ dT.
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Since ∂ρ/∂T < 0, the Maxwell identity implies that ∂S/∂P < 0. By combin-
ing this inequality with ∂ρ/∂P > 0, we find R > 0. Also, the identity ∂S/∂P =
ρ−2(∂ρ/∂T ) implies that

CP

CV
=

(∂S/∂T )(∂ρ/∂P )

(∂S/∂T )(∂ρ/∂P ) − ρ−2
(
∂ρ/∂T

)2
,

which proves CV < CP .
In view of (A.1), the assumption ∂e

∂T
∂ρ
∂P > ∂e

∂P
∂ρ
∂T is equivalent to

∂S

∂T

∂ρ

∂P
>

∂S

∂P

∂ρ

∂T
·

This inequality has two consequences. First, it implies that CV > 0. Second, it yields

TKPR
CP

=
(∂S/∂P )(∂ρ/∂T )

(∂S/∂T )(∂ρ/∂P )
< 1.

This concludes the proof.
We now discuss the physical meaning of the functions F and G introduced in

section 1.2. These are compatibility conditions between the singular terms and the
viscous terms. To see this, suppose (p, v, θ) is a smooth solution of (1.4) and let
Ψ = Ψ(ϑ, ℘) ∈ C∞(R2). Then ψ := Ψ(θ, εp) satisfies

g1g3

(
∂tψ + v · ∇ψ

)
+

(
g1

∂Ψ

∂ϑ
+ g3

∂Ψ

∂℘︸ ︷︷ ︸
=:Γ1(Ψ)

)
div v = κ

(
g1χ3

∂Ψ

∂ϑ
+ g3χ1

∂Ψ

∂℘︸ ︷︷ ︸
=:Γ2(Ψ)

)(
div(k(θ)∇θ) + Q

)
,

where the coefficients gi, χi, ∂Ψ/∂ϑ and ∂Ψ/∂℘ are evaluated at (θ, εp). We next
show that for appropriate function Ψ one can impose

(A.7) [Γ1(Ψ) = 0 and Γ2(Ψ) > 0] or [Γ1(Ψ) > 0 and Γ2(Ψ) = 0].

Proposition A.5. Assume that Assumptions A.1 and A.2 are satisfied and use
the notation (A.5). The functions S∗ and ρ∗ satisfy

(A.8) g1
∂S∗

∂ϑ
= −g3

∂S∗

∂℘
> 0, g1χ3

∂ρ∗

∂ϑ
= −g3χ1

∂ρ∗

∂℘
< 0.

Remark A.6. The fact that Ψ = S∗ (or Ψ = ρ∗) satisfies the first (respectively,
second) set of conditions in (A.7) now follows from χ1 < χ3.

Proof. By (A.4) and the definitions given in (A.3), one has

(A.9)
g∗1
g∗3

= −P (∂S/∂P )

T (∂S/∂T )
·

By definition (A.5), ∂f∗/∂ϑ =
[
T (∂f/∂T )

]∗
and ∂f∗/∂℘ =

[
P (∂f/∂P )

]∗
. This

proves that S∗ satisfies the first identity in (A.8). Next, we compute

χ∗
1

χ∗
3

=
(∂ρ/∂T )(∂S/∂P )

(∂ρ/∂P )(∂S/∂T )
·
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By (A.9), this yields χ∗
1g

∗
3P (∂ρ/∂P ) = −χ∗

3g
∗
1T (∂ρ/∂T ). Which proves that ρ∗ satis-

fies the second identity in (A.8).
Remark A.7. Assumption (H2) in section 1.2 requires, in addition, that F = S∗

and G = ρ∗ define bijections. This only means that the thermodynamic state is
completely determined by (P, T ), or (P, S) or (ρ, T ).

The following result contains an example of an equation of state such that χ1

depends on ϑ.
Proposition A.8. Assume that the gas obeys Mariotte’s law: P = RρT , for

some positive constant R, and e = e(T ) satisfies CV := ∂e/∂T > 0. Then, Assump-
tions A.1 and A.2 are satisfied. Moreover,

χ∗
1 = R/((CV (T ) + R)P ),

so that χ1(ϑ, ℘) is independent of ϑ if and only if CV is constant.
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EQUILIBRIA OF NONCONVEX ENERGIES∗
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Abstract. For atomistic material models, global minimization gives the wrong qualitative
behavior; a theory of equilibrium solutions needs to be defined in different terms. In this paper, a
concept based on gradient flow evolutions, to describe local minimization for simple atomistic models
based on the Lennard–Jones potential, is presented. As an application of this technique, it is shown
that an atomistic gradient flow evolution converges to a gradient flow of a continuum energy as the
spacing between the atoms tends to zero. In addition, the convergence of the resulting equilibria is
investigated in the case of elastic deformation and a simple damaged state.
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1. Introduction. This article is concerned with a possible concept for analyzing
elastic energy functionals which do not satisfy the classical coercivity and weak lower
semicontinuity conditions of the calculus of variations. The subject of study is the
one-dimensional atomistic energy

Eatom

(
(yj)

n
j=1

)
=

n∑
j=1

[
J(yj − yj−1) + fjuj

]
,(1.1)

where n ∈ N, and yj are the positions of the atoms with y0 = 0. The family (fj)
represents a linear applied force. We assume that the Lennard–Jones type potential
J = J(z) satisfies

J ∈ C2(0,∞),
J(z) = +∞ if z ≤ 0 and J(z) → +∞ as z → 0,
J ′(1) = 0, J ′′(z) > 0 in (0, z1), and
J is concave, increasing and bounded above in (z1,∞),

(1.2)

with 1 < z1 < +∞. The typical shape is shown in Figure 1.1. Note, that the noncon-
vexity of J is of a much more fundamental type than the geometric nonconvexity of
classical elasticity.

It has been noted previously (see, for example, [24]) that, due to the sublinear
growth of J , the energy in (1.1) should not be analyzed in terms of global minimiza-
tion, as this would give unrealistic material behavior. The most popular example
given is that a material described by (1.1) would break for arbitrarily small loads if
it were to attain its global minimum. We shall describe this in more detail in section
1.1.

In general, for applications in mechanics, it is advantageous to consider metastable
states. The difficulty here is that the number of critical points of Eatom tends to infin-
ity as n → ∞. Thus, we require a selection criterion to pick the “correct” equilibrium
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Fig. 1.1. The shape of natural interaction potentials of Lennard–Jones type.

points. Theoretically, we should consider the natural dynamics of the material and
let time tend to infinity to find its equilibrium state. Here, we take a considerably
easier route and use | · |H1-gradient flow dynamics. Our justification for the gradient
flow is merely to accept it as a simple model for local minimization. Concerning the
choice of the metric, there are also strong mathematical reasons for choosing an | · |H1-
gradient flow evolution which are outlined in sections 2 and 3. Note that we do not try
to analyze a physical evolution. Our aim is to simply demonstrate a concept which
we believe gives better results than the traditional method of global minimization.
The ideas in this paper have also important applications for the numerical analysis
of coarse-graining techniques such as the QC method [17], as they give an indication
how numerical optimization methods can be stabilized [20].

The main goal of the present work is to show that the | · |H1-gradient flow provides
a selection criterion for critical points which results in good qualitative properties
of the resulting equilibrium model. The simplicity of the one-dimensional model
problem makes it possible to give complete results; however, many of the fundamental
techniques applied here carry over to much more complicated settings. The additional
challenges posed by higher dimensions will be discussed in section 5.

As an application of the idea to use gradient flows to analyze equilibrium points
of nonconvex energies, we consider the continuum limit of a rescaled version of the
atomistic functional Eatom as the number of atoms n tends to infinity. The novelty is
that we primarily consider the convergence of the gradient flow evolutions (Theorem
3.1), and obtain the convergence of the equilibria almost as an afterthought (see
Theorem 4.1 for elastic deformations and the discussion in section 4.2 for fracture).
This procedure gives a different and, one might argue, more realistic continuum limit
than previous work; see section 1.2 for a more extensive discussion. In addition,
this shows that there is a strong relationship between the atomistic and continuum
equilibria.

The local minimizers selected by the gradient flow are weak local minimizers, i.e.,
local minimizers with respect to the W1,∞-norm. It is clear from the shape of the
interaction potential (cf. Figure 1.1) and the comments at the end of section 4.1 that
this is in fact the only possibility. In any weaker topology, even the elastic critical
points are not local minimizers of the energy. The same is true for fractured states
but the interpretation of W1,∞ would be more subtle in this case.

If we replace the Lennard–Jones potential by a potential which is smooth at the
origin and therefore J ′ Lipschitz-continuous, then the convergence analysis of the
gradient flow requires only minor modifications of the classical convergence analysis
of Galerkin discretizations. For the approach in this paper, however, convergence of
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the energy is sufficient (cf. Theorem 2.4), which makes a result as general as Theorem
3.1 possible. To achieve this we use some generalizations of ideas in [1, Chapter 4].

For the analysis of equilibria, we use a lim inf condition for the slope of a family
of functionals, whose proof is based on the notion of λ-convexity. This condition was
also used in [23] to analyze the convergence of gradient flows. Using the techniques of
this paper, which has a different aim than the present work, the convergence would
have to be obtained by compactness principles (which are not available in our case)
rather than λ-convexity.

1.1. The failure of global minimization. The Cauchy–Born hypothesis states
that an atomistic body, subjected to a small affine boundary displacement, will fol-
low this displacement in the bulk. Friesecke and Theil demonstrate in [15] a two-
dimensional, mathematical version of this important foundation of continuum me-
chanics by considering global minima of an energy similar to (3.1) but with a quadratic
interaction potential. When the potential has sublinear growth, global minimization
will typically not reproduce this behavior.

Let us consider the atomistic energy Eatom in (1.1) with fi ≡ 0, but apply a
“Dirichlet” boundary condition at the right end of the domain as well. For each
δ > 0, we consider the minimization problem

min
yn=n(1+δ)

Eatom

(
(yj)

n
j=1

)
.(1.3)

Concerning the formulation of the boundary displacement, note that the minimum of
J(z) is attained at z = 1. The choice of boundary displacement we have made here
scales linearly with the number of atoms. An interesting different choice was made in
[6] which we discuss briefly in section 1.2.

Proposition 1.1. There exist constants δ0, C0 > 0, such that, for δ0 > δ >
C0n

−1/2, the affine state yj = (1 + δ)j is not the solution of (1.3).

Proof. Consider the “fractured” deformation yfj = j for j = 0, 1, . . . , n − 1 and

yfn = n(1 + δ). Then,

Ef (δ) = Eatom

(
(yfj )nj=1

)
= (n− 1)J(1) + J(1 + nδ) ≤ (n− 1)J(1) + sup

z≥1
J(z).

The affine state yaj = (1 + δ)j on the other hand has the energy

Ea(δ) = Eatom

(
(yaj )nj=1

)
= nJ

(
(1 + δ)

)
.

The assumptions we have made in (1.2) allow us to estimate J(z) from below by a
quadratic

J(1) + c0(z − 1)2 ≤ J(z) for 1 ≤ z < δ0,

where c0 > 0 and δ0 > 0 are appropriately chosen. Therefore, for δ < δ0, we have
Ea(δ) ≥ n(J(1) + c0δ

2), and we obtain that Ea(δ) > Ef (δ), if

δ2 > n−1
( supz≥1 J(z) − J(1)

c0

)
=: C2

0n
−1.

The proof of Proposition 1.1, which is merely a review of well-known facts, ac-
tually suggests that not only is the Cauchy–Born hypothesis violated, but in fact
any material with a sufficient number of atoms breaks for arbitrarily small boundary
displacements or surface forces, if it were to attain its global energy minimum. This
behavior is in clear contradiction to observations and, therefore, global minimization
should be rejected for models of the type (1.1).
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1.2. Continuum limits of atomistic energies. Continuum limits of atomistic
models have been studied by many authors in the past. Because it is customary, we
consider the case of Dirichlet boundary conditions in this section only. To be able to
compute a continuum limit, we need to first rescale the energy (1.1) to a fixed, finite
domain. The seemingly naive approach is to use a linear scaling of the energy as well
as the boundary condition, which gives

E(1)
n

(
(yj)

n
j=0

)
=

n∑
j=1

1

n
J
(
n(yj − yj−1)

)
, y0 = 0, yn = 1 + δ.(1.4)

If we assume that the body attains its global energy minimum, then for an arbitrarily
small boundary displacement δ, the deformation will not be a continuum state (com-

pare Proposition 1.1). This fact is reflected by the Γ-limit of E
(1)
n as n → ∞ (see, for

example, [4, 5] and references therein) which gives the energy

E(1)(y) =

∫ 1

0

J∗∗(y′) dx, y(0) = 0, y(1) = 1 + δ,

where J∗∗ is the convex envelope of J .
Motivated by an analysis quite similar to Proposition 1.1, it can be seen that if a

different scaling is used, then the Γ-limit becomes more interesting [6]. If we define

E(2)
n

(
(uj)

n
j=0

)
=

n∑
j=1

[
J
(
1 +

√
n(uj − uj−1)

)
− J(1)

]
, u0 = 0, un = δ,

then the Γ-limit turns out to be the Griffiths functional (compare [13])

G(u) = α

∫ 1

0

|u′|2 dx + β�Su, u(0) = 0, u(1) = δ,

where Su is the set of jump-discontinuities of the displacement u, α = 1/2J ′′(1) and
β = limz→∞ J(z)−J(1). The boundary values of the possibly discontinuous functions
u can be interpreted in a meaningful way. While it is interesting that the Griffiths
functional can be obtained in this way, it should be noted that this model is typically
used for crack propagation only, not crack initiation. In one dimension, however, only
crack initiation can be analyzed.

The philosophy adopted in the present work is that the scaling of functional E
(1)
n is

actually the natural one; only the process of passing to the continuum limit is flawed.
It will be shown that, if the continuum limit is analyzed in terms of an appropriate
evolution, then the resulting model is in fact a very realistic candidate.

One of the problems addressed in this paper (see section 4) is to find the stable
equilibrium that the material would “naturally” assume if we started in the reference
configuration yni = xn

i , or a perturbation thereof, and then applied forces. In Theorem
4.1 we show that the resulting equilibria represent the correct elastic behavior. For this
reason we prefer to work with surface forces rather than a prescribed displacement.
This is, however, not a restriction. The entire convergence theory can also be repeated
for Dirichlet conditions applied at both ends of the interval.

Closest in spirit to the approach advocated here is the work by Blanc, Le Bris,
and Lions [3]. Except for the fact that they consider far more complicated atomistic
interactions in three dimensions, their continuum limit is the same. In fact, the present
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work may be seen as a small step towards a rigorous justification of the approach taken
in [3].

From the point of view of numerical analysis, strong connections can be drawn
to the local version of the quasicontinuum method [17]. In this respect, the results of
E and Ming [11] have some similarities to our own.

For results on the continuum manifestation of some further interesting atomistic
effects like finite-range interactions, the reader is referred to [25, 9].

1.3. Outline of the paper. We begin in section 2 by outlining the theoretical
tools for the convergence analysis, a theory of gradient flows based on the notion of
λ-convexity, and a corresponding approximation theory. We also review the notion of
slope which is used to define the concept of critical points.

In section 3, we prove the convergence of an atomistic gradient flow evolution to
the | · |H1-gradient flow of a nonconvex functional defined on H1, giving a new type of
continuum limit for atomistic functionals.

Finally, in section 4, we analyze the resulting equilibrium solutions which are ob-
tained when t → ∞ in the gradient flow. First, we consider the case of small loads and
show that the equilibria obtained are the physically reasonable elastic deformations
and not the “fractured” global energy minima. Then, we give a brief description of
the behavior of the gradient flow evolution in the case when the loads are sufficiently
large to create fracture. We demonstrate that the obtained equilibrium is reasonable
given that we are always assuming perfect crystals and perfect equilibria. However,
these critical points are highly unstable, as is demonstrated also in numerical compu-
tations. We may interpret this instability as the uncertainty of where fracture occurs
in a material.

1.4. Connections to other models. In section 1.2, some connections to the
works of Blanc, Le Bris, and Lions [3] and E and Ming [11] were briefly touched
upon. In both of these works, the concept of global minimization of the energy
is rejected and alternative means are sought to analyze equilibria of elastic energy
functionals. A similar approach is taken by Rieger and Zimmer [22], who use a time-
discrete gradient flow evolution of Young-measures to analyze material damage. In
the slightly different setting of viscoelasticity [21, 2, 14], it is shown that dynamics can
prevent the formation of finer and finer microstructure and therefore the attainment
of a global energy minimum.

The model presented here is not to be confused, however, with quasistatic or rate
independent evolutions (see, for example, [10, 13] for fracture, [8] for plasticity, or [16]
for an abstract analysis). In their time-discrete form, at every timestep an equilibrium
(typically a minimum) of a functional of the form

D(uj−1, u) + E(u)(1.5)

is sought, where D is a so-called dissipation metric. Rather, the gradient flow model
we present here should be understood as a simple mechanism to find the equilibrium
in the quasistatic evolution (1.5).

2. Approximation of gradient flows of nonconvex energies. Let H be
a Hilbert space with inner product (·, ·) and norm ‖ · ‖, let A be a closed convex
subset of H , and let φ : H → (−∞,∞]. If φ is Fréchet differentiable at a point u, we
denote the representation of its derivative, i.e., its gradient, by φ′(u). Second order
derivatives are denoted by φ′′(u; v1, v2). We denote the domain of definition of φ by
D(φ) = {u ∈ H : φ(u) < ∞}. By using the convention +∞ ≤ +∞, we do in fact not
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need to make much explicit use of the domain of definition. For example, a functional
φ would then be convex if and only if D(φ) is convex and φ is convex in D(φ).

Naively, we may call a curve u ∈ C1(a, b; H ) a gradient flow of φ, if

u̇(t) = −φ′(u(t)) ∀t ∈ (a, b).(2.1)

Equation (2.1) in infinite-dimensional spaces is usually restated only for convex func-
tionals φ. The natural condition on φ, under which a considerable part of the theory of
gradient flows for convex functionals can be recovered, is the condition of λ-convexity
[1]. We say that φ is λ-convex in A if there exists λ ∈ R such that

φ
(
(1 − t)v0 + tv1

)
≤ (1 − t)φ(v0) + tφ(v1) −

λ

2
t(1 − t)‖v0 − v1‖2

∀v0, v1 ∈ A ∀t ∈ (0, 1).(2.2)

To obtain a better feel for the meaning of λ-convexity, consider the following
simple proposition (for a proof, see [19]).

Proposition 2.1.

(a) The functional φ is λ-convex in A if and only if u �→ φ(u)− λ
2 ‖u‖2 is convex

in A .
(b) One-sided Lipschitz continuity of the gradient: If φ is differentiable at every

point of A and satisfies(
φ′(v1) − φ′(v0), v1 − v0

)
≥ λ‖v1 − v0‖2 ∀ v1, v0 ∈ A ,(2.3)

then φ is λ-convex in A .
(c) Boundedness below of the Hessian: If φ is twice differentiable at every nonex-

tremal point of A and

φ′′(u; v − u, v − u) ≥ λ‖v − u‖2 ∀u, v ∈ A ,(2.4)

then φ is λ-convex in A .
(d) If φ = φ1 + φ2, where φi : A → (−∞,+∞], φ1 is λ1-convex and φ2 is λ2-

convex, then φ is (λ1 + λ2)-convex.
If a functional is λ-convex, then its gradient flows have an alternative characteri-

zation. Suppose that a curve u ∈ C1(a, b; H ) satisfies (2.1), where φ is λ-convex. By
a relatively straightforward energy argument, one can show that u also satisfies the
evolutionary variational inequality

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ H ,∀ t ∈ (a, b).

This inequality is the basis for a powerful theory of gradient flows in metric spaces,
then called curves of maximal slope, developed in Chapter 4 of [1]. Note, for example,
that it makes sense to consider u, v ∈ A only, instead of all of H . Theorem 2.2 is
a collection of results in [1] translated to the Hilbert space setting which is sufficient
for our purposes.

Theorem 2.2 (existence and uniqueness). Let A be a closed, convex subset
of a Hilbert space H and let φ : A → (−∞,∞] be (strongly) lower semicontinuous
and λ-convex. For each u0 ∈ D(φ), there exists a locally Lipschitz-continuous curve
u : [0,∞) → A which is the unique solution of

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ A for a.e. t > 0,(2.5)
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among all curves v ∈ ACloc(0,∞; A ), satisfying v(0+) = u0.
For the remainder of the paper, we shall use the following definition for a gradient

flow.
Definition 2.3. Let A be a closed, convex subset of a Hilbert space H and

φ : A → (−∞,∞] a lower semicontinuous and λ-convex functional. We say that a
locally Lipschitz-continuous curve u : [0,∞) → A is a gradient flow of φ, if it satisfies
(2.5).

2.1. Approximation of gradient flows. Based on the evolutionary variational
inequality stated above, an abstract convergence theory for gradient flows in a general
metric setting for λ-convex functionals was developed in [19]. Theorem 2.4 below is
one result therein which is relevant for the Hilbert space setting in the present work.
For the sake of completeness, we give a sketch of the proof.

Theorem 2.4. Let A be a closed, convex subset of a Hilbert space H and,
for n ∈ N, let φ, φn : A → (−∞,∞] be functionals defined on A . Let u0 ∈ D(φ)
and u0

n ∈ D(φn) be given initial values, and assume that the following conditions are
satisfied:

(i) Lower semicontinuity: The functionals φ and φn (n ∈ N) are lower semi-
continuous.

(ii) Uniform λ-convexity: There exists λ ∈ R, such that the φn as well as φ are
λ-convex.

(iii) Equicoercivity: There exists a point u∗ ∈ A and ε > 0 such that
infn∈N infv∈A ,‖v−u∗‖≤ε φn(v) > −∞.

(iv) Convergence of the initial data: supn∈N
φn(u0

n) < ∞ and ‖u0
n − u0‖ → 0 as

n → ∞.
(v) Consistency: If (wn)n∈N ⊂ A is bounded in H , then there exists a constant

c1 > 0 such that

lim sup
n→∞

(
φ(wn) − φn(wn)

)
≤ 0, and φ(wn) ≤ c1(1 + [φn(wn)]+ + ‖wn‖2).

(vi) Best approximation error: For every n ∈ N, there exists a Borel-measurable
curve vn : (0,∞) → A , so that vn → u in L2

loc([0,∞); H ) and

φn(vn(t)) → φ(u(t)) and φn(vn(t)) ≤ c2(1 + [φ(u(t))]+ + ‖u(t)‖2),

where u is the gradient flow of φ with initial data u0.
Then the gradient flows (in the sense of Definition 2.3) un of φn with initial values
u0
n converge in L∞

loc([0,∞); H ) to the gradient flow u of φ with initial value u0.
Proof. Let u and un, respectively, satisfy

1

2

d

dt
‖u(t) − v‖2 +

λ

2
‖u(t) − v‖2 + φ(u(t)) ≤ φ(v) ∀ v ∈ A , and(2.6)

1

2

d

dt
‖un(t) − vn‖2 +

λ

2
‖un(t) − vn‖2 + φ(un(t)) ≤ φ(vn) ∀ vn ∈ A .(2.7)

We test (2.6) with v = un and choose a recovery sequence vn satisfying (vi) to test
(2.7). Adding (2.6) and (2.7) and some lengthy but relatively straightforward algebra
gives the error estimate

1

2

d

dt
‖u− un‖2 +

λ̃

2
‖u− un‖2 ≤

(
φn(vn) − φ(u)

)
+
(
φ(un) − φn(un)

)
+
|λ|
2
‖vn − u‖2 +

1

2
‖u̇n‖‖vn − u‖,
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where λ̃ = λ − |λ|/2. The λ-convexity can be used to derive an a priori estimate on
the L2(0, T )-norm of ‖u̇n‖ and φ(un). Using Gronwall’s inequality, we obtain

e2λ̃T ‖u(T ) − un(T )‖2 ≤ ‖u(0) − un(0)‖2 +

∫ T

0

e2λ̃t(error terms) dt.

Using Fatou’s lemma, the integral term on the right-hand side can be shown to tend
to zero as n → ∞, given the hypothesis of the theorem.

Next, we state a result from [1], concerning the implicit Euler approximation of
a gradient flow, which we will use frequently in section 4.

Lemma 2.5. Let tj = jτ , for j = 0, 1, . . . , define a partition of [0,∞), with
0 < τ < 1/min(0,−λ). Let u0 ∈ H , and let the family (ui)i=1,2,... be defined by

ui = argminA

[
v �→ ‖v − ui−1‖2

2τ
+ φ(v)

]
.

Let u(t) be the gradient flow of φ with u(0) = u0 and let ūτ (t) be the piecewise constant
interpolant of (ui), i.e.,

ūτ (0) = 0 and ūτ (t) = ui if ti−1 < t ≤ ti.

Then, ūτ (t) → u(t) in L∞
loc([0,∞),H ), as τ → 0.

2.2. The slope. So far we have only described gradient flow evolutions. How-
ever, we are also interested in analyzing the resulting equilibria, which can often be
obtained by letting time tend to infinity. A natural concept of equilibrium, or critical
point, is given by the concept of local slope,

|∂φ|(u) = lim sup
v→u

(φ(u) − φ(v))+

‖u− v‖ .(2.8)

We say that u∗ ∈ H is a critical point of the functional φ, if |∂φ|(u∗) = 0. The
following lemma can be used in certain situations to show that an accumulation point
of critical points of approximate functionals φn must again be a critical point.

Lemma 2.6. Let H be a Hilbert space, let φ, φn : H → (−∞,∞] be λ-convex,
with a uniform λ, and suppose that φn Γ-converges to φ in the strong topology of H ,
i.e.,

vn → v ⇒ φ(v) ≤ lim inf
n→∞

φn(vn)(2.9)

∀v ∈ H ∃(vn)n∈N ⊂ H s.t. vn → v and φ(v) = lim
n→∞

φ(vn).(2.10)

Then, the slopes satisfy the lim inf condition

un → u ⇒ |∂φ|(u) ≤ lim inf
n→∞

|∂φn|(un).(2.11)

Proof. The crucial observation [1, Theorem 2.4.9] is that for λ-convex functionals,
the slope can be rewritten as

|∂φ|(u) = sup
v �=u

[
φ(u) − φ(v)

‖u− v‖ +
λ

2
‖u− v‖2

]+

.
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Let un → u, and for some fixed v �= u let (vn)n∈N be a recovery sequence for v,
satisfying (2.10). Then, we have[

φ(u) − φ(v)

‖u− v‖ +
λ

2
‖u− v‖2

]+

≤
[
lim infn→∞ φn(un) − limn→∞ φn(vn)

limn→∞ ‖un − vn‖
+

λ

2
lim
n→∞

‖un − vn‖2

]+

≤ lim inf
n→∞

[
φn(un) − φn(vn)

‖un − vn‖
+

λ

2
‖un − vn‖2

]+

≤ lim inf
n→∞

|∂φn|(un).

Taking the supremum over v �= u, we obtain (2.11).

3. Convergence of an atomistic evolution. In section 1.2, it was outlined
that different scalings of the atomistic energy Eatom give rise to different continuum
limits. We have adopted the point of view that a linear scaling of all terms considered
is the most natural choice. For the forces we assume that fn = O(1) and fj = O(1/n)
for 1 ≤ j ≤ n− 1, i.e., fn represents a boundary force. It is then natural to consider
the rescaled energy

En

(
(ynj )nj=1

)
=

n∑
j=1

εn

[
J

(
ynj − ynj−1

εn

)
− fn

j (ynj + ynj−1)/2

]
− gynn ,(3.1)

where εn = 1/n. The family (fn
i )i=1,...,n defines a linear body force, which we assume

is obtained by averaging an L1 function, i.e.,

fn
i = −−

∫ xn
i

xn
i−1

f(x) dx,

where xn
i = i/n, for each i ∈ Z. The scalar g describes a linear surface force. For

technical reasons, we may wish to impose an L∞ bound on the deformations, i.e., we
shall assume that yni ≤ M , where M ∈ (z1,∞].

To rewrite En as an integral functional it is customary to identify the atom-
istic deformation with a piecewise affine function. To this end, we define the set of
“admissible” atomistic deformations to be

An :=
{
v ∈ H1(0, 1) : v(0) = 0, v ≤ M, and v is piecewise affine w.r.t. (xn

i )
}
.

Letting

y′n(x) =
yni − yni−1

εn
if x ∈ (xn

i−1, x
n
i ), and

yn(x) =

∫ x

0

y′n(x) dx,

yn is the piecewise-affine interpolant of (yni ) and y′n is its weak derivative, and we
have in particular that yn ∈ An. Thus, we can rewrite En as

En(yn) =

∫ 1

0

[
J(y′n) − fnyn

]
dx− gyn(1) for yn ∈ An,(3.2)
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where fn is the piecewise constant interpolant of f with

fn(x) = f i
n for x ∈ (xi−1, xi).(3.3)

In the formulation (3.2) it becomes obvious that the nonconvexity is with respect
to the deformation gradient. In order to balance it out with the evolution, we need
to consider the gradient flow with respect to the | · |H1-seminorm, which is in fact a
norm in the spaces An. We shall show below, though it is already quite obvious at
this point, that the functionals En are uniformly λ-convex in the | · |H1-seminorm.
Therefore, from Theorem 2.4, we expect the correct limit energy with respect to the
| · |H1-gradient flow evolution to be

E(y) =

∫ 1

0

[
J(y′) − fy

]
dx− gy(1),(3.4)

defined for y ∈ A :={v ∈ H1(0, 1) : v(0) = 0, v ≤ M}.
While it is possible to consider gradient flows with respect to the full H1-norm as

well, the analysis of equilibria becomes significantly more technical. In addition, the
| · |H1-seminorm seems to be the more natural metric for the gradient flow. All results
can, however, be translated to the H1-norm case [18].

Theorem 3.1 states that the (atomistic) | · |H1-gradient flow of En in An converges
to the (continuum) | · |H1-gradient flow of E in A . We embed An in A by setting
En(y) = +∞ if y ∈ A \ An.

Theorem 3.1. Let y0 ∈ D(E), and let y0
n ∈ An be the piecewise affine interpolant

of y0 with respect to the mesh (xn
i ). Then, the | · |H1-gradient flow yn of En with initial

data y0
n converges in L∞

loc([0,∞); A ) to the | · |H1-gradient flow y of E with initial data
y0.

The convergence proof consists of three steps: first, establishing the λ-convexity
of the functionals; second, estimating the perturbations caused by the discrete forcing
term; and third, constructing a recovery sequence for the solution which satisfies
condition (vi) of Theorem 2.4.

Lemma 3.2. With respect to the norm | · |H1 , the functionals E and En (n ∈ N)
are λ-convex in A , with λ = minz>0 J

′′(z), and lower semicontinuous.
Proof. For the λ-convexity as well as the lower semicontinuity, note that the linear,

continuous terms need not be considered and we assume without loss of generality
that f, g ≡ 0. In the spirit of Proposition 2.1, we define F (z) = J(z) − (λ/2)z2. By
the definition of λ, F ′′(y) ≥ 0 whenever y > 0, hence F is convex in (0,∞). Since
F (z) = +∞ for z ≤ 0, F is convex on R. Therefore, the functional

G(y) =

∫ 1

0

(
J(y′) − λ

2
|y′|2

)
dx =

∫ 1

0

F (y′) dx

is convex as well which implies, by Proposition 2.1, that E is λ-convex. Since
E(y) = G(y) − λ/2|y|2H1 , a sum of a convex and a continuous functional, E is lower
semicontinuous. To see that En is lower semicontinuous, simply note that under the
assumption that f, g ≡ 0, En = E|An

, where An is convex and closed and hence the
proof carries over to En as well.

Lemma 3.3. If f ∈ L1(0, 1), then, for every v ∈ A , we have

∣∣∣ ∫ 1

0

(fn − f)v dx
∣∣∣ ≤ |v|H1‖f − fn‖L1(0,1), and

‖f − fn‖L1 → 0 as n → ∞,
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where fn is defined as in (3.3).
Proof. Hölder’s inequality gives

∣∣∣ ∫ 1

0

(fn − f)v dx
∣∣∣ ≤ ‖v‖L∞‖f − fn‖L1(0,1).

Using v(0) = 0, we also have ‖v‖L∞ ≤ ‖v′‖L1 ≤ |v|H1 , which gives the first result.
The convergence ‖fn − f‖L1 → 0 follows from the fact that fn is the L2-projection of
f onto the piecewise constant functions with respect to the mesh (xn

i ), using also the
density of L2(0, 1) in L1(0, 1).

Lemma 3.4. Let E and En be, respectively, given by (3.4) and (3.2), where
f ∈ L1(0, 1) and fn satisfies (3.3). For every y ∈ A with E(y) < +∞, the piecewise
affine, continuous interpolants vn of y with respect to the mesh (xn

i ) satisfy

|vn − y|H1 → 0, En(vn) → E(y) as n → ∞,

|vn|H1 ≤ |y|H1 , and En(vn) ≤
[
2‖f‖2

L1 + sup
z≥1

J(z)

]
+ E(y) + 2|y|2H1 .

Proof. Let y ∈ A , and let vn be the piecewise affine interpolant with respect to
the mesh (xn

i ). Applying Jensen’s inequality to∫ xn
i

xn
i−1

v′n dx =

∫ xn
i

xn
i−1

y′ dx,

and summing over i, we get ‖v′n‖L2(0,1) ≤ ‖y′‖L2(0,1). It follows from standard in-
terpolation error estimates and a simple density argument that |y − vn|H1 → 0 as
n → ∞.

To compute the bounds on the energy as well and to show its convergence, we
start with the lower-order terms. Jensen’s inequality gives ‖fn‖L1 ≤ ‖f‖L1 and as in
the proof of Lemma 3.3, ‖v(n)‖L∞ ≤ |v(n)|H1 ≤ |v|H1 . Thus, we have

−
∫ 1

0

fnvn dx = −
∫ 1

0

fy dx +

∫ 1

0

[
f(y − vn) + (f − fn)vn

]
dx

≤ −
∫ 1

0

fy dx + ‖f‖L1‖y − vn‖L∞ + ‖f − fn‖L1‖vn‖L∞

≤ −
∫ 1

0

fy dx + ‖f‖L1 |y − vn|H1 + ‖f − fn‖L1 |v|H1(3.5)

≤ −
∫ 1

0

fy dx + 2‖f‖2
L1 + 2|y|2H1 .(3.6)

Using Lemma 3.3 and the fact that vn(1) = y(1) for all n ∈ N, we obtain from (3.5)
and (3.6),

−
∫ 1

0

fnvn dx− gvn(1) → −
∫ 1

0

fy dx− gy(1) as n → ∞, and(3.7)

−
∫ 1

0

fnvn dx− gvn(1) ≤ −
∫ 1

0

fy dx− gy(1) + 2‖f‖2
L2(0,1) + 2|y|2H1 .

To deal with the higher-order terms, let J(z) = J0(z) + J1(z), where J0(z) =

J(z)χ(−∞,1](z). In the interval (xn
i−1, x

n
i ), we have v′n = n

∫ xn
i

xn
i−1

y′ dx and, using



GRADIENT FLOWS AS A SELECTION PROCEDURE 1225

Jensen’s inequality J0(v
′
n) ≤ n

∫ xn
i

xn
i−1

J0(y
′) dx (note that 1/n is the length of the

interval). If we define

an(x) = n

∫ xn
i

xn
i−1

J0(y
′) dx + sup

z≥1
J(z) for x ∈ (xn

i−1, x
n
i ),

then J(v′n) ≤ an(x) a.e. in (0, 1) and

∫ 1

0

an(x) dx =

∫ 1

0

J0(y
′) dx + sup

z≥1
J(z)=:A.

In particular, we also have∫ 1

0

J(v′n) dx ≤
∫ 1

0

J(y′) dx + sup
z≥1

J(z),

which, together with (3.7) gives

En(vn) ≤
[
2‖f‖2

L1 + sup
z≥1

J(z)

]
+ E(y) + 2|y|2H1 .(3.8)

Since x �→ J0(y
′(x)) ∈ L1(0, 1), we have, by a slightly stronger version of Lebesgue’s

differentiation theorem ([12], section 1.7, Corollary 2),

lim
n→∞

an(x) = J0(x) + sup
z≥1

J(z)

for a.e. x ∈ (0, 1), and similarly, v′n → y′ a.e. in (0, 1).
Using Fatou’s lemma, and the fact that J is continuous in (0,∞), we have

2A− lim sup
n→∞

∫ 1

0

∣∣J(v′n) − J(y′)
∣∣ dx = lim inf

n→∞

∫ 1

0

[
2an − |J(v′n) − J(y′)|

]
dx

≥
∫ 1

0

lim inf
n→∞

[
2an − |J(v′n) − J(y′)|

]
dx

= 2

∫ 1

0

[
J0(y

′) + sup
z≥1

J(z)

]
dx

= 2A,

and hence, using also (3.7), we have E(vn) → E(y) as n → ∞.
We have now assembled all results required to prove Theorem 3.1.
Proof of Theorem 3.1. The result is a straightforward application of Theorem

2.4, using the preparations of this section.
Conditions (i) and (ii) were shown in Lemma 3.2. Condition (iii), the equi-

coercivity, follows from the fact that J is bounded below and the forcing term is
Lipschitz continuous. Condition (iv), the convergence of the initial data, is guaran-
teed by standard interpolation error results as well as Lemma 3.4. Condition (v) is
controlled by Lemma 3.3, since En and E|An

differ only in the forcing term.
Let vn(t) be the piecewise affine interpolant of y(t). Using Lemma 3.4 to obtain

(vi) we only need to show that t �→ vn(t) is Borel measurable. In fact, it is fairly
easy to see that it is even continuous. Since in one dimension, H1(0, 1) is embedded
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in C[0, 1], the mapping t �→ y(t) lies in C(0,∞; C[0, 1]) and hence t �→ y(t, x) is
continuous as well. Since

vn(t, x) =

n∑
j=1

y(t, xn
j )ϕn

j (x),

where the ϕn
j are Lipschitz functions, this shows that v ∈ C(0,∞; H1).

4. Convergence of equilibria.

4.1. Elastic deformation. In this section we show that the gradient flows are
a selection criterion which can be used to recover correct elastic behavior even when
the energies are highly nonconvex.

The convergence result of Theorem 3.1 suggests the following procedure: for
sufficiently small forces, there should be a critical point y∗n, in fact a strict local
minimum, of the atomistic functional En, such that y∗n

′ < z1, i.e., the deformation
gradient lies in the region where J is convex. Hence, the gradient flow for sufficiently
close starting points should converge to y∗n as t → ∞ and the deformation gradient
should remain within the region where J is convex. Since the atomistic gradient
flow converges to the continuum gradient flow, the continuum deformation gradient
should remain in this region as well and therefore converge to a critical point in that
set which should be the limit of the y∗n. By y∗ being a critical point of φ, we mean
that |∂φ|(y∗) = 0, where |∂φ|(y) is the | · |H1-slope of φ at y (see section 2.2).

The main difficulty is to show that the critical points y∗n are “uniform local min-
imizers” in the sense that we do not require perturbations to tend to zero as n → ∞.

Before we start with the suggested program, let us note that it would be quite
easy to show all results for the continuum problem directly. However, we wish to
show here that the elastic critical point of the continuum functional (3.4) arises as
the limit of the elastic critical points of the atomistic functionals (3.2). Furthermore,
it is an interesting feature of the analysis that all information about the continuum
functional can be obtained from the knowledge about the atomistic evolution.

Theorem 4.1. Let (En)n∈N, E be defined, respectively, by (3.2) and (3.4), and
assume that |g| + ‖f‖L1(0,1) < J ′(z1) (compare (1.2)).

(a) There exist critical points y∗n of En in An, such that y∗n
′ < z1. These equilibria

are stable in the sense that any |·|H1-gradient flow yn of En with y′n(0, x) < z1

satisfies limt→∞ yn(t) = y∗n in H1(0, 1).
(b) There exists a critical point y∗ ∈ A of E such that limn→∞ y∗n = y∗ and

limt→∞ y(t) = y∗ in H1, for every | · |H1-gradient flow y of E with y′(0, x) ≤
z1 − ε for some ε > 0.

(c) If, in addition, f ≡ 0, then y∗n = y∗ are affine.
On the one hand, Theorem 4.1 shows that the derived continuum model has the

correct qualitative and quantitative behavior for small loads. On the other hand, it
shows that in this situation, the atomistic model behaves essentially like a contin-
uum. In particular, note that point (c) is the Cauchy–Born hypothesis for the model
presented.

Note also that not all proofs in this section are “optimal.” Particularly, the final
proof of Theorem 4.1 is more technical than it needs to be. The purpose of this
discussion is to show that most of the techniques used here can be applied to far more
general problems and are, in particular, dimension independent.

The proof of Theorem 4.1 requires some preparation in the form of several lemmas
which assemble information about the atomistic gradient flow. Let B be the set of all
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deformations whose gradient remains in the region where J is convex, i.e., we define

Bε = {v ∈ A : v′(x) ≤ z1 − ε for a.e. x ∈ (0, 1)},(4.1)

and B = B0.
Lemma 4.2. Suppose that |g|+ ‖f‖L1(0,1) ≤ J ′(z1 − ε) for some ε > 0; then there

exists a unique critical point y∗n of En in the set Bε. The point y∗n satisfies

y∗n
′(x) = (J ′)−1(Fn

j ) ≤ z1 − ε for xn
j−1 < x < xn

j ,(4.2)

where Fn
j is defined by (4.3).

Proof. We compute the critical point by a change of variables. For yn ∈ An, let
rnj = (ynj − ynj−1)/εn. Then, setting

f̃n
i =

⎧⎪⎨
⎪⎩

1
2f

n
1 if i = 0,

1
2 (fn

i + fn
i+1) if 1 ≤ i ≤ n− 1,

1
2f

n
n if i = n,

we have, using yn0 = 0,

En(yn) =

n∑
j=1

εnJ(rnj ) −
n∑

j=0

εnf̃
n
j y

n
j − gynn

=

n∑
j=1

εnJ(rnj ) −
n∑

j=1

εnf̃
n
j

j∑
i=1

εnr
n
i − g

n∑
i=1

εnr
n
i

=

n∑
j=1

εnJ(rnj ) −
n∑

i=1

εnr
n
i

[
g +

n∑
j=i

εnf̃
n
j

]

=

n∑
j=1

εn
[
J(rnj ) − Fn

j r
n
j

]
,

where

Fn
i = g +

n∑
j=i

εnf̃
n
j = g +

εn
2

(fn
i + fn

n ) +

n−1∑
j=i+1

εnf
n
j .(4.3)

To compute rnj , we differentiate En with respect to rnj , which gives the equation

∂En(yn)

∂rnj
= εn

[
J ′(rnj ) − Fn

j

]
= 0 for j = 1, . . . , n,

or, equivalently, J ′(rnj ) = Fn
j . We estimate Fn

j , using the assumption that ‖f‖L1 +
|g| ≤ J ′(z1 − ε), by

|Fn
j | =

∣∣∣∣∣g +
1

2

∫ xn
j

xn
j−1

f(x) dx +

∫ xn
n−1

xn
j

f(x) dx +
1

2

∫ 1

xn
n−1

f(x) dx

∣∣∣∣∣
≤ |g| +

∫ 1

xn
j−1

|f(x)|dx

≤ |g| + ‖f‖L1(0,1)

≤ J ′(z1 − ε).(4.4)
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In the region {z < z1}, J ′(z) is strictly increasing and hence invertible. Therefore,

rnj = (J ′)−1(Fn
j ) ≤ z1 − ε

describes the unique critical point of En in Bε.
Lemma 4.3. Under the conditions of Lemma 4.2, if yn : [0,∞) → An is an

| · |H1-gradient flow of En with yn(0) ∈ Bε, then yn(t) ∈ Bε for all t > 0.
Proof. Consider the time-discrete approximation (Un(tj))j=0,1,..., as described in

Lemma 2.5, for some fixed, sufficiently small time-step τ . Let Ri
n(tj) be as in the

proof of Lemma 4.2. Then, Rn(tj) minimizes

1

2τ
‖Rn(tj) −Rn(tj−1)‖2

L2 + En(Rn(tj)).(4.5)

As in the proof of Lemma 4.2, we compute the Euler–Lagrange equation in terms of
Ri

n(tj). At the minimum, the equation

1

τ

(
Ri

n(tj) −Ri
n(tj−1)

)
= Fn

j − J ′(Ri
n(tj))

has to be satisfied. For sufficiently small τ , there is a unique solution. Now assume
inductively that Ri

n(tj−1) ≤ z1 − ε. To show that Ri
n(tj) ≤ z1 − ε, assume this is not

true. Then Fn
j −J ′(Ri

n(tj)) < 0, which gives a contradiction. Hence, we have that for

all i = 1, . . . , n and j ∈ N, Ri
n(tj) ≤ z1 − ε. As τ → 0, the discrete solution converges

to the gradient flow yn and hence y′n ≤ z1 − ε a.e. in (0, 1).
Corollary 4.4. Under the conditions of Lemma 4.2, every | · |H1-gradient flow

yn with yn(0) ∈ Bε satisfies the evolutionary variational inequality

1

2

d

dt
|yn − v|2H1 +

α

2
|yn − v|2H1 + En(yn) ≤ En(v) ∀v ∈ Bε,(4.6)

where α = minz≤z1−ε J
′′(z) > 0. In particular, we have

|yn(t) − y∗n|H1 ≤ e−αt|yn(0) − y∗n|H1 .

Proof. We set Ẽn = En|Bε
and show that yn is also a gradient flow for Ẽn

by considering the minimization problem (4.5) again. (Note that this procedure is
equivalent to replacing En outside of Bε by a uniformly convex functional.) Since the
minimizer remains in Bε, it is also the minimizer of

1

2τ
‖Rn(tj) −Rn(tj−1)‖2

L2 + Ẽn(Rn(tj)),

and hence the limit of the time-discretizations must also be the gradient flow of Ẽn.
By arguing as in the proof of Lemma 3.2, we find that Ẽn is α-convex (i.e., λ-convex
with λ = α), and hence yn satisfies (4.6) if we replace En with Ẽn. For v ∈ Bε,
however, the functionals are the same.

On testing (4.6) with v = y∗n, and multiplying the resulting inequality by e2αt,
we obtain

1

2

d

dt

(
eαt|yn(t) − y∗n|H1

)2

≤ eαt
(
En(y∗n) − En(yn(t))

)
≤ 0.

Integrating from 0 to T gives the result.
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Proof of Theorem 4.1. Lemmas 4.2 and 4.3 and Corollary 4.4 immediately imply
item (a) and we only need to establish the facts about the continuum limit. Note
that almost all of the following analysis is independent of the specific structure of the
problem. The only crucial condition which we require is that yn(t) → y(t) as n → ∞,
for every t ≥ 0, and yn(t) → y∗n as t → ∞, uniformly in n.

For item (b), we first need to show that, given an initial condition y(0) for the
“continuum” |·|H1-gradient flow satisfying the assumptions of the theorem, there exist
“atomistic” initial conditions yn(0) which satisfy the assumptions of Lemma 4.3. Let
y′(0, x) ≤ z1− ε for a.e. x ∈ (0, 1). Letting yn(0, x) be the piecewise affine interpolant
of y(0, x), we have

y′n(0, x) =
1

εn

∫ xn
i

xn
i−1

y′(0, x) dx ≤ z1 − ε, x ∈ (xn
i−1, x

n
i ).

Therefore, the atomistic | · |H1-gradient flows with starting point y′n(0, ·) converge
uniformly in n (compare to Corollary 4.4) to the equilibria y∗n, computed in item (a)
or Lemma 4.2. We use this fact to estimate

|y∗n − y∗n′ |H ≤ |y∗n − yn(t)|H + |yn(t) − yn′(t)|H + |yn(t) − y∗n′ |H
≤ 2const.e−αt + |yn(t) − yn′(t)|H ,

thus showing that (y∗n)n∈N is a Cauchy-sequence. We denote its limit in A by y∗. To
see that y(t) → y∗ as t → ∞, consider

|y(t) − y∗|H ≤ inf
n∈N

(|y(t) − yn(t)|H + |yn(t) − y∗n|H + |y∗n − y∗|) ≤ const.e−αt.

We have shown that the “discrete” equilibria y∗n converge to a “continuum” de-
formation y∗ and that y(t) → y∗.

The fact that y∗ is a critical point of E is easily verified by hand, but in fact
this follows from the general theory as well, using the concepts introduced in section
2.2. It is straightforward to show that the functionals En Γ(H1)-converge to E in the
strong H1 topology. We merely note the limsup condition (2.10) is given by Lemma
3.4 while for the lim inf condition (2.9) E and En can be decomposed into a convex,
lower semicontinous part and a continuous, uniformly convergent part (compare to
the proof of λ-convexity in Lemma 3.2).

Since the functionals E and (En)n∈N are also uniformly λ-convex, Lemma 2.6,
shows that

|∂E|(y∗) ≤ lim inf
n→∞

|∂En|(y∗n) = 0,

where |∂E(n)| denotes the | · |H1-local slope of the functionals E(n).
We conclude the discussion of elastic behavior with a remark on the structure

of the elastic critical points. It may not be surprising that the continuum “elastic”
critical point computed in section 4.1 are actually not local minimizers with respect
to the H1-topology. Indeed, let us assume that f ≡ 0 and 0 < g < J ′(z1) and define
the curve s �→ v(s) by

v′(s) = y∗′ +
1

s
χ(1/2,1/2+sk).
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It is straightforward to establish that for k ≥ 2p, v ∈ C0,1/p(0, s0; W
1,p) and E(v(s)) <

E(y∗), where s0 > 0 and C0,1/p denotes the usual space of Hölder continuous functions.
Thus, the critical point y∗ is not an H1-local minimum of the energy E(y). This is
also reflected by the fact that we only allow W1,∞ perturbations in Theorem 4.1.

Why, we should ask ourselves, is this not in contradiction with Theorem 4.1? If
there exists a curve along which the energy decreases, should the gradient flow not
find this curve? The explanation is that the curve v(s), which we have constructed,
is not absolutely continuous in H1(0, 1) and hence is not a candidate for the gradi-
ent flow evolution. An interesting question is whether there actually can exist an
absolutely continuous curve starting in y∗ along which the energy decreases strictly.
Unfortunately, we are unable to answer this question at this point. A negative answer
would lead to an interesting selection criterion for equilibria. It would in particular
imply that the choice of evolution is not so crucial after all, as such equilibria would
be stable under any “sufficiently smooth” evolution.

4.2. Instability and fracture. If the forces f and g are sufficiently strong, then
they will cause the material to break, i.e., the atoms debond. Mathematically, this
means that the deformation gradient of the atomistic or continuum deformation en-
ters the region where J is concave. In dimensions higher than one, though, the model
is unable to describe fracture. There, effects other than debonding of atoms, most no-
tably dislocations, become highly important and cannot be neglected. The discussion
in this section can therefore not be generalized directly to higher dimensions.

If we do not restrict the motion of the material, i.e., if we let M = ∞ (compare
to section 3), then the gradient flows yn(t) and y(t) will not converge to a stationary
point as t → ∞, but diverge. Hence, we restrict the possible deformations by setting
M to be a real number, z1 < M < ∞. We assume throughout this section that f ≡ 0
and g > J ′(z1).

Proposition 4.5. There exists t1 > 0 and α ∈ W1,∞(0,∞) satisfying α̇(t) > 0
if t < t1 and α(t) = M if t ≥ t1, such that the solution of the | · |H1-gradient flow in
A with y(0, x) = x is

y(t, x) = α(t)x.

Proof. We change coordinates to r(t, x) = y′(t, x) to obtain, formally for the
moment, the equation

rt(t, x) = g − J ′(r(t, x)),

which is the same ordinary differential equation for every point x ∈ (0, 1). Further-
more, g − J ′(r(t, x)) > 0 for all x and t, hence α(t) is strictly increasing. Since the
solution we have obtained is Lipschitz continuous in time, it is the required gradient
flow.

When we reach a time t1 for which y(t1, 1) = M , the deformation y will be fixed
at y(1, t) = M for t ≥ t1. To see this, we consider again the time-discretization with
initial value r0 = M . The next timestep is the minimizer of∫ 1

0

[
1

2τ
|r −M |2 + J(r) − gr

]
dx,

subject to (r) :=
∫ 1

0
r dx ≤ M . If (r) < M , then r must satisfy

1

τ
(r −M) + J ′(r) = g.(4.7)



GRADIENT FLOWS AS A SELECTION PROCEDURE 1231

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1

1
t = 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.2

1.4
t = 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5
2

2.5

t = 38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5
t = 2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
5

10
15

t = ∞   ?

Fig. 4.1. Snapshots of the deformation gradients of an | · |H1 -gradient flow evolution, showing
the instability of the final state, computed with 51 “atoms.” The new final state (t = ∞) after
instability sets in is not computed but guessed. This figure shows an unstable computation and
should not be mistaken for the exact solution of the model! Note also the different scales in the
respective plots.

Since (r) < m, there must exist a set of positive measure where r ≤ M − ε for some
ε > 0. However, since J ′ is bounded above, (4.7) cannot be satisfied in this set, if τ
is sufficiently small.

By a uniqueness argument, we find that y(t, x) satisfies the partial differential
equation

−y′′t = J ′(y′)′ = J ′′(y′)y′′, y(t, 0) = 0, y(t, 1) = M, y(t1, x) = Mx,

which can be easily seen to be solved by y(x, t) = Mx. Therefore, the evolution
remains in the affine state.

Proposition 4.5 suggests that in our model fracture will never occur. However,
the analytical solution obtained is highly unstable under perturbation as Figure 4.1,
where a numerical computation is shown, demonstrates. In all computations, we
chose J(z) to be strictly increasing for z > z1, i.e., there exists no threshold for the
deformation gradient beyond which there are no internal forces.

In a second experiment we dominate the numerical round-off errors, and thus
the instabilities in the | · |H1-gradient flow computation, by a controlled perturbation
which could be interpreted, for example, as an impurity in the material. At time
t = 7.6, we perturb the position of one node (or atom) by an amount of 10−8. The
effect of this is that the “fracture” occurs exactly at this position; see Figure 4.2 for
the computational results. The instability of the evolution very much conforms with
experimental observation that rupture in many types of materials is a highly unstable
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Fig. 4.2. Snapshots of the deformation gradients of an | · |H1 -gradient flow evolution, computed
with 51 “atoms,” with a controlled perturbation at time t = 7.6 by an amount of 10−8. The final
state (t = ∞) is not computed but guessed. Note also the different scales in the respective plots.

process. No fracture experiment can be reproduced exactly. Thus, the instability of
the evolution could be thought of as representing the uncertainty of where damage
occurs.

5. Remarks on extensions to two and three dimensions. The simple prob-
lem we have investigated here has a fair amount of one-dimensional structure. Al-
though most of the techniques developed here can be readily generalized, the extension
to two and three dimensions, which is of great importance to the modeling of material
behavior, is not entirely trivial.

The first difficulty to notice is that the passage to higher dimensions in a simple
nearest-neighbor system based on the Lennard–Jones potential suffers from a loss of
λ-convexity, since the atomistic deformations do not necessarily have to remain orien-
tation preserving. By cutting off the Lennard–Jones potential at the origin, a process
which is intuitively reasonable but difficult to justify rigorously, the convergence of the
gradient flow can be recovered completely. A more interesting, and mathematically
much more challenging, alternative would be to consider a gradient flow with respect
to a different metric, which may allow the blow-up behavior of the Lennard–Jones
potential, but such a metric seems to be presently unavailable.

To analyze elastic equilibria, it is necessary to obtain L∞ bounds on the defor-
mation gradient. This step poses the biggest challenge in higher dimensions as these
bounds cannot be computed explicitly anymore. One possible avenue to obtain them
would be to use the implicit function theorem, for which uniform bounds can be
constructed with a slightly refined analysis. It would be necessary, however, that
the solution of the linearized system lies in W1,∞(Ω), which can only be obtained in
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some very restrictive cases, e.g., with smooth domains and Dirichlet boundary condi-
tions. At re-entrant corners or interfaces between Dirichlet and Neumann boundaries
(for example, a crack tip), the nearest neighbor model is too simple to describe the
material behavior accurately.

While the convergence theory for gradient flows can still be analyzed if finite-range
interactions are added to the energy functional, the analysis of the equilibria seems to
be far more difficult if we consider damaged states, but remains essentially unchanged
for elastic deformation. The case of infinity-range interactions is completely unclear.
For examples of atomistic models with finite-range interactions and their relation to
continuum theories, see [25, 9].

Finally, it should be noted that different evolutions can be analyzed as well. For
example, it is straightforward to extend the convergence result from the gradient flow
evolution to linear viscoelasticity following, for example, the theory developed in [7].
It is more difficult in this setting, however, to analyze the resulting stationary points
in similar detail.
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Abstract. This paper presents a uniqueness theorem for a system of nonlinear elliptic PDEs.
This system is related to a quantum chemistry model, namely the Thomas–Fermi–von-Weizsäcker
model. The present result is concerned with the solution of a system modeling a semicrystal, i.e.,
a periodic structure filling a half-space. This kind of uniqueness theorem has been studied in a
previous work [I. Catto, C. Le Bris, and P.-L. Lions, Mathematical Theory of Thermodynamic Limits:
Thomas–Fermi Type Models, Clarendon Press, Oxford University Press, New York, 1998] for the case
of a whole crystal. We give here a simpler version of their proof, and then an adaptation to the case of
a semicrystal. The methods we use are the maximum principle, supersolution methods, and elliptic
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1. Introduction. In this article we study the following system:⎧⎨
⎩

−Δu + u7/3 − φu = 0,
−Δφ = m− u2,
u ≥ 0,

(1.1)

where m is a nonnegative measure satisfying the following hypotheses:
(H0) Supp(m) ⊂ {x = (x1, x2, x3) ∈ R

3, x3 ≤ 0} := H;
(H1) sup

x∈H
m(B1(x)) < +∞;

(H2) ∃R > 0 such that inf
x∈H

m(BR(x)) > 0.

System (1.1) is sometimes called the Thomas–Fermi–von Weizsäcker (TFW) sys-
tem, in link with the corresponding model. In such a setting, m is the measure defining
the nuclei, for example,

m =

N∑
i=1

δXi

is the measure of N point nuclei of positions {Xi}1≤i≤N . These nuclei are surrounded
by N electrons of density ρ ≥ 0, and the corresponding energy reads

ETFW (ρ, {Xi}) =

∫
R3

|∇√
ρ|2 +

3

5
ρ

5
3 −

N∑
i=1

∫
R3

ρ(x)

4π|x−Xi|
dx

+
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

4π|x− y|dxdy +
1

2

∑
i �=j

1

4π|Xi −Xj |
.
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The electrons are assumed to be in their ground state, that is, ρ is the solution of the
following minimization problem:

ETFW({Xi}) = inf

{
ETFW(ρ, {Xi}), ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρ = N

}
.

Setting u =
√
ρ, the corresponding Euler–Lagrange equation reads (see [2]):

−Δu + u7/3 +

[(
u2 −

N∑
i=1

δXi

)
∗ 1

4π|x|

]
u = θu,

where θ ∈ R is the Lagrange multiplier associated to the mass constraint. Therefore,
setting m =

∑N
i=1 δXi

and φ = (m − u2) ∗ 1
4π|x| + θ, one finds (1.1). The above

derivation may be made rigorous (see [2]) if N is finite (basically because the energy
ETFW(ρ, {Xi}) is convex with respect to ρ), but it is not clear when N is infinite,
or equivalently when m satisfies hypotheses of the type (H0), (H1), and (H2). This
problem is usually referred to as the “thermodynamic limit problem.” As is explained
in section 4, the main difficulty in such a problem is to prove uniqueness for the limit
system (1.1) with hypotheses (H0), (H1), and (H2).

Of course, one may also expect some difficulties for the existence of solutions
to (1.1) due to the absence of boundary conditions. The natural strategy to deal
with this problem is precisely to use a thermodynamic limit as described in section 4.
Another possibility is to define the solution (uR, φR) of the system (1.1) set on the
ball BR with Dirichlet boundary conditions, prove that this solution is bounded in
suitable spaces, and pass to the limit. Both strategies are equivalent. The first one is
described in detail in [7].

In the following, we use the notation (here, Ω is a domain of R
3)

Lp
unif(Ω) =

{
f ∈ L1

loc(Ω), sup
x∈Ω

‖f‖Lp(B1(x)∩Ω) < ∞
}
.

In [7] it is proved that (1.1) has a unique solution (u, φ) ∈ L∞(R3) × L1
unif(R

3)
assuming (H1) and (H2), where H is replaced by R

3 (see Theorem 2.1).

After giving (in section 2) a proof of Theorem 2.1 simpler than that in the original
[7], we prove the following result in section 3.

Theorem 1.1. Let m be a nonnegative measure satisfying (H0), (H1), and (H2).
Then the system (1.1) has a unique solution (u, φ) in L∞(R3) × L1

unif(R
3).

As already pointed out above, we give in section 4 an application to the TFW
theory.

Remark 1.2. The power 7
3 in (1.1) may be replaced by any p > 1. Indeed, the

important point is that the corresponding TFW energy is strictly convex in ρ. The

term up in (1.1) corresponds to the term
∫
ρ

p+1
2 in the energy, which is strictly convex

as far as p > 1. Note, however, that technically, the case 1 < p ≤ 3 may be treated
with exactly the same methods, whereas in the case p > 3, Lemmas 3.2 and 3.3 need
to be adapted.

2. The case when m is bounded from below. As announced above, this
section is devoted to a proof of Theorem 2.1, which, regarding the uniqueness, is
simpler than that given in [7].
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Theorem 2.1 (uniqueness for a TFW crystal, [7]). Let m be a measure on R
3,

which satisfies the following assumptions:
(H1’) sup

x∈R3

m(B1(x)) < +∞;

(H2’) ∃R > 0 such that inf
x∈R3

m(BR(x)) > 0.

Then, problem (1.1) has a unique solution (u, φ) ∈ L∞(R3) × L1
unif(R

3).
Proof. We leave aside the question of existence, which is dealt with in [7]. In

addition, we only recall, again from [7], that any solution (u, φ) ∈ L∞(R3)×L1
unif(R

3)
of (1.1) satisfies the following:

u ∈ C0(R3) and ∇u ∈ L2
unif(R

3);(2.1)

∀p < 3, φ ∈ Lp
unif(R

3);(2.2)

∃α > 0 such that ∀x ∈ R
3, u(x) ≥ α.(2.3)

For the sake of simplicity, we assume that m is smooth (say, continuous), so that
standard elliptic regularity results [8] imply that u and φ are locally smooth, and in
particular that u, φ ∈ W 1,∞(R3). The following proof is easily adapted to the case
of m being a measure. Details of this generalization can be found in [7]. See also
Remark 2.2.

Consider now two solutions, (u, φ) and (v, ψ) of (1.1). Setting w = u − v and
η = φ− ψ, we have{

−Δw + u7/3 − v7/3 − 1
2 (φ + ψ)w − 1

2 (u + v)η = 0,
−Δη = −(u + v)w.

(2.4)

Then multiplying the above equations by wξ2 and ηξ2, respectively, where ξ ∈ D(R3),
and integrating over R

3 we get

∫
R3

|∇(wξ)|2 +
(
u7/3 − v7/3

)
wξ2 − 1

2
(φ + ψ)w2ξ2 =

∫
R3

1

2
(u + v)ηwξ2 + w2|∇ξ|2,

(2.5)

∫
R3

|∇(ηξ)|2 =

∫
R3

−(u + v)wηξ2 + η2|∇ξ|2.(2.6)

Since the operator Lu = −Δ + u4/3 − φ satisfies Luu = 0, with u ≥ 0, we necessarily
have Lu ≥ 0. Similarly, Lv = −Δ + v4/3 − ψ ≥ 0, so that 1

2 (Lu + Lv) ≥ 0:〈
1

2
(Lu + Lv) (wξ), wξ

〉
≥ 0.

In addition, we have (
u7/3 − v7/3

)
w ≥

(
u4/3 + v4/3

)
w2.(2.7)

Using (2.3), this implies
(
u7/3 − v7/3

)
w ≥ 1

2

(
u7/3 − v7/3

)
w+νw2, for some constant

ν > 0. Inserting this into (2.5), we have

ν

∫
R3

w2ξ2 ≤
∫

R3

1

2
(u + v)ηwξ2 + w2|∇ξ|2.
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Hence, by using (2.6) we obtain

ν

∫
R3

w2ξ2 +
1

4

∫
R3

|∇η|2ξ2 ≤
∫

R3

(w2 + η2)|∇ξ|2.(2.8)

We then take for ξ a sequence of functions in D(R3) converging to the function

ξ(x) =
1

(1 + |x|2) k
2

, with
1

2
< k < 1.(2.9)

Note that ∇ξ ∈ L2(R3), Δξ ∈ L2(R3), but ξ /∈ L2(R3). Inequality (2.8) implies that∫
R3

w2ξ2 < +∞ and

∫
R3

|∇η|2ξ2 < +∞.

So far, our proof reproduces that of [7]. As in [7], we want now to prove that∫
η2ξ2 < +∞,(2.10)

but we will now argue somewhat differently. For this purpose, we multiply the first
equation of (2.4) by ηξ2, and integrate over R

3

1

2

∫
R3

(u + v)η2ξ2 =

∫
R3

(−Δw)ηξ2 +
(
u7/3 − v7/3

)
ηξ2 − 1

2

∫
R3

(φ + ψ)wηξ2.(2.11)

Noticing that u, v, φ, and ψ are bounded, we have, for some constant C independent
of ξ:

∫
R3

∣∣∣u7/3 − v7/3
∣∣∣ |η|ξ2 ≤ C

∫
R3

|w| |η|ξ2 ≤ C

(∫
R3

w2ξ2

) 1
2
(∫

R3

η2ξ2

) 1
2

,

along with

∫
R3

|φ + ψ| |w| |η|ξ2 ≤ C

∫
R3

|w| |η|ξ2 ≤ C

(∫
R3

w2ξ2

) 1
2
(∫

R3

η2ξ2

) 1
2

,

and ∣∣∣∣
∫

R3

(−Δw)ηξ2

∣∣∣∣ =

∣∣∣∣
∫

R3

w
(
−Δ

(
ηξ2

))∣∣∣∣
≤

∣∣∣∣
∫

R3

w(−Δη)ξ2

∣∣∣∣ +

∣∣∣∣
∫

R3

wη
(
−Δξ2

)∣∣∣∣ +

∣∣∣∣4
∫

R3

wξ∇η∇ξ

∣∣∣∣
≤

∫
R3

(u + v)w2ξ2 + C + 4

(∫
R3

w2ξ2

) 1
2
(∫

R3

|∇η|2|∇ξ|2
) 1

2

< +∞.

Using these three inequalities to bound the right-hand side of (2.11), we find that,
since u and v are bounded away from zero,

∫
R3

η2ξ2 ≤ C + C

(∫
R3

η2ξ2

) 1
2

hence

∫
R3

η2ξ2 < +∞.
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The end of the argument then mimics again that of [7]: Defining the function ξε(x) =
ξ(εx), we have |∇ξε|2 ≤ ε2−2kξ2, so

ν

(1 + ε2R2)k

∫
BR

w2 ≤
∫

R3

w2ξ2
ε ≤

∫
R3

(w2 + η2)|∇ξε|2 ≤ ε2−2k

∫
R3

(
w2 + η2

)
ξ2.

Letting ε go to zero, we find that w is zero on BR. Since this is valid for any R > 0,
we have w = 0. This in turn implies that η = 0.

Remark 2.2. Let us point out here that we have made additional regularity
assumptions on the measure m in order to simplify the proof, but the general case
may be treated in the same way. Roughly speaking, one needs in this case to use
interpolation spaces, noting that φ, ψ ∈ L3,∞

unif (R
3) (see [3] or [7]) instead of L∞(R3).

This is sufficient to carry out the estimates of the preceeding proof. For instance,
(2.8) and (2.9) still imply

∫
w2ξ2 +

∫
|∇η|2ξ2 < +∞ because∫

R3

η2|∇ξ|2 ≤ C
∑
j∈Z3

1

(1 + |j|2)k+1
‖η‖L2

unif (R
3)

≤ C
∑
j∈Z3

1

(1 + |j|2)k+1
‖η‖L3,∞

unif (R
3) < +∞.

The same kind of remark holds for the proof of (2.10).
The above proof may be easily adapted to prove the following result, which asserts

that the kernel of the linearized operator of system (1.1) is reduced to {0}.
Corollary 2.3. Let m be a measure satisfying (H1’) and (H2’), and let (u, φ) ∈

L∞(R3) × L1
unif(R

3) be the unique solution of (1.1). If (w, η) ∈ L∞(R3) × L1
unif(R

3)
satisfies {

−Δw + 7
3u

4/3w − φw − uη = 0,
−Δη = −2uw,

(2.12)

then w = 0 and η = 0.

3. Uniqueness for (1.1) with (H0). We now turn to the proof of Theorem 1.1.
The problem here is that u is no longer bounded from below. However we will see that
u(x) = u(x1, x2, x3) converges to 0 as x3 goes to infinity, uniformly with respect to x1

and x2. A careful analysis of this decay then allows us to circumvent the difficulty.
Here again, we assume that m is smooth, so that by elliptic regularity [8], u and

φ are smooth. The following proof may be adapted with exactly the technique of [7].

3.1. A priori bounds. We first prove the following lemma.
Lemma 3.1. Let m be a smooth function satisfying (H0), (H1), and (H2). Con-

sider (u, φ) ∈ L∞(R3) × L1
unif(R

3) and (v, ψ) ∈ L∞(R3) × L1
unif(R

3) two solutions of
(1.1). Then, setting w = u− v and η = φ− ψ, there exists two constants, A > 0 and
α > 0, such that

∀x ∈ H, |w(x)| + |η(x)| ≤ Ae−α|x3|.(3.1)

Proof. We first prove that w and η go to zero as x3 −→ −∞. We argue by
contradiction and assume that there exists a sequence xn such that xn

3 −→ −∞ as n
goes to infinity, and |w(xn)| + |η(xn)| ≥ ε for some constant ε > 0. Then defining

ũn(x) = u(x + xn), ṽn(x)= v(x + xn), φ̃n(x) = φ(x + xn),(3.2)

ψ̃n(x)= ψ(x + xn), mn(x) = m(x + xn),



1240 X. BLANC

since all these functions are bounded, we can extract a converging subsequence in
D′(R3). Elliptic regularity implies that ũn, ṽn, φ̃n, and ψ̃n also converge in L∞

loc(R
3)

(at least) to some functions, which we, respectively, denote by ũ, ṽ, φ̃, and ψ̃. The
limit of mn is denoted by m̃, which satisfies (H1’) and (H2’). Hence, (ũ, φ̃) and
(ṽ, ψ̃) are two different bounded solutions of (1.1), with m satisfying the hypotheses
of Theorem 2.1. This is a contradiction.

We next prove that the decay is indeed exponential. We set, for any R > 0,

M(R) = sup
x3≤−R

|w(x)| + |η(x)|.

We want to prove that

∃R > 0, ∃γ ∈ (0, 1) s.t. ∀T ≥ 1, M(R + T ) ≤ γM(T ).(3.3)

Indeed, this implies that for any S ≥ R+1, M(S) ≤ γS−R−2M(R+1), which implies
(3.1).

Arguing again by contradiction, we assume that (3.3) is not satisfied, i.e., that
there exist sequences Rn, γn, Tn satisfying the following:⎧⎨

⎩
Rn −→ +∞,
γn −→ 1,
Tn ≥ 1

and M(Rn + Tn) > γnM(Tn).

Thus, one can find a sequence xn ∈ R
3 such that xn

3 ≤ −Rn−Tn,
|w(xn)|+|η(xn)|

M(Rn+Tn) −→ 1

and |w(xn)|+ |η(xn)| ≥ γnM(Rn) as n goes to infinity. Using here again the notation
(3.2), we find that, extracting a subsequence if necessary, (ũn, φ̃n) converges to a

solution of (1.1). Moreover, defining w̃n(x) = w(x+xn)
M(Rn) and η̃n(x) = φ(x+xn)

M(Rn) , we also

have convergence (possibly after extracting a subsequence) for (w̃n, η̃n). We pass
to the limit in the corresponding equation, finding that the limit (w, η) of (w̃n, η̃n)
satisfies (2.12). According to Corollary 2.3, we thus have w = 0 and η = 0, which is
a contradiction.

Next, we study the decay of u and φ in Hc.
Lemma 3.2. Let m be a smooth function satisfying (H0), (H1), and (H2). Con-

sider a solution (u, φ) of (1.1). Then, there exists a constant A > 0 such that

∀x ∈ Hc, u(x) ≤ A

(1 + x3)
3
2

,(3.4)

∀x ∈ Hc, φ(x) ≤ A

(1 + x3)2
.(3.5)

Proof. These decay estimates are simple applications of a method of Benguria
and Lieb [1]. It was also used by Solovej [11]. A complete proof is also given in
[4]. We only indicate here the main ideas: Let ω ∈ D(R3) be such that ω is radially
symmetric, ω ≥ 0 and

∫
ω = 1, and define, for any R > 0,

gR(x) =
1

R3
ω
( x

R

)
and φR = φ ∗ gR.

We then have, using the fact that the operator −Δ + u4/3 − φ is nonnegative,

φR ≤ gR ∗ u4/3 +
B

R2
,(3.6)
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where B > 0 is a constant depending only on ω. We then point out that φ is
subharmonic in Hc, and use the mean-value inequality to prove that:

if x3 ≥ R, φR(x) ≥ φ(x).(3.7)

We then define φ̃R(x) = φR(x) − B
R2 , and get, using (3.6) and Jensen’s inequality,

φ̃R ≤
(
gR ∗ u2

)2/3
.

Hence, convoluting the second equation of (1.1) by gR,

−Δφ̃R +
(
φ̃R

)3/2

+
≤ m ∗ gR.

In particular, if x3 ≥ R, we have −Δφ̃R(x) +
(
φ̃R(x)

)3/2

+
≤ 0. Hence, using superso-

lution methods (note that U(x) = C
(1+x3)4

is a supersolution of −ΔU + U3/2 = 0 in

Hc if C is large enough), one easily gets that for any R > 0,

φ̃R(x) ≤ B′R2

(x2
3 −R2)2

if x3 > R,

where B′ is a universal constant. This estimate and (3.7) imply that

if x3 ≥ R, φ(x) ≤ B′R2

(x2
3 −R2)2

+
B

R2
.

Choosing R = x3

2 , we thus find (3.5).

Next, we use the first equation of (1.1) and have −Δu+u
7
3 = φu ≤ 3

7u
7/3+ 4

7φ
7/4,

so that −Δu + 4
7u

7/3 ≤ 4A7/4

7(1+x3)7/2 . Using supersolution methods once again (here,

a supersolution is given by U(x) = C
(1+x3)3/2 , with C > 0 large enough) we find

(3.4).
Estimate (3.5) only provides an upper bound on φ. We now improve this estimate

and show that φ(x) converges to some nonpositive constant l as x3 goes to infinity
Lemma 3.3. Let m be a smooth function satisfying (H0), (H1), and (H2). If

(u, φ) ∈
(
L∞(R3)

)2
is a solution of (1.1), then there exists two constants C > 0 and

l ≤ 0 such that

∀x ∈ Hc, |∇φ(x)| ≤ C

(1 + x3)
7/4

(3.8)

∀x ∈ Hc, |φ(x) − l| ≤ C

(1 + x3)
3/4

.(3.9)

Proof. We first use standard regularity estimates [8], and get, since φ ∈ C2,α(R3)
for some α > 0,

‖∇φ‖C0(BR) ≤ C

(
1

R
‖φ‖C0(B2R) + R‖Δφ‖C0(B2R)

)
,(3.10)
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for any R > 0, where C is a constant independent of R. Fixing x ∈ Hc, using R = x3

4
and for BR the ball centered at x, we have

∀x ∈ Hc, |∇φ(x)| ≤ C

1 + x3
.(3.11)

Next, we fix again a ball BR ⊂ Hc, and define in this set two functions φ1 and φ2 by{
−Δφ1 = −u2,
φ1|∂BR

= 0,

{
−Δφ2 = 0,
φ2|∂BR

= φ.

Hence, φ = φ1 + φ2 in BR. The maximum principle and (3.4) imply that − 1
2x3

≤
φ1(x) ≤ 0 in BR. We then use the Gagliardo–Nirenberg inequality [10], and get

‖∇φ1‖L∞(BR) ≤ C‖φ1‖
1
2

L∞(BR)‖Δφ1‖
1
2

L∞(BR),

for some constant C independent of R. Hence, fixing x ∈ Hc and using for BR the
ball BR(x) with R = x3

2 , we have

∀z ∈ BR, |∇φ1(z)| ≤
C

(1 + z3)2
.(3.12)

We then point out that φ2 is explicitly given by the following formula:

φ2(z) = −
∫
∂BR

(z − y) · n
|z − y|3 φ(y)dσ(y),(3.13)

where σ is the Lebesgue measure on ∂BR, and n denotes the normal vector of ∂BR

at the point y. We then slightly modify BR, in a way which does not change estimate
(3.12), by setting BR = BR(x + Re3), where e3 is the third vector of the canonical
basis. Letting R go to infinity, we get (3.13) with Jx := {x + y, y ∈ ∂H} = {y ∈
R

3, y3 = x3} instead of ∂BR, namely

φ2(z) = (z3 − x3)

∫
Jx

φ(y)

|z − y|3 dσ(y).

We then differentiate this expression with respect to z1 and get

∂1φ2(z) = −3(z3 − x3)

∫
Jx

z1 − y1

|z − y|5φ(y)dσ(y)

= −3(z3 − x3)

∫
Jx

z1 − y1

|z − y|5 (φ(y) − φ [(z1, z2, x3)]) dσ(y).

Hence, setting R′ > 0 (which will be chosen later on), we get, using (3.11),

|∂1φ2(z)| ≤ C|z3 − x3|
∫
y2
1+y2

2≤R′2

R′dy1dy2

|x3| ((z3 − x3)2 + y2
1 + y2

2)
5
2

+C|z3 − x3|
∫
y2
1+y2

2≥R′2

dy1dy2

((z3 − x3)2 + y2
1 + y2

2)
5
2

≤ C
R′

|x3|(z3 − x3)2
+ C

|z3 − x3|
R′3 .
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Hence, setting R′ = z3 − x3, we get |∂1φ2(x)| ≤ C
x3(z3−x3)

+ C
(z3−x3)2

. The same

argument holds for ∂2φ2 so that, using (3.12), we have, for any x ∈ Hc,

∀z ∈ R
3 / z3 ≥ x3, |∂1φ(z)| + |∂2φ(z)| ≤ C

x3(z3 − x3)
+

C

(z3 − x3)2
.(3.14)

We then go back to (3.13), and carry out exactly the same computation as for ∂1φ2,
but for ∂3φ2, finding

∀z ∈ R
3 / z3 ≥ x3, |∂3φ2(z)| ≤

C

x3(z3 − x3)1/2
+

C

(z3 − x3)3/2
.

Setting z3 = 2x3, we thus have

∀x ∈ Hc, |∇φ(x)| ≤ C

(1 + x3)
3/2

.(3.15)

This estimate implies that φ converges to some limit l as x3 goes to +∞, uniformly
with respect to (x1, x2). We then define φ̃ = φ− l, which satisfies (3.15) and

∀x ∈ Hc,
∣∣∣φ̃(x)

∣∣∣ ≤ C

(1 + x3)
1/2

.

We then repeat exactly the same argument as above, but with φ̃ instead of φ, and we
finally have (3.8), which implies (3.9). The fact that l ≤ 0 is a direct consequence of
(3.5).

Lemma 3.4. Let m be a smooth function satisfying (H0), (H1), and (H2). If

(u, φ) ∈
(
L∞(R3)

)2
is a solution of (1.1), then there exist two constants A > 0 and

a > 0 such that

∀x ∈ Hc, u(x) ≥ Ae−a|x3|(3.16)

∀x ∈ H, u(x) ≥ A.(3.17)

Proof. The estimate (3.17) may be proved with exactly the same method as for
(2.3). We refer to [7] for the proof. Turning to (3.16), we use the fact that φ ∈ L∞(R3),

so that −Δu + u
7
3 = φu ≥ −bu, for some constant b > 0. Since u is also bounded,

this implies that there exists some c > 0 such that

−Δu + cu ≥ 0.

Hence, convoluting the above inequality with the Yukawa potential e−
√

c|x|

|x| , we get

that

4πu(x) ≥ c

2
u ∗ e−

√
c|x|

|x| ≥ Ac

2

∫
H

e−
√
c|x−y|

|x− y| dy ≥ Be−
√
cx3 ,

for some constant B > 0.
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3.2. Proof of Theorem 1.1. In this section, we conclude the proof of Theo-
rem 1.1. We assume that (u, φ) and (v, ψ) are two solutions of (1.1), and use the
same notation as in section 2, namely w = u − v and η = φ − ψ. We recall that,
for simplicity, we have assumed that m is smooth, so that (2.1) and (2.2) hold in the
present case. We now carry out the same calculation as in section 2, multiplying the
first line of (2.4) by wξ2 and the second line by ηξ2, where ξ ∈ D(R3), finding (2.5)

and (2.6). Here again, the operators Lu = −Δ + u
4
3 − φ and Lv = −Δ + v

4
3 − ψ are

nonnegative, and (2.7) is still valid, so that (2.8) translates into

1

2

∫
R3

(
u

4
3 + v

4
3

)
w2ξ2 +

1

4

∫
R3

|∇η|2ξ2 ≤
∫

R3

(w2 + η2)|∇ξ|2.(3.18)

We then use for ξ a sequence of functions converging to ξ(x) =
(
1 − |x−x0|

2R

)
+
, for any

R > 0 and any x0 ∈ R
3, and find that there exists some constant C > 0 independent

of R and x0 such that∫
BR(x0)

(
u

4
3 + v

4
3

)
w2 ≤ CR,

∫
BR(x0)

|∇η|2 ≤ CR.(3.19)

Moreover, (2.11) is still valid, and allows to prove, using the same computations as in
section 2, that for some constant C independent of x0 and R,∫

BR(x0)

(u + v)η2 ≤ CR.(3.20)

Next, we apply Lemma 3.3 to φ and ψ, and infer that η satisfies (3.9) for some l ∈ R.

Hence, for t > 0 large enough, we have η2(x1, x2, t) ≥ l2

2 , for any (x1, x2) ∈ R
2.

Applying (3.20) and (3.16), we have, for all t > 0 large enough,

CR ≥
∫
DR(t)

(u + v)η2 ≥ 2Ae−atR2 l
2

2
,

where DR(t) =
{

(x1, x2, x3) ∈ R
3,

√
x2

1 + x2
2 ≤ R, t ≤ x3 ≤ t + 1

}
. We then let R go

to infinity and find that l = 0, and thus

∀x ∈ Hc, |η(x)| ≤ C

(1 + x3)3/4
,(3.21)

for some constant C. We then go back to (3.18), and using here again the same kind
of function ξ, we have, using estimates (3.1), (3.4), and (3.21),∫

R3

w2|∇ξ|2 ≤
(∫ 0

−∞
A2e−2α|x3|dx3 +

∫ +∞

0

dx3

(1 + x3)
3

)
1

R2

∫
x2
1+x2

2≤R2

dx1dx2 ≤ C,

and∫
R3

η2|∇ξ|2 ≤
(∫ 0

−∞
A2e−2α|x3|dx3 +

∫ +∞

0

dx3

(1 + x3)
3/2

)
1

R2

∫
x2
1+x2

2≤R2

dx1dx2 ≤ C,

for some constant C > 0. Hence, using here again the same argument as the one
leading to (3.19) and (3.20), we find that∫

R3

(
u

4
3 + v

4
3

)
w2 < +∞,

∫
R3

|∇η|2 < +∞,

∫
R3

(u + v)η2 < +∞.(3.22)
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We then use ξ(x1, x2, x3) =
(
1 − x1

R

)
+

(
1 − x2

R

)
+
, and compute, setting

ER =
{
(x1, x2, x3) ∈ R

3, |x1| ≤ R and |x2| ≤ R
}
,

and using (3.18) again,

1

8

∫
ER

2

(
u

4
3 + v

4
3

)
w2 ≤ 1

R2

∫
ER

η2 + w2

≤ 1

R2

∫
ER∩{|x3|≤A}

η2 + w2 +

∫
ER∩{|x3|≥A}

η2 + w2

≤ CeγA

R2

[∫
R3

(
u

4
3 + v

4
3

)
w2 + (u + v)η2

]
+

CR2

R2A
1
2

≤ C

(
eγA

R2
+

1

A
1
2

)
,

where A is any positive number, and γ and C are positive constants independent of
R and A. We first let R go to infinity, and then A, which proves that w = 0. This
clearly implies that η = 0.

4. Application: Thermodynamic limit for a semicrystal in the Thomas–
Fermi–von Weizsäcker model. In this section we give a few remarks on the notion
of thermodynamic limit, and on the link between this problem and the present work.

4.1. The Thomas–Fermi–von Weizsäcker model for molecules. In the
Thomas–Fermi–von Weizsäcker (TFW) model, a molecule consisting of N point nu-
clei, which have positions {Xi}1≤i≤N and charges {Zi}1≤i≤N , together with M elec-
trons, has its energy modelled by the functional

ETFW (ρ, {Xi}) =

∫
R3

a|∇√
ρ|2 + bρ

5
3 −

N∑
i=1

∫
R3

Ziρ(x)

4π|x−Xi|
dx

+
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

4π|x− y|dxdy +
1

2

∑
i �=j

ZiZj

4π|Xi −Xj |
,(4.1)

where a and b are two positive constants. The function ρ ∈ L1(R3) denotes the elec-
tronic density and is constrained by

∫
ρ = M . The energy is defined only for densities

ρ such that ρ ≥ 0 and
√
ρ ∈ H1(R3), and the minimization problem corresponding to

the determination of the ground state reads

ETFW({Xi}) = inf

{
ETFW(ρ, {Xi}), ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρ = M

}
.(4.2)

In the special case of a = 1 and b = 3
5 , and if we set

m =

N∑
i=1

ZiδXi ,

u =
√
ρ, and φ = (ρ−m)∗ 1

|x| − θ, then the Euler–Lagrange equation of (4.2) is (1.1).

The constant θ in the definition of φ is the Lagrange multiplier associated to the mass
constraint in (4.2).

In the special case a = 0, the model reduces to the well-known Thomas–Fermi
model [9].
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4.2. Thermodynamic limit for a semicrystal. The thermodynamic limit is
a way of deriving a solid-state model from a molecular one. Given an infinite number
of atoms, one approximates it by a finite system, then lets the number of particles
go to infinity in a suitable way and passes to the limit. We refer to [7] and [9] for a
general presentation and the definition of the ground state energy of crystals (infinite
periodic lattices) in the setting of Thomas–Fermi type theories.

The setting we consider for the finite size system is (4.1)–(4.2), and we will assume
that Zi = 1 for all i ∈ {1, 2, . . . , n}, although this can be generalized. The positions
of the nuclei are assumed to be a subset of a periodic lattice intersected with H. For
the sake of simplicity (this can be easily generalized to other periodic lattices, or to
nonperiodic geometry, as in [5]) we assume that the set of nuclei is

{Xi}i∈N = Z
3 ∩H,

and is approached by the truncated sets

ΛR = Z
3 ∩H ∩BR,

for R > 0, where BR is the ball of radius R centered at zero. Note that other types
of truncation are also possible, as pointed out in [7]. We then define, according to
(4.1)–(4.2), the number

IR = ETFW (ΛR) ,

and denote by ρR the corresponding solution. We address the following questions:
(L1) Does the energy per unit volume IR

|BR| converge as R goes to infinity?

(L2) Does the minimizer ρR of IR converge to a limit ρ∞ as R goes to infinity?
(L3) Is the limit ρ∞ the solution of some minimization problem of the form (4.2)?

The method developed in [7] to deal with such a problem may be summarized as
follows:

1. First, derive bounds on the density ρR,
2. next, using these bounds, pass to the limit in the Euler–Lagrange equation

of IR,
3. show a uniqueness theorem on the limit equation,
4. use this uniqueness property to prove a uniform convergence of the solution,

which implies convergence of the energy.
Let us point out here that in the above strategy, step 3 is by far the most difficult.
Now, looking at the proofs given in [7] for the case of a full crystal, it is clear

that the proofs of the first point carry through the present case. The next step is
also clearly straightforward. Turning to step 3, we point out that the Euler–Lagrange
equation of problem IR can be rewritten as

{
−ΔuR + u

7/3
R − φRuR = 0,

−ΔφR = mR − u2
R,

with uR =
√
ρ
R

and φR = (ρR −mR) ∗ 1
|x| − θR (the number θR is the Lagrange

multiplier), and

mR =
∑
k∈ΛR

δk.
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Passing to the limit in this system, one gets (1.1) with

m =
∑

k∈Z3∩H

δk,(4.3)

which clearly satisfies (H0), (H1), and (H2). Hence, one can apply Theorem 1.1,
proving that the limit of the solution is unique. The thermodynamic limit problem
can thus be dealt with in the present case.

Our final point is to write down a minimization problem for the limit density:
since the solution of (1.1) with m defined by (4.3) is unique, it is periodic of period
one in x1 and x2. Moreover, the exponential decay proved in Lemma 3.1 implies that
u − uper decays exponentially as x3 goes to −∞, where uper is the solution of (1.1)
with

mper =
∑
k∈Z3

δk.

The same decay is true for ∇u. In order to write down the limit minimization problem,
we first define a periodic Coulomb potential (see [4, 6] for more details):

G(x) = −2π|x3| +
∑

k∈Z2×{0}

(
1

|x− k| −
∫
K×{0}

dy

|x− y − k|

)
,(4.4)

where K is the unit square of R
2. We assume that χ is a cut-of function depending

only on x3 such that

χ(x) = 1 if x3 < −1,
χ(x) = 0 if x3 > 1,∫
Q

[
(χ(x) − 1x3<0)u

2
per(x)

]
dx = 0,

where Q is the “unit cell”

Q = K × R =

{
(x1, x2, x3) ∈ R

3 / x1 ∈
[
− 1

2
,
1

2

)
, x1 ∈

[
− 1

2
,
1

2

)}
,

and we define the following energy, with ρ0 = χu2
per,

E(ρ̃) =

∫
Q

(ρ̃ + ρ0)
5/3 − ρ

5/3
0 +

∫
Q

|∇
√

ρ̃ + ρ0|2 − |∇√
ρ0|2 −

∫
Q

ρ̃G

+
1

2

∫
Q

∫
Q

ρ̃(x)G(x− y)ρ̃(y)dxdy

+

∫
Q

∫
Q

ρ̃(x)G(x− y)ρ0(y)dxdy,(4.5)

where we have set formally ρ̃ = ρ− ρ0, and have subtracted the infinite energy of ρ0

in order to get a finite value of the energy. This allows one to define the variational
problem as follows:

inf

{
E(ρ̃), ρ̃ ∈ H1

per(Q), ρ̃ + ρ0 ≥ 0,
√

ρ̃ + ρ0 ∈ H1
loc(R

3),

∫
Q

ρ̃ = 0

}
,(4.6)
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where H1
per(Q) is the set of functions in H1(Q), which satisfy periodic boundary

conditions in x1 and x2.
One can then check that the minimization problem (4.6) is well posed, that its

solution does not depend on χ, and that its Euler–Lagrange equation is (1.1) with m
defined by (4.3), where u =

√
ρ̃ + ρ0 and φ is the effective potential.
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1. Introduction. Let Ω ⊂ R
2 be a bounded smooth domain representing the

region occupied by an elastic material.
Let σ0 ⊂ Ω be a simple smooth curve and define, for a positive small ε, the set

ωε = {x ∈ Ω : d(x, σ0) < ε} ,

which represents an inclusion of small size made of a different elastic material.
Let C0 and C1 be the elastic tensor fields in Ω \ ωε and ωε, respectively.
Given a traction field g on ∂Ω, the displacement field uε, generated by this traction

in the body containing the inclusion ωε, solves the following system of linearized
elasticity: {

div (Cε∇̂uε) = 0 in Ω,

(Cε∇̂uε) · ν = g on ∂Ω,
(1)

where Cε = C0χΩ\ωε
+C1χωε , ∇̂uε = 1

2

(
∇uε + (∇uε)

T
)

is the symmetric deformation
tensor and ν denotes the outward unit normal to ∂Ω.

Let us also introduce the background displacement u0, namely the solution of{
div (C0∇̂u0) = 0 in Ω,

(C0∇̂u0) · ν = g on ∂Ω.
(2)

The goal of this paper is to find an asymptotic expansion for (uε−u0)|∂Ω
as ε → 0.

An analogous expansion has been derived in [BFV] for the case of thin conductivity
inclusions. These expansions represent a powerful tool to solve the inverse problem
of identifying the inclusions, given boundary measurements (see, [ABF] and [ABF2]
for the case of thin conductivity inclusions and [AK] for further references).
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In [AKNT] the authors derive an asymptotic expansion for the boundary displace-
ment field (uε − u0)|∂Ω

in the case of diametrically small elastic inclusions, namely
inclusions of the form z + εB, where z is a point in Ω and B is a bounded domain
containing the origin. The approach they use, based on the method of layer poten-
tials (see [AK]), allows them to find a very accurate expansion. Unfortunately, this
method does not seem to work in the case of thin elastic inclusions. Hence, in order to
derive the expansion in our context, we apply similar arguments as in [BFV] for con-
ductivity inclusions; more precisely, we use a variational approach and fine regularity
estimates for solutions of elliptic systems with discontinuous coefficients obtained by
Li and Nirenberg in [LN]. The main difficulty arising in the framework of linear elas-
ticity, compared to the conductivity case, consists of finding an explicit representation
formula for the tensor appearing in the first order term of the asymptotic expansion.

The plan of the paper is as follows: in section 2 we introduce some notation and
state the main result. Section 3 is devoted to the derivation of some estimates and
properties of the displacement field, and in section 4 we prove our main result.

2. The main result. Let us introduce some notation and assumptions that will
be useful in what follows.

(a) We will assume that σ0 is of class C3 and that there exists some K > 0 such
that

d(σ0, ∂Ω) ≥ K−1,

‖σ0‖C3 ≤ K,(3)

K−1 ≤ length(σ0) ≤ K.

Moreover, we assume that for every x ∈ σ0 there are two discs, B1 and B2, of radius
K−1 such that

B1 ∩B2 = B1 ∩ σ0 = B2 ∩ σ0 = {x}.

The latter assumption guarantees that different parts of σ0 do not get too close, so
that ωε does not self-intersect for small ε.

(b) Ω and ωε are both homogeneous and isotropic, i.e., the elastic tensor fields
C0 and C1 are of the following form:

(Cm)ijlk = λmδijδkl + μm(δkiδlj + δkjδli), for i, j, k, l = 1, 2, m = 0, 1,(4)

where (λ0, μ0) and (λ1, μ1) are the Lamè coefficients corresponding to Ω \ ωε and ωε,
respectively, and (λ0 − λ1)

2 + (μ0 − μ1)
2 
= 0.

(c) There are two positive constants α0 and β0 such that

min(μ0, μ1) ≥ α0, min(2λ0 + 2μ0, 2λ1 + 2μ1) ≥ β0.(5)

We note that the last conditions ensure that Cε is strongly convex in Ω, i.e., if we set
ξ0 = min(2α0, β0) , then

CεA ·A ≥ ξ0|A|2,

for any symmetric 2 × 2 matrix A, where A ·B =
∑

ij aijbij and |A|2 = A ·A.

(d) We shall prescribe a traction field g ∈ H−1/2(∂Ω,R2) satisfying the compati-
bility condition ∫

∂Ω

g ·R = 0,(6)
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for every infinitesimal rigid displacement R, that is R(x) = c + Wx, where c is any
constant vector in R

2 and W any constant 2 × 2 skew matrix.
Under our assumptions there exist weak solutions uε and u0 ∈ H1(Ω,R2) to

the problems (1) and (2), respectively (see, for example, [V] or [F]). Concerning
uniqueness we recall that solutions of the above problems are uniquely determined
up to infinitesimal rigid displacements. Hence, in order to uniquely identify such
solutions, we assume that uε and u0 satisfy the normalization conditions∫

∂Ω

u = 0,

∫
Ω

∇u− (∇u)T = 0.(7)

It is easy to see that if uε is solution of (1), then it solves the Lamé system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0Δuε + (λ0 + μ0)∇(divuε) = 0 in Ω \ ωε,
μ1Δuε + (λ1 + μ1)∇(divuε) = 0 in ωε,

ui
ε = ue

ε on ∂ωε,(
C0∇̂ui

ε

)
ν =

(
C1∇̂ue

ε

)
ν on ∂ωε,

(8)

where ν is the outward unit normal to ∂ωε, and, for x ∈ ∂ωε,

ue
ε(x) = lim

y→x

y∈Ω\ωε

uε(y), ui
ε(x) = lim

y→x
y∈ωε

uε(y),

and

∇̂ue
ε(x) = lim

y→x

y∈Ω\ωε

∇̂uε(y), ∇̂ui
ε(x) = lim

y→x
y∈ωε

∇̂uε(y).

For y ∈ Ω, we will denote by N(·, y) the Neumann function related to Ω, i.e., the
weak solution to the problem{

div
(
C0∇̂N(·, y)

)
= −δy Id in Ω,(

C0∇̂N(·, y)
)
· ν = − 1

|∂Ω| Id on ∂Ω,
(9)

with the normalization conditions (7) and where Id is the identity matrix in R
2.

Note that N(x, y) is regular for x 
= y and, at x = y, has the same singularities

of Γ(x− y), where Γ = (Γij)
2
i,j=1 is the fundamental solution in the free space of the

system

div (C0∇̂ ·) = 0 in R
2,

and is given by

Γij(x) =
A

2π
δij ln |x| − B

2π

xixj

|x|2 ,

where A = 1
2

(
1
μ0

+ 1
λ0+2μ0

)
and B = 1

2

(
1
μ0

− 1
λ0+2μ0

)
.

Let us fix an orthonormal system (n, τ) on σ0 such that n is a unit normal vector
field to the curve and τ is a unit tangent vector field. If σ0 is a closed curve, then we
will take n to point in the outward direction of the domain it encloses. Let κ denote
the curvature of σ0 and, for a, b ∈ R

2, let a⊗b denote the tensor product a⊗b = aibj .
We are now ready to state our main result.
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Theorem 2.1. Let Ω ⊂ R
2 be a bounded smooth domain and let σ0 ⊂⊂ Ω be

a simple curve satisfying (3). Assume (4), (5), and (6) and let uε and u0 be the
solutions to (1) and (2), respectively, satisfying (7). For every x ∈ σ0, there exists a
fourth order symmetric tensor field M(x) such that, for y ∈ ∂Ω and ε → 0,

(uε − u0)(y) = 2ε

∫
σ0

M(x)∇̂u0(x) · ∇̂N(x, y) dσ0(x) + o(ε).(10)

The term o(ε) is bounded by Cε1+θ‖g‖H−1/2(∂Ω), with 0 < θ < 1 and C depending
only on θ, Ω, α0, β0, and K.

Furthermore, on σ0,

M∇̂u0 = adivu0 Id + b∇̂u0

+c

(
∂(u0 · τ)

∂τ
+ κ(u0 · n)

)
τ ⊗ τ + d

∂(u0 · n)

∂n
n⊗ n,

where

a = (λ1 − λ0)
λ0 + 2μ0

λ1 + 2μ1
, b = 2(μ1 − μ0)

μ0

μ1
,(11)

c = 2(μ1 − μ0)

[(
2λ1 + 2μ1 − λ0

λ1 + 2μ1
− μ0

μ1

)]
,(12)

and

d = 2(μ1 − μ0)
μ1λ0 − μ0λ1

μ1(λ1 + 2μ1)
.(13)

The proof of the theorem is contained in section 4.

3. Energy and a priori estimates. In this section we will show that, for ε → 0,

‖uε − u0‖H1(Ω) = O(ε1/2).(14)

In order to establish it we will need the following version of the Korn inequality.
Lemma 3.1. Let Ω be a Lipschitz connected open set in R

2. Let u ∈ H1(Ω,R2)
and let W0 =

∫
Ω

1
2

(
∇u− (∇u)T

)
.

Then, there exists a constant C such that

‖∇u−W0‖L2(Ω) ≤ C‖∇̂u‖L2(Ω).(15)

For the proof, see [T, section 3].
Proposition 3.2. Let uε and u0 be solutions to (1) and (2), respectively. There

exists a constant C depending on Ω, K, α0, and β0, such that

‖uε − u0‖H1(Ω) ≤ Cε1/2‖g‖H−1/2(∂Ω).(16)

Proof. Since
∫
∂Ω

(uε − u0) = 0, by the Poincaré inequality there exists a constant
C, depending on Ω, such that∫

Ω

|uε − u0|2 ≤ C

∫
Ω

|∇(uε − u0)|2.(17)
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It thus suffices to estimate ‖∇(uε − u0)‖L2(Ω).
By the strong convexity of Cε and the Korn inequality, in the form of Lemma 3.1,

applied to uε − u0, and recalling that uε and u0 satisfy (7), we get∫
Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) ≥ ξ0

∫
Ω

|∇̂(uε − u0)|2

≥ C

∫
Ω

|∇(uε − u0)|2,(18)

where C depends on α0, β0, and Ω.
Now, observe that∫

Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1)∇̂u0 · ∇̂(uε − u0),(19)

which follows by integration by parts and uses the fact that (Cε∇̂uε) ·ν = (C0∇̂u0) ·ν
on ∂Ω. Indeed∫

Ω

Cε∇̂(uε − u0) · ∇̂(uε − u0) −
∫
ωε

(C0 − C1)∇̂u0 · ∇̂(uε − u0)

=

∫
Ω\ωε

C0∇̂(uε − u0) · ∇̂(uε − u0) +

∫
ωε

(C1∇̂uε − C0∇̂u0) · ∇̂(uε − u0)

=

∫
Ω

Cε∇̂uε · ∇̂(uε − u0) −
∫

Ω

C0∇̂u0 · ∇̂(uε − u0)

=

∫
∂Ω

((
Cε∇̂uε

)
· ν −

(
C0∇̂u0

)
· ν

)
· (uε − u0) dσ = 0,

hence (19) holds.
On the other hand, by the Hölder inequality,∫

ωε

(C0 − C1) ∇̂u0 · ∇̂(uε − u0) dx

≤ max {2|μ0 − μ1|, |λ0 − λ1|} ‖∇u0‖L∞(ωε)|ωε|1/2‖∇(uε − u0)‖L2(Ω).(20)

In order to bound ‖∇u0‖L∞(ωε) note that for small ε, say ε < K/2, the distance
between ωε and ∂Ω is bounded from below by K/2. Hence, by standard interior
regularity estimates for elliptic systems (see [C]),

‖∇u0‖L∞(ωε) ≤ C‖u0‖H1(Ω),

where C depends on α0, β0, and K.
By the divergence theorem, the trace theorem (see [LM]), and the Poincaré in-

equality,

‖u0‖H1(Ω) ≤ C‖g‖H−1/2(∂Ω),

where C depends only on Ω. Finally,

‖∇u0‖L∞(ωε) ≤ C‖g‖H−1/2(∂Ω),(21)

where C depends on Ω, α0, β0, and K.
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So, by (18), (19), and (20) we obtain

‖∇(uε − u0)‖L2(Ω) ≤ C|ωε|1/2‖g‖H−1/2(∂Ω),

where C = C(Ω, α0, β0,K). By assumption (3), we can estimate

|ωε| ≤ Cε,(22)

where C depends only on K. By putting together (21), (22), and the Poincarè in-
equality (17), we get (16).

Besides the energy estimates (16), a key ingredient to establish the asymptotic
expansion of Theorem 2.1 is a gradient estimate for elliptic systems modeling com-
posite materials that has been established by Li and Nirenberg in [LN]. Here we state
and use a simplified version of Proposition 5.1 in [LN].

Let D be the unit square D = [−1, 1] × [−1, 1], and let f0, . . . , fl+1 ∈ C2([−1, 1])
such that

−1 = f0(x1) < f1(x1) < · · · < fl+1(x1) = 1 for x1 ∈ [−1, 1].

Let

Dm = {x = (x1, x2) ∈ D : fm−1(x1) < x2 < fm(x1)} for 1 ≤ m ≤ l + 1.

We suppose that the origin does not belong to the graphs of the functions fj , and we
denote by m0 the index for which

fm0
(0) < 0 < fm0+1(0).

Let us also set 1
2D = [− 1

2 ,
1
2 ] × [− 1

2 ,
1
2 ].

Let C be a bounded symmetric Lamé tensor defined in D and such that C is
constant in each Dm with corresponding Lamé coefficients λm and μm. Then the
following estimate holds.

Proposition 3.3. Let u ∈ H1(D,R2) be a weak solution to

div
(
C∇̂u

)
= 0 in D.

Then, for any x ∈ Dm0
∩ 1

2D,

|∇u(x) −∇u(0)| ≤ C‖u‖L2(D)|x|α,(23)

where α ∈ (0, 1/4) and C depends on α, l, λm, μm, and ‖fm‖C2([−1,1]), for m =
1, . . . , l + 1.

For the proof of this result, see [LN, section 5].

4. Proof of Theorem 2.1. We divide the proof into several steps: in the first
step we write (uε − u0)|∂Ω

in terms of an integral over ωε of the product of ∇̂ui
ε and

∇̂N .
In the second step, by using the estimate of Proposition 3.3, we reduce this integral

to an integral over some part of ∂ωε. In the third part, we use the transmission
conditions and introduce the tensor M. The fourth part contains the conclusion of
the proof.
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First step.
We are going to show that, for y ∈ ∂Ω,

(uε − u0)(y) =

∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y).(24)

In order to get (24) we recall that, for y ∈ Ω, the function N(·, y) satisfies∫
Ω

C0∇̂N(·, y) · ∇̂v = −v(y) +
1

|∂Ω|

∫
∂Ω

v ∀v ∈ H1(Ω).

By choosing v = uε − u0 and using the normalization (7) we get∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) = −(uε − u0)(y).(25)

Observe now that∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1) ∇̂N(·, y) · ∇̂uε

+

∫
Ω

Cε∇̂N(·, y) · ∇̂uε −
∫

Ω

C0∇̂N(·, y) · ∇̂u0.(26)

Since uε and u0 are solutions to (1) and (2), respectively, we have∫
Ω

C0∇̂N(·, y) · ∇̂u0 =

∫
∂Ω

g ·N(·, y)

=

∫
Ω

Cε∇̂uε · ∇̂N(·, y),

hence (26) becomes∫
Ω

C0∇̂N(·, y) · ∇̂(uε − u0) =

∫
ωε

(C0 − C1) ∇̂N(·, y) · ∇̂uε,

and, by inserting this last relation into (25,) we get (24) for y ∈ Ω.
Finally, since uε − u0 is continuous up to ∂Ω, we get (24) for any y ∈ ∂Ω.
Second step.

Let β be a constant 0 < β < 1, and set

ω′
ε =

{
x + μn(x) : x ∈ σ0, d(x, ∂σ0) > εβ , μ ∈ (−ε, ε)

}
.

Notice that if σ0 is a closed simple curve, then ω′
ε = ωε.

Let us write∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y) =

∫
ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y)

+

∫
ωε\ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y).(27)

Concerning the last term in (27)∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y)
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂(uε − u0) · ∇̂N(·, y)
∣∣∣∣∣

+

∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂u0 · ∇̂N(·, y)
∣∣∣∣∣ .(28)
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In order to bound the first term on the right-hand side (RHS) of (28) we use the
energy estimate (16) and the fact that, for y ∈ ∂Ω, ‖∇N(·, y)‖L∞(ωε) is bounded
uniformly in ε. Moreover, since

|ωε \ ω′
ε| ≤ Cε1+β ,

we get ∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂(uε − u0) · ∇̂N(·, y)
∣∣∣∣∣ ≤ Cε1+β/2‖g‖H−1/2(∂Ω),

where C = C(Ω,K, α0, β0).
In the last term on the RHS of (28) we use the regularity estimates for u0 so that∣∣∣∣∣
∫
ωε\ω′

ε

(C1 − C0) ∇̂u0 · ∇̂N(·, y)
∣∣∣∣∣ ≤ C‖∇u0‖L∞(ωε)‖∇N(·, y)‖L∞(ωε) · |ωε \ ω′

ε|

≤ Cε1+β‖g‖H−1/2(∂Ω),

where C = C(K,α0, β0) and so (27) becomes, for ε → 0,∫
ωε

(C1 − C0) ∇̂uε · ∇̂N(·, y) =

∫
ω′

ε

(C1 − C0) ∇̂uε · ∇̂N(·, y) + O(ε1+β/2).(29)

Now let us denote by σ′
μ, for μ ∈ [−ε, ε], the curve

σ′
μ =

{
x + μn(x) : x ∈ σ0, d(x, ∂σ0) > εβ

}
.

For every point x + μn(x) ∈ ω′
ε (for μ ∈ (−ε, ε)), let us consider the point x +

εn(x) ∈ σ′
ε and let us compare ∇uε(x + μn(x)) with ∇ui

ε(x + εn(x)).
More precisely, we will establish that, for α ∈ (0, 1/4),

|∇uε(x + μn(x)) −∇ui
ε(x + εn(x))| ≤ Cε−β(2+α)εα‖g‖H−1/2(∂Ω),(30)

where C = C(K,α0, β0, α).
Let ε be small enough to have

2ε <
εβ

2
√

2
.(31)

We note that the distance between x + μn(x) and x + εn(x) is smaller than 2ε and
that, in a neighborhood of x + μn(x) of radius εβ , the boundary ∂ωε is represented
by graphs of smooth functions. In particular, if we set the origin to x + μn(x), up to
a rotation of the coordinate system (z1, z2), we have that there exist two functions g1

and g2 such that, for − εβ√
2
< z1 < εβ√

2
,

Cε(z1, z2) =

⎧⎪⎨
⎪⎩

C0 if − εβ√
2
< z2 < g1(z1),

C1 if g1(z1) < z2 < g2(z1),

C0 if g2(z1) < z2 < εβ√
2
.

By the a priori assumptions on σ0 we know that

‖g1‖C2 , ‖g2‖C2 ≤ K.
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Consider now the function

v(y) = uε

(
εβ√
2
y

)
,

which is defined in [−1, 1] × [−1, 1]. Notice that v solves

div
(
C̃∇̂v

)
= 0 in (−1, 1) × (−1, 1),

where

C̃(y1, y2) =

⎧⎪⎨
⎪⎩

C0 if − 1 < y2 < f1(y1) =
√

2ε−βg1(
εβ√
2
y1),

C1 if f1(y1) < y2 < f2(y1) =
√

2ε−βg2(
εβ√
2
y1),

C0 if f2(y1) < y2 < 1.

Let us check that we can apply Proposition 3.3, with l = 2 and m0 = 1. Since

|gi(y1)| < εβ√
2

and the derivative of gi is bounded by K for i = 1, 2, then

‖gi‖L∞ ≤ (K + 1)
εβ√
2
, i = 1, 2.

From this last estimate, and from the C2 bounds on g1 and g2, we get

‖fi‖C2([−1,1]) ≤ 2K + 1 for i = 1, 2.

Since we set the origin at the point x + μn(x), we have that

|x + εn(x)| = |x + μn(x) + (ε− μ)n(x)| = |(ε− μ)n(x)| ≤ 2ε.

Hence, if we set y =
√

2ε−β(x + εn(x)) we have, by (31),

|y| =
√

2ε−β |x + εn(x)| ≤
√

2ε−β · 2ε ≤ 1

2
,

and, y ∈ Dm0
∩ 1

2D. By Proposition 3.3,

|∇v(y) −∇v(0)| ≤ C‖v‖L2(D)|y|α,

where C depends only on K, α0, β0, and α ∈ (0, 1/4). If we read this estimate for
the function uε we get∣∣∇uε(x + μn(x)) −∇ui

ε(x + εn(x))
∣∣ ≤ C‖uε‖L2(Ω)ε

−β(2+α)|(μ− ε)n(x)|α

≤ C‖uε‖L2(Ω)ε
−β(2+α)εα.

Since

‖uε‖L2(Ω) ≤ C‖∇uε‖L2(Ω) ≤ C‖g‖H−1/2(∂Ω)

we finally have (30).
Due to (30), we can approximate the values of ∇uε in ωε

′ with the values on σ′
ε.

Let us denote by σ0
′ = {x ∈ σ0 : d(x, ∂σ0) > εβ}. Due to the regularity

assumption on σ0,

dσμ
x = (1 + O(ε))dσ0

x,
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where dσμ
x and dσ0

x denote the infinitesimal arclengths on σ′
μ and σ′

0, respectively.

Hence,

∫
ω′

ε

(C1 − C0) ∇̂uε(x) · ∇̂N(x, y) dx

=

∫ ε

−ε

∫
σ′
μ

(C1 − C0) ∇̂uε(x) · ∇̂N(x, y) dσμ
x dμ

=

∫ ε

−ε

∫
σ0

′
(C1 − C0) ∇̂uε(x + μn(x)) · ∇̂N(x + μn(x), y) dσ0

x dμ + O(ε2)

=

∫ ε

−ε

∫
σ′
0

(C1 − C0) ∇̂uε(x + εn(x)) · ∇̂N(x + εn(x), y) dσ0
x dμ

+O(ε(1−β)(1+α))

= 2ε

∫
σ′
ε

(C1 − C0) ∇̂ui
ε · ∇̂N(·, y) + O(ε1+α−β(2+α)),(32)

for β < α(2 + α)−1.

Third step.
Let us now extend the fields n and τ from σ0 to ω′

ε. For x ∈ σ′
0 we set n and τ equal

to n(x) and τ(x) all along the line segment x + μn(x), for μ ∈ [−ε, ε].

We will show, by using the transmission condition (8), that on σ′
ε,

(C1 − C0) ∇̂ui
ε = Mε∇̂ue

ε ,(33)

where

Mε∇̂ue
ε = adivue

ε Id + b∇̂ue
ε + c

(
∂(ue

ε · τ)

∂τ
+ κε(u

e
ε · n)

)
τ ⊗ τ

+d
∂(ue

ε · n)

∂n
n⊗ n,

with a, b, c, and d given by (11), (12), and (13), and κε being the curvature of σ′
ε.

Let us express the transmission conditions (8) and (C1 − C0) ∇̂ui
ε in the n, τ

coordinate system, namely

∂(ui
ε · τ)

∂τ
+ κε(u

i
ε · n) =

∂(ue
ε · τ)

∂τ
+ κε(u

e
ε · n),

∂(ui
ε · n)

∂τ
− κε(u

i
ε · τ) =

∂(ue
ε · n)

∂τ
− κε(u

e
ε · τ),(34)

λ1

(
∂(ui

ε · τ)

∂τ
+ κε(u

i
ε · n) +

∂(ui
ε · n)

∂n

)
+ 2μ1

∂(ui
ε · n)

∂n

= λ0

(
∂(ue

ε · τ)

∂τ
+ κε(u

e
ε · n) +

∂(ue
ε · n)

∂n

)
+ 2μ0

∂(ue
ε · n)

∂n
,

μ1

(
∂(ui

ε · τ)

∂n
− κε(u

i
ε · τ) +

∂(ui
ε · n)

∂τ

)
= μ0

(
∂(ue

ε · τ)

∂n
− κε(u

e
ε · τ) +

∂(ue
ε · n)

∂τ

)
,



THIN ELASTIC INHOMOGENEITIES 1259

and

(C1 − C0) ∇̂ui
ε = (λ1 − λ0)

[
∂(ui

ε · τ)

∂τ
+

∂(ui
ε · n)

∂n
+ κε(u

i
ε · n)

]
(n⊗ n + τ ⊗ τ)

+ 2(μ1 − μ0)

[(
∂(ui

ε · τ)

∂τ
+ κε(u

i
ε · n)

)
τ ⊗ τ +

∂(ui
ε · n)

∂n
n⊗ n

+
1

2

(
∂(ui

ε · τ)

∂n
+

∂(ui
ε · n)

∂τ
− κε(u

i
ε · τ)

)
(τ ⊗ n + n⊗ τ)

]
.(35)

By solving the system (34) with respect to the derivatives of the components of ui
ε,

and inserting the result into (35), we derive (33).
Now, by inserting (33) into (32), we get∫

σ′
ε

(C1 − C0) ∇̂ui
ε · ∇̂N(·, y) = 2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) + O(ε1+α−β(2+α)).(36)

Fourth step.
We will show that

‖∇ue
ε −∇u0‖L∞(σ′

ε)
≤ Cεγ‖g‖H−1/2(∂Ω)(37)

for some positive γ.
In order to prove the above inequality, we need the following theorem.
Theorem 4.1 (mean value property). Let Ψ be a biharmonic scalar, vector, or

tensor field in a open bounded domain D. Then, for any ball Bρ(y) ⊂⊂ D,

Ψ(y) =
1

2π

[
4

ρ2

∫
Bρ(y)

Ψ(x) dx− 1

ρ

∫
∂Bρ(y)

Ψ(x) dσx

]
.(38)

For the proof of Theorem 4.1, see [N].
Since ∇uε −∇u0 is biharmonic in Ω \ ωε we might use the mean value property

(38) for points in the set ΩK \ ωd, where ΩK =
{
x ∈ Ω : d(x, ∂Ω) > 1

2K

}
and d is

such that 2ε < d.
Observe that, by (38), for every y ∈ ΩK \ ωd and for 0 < λ ≤ d

2 ,

∇(uε − u0)(y) =
1

2π

[
4

λ2

∫
Bλ(y)

∇(uε − u0) −
1

λ

∫
∂Bλ

∇(uε − u0)

]
.(39)

By using the divergence theorem we can rewrite (39) as follows:

∇(uε − u0)(y) =
1

2π

[
4

λ2

∫
∂Bλ(y)

(uε − u0) ⊗ ν̃ dσ − 1

λ

∫
∂Bλ

∇(uε − u0)

]
,

where ν̃ is the outward normal vector to ∂Bλ. If we multiply the last relation by λ3

and integrate from 0 to ρ = d
2 we get

∇(uε − u0)(y) =
12

π

⎡
⎣ 4

d4

∫
B d

2
(y)

(uε − u0) ⊗ r dx− 1

d4

∫
B d

2
(y)

r2∇(uε − u0) dx

⎤
⎦ ,(40)
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where r(x) = x− y, r = |r|.
From (40) and (16) we have that

‖∇(uε − u0)‖L∞(ΩK\ωd) ≤ Cd−2ε
1
2 ,(41)

where C = C(Ω,K, α0, β0). Let x = z + εn(z) be any point on σ′
ε and let xd be the

point xd = z + dn(z). Since the entire line segment from x to xd lies in Ω \ ωε and

has distance greater than εβ

2 from ∂σ0, by Proposition 3.3 and arguing similarly as
we did to prove (30), we have

|∇ue
ε(x) −∇uε(xd)| ≤ Cε−(2+α)βdα‖g‖H−1/2(∂Ω),(42)

where C = C(K,α0, β0).
By combining (41) and (42) we have that for any x ∈ σ′

ε

|∇ue
ε(x) −∇u0(x)| ≤ |∇ue

ε(x) −∇uε(xd)|
+ |∇uε(xd) −∇u0(xd)| + |∇u0(xd) −∇u0(x)|

≤ C
(
dαε−(2+α)β + d−2ε

1
2 + d

)
‖g‖H−1/2(∂Ω) .

By choosing

d = ε
1

2(α+2)
+β

we have (37) with γ = α
2(α+2) − 2β. Notice that γ > 0 if we choose β < α

4(α+2) .

By using (37), we have

2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) = 2ε

∫
σ′
ε

Mε∇̂u0 · ∇̂N(·, y) + O(ε1+γ).

Now, we recall that dσε
x = (1 + O(ε))dσ0 and observe that, by assumption (3),

Mε = (1 + O(ε))M. Hence

2ε

∫
σ′
ε

Mε∇̂ue
ε · ∇̂N(·, y) = 2ε

∫
σ0

M∇̂u0 · ∇̂N(·, y) + O(ε1+γ).(43)

Finally, if we compare the remainders in the expansion in formulas (29), (32),
(36), and (43), we have that (10) holds, if we choose α ∈ (0, 1/4) and β ∈ (0, 1) such
that β < α

4(α+2) .

Remark 4.2. The asymptotic expansion also holds in the case where σ0 = ∪M
i=1σi

and σ1, . . . , σM are disjoint and far from each other. In that case

(uε − u0)(y) = 2ε

M∑
i=1

∫
σi

Mi∇̂u0 · ∇̂N(·, y) dσi + o(ε),

where Mi is the restriction to σi of the tensor M.

REFERENCES

[ABF] H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imper-
fections, Appl. Anal., 83 (2004), pp. 63–76.



THIN ELASTIC INHOMOGENEITIES 1261

[ABF2] H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imper-
fections, II. The case of multiple segments, Appl. Anal., 85 (2006), pp. 87–105.

[AK] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Mea-
surements, Lecture Notes in Math. 1846, Springer-Verlag, Berlin, 2004.

[AKNT] H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions
of solutions of the system of elastostatics in the presence of an inclusion of small
diameter and detection of an inclusion, J. Elasticity, 67 (2002), pp. 97–129.

[BFV] E. Beretta, E. Francini, and M. S. Vogelius, Asymptotic formulas for steady state
voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis,
J. Math. Pures Appl., 82 (2003), pp. 1277–1301.

[C] S. Campanato, Sistemi Ellittici in Forma di Divergenza. Regolarità all’interno,
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PORE, UNDER DOMINANT PECLET AND DAMKOHLER

NUMBERS∗
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Abstract. In this paper we present a rigorous derivation of the effective model for enhanced
diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique.
The starting point is a local pore scale model describing the transport by convection and diffusion of a
reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport
and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with
respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ε). We
give a rigorous mathematical justification of the effective behavior for small ε. Error estimates are
presented in the energy norm as well as in L∞ and L1 norms of the space variable. They guarantee
the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion
formula.

Key words. Taylor’s dispersion, large Peclet number, singular perturbation, surface chemical
reaction, large Damkohler number
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1. Introduction. We consider the transport of a reactive solute by diffusion
and Poiseuille’s convection in a semi-infinite 2D channel. The solute particles do not
react among themselves. Instead they undergo a first-order chemical reaction at the
wall of the channel. Following [12], we consider the following model for the solute
concentration c∗:

(a) transport through channel Ω∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| < H}:

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗ −D∗ ∂2c∗

∂(x∗)2
−D∗ ∂2c∗

∂(y∗)2
= 0 in Ω∗,(1)

where q(z) = Q∗(1 − (z/H)2) and where Q∗ (velocity) and D∗ (molecular diffusion)
are positive constants.

(b) reaction at channel wall Γ∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| = H}:

D∗ ∂c
∗

∂y∗
+ k∗c∗ = 0 on Γ∗,(2)

where k∗ is the surface reaction coefficient.
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The natural way of analyzing this problem is to introduce appropriate scales. This
requires characteristic or reference values for the parameters and variables involved.
The obvious transversal length scale is H. For all other quantities we use reference
values denoted by the subscript R. Setting

c =
c∗

ĉR
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
, Q =

Q∗

QR
, D =

D∗

DR
, k =

k∗

kR
,(3)

where LR is the “observation distance,” we obtain the dimensionless equations

∂c

∂t
+

QRTR

LR
Q(1 − y2)

∂c

∂x
− DRTR

L2
R

D
∂2c

∂x2
− DRTR

H2
D

∂2c

∂y2
= 0 in Ω(4)

and

−DDR

HkR

∂c

∂y
= kc on Γ,(5)

where

Ω = (0,+∞) × (−1, 1) and Γ = (0,+∞) × {−1, 1}.(6)

The equations involve the following time scales:

TL = characteristic longitudinal time scale =
LR

QR
,

TT = characteristic transversal time scale =
H2

DR
,

TC = superficial chemical reaction time scale =
H

kR
,

and the nondimensional numbers

Pe =
LRQR

DR
(Peclet number),

Da =
L2
RkR

HDR
(Damkohler number).

In this paper we fix the reference time by setting TR = TL. We are going to investigate
the behavior of (4)–(5) with respect to the small parameter ε = H

LR
. Specifically, we

will derive expressions for the effective values of the dispersion coefficient and velocity,
and an effective 1D transport equation for small values of ε. To carry out the analysis,
we need to compare the dimensionless numbers with respect to ε. For this purpose
we set

Pe = ε−α and Da = εβ (α, β to be chosen later).

In the absence of chemical reactions, Taylor obtained in his well-known paper [19]
an explicit expression for the enhanced diffusion originating from (1). It is known
as Taylor’s dispersion formula. We will recover this formula as a special case in our
approach by setting α = 1, k = 0 and by assuming Q = O(1). Note that

TT

TL
=

HQR

DR
ε = ε2 Pe = ε (whenever α = 1).
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Introducing the dimensionless numbers in (4)–(5) and considering constant initial/
boundary conditions yields the problem

∂cε

∂t
+ Q(1 − y2)

∂cε

∂x
= Dεα

∂2cε

∂x2
+ Dεα−2 ∂

2cε

∂y2
in Ω+ × (0, T ),(7)

−Dεα−2 ∂c
ε

∂y
= −D

1

ε2Pe

∂cε

∂y
= k

Da

Pe
cε = kεα+βcε on Γ+ × (0, T ),(8)

cε(x, y, 0) = 1 for (x, y) ∈ Ω+,(9)

cε(0, y, t) = 0 for (y, t) ∈ (0, 1) × (0, T ),(10)

∂cε

∂y
(x, 0, t) = 0 for (x, t) ∈ (0,+∞) × (0, T ).(11)

The latest condition results from the y-symmetry of the solution. Further

Ω+ = (0,+∞) × (0, 1), Γ+ = (0,+∞) × {1},

and T is an arbitrarily chosen positive number.
We study the behavior of this problem as ε ↘ 0, while keeping the coefficients Q,

D, and k all O(1). The most interesting case results when α + β = 0 and 0 ≤ α < 2,
because then chemistry balances with flow in the limit as ε ↘ 0. Consequently, we
shall restrict our attention to this situation.

In this paper we prove that the correct upscaling of (7)–(11) gives the 1D parabolic
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tc + Q

(
2

3
+

4k

45D
ε2−α

)
∂xc + k

(
1 − k

3D
ε2−α

)
c

=

(
Dεα +

8

945

Q2

D
ε2−α

)
∂xxc in (0,+∞) × (0, T ),

c|x=0 = 0, c|t=0 = 1, ∂xc ∈ L2((0,+∞) × (0, T )).

(EFF)

We note that for k = 0 and α = 1 this is exactly the effective model of Taylor [19].
What is known concerning the derivation of the effective problem (EFF), with or

without chemical reactions? Below we give a short overview.
• In the absence of chemical reactions, Aris [1] presented a formal derivation using

the method of moments.
• For the probabilistic justification of the Taylor dispersion, in the absence of

chemical reactions, we refer to the lecture notes by Caflisch and Rubinstein [4]. This
approach does not give an error estimate for the approximation.

• There have been numerous attempts to give a rigorous justification for the
approximation in the absence of chemical reactions. The most convincing is the near
rigorous derivation using the center manifold theory by Mercer and Roberts [13]. In
this paper the initial value problem is studied and the Fourier transform with respect
to x is applied. The center manifold theory is applied to obtain effective equations
at various orders, however, without addressing the fact that one is dealing with an
infinite dimensional case.

• Flow with chemistry, as described by (2), is considered by Paine, Carbonell, and
Whitaker [15], who use the “single-point” closure schemes of turbulence modeling by
Launder to obtain a closed model for the averaged concentration.
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These studies do not provide a rigorous mathematical derivation of the Taylor
dispersion formula, and in the presence of the chemical reactions it is even not clear
how to average the problem.

It should be noted that the real interest is in deriving dispersion equations for
reactive flows through porous media. If we consider a porous medium comprising a
bundle of capillary tubes, then we arrive at our problem. The disadvantage is that a
bundle of capillary tubes represents a geometrically oversimplified model of a porous
medium. Nevertheless, there is considerable insight to be gained from the analysis of
our model problem.

Our technique is strongly motivated by the paper by Rubinstein and Mauri [18],
where effective dispersion and convection in porous media is studied using the homog-
enization approach. Their analysis is based on a hierarchy of time scales. In setting
up the dimensionless equations, we followed their approach. To our knowledge, the
only rigorous result concerning effective dispersion in porous media in the presence of
high Peclet numbers (no chemistry) and with the characteristic transport time scale
is given in the recent paper by Bourgeat, Jurak, and Piatnitski [3]. Their approach
uses regular solutions with compatible data for the underlying linear transport equa-
tion. They assume a high order compatibility between the initial and boundary data,
involving derivatives up to order five. They construct a smooth solution of the linear
transport equation, add the appropriate boundary layer and initial layer, and add the
correction due to the perturbation of the mean flow. The effective solution obtained
in this way is an H1-approximation of order ε and an L2-approximation of order ε2.
However, in problems involving chemistry, one often encounters a jump between the
initial value of the concentration and its value imposed at the injection boundary
x = 0. This is also the case in the experiment described by Taylor [19].

Averaging the concentration in a tube with dissolution/precipitation occurring
on the wall and with Pe = O(1) is considered in [5].

For bounds on convection enhanced diffusion in porous media we refer to the work
of Fannjiang, Papanicolaou, Zhikov, Kozlov, and Piatnitski. We do not give specific
references because there is such an enormous number of papers on the subject. A
detailed review of known results on the derivation of the effective equations of motion
for the mean concentration, in the case of general heterogeneous media and transport
velocities, is given in [11]. There one finds the rigorous homogenization theory for the
spatio-temporal periodic velocity fields. However, in [11], the reference time is set to
be the characteristic diffusion time, contrary to the choice made in [3] and the choice
we have made. The case with chemical reactions, but in the absence of the transport,
is considered in [2].

We note that our results also cover the case when the physical parameters result
in large Peclet and small Damkohler numbers. This follows by setting k = 0, yielding
Taylor’s effective equation. In fact the effective equation (20) remains valid; only the
effective terms representing the surface reaction are smaller and less important.

The plan of the paper is the following. In section 2 we study the homogenized
problem. It turns out that it has an explicit solution having the form of a moving
Gaussian, just as the 1D boundary layers of parabolic equations, when viscosity goes
to zero (see [9]). Its behavior with respect to ε and t is singular.

In section 3 we give a justification of a lower order approximation, using a simple
energy argument. In fact this approximation does not use Taylor’s dispersion formula
and gives an error of the same order in L∞(L2) as the solution to the linear transport
equation.



1266 ANDRO MIKELIĆ, VINCENT DEVIGNE, AND C. J. VAN DUIJN

In section 4 we give a formal derivation of the upscaled problem (EFF), using the
approach proposed in [18].

The construction of the spatial boundary layer that takes care of the injection
boundary is carried out in section 5.

Then in sections 6 and 7 we prove that the effective concentration satisfying
the corresponding 1D parabolic problem, with Taylor’s diffusion coefficient and the
reactive correction, is an approximation in L∞(L2) and in L∞(L∞) to the actual
physical concentration.

To satisfy the curiosity of the reader not familiar with singular perturbation tech-
niques, we give here the simplified version of the results stated in Theorems 5–7
from section 7. For simplicity, we compare only the physical concentration cε with c.
Keeping the correction terms is necessary to have the same precision as stated in the
theorems. Throughout the paper H(x) denotes Heaviside’s function

H(x) = 1, x > 0, H(x) = 0, x ≤ 0.(12)

Furthermore, using elementary parabolic theory one concludes that problem (7)–(11)
has a unique bounded variational solution cε, with square integrable derivatives in x
and y. Furthermore, cε belongs to C∞ for x > 0 and stabilizes to 1 exponentially fast
when x → ∞.

Theorem 1. Let c be the unique solution of (EFF) and let ΩK = (0,K)× (0, 1),
K > 0. Then we have

‖t3(cε − c)‖L∞(0,T ;L1(ΩK)) ≤ Cε2−α,(13)

‖t3(cε − c)‖L∞(0,T ;L2(ΩK)) ≤ C
(
ε2−5α/4H(1 − α) + ε3/2−3α/4H(α− 1)

)
,(14)

‖t3∂ycε‖L2(ΩK×(0,T )) ≤ C
(
ε2−5α/4H(1 − α) + ε3/2−3α/4H(α− 1)

)
,(15)

‖t3∂x(cε − c)‖L2(ΩK×(0,T )) ≤ C
(
ε2−7α/4H(1 − α) + ε3/2−5α/4H(α− 1)

)
.(16)

Note that c has disappeared in estimate (15) since it is only x and t dependent.
This estimate is superior to estimate (16) because of the large O(εα−2) transversal
diffusivity.

Theorem 2. Let c be the unique solution of (EFF). Then there exists a linear
combination Ccor(x, y, t, ε) of products between polynomials in y and derivatives of c
up to order 3, such that

‖t3(cε − c− Ccor)‖L∞((0,T )×Ω+) ≤
{

Cε4−7α/2−δ

Cε3/2−α−δ ∀δ > 0
if α < 1,
if α ≥ 1.

(17)

Corollary 1. Let α = 1 and k = 0, as in Taylor’s case. Then we have

‖t3(cε − c− Ccor)‖L∞((0,T )×Ω+) ≤ Cε1/2−δ ∀δ > 0,(18)

‖t3(cε − c)‖L∞(0,T ;L1(ΩK)) ≤ Cε.(19)

The expression Ccor(x, y, t, ε) is given explicitly in Theorem 7 of section 7.

Our result could be stated in dimensional form as follows.
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Theorem 3. Let us suppose that LR > max{DR/QR, QRH
2/DR, H}. Then the

upscaled dimensional approximation to (1), (2) reads

∂c∗,eff

∂t∗
+

(
2

3
+

4

45
DaT

)
Q∗ ∂c

∗,eff

∂x∗ +
k∗

H

(
1 − 1

3
DaT

)
c∗,eff

= D∗
(

1 +
8

945
Pe2

T

)
∂2c∗,eff

∂(x∗)2
,(20)

where PeT = Q∗H
D∗ is the transversal Peclet number and DaT = k∗H

D∗ is the transversal
Damkohler number.

We conclude this section by noting that in the known literature on boundary
layers for parabolic regularization, the transport velocity is assumed to be zero at the
injection boundary (see [7]). Hence our result extends the existing framework.

One could try to get even higher order approximations. Unfortunately, our pro-
cedure then leads to higher order differential operators and it is not clear if they are
easy to handle. In the absence of the boundaries, higher order terms were determined
in [13] using the program REDUCE.

2. Study of the upscaled diffusion-convection equation on the half-line.
For Q̄, D̄, ε > 0 and k̄ ≥ 0, we consider the problem⎧⎨

⎩
∂tu + Q̄∂xu + k̄u = γD̄∂xxu in (0,+∞) × (0, T ),
∂xu ∈ L2((0,+∞) × (0, T )),
u(x, 0) = 1 in (0,+∞), u(0, t) = 0 at x = 0.

(21)

The unique solution is given by the explicit formula

u(x, t) = e−k̄t

⎛
⎝1 − 1√

π

⎡
⎣e Q̄x

γD̄

∫ +∞

x+tQ̄

2
√

γD̄t

e−η2

dη +

∫ +∞

x−tQ̄

2
√

γD̄t

e−η2

dη

⎤
⎦
⎞
⎠ .(22)

This expression allows us to find the exact behavior of u with respect to γ. Note
that for α ∈ [0, 1], we will set γ = εα; for α ∈ [1, 2), we choose γ = ε2−α. The
derivatives of u are found using Maple, and then their norms are estimated. Since the
procedure is standard, we do not give the details. In more general situations, there
are no explicit solutions and these estimates could be obtained using the technique
and results from [9].

By the maximum principle we have

0 ≤ u(x, t) ≤ 1.(23)

We first estimate the difference between χ{x>Q̄t} and u.

Lemma 1. Function u satisfies the estimates

∫ ∞

0

|e−k̄tχ{x>Q̄t} − u(t, x)| dx = 3

√
γD̄te−k̄t + Cγ,(24)

‖e−k̄tχ{x>Q̄t} − u‖L∞(0,T ;Lp((0,+∞))) ≤ Cγ1/(2p) ∀p ∈ (1,+∞).(25)

For the derivatives of u we have the following.
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Lemma 2. Let ζ be defined by

ζ(t) =

⎧⎨
⎩
(

t

D̄γ

)r

for 0 ≤ t ≤ D̄γ,

1 otherwise,

(26)

with r ≥ q ≥ 1. Then

‖ζ(t)(|∂tu| + |∂xu|)‖Lq((0,T )×(0,+∞)) ≤ C(γD̄)min{1/(2q)−1/2,2/q−1}, q �= 3,(27)

‖ζ(t)(|∂tu| + |∂xu|)‖L3((0,T )×(0,+∞)) ≤ C

(
(γD̄)−1 log

(
1

γD̄

))1/3

.(28)

Next we estimate the second-order derivatives.

Lemma 3. Let ζ be defined by (26). Then

‖ζ(t)utt‖Lq((0,T )×(0,+∞)) + ‖ζ(t)utx‖Lq((0,T )×(0,+∞)) + ‖ζ(t)uxx‖Lq((0,T )×(0,+∞))

≤ Cq(γD̄)min{1/(2q)−1,2/q−2}, q �= 3/2,(29)

‖ζ(t)utt‖L3/2((0,T )×(0,+∞)) + ‖ζ(t)utx‖L3/2((0,T )×(0,+∞)) + ‖ζ(t)uxx‖L3/2((0,T )×(0,+∞))

≤ C

(
(γD̄)−1 log

(
1

γD̄

))2/3

.(30)

For the third-order derivatives we have the following.

Lemma 4. Let ζ be defined by (26). Then

‖∂xxx(ζ(t)u)‖Lq((0,T )×(0,+∞)) + ‖ζ(t)∂xxtu‖Lq((0,T )×(0,+∞))

+ ‖ζ(t)∂xttu‖Lq((0,T )×(0,+∞)) ≤ Cq(γD̄)2/q−3, q > 1,(31)

‖∂xxx(ζ(t)u)‖L1((0,T )×(0,+∞)) + ‖ζ(t)∂xxtu‖L1((0,T )×(0,+∞))

+ ‖ζ(t)∂xttu‖L1((0,T )×(0,+∞)) ≤ C1(γD̄)−1 log
1

γD̄
.(32)

3. A simple L2 error estimate. The simplest way to average problem (7)–(11)
is to take the mean value with respect to y. Assuming that the mean of the product
is the product of the means, which is in general wrong, we get the following problem
for the “averaged” concentration ceff0 (x, t):

⎧⎪⎪⎨
⎪⎪⎩

∂ceff0

∂t
+

2Q

3

∂ceff0

∂x
+ kceff0 = εαD

∂ceff0

∂x2
in (0,+∞) × (0, T ),

∂xc
eff
0 ∈ L2((0,+∞) × (0, T )), ceff0 |t=0 = 1, ceff0 |x=0 = 0.

(33)
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This is problem (21) with Q̃ = 2
3Q, k̄ = k, and D̄ = D. The small parameter γ is

equal to εα. For convenience we introduce the operator

Lε(w) :=
∂w

∂t
+ Q(1 − y2)

∂w

∂x
−Dεα

(
∂2w

∂x2
+ ε−2 ∂

2w

∂y2

)
.(34)

(7)–(11) are written as

Lε(cε) = 0 in Ω+ × (0, T ),(35)

cε(0, y, t) = 0 on (0, 1) × (0, T ),(36)

∂yc
ε(x, 0, t) = 0 on (0,+∞) × (0, T ),(37)

−Dεα−2∂yc
ε(x, 1, t) = kcε(x, 1, t) on (0,+∞) × (0, T ),(38)

cε(x, y, 0) = 1 on (0,+∞) × (0, 1).(39)

We want to approximate cε by ceff0 . For this purpose we write

Lε(ceff0 ) = −kceff0 + Q∂xc
eff
0 (1/3 − y2) = Rε,

Lε(cε − ceff0 ) = −Rε in Ω+ × (0, T ), and(40)

−Dεα−2∂y(c
ε(x, 1, t) − ceff0 ) = kcε(x, 1, t) on (0,+∞) × (0, T ),(41)

and we have the following useful estimate.
Proposition 1. Let Ψ(x) = 1/(x + 1) and let gε, ξε0, and Rε be measurable

functions satisfying

Ψgε ∈ H1(Ω+ × (0, T )), Ψξε0 ∈ L2(Ω+), and ΨRε ∈ L2(Ω+ × (0, T )).(42)

Furthermore, let ξ ∈ L∞(Ω+ × (0, T )), Ψξ ∈ C([0, T ];L2(Ω+)), Ψ∇x,yξ ∈ L2(Ω+ ×
(0, T ))2 be a solution of the initial/boundary problem

Lε(ξ) = −Rε in Ω+ × (0, T ); ∂yξ|y=0 = 0 on (0,+∞) × (0, T ),(43)

−Dεα−2∂yξ|y=1 = kξ|y=1 + gε|y=1 on (0,+∞) × (0, T ),(44)

ξ|t=0 = ξε0 on Ω+ and ξ|x=0 = 0 on (0, 1) × (0, T ).(45)

Then we have the energy estimate

E(ξ, t) =
1

2

∫
Ω+

Ψ(x)2ξ2(t) dxdy +
D

2
εα
∫ t

0

∫
Ω+

Ψ(x)2

×
{
ε−2|∂yξ|2 + |∂xξ|2

}
dxdydτ + k

∫ t

0

∫ +∞

0

ξ2|y=1Ψ
2(x) dxdτ

≤ −
∫ t

0

∫
Ω+

Ψ(x)2Rεξ dxdydτ −
∫ t

0

∫ +∞

0

gε|y=1ξ|y=1Ψ
2(x) dxdτ

+ 2Dεα
∫ t

0

∫
Ω+

Ψ(x)2ξ2 dxdydτ +
1

2

∫
Ω+

Ψ(x)2(ξε0)
2 dxdy.(46)

Proof. We test (43)–(45) by Ψ2(x)ξ to obtain

1

2

∫
Ω+

ξ2(t)Ψ2(x) dxdy + Dεα
∫ t

0

∫
Ω+

Ψ2(x)
{
ε−2|∂yξ|2 + |∂xξ|2

}
dxdydτ

+ k

∫ t

0

∫ +∞

0

ξ2|y=1Ψ
2 dxdτ ≤ 1

2

∫
Ω+

(ξε0)
2Ψ2(x) dxdy

− k

∫ t

0

∫ +∞

0

(gεξ)|y=1Ψ
2 dxdτ −Dεα

∫ t

0

∫
Ω+

∂xξξ∂xΨ2(x) dxdydτ.(47)
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Next we use

Dεα
∫ t

0

∫
Ω+

∂xξξ∂xΨ2(x) dxdτ ≤ D

2
εα
∫ t

0

∫
Ω+

Ψ2(x)|∂xξ|2 dxdydτ

+ 2Dεα
∫ t

0

∫
Ω+

Ψ2(x)|ξ|2 dxdydτ ,(48)

giving directly (46).
This simple result allows us to prove the following.
Proposition 2. There exist positive constants CF

i , i = 1, 2, 3, such that

‖Ψ(x)(cε − ceff0 )‖L∞(0,T ;L2(Ω+)) ≤ ε1−α/2 F 0

√
D
,(49)

‖Ψ(x)∂x(cε − ceff0 )‖L2(0,T ;L2(Ω+)) ≤ ε1−αF
0

D
,(50)

‖Ψ(x)∂y(c
ε − ceff0 )‖L2(0,T ;L2(Ω+)) ≤ ε2−αF

0

D
,(51)

where

F 0 = CF
1 ‖∂xceff0 ‖L2((0,+∞)×(0,T )) + CF

2 k ≤ CF
3 ε−α/4.(52)

Proof. We are in the situation of Proposition 1 with ξε0 = 0 and gε = kceff0 .

Consequently, for ξ = cε − ceff0 we have

E(ξ, t) ≤ k

∫ t

0

∫ +∞

0

ceff0

(∫ 1

0

cε dy − cε|y=1

)
Ψ2 dxdτ + 2Dεα

·
∫ t

0

∫
Ω+

|ξ|2Ψ2(x) dxdydτ −
∫ t

0

∫
Ω+

Q

(
1

3
− y2

)
ξ∂xc

eff
0 Ψ2 dxdydτ.(53)

It remains to estimate the first and third terms on the right. We have∣∣∣∣
∫ t

0

∫
Ω+

Q∂xc
eff
0

(
1

3
− y2

)
ξΨ2(x) dxdydτ

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
Ω+

Q∂xc
eff
0

(
y

3
− y3

3

)
∂yξΨ

2(x) dxdydτ

∣∣∣∣(54)

and

k

∣∣∣∣
∫ t

0

∫ +∞

0

ceff0

(∫ 1

0

ξ dy − ξ|y=1

)
Ψ2 dxdτ

∣∣∣∣
≤ D

8
εα
∫ t

0

∫
Ω+

Ψ2(x)|∂yξ|2 dxdydτ +
k2

D
ε2−α

∫ t

0

∫ +∞

0

(ceff0 )2Ψ2 dxdτ.(55)

Inserting (54)–(55) into (53) gives

E(cε − ceff0 , t) ≤ ε2−α

∫ t

0

∫ +∞

0

{
2k2

D
(ceff0 )2 +

32

315

Q2

D
(∂xc

eff
0 )2

}
Ψ2 dxdτ

+

∫ t

0

∫ 1

0

∫ +∞

0

2DεαΨ2(x)(cε − ceff0 )2 dxdydτ,(56)
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and applying Gronwall’s inequality results in (49)–(51).
Corollary 2. Let ΩK = (0,K) × (0, 1), K > 0. Then we have

‖cε − ceff0 ‖L∞(0,T ;L2(ΩK)) ≤ Cε1−3α/4.(57)

Remark 1. It is reasonable to expect L1 estimates with better powers for ε.
Unfortunately, testing (40) by the regularized sign (cε − ceff0 ) does not lead to a
useful result. Hence at this stage claiming a

√
ε estimate in L1 is not justified.

Remark 2. There are results by Grenier [7] and Grenier and Guès [8] on singular
perturbation problems. In [7] Grenier supposes that q is smooth and zero at x = 0,
together with its derivatives. Such hypotheses allow better estimates.

Remark 3. For α = 1, the estimates (24) and (57) imply that the functions

exp{−kt}χ{x>Qt} and ceff0 approximate cε in L∞(L2) with the same order given by

Cε1/4.
Remark 4. Estimate (57) is not useful when α > 4/3.

4. The formal 2-scale expansion leading to Taylor’s dispersion. The
estimate obtained in the previous section is not satisfactory. However, it is known
that the Taylor dispersion model gives a very good 1D approximation. This motivates
us to derive higher precision approximations. We give a formal 2-scale asymptotic
expansion to obtain Taylor’s (including the chemistry) dispersion formula.

We start with the problem (35)–(39) and search for cε in the form

cε = c0(x, t; ε) + εc1(x, y, t) + ε2c2(x, y, t) + · · · .(58)

After introducing (58) into (35) we get

ε0
{
∂tc

0 + Q(1 − y2)∂xc
0 −Dεα−1∂yyc

1
}

+ ε
{
∂tc

1 + Q(1 − y2)∂xc
1 −Dεα−1∂xxc

0 −Dεα−1∂yyc
2
}

= O(ε2).(59)

To satisfy (59) for every ε ∈ (0, ε0), all coefficients in front of the powers of ε should
be zero.

The problem corresponding to the ε0 is{
−D∂yyc

1 = −ε1−αQ
(

1
3 − y2

)
∂xc

0 − ε1−α
(
∂tc

0 + 2Q∂xc
0/3
)

on (0, 1),
∂yc

1 = 0 on y = 0 and −D∂yc
1 = kε1−αc0 on y = 1

(60)

for every (x, t) ∈ (0,+∞) × (0, T ). By Fredholm’s alternative, this problem has a
solution if and only if

∂tc
0 +

2Q∂xc
0

3
+ kc0 = 0 in (0, L) × (0, T ).(61)

Unfortunately our initial and boundary data are incompatible, and therefore the so-
lution to this hyperbolic equation is discontinuous. Since the asymptotic expansion
for cε involves derivatives of c0, (61) does not suit our needs. In [3] this difficulty
was overcome by assuming compatible initial and boundary data. We proceed by
following an idea from [18] and suppose that

∂tc
0 +

2Q∂xc
0

3
+ kc0 = O(ε) in (0,+∞) × (0, T ).(62)
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This hypothesis will be justified a posteriori, after getting an equation for c0.
Combining (60) and (61) and using hypothesis (62) leads us to consider{

−D∂yyc
1 = −ε1−αQ

(
1
3 − y2

)
∂xc

0 + ε1−αkc0 on (0, 1),
∂yc

1 = 0 on y = 0 and −D∂yc
1 = kε1−αc0 on y = 1

(63)

for every (x, t) ∈ (0,+∞) × (0, T ). Consequently

c1(x, y, t) = ε1−α

(
Q

D

(
y2

6
− y4

12

)
∂xc

0 +
k

D

(
1

6
− y2

2

)
c0 + C0(x, t)

)
,(64)

where C0 is an arbitrary function.
The problem corresponding to ε1 is⎧⎨
⎩

−D∂yyc
2 = Dε∂xxc

1 − ε1−αQ(1 − y2)∂xc
1 + D∂xxc

0 − ε1−α∂tc
1

− ε−α
(
∂tc

0 + 2Q∂xc
0

3 + kc0
)

on (0, 1),
∂yc

2 = 0 on y = 0 and −D∂yc
2 = kε1−αc1 on y = 1

(65)

for every (x, t) ∈ (0,+∞) × (0, T ). This problem has a solution if and only if

∂tc
0 +

2Q∂xc
0

3
+ k(c0 + εc1|y=1) + ε∂t

(∫ 1

0

c1 dy

)
− εαD∂xxc

0

+ Qε∂x

(∫ 1

0

(1 − y2)c1 dy

)
−Dε1+α∂xx

(∫ 1

0

c1dy

)
= 0 in (0,+∞) × (0, T ).

(66)

Note that this is the equation for c0. In order to get the simplest possible equation

we choose C0 such that
∫ 1

0
c1 dy = 0. This implies

c1(x, y, t) = ε1−α

(
Q

D

(
y2

6
− y4

12
− 7

180

)
∂xc

0 +
k

D

(
1

6
− y2

2

)
c0
)
,(67)

and (66) becomes

∂tc
0 + Q

(
2

3
+

4k

45D
ε2−α

)
∂xc

0 + k

(
1 − k

3D
ε2−α

)
c0 = εαD̃∂xxc

0 in (0,+∞) × (0, T ),

(68)

with

D̃ = D +
8

945

Q2

D
ε2(1−α).(69)

As a result, problem (65) transforms into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−D∂yyc
2 = ε2−2α

{
−Q2

D
∂xxc

0

{
8

945
+ (1 − y2)

(
y2

6
− y4

12
− 7

180

)}

+ ∂xc
0Qk

D

{
2

45
− (1 − y2)

(
1

6
− y2

2

)}
+

2kQ

45D
∂xc

0

− k2

3D
c0 −
(
y2

6
− y4

12
− 7

180

)(
∂xtc

0 Q

D
− εαQ∂xxxc

0

)

−
(

1

6
− y2

2

)(
∂tc

0 k

D
− εαk∂xxc

0

)}
on (0, 1), ∂yc

2 = 0 on y = 0,

and −D∂yc
2 =

Qk

D
ε2−2α∂xc

0 2

45
− k2

3D
ε2−2αc0 on y = 1.

(70)
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If we choose c2 such that
∫ 1

0
c2 dy = 0, then

c2(x, y, t) = ε2−2α

{
−Q2

D2
∂xxc

0

(
281

453600
+

23

1512
y2 − 37

2160
y4 +

1

120
y6 − 1

672
y8

)

+

(
Q

D2
∂xtc

0 − εα
Q

D
∂xxxc

0

)(
31

7560
− 7

360
y2 +

y4

72
− y6

360

)

+
Qk

D2
∂xc

0

(
y6

60
− y4

18
+

11y2

180
− 11

810

)

+

(
k

2D2
∂tc

0 − k

2D
εα∂xxc

0

)(
−y4

12
+

y2

6
− 7

180

)
+

(
Qk

45D2
∂xc

0 − k2

6D2
c0
)(

1

3
− y2

)}
.

(71)

5. Boundary layer. The higher order approximations in the asymptotic expan-
sion for cε do not satisfy the boundary conditions. Such incompatibility suggests that
we should correct them using an appropriate boundary layer:

⎧⎪⎪⎨
⎪⎪⎩
−Δy,zβ = 0 for (z, y) ∈ Ω+,

−∂yβ = 0 for y = 1, and for y = 0,

β =
y2

6
− y4

12
− 7

180
for z = 0.

(72)

Using the elementary variational theory for PDEs, we obtain the existence of a unique
solution β ∈ L2

loc(Ω
+) such that ∇β ∈ L2

loc(Ω
+)2. Since the average of the boundary

value at z = 0 is zero, it follows that
∫ 1

0
β(z, y) dy = 0 for every z ∈ (0,+∞). This

allows us to apply Poincaré’s inequality in H1:

∫ 1

0

ϕ2 dy ≤ 1

π2

∫ 1

0

|∂yϕ|2 dy ∀ϕ ∈ H1(0, 1),

∫ 1

0

ϕ dy = 0,(73)

and conclude that in fact β ∈ H1(Ω+). In order to prove that β represents a boundary
layer, one should prove the exponential decay. We apply the theory from [14] and get
the following result describing the decay of β as z → +∞.

Proposition 3. There exists a constant γ0 > 0 such that the solution β of (72)
satisfies the estimates

∫ +∞

z

∫ 1

0

|∇y,zβ|2 dydz ≤ c0e
−γ0z, z > 0,(74)

|β(y, z)| ≤ c0e
−γ0z ∀(y, z) ∈ Ω+.(75)

6. First correction. As explained, estimate (57) is not satisfactory. To get a
better approximation we consider the correction, which was constructed using the
formal 2-scale expansion in section 4.



1274 ANDRO MIKELIĆ, VINCENT DEVIGNE, AND C. J. VAN DUIJN

Let 0 ≤ α < 2. We start with the O(ε4−2α) approximation and consider the
function

ceff1 (x, y, t; ε) = c(x, t; ε) + ε2−αζ(t)

(
Q

D

(
y2

6
− y4

12
− 7

180

)
∂c

∂x
+

k

D

(
1

6
− y2

2

)
c

)
,

(76)

where c is the solution to the effective problem with Taylor’s dispersion coefficient
including the reaction terms:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tc + Q

(
2

3
+

4k

45D
ε2−α

)
∂xc + k

(
1 − k

3D
ε2−α

)
c

=

(
Dεα +

8

945

Q2

D
ε2−α

)
∂xxc in (0,+∞) × (0, T ),

c|x=0 = 0, c|t=0 = 1, ∂xc ∈ L2((0,+∞) × (0, T )).

(77)

The cut-off in time ζ is given by (26) and we use it to eliminate the time-like boundary
layer appearing at t = 0. These effects are not visible in the formal expansion.

Let Lε be the differential operator given by (34). Following the formal expansion
from section 4, we find that Lε applied to the correction without boundary layer
functions and cut-offs would give F ε

1 + F ε
2 + F ε

3 + F ε
4 + F ε

5 , where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ε
1 = ∂xxc

Q2

D
ε2−α

{
8

945
+ (1 − y2)

(
y2

6
− y4

12
− 7

180

)}
,

F ε
2 = ∂xc

Qk

D
ε2−α

{
− 2

45
+ (1 − y2)

(
1

6
− y2

2

)}
,

F ε
3 = ε2−α

(
y2

6
− y4

12
− 7

180

){
∂xtc

Q

D
− εα∂xxxcQ

}
,

F ε
4 = ε2−α

(
1

6
− y2

2

){
∂tc

k

D
− εα∂xxck

}
,

F ε
5 = ε2−α

{
− 2

45
∂xc

Qk

D
+

k2

3D
c

}
.

(78)

These functions are not integrable up to t = 0, and for handling them we introduce
the cut-off ζ.

Applying Lε to ceff1 gives

Lε(ceff1 ) = ζ(t)

5∑
j=1

F ε
j +

(
ε2−α∂xxc

Q2

D

8

945
+ Q

(
1

3
− y2

)
∂xc− kc

)

× (1 − ζ(t)) + ζ ′(t)ε2−α

(
∂xc

Q

D

{
y2

6
− y4

12
− 7

180

}
+

k

2D

(
1

3
− y2

)
c

)
=: Φε

1 and −Lε(ceff1 ) = Lε(cε − ceff1 ) = −Φε
1.(79)

At the lateral boundary y = 1 we have

−Dεα−2∂yc
eff
1 |y=1 = ζ(t)kc,(80)

kceff1 |y=1 = k

(
c + ε2−αQ

D
ζ(t)

2

45
∂xc− ε2−α k

3D
cζ(t)

)
.(81)
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Now cε − ceff1 satisfies the system

Lε(cε − ceff1 ) = −Φε
1 in Ω+ × (0, T ),(82)

∂y(c
ε − ceff1 )|y=0 = 0 on (0,+∞) × (0, T ),(83)

−Dεα−2∂y(c
ε − ceff1 )|y=1 = k(cε − ceff1 )|y=1 + gε|y=1 on (0,+∞) × (0, T ),(84)

(cε − ceff1 )|t=0 = 0 on Ω+ and (cε − ceff1 )|x=0 = ηε0 on (0, 1) × (0, T ),(85)

with gε = kζ(t)ε2−α

(
∂xc

2Q

45D
− c

k

3D

)
+ (1 − ζ)kc(86)

and ηε0 = −ε2−αζ(t)∂xc|x=0

(
y2

6
− y4

12
− 7

180

)
Q

D
.(87)

As a next step we estimate Φε
1 to find out if the right-hand side is smaller than in

section 3.

Proposition 4. Let Ot = Ω+×(0, t) and let ϕ ∈ H1(OT ) satisfy ϕ = 0 at x = 0.
Then we have∣∣∣∣

∫ t

0

∫
Ω+

ζF ε
1ϕ dxdydτ

∣∣∣∣ ≤ Cε3(2−α)/2‖ζ(τ)∂xxc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−5α/2H(1 − α) + ε1−α/2H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(88)

∣∣∣∣
∫ t

0

∫
Ω+

ζ(τ)F ε
3ϕ dxdydτ

∣∣∣∣ ≤ Cε3(2−α)/2

·
(
‖ζ(τ)∂xtc‖L2(Ot) + ‖ζ(τ)∂xxc‖L2(Ot)

)
· ‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−5α/2H(1 − α) + ε1−α/2H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(89)

∣∣∣∣
∫ t

0

∫
Ω+

(1 − ζ)∂xxcε
2−αQ

2

D
ϕ dxdydτ

∣∣∣∣ ≤ Cε2−3α/2‖εα/2∂xϕ‖L2(Ot)

· ‖(1 − ζ)∂xc‖L2(Ot) ≤ Cε2−3α/2‖εα/2∂xϕ‖L2(Ot);(90) ∣∣∣∣
∫ t

0

∫
Ω+

(1 − ζ)Q

(
1

3
− y2

)
∂xcϕ dxdydτ

∣∣∣∣ ≤ Cε1−α/2‖εα/2−1∂yϕ‖L2(Ot)

· ‖(1 − ζ)∂xc‖L2(Ot) ≤ Cε1−α/2‖εα/2−1∂yϕ‖L2(Ot);(91)

∣∣∣∣
∫ t

0

∫
Ω+

ζ ′
(

t

Dε

)
ε2−α

{
∂xc

Q

D

{
y2

6
− y4

12
− 7

180

}
− k

2D

(
1

3
− y2

)
c

}
· ϕ dxdydτ

∣∣∣∣
≤ Cε3−3α/2‖ζ ′∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−5α/2H(1 − α) + ε1−α/2H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot).(92)

Proof. First note that in (88)–(89) and (91)–(92) the averages of the polynomials
in y are zero. We write them in the form P (y) = ∂yP1(y), where P1 has zero traces
at y = 0, 1. After partial integration with respect to y and applying the results from
section 2, we obtain the estimates (88)–(89) and (91)–(92). Since (1 − ζ)∂xxc is not
square integrable, we cannot use the same approach to obtain (90). It is obtained by
partial integration with respect to x.
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Proposition 5. With ϕ as in Proposition 4 we have∣∣∣∣
∫ t

0

∫
Ω+

ζF ε
2ϕ dxdydτ

∣∣∣∣ ≤ Cε3(1−α/2)‖ζ∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−7α/4H(1 − α) + ε5/2−5α/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(93)

∣∣∣∣
∫ t

0

∫
Ω+

ζF ε
4ϕ dxdydτ

∣∣∣∣ ≤ Cε3−3α/2

(
‖ζ∂tc‖L2(Ot) + εα‖ζ∂xxc‖L2(Ot)

)
‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−7α/4)H(1 − α) + ε5(2−α)/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(94)

∣∣∣∣
∫ t

0

∫ +∞

0

ζ∂xcε
2−α

(∫ 1

0

ϕ dy − ϕ|y=1

)
dxdτ

∣∣∣∣
≤ Cε2−α‖∂xc‖L2(0,t;L2((0,+∞)))

∥∥∥∥
∫ 1

0

ϕ dy − ϕ|y=1

∥∥∥∥
L2(Ot)

≤ C
(
ε3−7α/4H(1 − α) + ε5(2−α)/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(95)

∣∣∣∣
∫ t

0

∫ +∞

0

ζ(t)cε2−α

(∫ 1

0

ϕ dy − ϕ|y=1

)
dxdτ

∣∣∣∣ ≤ Cε3(1−α/2)‖εα/2−1∂yϕ‖L2(Ot);

(96)

∣∣∣∣
∫ t

0

∫ +∞

0

(1 − ζ(t))c

(∫ 1

0

ϕ dy − ϕ|y=1

)
dxdτ

∣∣∣∣
≤ C
(
εH(1 − α) + ε2−αH(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot).(97)

Corollary 3. With Φε
1 given by (79), gε by (86), and with ϕ as in Proposition 4

we have ∣∣∣∣
∫ t

0

∫
Ω+

Φε
1ϕ dxdydτ +

∫ t

0

∫ +∞

0

gε|y=1ϕ|y=1 dxdτ

∣∣∣∣
≤ C
(
ε1−α/2H(1 − α) + ε2−3α/2H(α− 1)

){
‖εα/2−1∂yϕ‖L2(Ot) + ‖εα/2∂xϕ‖L2(Ot)

}
.

(98)

A natural next step would be to correct ceff1 at x = 0 and then apply Proposi-
tion 1. Due to the presence of the term containing the first-order derivative in x, the
boundary layer corresponding to our problem does not enter into the theory from [14].
Consequently, one should generalize it to the second-order elliptic equations with first-
order terms. The generalization in the case of periodic boundary conditions at the
lateral boundary is done in [16]. To our knowledge, the generalization in the case
of Neumann’s boundary conditions at the lateral boundary was never published. It
seems that the results from [16] apply also to this case (see [17]). In order to avoid
developing a new boundary layer theory of second-order elliptic operators with im-
portant first-order terms, we simply use the boundary layer function corresponding
to the Neumann problem for the Laplace operator (72). Then the transport term is
ignored and a large error in the forcing term is created. The error is concentrated at
small times, and by eliminating it we would obtain an appropriate estimate.

In order to use this particular point, we prove the following proposition.
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Proposition 6. Let Ψ(x) = 1/(x+ 1) and let gε and Φε be measurable bounded
functions satisfying the conditions

Ψgε ∈ H1(Ω+ × (0, T )) and ΨΦε ∈ L2(Ω+ × (0, T )).(99)

Furthermore, let ξ ∈ L∞(Ω+×(0, T )), Ψξ ∈ C0,α0([0, T ];L2(Ω+)), Ψ∇x,yξ ∈ L2(Ω+×
(0, T ))2 be a solution of the initial/boundary problem

Lε(ξ) = −Φε in Ω+ × (0, T ); ∂yξ|y=0 = 0 on (0,+∞) × (0, T ),(100)

−Dεα−2∂yξ|y=1 = kξ|y=1 + gε|y=1 on (0,+∞) × (0, T ),(101)

ξ|t=0 = 0 on Ω+ and ξ|x=0 = 0 on (0, 1) × (0, T ).(102)

Then we have

E(tmξ, t) = t2m
∫

Ω+

Ψ(x)2ξ2(t) dxdy + Dεα
∫ t

0

∫
Ω+

Ψ(x)2τ2m

×
{
ε−2|∂yξ|2 + |∂xξ|2

}
dxdydτ + k

∫ t

0

∫ +∞

0

τ2mξ2|y=1Ψ
2(x) dxdτ

≤
∣∣∣∣
∫

Ω+

τ2mΨ(x)2Φεξ dxdydτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ +∞

0

τ2mgε
∣∣∣∣
y=3D1

ξ|y=3D1Ψ
2(x) dxdτ |

+ C2Dεα
∫ t

0

∫
Ω+

τ2mΨ(x)2ξ2 dxdydτ ∀m ≥ 1.(103)

Remark 5. Clearly, we want to apply this abstract result to ξ = cε − ceff1 .
Then ζ(t)∂xc has the required regularity, since the cut-off eliminates the singular-
ity. With c the analysis is more complicated. By direct calculation we have ∂tc ∈
Lq(0, T ;L2((0,+∞))) for all q ∈ [1, 4/3) and we obtain the required Hölder regularity

by the Sobolev imbedding.
∫ A
0

∫ 1

0
|ξ(x, y, t)|2 dxdy is Hölder-continuous with some

exponent α0 > 0 for all A < +∞, independent of ε. In complete analogy, ceff0 defined

by (33) also has the required regularity. Finally, the difference cε − ceff0 satisfies (40)
and (41) and it is zero at x = 0 and t = 0. Then the classical parabolic regularity
theory (see, e.g., [10]) implies the Hölder regularity in the time of the L2 norm with
respect to x, y. After combining all these results, we obtain the required regularity
of ξ.

Proof. By the supposed Hölder continuity, there exists tM ∈ [0, T ], tM > 0, such
that

1

tα0

M

∫ +∞

0

∫ 1

0

|ξ(x, y, tM )|2Ψ2(x) dxdy = max
t∈[0,T ]

1

tα0

∫ +∞

0

∫ 1

0

|ξ(x, y, t)|2Ψ2(x) dx.

(104)

Then we have∫ tM

0

mτ2m−1

∫
Ω+

|ξ|2Ψ2(x) dxdydτ ≤
∫

Ω+

|ξ|2(tM )

tα0

M

Ψ2(x)

∫ tM

0

mτ2m−1+α0 dτ

=
m

2m + α0
t2mM

∫
Ω+

|ξ|2(tM )Ψ2(x) dxdy(105)
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and

1

2
t2mM

∫
Ω+

|ξ|2(tM )Ψ2(x) dxdy + k

∫ tM

0

∫ +∞

0

τ2mξ2|y=1Ψ
2(x) dxdτ

+

∫ tM

0

D

(
εα
∫

Ω+

τ2m|∂xξ|2(τ)Ψ2(x) dxdy + εα−2

∫
Ω+

τ2m|∂yξ|2(τ)Ψ2(x) dxdy

)
dτ

≤ −
∫ tM

0

∫
Ω+

τ2mΦεξ dxdydτ − k

∫ t

0

∫ +∞

0

τ2mξ|y=1g
ε|y=1Ψ

2(x) dxdτ

+ Dεα
∫ tM

0

∫
Ω+

τ2mΨ2(x)ξ2 dxdydτ + m

∫ tM

0

∫
Ω+

τ2m−1|ξ|2Ψ2 dxdydτ.(106)

Using (105) we find (103) for t = tM and with C2 = 0. Getting the estimate (103) for
general t ∈ (0, T ) is now straightforward.

To use this estimate we should refine the estimates in Propositions 4 and 5. First,
we note that estimate (29) changes to

‖tm∂ttc‖Lq((0,T )×(0,+∞)) + ‖tm∂txc‖Lq((0,T )×(0,+∞)) + ‖tm∂xxc‖Lq((0,T )×(0,+∞))

≤ Cq(m)(γD̄)1/(2q)−1.(107)

Hence one gains εα/4 (respectively, ε1/2−α/4) for the L2 norm. In analogy with Propo-
sitions 4 and 5 we have Proposition 7.

Proposition 7. Let ϕ be as in Proposition 4 and let m > 1. Then we have

∣∣∣∣
∫ t

0

∫ ∞

0

∫ 1

0

τmζF ε
1ϕ dxdydτ

∣∣∣∣ ≤ Cε3(2−α)/2‖τm∂xxc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−9α/4H(1 − α) + ε3/2−3α/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(108)

∣∣∣∣
∫ t

0

∫ ∞

0

∫ 1

0

τmζF ε
3ϕ dxdydτ

∣∣∣∣ ≤ Cε3(2−α)/2

·
(
‖τm∂xtc‖L2(Ot) + ‖τm∂xxc‖L2(Ot)

)
· ‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−9α/4H(1 − α) + ε3/2−3α/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(109)

∣∣∣∣
∫ t

0

∫
Ω+

ζτmF ε
2ϕ dxdydτ

∣∣∣∣ ≤ Cε3(1−α/2)‖τmζ∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−7α/4H(1 − α) + ε5/2−5α/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(110) ∣∣∣∣

∫ t

0

∫
Ω+

ζτmF ε
4ϕ dxdydτ

∣∣∣∣ ≤ Cε3−3α/2

·
(
‖ζτm∂tc‖L2(Ot) + εα‖ζτm∂xxc‖L2(Ot)

)
· ‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−7α/4)H(1 − α) + ε5(2−α)/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(111)
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∣∣∣∣
∫ t

0

∫ +∞

0

ζτm∂xcε
2−α

(∫ 1

0

ϕ dy − ϕ|y=1

)
dxdτ

∣∣∣∣
≤ Cε2−α‖τm∂xc‖L2(Ot)

∥∥∥∥
∫ 1

0

ϕ dy − ϕ|y=1

∥∥∥∥
L2(Ot)

≤ C
(
ε3−7α/4H(1 − α) + ε5(2−α)/4H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(112)

∣∣∣∣
∫ t

0

∫ +∞

0

ζ(t)τmcε2−α

(∫ 1

0

ϕ dy − ϕ|y=1

)
dxdτ

∣∣∣∣
≤ Cε3(1−α/2)‖εα/2−1∂yϕ‖L2(Ot).(113)

Proof. These estimates are straightforward consequences of Propositions 4 and
5.

We improve these results with respect to the other terms.

Without proof we state the following.

Proposition 8. Let ϕ be as in Proposition 4 and let m > 1. Then we have

∣∣∣∣
∫ t

0

∫ ∞

0

∫ 1

0

(1 − ζ)τm∂xxc
Q2

D
ε2−αϕ dxdydτ

∣∣∣∣
≤ Cε2−3α/2‖(1 − ζ)τm∂xc‖L2(Ot)‖εα/2∂xϕ‖L2(Ot)

≤ C
(
εmα+2−3α/2H(1 − α) + εm(2−α)+2−3α/2H(α− 1)

)
‖εα/2∂xϕ‖L2(Ot);(114)

∣∣∣∣
∫ t

0

∫ ∞

0

∫ 1

0

(1 − ζ)τmQ

(
1

3
− y2

)
∂xcϕ dxdydτ

∣∣∣∣
≤ Cε1−α/2‖(1 − ζ)τm∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
εmα+1−α/2H(1 − α) + εm(2−α)+1−α/2H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot);(115)

∣∣∣∣
∫ t

0

∫
Ω+

ζ ′
(

t

Dε

)
τmε2−α

{
∂xc

Q

D

{
y2

6
− y4

12
− 7

180

}
− k

2D

(
1

3
− y2

)
c

}
· ϕ dxdydτ

∣∣∣∣
≤ Cε3−3α/2‖ζ ′τm∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−3α/2+α(m−1)H(1 − α) + ε3−3α/2+(2−α)(m−1)H(α− 1)

)
‖εα/2−1∂yϕ‖L2(Ot).

(116)

Before applying Proposition 6 and getting the final estimate, we should correct
the trace at x = 0. This is done by adding

c̄eff1 = −ε2−αζ(t)βε∂xc
Q

D
,(117)

where βε(x, y) = β(x/ε, y) is the boundary layer function given by (72). Let gε1 =

gε − ε2−α kQζ∂xcβ
ε

D . Then for ξε = cε − ceff1 − c̄eff1 we have the problem
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Lε(ξε) = −Φε = −Φε
1 + ∂tζε

2−α∂xc
Q

D
βε + ε2−αβεζ(t)

×
{
∂xtc

Q

D
− εα∂xxxcQ

}
+ ∂xβ

εQ
2

D
(1 − y2)ζε2−α∂xc− ε2−αQ∂xxcζ(t)

×
(

2εα∂xβ
ε − βε(1 − y2)

Q

D

)
in Ω+ × (0, T ),(118)

−Dεα−2∂yξ
ε = kξε + gε1 on (0,+∞) × {1} × (0, T ),(119)

∂yξ
ε|y=0 = 0 on (0,+∞) × (0, T ),(120)

ξε|t=0 = 0 on Ω+ and ξε|x=0 = 0 on (0, 1) × (0, T ).(121)

We need an estimate for the new terms. It will be obtained from the following auxiliary
result.

Lemma 5. With β and c defined by (72) and (77), respectively, and with m ≥ 1,
we have

‖τmζ ′βε∂xc‖L2(Ot) ≤ Cεm−(α+3)/4
{
H(1 − α) + ε(α−1)/2H(α− 1)

}
≤ Cεm−1;(122)

‖τmζβε|y=1∂xc‖L2(Ot) ≤ Cεm+1/4
{
ε−α/4H(1 − α) + εα/4−1/2H(α− 1)

}
≤ Cεm;

(123)

‖τmζ∂xβ
ε∂xc‖L2(Ot) ≤ Cεm−3/4

{
ε−α/4H(1 − α) + εα/4−1/2H(α− 1)

}
≤ Cεm−1;

(124)

‖τmζ∂xβ
ε∂tc‖L2(Ot) ≤ Cεm−5/4

{
εα/2H(1 − α) + ε1−α/2H(α− 1)

}
≤ Cεm−5/4;

(125)

‖τmζβε∂xxc‖L2(Ot)

≤ Cεm
{
(ε−1/4−α/2 + ε1/4−3α/4)H(1 − α) + (εα/2−5/4 + ε−5/2+3α/4)H(α− 1)

}
≤ Cεm−7/4;(126)

‖τmζ∂xβ
ε∂xxc‖L2(Ot)

≤ Cεm−1
{
(ε−1/4−α/2 + ε1/4−3α/4)H(1 − α) + (εα/2−5/4 + ε−5/2+3α/4)H(α− 1)

}
≤ Cεm−7/4.(127)

Proof. Since

∫ +∞

0

|∂xcβε|2 dx ≤ C

∫ +∞

0

exp

{
−2γ0x

ε

}
exp

{
− (x− τQ̄)2

2γD̄τ

}
dx

γτD̄

≤ C(εDτ)−1/2 exp{−C0τ/ε} dxdτ,(128)

inequalities (122), (123), and (124) follow by integration with respect to τ . Further-
more, since

∫ +∞

0

|∂tcβε|2 dx ≤ C

∫ +∞

0

x2 exp

{
−2γ0x

ε

}
exp

{
− (x− τQ̄)2

2γD̄τ3

}
dx

γτD̄

≤ C(εDτ3)−1/2 exp{−C0τ/ε} dxdτ,(129)
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inequality (125) follows. Finally, since

‖τmζβε∂xxc‖L2(Ot)

≤ C(‖τmζβε∂xc‖L2(Ot) + ‖τmζβε∂tc‖L2(Ot))(ε
−αH(1 − α) + εα−2H(α− 1)),(130)

we obtain (126) and (127).
Proposition 9. With ϕ as in Proposition 4, we have∣∣∣∣

∫ t

0

∫
Ω+

ε2−ατmζ(τ)βε

{
∂xtc

Q

D
− εα∂xxxcQ

}
ϕ dxdydτ

∣∣∣∣
≤ Cε2−α

({
‖ζτm∂tc∂xβ

ε‖L2(Ot) + εα‖τmζ∂xβ
ε∂xxc‖L2(Ot)

}
‖ϕ‖L2(Ot)

+ ε−α/2
{
‖ζτm∂tcβ

ε‖L2(Ot) + εα‖τmζ∂xxc‖L2(Ot)

}
‖εα/2∂xϕ‖L2(Ot)

)
≤ Cεm+1/4−α

(
‖ϕ‖L2(Ot) + ‖εα/2∂xϕ‖L2(Ot)

)
;(131)

∣∣∣∣
∫ t

0

∫
Ω+

ε2−αζτm∂xxcϕ

(
−βεQ

D
(1 − y2) + 2εα∂xβ

ε)

)
dxdydτ

∣∣∣∣
≤ Cε2−α

(
‖τmζ∂xβ

ε∂xxc‖L2(Ot) + ‖τmζ∂xβ
ε∂xxc‖L2(Ot)

)
‖ϕ‖L2(Ot)

≤ Cεm−α+1/4‖ϕ‖L2(Ot);(132)

∣∣∣∣
∫ t

0

∫
Ω+

ε2−αζτm∂xc∂xβ
ε(1 − y2)ϕ dxdydτ

∣∣∣∣
≤ Cε2−α‖τmζ∂xβ

ε∂xc‖L2(Ot)‖ϕ‖L2(Ot) ≤ Cεm−α+1‖ϕ‖L2(Ot);(133)

∣∣∣∣
∫ t

0

∫ +∞

0

ε2−αζτm∂xcϕ|y=1β
ε|y=1 dxdτ

∣∣∣∣
≤ Cε2−α‖τmζ∂xβ

ε∂xc‖L2(Ot)‖ϕ‖L2((0,t)×Γ+) ≤ Cεm−α+1‖ϕ‖L2((0,t)×Γ+);(134)

∣∣∣∣
∫ t

0

∫
Ω+

ε2−αζ ′(τ)τm∂xcϕβ
ε dxdydτ

∣∣∣∣
≤ Cε2−α‖τmζ ′βε∂xc‖L2(Ot)‖ϕ‖L2(Ot) ≤ Cεm−α+3/4‖ϕ‖L2(Ot).(135)

At this point the application of Proposition 6 is straightforward. As a result we
get the following.

Theorem 4. Let c be the solution of (77) and let ceff1 and c̄eff1 be given by
(76) and (117), respectively. With ΩK = (0,K) × (0, 1), K > 0, we have

‖t3(cε − ceff1 (x, t; ε) − c̄eff1 )‖L∞(0,T ;L2(ΩK))

≤ C
(
ε3−9α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
;(136)

‖t3∂y(cε − ceff1 (x, t; ε) − c̄eff1 )‖L2(ΩK×(0,T ))

≤ Cε1−α/2
(
ε3−9α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
;(137)

‖t2∂x(cε − ceff1 (x, t; ε) − c̄eff1 )‖L2(ΩK×(0,T ))

≤ Cε−α/2
(
ε3−9α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
.(138)
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7. Error estimate involving the second order in expansion. The most
important power in the Peclet number α is α = 1 because it describes Taylor’s scaling.
In this case our approximation is of order ε3/4 in L2. It is of interest to reach the
order ε at least in this case. Also, it is of interest to get the higher order estimates
because ε is frequently not very small.

After the results of section 6, the leading order terms in the estimates are ζF ε
1 and

ζF ε
3 , where F ε

j , j = 1, . . . , 3, are defined in (78). When deriving formally the effective
equation, we have seen that they could be eliminated by introducing the next order
correction. Following the formal expansion, we find that ceff1 should be replaced with

ceff1 + ceff2 , where

ceff2 = −ε4−2α Q

D2
ζ(t)

{
Q∂xxc

(
281

453600
+

23

1512
y2 − 37

2160
y4 +

1

120
y6− 1

672
y8 − β̃1

)

−(∂xtc−Dεα∂xxxc)

(
− 1

360
y6 +

1

72
y4 − 7

360
y2− 31

7560
− β̃2

)}

+ε4−2α k

D2
ζ(t)

{
Q∂xc

(
1

60
y6 − 1

18
y4 +

11

180
y2 − 11

810
− β̃3

)

+
1

2
(∂tc−Dεα∂xxc)

(
− 1

12
y4 +

1

6
y2 − 7

180
− β̃5

)

+
Q

45
∂xc

(
1

3
− y2 − β̃4

)
− k

6
c

(
1

3
− y2

)}
,(139)

where β̃j , j = 1, . . . , 5, are boundary layers analogous to (72).
The application of this additional correction term gives the following.
Theorem 5. With the notation of Theorem 4, we have

‖t5(cε − ceff1 (x, t; ε) − c̄eff1 )‖L∞(0,T ;L2(ΩK))

≤ C
(
ε4−13α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
;(140)

‖t5∂y(cε − ceff1 (x, t; ε) − c̄eff1 )‖L2(0,T ;L2(ΩK))

≤ Cε1−α/2
(
ε4−13α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
;(141)

‖t5∂x(cε − ceff1 (x, t; ε) − c̄eff1 )‖L2(0,T ;L2(ΩK))

≤ Cε−α/2
(
ε4−13α/4H(1 − α) + ε3(1−α/2)/2H(α− 1)

)
.(142)

Proof. Applying the operator Lε, given by (34), to cε − ceff1 − c̄eff1 − ceff2 we
obtain a forcing term Φε

2, analogous to Φε, given by (118). To control its behavior

we are going to study the expression ζ
∑5

j=1 Fj . As we have seen in Proposition 8,
Lemma 5, and Proposition 9, other terms are small. We have the following:

• F ε
1 and F ε

3 are replaced with F̃ ε
1 and F̃ ε

3 , given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ ε
1 = (1 − y2)

Q2ε4−2α

D2

{
−∂xxxcP8(y)Q

+ (∂xxtc−Dεα∂xxxxc)P6(y)

}
,

F̃ ε
3 = −ε4−2αP8(y)

Q2

D2

{
∂xxtc− εα∂xxxxcD

}

+ ε4−2αP6(y)
Q

D2

{
∂xttc− 2Dεα∂xxxtc + ε2α∂xxxxxcD

2

}
,

(143)
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where ⎧⎪⎪⎨
⎪⎪⎩

P8(y) =
281

453600
+

23

1512
y2 − 37

2160
y4 +

1

120
y6 − 1

672
y8,

P4(y) =
y2

6
− y4

12
− 7

180
; P6(y) =

y3

18
− y5

60
− 7y

180
− 31

7560
.

Using (32) we find, analogous to (108)–(109), that

∫ t

0

∫ ∞

0

∫ 1

0

τmζ(|F̃ ε
1 | + |F̃ ε

3 |)|ϕ| dxdydτ

≤ C
(
ε4−13α/4H(1 − α) + ε3/2−3α/4H(α− 1)

)
‖ϕ‖L2(Ot)(144)

for all ϕ ∈ H1(OT ), ϕ = 0 at x = 0 and m > 2.
• F ε

2 and F ε
4 are replaced with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ ε
2 = (1 − y2)

Qkε4−2α

D

{
∂xxc

Q

D
P̃6(y)

+

(
∂xtc

1

2D
− εα∂xxxc

1

2

)
P4(y) +

(
Q

45D
∂xc−

k

6D
c

)
P2(y)

}
,

F̃ ε
4 = −ε4−2αP̃6(y)

Qk

D2

{
∂xtc− εα∂xxxcD

}

+ ε4−2αP4(y)
k

2D2

{
∂ttc− 2Dεα∂xxtc + D2ε2α∂xxxxc

}

+ ε4−2αP2(y)
k

3D2

{
Q

15
∂xtc−

k

2
∂tc

− DQεα

15
∂xxxc +

Dkεα

2
∂xxc

}
,

(145)

where P2(y) = 1
3 − y2 and P̃6 = y6

60 − y4

18 + 11y2

180 − 11
810 . Using (32) we find,

analogous to (110)–(111), that

∫ t

0

∫ ∞

0

∫ 1

0

τmζ(|F̃ ε
2 | + |F̃ ε

4 |)|ϕ| dxdydτ

≤ C
(
ε4−11α/4H(1 − α) + ε5/2−5α/4H(α− 1)

)
‖ϕ‖L2(Ot)(146)

for all ϕ ∈ H1(OT ), ϕ = 0 at x = 0 and m > 2.
• It should be noted that the means of the polynomials in y, contained in F̃1

and F̃3, are no longer zero. Hence we cannot gain powers of ε using the
derivative with respect to y of the test function.

• F5 and the boundary term kζ(t)ε2−α
(
∂xc

2Q
45D − c k

3D

)
are canceled. At the

boundary y = 1 we have a new nonhomogeneous term

ĝε = (1 − ζ)kc− ζε4−2α

(
2Qk2

45D2
∂xcP̃6|y=1 +

(
k

2D2
∂tc− εα

k

2D
∂xxc

)
P4|y=1

)
,

(147)
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and the principal boundary contribution is given by∣∣∣∣
∫ t

0

∫ ∞

0

∫ 1

0

τmζε4−2α

(
2Qk2

45D2
∂xcP̃6|y=1

+

(
k

2D2
∂tc− εα

k

2D
∂xxc

)
P4|y=1

)
ϕ|y=1 dxdydτ

∣∣∣∣
≤ C
(
ε4−9α/4H(1 − α) + ε7/2−7α/4H(α− 1)

)
‖ϕ|y=1‖L2((0,t)×(0,+∞)).(148)

• Other terms are much smaller and do not have to be discussed.
After collecting the powers of ε and applying Proposition 6 we obtain the estimates
(140)–(142).

Theorem 6. Let ceff2 be given by (139). Then, with the notation of Theorem 4,
we have

‖t5(cε − ceff1 (x, t; ε) − c̄eff1 − ceff2 )‖L∞(0,T ;L1(ΩK))

≤ C
(
ε4−3αH(1 − α) + ε2−αH(α− 1)

)
,(149)

‖t5(cε − ceff1 (x, t; ε) − c̄eff1 − ceff2 )‖L2(0,T ;L2(ΩK))

≤ C
(
ε4−3αH(1 − α) + ε2−αH(α− 1)

)
.(150)

Proof. First we prove the L∞(L1) estimate (149). We test the equation for

ξ = cε − ceff1 (x, t; ε) − c̄eff1 − ceff2 by a regularized sign of ξ, multiplied by Ψ2, and
get

tm
∫

Ω+

Ψ(x)2|ξ|(t) dxdy + k

∫ t

0

∫ +∞

0

τm|ξ|y=1|Ψ2(x) dxdτ

≤ C1

∫ t

0

∫
Ω+

τmΨ(x)2|Φε
2| dxdydτ +

∫ t

0

∫ +∞

0

τm|ĝε|y=1|Ψ2(x) dxdτ |

+ C2ε
α

∫ t

0

∫
Ω+

τmΨ(x)2|ξ| dxdydτ + m

∫ t

0

∫
Ω+

τm−1|ξ|Ψ2 dxdydτ(151)

for all m ≥ 3. As before, the L1 norm of Ψ2ξ is Hölder-continuous in time with some
exponent α0 > 0. Arguing as in the proof of Proposition 6, we obtain

sup
0≤t≤T

‖tmΨ2ξ(t)‖L1(Ω+) ≤ C(‖Ψ2Φε
2‖L1(Ω+×(0,T )) + ‖Ψ2ĝε|y=1‖L1((0,+∞)×(0,T ))),

(152)

and the estimate (149) is proved.
The improved L2(L2) estimate (150) follows from (149), (141), and Poincaré’s

inequality in H1 (see, e.g., [6]).
At this point we use Moser’s iterations to obtain an L∞(L∞) error estimate.
Theorem 7. Let OT = Ω+ × (0, T ). Then, with the notation of Theorem 6, we

have

‖t5(cε − ceff1 (x, t; ε) − c̄eff1 − ceff2 )‖L∞(OT )

≤ C(δ)
(
ε4−7α/2−δH(1 − α) + ε3/2−α−δH(α− 1)

)
∀δ > 0.(153)

Remark 6. From the proof we see that C(δ) has an exponential growth when
δ → 0.
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Proof. Let M > 0, ξ = cε− ceff1 (x, t; ε)− c̄eff1 − ceff2 , and ξM = sup{tmξ−M, 0}.
We test the equation for ξ by Ψ2ξM and get

1

2

∫
Ω+

Ψ(x)2ξ2
M (t) dxdy + Dεα

∫ t

0

∫
Ω+

Ψ(x)2|∂xξM (τ)|2 dxdydτ

+ Dεα−2

∫ t

0

∫
Ω+

Ψ(x)2|∂yξM (τ)|2 dxdydτ + k

∫ t

0

∫ +∞

0

(ξM |y=1

+ Mτm)ξM |y=1Ψ
2(x) dxdτ ≤ C1

∣∣∣∣
∫ t

0

∫
Ω+

τmΨ(x)2|Φε
3|ξM dxdydτ

+

∫ t

0

∫ +∞

0

τm|ĝε|y=1ξM |y=1Ψ
2(x) dxdτ

∣∣∣∣+ C2ε
α

∫ t

0

∫
Ω+

τ2mΨ(x)2ξ2
M dxdydτ

(154)

for all m ≥ 3, where τmΦε
3 = −τmΦε

2 + mτm−1ξ. We suppose that

kM ≥ sup
0≤τ≤T

τm‖Ψĝε(τ)|y=1‖L∞(0,+∞) = c0
(
ε4−5α/2H(1 − α) + ε3(1−α/2)H(α− 1)

)
.

(155)

As in the classical derivation of the Nash–Moser estimate (see [10, pp. 181–186]) we
introduce

μ(M) =

∫ T

0

∫
Ω+∩{tmξ−M>0}

Ψ2 dxdydt.(156)

Now in exactly the same way as in [10, pp. 181–186], on a time interval which could
be smaller than [0, T ], but assumed equal to it without losing the generality, we get

‖ξM‖2
V2

= sup
0≤t≤T

∫
Ω+

Ψ(x)2ξ2
M (t) dxdy + Dεα

∫ T

0

∫
Ω+

Ψ(x)2|∂xξM (τ)|2 dxdydτ

+ Dεα−2

∫ T

0

∫
Ω+

Ψ(x)2|∂yξM (τ)|2 dxdydτ ≤ β2
0‖τmΦε

3Ψ‖2
Lq(OT )μ(M)1−2/q,

q > 2.(157)

Next, the estimate (157) is iterated in order to conclude that ξM = 0. Here we modify
the classical argument from [10, pp. 102–103] and adapt it to our situation.

We note that, after making appropriate extensions, one finds

‖Ψϕ‖L4(OT ) ≤ c0‖Ψϕ‖1/2
L2(OT )‖Ψϕ‖1/2

H1(OT ) ≤ c0ε
−α/4‖ϕ‖V2(158)

for all ϕ ∈ V2, such that ϕ|x=0 = 0. As in [10, p. 102], at this point we take the
sequence of levels kh = M(2 − 2−h), h = 0, 1, . . . . Then

(kh+1 − kh)μ1/4(kh+1) ≤ ‖Ψξkh
‖L4(OT ) ≤

β̄ε−α/4

kh+1 − kh
‖ξkh

‖V2(159)

and, with κ = 1 − 2/q > 0,

μ1/4(kh+1) ≤ 2h
2β̄β0‖τmΦε

3Ψ‖Lq(OT )ε
−α/4

M
μ(1+κ)/4(kh).(160)
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μ1/4(kh+1) will tend to zero for h → ∞ if μ1/4(M) satisfies

μ1/4(M) ≤
(

2β̄β0‖τmΦε
3Ψ‖Lq(Ω+×(0,T ))ε

−α/4

M

)−1/κ

2−1/κ2

.(161)

Equation (161) is satisfied if M equals the right-hand side of estimate (153).
Our next result concerns higher order norms. It it not very satisfactory for large

α and we state it without giving the proof, which follows from the demonstrations
given above.

Theorem 8. With the notation of Theorem 4, we have

‖t5∂x(cε − ceff1 (x, t; ε) − c̄eff1 )‖L∞(0,T ;L2(ΩK))

≤ C
(
ε4−15α/4H(1 − α) + ε(1−α/2)/2H(α− 1)

)
,(162)

‖t5∂t(cε − ceff1 (x, t; ε) − c̄eff1 )‖L2(0,T ;L2(ΩK))

≤ C
(
ε4−15α/4H(1 − α) + ε(1−α/2)/2H(α− 1)

)
.(163)

Our final improvement concerns the error estimate in the L∞(L2) norm for small
values of α. As mentioned in the proof of Theorem 5, F̃ ε

1 and F̃ ε
3 do not have zero

means with respect to y, and consequently, the proof does not give the expected
precision for the second-order correction. Nevertheless, when computing the term
c2 in the asymptotic expansion, there is a liberty of adding an arbitrary function
C2 of x and t. This function can be chosen such that the appropriate means are
zero and the left-hand sides of the estimates (140)–(142) are multiplied by ε1−α/2.
Unfortunately, there is a simultaneous new contribution of the form QP2(y)∂xC2. Its
norm deteriorates the estimate for α ≥ 4/5. Consequently, this amelioration is not of
real importance and we just give the result. The proof is completely analogous to the
preceding ones.

Corollary 4. Let the polynomials Pj(y) be defined by (143)–(145) and let C2

be given by the initial/boundary value problem

(164)

∂C2

∂t
+

2Q

3

∂C2

∂x
− εαD

∂2C2

∂x2

= −Qk

D
ζ(t)

{
∂xxc

Q

D

∫ 1

0

(1 − y2)P̃6(y) dy+

(
∂xtc

1

2D
− εα∂xxxc

1

2

)∫ 1

0

(1 − y2)P4(y) dy

+

(
Q

45D
∂xc−

k

6D
c

)∫ 1

0

(1 − y2)P2(y) dy

}

−Q2

D2
ζ(t)

{
−∂xxxcQ

∫ 1

0

(1 − y2)P8(y) dy

+ (∂xxtc−Dεα∂xxxxc)

∫ 1

0

(1 − y2)P6(y) dy

}
in (0,+∞) × (0, T ),

∂xC2 ∈ L2((0,+∞) × (0, T )), C2|t=0 = 0, C2|x=0 = 0.(165)

Then, with the notation of Theorem 6 and for α ∈ [0, 4/5] we have

‖t5(cε − ceff1 − c̄eff1 − ceff2 − C2)‖L∞(0,T ;L2(ΩK)) ≤ Cε5−17α/4,(166)

‖t5∂y(cε −−ceff1 − c̄eff1 − ceff2 )‖L2(0,T ;L2(ΩK)) ≤ Cε6−19α/4,(167)

‖t5∂x(cε − ceff1 − c̄eff1 − ceff2 − C2)‖L2(0,T ;L2(ΩK)) ≤ ε5−19α/4.(168)
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THE KELLER–SEGEL MODEL FOR CHEMOTAXIS WITH
PREVENTION OF OVERCROWDING: LINEAR VS. NONLINEAR

DIFFUSION∗
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Abstract. The aim of this paper is to discuss the effects of linear and nonlinear diffusion in the
large time asymptotic behavior of the Keller–Segel model of chemotaxis with volume filling effect.
In the linear diffusion case we provide several sufficient conditions for the diffusion part to dominate
and yield decay to zero solutions. We also provide an explicit decay rate towards self–similarity.
Moreover, we prove that no stationary solutions with positive mass exist. In the nonlinear diffusion
case we prove that the asymptotic behavior is fully determined by whether the diffusivity constant in
the model is larger or smaller than the threshold value ε = 1. Below this value we have existence of
nondecaying solutions and their convergence (along subsequences) to stationary solutions. For ε > 1
all compactly supported solutions are proved to decay asymptotically to zero, unlike in the classical
models with linear diffusion, where the asymptotic behavior depends on the initial mass.

Key words. chemotaxis, nonlinear diffusion, asymptotic behavior, Keller–Segal model, over-
crowding

AMS subject classifications. 92C17, 35K55, 35K57, 35K65, 35B40
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1. Introduction. This paper focuses on the mathematical analysis of a chemo-
taxis model in the cases of linear and nonlinear diffusion. The general structure of
the model we consider is

(1.1)

⎧⎨
⎩

∂ρ

∂t
= ∇ · (M(ρ)∇μ(ρ, S))

−ΔS + S = ρ,

posed on R
d × R

+ subject to the initial condition

(1.2) ρ(x, 0) = ρ0(x), ρ0 ∈ L1(Rd), 0 ≤ ρ0(x) ≤ 1, x ∈ R
d.

The mobility term M is given by M(ρ) = ρ(1−ρ). Such a choice takes into account the
prevention of the overcrowding effect, sometimes also referred to as “volume filling”
effect (see the motivations and references below). The potential μ reads

(1.3) μ(ρ, S) =
δE

δρ
(ρ, S),
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where δE
δρ denotes the functional derivative of some energy functional with respect to ρ.

If we model the energy as a combination of a logarithmic entropy and an aggregation
part, i.e.,

E(ρ, S) = ε

∫
Rd

(ρ log ρ + (1 − ρ) log(1 − ρ)) dx

−
∫

Rd

ρS dx +
1

2

∫
Rd

(
|∇S|2 + S2

)
dx,(1.4)

with ε > 0, then system (1.1) becomes

(1.5)

⎧⎨
⎩

∂ρ

∂t
= ∇ · (ε∇ρ− ρ(1 − ρ)∇S)

−ΔS + S = ρ,

which is a special case of the Keller–Segel model for chemotaxis, describing the behav-
ior of a cell population ρ under the influence of the chemical S produced by the cells
themselves. Introduced in 1970 [KS70] to describe aggregation of slime mold amoe-
bae, this model has become one of the most widely studied models in mathematical
biology. The cell flux on the right-hand side of (1.5) comprises two counteracting
phenomena: random motion of cells described by Fick’s law and cell movement in the
direction of the gradient of the chemical S. In contrast to the equations presented
here, the gradient of S is multiplied by a linear instead of a nonlinear function of ρ
in the classical version of the model. An interesting feature of this choice is the fact
that solutions can become unbounded in finite time, thus giving rise to concentration
phenomena. Whether this blow-up of solutions occurs or not depends typically on the
initial data and the space dimension d, and conditions for the blow-up of solutions
have been derived by many authors (see [Hor03, Hor04] and the references therein).
Most studies focus on models where the evolution of the chemical S is governed by
a parabolic equation (as in the original Keller–Segel model). Typical alternative for-
mulations for the evolution of S are given either by an elliptic equation of a more
general form than in (1.1) or by the Poisson equation. In the majority of the cases,
the model is considered on bounded domains, typically with Neumann boundary con-
ditions. Concerning the case of an unbounded domain, an extensive analysis of the
model on R

d, d ≥ 2, has been performed recently in [CPZ04], where the authors prove
that solutions exist globally when the Ld/2-norm of the initial data does not exceed
a critical value. In the recent contribution [DP04] it is proved that the critical value
8π of the initial mass produces an optimal threshold between blow-up and global
existence when d = 2.

Although of great mathematical interest, models allowing for the infinite growth of
solutions have often been criticized because their biological interpretation is not fully
understood. Several generalizations of the Keller–Segel model, where the formation
of singularities is prevented a priori, have been studied recently (see, e.g., [HP01]).
These models superimpose a maximal value for the cell density, which yields the global
existence of solutions. Such an assumption is reasonable in certain physical situations
where cells stop aggregating after a certain size of the aggregate has been reached.
The model presented in [HP01] is of type (1.5) but with a parabolic equation for
S. Note that the main difference from a standard derivation of the model without
prevention of overcrowding is the additional factor (1−ρ) in the mobility term M(ρ) in
(1.1) and the additional entropy term depending on (1− ρ) in the energy. Intuitively,
this change of mobility seems obvious, since the possibility of cells to move freely
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is limited by the cells around them. Therefore, in the case of overcrowding (which
happens in our scaling for ρ ≥ 1) their motion would be stopped. It is less obvious
how to interpret the additional entropy term depending on (1−ρ)—it somehow forces
cells to diffuse even in the case of overcrowding. On the other hand if the volume-
filling mechanism is thought of as a finite size effect really blocking the cells, then also
no diffusion would be allowed and the volume-filling effect would have consequences
only upon mobility but not on the energy. Such a possibility is supported by results
in [BO04], where the authors observe that many chemicals appear both to stimulate
directed motion up the chemotactic gradient and to alter the random mobility (i.e.,
the nonlinear diffusion coefficient). As a consequence of that, they establish a direct
relationship between the chemotaxis and random motion coefficients. In particular,
they both may vanish at the threshold value of the density.

This argument is the main reason why we shall also discuss a different choice for
the energy in this paper. More precisely, we shall use a quadratic energy of the form

E(ρ, S) =
ε

2

∫
Rd

ρ2 dx−
∫

Rd

ρS dx +
1

2

∫
Rd

(
|∇S|2 + S2

)
dx,(1.6)

yielding the degenerate parabolic-elliptic problem

(1.7)

⎧⎨
⎩

∂ρ

∂t
= ∇ · (ρ(1 − ρ)∇(ερ− S))

−ΔS + S = ρ.

Several reformulations of the Keller–Segel model have been studied recently, with
a nonlinear diffusion term in the evolution of the cell density replacing the linear
one (see [Hor03, Chapter 6]). An interesting issue is whether it is possible to avoid
blow-up of solutions by introducing nonlinear diffusion effects without the help of the
volume-filling term in the mobility (see also [CC05]). We stress that the main feature
in our nonlinear model (1.7) is that the random mobility vanishes at the threshold
value ρ = 1. Such a property is not usually covered in the literature concerning
chemotaxis models with nonlinear diffusion.

A further reason to study (1.7) relates to the asymptotic behavior of its solutions,
in particular to the possibility of achieving either existence of nontrivial stationary
solutions or a large time decay to zero in L∞. Whether the former or the latter
phenomenon takes place depends upon the size of the diffusivity ε. We recall that the
long-time asymptotics of the linear case (1.5) in bounded intervals (under Neumann
boundary conditions) have been recently studied in [DS05] and, with a parabolic
equation for S, in [PH05]. The observed behavior is a coarsening process reminiscent
of phase change models, where plateau-like peaks of the cell density form after a short
transition period and then merge exponentially slowly. Numerical studies indicate
that in most situations the only stable stationary states are single plateaus located
at the boundary of the domain. It is therefore not surprising that the behavior of
solutions on the whole space is different. Roughly speaking, the cells are not stopped
by any boundaries and therefore the linear model would allow them to spread out
rather than aggregate. We shall make this statement more rigorous by several results
on the decay of the cell density ρ for large time. For now we emphasize that, to our
knowledge, system (1.7) is the only one known to admit stationary profiles on the
whole space.

In order to make the comparison between the linear and nonlinear diffusion case
more concrete, we provide a guideline through the paper for readers who are interested
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in the results rather than on the detailed proofs. The first step towards the large time
behavior of solutions is an investigation of possible stationary solutions. Here we find
a first difference between the two cases. More precisely, no finite mass stationary
solutions different from zero exist for linear diffusion (subsection 2.2.1), while finite
mass nontrivial stationary solutions do exist for nonlinear diffusion in the case ε <
1 (subsection 3.4.2). A partly numerical construction of stationary solutions even
indicates their existence for arbitrary mass if ε < 1 (section 3.5). The detailed large-
time behavior is described by:

• Decay to zero of solutions in the linear diffusion case in the following two
cases:

– with arbitrary initial mass for ε > 1
4 in 1–d (section 2.2),

– with small initial mass for arbitrary ε > 0 (section 2.2).
In both cases, solutions converge in L1 towards the self-similar Gaussian
solution of the heat equation with variance ε (section 2.3).

• Existence of nondecaying solutions for ε < 1 in the nonlinear case (subsection
3.4.1). These solutions converge (along subsequences) to stationary solutions
(subsection 3.4.2). For ε > 1 all compactly supported solutions decay and
their support must become unbounded as t → ∞ (subsection 3.4.3).

2. Linear diffusion. In this section, we first cover the existence and uniqueness
theory for weak solutions of model (1.5). We then turn our attention to the asymptotic
behavior for large time.

2.1. Existence theory and preliminaries. We study the Cauchy problem for
the following parabolic-elliptic system

(2.1)

⎧⎪⎨
⎪⎩

∂ρ
∂t = εΔρ−∇ · (ρ(1 − ρ)∇S)

−ΔS + S = ρ,

ρ(x, 0) = ρ0(x),

where x ∈ R
d, d ≥ 1, t ≥ 0, ε > 0, ρ, and S are scalar functions, and ρ0 belongs in

L1(Rd)∩L∞(Rd). We recall that the above system can be decoupled in order to get a
nonlocal parabolic equation for ρ by means of the convolution representation formula

(2.2) S(x, t) =

∫
Rd

B(x− y)ρ(y, t)dy,

where B is the Bessel potential

(2.3) B(x) =
1

(4π)d/2

∫ +∞

0

e−t− |x|2
4t

td/2
dt.

For further reference we recall the formula for the heat convolution kernel

(2.4) G(x, t) =
1

(4πεt)d/2
e−

|x|2
4εt , x ∈ R

d, t > 0.

The proof of the following lemma follows by straightforward computations.
Lemma 2.1. The following estimates are satisfied:

‖B‖L1(Rd) = 1,(2.5)

‖∇B‖L1(Rd) < +∞,(2.6)

‖G(·, t)‖Lp(Rd) ≤ Ct−
d(p−1)

2p , p ≥ 1,(2.7)

‖∇G(·, t)‖Lp(Rd) ≤ Ct−
d(p−1)

2p − 1
2 , p ≥ 1,(2.8)
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The estimates provided by the previous lemma enable us to prove local existence
of L1 ∩ L∞ solutions of (2.1) by means of the implicit representation formula

(2.9) ρ(x, t) = (G ∗ ρ0) (x, t) +

∫ t

0

∫
Rd

∇G(x− y, t− s) (ρ(1 − ρ)∇(B ∗ ρ)) (y, s)dsdy

and by a standard fixed point argument. This leads to the following theorem, whose
proof is rather standard and will be omitted (see also [Hor03] and the references
therein for the local existence theory of other models closely related to (2.1)).

Theorem 2.2 (local existence). Let ρ0 ∈ L1(Rd)∩L∞(Rd) (resp., ρ0 ∈ L∞(Rd)).
Then, there exists a unique solution ρ(x, t) to (2.1) such that

ρ ∈ L∞ (
[0, T ], L1(Rd) ∩ L∞(Rd)

)
(resp., ρ ∈ L∞ (

[0, T ], L∞(Rd)
)
) for a small enough positive time T .

Again by standard fixed point technique, the local-in-time solution ρ(x, t) pro-
vided by Theorem 2.2 can be endowed with the same regularity (with respect to x) as
the initial datum. Some regularity for ρ without the help of any further requirements
on the initial datum can be obtained at least in 1–d.

Proposition 2.3 (regularizing effect). Let the initial datum ρ0 ∈ L1(R)∩L∞(R).
Then, at any positive time t, the solution ρ(t) of (2.1) is continuous with respect to
x.

Proof. Since G ∗ ρ0 is a C∞ function, we only need to prove that ρ − G ∗ ρ0 is
continuous. By formula (2.9), we have for small h > 0

(ρ− G ∗ ρ0)(x + h, t) − (ρ− G ∗ ρ0)(x, t)

=

∫ t

0

∫ +∞

−∞
[Gx(x + h− y, t− s) − Gx(x− y, t− s)] (ρ(1 − ρ)∇(B ∗ ρ)) (y, s)dsdy.

We recall that the term (ρ(1 − ρ)∇(B ∗ ρ)) is (locally) bounded. Moreover, thanks to
(2.8) we can find nonnegative functions H(x, y, t, s) and K ∈ L1 such that

|Gx(x + h− y, t− s) − Gx(x− y, t− s)| ≤ H(x, y, t, s) ≤ (t− s)−1K

(
|x− y|2
t− s

)
.

Therefore, the limit as h → 0 in the above integral is zero due to Lebesgue’s dominated
convergence theorem.

The representation formula (2.9) is also the basis of the result in the following
proposition, the proof of which is again omitted.

Proposition 2.4 (continuity with respect to the initial data). Let ρ and ρ be
two local-in-time solutions to (2.1), with initial data ρ0, ρ0 ∈ L1 ∩ L∞, respectively.
Then, for a small T we have

(2.10) ‖ρ(t) − ρ(t)‖L1 ≤ C(T )‖ρ0 − ρ0‖L1

for all t ∈ [0, T ].
As suggested by the divergence form, L1 solutions of (2.1) preserve the total mass,

i.e.,

(2.11)

∫
Rd

ρ(x, t)dx =

∫
Rd

ρ0(x)dx.
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The proof of the above identity is standard (see, for instance, [Váz92, Chapter III–
section 2]).

In order to achieve global existence of solutions, from now on in this section
we shall restrict our analysis to the case of initial data ρ0 in (2.1) satisfying the
assumption

(2.12) 0 ≤ ρ0(x) ≤ 1, x ∈ R
d.

Our next aim is to prove that condition (2.12) is invariant under the flow induced by
the model (2.1). Such a property together with the conservation of the total mass
will imply the global existence of the solution of (2.1). Similar properties are proved
in [HP01] for the fully parabolic model and in [DS05] in a bounded domain.

Theorem 2.5 (global existence). Assume the initial datum ρ0 ∈ L1(Rd) satis-
fies (2.12). Then there exists a unique global solution to the Cauchy problem (2.1),
satisfying

(2.13) 0 ≤ ρ(x, t) ≤ 1 for any (x, t) ∈ R
d × [0,∞).

In particular,

(2.14) 0 < ρ(x, t) < 1 if 0 < ρ0(x) < 1.

Proof. Writing (2.1) as ρt + ∇ρ · ∇S(1 − 2ρ) + ρ(1 − ρ)(S − ρ) = εΔρ, it can be
seen immediately that ρ ≡ 0 and ρ ≡ 1 are lower and upper solutions, respectively.
By the mean value theorem of multidimensional calculus, the function w(x, t) = ρ−ρ
satisfies the inequality

wt + A(x, t)∇w + B(x, t)w − εΔw ≥ 0,

with bounded coefficients A(x, t) and B(x, t). For w(x, t) = ρ−ρ, the same equations
with a reversed inequality sign holds, and the boundedness of ρ follows from the
Phragmèn–Lindelöf principle for parabolic equations [PW84]. Therefore the proof is
complete in view of the conservation of the total mass.

2.2. Decay of solutions as t → +∞. In this subsection we determine suf-
ficient conditions on the diffusivity constant ε in (2.1) and on the initial datum ρ0

such that the L∞(Rd) norm of the corresponding solution ρ(x, t) tends to zero as
t → +∞. We prove here that this is the case either when the total mass is smaller
than a threshold value depending on ε or without any condition on the total mass in
case ε > 1/4 and d = 1. It is already known in case of models without prevention
of overcrowding that, when the mass of the initial datum is much smaller than some
constant depending on ε, the diffusion term becomes dominant and produces a long
time decay of the solution (see [CPZ04, DP04]). For the sake of completeness we shall
reproduce the same result for our model in the following proposition, the proof of
which is partly the same as in [CPZ04].

Proposition 2.6. Let ε > 0 and let ρ0 ∈ L1(Rd) satisfy (2.12). Then, there
exists a constant C(d) depending only on the dimension d such that, for total mass
satisfying

(2.15)

∫
Rd

ρ0dx <

(
4ε

C(d)

)1/β

β = min{1, 2/d}.
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The solution ρ(x, t) to (2.1) satisfies the decay estimates

‖ρ(t)‖Lp(Rd) ≤ C(t + 1)−
d(p−1)

2p if 2 ≤ p < +∞,(2.16)

‖ρ(t)‖L∞(Rd) ≤ C(t + 1)−
d
2 .(2.17)

Proof. Let us start with the Lp estimates for finite p. By multiplying the equation
in (2.1) by pρp−1 and after integration by parts we obtain

d

dt

∫
Rd

ρp(x, t)dx = εp

∫
Rd

ρp−1Δρdx + p(p− 1)

∫
Rd

(ρp−1 − ρp)∇S · ∇ρdx

≤ −ε
4(p− 1)

p

∫
Rd

|∇ρp/2|2dx + (p− 1)

∫
Rd

∇ρp · ∇Sdx

≤ −ε
4(p− 1)

p

∫
Rd

|∇ρp/2|2dx + (p− 1)

∫
Rd

ρp+1dx,

where we have used the a priori estimate 0 ≤ ρ ≤ 1 and S ≥ 0. By means of the
Gagliardo–Nirenberg inequality (see also [CPZ04])∫

Rd

ρp+1dx ≤ C(d)‖ρ‖Lα(Rd)

∫
Rd

|∇ρp/2|2dx,

where α = 1 for d = 1, 2, α = d/2 for d > 2, we easily get

d

dt

∫
Rd

ρp(x, t)dx ≤ −(p− 1)

(
4ε

p
− C(d)

(∫
Rd

ρ0dx

)β
)∫

Rd

|∇ρp/2|2dx,

where β = min{1, 2/d}. Hence, for

(2.18)

∫
Rd

ρ0dx <

(
4ε

pC(d)

)1/β

,

we can write, for some C > 0,

d

dt

∫
Rd

ρp(x, t)dx + C

∫
Rd

|∇ρp/2|2dx ≤ 0.

Thanks to the following interpolation inequality (see, e.g., [EZ91]):

‖ρ‖
(d(p−1)+2)p

d(p−1)

Lp(Rd)
≤ C(p, d)‖∇ρp/2‖2

L2(Rd)‖ρ‖
2p

d(p−1)

L1(Rd)
,

we have

d

dt

∫
Rd

ρp(x, t)dx + Cm

(∫
Rd

ρpdx

) d(p−1)+2
d(p−1)

≤ 0,

which implies the desired polynomial time-decay in Lp

(2.19) ‖ρ(t)‖Lp(Rd) ≤ C(p, d)(t + 1)−d(p−1)/2p,

where the term (t + 1) instead of t is justified by the global-in-time control of all the
Lp norms proved in the previous subsection. We remark that the previous Lp decay
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has been obtained for solutions with initial data satisfying (2.18) where the constant
on the right-hand side depends on p, unlike in the statement of Theorem 2.5. We shall
recover the threshold condition (2.15) later on in this proof. In order to obtain the
L∞ estimate (2.17), we employ the implicit representation of the solution ρ provided
by the Duhamel principle

ρ(x, 2t) = G(t) ∗ ρ(t) +

∫ 2t

t

∇G(2t− σ) ∗ (ρ(1 − ρ)∇B ∗ ρ)(σ)dσ

= G(2t) ∗ ρ(t) +

∫ t

0

∇G(t− s) ∗ (ρ(1 − ρ)∇B ∗ ρ)(t + s)ds.(2.20)

By taking the L∞ norm in (2.20), we obtain

‖ρ(2t)‖L∞(Rd) ≤ ‖G(t)‖L∞(Rd)‖ρ(t)‖L1(Rd)

+

∫ t

0

‖∇G(t− s)‖Lr(Rd)‖ρ(1 − ρ)∇B ∗ ρ(t + s)‖Lr′ (Rd)ds

≤ Ct−
d
2 + C

∫ t

0

(t− s)−
d(r−1)

2r − 1
2 ‖ρ(t + s)‖2

L2r′ (Rd)
ds, r′ =

r

r − 1
.

Here r > 1 can be chosen arbitrarily with the only restriction r < d
d−2 in case d > 2.

Once r and r′ are fixed, we require that ρ0 satisfies (2.18) with p = 2r′. Hence, (2.19)
implies

‖ρ(2t)‖L∞(Rd) ≤ Ct−
d
2 +

∫ t

0

(t− s)−
d(r−1)

2r − 1
2 (t + s)−

d(2r′−1)

2r′ ds = Ct−
d
2 + Ct

1
2−d.

Since ‖ρ(t)‖L∞(Rd) is uniformly bounded and since d ≥ 1, we obtain the estimate

‖ρ(t)‖L∞(Rd) ≤ C(t + 1)−
d
2

and the Lp decay rates (2.16) can be easily obtained by interpolation.
In the next proposition we prove that solutions to (2.1) enjoy a time decay rate

as in (2.16) no matter how large the mass is, provided ε > 1/4 and d = 1. This result
constitutes an essential difference of the present model with respect to the classical
Keller–Segel type models.

Proposition 2.7. Let ε > 1/4 and d = 1. Let ρ0 ∈ L1(R) satisfying (2.12).
Then, the solution ρ(x, t) to (2.1) satisfies the decay estimates

(2.21) ‖ρ(t)‖Lp(R) ≤ C(t + 1)−
(p−1)

2p , 2 ≤ p ≤ ∞.

Proof. We start with the L2 estimate

d

dt

∫
R

ρ2(x, t)dx = 2ε

∫
R

ρρxxdx + 2

∫
R

ρ(1 − ρ)Sxρxdx

≤ −2ε

∫
R

ρ2
xdx +

1

2

∫
R

|ρxSx|dx.

As a consequence of the Young inequality for convolutions we have (recalling (2.2))

d

dt

∫
R

ρ2(x, t)dx ≤ −2

(
ε− 1

4

)∫
R

ρ2
xdx.
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Then, by means of the Gagliardo–Nirenberg inequality, as in the previous proposition,
we obtain the decay in L2

‖ρ(t)‖L2(R) ≤ C(t + 1)−1/4.

By taking the L4 norm in the representation (2.20), in a similar fashion as in the
previous proposition, we obtain

‖ρ(2t)‖L4(R) ≤ C(t + 1)−3/8 +

∫ t

0

‖∇G(t− s)‖L4‖ρ∇B ∗ ρ(t + s)‖L1ds

≤ C(t + 1)−3/8 +

∫ t

0

(t− s)−7/8(t + s)−1/2ds ≤ C(t + 1)−3/8 + Ct−3/8.

Finally,

‖ρ(2t)‖L∞(R) ≤ C(t + 1)−1/2 +

∫ t

0

‖∇G(t− s)‖L2‖ρ∇B ∗ ρ(t + s)‖L2ds

≤ C(t + 1)−1/2 +

∫ t

0

(t− s)−3/4(t + s)−3/4ds ≤ C(t + 1)−1/2.

The remaining Lp estimates are easily obtained by interpolation.

2.2.1. Some remarks and the nonexistence of stationary solutions. Clear-
ly, an open question is whether solutions to (2.1) decay for any ε and for arbitrarily
large masses. In bounded domains, for d = 1 and Neumann boundary conditions, so-
lutions of the system (2.1) has been shown to decay to the constant solution if ε > 1

4 ,
but if ε is small enough, stationary, periodic solutions in L1((0, L)) exist (see [DS05]
and [PH05]). However, one can easily prove that there exist no nonzero stationary
solutions to (2.1) in L1(Rd) in the case of unbounded domains: We define the energy
functional E(ρ, S) of system (2.1) by

(2.22) E =
1

2

∫
(|∇S|2 + S2)dx−

∫
ρSdx + ε

∫
[ρ log ρ + (1 − ρ) log(1 − ρ)]dx,

with

(2.23)
∂E

∂ρ
= −S + ε log

ρ

(1 − ρ)
and

∂E

∂S
= −ΔS + S − ρ.

Rewriting the first equation of (2.1) as

(2.24)
∂ρ

∂t
= ∇ ·

(
ρ(1 − ρ)∇∂E

∂ρ

)
,

and differentiating the energy with respect to time, we obtain

dE

dt
=
∂E

∂S

∂S

∂t
+

∂E

∂ρ

∂ρ

∂t
=

∫
∇ ·

(
ρ(1 − ρ)∇∂E

∂ρ

)
∂E

∂ρ
dx

= −
∫

ρ(1 − ρ)
∣∣∣∇∂E

∂ρ

∣∣∣ 2 dx ≤ 0.

Hence, the energy is decreasing in time, and the stationary state dE
dt = 0 is only

reached if ρ = 0, ρ = 1 or ∂E
∂ρ =const., the latter implying that the stationary solution

(ρ, S) should satisfy, for some positive constant C,

ρ

1 − ρ
= e

S+C
ε ,
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in some open set Ω ⊂ R
d, with ρ = 0 at some point of ∂Ω. However, this is incom-

patible with S being bounded, because of the continuity of ρ stated in Proposition
2.3.

2.3. Self-similar long time behavior. The aim of this subsection is to prove
that, under suitable assumptions on the initial datum ρ0, the solution of (2.1) decays
towards the fundamental solution of the heat equation with a polynomial rate. To
perform this task we employ the entropy dissipation method (see [AMTU01]). The
long time decay properties of the solution ρ(x, t) are a crucial ingredient in the argu-
ments below. We shall prove our result by assuming a priori that the solution ρ(x, t)
satisfies the decay estimate

(2.25) ‖ρ(t)‖L∞(Rd) ≤ C(t + 1)−
d
2

which we proved to be fulfilled under the assumptions in Propositions 2.6 and 2.7.
Our first step is the following standard time dependent rescaling:

(2.26)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ(x, t) = R(t)−

d
2 v(y, s),

y = R(t)−
1
2x,

s = 1
2 logR(t),

R(t) = 2t + 1.

Then, it is easy to see that v(y, s) solves the Cauchy problem

(2.27)

{
∂v
∂s = ∇ · (ε∇v + yv) − e−ds∇ · (v(1 − e−sv)Bs ∗ ∇v)

v(y, 0) = ρ0(y),

where Bs(y) = esB(esy). For future reference we write (2.27) as follows:

(2.28)
∂v

∂s
= ε∇ ·

(
v∇

(
log v +

|y|2
2ε

))
− e−ds∇ · (v(1 − e−sv)Bs ∗ ∇v).

We remark that the fundamental solution G(x, t) of the heat equation in rescaled

variables depends only on y; more precisely, it is given by Um(y) = Ce−
|y|2
2ε , where

C depends on the mass m of ρ0. Moreover, we recall that Um satisfies the elliptic
equation ∇· (ε∇Um +yUm) = 0. We shall make use of the classical entropy functional

(2.29) E(v) =

∫
Rd

v(y) log v(y)dy +
1

2ε

∫
Rd

|y|2v(y)dy,

and of the relative entropy RE(v|Um) = E(v) − E(Um). Once the mass m is fixed,
the relative entropy functional attains zero as minimum value at the ground state
Um. The following inequality (see [AMTU00] for the proof) establishes a connection
between the convergence in relative entropy and the convergence in L1.

Theorem 2.8 (Csiszár–Kullback inequality). Let v ∈ L1(Rd) having mass m.
Then, there exists a fixed constant C (depending on m) such that

(2.30) ‖v − Um‖2 ≤ CRE(v|Um).

For future reference, we recall the following logarithmic Sobolev inequality (see,
e.g., [AMTU01]).
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Theorem 2.9 (logarithmic Sobolev inequality). Let v ∈ L1(Rd) having mass m
and such that E(v) < +∞. Then, the following inequality is satisfied:

(2.31) RE(v|Um) ≤ ε

2
I(v|Um),

where

I(v|Um) =

∫
Rd

v

∣∣∣∣∇
(

log
v

Um

)∣∣∣∣
2

dy =

∫
Rd

v

∣∣∣∣∇
(

log v +
|y|2
2ε

)∣∣∣∣
2

dy

is called (relative) Fisher information.
Finally, we remark that assumption (2.25) for ρ in the new variables v(y, s) reads

(2.32) ‖v(s)‖L∞(Rd) ≤ C

for some fixed C > 0 depending only on the initial datum. We are ready to state the
main theorem of this subsection.

Theorem 2.10. Let ρ ∈ L1(Rd) satisfy (2.12) and E(ρ0) < ∞, where E is defined
in (2.29). Suppose that the corresponding solution ρ(x, t) to (2.1) satisfies the time
decay condition (2.25). Then,

(2.33) ‖ρ(t) − G(t)‖L1(Rd) =

{
o(t−

1
2+δ) for arbitrary 0 < δ  1 if d = 1

O(t−
1
2 ) if d > 1,

where G is the Gaussian solution (2.4) of the heat equation with same mass as ρ0.
Proof. In what follows, we shall denote a generic positive constant independent

on s by C. Let us multiply (2.27) by log v(y) + |y|2
2ε and integrate over R

d. Then,
integration by parts and conservation of the total mass yield

d

ds
E(v(s)|Um) = −ε

∫
Rd

v

∣∣∣∣∇
(

log
v

Um

)∣∣∣∣
2

dy + Ce−ds

∫
Rd

v∇Bs ∗ v ·∇
(

log v +
|y|2
2ε

)
dy

≤ −εI(v|Um) + Ce−ds

(∫
Rd

v |∇Bs ∗ v|2 dy
)1/2

(∫
Rd

v

∣∣∣∣∇
(

log v +
|y|2
2ε

)∣∣∣∣
2

dy

)1/2

=: −εI(v|Um) + J.

(2.34)

We now estimate the term J by using (2.32) and Young’s inequality,

J ≤ Ce−ds

(∫
Rd

1

v
|∇v|2 dy

)1/2

I(v|Um)1/2

= Ce−ds

(
I(v|Um) + 2d

∫
Rd

v − 1

ε

∫
Rd

v|y|2dy
)1/2

I(v|Um)1/2

≤ Ce−ds
(
I(v|Um) + I(v|Um)1/2

)
.

Therefore, inequality (2.34) implies

d

ds
E(v(s)|Um) ≤ −(ε− Ce−ds − Ce−2δs)I(v|Um) + Ce−2ds+2δs,
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for an arbitrarily small δ > 0 and for a fixed C > 0. For s ≥ s0(ε) we have ε −
Ce−ds − Ce−2δs > 0 and we can use inequality (2.31) to obtain

d

ds
E(v(s)|Um) ≤ −2(ε− Ce−ds − Ce−2δs)

ε
E(v(s)|Um) + Ce−2ds+2δs.

Hence, due to the variation of constants formula we obtain the following decay rates
as s → +∞ (here δ > 0 is arbitrarily small):

(2.35) E(v(s)|Um) =

{
O(e−2(1−δ)s) if d = 1

O(e−2s) if d > 1.

Finally, by means of the Csiszár–Kullback inequality (2.30) and by using the original
variables ρ(x, t) according to (2.26), we obtain the desired estimate (2.33).

3. Nonlinear diffusion. In this section we focus our attention on the nonlinear
model

(3.1)

⎧⎨
⎩

∂ρ

∂t
= ∇ · (ρ(1 − ρ)∇(ερ− S))

−ΔS + S = ρ,

subject to the initial condition

(3.2) ρ(x, 0) = ρ0(x), ρ0 ∈ L1(Rd), 0 ≤ ρ0(x) ≤ 1, x ∈ R
d.

3.1. Existence of weak solutions. We start by providing a suitable definition
of weak solutions. In order to simplify the notation, we fix ε = 1. We denote

A(ρ) =

∫ ρ

0

ξ(1 − ξ)dξ =
ρ2

2
− ρ3

3
, A(ρ) =

∫ ρ

0

A(ξ)dξ =
ρ3

6
− ρ4

12
.

Definition 3.1. A function ρ ∈ L2([0,+∞) × R
d) is called a weak solution

of the Cauchy problem (3.1)–(3.2) on R
d × [0, T ] (T eventually +∞) if the following

conditions are satisfied:
(i) A(ρ) ∈ L∞([0, T ];L1(Rd))
(ii) ∇A(ρ) ∈ L2([0, T ] × R

d)
(iii) 0 ≤ ρ(x, t) ≤ 1 almost everywhere in [0, T ] × R

d.
(iv) For all ϕ ∈ C∞

c ([0, T ) × R
d), the following relation holds:∫ T

0

∫
Rd

ρϕtdxdt−
∫ T

0

∫
Rd

∇A(ρ) · ∇ϕdxdt

+

∫ T

0

∫
Rd

ρ(1 − ρ)∇S · ∇ϕdxdt +

∫
Rd

ρ(x, 0)ϕ(x, 0)dx = 0,

where S = S[ρ] is the unique H1 solution to −ΔS + S = ρ.
The existence of weak solutions in the sense of the above definition is stated in

the following theorem.
Theorem 3.2 (global existence of solutions). There exists at least a global weak

solution ρ(x, t) to the Cauchy problem (3.1)–(3.2) in the sense of Definition 3.1.
The proof of the previous theorem can be performed by a standard approximation

procedure. We refer in particular to [Car99, CP03] for existence theory of degener-
ate convection diffusion equations and to [BCM03, CMV03] for problems including
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nonlocal terms. The main technical problem in our case is related to the degeneracy
of the nonlinear diffusion coefficient at the threshold value ρ = 1. We can overcome
this difficulty by including the invariant domain property 0 ≤ ρ ≤ 1 in Definition
3.1. This property prevents the mobility coefficient ρ(1 − ρ) from turning into the
backward diffusion range. For the sake of completeness, let us give an outline of the
proof. As a first step we consider a nondegenerate approximation of our problem on a
smooth bounded domain with Dirichlet boundary conditions. If S is given, the solu-
tion ρ is provided by the classical theory of parabolic equations. Hence, the existence
of the solution to the coupled problem can be provided by compactness of the solution
operator S = S(ρ) and by Schauder’s fixed point theorem. The nondegenerate mo-
bility coefficients can be carefully chosen in order to preserve the conditions in (3.2)
in time. This property can be proved in the same way as in Theorem 2.5 due to the
nondegeneracy of the parabolic equation. The second step consists in taking the limit
in the mobility coefficients in order to prove existence for the degenerate problem in
a closed ball. Finally one can send the radius of the ball to infinity and complete the
proof. In the last two steps one can use the classical energy estimate technique from
[Váz92] in order to achieve sufficient compactness.

Remark 3.3. The conservation of the total mass can be proved in the same way
as in the case of linear diffusion.

3.2. entropy solutions. In the following we turn our attention to the problem
of uniqueness of suitable solutions. For equations with an interaction of nonlocal fluxes
and degenerate diffusions there is no straightforward way to prove the uniqueness of
weak solutions (cf. also [BCM03, Car99]) and one might even expect nonuniqueness,
as for nonlocal transport equations (cf. [DGT00]). We therefore turn our attention to
a rather natural restriction of weak solutions, the so-called entropy solutions. Apart
from uniqueness, the main motivation for considering entropy solutions is to obtain the
correct dissipation of entropy functionals, which will be discussed in the subsections
below. Due to the fact that the convolution B ∗ ρ is smooth anyway, the behavior of
dissipation functionals on this part seems unimportant and we shall therefore adapt
the definition of entropy solutions for fixed flux ∇S(x, t) (cf. [BCM03] for a more
detailed discussion).

Definition 3.4 (entropy solutions). We shall say that a nonnegative function
ρ ∈ L1([0, T ] × R

d) ∩ C(0, T ;L1(Rd)) is an entropy solution of the Cauchy problem
(3.1)–(3.2) on R

d × [0, T ] if the following conditions are satisfied:
(i) For all c ∈ R and all nonnegative test functions ϕ ∈ C∞

c ([0, T ) × R
d), the

following entropy inequality holds:

∫ T

0

∫
Rd

[
|ρ− c|ϕt + sign (ρ− c) (ρ(1 − ρ) − c(1 − c))∇S · ∇ϕ

+ ε|A(ρ) −A(c)|Δϕ− sign (ρ− c)c(1 − c)ΔSϕ
]
dx dt ≥ 0,(3.3)

where S = S[ρ] is the unique H1 solution to −ΔS + S = ρ.
(ii) A(ρ) ∈ L2(0, T ;H1(Rd))
(iii) 0 ≤ ρ(x, t) ≤ 1 almost everywhere in [0, T ] × R

d.
(iv) Essentially, as t ↓ 0,

∫
Rd

|ρ(x, t) − ρ0(x)| dx → 0.
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In order to prove the existence of entropy solutions, one can follow the same
nondegenerate approximation procedure briefly discussed in the previous subsection
and even obtain a unique classical solution. The classical solution clearly satisfies
the corresponding entropy condition (with smoothed nonlinearities on the bounded
domain). Due to a priori bounds on ρ, A(ρ), and S = B ∗ ρ (see once again the
aforementioned reference [Váz92]) we always extract suitably convergent subsequences
when passing from the nondegenerate approximation to (3.1), so that the entropy
inequality (3.3) carries over to the limit. Hence, we obtain the following result.

Theorem 3.5. Let ρ0 ∈ L1(Rd) satisfy 0 ≤ ρ0 ≤ 1. Then there exists an entropy
solution of (3.1), (3.2) according to Definition (3.4).

In order to prove uniqueness of the entropy solution, we shall use the continuous
dependence of entropy solutions on the flux in the L1-norm.

Lemma 3.6. Let S1, S2 ∈ C(0, T ;H1(Rd)) ∩ L∞([0, T ] × R
d), with

∇Sj ∈ C(0, T ;W 1,1
loc (Rd)) ∩ C([0, T ] × R

d), ΔSj ∈ L∞([0, T ] × R
d)

be given and let uj ∈ L∞(0, T ;BV (Rd)) be entropy solutions of

uj
t = ∇ ·

(
uj(1 − uj)∇(εuj − Sj)

)
with initial values uj

0 ∈ BV (Rd) for j = 1, 2.

‖u1(t) − u2(t)‖L1(Rd) ≤ ‖u1
0 − u2

0‖L1(Rd) +
t

4
‖∇S1 −∇S2‖L∞(0,t;BV (Rd))

+tmax{V1, V2}‖∇S1 −∇S2‖L∞([0,t]×Rd),(3.4)

where Vj = ‖∇Sj‖L∞(0,t;BV (Rd)).
Proof. The proof can be carried out as the proof of Theorem 1.3 in [KR03] by

appropriately using the time-dependence of the flux in the estimates and the fact that
the function p �→ p(1 − p) has Lipschitz constant 1 and supremum 1

4 on the interval
[0, 1].

Below we shall prove a uniqueness result in the smaller class of entropy solu-
tions of bounded variation in the case of spatial dimension one. Before proving their
uniqueness, we verify the existence of such entropy solutions.

Proposition 3.7 (regularity of entropy solutions). Let ρ0 ∈ BV (R1; [0, 1]), then
an entropy solution of (3.1), (3.2) satisfies

ρ ∈ L∞(0, T ;BV (R1)).

Proof. We construct the BV-solution by smooth approximation. Let ρ be an L1

viscosity solution of (3.1), (3.2) and let ρδ ∈ C(0, T ;C1(R1)) such that 0 ≤ ρδ ≤ 1
almost everywhere and ρδ → ρ in C(0, T ;BV (R1)). Then we also have

Sδ = B ∗ ρ ∈ C(0, T ;BV (R1))

and consequently

Sδ
xx = Sδ − ρδ ∈ C(0, T ;BV (Rd)).

The results of [KR01] imply the existence of an entropy solution uδ of

ut −
(
u(1 − u)(δu− Sδ)x

)
= 0



1302 M. BURGER, M. DI FRANCESCO, AND Y. DOLAK-STRUSS

with initial value u(0) = ρ0, u
δ belonging in the space ∈ L∞(0, T ;BV (R1). Moreover,

since uδ
h(x, t) = uδ(x + h, t) is an entropy solution of the same equation with Sδ(x.t)

replaced by Sδ
h(x, t) := Sδ(x + h, t) and initial value ρ0(. + h), we may apply the

continuous dependence estimate to deduce

‖uδ
h(t) − uδ(t)‖L1(R1) ≤ ‖ρ0(. + h) − ρ0‖L1(R1) +

t

4
‖Sδ

x − (Sδ
h)x‖L∞(0,t;BV (R1))

+tV δ‖Sδ
x − (Sδ

h)x‖L∞([0,t]×R1),

with V δ = ‖Sδ
x‖L∞(0,t;BV (R1)). After division by h we obtain in the limit h → 0,

‖uδ(t)‖BV (R1) ≤ ‖ρ0‖BV (R1) +
t

4
‖Sδ

xx‖L∞(0,t;BV (R1)) + tV δ‖Sδ
xx‖L∞([0,t]×R1).

From the uniform bounds for ρδ in L∞(R1) ∩ L1(R1) one can easily deduce uniform
estimates for V δ and ‖Sδ

xx‖L∞([0,t]×R1). Moreover, there exists a constant c > 0
(independent of δ and t) such that

‖Sδ
xx‖L∞(0,t;BV (R1)) ≤ c‖ρδ‖L∞(0,t;BV (R1)).

Hence, we deduce

‖uδ‖L∞(0,t;BV (R1)) ≤ ‖ρ0‖BV (R1) +
ct

4
‖ρδ‖L∞(0,t;BV (R1)) + Ct.

As δ → 0, one can prove in a standard way that uδ → ρ. Now let t be such that
2ct < 1, then by lower semicontinuity

1

2
‖ρ‖L∞(0,t;BV (R1)) ≤ lim sup

(
‖uδ‖L∞(0,t;BV (R1)) −

1

2
‖ρδ‖L∞(0,t;BV (R1))

)
≤ ‖ρ0‖BV (R1) + Ct,

and hence, ρ ∈ L∞(0, t;BV (R1)).
By applying the same argument consecutively to time intervals of length smaller

than 1
2c we finally obtain that ρ ∈ L∞(0, T ;BV (R1)).

Finally, from the continuous dependence it is a small step to prove the main
uniqueness result.

Theorem 3.8 (uniqueness). The entropy solution ρ of (3.1), (3.2) is unique in
the space L∞(0, T ;BV (R1)).

Proof. Let ρ1 and ρ2 be two different entropy solutions belonging in the space
L∞(0, T ;BV (R1)). Then we can assume without restriction of generality that ‖ρ1(t)−
ρ2(t)‖ �= 0 for t > 0 is arbitrarily small (otherwise we can take τ as the maximal time
before which the solutions are equal and rescale time to t− τ).

One can verify in a straightforward way that S1 and S2 satisfy the assumptions
of Lemma 3.6 and that there exists a constant C > 0 such that

‖S1
x − S2

x‖L∞(0,t;BV (R1)) ≤ C‖ρ1 − ρ2‖L∞(0,t;L1(R1))

and

‖S1
x − S2

x‖L∞([0,t]×R1) ≤ C‖ρ1 − ρ2‖L∞(0,t;L1(R1)).

Hence, by Lemma 3.6 the estimate

‖ρ1(t) − ρ2(t)‖L1(R1) ≤ C̃t‖ρ1(t) − ρ2(t)‖L1(R1)

holds for some constant C̃. Since we can choose t small enough such that Ct < 1, this
yields a contradiction.
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3.3. Finite speed of propagation in one space dimension. In this subsec-
tion we focus our attention on the Cauchy problem in one space dimension

(3.5)

{
∂tρ = ∂x (ρ(1 − ρ)∂x (ερ− S)) ,

ρ(x, 0) = ρ0(x),

where ρ0 is compactly supported and satisfies the usual condition 0 ≤ ρ0 ≤ 1. Our
aim is to prove that the solution ρ(t) at any time t > 0 is still compactly supported.
This feature is usually referred to as the the finite rate of propagation property, and
it is typically satisfied by nonlinear diffusion equations of the form

ρt = A(ρ)xx,

when A : R+ → R+ is a smooth nondecreasing function such that A′(0) = 0. Our
approach in proving such a property is closely related with the estimates of the Wasser-
stein distances between any two solutions to a nonlinear diffusion equation developed
in [CGT04]. For a positive integer n, we define the 2nth moment of a nonnegative,
integrable function ρ as

M2n(ρ) :=

∫ +∞

−∞
x2nρ(x)dx.

The distribution function of ρ is given by

F (x) =

∫ x

−∞
ρ(y)dy.

The pseudoinverse function of F , defined on the interval [0,m], m =
∫ +∞
−∞ ρ(x)dx, is

given by

F−1(ξ) = inf
{
x ∈ R

∣∣∣ F (x) > ξ
}
.

If ρ(x) > 0 almost everywhere, then F−1 is a real inverse, and the change of variables

x ∈ supp(ρ) �→ ξ = F (x) ∈ [0,m]

is a bijection. Therefore, one can change variables in the definition of the moments
above and get

M2n(ρ) =

∫ +∞

−∞
x2nρ(x)dx =

∫ m

0

F−1(ξ)2ndξ.

Obviously we have [
1

m

∫ m

0

F−1(ξ)2ndξ

]1/2n

→ ‖F−1‖L∞([0,m]),

as n → +∞. Moreover, it is clear that

(3.6) meas(supp(ρ)) ≤ 2‖F−1‖L∞([0,m]).

Thus, a uniform estimate with respect to n of M
1/2n
2n (ρ(t)), where ρ(t) is the solution

to (3.5), at time t automatically ensures the finiteness of the size of the support of
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ρ(t). We shall prove that such an estimate is true. For future reference we briefly
recall the following result in [Kne77] for a nonlinear friction equation.

Theorem 3.9. Let A(ρ) = ρ2

2 − ρ3

3 . Let ρ(t) be a nonnegative solution to the
equation

(3.7) ρt = A(ρ)xx

with initial datum having compact support. Let F
−1

(t) be the pseudoinverse of the
distribution function of ρ(t). Then, there exists a continuous (increasing) function of
time t �→ C(t) such that

(3.8) ‖F−1
(t)‖L2n ≤ C(t),

where C(t) does not depend on n.
We now state our result for (3.5).
Theorem 3.10 (finite speed of propagation). Let ρ(x, t) be the unique entropy

solution to (3.5) with compactly supported initial datum ρ0. Then, the profile ρ(t) has
compact support at any positive time t.

Proof. As pointed out before, to pursue our aim we only need to control M
1/2n
2n

uniformly in n in any finite time interval [0, T ]. We shall perform this task by a formal
computation of the L2n norm of the pseudoinverse of the distribution function of ρ.
This formal computation can be easily made rigorous by an approximation procedure
that allows us both to cancel out the boundary terms due to integration by parts and
to treat the pseudoinverse of the distribution function of ρ as a real inverse. This
procedure is well explained in [CGT04] and we shall omit the details about it. We
only observe that classical energy estimates on (3.5) in the spirit of [Váz92] provide
the necessary compactness needed to extend such approximation argument to our
case.

We denote by ρ the solution of (3.5) with an initial datum ρ0 having mass m =∫
ρ0. Let u(t) : [0,m] → R be the pseudoinverse of the distribution function of ρ. Let

us also consider the solution ρ(t) of the nonlinear diffusion equation (3.7) having ρ0

as initial datum. Let u(t) be the pseudoinverse of the distribution function of ρ(t).
A standard computation with pseudoinverses (see, e.g., [CGT04]) shows that u and
u satisfy the following equations:

∂tu = −∂ξA
(
(∂ξu)

−1
)

+
(
1 − (∂ξu)

−1
)∫ m

0

B′(u(ξ) − u(η))dη,

∂tu = −∂ξA
(
(∂ξu)

−1
)
.

For fixed n we have, after integration by parts,

d

dt

∫ m

0

[u(t) − u(t)]2ndξ

= + 2n(2n− 1)

∫ m

0

(u− u)2n−2 [∂ξu− ∂ξu]
[
A((∂ξu)−1) −A((∂ξu)−1)

]
dξ

+ 2n

∫ m

0

(u− u)2n−1
(
1 − (∂ξu)

−1
)∫ m

0

B′(u(ξ) − u(η))dηdξ.

Hence, since the function t → A(t−1) is nonincreasing we can get rid of the first
addend on the right-hand side above. Therefore, due to the uniform bound of ρ in



CHEMOTAXIS WITH PREVENTION OF OVERCROWDING 1305

L∞ and to the definition of B, there exists a fixed constant C > 0 such that

d

dt

∫ m

0

[u(t) − u(t)]2ndξ ≤ Cn

[∫ m

0

[u(t) − u(t)]2ndξ + 1

]
,

and, in view of (3.8) and of the Gronwall inequality,

‖u(t)‖L2n[0,m] ≤ eCt

for some positive constant C independent of n. We can now send n → ∞ to get a
uniform estimate for ‖u(t)‖L∞[0,m] and the proof is complete in view of (3.6).

3.4. Asymptotic behavior. In the following we investigate the asymptotic be-
havior of weak solutions to (3.1), (3.2) for large time. The main idea in this case is
the analysis of the behavior of the associated energy functional

(3.9) Ẽ(ρ) :=

∫
Rd

ρ(ερ− S(ρ)) dx,

where S(ρ) is the unique solution to −ΔS + S = ρ decaying at infinity. This energy
functional is to be considered on the admissible set

(3.10) K := {ρ ∈ L2(Rd) ∩ L1(Rd) | 0 ≤ ρ ≤ 1 a.e. }.

For the nonlinear diffusion case, the change from ε > 1 to ε < 1 is of particular interest,
since Ẽ(ρ) changes from a strictly convex (for ε > 1) to a nonconvex functional, which
we verify in the following lemma.

Lemma 3.11. The functional Ẽ : K → R is bounded below by −
∫

Rd ρ dx for

ε > 0. Moreover, Ẽ is positive and strictly convex for ε > 1.
Proof. First of all, since ρ ≤ 1 and S(ρ) ≥ 0, we have

Ẽ(ρ) :=

∫
Rd

ρ(ερ− S(ρ)) dx ≥ −
∫

Rd

S(ρ) dx.

The property
∫

Rd S(ρ) dx =
∫

Rd ρ dx can be deduced immediately from the elliptic
equation satisfied by S(ρ) and hence,

Ẽ(ρ) ≥ −
∫

Rd

ρ dx.

Since Ẽ is a quadratic functional, convexity is equivalent to strict positivity. From
the Cauchy–Schwarz inequality we have

Ẽ(ρ) =

∫
Rd

ρ(ερ− S(ρ)) dx ≥ (ε− 1)

∫
Rd

ρ2 dx +
1

2

∫
Rd

(
ρ2 − S(ρ)2

)
dx.

Finally, a standard energy estimate for the elliptic equation satisfied by S(ρ) shows
that the second term is nonnegative, and hence,

Ẽ(ρ) ≥ (ε− 1)

∫
Rd

ρ2 dx > 0

for ρ �= 0 and ε > 1.
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A fundamental property of the model is the dissipation of the energy Ẽ. Formally,
if we compute the time derivative of Ẽ(ρ(t)), insert the equations and apply Gauss’
theorem, then we obtain

d

dt
Ẽ(ρ(t)) =

∫
Rd

ρt(2ερ− B ∗ ρ) dx−
∫

Rd

ρB ∗ ρt dx

= 2

∫
Rd

ρt(ερ− B ∗ ρ) dx

= 2

∫
Rd

∇ · [ρ(1 − ρ)∇(ερ− B ∗ ρ)] (ερ− B ∗ ρ) dx

= −2

∫
Rd

ρ(1 − ρ) |∇(ερ− B ∗ ρ)|2 dx := −2I(ρ, S) < 0.(3.11)

This estimate can be made rigorous by standard smooth approximation techniques,
and thus, we have derived the following result.

Proposition 3.12 (energy dissipation). Let ρ be a weak solution of (3.1), (3.2).
Then the functional

e : R
+ → R, t �→ e(t) := Ẽ(ρ(t))

is nonincreasing. Moreover, e(s) = e(t) for s > t if and only if ρ is stationary in the
interval [s, t] and

ρ(1 − ρ)∇(ερ− S(ρ)) = 0 a.e. in R
d × [s, t].

3.4.1. Nondecaying solutions in 1-d for moderate diffusivity. It is an
important consequence of the previous proposition that for an initial value ρ0 for
(3.1) with Ẽ(ρ0) < 0, the existence of nondecaying solutions follows: in this case, we
have Ẽ(ρ(t)) ≤ Ẽ(ρ0) < 0 due to the energy dissipation. Hence, such solutions cannot
decay for t → ∞, since otherwise one would have lim inf Ẽ(ρ(t)) ≥ Ẽ(0) = 0.

In one space dimension and for every ε < 1, we can verify that the functional Ẽ is
not positive—and hence nondecaying solutions do exist—by an explicit construction
of appropriate densities.

Proposition 3.13. Let d = 1 and ε < 1, then for each m > 0 there exists ρ ∈ K
satisfying

(3.12) Ẽ(ρ) < 0, and

∫
Rd

ρ dx = m.

Proof. Let 0 < α2 < 1
ε − 1 and let ψα be a continuous function satisfying

−d2ψα

dx2 + ψα = 1
c , 0 ≤ x < a,

−d2ψα

dx2 − α2ψα = 0, a ≤ x ≤ b,

−d2ψα

dx2 + ψα = 0, x > b,

with boundary conditions ψα(0) = 1, dψα

dx (0) = 0 and ψα(x) → 0 as x → ∞, and
some constant c satisfying

(3.13) 0 < ε < c <
1

α2 + 1
< 1.



CHEMOTAXIS WITH PREVENTION OF OVERCROWDING 1307

We find that if a < ln c
1−c , a continuously differentiable, nonnegative solution exists

and is given by

ψα(x) =

⎧⎨
⎩

1
c (1 − (c− 1) coshx), 0 ≤ x < a,
c1 sin(α(x− a)) + c2 cos(α(x− a)), a ≤ x ≤ b,
c3e

b−x, b < x,

where the constants satisfy

c1 = c−1
αc sinh a < 0,

c2 = (1 + (c− 1) cosh a)/c,
c3 = c1 sin(α(b− a)) + c2 cos(α(b− a)),

and the length of the second interval is fixed by the relation

b = a +
1

α
arctan

(
−c2 + αc1
c1 − αc2

)
.

If we choose S as the symmetric extension of cψα to R and

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, −a < x < a,
c(α2 + 1)ψα(x), a ≤ x ≤ b,
c(α2 + 1)ψα(−x), −b ≥ x ≥ −a,
0, |x| > b,

then S satisfies −d2S
dx2 + S = ρ and ρ ∈ K. Moreover, we have

Ẽ(ρ) =

∫
Rd

ρ(ερ− S) dx = 2
[∫ a

0

(ε− S) dx + (ε(α2 + 1) − 1)(α2 + 1)

∫ b

a

S2 dx
]
.

This expression is negative if a < arccosh
(

1−ε
1−c

)
. The mass m is given by

1

2
m = a+ (α2 + 1)

∫ b

a

S dx = a+ c(α2 + 1)

∫ b

a

c1 sin(α(x− a)) + c2 cos(α(x− a)) dx.

Because of (3.13), we have that 1
2m < a +

∫ b

a
c1 sin(α(x − a)) + c2 cos(α(x − a)) dx.

If α is chosen small enough, we can choose the constant c to be so close to 1 that the
constraints on a, and hence on m, become arbitrarily large. Thus, for any given mass
m, we can always construct a solution ρ ∈ K such that (3.12) holds.

3.4.2. Attractors of the semigroup in 1-d. As another interesting conse-
quence of the energy estimate (3.11), for any positive ε we can characterize the set of
attractors of the semigroup (3.1), (3.2) as the set of its stationary entropy solutions,
i.e., the set of all ρ ∈ L1, 0 ≤ ρ ≤ 1 such that

(3.14) ρ(1 − ρ)∇(ερ− S(ρ)) = 0 a.e. in R × [0,+∞),

where S(ρ) is the unique solution to −ΔS + S = ρ decaying at infinity.
Theorem 3.14 (attractors of the semigroup). Let ρ(t) be the solution to (3.1),

(3.2) in one space dimension. Then, any sequence of times admits a subsequence tk
such that ρ(tk) → ρ∞ almost everywhere. Moreover, ρ∞ is a solution to (3.14).



1308 M. BURGER, M. DI FRANCESCO, AND Y. DOLAK-STRUSS

Proof. We set

B(ρ) =

∫ ρ

0

√
r(1 − r)dr

and we observe that (3.11) implies that the quantity∫ +∞

0

I(ρ(t), S(t))dt =

∫ +∞

0

∫ +∞

−∞

[
ε2B(ρ)2x − 2εA(ρ)xSx + ρ(1 − ρ)S2

x

]
dxdt

is uniformly bounded. Therefore, any sequence of times tending to infinity has a
subsequence tk → +∞ such that I(ρ(tk), S(tk)) → 0 as k → ∞. Since∫ +∞

−∞
ρ(1 − ρ)S2

xdx ≤ 1

4

∫
Rd

ρ2dx,

and ρ(t) is uniformly bounded in L1 ∩ L∞, and because of

−2ε

∫
Rd

A(ρ)xSxdx = 2ε

∫
Rd

A(ρ)(ρ− S)dx,

we easily get a uniform (with respect to time) bound for∫ +∞

−∞
B(ρ(tk))

2
xdx.

Thanks to the uniform bound in L1∩L∞ for the solution ρ(t), by Sobolev embedding
we can extract a new subsequence of times (still denoted by tk for simplicity) such
that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ(tk) → ρ∞ a.e. in R × [0 + ∞)

ρ(tk) → ρ∞ in L2
loc(R)

B(ρ(tk))x → v∞ weakly in L2(R)

I(ρ(tk), S(tk)) → 0,

as k → ∞. Now, for any test function φ ∈ C∞
0 (R) we have∫ +∞

−∞
v∞φ dx = lim

k→∞

∫ +∞

−∞
B(ρ(tk))xφ dx

= − lim
k→∞

∫ +∞

−∞
B(ρ(tk))φxdx = −

∫ +∞

−∞
B(ρ∞)φxdx

and therefore v∞ = B(ρ∞)x almost everywhere. We denote by S∞ the solution to
−Sxx + S = ρ∞. By weak lower semicontinuity of the L2 norm and by the strong
compactness of Sx = B′ ∗ ρ in L2 we can extract another subsequence such that

I(ρ∞, S∞) = ε2

∫ +∞

−∞
εB(ρ∞)2xdx− 2ε

∫ +∞

−∞
A(ρ∞)xS

∞
x dx

+

∫ +∞

−∞
ρ∞(1 − ρ∞)(S∞

x )2dx ≤ lim inf
k→∞

{∫ +∞

−∞
B(ρ(tk))xdx

−2ε

∫ +∞

−∞
A(ρ(tk))xS(tk)xdx +

∫ +∞

−∞
ρ(tk)(1 − ρ(tk))S(tk)

2
xdx

}
= lim

k→∞
I(ρ(tk), S(tk)) = 0.
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Recalling that I(ρ, S) =
∫ +∞
−∞ ρ(1 − ρ)(ερ− S)2xdx, the assertion follows.

Remark 3.15. In the arguments above we have implicitly supposed existence of
stationary solutions. The convergence of subsequences in the above theorem is strong
enough to prove existence of stationary, weak, entropy solutions of (3.1), (3.2) in one
space dimension. Due to the nondecay result in subsection 3.4.1, we deduce existence
of stationary solutions which are not identically zero in case of ε < 1.

3.4.3. Characterization of the attractors for large diffusivity in 1-d. In
this subsection we prove that the only attractor of the semigroup, and hence the only
solution to the stationary problem (3.14) is the constant solution ρ∞ ≡ 0 in the case
of large diffusivity ε > 1. To perform this task, we need an additional energy estimate,
i.e., we compute the evolution of the logarithmic functional

L(ρ) =

∫ +∞

−∞
[ρ log ρ + (1 − ρ) log(1 − ρ)]dx.

As for the energy estimate in the previous subsections, we compute the evolution of
L(ρ) by means of a formal computation which can be made rigorous by approximation.
Integration by parts and conservation of the total mass yield

L(ρ(t)) − L(ρ(0)) =

∫ t

0

∫
(log ρ− log(1 − ρ))ρtdxdτ

= −
∫ t

0

∫ (
ρx
ρ

+
ρx

1 − ρ

)
(ερ(1 − ρ)ρx − ρ(1 − ρ)Sx) dxdτ

= −ε

∫ t

0

∫
ρ2
xdxdτ +

∫ t

0

∫
ρxSxdxdτ ≤ −(ε− 1)

∫ t

0

∫
ρ2
xdxdτ.(3.15)

The logarithmic functional L cannot be used directly to discern the asymptotic
behavior of the solution ρ. However, the estimate performed above can be used to
characterize the stationary solutions for ε > 1. We have the following theorem.

Theorem 3.16 (attractors for large diffusivity in 1–d). Let ρ, S be a solution
to (3.1) with ε > 1 such that ρ has finite support at any time. Then, the support of
ρ is not uniformly bounded with respect to t. Consequently, there exist no compactly
supported stationary solutions ρ, S to (3.1) if ε > 1 is different from zero.

Proof. Suppose that ρ(t) is a solution with uniformly bounded support. Since the
function

[0, 1] � ρ �→ ρ log ρ + (1 − ρ) log(1 − ρ)

is bounded, L(ρ(t)) is uniformly bounded in time. Therefore, as in the proof of
Theorem 3.14, we can handle the right-hand side of estimate (3.15) in a clever way in
order to derive strong compactness. More precisely, there exists a divergent sequence
of times tk such that ρ(tk) converges to some ρ∞ almost everywhere and strongly in
L2
loc, and such that ρ(tk)x converges to zero strongly in L2. As in Theorem 3.14, we

can easily prove that ρ∞x = 0 and, by Fatou’s lemma, we conclude that ρ∞ = 0. By
the Sobolev interpolation lemma we get ρ(tk) → 0 uniformly, and this contradicts
ρ(t) having uniformly bounded support because of the conservation of the mass. This
proves the first assertion of the theorem. In particular, we have also proven that any
compactly supported stationary solution must equal zero.

As a consequence of the previous theorem, we have the following asymptotic decay
result in the case of large diffusivity.
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Corollary 3.17 (decay of solutions in 1-d for large diffusivity). Let ρ be the
solution to (3.1) with compactly supported initial datum ρ0 satisfying (3.2). Then,

lim
t→∞

‖ρ(t)‖L∞(R) = 0.

Proof. From Theorem 3.14, any divergent sequence of times admits a subsequence
tk such that ρ(tk) converges almost everywhere to a stationary solutions satisfying
(3.14). Thanks to the results in Theorems 3.10 and 3.16, such a solution must be the
constant solution ρ ≡ 0. Moreover, the convergence to zero holds in L∞ in view of
B(ρ(tk)) → 0 in L2 and by the Sobolev interpolation lemma.

3.5. Stationary solutions. As stated in Proposition 3.12, stationary solutions
of (3.1), (3.2) have to satisfy ρ = 0, ρ = 1 or ε∇ρ = ∇S. In one space dimension, this
means that we can construct nontrivial stationary solutions by arranging subintervals
on R such that ρ is in the admissible set K and satisfies one of these conditions in
every interval.

Proposition 3.18. Let d = 1 and ε < 1, then for each m > 0 small enough
there exists a stationary solution of (3.1) satisfying ρ ∈ K.

Proof. Let ρ and S be the symmetric extension to R of

S̄(x) =

{
ε

ε−1c1 + c2 cos
(√

1−ε
e x

)
, 0 ≤ x ≤ a,

c3e
a−x, a ≤ x,

ρ̄(x) =

{
1
εS + c1, 0 ≤ x ≤ a,
0, a ≤ x,

and let the constants satisfy

c1 = c

√
ε− 1√
ε

< 0, c2 =
c(ε

√
ε− ε)

ε− 1
> 0, c3 = −εc1,

where c is the maximal value of ρ and a is given by

a =

√
ε

1 − ε
arccos(−

√
ε).

Then, a simple calculation shows that for any given values of ε < 1 and 0 ≤ c ≤ 1,
a nonnegative solution ρ ∈ C(R) and S ∈ C1(R) exists. Moreover, S and ρ are
decreasing functions on [0, a], implying the assertion.

An example of this type of solution is shown in Figure 1(a), where we set c = 0.9
and ε = 0.6.

In general, more complicated stationary solutions can also be constructed, for
instance, solutions with

(3.16) ρ̄(x) =

⎧⎨
⎩

1, 0 ≤ x ≤ a,
1
εS + c1, a ≤ x ≤ b,
0, b ≤ x,

or solutions with several peaks (see Figure 1(b)–1(d)). It is no longer straightforward
to show that these solutions exist for any choice of ε < 1, but there is strong numerical
evidence. As an example, we chose a stationary solution of type (3.16): it seems that
for any mass m large enough and ε < 1, a solution can be uniquely determined. Figure
2 shows the interval a as a function of the mass for different values of ε. Depending
on ε, there exists a minimal value for m, which is due to the fact that the slope of
ρ, and hence also the minimal distance between intervals where ρ = 1 and ρ = 0, is
proportional to ε.
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Fig. 1. Stationary solutions ρ (dark lines) and S (light lines) of (3.1), (3.2).

Fig. 2. Dependence on the parameter a on m for different values of ε (left to right: ε = 10−3,
ε = 0.2, ε = 0.6, and ε = 0.9).

4. Numerical simulation. In the following we discuss the numerical simulation
of the linear and nonlinear model in one and two space dimensions. We discretize (2.1)
and (3.1) numerically by applying a straightforward finite difference method: for each
time step, S is computed using an implicit discretization of the elliptic equation,
then the cell density ρ is calculated using the updated value for S. This is done
by standard operator splitting of the equation for ρ. First, the advection term is
calculated with an upwind scheme (cf. [LeV90]). The solution obtained from this
step is subsequently used as an initial value for a time step in the diffusion problem
ρt = εΔρ and ρt = εΔA(ρ) for the linear and the nonlinear case, respectively. If ε is

relatively large and the parabolic CFL condition Δt ≤ CΔx2

ε becomes too expensive
compared to the hyperbolic CFL condition for the advection term, we use a Crank–
Nicholson scheme (an implicit, weighted average method, cf. [Qua03]) for the time
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Fig. 3. Linear problem, ε = 0.05.

integration of the linear diffusion term.
This numerical approach requires the approximation of the solution on an un-

bounded domain by (artificial) boundary conditions on a bounded domain. For the
numerical simulations presented below, we take Dirichlet boundary conditions for S
and ρ and perform the computations on large domains.

As a test whether this method is reliable, we compared our results for the non-
linear model to the numerical solution obtained by a so-called Lagrangian approach,
where the equation for the pseudoinverse of the distribution function is discretized
(see, for instance, [GT05]). Since this method is posed on the interval (0, 1), it does
not require any artificial cut of the computational domain. Our comparisons showed
that the maximal value of the error is approximately Δx (data not shown) and thus
of the same order as the as the error caused by the discretization itself. Hence, the
cutting of the domain in our numerical method seems to introduce only a negligible
error.

Since the distribution function and its pseudoinverse do not exist in multiple
dimensions, we could not compare our numerical solutions to those obtained by the
Lagrangian approach for the two-dimensional case. However, we checked our results
by successively doubling the size of the domain and comparing the corresponding
numerical solutions, which also produced negligible variations for reasonably large
domain size.

4.1. One-dimensional simulations. The evolution of the cell density in (1.1)
is illustrated in Figures 3 and 4 for the linear and nonlinear case, respectively: starting
with a symmetrical initial condition for ρ consisting of two peaks both with mass 1

2 , we
compute the solutions with the numerical scheme described above, using Δx = 10−2,
Δt = 5 × 10−3 in the linear case and Δx = 10−2, Δt = 5 × 10−4 in the nonlinear
case. In order to reduce the computation time, we consider symmetric initial data
with compact support on 0 ≤ x ≤ a and prescribe Neumann boundary conditions at
x = 0, so that we only have to compute on half of the domain.

In Figure 3 one observes that in the linear case the two initial peaks merge into
a single peak that eventually decays with time. In Figure 4 the time evolution of
the nonlinear diffusion problem (3.1) is illustrated. In order to have a more fair
comparison with the linear case we set ε = 0.5, i.e., ten times the value we took
for the linear case (but simulations with smaller ε showed a very similar behavior).
Starting with the same initial conditions, the solution first behaves as in the linear
case: there is attraction between the two peaks and they merge to a single one. In
contrast to the linear problem, however, this peak does not decay, but approaches a
nontrivial stationary solution as characterized in Proposition 3.18.
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Fig. 4. Nonlinear problem, ε = 0.5.
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Fig. 5. Linear problem, ε = 0.04.
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Fig. 6. Nonlinear problem, ε = 0.2.

4.2. Two-dimensional simulations. In two space dimensions, we perform nu-
merical experiments on a rectangular grid with Δx = Δt = 5 × 10−2 for the linear
model and Δx = 5 × 10−2, Δt = 4 × 10−4 for the nonlinear model. The diffusivities
are ε = 0.04 for the linear and ε = 0.2 for the nonlinear model. Figure 5 illustrates
the temporal evolution of the solution ρ of the linear problem, starting from the initial
condition shown in the first picture. We see that the maximal value of the density
remains close to 1 for a long time interval, but for even larger time diffusion dominates
aggregation and the density starts to decay. In Figure 6 the behavior of the nonlinear
model with the same initial conditions is shown. One observes that the solution is
not decaying, and eventually a stationary state with finite support is approached.
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1. Introduction. In this paper we consider linear transport equations

∂tu + div(bu) = 0 in (0, T ) × R
d,(1)

where b(t, x) ∈ R
d is the coefficient and u is scalar. Such equations arise in many

areas of fluid mechanics, and a precise analysis of them is a key issue for the un-
derstanding of the particle flows in applications. In the present work, we give sharp
results characterizing the well-posedness of transport equations. The question of well-
posedness for the associated Cauchy problem for (1) has a well-known answer when
b is continuous and Lipschitz continuous with respect to x, because of the Cauchy–
Lipschitz theorem and the relation between (1) and the ordinary differential equation
dX/ds = b(s,X(s)). When b is not smooth, the well-posedness is much more delicate.
A general theory has been developed in [13] in the case when b ∈ L1((0, T ),W 1,1

loc (Rd)),
divb ∈ L∞, and under some growth conditions on b. After some intermediate results
(see in particular [5], [9], and [10]), the theory has been generalized in [2] to the case
of only BV regularity for b instead of W 1,1. However, some recent counterexamples
(as in [11] and [12], both inspired by [1]) show that there is not much room in which to
weaken the regularity assumptions. Nevertheless, some questions remain open, such
as the case of BD regularity for b (the symmetric part of ∇xb is a measure, instead
of the full matrix as in the BV case); see [8] and [4] for some partial results in this
direction. For a detailed exposition and for a wider bibliography, the reader is referred
to [3].

In this paper, we intend to give results of a different type that do not give directly
the answer to the well-posedness problem, but rather give equivalent conditions for it
to hold, without regularity assumptions on b. For simplicity we shall always assume
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that b ∈ L∞((0, T )×R
d), and consider an L2 framework. The approach of [13] and [2]

relies on an approximation by convolution of a given weak solution to (1) and on the
renormalized property; that is, if u solves (1) and if divb = 0 (to simplify), then β(u)
also solves (1) for any suitable nonlinearity β. Theorem 2.1 states that such properties
are indeed equivalent to the well-posedness of both forward and backward Cauchy
problems, up to the fact that the smooth approximate solution (in the sense of the
norm of the graph of the transport operator) is not necessarily given by convolution.
Then, one can consider separately the two different issues of forward and backward
uniqueness. Theorem 3.1 states that a characterization of backward uniqueness is the
existence of a solution to the forward Cauchy problem that is approximable by smooth
functions in the sense of the norm of the graph of the transport operator. Finally, we
also consider the case of a coefficient b with unbounded divergence, but with bounded
compression. We show that the previous results extend naturally to this case.

2. Forward-backward formulation.
Theorem 2.1. Let b ∈ L∞((0, T ) × R

d; Rd) such that divb = 0. Then the
following statements are equivalent:

(i) b has the uniqueness property for weak solutions in C([0, T ];L2(Rd) − w)
for both the forward and the backward Cauchy problems starting, respectively, from
0 and T ; i.e., the only solutions in C([0, T ];L2(Rd) − w) to the problems{

∂tuF + div(buF ) = 0,
uF (0, ·) = 0,

{
∂tuB + div(buB) = 0,
uB(T, ·) = 0

are uF ≡ 0 and uB ≡ 0.
(ii) The Banach space

F :=

{
u ∈ C([0, T ];L2(Rd) − w) such that
∂tu + div(bu) ∈ L2((0, T ) × R

d)

}
(2)

with norm

‖u‖F := ‖u‖B([0,T ];L2(Rd)) + ‖∂tu + div(bu)‖L2((0,T )×Rd)(3)

has the property that the space of functions in C∞([0, T ] × R
d) with compact support

in x is dense in F .
(iii) Every weak solution in C([0, T ];L2(Rd) − w) of ∂tu + div(bu) = 0 lies in

C([0, T ];L2(Rd) − s) and is a renormalized solution, i.e., for every function β ∈
C1(R; R) such that |β′(s)| ≤ C(1 + |s|) for some constant C ≥ 0, one has ∂t

(
β(u)

)
+

div
(
bβ(u)

)
= 0 in (0, T ) × R

d.
In the statement of the theorem we used the notation C([0, T ];L2(Rd) − w) and

C([0, T ];L2(Rd) − s) for the spaces of maps which are continuous from [0, T ] into
L2(Rd), endowed with the weak or the strong topology, respectively. We recall the
classical fact that, up to a redefinition in a negligible set of times, every solution to (1)
belongs to C([0, T ];L2(Rd) − w) (see, for example, Remark 3 in [3]).

Proof of Theorem 2.1.
(i) ⇒ (ii).
Step 1. Cauchy problem in F . It is easy to check that F is a Banach space,

since L2 and B([0, T ];L2(Rd)) are Banach spaces (the latter denotes the space of
bounded functions, with the supremum norm). We preliminarily show that for any
f ∈ L2((0, T ) × R

d) and u0 ∈ L2(Rd), the Cauchy problem{
∂tu + div(bu) = f,
u(0, ·) = u0(4)
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has a unique solution in F . We proceed by regularization. Consider a sequence of
smooth vector fields {bn}n, with bn → b a.e., bn uniformly bounded in L∞, and
divbn = 0 for every n. Let un be the solution to the problem{

∂tun + div(bnun) = f,
un(0, ·) = u0.

Then, by standard results on the smooth theory of transport equations (see, for ex-
ample, [6]), we know that the solution un is unique in C([0, T ];L2(Rd)) and is given
by

un(t, x) = u0(Xn(0, t, x)) +

∫ t

0

f(τ,Xn(τ, t, x)) dτ,

where Xn(s, t, x) is the flow of bn at time s, starting at the point x at time t, i.e., the
solution to the ordinary differential equation⎧⎨

⎩
dXn

ds
(s, t, x) = bn(s,Xn(s, t, x)),

Xn(t, t, x) = x.

Recalling that divbn = 0, so that Xn(s, t, ·)#Ld = Ld for every s and t (we denote
by Ld the d-dimensional Lebesgue measure on R

d), we can estimate the L2 norm of
un(t, ·) as follows:

‖un(t, ·)‖L2 ≤ ‖u0(Xn(0, t, ·))‖L2 +

∫ t

0

‖f(τ,Xn(τ, t, ·))‖L2 dτ

≤ ‖u0‖L2 +

∫ t

0

‖f(τ, ·)‖L2 dτ

≤ ‖u0‖L2 +
√
T‖f‖L2 .

This implies that the sequence {un}n is equibounded in C([0, T ];L2(Rd)). From the
equation on un, we have also that for any ϕ ∈ C∞

c (Rd), d/dt(
∫
unϕdx) is bounded in

L2(0, T ). We deduce that for any ϕ ∈ L2(Rd),
∫
unϕdx is uniformly in n equicontinu-

ous in [0, T ]. Thus, up to the passage to a subsequence (which does not depend on t),
we can suppose that un(t, ·) ⇀ u(t, ·) in L2(Rd) − w, with u ∈ C([0, T ];L2(Rd) − w).
By the semicontinuity of the norm with respect to weak convergence we also obtain
that

‖u(t, ·)‖L2 ≤ ‖u0‖L2 +
√
T‖f‖L2 .(5)

Passing to the limit in the transport equation, we obtain that u solves the Cauchy
problem {

∂tu + div(bu) = f,
u(0, ·) = u0.

Noticing that ∂tu + div(bu) = f ∈ L2, we conclude that u ∈ F . Uniqueness is
clear: every solution to the Cauchy problem (4) is by definition a weak solution in
C([0, T ];L2(Rd) − w) of the forward Cauchy problem with right-hand side, and thus
by linearity, uniqueness is guaranteed by the forward part of assumption (i).
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Step 2. Density of smooth functions. Define a linear operator

A :
F → L2(Rd) × L2((0, T ) × R

d),

u �→
(
u(0, ·), ∂tu + div(bu)

)
.

This operator in clearly bounded by the definition of the norm we have taken on
F . It is also a bijection because of Step 1, with continuous inverse because of (5).
This means that A is an isomorphism, and thus we can identify F with the space
L2(Rd)×L2((0, T )×R

d), and its dual F∗ with L2(Rd)×L2((0, T )×R
d). Therefore, for

every functional L ∈ F∗, we can uniquely define v0 ∈ L2(Rd) and v ∈ L2((0, T )×R
d)

in such a way that

Lu =

∫
(0,T )×Rd

(
∂tu + div(bu)

)
v dtdx +

∫
Rd

u(0, ·)v0 dx for every u ∈ F .

We recall the classical fact that a subspace of a Banach space is dense if and only if
every functional which is zero on the subspace is in fact identically zero. Then the
density of smooth functions is equivalent to the following implication:∫

(0,T )×Rd

(
∂tu + div(bu)

)
v dtdx +

∫
Rd u(0, ·)v0 dx = 0

for every u ∈ C∞([0, T ] × R
d) with compact support in x

=⇒ v0 = 0 and v = 0.

(6)

If we first take u arbitrary but with compact support also in time, we obtain that∫
(0,T )×Rd

(
∂tu + div(bu)

)
v dtdx = 0,

and since divb = 0, this is precisely the weak form of

∂tv + div(bv) = 0.

This implies that v ∈ C([0, T ];L2(Rd) − w). Now let χ be a cut-off function on R,
i.e., χ ∈ C∞

c (R), χ(z) = 1 for |z| ≤ 1, and χ(z) = 0 for |z| ≥ 2. For every function
ϕ ∈ C∞

c (Rd), take a function ũ ∈ C∞([0, T ] × R
d) with compact support in x such

that ũ(T, ·) = ϕ. Then, testing in (6) with u(t, x) = ũ(t, x)χ
(
(T − t)/ε

)
, we obtain

for 0 < ε < T/2

0 =

∫
(0,T )×Rd

[
∂t

(
ũ(t, x)χ

(
T − t

ε

))
+ div

(
b(t, x)ũ(t, x)χ

(
T − t

ε

))]
v(t, x) dtdx

=

∫
(0,T )×Rd

[∂tũ(t, x) + div(b(t, x)ũ(t, x))] v(t, x)χ

(
T − t

ε

)
dtdx

−
∫

(0,T )×Rd

1

ε
χ′

(
T − t

ε

)
ũ(t, x)v(t, x) dtdx.(7)

Letting ε → 0, we observe that the first integral clearly converges to 0 since the
support of χ

(
(T − t)/ε

)
is contained in [T − 2ε, T + 2ε]. The second integral can be

rewritten as

−
∫ T

0

1

ε
χ′

(
T − t

ε

)[∫
Rd

ũ(t, x)v(t, x) dx

]
dt.
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Now, since ũ is smooth and v ∈ C([0, T ];L2(Rd) − w), the integral over R
d is a

continuous function of t. Moreover, it is easy to check that

−
∫ T

0

1

ε
χ′

(
T − t

ε

)
dt = 1.

Therefore, coming back to (7) and letting ε → 0 we get

0 =

∫
Rd

ũ(T, x)v(T, x) dx =

∫
Rd

ϕ(x)v(T, x) dx.

Since ϕ ∈ C∞
c (Rd) is arbitrary, we obtain v(T, ·) = 0. We conclude that v ∈

C([0, T ];L2(Rd) − w) solves the Cauchy problem{
∂tv + div(bv) = 0,
v(T, ·) = 0.

Thus, by the backward part of the uniqueness assumption (i), we get that v = 0.
Substituting in (6), we get that

∫
Rd u(0, ·)v0 dx = 0 for every u ∈ C∞([0, T ] × R

d)
with compact support in space, and this implies that v0 = 0. This concludes the proof
of the implication (6), which ensures that (ii) holds.

(ii) ⇒ (iii). Let u ∈ C([0, T ], L2(Rd) − w) satisfy ∂tu + div(bu) = 0. Then
by (ii), there exists a sequence {un} of functions in C∞([0, T ] × R

d) with compact
support in space such that ‖un − u‖F → 0. In particular this gives that un → u in
B([0, T ];L2(Rd)); thus u ∈ C([0, T ], L2(Rd)−s). Then, define fn = ∂tun+div(bun) ∈
L2((0, T ) × R

d). By the definition of convergence in F we have that fn → 0 strongly
in L2((0, T ) × R

d). For every function β with the regularity stated we can apply the
classical chain-rule, giving

∂t(β(un)) + div(bβ(un)) = β′(un)fn.

The left-hand side clearly converges to ∂t(β(u)) + div(bβ(u)) in the sense of distribu-
tions. According to the assumed bound on β′, we have that the sequence β′(un) is
equibounded in L2

loc((0, T )×R
d); hence with the strong convergence of fn we deduce

that the right-hand side converges strongly in L1
loc((0, T ) × R

d) to zero. This implies
that ∂t

(
β(u)

)
+ div

(
bβ(u)

)
= 0.

(iii) ⇒ (i). This step is classical. Let u ∈ C([0, T ], L2(Rd) − w) satisfy ∂tu +
div(bu) = 0. According to (iii), u lies in C([0, T ], L2(Rd) − s), and applying the
renormalization property with β(u) = u2, we get

∂t(u
2) + div(bu2) = 0,

with u2 ∈ C([0, T ], L1(Rd)−s). Testing this equation against smooth functions of the
form ψ(t)ϕR(x), where ψ ∈ C∞

c ((0, T )) and ϕR(x) = ϕ(x/R) with ϕ ∈ C∞
c (Rd) is a

cut-off function equal to 1 on the ball of radius 1 and equal to 0 outside the ball of
radius 2, we get∫ T

0

[∫
Rd

u2ϕ
( x

R

)
dx

]
ψ′(t) dt +

∫ T

0

[∫
Rd

bu2 1

R
∇ϕ

( x

R

)
dx

]
ψ(t) dt = 0.

Thus, we get in the sense of distributions in (0, T )

d

dt

∫
Rd

u2ϕ
( x

R

)
dx =

∫
Rd

bu2 1

R
∇ϕ

( x

R

)
dx.



UNIQUENESS, RENORMALIZATION, SMOOTH APPROXIMATIONS 1321

Since the right-hand side is in L∞(0, T ) and since for every t it is bounded by
1
R‖b‖L∞

t,x
‖∇ϕ‖L∞

x
‖u(t, ·)‖2

L2
x
, letting R → +∞ we obtain

d

dt

∫
Rd

u(t, x)2 dx = 0 in (0, T ).

Recalling that u2 ∈ C([0, T ], L1(Rd)−s), this yields
∫
u(t, x)2dx = cst on [0, T ], which

implies uniqueness for both forward and backward Cauchy problems, proving (i).
Remark 2.2 (well-posedness). The space F defined in (2) is a natural space for

the study of the Cauchy problem (4). Whenever one of the statements of Theorem 2.1
is true, we have existence and uniqueness in F with the estimate (5), as shown in the
proof. Moreover, every solution is renormalized and strongly continuous with respect
to time, i.e., u ∈ C([0, T ];L2(Rd) − s). Overall, the following weak stability holds: If
{fn}n is a bounded sequence in L2((0, T )×R

d) which converges weakly to f , {u0
n}n is

a bounded sequence in L2(Rd) which converges weakly to u0, and {bn}n is a bounded
sequence in L∞((0, T ) × R

d) which converges strongly in L1
loc to b and such that

divbn = 0 for every n, then the solutions {un}n to

∂tun + div(bnun) = fn, un(0, ·) = u0
n

converge in C([0, T ];L2(Rd) − w) to the solution u to the Cauchy problem (4).
Remark 2.3 (Lp case). We can modify the summability exponent in the definition

of the space F . For every p ∈ ]1,∞[, define Fp as the space containing those functions
u ∈ C([0, T ];Lp(Rd) −w) that satisfy ∂tu + div(bu) ∈ Lp((0, T ) × R

d) and define the
norm ‖ · ‖Fp in the obvious way, which makes Fp a Banach space. Denoting by p′ the
conjugate exponent of p, i.e., 1

p + 1
p′ = 1, the following statements are equivalent:

(i) Smooth functions with compact support in x are dense in Fp and in Fp′ .
(ii) The vector field b has the forward uniqueness property for weak solutions

in C([0, T ];Lp(Rd) −w) and the backward uniqueness property for weak solutions in
C([0, T ];Lp′

(Rd) − w).
Remark 2.4 (equivalent norms). According to the proof of Theorem 2.1, if one

of the properties (i), (ii), and (iii) holds, then the norm of F is equivalent to the norm

‖u‖F,0 = ‖u(0, ·)‖L2(Rd) + ‖∂tu + div(bu)‖L2((0,T )×Rd)

(see the estimate (5)). In the same spirit, it is easy to prove that ‖ · ‖F is in fact
equivalent to every norm of the form

‖u‖F,s = ‖u(s, ·)‖L2(Rd) + ‖∂tu + div(bu)‖L2((0,T )×Rd)

for s ∈ [0, T ].
Remark 2.5 (Depauw’s counterexample). A simple modification (translation in

time) of the counterexample constructed in [12] shows that the renormalization prop-
erty is really linked to the uniqueness in both the forward and the backward Cauchy
problems. In fact, we can construct a divergence-free vector field b ∈ L∞((0, 1)× R

2;
R

2) and a function ū ∈ L∞(R2) such that
1. the backward Cauchy problem with datum ū at time t = 1 has a unique

solution, which is, however, not renormalized and not strongly continuous with respect
to time;

2. the forward Cauchy problem with datum 0 at time t = 0 has more than one
solution;
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3. the unique solution u(t, x) to the backward Cauchy problem with datum ū
at time t = 1 satisfies {

|u(t, x)| = 0 for 0 ≤ t ≤ 1/2,
|u(t, x)| = 1 for 1/2 < t ≤ 1;

hence the equivalence of the norms in Remark 2.4 does not hold.
Remark 2.6 (the Sobolev and the BV cases). In the case of a vector field with

Sobolev regularity with respect to the space variable, b ∈ L1((0, T );W 1,p′

loc (Rd)) with
1 < p < ∞, it is almost possible to prove that the natural regularization by convolution
with respect to the space variable of u ∈ Fp (see Remark 2.3) converges to u with
respect to ‖ · ‖Fp . Indeed, let ηε be a standard convolution kernel in R

d and set
uε = u ∗ ηε. We can compute

∂tu + div(bu) − ∂tuε − div(buε)

=
[
∂tu + div(bu)

]
−
[
∂tu + div(bu)

]
∗ ηε +

[
div(bu) ∗ ηε − div(buε)

]
.

Then the convergence of uε to u with respect to ‖ · ‖Fp
is equivalent to the strong

convergence in Lp((0, T ) × R
d) to zero of the commutator

rε = div(bu) ∗ ηε − div(buε).

The results of [13] ensure this strong convergence for every convolution kernel ηε,
except that it holds in L1

loc instead of Lp. We need also a regularization with respect
to time and a cut-off in order to get the density property in Theorem 2.1(ii), but
this means that our strategy is more or less “equivalent” to the one of [13], in the
framework of Sobolev vector fields. However, the situation is different in the BV case
studied in [2]. In general, the commutator rε is not expected to converge strongly to
zero; our result shows that, even in this case, there exists some smooth approximation
of the solution, but it is less clear how to construct it in an explicit way.

Remark 2.7 (strong continuity condition). The condition of continuity with
values in strong L2 in Theorem 2.1(iii) cannot be removed; otherwise the equivalence
with (i) fails. This can be seen again with Depauw’s counterexample with singularity
at time t = 0. In this case all weak solutions are renormalized in (0, T ) × R

d since b
is locally BV in x, but uniqueness of weak solutions does not hold. Another remark
is that, in general, a renormalized solution does not need to be continuous with
values in strong L2, even inside the interval, as the following counterexample shows.
On the interval (−1, 1), take for b the one of Depauw’s counterexample in (0, 1)
(with singularity at 0), and define on (−1, 0) the vector field as b(t, x) = −b(−t, x).
Consider then the weak solution u with value 0 at t = 0, which we extend on (−1, 0)
by u(t, x) = u(−t, x). Then u is a renormalized solution on (−1, 1) but is not strongly
continuous at t = 0.

3. One-way formulation.
Theorem 3.1. Let b ∈ L∞((0, T ) × R

d; Rd) such that divb ∈ L∞((0, T ) × R
d),

and let c ∈ L∞((0, T ) × R
d). Define the Banach space F and its norm ‖ · ‖F as

in (2)–(3). Moreover, define F0 ⊂ F as the closure (with respect to ‖ · ‖F) of the
subspace of functions in C∞([0, T ]×R

d) with compact support in x. Then the following
statements are equivalent:

(i) For every u0 ∈ L2(Rd) and every f ∈ L2((0, T )×R
d) there exists a solution

u ∈ F0 to the Cauchy problem{
∂tu + div(bu) + cu = f,
u(0, ·) = u0,

u ∈ F0.



UNIQUENESS, RENORMALIZATION, SMOOTH APPROXIMATIONS 1323

(ii) There is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the back-
ward dual Cauchy problem starting from T ; i.e., the only function v belonging to
C([0, T ];L2(Rd) − w) which solves{

∂tv + b · ∇v − cv = 0,
v(T, ·) = 0

is v ≡ 0.
Here and further on, the advection term b · ∇v is defined according to b · ∇v ≡

div(bv) − v divb, which makes sense since divb ∈ L∞.
Remark 3.2. The two statements in Theorem 3.1 are really the “nontrivial”

properties relative to the vector field b. In general, there is always uniqueness in F0

(see Step 1 in the proof) and there is always existence of weak solutions in F (this can
be easily proved by regularization, as in the first step of the proof of Theorem 2.1).

Before proving the theorem, we recall the following standard result of functional
analysis (see, for example, Theorems II.19 and II.20 of [7]).

Lemma 3.3. Let E and F be Banach spaces and let L : E → F be a bounded
linear operator. Denote by L∗ : F ∗ → E∗ the adjoint operator, defined by

〈v, Lu〉F∗,F = 〈L∗v, u〉E∗,E for every u ∈ E and v ∈ F ∗.

Then
(i) L is surjective if and only if L∗ is injective and with closed image;
(ii) L∗ is surjective if and only if L is injective and with closed image.

Proof of Theorem 3.1.
Step 1. An energy estimate in F0. In this first step we prove that for every

u ∈ F0 the following energy estimate holds:

‖u(t, ·)‖L2
x
≤

(
‖u(0, ·)‖L2

x
+
√
T‖∂tu + div(bu) + cu‖L2

t,x

)
exp

(
T

∥∥∥∥c +
1

2
divb

∥∥∥∥
L∞

t,x

)
.

(8)

Let us first prove the estimate for u smooth with compact support in x. We define

f = ∂tu + div(bu) + cu,

and we multiply this relation by u, giving

∂t
u2

2
+ div

(
b
u2

2

)
+

(
c +

1

2
divb

)
u2 = fu.

For justifying the previous identity, we used the Leibnitz rule

∂i(Hψ) = ψ∂iH + H∂iψ,(9)

valid for ψ ∈ C∞ and H any distribution. Then, integrating over x ∈ R
d we get in

the sense of distributions in (0, T )

d

dt

∫
Rd

u(t, x)2dx = 2

∫
Rd

fu dx− 2

∫
Rd

(
c +

1

2
divb

)
u2dx.

Therefore, we get for a.e. t ∈ (0, T )∣∣∣∣ ddt
∫

Rd

u(t, x)2dx

∣∣∣∣ ≤ 2‖f(t, ·)‖L2
x
‖u(t, ·)‖L2

x
+ 2

∥∥∥∥
(
c +

1

2
divb

)
(t, ·)

∥∥∥∥
L∞

x

‖u(t, ·)‖2
L2

x
.
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This differential inequality can be easily integrated, obtaining

‖u(t, ·)‖L2
x
≤ ‖u(0, ·)‖L2

x
exp

(∫ t

0

∥∥∥∥
(
c +

1

2
divb

)
(s, ·)

∥∥∥∥
L∞

x

ds

)

+

∫ t

0

‖f(s, ·)‖L2
x
exp

(∫ t

s

∥∥∥∥
(
c +

1

2
divb

)
(τ, ·)

∥∥∥∥
L∞

x

dτ

)
ds,

which clearly implies (8). In the general case of u ∈ F0, we can find approximations
un smooth with compact support such that ‖un − u‖F → 0, and we obtain the
estimate (8) at the limit.

Step 2. The operator A0. As in the proof of Theorem 2.1, we consider the linear
operator

A0 :
F0 → L2(Rd) × L2((0, T ) × R

d),

u �→
(
u(0, ·), ∂tu + div(bu) + cu

)
.

Since we can estimate

‖A0u‖L2
x×L2

t,x
= ‖u(0, ·)‖L2

x
+ ‖∂tu + div(bu) + cu‖L2

t,x

≤ ‖u‖Bt(L2
x) + ‖∂tu + div(bu)‖L2

t,x
+ ‖c‖L∞

t,x

√
T‖u‖Bt(L2

x)

≤
(
1 + ‖c‖L∞

t,x

√
T
)
‖u‖F ,

we deduce that A0 is a bounded operator. Next, the energy estimate established in
the first step gives that for any u ∈ F0,

‖u‖Bt(L2
x) ≤ exp

(
T

∥∥∥∥c +
1

2
divb

∥∥∥∥
L∞

t,x

)
max(1,

√
T )‖A0u‖L2

x×L2
t,x

.

But we have

‖∂tu + div(bu)‖L2
t,x

≤ ‖∂tu + div(bu) + cu‖L2
t,x

+ ‖c‖L∞
t,x

√
T‖u‖Bt(L2

x),

and we conclude that

‖u‖F ≤ C ‖A0u‖L2
x×L2

t,x
, u ∈ F0.(10)

This means that A0 is injective and with closed image. Notice that the injectivity of
A0 is equivalent to the fact that the only solution u ∈ F0 to{

∂tu + div(bu) + cu = 0,
u(0, ·) = 0

is u ≡ 0.
Step 3. Proof of the equivalence of the two statements. Since by Step 2, A0 is

injective with closed image, we can apply Lemma 3.3(ii) to get the surjectivity of the
adjoint operator (A0)∗ : L2(Rd)×L2((0, T )×R

d) → (F0)∗. We recall that the adjoint
operator is characterized by the condition

〈(A0)∗(v0, v), u〉 = 〈(v0, v), A
0u〉

=

∫
Rd

v0u(0, ·) dx +

∫
(0,T )×Rd

v
(
∂tu + div(bu) + cu

)
dtdx,(11)
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for (v0, v) ∈ L2(Rd) × L2((0, T ) × R
d) and u ∈ F0. Since (A0)∗ is surjective, in par-

ticular it has closed image. Therefore, applying Lemma 3.3(i) we get the equivalence
between surjectivity of A0 and injectivity of (A0)∗.

It is clear that the surjectivity of the operator A0 is equivalent to the existence
of solutions in F0 (statement (i)). Therefore, it remains only to characterize the
injectivity of (A0)∗. Recalling the definition of F0 as the closure of the set of smooth
functions with compact support in x, and recalling the characterization of the adjoint
operator given in (11), we obtain that the injectivity of (A0)∗ is equivalent to the
following implication:∫

(0,T )×Rd

(
∂tu + div(bu) + cu

)
v dtdx +

∫
Rd u(0, ·)v0 dx = 0

for every u ∈ C∞([0, T ] × R
d) with compact support in x

=⇒ v0 = 0 and v = 0.

(12)

Arguing as in Step 2 of the proof of Theorem 2.1, and eventually testing the integral
condition with smooth functions of the form u(t, x) = χ(t/ε)ũ(t, x) (using the same
notation as in the proof of Theorem 2.1), we obtain that the following two properties
are equivalent for given v0 ∈ L2(Rd) and v ∈ L2((0, T ) × R

d):
1. For every u ∈ C∞([0, T ] × R

d) with compact support in x we have∫
(0,T )×Rd

(
∂tu + div(bu) + cu

)
v dtdx +

∫
Rd

u(0, ·)v0 dx = 0.

2. v ∈ C([0, T ];L2(Rd) − w), v0 = v(0, ·), and v is a weak solution of the
backward dual Cauchy problem{

∂tv + b · ∇v − cv = 0,
v(T, ·) = 0.

Therefore we deduce that the implication (12) is equivalent to the uniqueness of
weak solutions in C([0, T ];L2(Rd) − w) of the backward dual Cauchy problem, i.e.,
statement (ii).

Remark 3.4 (time inversion). By reversing the direction of time, we see that there
is existence for the backward Cauchy problem in F0 if and only if there is uniqueness
for weak solutions to the forward dual Cauchy problem.

Remark 3.5 (approximation by smooth functions and renormalization). Solutions
in F0 lie in C([0, T ], L2(Rd) − s) and are renormalized: this can be seen as in the
proof of the implication (ii) ⇒ (iii) of Theorem 2.1, using the density of smooth
functions in F0. Conversely, it is possible that some renormalized solutions do not
belong to F0. This can be seen by noticing that one can have several renormalized
solutions to the same Cauchy problem (see an example in [13]), while there is always
uniqueness in F0. Another difference between the criterion of approximation by
smooth functions and the renormalization property is that F0 is a vector space, while
in general, renormalized solutions are not a vector space.

Remark 3.6 (Depauw’s example again). We notice that forward uniqueness and
backward uniqueness of weak solutions are really distinct properties: the example
described in Remark 2.5 shows how to construct bounded divergence-free vector fields
with backward uniqueness, but not forward uniqueness, and vice versa.

4. Vector fields of bounded compression. We shall say that a vector
field b ∈ L∞((0, T ) × R

d; Rd) has bounded compression if there exists a function
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ρ ∈ C([0, T ];L∞(Rd) − w∗), with 0 < C−1 ≤ ρ ≤ C < ∞ for some constant C > 0,
such that the identity

∂tρ + div(bρ) = 0(13)

holds in the sense of distributions in (0, T ) × R
d. We remark that every vector field

b with bounded divergence has bounded compression (if b is smooth, take for ρ the
Jacobian determinant of the flow generated by b, ρ(t, x) = det∇xX(0, t, x), which

is bounded since ρ(t, x) = exp
[
−
∫ t

0
(divb)(σ,X(σ, t, x))dσ

]
, where X(s, t, x) satis-

fies dX(s, t, x)/ds = b(s,X(s, t, x)), X(t, t, x) = x), but in general a vector field of
bounded compression does not need to have absolutely continuous divergence.

Theorem 4.1. Let b ∈ L∞((0, T ) × R
d; Rd) be a vector field of bounded com-

pression, and fix an associated function ρ ∈ C([0, T ];L∞(Rd) − w∗). We define the
Banach space F and its norm ‖ · ‖F as in (2)–(3). Let F1 ⊂ F be the closure of{

ρϕ : ϕ ∈ C∞([0, T ] × R
d) with compact support in x

}
with respect to ‖ · ‖F . Then the following statements are equivalent:

(i) For every u0 ∈ L2 and every f ∈ L2 there exists a solution u ∈ F1 to the
Cauchy problem {

∂tu + div(bu) = f,
u(0, ·) = u0,

u ∈ F1.

(ii) There is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the back-
ward dual Cauchy problem starting from T ; i.e., the only function ρ belonging to
C([0, T ];L2(Rd) − w) which solves{

∂t(ρv) + div(bρv) = 0,
ρ(T, ·)v(T, ·) = 0

is ρv ≡ 0.

Remark 4.2. In this context, the equation ∂t(ρv) + div(bρv) = 0 is dual to the
equation ∂tu + div(bu) = 0, since we can write (formally, since it is not possible to
give a meaning to the product b · ∇v without a condition of absolute continuity of
divb)

∂t(ρv) + div(bρv) = ρ
(
∂tv + b · ∇v

)
.

Proof of Theorem 4.1. The proof is very close to that of Theorem 3.1; thus we
shall sometimes omit the technical details.

Step 1. An energy estimate in F1. We preliminarily prove that for every u ∈ F1

the following estimate holds (C is the constant related to the function ρ):

‖u‖Bt(L2
x) ≤ C‖u(0, ·)‖L2

x
+ C

√
T‖∂tu + div(bu)‖L2

t,x
.(14)

Fix a smooth function ϕ with compact support in R
d, and define f = ∂t(ρϕ) +

div(bρϕ) = ρ(∂tϕ + b · ∇ϕ) (use the Leibniz rule (9) and formula (13)). We deduce
with the same argument that 2ϕf = ρ(∂tϕ

2 + b · ∇ϕ2) = ∂t(ρϕ
2) + div(bρϕ2). Thus,

we get the following estimate in the sense of distributions in (0, T ):
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d

dt

∫
Rd

ρ(t, x)ϕ(t, x)2 dx = 2

∫
Rd

ϕ(t, x)f(t, x) dx

≤ 2‖f(t, ·)‖L2
x
‖ϕ(t, ·)‖L2

x

≤ 2
√
C‖f(t, ·)‖L2

x

[∫
Rd

ρ(t, x)ϕ(t, x)2 dx

]1/2

.

By integration with respect to time this implies[∫
Rd

ρ(t, x)ϕ(t, x)2 dx

]1/2

≤
[∫

Rd

ρ(0, x)ϕ(0, x)2 dx

]1/2

+
√
C

∫ t

0

‖f(s, ·)‖L2
x
ds.

Using the fact that C−1 ≤ ρ ≤ C we deduce

1√
C
‖ρ(t, ·)ϕ(t, ·)‖L2

x
≤

√
C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+
√
C

∫ t

0

‖f(s, ·)‖L2
x
ds,

and thus

‖ρ(t, ·)ϕ(t, ·)‖L2
x
≤ C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+ C

√
T‖∂t(ρϕ) + div(bρϕ)‖L2

t,x
.(15)

But by definition of F1, the validity of (15) for every smooth function ϕ with compact
support in x implies the validity of (14) for every function u ∈ F1.

Step 2. The operator A1. We define the linear operator

A1 :
F1 → L2(Rd) × L2((0, T ) × R

d),

u �→
(
u(0, ·), ∂tu + div(bu)

)
.

It is immediate to see that the operator A1 is bounded. Using the energy estimate (14)
it is also immediate to check that ‖u‖F ≤ C̃‖A1u‖, and therefore that A1 is injective
with closed image. Applying Lemma 3.3(ii) we obtain that the adjoint operator

(A1)∗ : L2(Rd) × L2((0, T ) × R
d) → (F1)∗

is surjective. The adjoint operator is characterized by the identity

〈(A1)∗(v0, v), u〉 = 〈(v0, v), A
1u〉

=

∫
Rd

v0u(0, ·) dx +

∫
(0,T )×Rd

v
(
∂tu + div(bu)

)
dtdx(16)

for (v0, v) ∈ L2(Rd) × L2((0, T ) × R
d) and u ∈ F1.

Step 3. Proof of the equivalence of the two statements. Statement (i) (existence
of solutions in F1) is the surjectivity of the operator A1, which is equivalent (applying
Lemma 3.3(i) and using the surjectivity of (A1)∗ proved in Step 2) to the injectivity
of (A1)∗. But recalling the characterization (16) and the definition of the space F1,
we see that the injectivity of (A1)∗ is equivalent to the following implication for
v0 ∈ L2(Rd) and v ∈ L2((0, T ) × R

d):∫
(0,T )×Rd

(
∂t(ρϕ) + div(bρϕ)

)
v dtdx +

∫
Rd ρ(0, ·)ϕ(0, ·)v0 dx = 0

for every ϕ ∈ C∞([0, T ] × R
d) with compact support in x

=⇒ v0 = 0 and v = 0.

(17)

Arguing as in Step 3 of the proof of Theorem 3.1 we obtain that the following two
properties are equivalent:
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1. For every ϕ ∈ C∞([0, T ] × R
d) with compact support in x we have∫

(0,T )×Rd

(
∂t(ρϕ) + div(bρϕ)

)
v dtdx +

∫
Rd

ρ(0, ·)ϕ(0, ·)v0 dx = 0.

2. ρv ∈ C([0, T ];L2(Rd)−w), ρ(0, ·)v0 = ρ(0, ·)v(0, ·), and ρv is a weak solution
of the backward dual Cauchy problem{

∂t(ρv) + div(bρv) = 0,
ρ(T, ·)v(T, ·) = 0.

Then we deduce that implication (17) is equivalent to statement (ii), and this con-
cludes the proof of the theorem.

Acknowledgment. The second author thanks the École Normale Supérieure de
Paris for the kind hospitality during the preparation of this work.
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aux Dérivées Partielles, Exp. No. XIV, École Polytech., Palaiseau, 2001.
[10] F. Colombini and N. Lerner, Uniqueness of continuous solutions for BV vector fields, Duke

Math. J., 111 (2002), pp. 357–384.
[11] F. Colombini, T. Luo, and J. Rauch, Uniqueness and nonuniqueness for nonsmooth diver-
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SCATTERING OF ELECTROMAGNETIC WAVES BY THIN
DIELECTRIC PLANAR STRUCTURES∗

HABIB AMMARI† , HYEONBAE KANG‡ , AND FADIL SANTOSA§

Abstract. The problem of scattering of electromagnetic waves by a thin dielectric planar
structure is considered. If the squared index of refraction of the scatterer scales as 1/h, where h
is the thickness of the structure, we show that an approximate solution to the scattering problem
can be obtained by a perturbation method. The approximate solution consists of two terms, the
zeroth order term and the first order corrector, both of which can be found by solving 2-D integral
equations for 3-D problems. We provide error estimates for the approximation. Therefore, the
method described in this work can be viewed as a computational approach which can potentially
greatly simplify scattering calculations for problems involving thin scatterers.

Key words. electromagnetic scattering, Maxwell’s equations, approximate solution, asymp-
totics, error estimates

AMS subject classifications. 35B40, 65R20, 78A45

DOI. 10.1137/040618382

1. Introduction. To understand how light behaves in a thin-film structure with
a high-refractive-index contrast, we need to solve the time-harmonic Maxwell’s equa-
tion. The structure is usually surrounded by air. Thus, the domain in which Max-
well’s equation must be solved will be all of R

3. The thin-film structure is modeled
by prescribing the index of refraction to a subdomain of R

3.
The standard approach for performing the required simulation of wave propaga-

tion in such a structure is the finite-difference time-domain (FDTD) method [2], with
absorbing boundary conditions. While the computation proceeds in a straightforward
manner, it can be very time consuming.

In this paper, we consider a scattering problem in which an incident wave strikes
a thin-film structure. Our goal is to derive an asymptotic expansion for the solution of
Maxwell’s equation. The approach is to exploit the fact that the scattering structure
is thin, and the index of refraction is large. In this work, we assume that the squared
index of refraction is O(1/h), where h is the scatterer thickness. Under a regularity
assumption on the index of refraction, we show that an approximate solution, con-
sisting of a leading term and first order (in h) corrector, can be obtained by solving a
2-D integral equation for a 3-D problem. Thus, the expansion described here can be
thought of as a computational approach.

This work is an extension of [5] which considered the scattering problem in the
context of the scalar Helmholtz equation. In that work, a perturbation approach
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based on the thickness h is developed to reduce the complexity of the computation by
one dimension. The present paper addresses the case of Maxwell’s equations, which
is the correct model for the propagation phenomena. We start with the Lippmann–
Schwinger formulation of the electromagnetic scattering problem which involves a 3-D
(volume) integral equation. Based on delicate estimates on the kernels involved in this
integral formulation, we carefully derive the asymptotic expansion of the electric field
in h and provide rigorous error estimates. Using our asymptotic expansion in h, we
then simplify the scattering calculations to solving a 2-D (surface) integral equation.

The paper is organized as follows. We give a description of the problem we wish
to solve in the next section. The perturbation approach and its rigorous justification
are presented in section 3. Our justification uses a nontrivial bound on the C1,α-norm
of the electric field proved in Appendix A.

The results in this paper are expected to lead to a very effective computational
algorithm for solving the electromagnetic scattering problem for thin-film devices in
the parameter regime, where the approximation is accurate.

2. Problem statement. Let E and H denote the electric and magnetic fields.
The governing Maxwell’s equations are given by{

∇× E = ikH,

∇×H = −ikn(x, z)E,

where k > 0 is the normalized frequency. The total field consists of the incident field
and the scattered field. We write E = Ei + Es, where Ei is a given incident wave.
The scattered electric field Es satisfies the Sommerfeld radiation condition. We call
the function n(x, z) the squared index of refraction.

Here x = (x1, x2) and z is the third direction. The squared index of refraction
n(x, z) is defined by

n(x, z) :=

⎧⎪⎪⎨
⎪⎪⎩

1 for |z| > h

2
,

n0(x)

h
for |z| < h

2
.

Therefore, the thin scattering structure has been incorporated into the definition of
n(x, z). Let Ω be a bounded domain in R

2. We denote Ωh := Ω × (−h/2, h/2).
We assume that n0 is a C2 function, and that (1 − n0/h) is supported in Ωd

for some d > 0, where Ωd := {x ∈ Ω : dist(x, ∂Ω) > d}, �n0(x) ≥ C > 0, and
�n0(x) ≥ 0.

The problem we wish to solve is to determine the total field E given the incident
wave Ei and a scatterer n(x, z). We will seek an approximate solution for this problem
by exploiting the fact that h will be small. The approach we take is to write the field
E as a perturbation series in h.

3. Derivation of the asymptotic expansion. For x, x′ ∈ R
2 and z, z′ ∈ R,

let the fundamental solution Φ be defined by

Φ(x, z, x′, z′) :=
1

4π

eik|(x,z)−(x′,z′)|

|(x, z) − (x′, z′)| .

According to [3], we can rewrite the problem as the following Lippmann–Schwinger
equation:
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E(x, z) = Ei(x, z) − k2

∫
Ω

∫ h/2

−h/2

Φ(x, z, x′, z′)

(
1 − n0(x

′)

h

)
E(x′, z′)dx′dz′

−∇x,z

∫
Ω

∫ h/2

−h/2

Φ(x, z, x′, z′)
∇n0(x

′)

n0(x′)
· E(x′, z′)dx′dz′.

(3.1)

Consequently, it suffices to construct an approximation of the electric field E inside
Ωh and insert it into the right-hand side of (3.1) to obtain an expansion of E for all
points outside the thin structure Ωh.

After scaling z = hζ and z′ = hζ ′, (3.1) can be written as

E(x, hζ) = Ei(x, hζ) − k2

∫
Ω

∫ 1/2

−1/2

Φ(x, hζ, x′, hζ ′)(h− n0(x
′))E(x′, hζ ′)dx′dζ ′

−
(

h∇x

∇ζ

)∫
Ω

∫ 1/2

−1/2

Φ(x, hζ, x′, hζ ′)
∇n0(x

′)

n0(x′)
· E(x′, hζ ′)dx′dζ ′.

(3.2)

For a scalar function f defined in Ωh, define the integral operators K1 and K2 by

K1(f)(x, ζ) :=

∫
Ω

∫ 1/2

−1/2

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′,

K2(f)(x, ζ) :=

(
h∇x

∇ζ

)∫
Ω

∫ 1/2

−1/2

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′.

Then the integral representation (3.2) can be rewritten as

E(x, hζ) = Ei(x, hζ) + k2K1(n0E)(x, ζ) − hk2K1(E)(x, ζ) −K2(n
−1
0 ∇n0 · E)(x, ζ).

(3.3)

We now investigate the behavior of the integral operators K1 and K2 as h → 0.
We begin by proving the following lemma.

Lemma 3.1. Let 0 < α < 1. Suppose that f is C1,α in Ωh; then

K1(n0f)(x, ζ) =

∫
Ω

Φ(x, 0, x′, 0)n0(x
′)f(x′, 0)dx′ − h

2

(
ζ2 +

1

4

)
n0(x)f(x, 0)(3.4)

+ O

(
h1+α‖f‖C1,α(Ωh)

)
.

Suppose that g ∈ L∞(Ωh); then

K1(g)(x, ζ) =

∫
Ω

Φ(x, 0, x′, 0)g(x′, 0)dx′ + O(h‖g‖L∞(Ωh)).(3.5)

Proof. Observe that

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′) − Φ(x, 0, x′, 0)f(x′, 0)

= Φ(x, hζ, x′, hζ ′)

(
f(x′, 0) + hζ ′

∂f

∂z
(x′, 0) + O(h1+α)

)
− Φ(x, 0, x′, 0)f(x′, 0)

=
[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
f(x′, 0) + Φ(x, hζ, x′, hζ ′)

(
hζ ′

∂f

∂z
(x′, 0) + O(h1+α)

)
.
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Let S := Ω × (−1/2, 1/2). We then have∫
S

[
Φ(x, hζ, x′, hζ ′)n0(x

′)f(x′, hζ ′) − Φ(x, 0, x′, 0)n0(x
′)f(x′, 0)

]
dx′dζ ′

=

∫
S

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
n0(x

′)f(x′, 0)dx′dζ ′

+

∫
S

Φ(x, hζ, x′, hζ ′)n0(x
′)hζ ′

∂f

∂z
(x′, 0)dx′dζ ′ + O(h1+α)

∫
S

Φ(x, hζ, x′, hζ ′)n0(x
′)dx′dζ ′

:= I1 + I2 + I3.

Since ∣∣∣∣
∫
S

Φ(x, hζ, x′, hζ ′)n0(x
′)dx′dζ ′

∣∣∣∣ ≤ C

regardless of h, one can see that I3 = O(h1+α).
To estimate I2, we first observe that∫ 1/2

−1/2

ζ ′
∂f

∂z
(x′, 0)dζ ′ = 0,

and hence

I2 = h

∫
S

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
n0(x

′)ζ ′
∂f

∂z
(x′, 0)dx′dζ ′.

Therefore, we get

|I2| ≤ ‖f‖C1(Ωh)h

∫
S

∣∣∣∣Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

∣∣∣∣dx′dζ ′.

For a given (x, ζ) ∈ S and h > 0, let Sh := {(x′, ζ ′) | |x − x′| > 2h|ζ − ζ ′|}. If
(x′, ζ ′) ∈ Sh, then

(|x− x′|2 + h2|ζ − ζ ′|2)1/2 = |x− x′|
(

1 + O

(
h2|ζ − ζ ′|2
|x− x′|2

))
,

and hence

Φ(x, hζ, x′, hζ ′) =
1

4π

eik(|x−x′|2+h2|ζ−ζ′|2)1/2

(|x− x′|2 + h2|ζ − ζ ′|2)1/2

=
1

4π
eik|x−x′|

(
1 + O

(
h2|ζ − ζ ′|2
|x− x′|

))(
1

|x− x′| + O

(
h2|ζ − ζ ′|2
|x− x′|3

))
.

Thus we get

∣∣∣∣Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

∣∣∣∣ ≤ C
h2|ζ − ζ ′|2
|x− x′|2 + C

h2|ζ − ζ ′|2
|x− x′|3 + C

h4|ζ − ζ ′|4
|x− x′|4 .

(3.6)

One can easily show that∫ 1/2

−1/2

∫
|x−x′|>2h|ζ−ζ′|

h2|ζ − ζ ′|2
|x− x′|2 dx′dz′ ≤ Ch2,
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∫ 1/2

−1/2

∫
|x−x′|>2h|ζ−ζ′|

h2|ζ − ζ ′|2
|x− x′|3 dx′dz′ ≤ Ch,

and ∫ 1/2

−1/2

∫
|x−x′|>2h|ζ−ζ′|

h4|ζ − ζ ′|4
|x− x′|4 dx′dz′ ≤ Ch2.

Thus we get ∫
Sh

∣∣∣∣Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

∣∣∣∣dx′dζ ′ ≤ Ch.

On the other hand, one can also easily see that∫
S\Sh

∣∣∣∣Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

∣∣∣∣dx′dζ ′

≤
∫ 1/2

−1/2

∫
|x−x′|≤2h|ζ−ζ′|

1

|x− x′| + h|ζ − ζ ′| +
1

|x− x′|dx
′dζ ′ ≤ Ch,

and hence we obtain

|I2| ≤ Ch2.

We now estimate I1. Since n0(x
′)− h is compactly supported in Ω, we can write

I1 =

∫ 1/2

−1/2

∫
BR(x)

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
(n0(x

′) − h)f(x′, 0)dx′dζ ′

+ h

∫
S

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
f(x′, 0)dx′dζ ′,

where BR(x) is a disk of radius R centered at x containing Ω. One can prove that
the second term in the right-hand side of above identity is O(h2) as before, while the
first term equals∫
BR(x)

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

][
(n0(x

′) − h)f(x′, 0) − (n0(x) − h)f(x, 0)
]
dx′dζ ′

+ (n0(x) − h)f(x, 0)

∫
BR(x)

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
dx′dζ ′.

Since |(n(x′)− h)f(x′, 0)− (n(x)− h)f(x, 0)| ≤ C|x− x′|, one can show that the first
term of the above is O(h2) in a similar way to the estimate of I2. On the other hand,
it is proved in [5] that∫

BR(x)

[
Φ(x, hζ, x′, hζ ′) − Φ(x, 0, x′, 0)

]
dx′dζ ′ = −h

2

(
ζ2 +

1

4

)
+ O(h2) as h → 0.

Thus we have

I1 = −h

2

(
ζ2 +

1

4

)
n0(x)f(x, 0) + O(h2).
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Combining all these estimates we obtain (3.4).
Estimate (3.5) can be proved in a similar but simpler way, so we omit the

proof.
We now derive the leading-order term in the asymptotic expansion of the integral

operator K2.
Lemma 3.2. Let 0 < α < 1. Define K̃1

2 (f)(x) by

K̃1
2 (f)(x) :=

∫
Ω

∇xΦ(x, 0, x′, 0)[f(x′, 0) − f(x, 0)]dx′ + f(x, 0)

∫
Ω

∇xΦ(x, 0, x′, 0)dx′,

(3.7)

and K̃2(f)(x, ζ) by

K̃2(f)(x, ζ) :=

(
K̃1

2 (f)(x)

( ζ2 − 1)f(x, 0)

)
.(3.8)

Then, for any C1,α-function f such that f(·, z) is supported in Ωd for each z,

K2(f)(x, ζ) = hK̃2(f)(x, ζ) + O(h1+α),(3.9)

where O(h1+α) is bounded by Ch1+α‖f‖C1,α(Ωh).
Proof. Note that

∇x

∫
S

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′

=

∫
S

∇xΦ(x, hζ, x′, hζ ′)

[
f(x′, hζ ′) − f(x, hζ ′)

]
dx′dζ ′

+

∫
S

∇xΦ(x, hζ, x′, hζ ′)f(x, hζ ′)dx′dζ ′.

Thus,

∇x

∫
S

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′ − K̃1
2 (f(·, 0))(x)

=

∫
S

[
∇xΦ(x, hζ, x′, hζ ′) −∇xΦ(x, 0, x′, 0)

][
f(x′, hζ ′) − f(x, hζ ′)

]
dx′dζ ′

+

∫
S

∇xΦ(x, 0, x′, 0)

[
f(x′, hζ ′) − f(x, hζ ′) − f(x′, 0) + f(x, 0)

]
dx′dζ ′

+

∫
S

[
∇xΦ(x, hζ, x′, hζ ′) −∇xΦ(x, 0, x′, 0)

]
f(x, hζ ′)dx′dζ ′

+

∫
S

∇xΦ(x, 0, x′, 0)

[
f(x, hζ ′) − f(x, 0)

]
dx′dζ ′

:= I1 + I2 + I3 + I4.

Since

∇xΦ(x, hζ, x′, hζ ′)

=
1

4π
eik(|x−x′|2+h2|ζ−ζ′|2)1/2

[
ik

x− x′

|x− x′|2 + h2|ζ − ζ ′|2 − x− x′

(|x− x′|2 + h2|ζ − ζ ′|2)3/2

]
,
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we get for |x− x′| ≥ 2h|ζ − ζ ′|

∇xΦ(x, hζ, x′, hζ ′)

=
ik

4π
eik|x−x′|

[
1 + O

(
h2|ζ − ζ ′|2
|x− x′|

)][
ik

x− x′

|x− x′|2 − x− x′

|x− x′|3 + O

(
h2|ζ − ζ ′|2
|x− x′|4

)]

= ∇xΦ(x, 0, x′, 0) + O

(
h2|ζ − ζ ′|2
|x− x′|4

)
.

It then follows that∫
Sh

[
∇xΦ(x, hζ, x′, hζ ′) −∇xΦ(x, 0, x′, 0)

][
f(x′, hζ ′) − f(x, hζ ′)

]
dx′dζ ′

≤ C‖f‖C1(Ωh)

∫ 1/2

−1/2

∫
|x−x′|≥2h|ζ−ζ′|

h2|ζ − ζ ′|2
|x− x′|4 |x− x′|dx′dζ ′

≤ Ch.

On the other hand, we get∫
S\Sh

[
∇xΦ(x, hζ, x′, hζ ′) −∇xΦ(x, 0, x′, 0)

][
f(x′, hζ ′) − f(x, hζ ′)

]
dx′dζ ′

≤ C‖f‖C1(Ωh)

∫ 1/2

−1/2

∫
|x−x′|≥2h|ζ−ζ′|

1

|x− x′|2 |x− x′|dx′dζ ′

≤ Ch.

Therefore, we obtain

|I1| ≤ Ch.

Observe that∣∣∣∣f(x′, hζ ′) − f(x, hζ ′) − f(x′, 0) + f(x, 0)

∣∣∣∣ =

∣∣∣∣
∫ hζ′

0

[
∂

∂z
f(x′, z) − ∂

∂z
f(x, z)

]∣∣∣∣
≤ C‖f‖C1,α(Ωh)h|x− x′|α.

It then follows that

|I2| ≤ C‖f‖C1,α(Ωh)h

∫ 1/2

−1/2

∫
Ω

1

|x− x′|2 |x− x′|αdx′dζ ′ ≤ C‖f‖C1,α(Ωh)h.

If x ∈ supp(f), then Bd(x) ⊂ Ω. Moreover,∫
Bd(x)

∇xΦ(x, hζ, x′, hζ ′)dx′ =

∫
Bd(x)

∇xΦ(x, 0, x′, 0)dx′ = 0 for all ζ and ζ ′.

Therefore we get

|I3| =

∫ 1/2

−1/2

∫
Ω\Bd(x)

[
∇xΦ(x, hζ, x′, hζ ′) −∇xΦ(x, 0, x′, 0)

]
f(x, hζ ′)dx′dζ ′

≤ C‖f‖L∞(Ωh)h
2

∫ 1/2

−1/2

|ζ − ζ ′|2dζ ′ ≤ C‖f‖L∞(Ωh)h
2.
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Finally, we arrive at

|I4| = C‖f‖C1(Ωh)h

∫
Ω\Bd(x)

1

|x− x′|2 dx
′ ≤ C‖f‖C1(Ωh)h.

So far we proved that

∇x

∫
S

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′ = K̃1
2 (f(·, 0))(x) + O(hα‖f‖C1,α(Ωh)) as h → 0.

We now investigate the behavior of

∂

∂z

∫
S

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′

as h → 0.
Elementary computations show that

∂

∂z
Φ(x, hζ, x′, hζ ′)

=
1

4π
eik(|x−x′|2+h2|ζ−ζ′|2)1/2

[
ik

h2(ζ − ζ ′)

|x− x′|2 + h2|ζ − ζ ′|2 − h2(ζ − ζ ′)

(|x− x′|2 + h2|ζ − ζ ′|2)3/2

]

= − 1

4π

h2(ζ − ζ ′)

(|x− x′|2 + h2|ζ − ζ ′|2)3/2 + O

(
h2|ζ − ζ ′|

|x− x′|2 + h2|ζ − ζ ′|2

)
.

Since − 1
4π

t
(|x−x′|2+t2)3/2 is the Poisson kernel for the half space and f(·, hζ ′) has a

compact support in Ω, we get

− 1

4π

∫
Ω

h2(ζ − ζ ′)

(|x− x′|2 + h2|ζ − ζ ′|2)3/2 f(x′, hζ ′)dx′ = −h

2
f(x, 0)

ζ − ζ ′

|ζ − ζ ′| + O(h2),

where the O(h2)-term is bounded by h2‖f‖C1(Ωh). On the other hand,∫
Ω

h2|ζ − ζ ′|
|x− x′|2 + h2|ζ − ζ ′|2 |f(x′, hζ ′)|dx′ ≤ C‖f‖L∞(Ωh)h

2|ζ − ζ ′| |ln(h|ζ − ζ ′|)|.

It then follows that

∂

∂z

∫
S

Φ(x, hζ, x′, hζ ′)f(x′, hζ ′)dx′dζ ′

= −h

2
f(x, 0)

∫ 1/2

−1/2

ζ − ζ ′

|ζ − ζ ′|dζ
′ + O(h2|lnh|)

= h

(
ζ

2
− 1

)
f(x, 0) + O(h2|lnh|).

This completes the proof.
Remark 3.3. It is worth noticing that the above lemma applies if f is C1,α in

the z variable and only C1 in the x variable.
The following lemma is also of use to us.
Lemma 3.4. The operator

T : f ∈ C0(Ω) �→ f(x) − k2

∫
Ω

Φ(x, 0, x′, 0)n0(x
′)f(x′) dx′ ∈ C0(Ω)
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is invertible.
Proof. As proved in [5], the operator

f ∈ L2(Ω) �→
∫

Ω

Φ(x, 0, x′, 0)n0(x
′)f(x′) dx′ ∈ L2(Ω)

is compact. Since n0(x) is compactly supported in Ω, we can actually prove that

f ∈ C0(Ω) �→
∫

Ω

Φ(x, 0, x′, 0)n0(x
′)f(x′) dx′ ∈ C0(Ω)

is compact. Thus, by the Fredholm alternative, it suffices to show that T is injective
on C0(Ω). Let f ∈ C0(Ω) be a solution to

f(x) − k2

∫
Ω

Φ(x, 0, x′, 0)n0(x
′)f(x′) dx′ = 0.

Define the function u(x, z) in R
3 \ Ω by

u(x, z) =

∫
Ω

Φ(x, z, x′, 0)n0(x
′)f(x′) dx′.

It follows that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Δ + k2)u(x) = 0 in R
3 \ Ω,

u|+ − u|− = 0 on Ω,

∂u

∂z

∣∣∣∣
+

(x) − ∂u

∂z

∣∣∣∣
−

(x) = n0(x)f(x) on Ω,

u satisfies the Sommerfeld radiation condition.

Let BR be a sphere of center the origin and of radius R which is such that Ω ⊂ BR.
Integrating by parts we obtain that∫

BR\Ω
|∇u|2 − k2

∫
BR

|u|2 −
∫
∂BR

∂u

∂ν
u−

∫
Ω

[
∂u

∂z

]
u = 0,

where [∂u/∂z] = ∂u/∂z|+ − ∂u/∂z|− denotes the jump of ∂u/∂z across Ω. Since
u = (1/k2)f and [∂u/∂z] = n0f on Ω we get∫

Ω

[
∂u

∂z

]
u =

1

k2

∫
Ω

n0(x)|f(x)|2 dx.

Thus,

�
∫
∂BR

∂u

∂ν
u = −� 1

k2

∫
Ω

n0(x)|f(x)|2 dx ≤ 0,

since �n0(x) ≥ 0. By the Rellich lemma (see [3]), the above inequality implies that
u ≡ 0 in R

3 \ Ω, and hence n0f = [∂u/∂z] = 0 which gives f = 0 on Ω since
�n0(x) ≥ C > 0.

We finally establish the following bound on the C1,α-norm of E.
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Proposition 3.5. Let E be the solution of the Lippmann–Schwinger equation
(3.1). Then for any 0 < α < 1, there exists a constant C independent of h such that

‖E‖C1,α(Ωh) ≤ C|log h|2.(3.10)

We will give a proof of Proposition 3.5 in Appendix A.
At this point we have all the necessary ingredients to state and prove our main

result in this paper. Let

K̃1(f)(x) =

∫
Ω

Φ(x, 0, x′, 0)f(x′) dx′, x ∈ Ω,(3.11)

and K̃2(f) be as in (3.8). Equation (3.3), together with Lemmas 3.1 and 3.2, yields
the pointwise approximation

E(x, hζ) = Ei(x, hζ) + k2K̃1(n0E0)(x, 0)

(3.12)

− h

[
k2K̃1(E0)(x) +

k2

2

(
ζ2 +

1

4

)
n0(x)E0(x) + K̃2(n

−1
0 ∇n0 · E0)(x, ζ)

]
+ O(h1+α),

where E0(x) = E(x, 0) and O(h1+α) ≤ Ch1+α||E||C1,α(Ωh) for some positive constant

C. Using Lemma 3.4, we define E(0) and E(1) as the unique solutions to the integral
equations posed on Ω:

T (E(0)) := E(0) − k2K̃1(n0E
(0))(x) = Ei(x, 0)

and

T (E(1)) = −
[
k2K̃1(E

(0))(x) +
k2

2

(
ζ2 +

1

4

)
n0(x)E(0)(x) + K̃2(n

−1
0 ∇n0 · E(0))(x, ζ)

]
+ ζ∂zE

i(x, 0).

Remark 3.6. Note that E(0) is independent of ζ while E(1)(x, ζ) is a second
order polynomial in the stretched variable ζ.

Let

Ẽ(x, hζ) = Ei(x, hζ) + k2K̃1(n0(E
(0) + hE(1))(x, 0)

− h

[
k2K̃1(E

(0))(x) +
k2

2

(
ζ2 +

1

4

)
n0(x)E(0)(x) + K̃2(n

−1
0 ∇n0 · E(0))(x, ζ)

]
,

(3.13)

for x ∈ Ω and ζ ∈ (−1/2, 1/2). The following error estimate is our main result in this
paper.

Theorem 3.7. Let Ẽ be defined by (3.13) in Ω× (−1/2, 1/2). For any 0 < ν < 1
we have

||E(x, hζ) − Ẽ(x, hζ)||C0(Ω×[−1/2,1/2]) ≤ Ch1+ν ,

for some positive constant C independent of h and E.
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Proof. Let 0 < ν < 1. From (3.12) we immediately obtain that

T

(
E0 − (E(0) + hE(1))

)
= O(h1+α),

where α = (1 + ν)/2, which shows that

||E0 − (E(0) + hE(1))||C0(Ω) ≤ Ch1+α||E||C1,α(Ωh).

Inserting this approximation of E0 into the right-hand side of (3.12) and using the
fact from Lemma 3.4 that T has a bounded inverse together with the definition
(3.13) of Ẽ, we arrive at the desired estimate since, by Proposition 3.5, the quan-

tity h
1−α

2 ||E||C1,α(Ωh) is uniformly bounded in h.
To conclude the paper we make the following remarks.
Remark 3.8. To obtain an approximate solution to the scattering problem, we

find E(0) and E(1) by solving integral equations in Ω ⊂⊂ R
2. The electric field within

the thin structure is easily obtained using (3.13). Should we wish to evaluate the
field outside the scatterer, we can use the Lippman–Schwinger equation. Thus, the
analysis described in this work can be viewed as a computational method. The method
is efficient since only 2-D integral equations need to be solved to obtain the desired
approximate solution. We note that in [5] numerical calculations were carried out
to assess the accuracy of the method for the scalar problem in two dimensions. See
also [6].

Remark 3.9. If n0 is constant, then the leading-order term E(0) satisfies the
integral equation

E(0)(x, 0) − k2n0

∫
Ω

Φ(x, 0, x′, 0)E(0)(x′, 0) dx′ = Ei(x, 0), x ∈ Ω,

and therefore, the tangential component of E(0) on Ω × {0} is continuous while ez ×
(∇ × E(0)) on Ω × {0} has a jump given by −k2n0ez × (ez × E(0)), where ez is the
basis vector in the z-direction. These jump conditions are exactly those derived by
Bouchitté in [1].

Remark 3.10. We should emphasize the fact that the asymptotic expansion de-
rived in this paper is not valid in the case of piecewise constant media such as holes
in the slab. The regularity assumption on n0 is essential to first write the Lippmann–
Schwinger equation on the electric field E and then to establish the asymptotic ex-
pansion (3.12) using Lemmas 3.1 and 3.2. In fact, the estimate of the remainder
in (3.12) may not be valid if the regularity assumption on n0 does not hold. This
important case in practice requires further delicate analysis and will be the subject of
a forthcoming work.

Remark 3.11. We believe that the approach presented in this paper can be easily
generalized to deal with a dielectric layer having a curved mean surface.

Appendix A. Proof of Proposition 3.5. Here we prove Proposition 3.5.
Define

Tf(x, z) :=

∫
Ω

∫ h/2

−h/2

Φ(x, z, x′, z′)f(x′, z′)dx′dz′, (x, z) ∈ Ωh.

We show the following regularity properties of the operator T .
Lemma A.1. Let m(x) be a C1-function compactly supported in Ω. For any

α ∈ (0, 1), there exists a constant C independent of h and f such that
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(i) ‖T (mf)‖C2,α(Ωh) ≤ C‖m‖C1(Ω)‖f‖Cα(Ωh),
(ii) ‖T (mf)‖C1(Ωh) ≤ Ch|log h| ‖m‖L∞(Ω)‖f‖L∞(Ωh),
(iii) ‖T (mf)‖C2(Ωh) ≤ Ch|log h| ‖m‖C1(Ω)‖f‖C1(Ωh).
Before proving Lemma A.1, let us first show that Proposition 3.5 follows from

Lemma A.1. Equation (3.1) can be written as

E = Ei − k2T

((
1 − n0

h

)
E

)
−∇x,zT

(
∇n0

n0
· E

)
.(A.1)

Since the solution E to (A.1) is uniformly bounded in L∞(Ωh), it follows from Lemma
A.1(ii) that ‖E‖C1(Ωh) ≤ C|log h|, and hence from (A.1)(i), (iii) we obtain that

‖E‖C1,α(Ωh) ≤ C|log h|2 for some constant C independent of h.
Proof of Lemma A.1. We first note that

|DsΦ(x, z, x′, z′)| ≤ C

|(x, z) − (x′, z′)|1+s
,(A.2)

for s = 0, 1, . . . , where Ds denotes any sth order derivative.
Let (x, z) = y, (x′, z′) = y′, and Dij denote the second order partial derivative

with respect to yi and yj . Then it is known that for i, j = 1, 2, 3,

DijT (mf)(y) =

∫
Ωh

DijΦ(y − y′)m(x′)(f(y′) − f(y))dy

− f(y)

∫
∂Ωh

DiΦ(y − y′)m(x′)νj(y
′)dσ(y′)

:= I1(y) − f(y)I2(y),(A.3)

where ν = (ν1, ν2, ν3) is the outward unit normal to ∂Ωh. See Lemma 4.2 in [4, p. 55].
By a standard Hölder estimate (see, for example, the proof of Lemma 4.4 in [4, p. 57]),
we can show that

|I1(y) − I1(ȳ)| ≤ C‖m‖L∞(Ω)‖f‖Cα(Ωh)|y − ȳ|α, y, ȳ ∈ Ωh.

Observe that ∂Ωh consists of two parts: Ω × {h/2,−h/2} and ∂Ω × [−h/2, h/2].
Since m has a compact support in Ω, we have

I2(y) =

∫
Ω×{h/2,−h/2}

DiΦ(y − y′)m(x′)νj(y
′)dx′.

Moreover, νj = 0 on ∂Ω × {h/2,−h/2} if j = 3, and then we have only to consider
the quantity I2 when j = 3. If j = 3, then

I2(y) =

∫
Ω

DiΦ(x, z, x′, h/2)m(x′)dx′ −
∫

Ω

DiΦ(x, z, x′,−h/2)m(x′)dx′.

Suppose that i = 1 or 2. Then, since m has a compact support in Ω and
DiΦ(x, z, x′, z′) = −D′

iΦ(x, z, x′, z′) where D′ denotes the derivative with respect
to y′ variables, we have

I2(y) =

∫
Ω

Φ(x, z, x′, h/2)Dim(x′)dx′ −
∫

Ω

Φ(x, z, x′,−h/2)Dim(x′)dx′.(A.4)
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Thus, we have

|I2(y) − I2(ȳ)| ≤ C‖m‖C1(Ω)|y − ȳ|α, y, ȳ ∈ Ωh,

for any 0 < α < 1.
Suppose now that i = 3. In this case

I2(y) = −
∫
∂Ω

∂

∂z′
Φ

(
x, z, x′,

h

2

)
m(x′)dx′ +

∫
∂Ω

∂

∂z′
Φ

(
x, z, x′,−h

2

)
m(x′)dx′.

Using once again the fact that m has a compact support and Ωh = Ω × (−h/2, h/2),
we can write I2(y) as

I2(y) = −
∫
∂Ωh

∇y′Φ(y − y′) · ν(y)m(x′)dσ(y′).

Since (Δ + k2)Φ(y − y′) = δ(y − y′), we obtain from the divergence theorem that

I2(y) = −m(x) + k2

∫
Ωh

Φ(y − y′)m(x′)dy′ −
∫

Ωh

∇y′Φ(y − y′) · ∇m(x′)dy′.(A.5)

Thus it follows from (A.2) and standard arguments that

|I2(y) − I2(ȳ)| ≤ C‖m‖C1(Ω)|y − ȳ|α,

and hence

|f(y)I2(y) − f(ȳ)I2(ȳ)| ≤ C‖m‖C1(Ω)‖f‖Cα(Ωh)|y − ȳ|α.

This completes the proof of (i).
To prove (ii), we first compute

∫
Ωh

|DjΦ(x, z, x′, z′)|dx′dz′ ≤ C

∫ h/2

−h/2

∫
Ω

1

|x− x′|2 + |z − z′|2 dx
′dz′

≤ C

∫ h/2

−h/2

(1 + |log |z − z′||)dz′

≤ Ch|log h|,

for h small enough. Therefore, we get

|DjT (mf)(x, z)| ≤ Ch|log h|‖mf‖L∞(Ωh).

To prove (iii) we use (A.3), (A.4), and (A.5). Then the same estimates lead us
to (iii). For example, from (A.4) we get

|I2(y)| ≤ C

∫ h/2

−h/2

∫
Ω

∣∣∣∣ ∂

∂z′
Φ(x, z, x′, z′)

∣∣∣∣ |∇m(x′)|dx′dz′

≤ Ch|log h|‖∇m‖L∞(Ω).

This completes the proof.
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ON TRANSONIC SHOCKS IN TWO-DIMENSIONAL
VARIABLE-AREA DUCTS FOR STEADY EULER SYSTEM∗

HAIRONG YUAN†

Abstract. This paper concerns transonic shocks in compressible inviscid flow passing a two-
dimensional variable-area duct for the complete steady Euler system. The flow is supersonic at the
entrance of the duct, whose boundaries are slightly curved. The condition of impenetrability is posed
on the boundaries. After crossing a nearly flat shock front, which passes through a fixed point on
the boundary of the duct, the flow becomes subsonic. We show that to ensure the stability of such
shocks, pressure should not be completely given at the exit: it only should be given with freedom
one, that is, containing an unknown constant to be determined by the upstream flow and the profile
of the duct. Careful analysis shows that this is due to the requirement of conservation of mass in
the duct. We used Lagrangian transformation and characteristic decomposition to write the Euler
system as a 2 × 2 system, which is valid for general smooth flows. Due to such a simplification, we
can employ the theory of boundary value problems for elliptic equations to discuss well-posedness
or ill-posedness of transonic shock problems in variable-area duct for various conditions given at the
exit.

Key words. Euler system, transonic shocks, free boundary problem, hyperbolic-elliptic com-
posite system, ill-posed problem
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DOI. 10.1137/050642447

1. Introduction. Using nozzles and pipes to transport and control fluid flows
has numerous applications. For instance, one of the important phenomena in gas
dynamics is that by appropriate design of a nozzle there may generate one or several
shock waves to adjust the supersonic gas flow at the entrance of the nozzle to a certain
subsonic state at the exit, which is required, for example, for the jet engines of some
types of supersonic airplanes to work. (See, for instance, [31, section 7.13] for detailed
discussions.) Other examples are various wind tunnels [25]. Since compressible flows
in nozzles exhibit abundant phenomena; such as choking, local supersonic bubble,
formation of shock waves and their interactions with the boundaries of nozzles, etc.
(see [12, Chapter 5] and [24, section 6.2.3]), rigorous and thorough mathematical
analysis of flows in nozzles is a formidable task.

Nevertheless, progress has been made for several model problems. For unsteady
quasi–one-dimensional gas flow in a duct of variable area (see [27, section 8.1]), Liu
showed in a series of papers [22], [23], [17] that supersonic and subsonic flows are
stable, and for transonic flows, the shock waves tend to decelerate along an expanding
duct and accelerate along a contracting duct. See also [18]. For inviscid isentropic
irrotational gas flows, using the full velocity potential equation, Chen and Feldman
studied the existence and stability of multidimensional transonic shocks through an
infinite nozzle and determined the state of the flows at infinity by the data of the
coming flows and the geometry of the nozzle [4], [5], [6]. In [28] Xin and Yin considered
a similar problem for finite nozzle with a class of conditions involving potential giving
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at the exit. It is also remarkable that Kuz’min [19] studied subsonic-supersonic smooth
flows in nozzles by using the Chaplygin equation (which is equivalent to the full
velocity potential equation) and the simplified von Kármán equation. See also, for
example, [9], [10], [13] for other interesting and important works concerning systems
of conservation laws, multidimensional shock waves, and flow patterns in nature.

In this paper we study a class of transonic flows with shocks in a two-dimensional
variable-area duct for the steady full Euler system, which is a more precise description
of compressible inviscid flows. The flow is supersonic at the entrance of the duct,
whose boundaries are suitable perturbations of straight lines, while the flow becomes
subsonic across a nearly flat shock front. The condition of impenetrability is posed on
the boundaries. We will show that for given pressure at the exit, in general such flow
patterns may not exist except when the pressure at the exit satisfies an additional
restriction: Its mean value has already been determined by the state of the flow at
the entrance and the geometry of the duct. Precisely, to ensure the stability of such
transonic shocks, the pressure at the exit can be given only apart from a constant
difference, that is, it should contain an unknown constant to be solved simultaneously
with the flow fields in the duct. The proof reveals that the requirement of conservation
of mass in the duct is closely connected to this phenomenon (see Remark 8.1 in section
8.1).

On the other hand, given pressure at the exit is a physically well accepted con-
dition for flows in nozzles [12]. So our result indicates that the transonic shock we
investigated here is unstable and not likely to be observed in practice. However, since
the flow fields of the transonic shock we studied here are relatively simple, it may help
us gain some insight into understanding those more complicated transonic shocks ap-
pearing, for example, in de Laval nozzles. Note that all the works cited above on
transonic shocks and [7], [8], [29] are devoted to the study of the class of transonic
shocks we investigate here.

In this paper we also discuss, from the mathematical point of view, the well-
posedness or ill-posedness of a transonic shock problem in variable-area ducts if other
conditions are given at the exit. It is shown that for given density, entropy, Mach
number, or the velocity component parallel to the axis of the duct, the problem is in
general ill-posed; however, it is well-posed for the given velocity component, which is
perpendicular to the axis of the duct. For a list of such results, see section 11.

We remark that in [8] Chen has discussed the special case when the boundaries
of the duct are straight lines and the flow has certain symmetric properties, while the
upstream supersonic flow is perturbed. The author [29] has also investigated the case
for flows in a cylinder with cylindrical symmetry by a different method from [8], and
the radial velocity vanishing condition was posed at the exit. In [7] Chen and Yuan
developed the methods initiated in [29] and solved the transonic shock problem for the
three-dimensional steady full Euler system under the periodic conditions on the lateral
boundary of the duct, and hence obtained the solution of the transonic shock problem
in a three-dimensional duct with a constant square section under certain assumptions
on the symmetry of the coming flow. The ill-posedness for given pressure at the exit
is also demonstrated in detail there. However, due to the special structure of the
two-dimensional stationary Euler system, we developed a different and more powerful
approach here and obtained more results.

Now we comment on several difficulties which lie in the transonic shock problem
we investigate presently. First is the treatment of the shock front, which is a free
boundary and should be determined with the solutions (the subsonic states of the
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gas flows) simultaneously. Fruitful techniques have been developed in [1], [2], [3],
[8], [20] to deal with the type of free boundaries we meet here. In a rough way,
those techniques allow us, by suitable reformulation of the Rankine–Hugoniot jump
conditions, to construct a boundary modifying mapping, whose fixed point is the
desired free boundary. The definition of the boundary modifying mapping involves
solving a series of nonlinear fixed boundary problems.

Second, the steady full Euler system is a hyperbolic-elliptic composite system for
subsonic flow. For such a system, classical techniques such as energy estimates, maxi-
mum principle, and estimates of fundamental solutions, are not valid in a straightfor-
ward way. One needs to separate the “elliptic part” and “hyperbolic part” appropri-
ately to use the classical theory of elliptic and hyperbolic differential equations. To
cope with the curved boundary, we also write the system in Lagrangian coordinates
by virtue of the law of conservation of mass, and then decompose it into a 2×2 system
(which is elliptic for subsonic flow, hyperbolic for supersonic flow, and of mixed type
for transonic flow) and two algebraic equations (one is Bernoulli’s law and the other is
the invariance of entropy along streamlines for C1 flows). This simplifies greatly the
Euler system and enables us to study the transonic shock problem comprehensively.
For example, one of the merits of this approach is that it avoids loss of derivatives.
We remark that this formulation may be used to study other smooth flow patterns in
ducts. Such a technic has already been used by Chen to study a flat Mach configu-
ration in [11] and by Fang to study the transonic shocks attached to a curved wedge
[14].

Third, later on we will find out that we need to solve an elliptic system in a
rectangular domain. It is well known that the corners may cause singularities in the
solutions (even the well-posedness; see an example in [30]), which in turn affect the
regularity of the shock front, and then the smoothness of the boundary itself, and
then may cause new trouble in the regularity of solutions. Another feature is that
the “hyperbolic part” may transport the singularity at the corners produced by the
“elliptic part” to other points in the domain. We are lucky that we can use weighted
Hölder spaces and the results established in [16] by Gilbarg, Hörmander and in [21]
by Lieberman to overcome this difficulty.

Fourth, as mentioned above, it turns out we are in fact dealing with an ill-posed
problem if we give directly the pressure at the exit. We will show its relation to
the Neumann boundary problems for Poisson equations and determine appropriate
boundary conditions to make such a problem well-posed.

We will use the following well-known Banach contraction mapping principle twice
to solve the transonic shock problem:

Any contractive mapping on a complete metric space has one and
only one fixed point.

To find the transonic shock front, we will show that the boundary modifying mapping
is contractive (see section 10). However, to define the boundary modifying mapping,
we need again the Banach contraction mapping principle to show that a series of
nonlinear fixed boundary problems are uniquely solvable under some hypothesis (see
section 9). Due to our great efforts contributed to simplify the original problem
(section 3–7), obtaining the necessary estimates is straightforward and not hard work.

The paper is organized as follows. In section 2 we rigorously formulate the problem
of transonic shocks in variable-area ducts (denoted as problem (A)) and state our
main results, i.e., Theorem 2.6. In section 3 we write the Euler system in Lagrangian
coordinates, which also transform the curved boundaries of ducts into straight lines.
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In section 4 we decompose the resulted system into the “elliptic part” and “hyperbolic
part” and in section 5 we show the existence of supersonic flow in the ducts. In section
6 we formulate a free boundary problem (denoted as problem (B)) and then reduce
it to a set of fixed boundary problems (denoted as problem (C)) and a boundary
modifying problem. In section 7, by rewriting the Rankine–Hugoniot jump conditions
we express problem (C) in an equivalent but more transparent form (denoted as
problem (D)). Section 8 is devoted to the linearized version of problem (D). In section
9 we solve problem (C) by the Banach contraction mapping principle. In section 10
we construct the boundary modifying mapping and show that it has a fixed point
by using the Banach contraction mapping principle once again, thus finishing the
proof of our main results, Theorem 2.6. The last section of this paper, section 11,
is devoted to well-posedness or ill-posedness of the transonic shock problem (A) for
various conditions given at the exits of the ducts. The detailed proofs of these results
are omitted since they can be done in the same spirit as the proof of Theorem 2.6,
but we have sketched out the main points.

2. Formulation of the transonic shock problem and main results.

2.1. Problem (A) and background solution. The Euler system, which mod-
els two-dimensional inviscid steady gas flow, is of the form

(2.1)

⎧⎨
⎩

∇ · m = 0,

∇ ·
(

m ⊗ m

ρ

)
+ ∇p = 0,

with Bernoulli’s law

(2.2)
1

2
u2 + i = const,

where ρ, p, i are the density, pressure, and enthalpy of the fluid, while u = (u, v)
and m = ρu are the velocity and the momentum density vector, respectively. The
first equation in (2.1) is the conservation of mass, the second is the conservation of
momentum, and the Bernoulli’s law corresponds to the conservation of energy. Note
that the const in (2.2) depends on streamlines but is invariant on the same streamline
even across a shock [12].

In the case of polytropic gas p = A(S)ργ , γ ∈ (1,∞), with S the entropy, (2.2)
takes the form

(2.3)
1

2
(u2 + v2) +

a2

γ − 1
= const,

where a =
√

γA(S)ργ−1 is the local speed of sound. For C1 flow, (2.1) can also be
written as a symmetric system:

(2.4)

⎛
⎝ ρu 0 1

0 ρu 0
1 0 u

ρa2

⎞
⎠ ∂xU +

⎛
⎝ ρv 0 0

0 ρv 1
0 1 v

ρa2

⎞
⎠ ∂yU = 0.

In this form, the first two equations are the conservation of momentum, and the last
is the conservation of mass.

Remark 2.1. In (2.4) we have set

(2.5) U =
(
u v p

)t
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as the state of the gas. Since a2 = γp/ρ, we may obtain ρ from (2.3) once the const
in it is known. Sometimes we will also set

(2.6) U =
(
u v p ρ

)t
.

Later we will introduce

(2.7) w =
v

u
.

To simplify the notation, for u nonzero we will also set U as

(2.8)
(
u w p

)t
.

There will be no confusion in using U to express these vectors later.
Without loss of generality, we set P :=

{
(x, y) ∈ R

2 : x ∈ [−1, 1], 0 ≤ y ≤ Γ(x)
}

to be a two-dimensional duct with variable sections, and denote the upper wall
{
y =

Γ(x) : x ∈ [−1, 1]
}

as Γ+ with Γ(x) a positive function, and Γ− =
{
y = 0 : x ∈ [−1, 1]

}
the lower wall. We also set Γs =

{
x = s : y ∈ [0,Γ(s)]

}
for s ∈ [−1, 1].

We are interested in the following boundary value problem (A):

(2.9) (A) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2.1), (2.2) in P,

v = 0 on Γ−,

v − uΓ′(x) = 0 on Γ+,

U = U−
b on Γ−1,

p = p1 on Γ1.

The conditions on Γ± mean that the boundary is impermeable and it is natural for

ducts without holes on its boundaries. We suppose U−
b :=

(
u−
b 0 p−b ρ−b

)t
is

a constant supersonic state with ρ−b > 0 on Γ−1, which represents supersonic flow
entering the duct when u−

b > 0. Hence the const in Bernoulli’s law (2.3) is

c0 = (u−
b )2/2 + (a−b )2/(γ − 1)

and independent of streamlines. It is necessary to control the pressure at Γ1 to obtain
transonic flows in P; otherwise the flow may be purely supersonic in P, which is why
we need the last condition in (2.9). However, the following simple but fundamental
result indicates we may have trouble if we give p1 in an arbitrary way. (Giving other
conditions on Γ1 instead of p will be discussed in section 11. In the following sections
2–10 we concentrate only on the typical case, i.e., problem (A).)

Proposition 2.1. For the special case Γ(x) ≡ 1, suppose the solution U to (2.9)
depends only on x; then for given supersonic state U−

b , there exists a unique constant
p1 = p+

b determined by U−
b such that

(2.10) Sb :
{
x = 0

}
is a shock front with uniform supersonic state U−

b ahead of it (i.e., in {x < 0}) and

uniform subsonic state U+
b =

(
u+
b 0 p+

b ρ+
b

)t
behind it (i.e., in {x > 0}). Sb

and (U−
b , U+

b ) make up a piecewise smooth weak entropy solution to (2.9) containing
shocks. Here “uniform” means that the states U±

b are constant vectors.
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Proof. From the one-dimensional steady Euler system it is obvious that any
solution without a jump must be uniform. So U ≡ U−

b for x ∈ [−1, 0]. The Rankine–
Hugoniot jump conditions (see [4, 13]) now takes the form

ρu = ρ−b u
−
b , ρu2 + p = ρ−b (u−

b )2 + p−b , Eu = E−
b u−

b ,

where E = γ
γ−1p + 1

2ρ |u|
2
. By supersonic condition u−

b > a−b it is easy to get

u =
c∗

u−
b

, c∗ := 2c0
γ − 1

γ + 1
,

ρ =
ρ−b (u−

b )
2

c∗
,

p = ρ−b (u−
b )2 + p−b − c∗ρ

−
b .

Direct calculation demonstrates that u < a (subsonic) and the Lax entropy condition
(see [13])

(2.11) p > p−b .

So U+
b ≡ U = (u, 0, p, S)t for x ∈ [0, 1], and thus p1 = p is uniquely determined by

U−
b as well as U±

b .
Remark 2.2. In the rest of this paper we call the above obtained (U±

b ) and
Sb :

{
x0 = 0

}
a background solution and denote it as Ub = (U−

b , U+
b ;Sb). Equation

(2.10) is used to fix the position of the shock front since we may set x = c for any
c ∈ (−1, 1) as the shock front and obtain the same U±

b . One may also observe from
the above result that the pressure p = p1 at Γ1 is necessary, though it cannot be
given arbitrarily. The main result of this paper, Theorem 2.6 below, shows that for
two-dimensional flow this observation is also valid.

2.2. Function spaces. Although the background solution provides us with some
useful information, however, when Γ(x) is slightly curved, rigorously solving problem
(A) still involves several difficulties, as mentioned in the introduction. For subsonic
flow, the steady Euler system is of hyperbolic-elliptic composite type: it has a real
(generalized) eigenvalue of multiplicity 1 and a pair of conjugate complex eigenvalues.
Due to conservation of mass we can introduce the Lagrangian transformation to reduce
the original equations to two algebraic equations (Bernoulli’s law and constancy of
entropy along streamlines for C1 flows) and a 2 × 2 system of partial differential
equations, which is hyperbolic for supersonic flow, elliptic for subsonic flow, and of
mixed type for transonic flow. Thus to obtain the subsonic flow behind the shock
front S, we have to confront elliptic boundary value problems on rectangular domains

(2.12) Ω =
{

(x, y) : 0 ≤ y ≤ Γ(x), f(y) ≤ x ≤ 1
}
,

where x = f(y) is the equation of the shock front S which satisfies f(0) = 0. Suppose
S and Γ+ intersect at the point Σ4 = (x∗, y∗). It is well known that the corners

(2.13) Σ1 = (0, 0), Σ2 = (1, 0), Σ3 = (1,Γ(1)), Σ4 = (x∗, y∗)

in general will cause singularities to the solutions, and the popular Schauder theory
for C2,α(α ∈ (0, 1)) domains (see [15]) may be invalid. The loss of regularity at the
corners will also influence the regularity of the shock front S itself, which in turn has
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an effect on the smoothness of the domain Ω, and thus may cause new trouble when
solving the elliptic problems. The hyperbolic part may also transport the singularities
at corners to other points in the duct. Fortunately, Gilbarg and Hörmander [16] and
Lieberman [21] have established the intermediate Schauder estimates to attack elliptic
problems on nonsmooth domain (see also the Notes of Chapter 6 in [15]), and their
theory is powerful enough to handle our dilemma. Following their ideas, we introduce

the function spaces H
(b)
a (Ω), H

′b
a [0, y∗] to describe precisely the regularity of our

desired subsonic flow and the transonic shock front, respectively. Our definition is
a little different from theirs, but due to the boundary regularity estimates (Lemmas
6.18 and 6.29 in [15]), there is no problem later in using their theorems. Note that in
the following we always suppose that 0 ≤ k < a = k +α ≤ k + 1, a+ b > 0, with k an
integer and α ∈ (0, 1] for such spaces.

The Banach spaces H
′(b)
a [0, y∗] is defined as follows. A function f on [0, y∗] is in

H
′(b)
a [0, y∗] if and only if

(2.14) ‖f‖
′(b)
a;[0,y∗] := sup

δ>0
δa+b ‖f‖Ca[δ,y∗−δ] < ∞,

with Ca here the usual Hölder space Ck,α. We define ‖·‖
′(b)
a;[0,y∗] as the norm of

H
′(b)
a [0, y∗].

The Banach space H
(b)
a (Ω) is by definition the set of functions φ defined on Ω

with the property that

(2.15) ‖φ‖(b)
a:Ω := sup

δ>0
δa+b ‖φ‖Ca(Ωδ)

< ∞,

where

(2.16) Ωδ :=
{
P = (ξ̄, η̄) ∈ Ω : distance(P,Γ±) > δ

}
.

Here Ω as in (2.12) with f ∈ H
′(b)
a [0, y∗], while Γ+ := {(x,Γ(x)) : x∗ ≤ x ≤ 1},Γ− :=

{(x, 0) : 0 ≤ x ≤ 1} are, respectively, the upper and lower boundary of Ω.
Notice that the Lagrangian transformation also has the advantage that it straight-

ens the curved boundary since it straightens the streamlines. So later by introducing

certain homeomorphisms Φ : Ω → [0, 1; 0, 1] which are of class H
(b)
a (Ω) with b < −1,

we will actually solve elliptic boundary problems on the square [0, 1; 0, 1]. For sim-

plicity, we write H
(b)
a ([0, 1; 0, 1]) as H

(b)
a , and H

′(b)
a [0, 1] as H

′(b)
a . The corresponding

norms are simply denoted as ‖·‖(b)
a , ‖·‖

′(b)
a , respectively. By direct calculations one

can verify the following.

Proposition 2.2. Suppose b < −1, Ω as before, u ∈ H
(b)
a , and Φ : Ω → [0, 1; 0, 1]

satisfy Φ ∈ H
(b)
a (Ω̄; R2). Then u ◦ Φ ∈ H

(b)
a (Ω̄) and

(2.17) ‖ u ◦ Φ ‖
H

(b)
a (Ω̄)

≤ C ‖ u ‖
H

(b)
a

,

where C = C
(
n, ‖ Φ ‖

H
(b)
a (Ω̄;Rn)

)
.

A similar result also holds for H
′(b)
a . This means that the homeomorphisms intro-

duced later (including the Lagrangian transformation) will not influence our resultant
estimates.
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We list here several useful properties of spaces H
(b)
a (they also hold for H

′(b)
a )

which are used later to obtain estimates of certain nonlinear terms. The proof and
more information about this class of weighted Hölder spaces can be found in [16].

Proposition 2.3.

‖∇φ‖(1+b)
a−1 ≤ C ‖φ‖(b)

a if a > 1,(2.18)

‖φ‖(b)
a ≤ C ‖φ‖(b′)

a if b′ ≤ b.(2.19)

Proposition 2.4. If 0 ≤ a′ ≤ a, a′ + b � 0, and b is not an integer ≤ 0, then

(2.20) ‖φ‖(b)
a′ ≤ C ‖φ‖(b)

a .

Proposition 2.5. If 0 ≤ cj ≤ a + b, a � 0, then

(2.21) ‖φψ‖(b)
a ≤ C(‖φ‖(b−c1)

a ‖ψ‖(c1)
0 + ‖φ‖(c2)

0 ‖ψ‖(b−c2)
a ).

2.3. Main results. There are two main results in this paper. Now we can state
precisely the first one as the following theorem. Another is indicated in Remark 2.6.
For details, see section 11.

Theorem 2.6. There exists a ε0 > 0 such that if

‖Γ(x) − 1‖C5[−1,1] ≤ ε < ε0,(2.22)

dk(Γ(x) − 1)

dxk

∣∣∣
x=−1

= 0, k = 0, 1, 2, 3, 4, 5,(2.23)

then there is a unique e ∈ R with

(2.24) |e| < C0ε

such that (2.9) with

(2.25) p1 = p+
b + e

has a unique weak entropy solution (U−, U+;S) with the following properties:
(i) U− is supersonic, U+ is subsonic, and S is the shock front separating U− and

U+ with entropy condition.
(ii) S : x = f(y), y ∈ [0, y∗], with y∗ satisfying y∗ = Γ(f(y∗)) and

(2.26) f(0) = 0.

(iii) For some α ∈ (0, 1), the following estimates hold:∥∥U− − U−
b

∥∥
C3,α(P−)

< C0ε,(2.27) ∥∥U+ − U+
b

∥∥(−α)

2+α;Ω
< C0ε,(2.28)

‖f‖
′(−1−α)
3+α;[0,y∗] < C0ε.(2.29)

Here ε0, C0 are constants depending only on Ub, and we have

P− := {(x, y) ∈ P : x < f(y)},

with Ω the same as in (2.12).
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Remark 2.3. We suppose (2.26) holds to fix the position of the shock front.
This is necessary, as indicated by the translation invariance along the x axis for the
background solution: for the same p1 in Proposition 2.1 at the exit, the position of
the shock cannot be uniquely determined (see also Remark 2.2 and [4], [28]). We note
that this phenomena is different from those transonic shocks observed in de Laval
nozzles.

Remark 2.4. Equation (2.25) may be replaced by

(2.30) p1 = p+
b + g(y) + e

with e a constant to be determined simultaneously with U for any g ∈ C2,α[0,Γ(1)]
with small norm. There is no additional difficulty in the proof. Giving pressure at the
exit in this way implies that the value of the pressure at the exit can be given only
apart from a constant difference. We note that e in most cases does not vanish, as was
shown by Proposition 2.1 if g is a nonzero number: it has already been determined
by the coming upstream flow and the shape of the duct and g. This implies that for
given pressure at the exit of the duct the transonic shock problem is ill-posed. As can
be seen from the background solution, the ill-posedness is not related to the fact that
we fixed the position of the shock.

Remark 2.5. Our proof can be modified to treat the case when the upstream
supersonic flow at the entrance of the duct is also perturbed slightly if certain orders
of compatibility conditions hold at the entrance, and a similar result can be proved.
The major difference is that the constant in Bernoulli’s law may be different on
different streamlines. In [7] we have studied this case for the three-dimensional Euler
system.

Remark 2.6. We note that the method developed in this paper provides us with
more information than just presented in Theorem 2.6. It indicates clearly the well-
posedness of giving v, w at Γ1; ill-posedness of giving u, ρ, S, or the Mach number
M = |u|/a as well as p there will be discussed in detail in section 11.

Remark 2.7. We emphasize here that the uniqueness of transonic shock in The-
orem 2.6 is proved only in the class of functions satisfying properties (i)–(iii) listed
there. The “global uniqueness” is an interesting open problem. Noting the nonunique-
ness of transonic shocks claimed by Smith in [26] and symmetry breaking phenomena
discussed by Kuz’min [19] and references therein, rigorous analysis of uniqueness or
nonuniqueness of certain problems in aerodynamics is very important to understand
some widely used models in practice and numerical simulations.

3. Euler equations in Lagrangian coordinates. The Euler equations (2.1),
(2.2) are difficult to handle directly. In this section we use conservation of mass to
write them in Lagrangian coordinates, which simplifies the geometry of the domain,
as well as the “hyperbolic” part of the Euler system, as will be shown in the next
section.

Set

(3.1) w =
v

u
,

and denote the integral curves of

(3.2)

⎧⎨
⎩

dŷ(x, h)

dx
= w(x, ŷ(x, h)),

ŷ(0, h) = h



1352 HAIRONG YUAN

by

(3.3)

{
x = ξ,

ŷ = ŷ(ξ, h).

(These are exactly streamlines.) Let

(3.4) η = η(x, h) =

∫ ŷ(x,h)

ŷ(x,0)

ρu(x, y)dy

be the flux of mass between two such curves. Then by using the first equation in (2.1)
we have

∂xη = ρu(x, ŷ(x, h))
∂ŷ(x, h)

∂x

−ρu(x, ŷ(x, 0))
∂ŷ(x, 0)

∂x
−
∫ ŷ(x,h)

ŷ(x,0)

∂y(ρv(x, y))dy

= 0.(3.5)

Hence η = η(−1, h) and η(−1, 0) = 0. Thus if

(3.6)
∂η(0, h)

∂h
= ρu(0, ŷ(0, h))

∂ŷ(0, h)

∂h
= ρu(0, ŷ(0, h)) �= 0,

we may obtain the inverse function h = h(η) of η = η(−1, h) and h(0) = 0. Set

(3.7) y(x, η) = ŷ(x, h(η));

then (3.4) becomes

(3.8) η =

∫ y(x,η)

y(x,0)

ρu(x, s)ds,

and by differentiating it with η one has

(3.9)
∂y

∂η
=

1

ρu
.

Now we introduce the following Lagrangian transformation (x, y) �→ (ξ, η):

(3.10)

{
x = ξ,

y = y(ξ, η).

Then by

(3.11)
∂(x, y)

∂(ξ, η)
=

(
1 0
w 1

ρu

)
,

we have

(3.12)
∂(ξ, η)

∂(x, y)
=

(
1 0

−ρv ρu

)
;
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thus

(3.13)

{
∂x = ∂ξ − ρv∂η,

∂y = ρu∂η.

So a little computation shows that (2.1) or (2.4) may be written as conservation laws

(3.14)

⎧⎪⎨
⎪⎩
∂ξ(

1
ρu ) − ∂ηw = 0 (conservation of mass),

∂ξ(u + p
ρu ) − ∂η(pw) = 0 (conservation of momentum along ξ),

∂ξv + ∂ηp = 0 (conservation of momentum along η),

or as symmetric system

(3.15) A∂ξU + B∂ηU = 0,

with

(3.16) A =

⎛
⎝ u 0 1

ρ

0 u 0
1
ρ 0 u

ρ2a2

⎞
⎠ , B =

⎛
⎝ 0 0 −v

0 0 u
−v u 0

⎞
⎠

and

(3.17) U =
(
u v p

)t
.

The above transformation is valid if and only if

(3.18) ρu �= 0.

Note that in (3.16) the last equation corresponds to conservation of mass.
Next we consider boundary conditions on Γ±. By (2.9) and (3.2) (and uniqueness

of solutions to Cauchy problems of ODEs) Γ± are streamlines. Thus Γ− in the (ξ, η)
coordinates is

(3.19) Γ̃− : η = 0, ξ ∈ [−1, 1],

while Γ+ is

(3.20) Γ̃+ : η = η0 =

∫ 1

0

ρu(−1, s)ds, ξ ∈ [−1, 1].

In the latter, without loss of generality we always suppose that η0 ≡ 1 by suitable
normalization of the unit of the coming flow. The corresponding boundary conditions
are

(3.21)

{
w = 0 on Γ̃−,

w = Γ′(ξ) on Γ̃+.

Since the shock front may be curved, with the equation

(3.22) ξ = ψ(η), η ∈ [0, 1],
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we introduce further the following transformation Φψ : (ξ, η) �→ (ξ̄, η̄) to straighten
the shock front:

(3.23)

⎧⎨
⎩ξ̄ =

ξ − ψ(η)

1 − ψ(η)
,

η̄ = η,
or

{
ξ = (1 − ψ(η̄))ξ̄ + ψ(η̄),

η = η̄.

So

(ξ̄, η̄) ∈ [0, 1; 0, 1]

and

(3.24)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂ξ
=

1

1 − ψ(η̄)

∂

∂ξ̄
,

∂

∂η
=

∂

∂η̄
+

(ξ̄ − 1)ψ′(η̄)

1 − ψ(η̄)

∂

∂ξ̄
.

Thus (3.15) becomes

(3.25) Ā∂ξ̄U + B̄∂η̄U = 0,

with

(3.26) Ā = A + (ξ̄ − 1)ψ′(η̄)B, B̄ = (1 − ψ(η̄))B.

Finally, note that after passing the shock front, (3.21) in the (ξ̄, η̄) coordinates is

(3.27)

{
w = 0 on Γ̄− := {(ξ̄, 0) : ξ̄ ∈ [0, 1]},
w = Γ′((1 − ψ(1))ξ̄ + ψ(1)) on Γ̄+ := {(ξ̄, 1) : ξ̄ ∈ [0, 1]}.

4. Decomposition of elliptic-hyperbolic composite system. The idea in-
volved in this section to write (3.25) as separate elliptic and hyperbolic equations is
rudimentary. Let λ be a generalized eigenvalue of B̄ with respect to Ā:

(4.1) det(λĀ− B̄) = 0,

and let the corresponding generalized left (row) eigenvector be l, i.e.,

(4.2) lB̄ = λlĀ,

then multiply (3.25) from the left by l to get

(4.3) lĀ(∂ξ̄ + λ∂η̄)U = 0.

Now suppose λ (and thus l) is complex:

(4.4) λ = λR + iλI , l = lR + ilI , i =
√
−1;

then (4.3) is equivalent to

(4.5)

{
lRĀ∂IU + lIĀ∂RU = 0,

lRĀ∂RU − lIĀ∂IU = 0,
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with

(4.6) ∂R = ∂ξ̄ + λR∂η̄, ∂I = λI∂η̄.

So roughly speaking, the real eigenvalue λ corresponds to the hyperbolic equation
(4.3) while the complex λ and its conjugation λ̄ correspond to the elliptic system
(4.5).

System (3.25) has a real eigenvalue λ0 and a pair of complex eigenvalues λ =
λR± iλI if the Mach number M = |u|/a < 1 (the computation is straightforward and
we omit it):

λ0 = 0,(4.7)

λR = −
(1 − ψ)

(
(ξ̄ − 1)ψ′(u2 + v2) − v

ρ

)
1
ρ2

(
u2

a2 − 1
)
− (ξ̄ − 1)2ψ′2(u2 + v2) + 2

ρ (ξ̄ − 1)ψ′v
,(4.8)

λI =
(1 − ψ)uρ

√
1 −M2

1
ρ2

(
u2

a2 − 1
)
− (ξ̄ − 1)2ψ′2(u2 + v2) + 2

ρ (ξ̄ − 1)ψ′v
.(4.9)

Here and in the following we write ψ = ψ(η̄), ψ′ = ψ′(η̄). The corresponding left
eigenvectors are

l0 =
(
u v 0

)
,(4.10)

lR =
(

λR

ρ − λR(ξ̄ − 1)vψ′ + (1 − ψ)v λR(ξ̄ − 1)ψ′u− (1 − ψ)u −λRu
)
,(4.11)

lI =
(

λI

ρ − λI(ξ̄ − 1)vψ′ λI(ξ̄ − 1)ψ′u −λIu
)
.(4.12)

Thus

l0Ā =
(
u2 uv u

ρ

)
,(4.13)

lRĀ =
(

(1 − ψ)uv −(1 − ψ)u2 0
)
,(4.14)

lIĀ =
(

0 0 −(1 − ψ)u
√

1−M2

ρ

)
.(4.15)

By (4.3), (4.7), and (4.13) we get the hyperbolic equation

(4.16)
1

2
∂ξ̄(u

2 + v2) +
1

ρ
∂ξ̄p = 0

if u �= 0. On the other hand, from Bernoulli’s law (2.3) one gets

1

2
∂ξ̄(u

2 + v2) +
1

γ − 1
∂ξ̄a

2 = 0;

hence

1

ρ
∂ξ̄p−

1

γ − 1
∂ξ̄a

2 = 0.

By p = A(S)ργ , a2 = γA(S)ργ−1 the above equation is actually the constancy of
entropy along streamlines for C1 solutions

(4.17) ∂ξ̄

(
p

ργ

)
= 0.
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Similarly, we can write (4.5) as

(4.18)

{
∂ξ̄p + λR∂η̄p− β1∂η̄w = 0,

∂ξ̄w + β2∂η̄p + λR∂η̄w = 0,

with

(4.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β1 = − (1 − ψ)u3

1
ρ2

(
u2

a2 − 1
)
− (ξ̄ − 1)2ψ′2(u2 + v2) + 2

ρ (ξ̄ − 1)ψ′v
,

β2 = −
1

uρ2 (1 − ψ)(1 −M2)

1
ρ2

(
u2

a2 − 1
)
− (ξ̄ − 1)2ψ′2(u2 + v2) + 2

ρ (ξ̄ − 1)ψ′v
.

When M < 1, (4.18) is an elliptic system. However, for M > 1, i.e., supersonic
flow, we can also carry out similar calculations to obtain (4.18), which is a hyperbolic
system. Thus if

(4.20) det

⎛
⎝ l0

lR
lI

⎞
⎠ = (1 − ψ)λIu(u2 + v2)

is nonzero, (4.17) and (4.18) are equivalent to (3.25) for C1 solutions. This is true if

(4.21) ρu �= 0, M �= 1, u �= a, ‖ψ‖C1 � 1.

Remark 4.1. The first equation in (4.18) is in essence the conservation of mass.
In fact, it is obtained by multiplying (3.25) from the left by lI . Notice that the third
argument in lI is nonzero and the last equation in (3.25) is the conservation of mass.

5. Existence of supersonic flow. In this section we always set ψ ≡ 0, and
we will use (4.18) to show existence and uniqueness of supersonic flow in the duct P

when its boundary is slightly curved, without considering the conditions at the exit.
Now (4.18) is

(5.1) ∂ξ

(
w
p

)
+

(
� β
κ �

)
∂η

(
w
p

)
= 0,

with

� =
ρva2

u2 − a2
, β =

a2(M2 − 1)

u(u2 − a2)
, κ =

ρ2a2u3

u2 − a2
.

Consider the following mixed initial-boundary value problem:

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(5.1) in P̃ = [−1, 1] × [0, 1],

p = p−b on Γ̃−1 : ξ = −1,

w = 0 on Γ̃−1 : ξ = −1,

w = 0 on Γ̃− : η = 0,

w = Γ′(ξ) on Γ̃+ : η = 1,

where

(5.3) p = d0ρ
γ , or ρ =

(
p

d0

) 1
γ

,
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(5.4) u =

{
2

1 + w2

(
c0 −

γd0

γ − 1

(
p

d0

) γ−1
γ

)} 1
2

,

with

(5.5) d0 = p−b /(ρ
−
b )γ .

Equation (5.3) originates from (4.17), and (5.4) comes from Bernoulli’s law (2.3) and
(5.3).

Remark 5.1. The system (5.1) is genuinely nonlinear in a neighborhood of U−
b .

Direct computation shows that the eigenvalues are

(5.6) λ± = � ±
√
βκ =

ρa2

u2 − a2
(v ± u

√
M2 − 1),

and the corresponding left (resp., right) eigenvectors l± (r±) are

l± =
(
±
√
κ

√
β
)
,(5.7)

r± =
(
±
√
β

√
κ
)t
.(5.8)

Thus

(5.9) ∇λ± · r±(U−
b ) =

1

2
(1 + γ)

ρu4
√
u

(u2 − a2)2

∣∣∣∣
U=U−

b

�= 0.

Set W = (w, p)t. The characteristic form of (5.1) is

(
√
κ,
√
β)(∂ξ + (� +

√
βκ)∂η)W = 0,(5.10)

(−
√
κ,
√
β)(∂ξ + (� −

√
βκ)∂η)W = 0.(5.11)

Theorem 5.1. There exists a positive ε0 such that if (2.22) and (2.23) hold,
then problem (5.2) has a unique solution (w, p) satisfying

(5.12) ‖w‖C3,α(P̃) +
∥∥p− p−b

∥∥
C3,α(P̃)

≤ C0ε.

The constants ε0, C0 depend solely on U−
b , and α ∈ (0, 1) may be arbitrary.

Corollary 5.2. Under the same assumptions of Theorem 5.1, by (3.1), (5.3),
(5.4), and (5.12) we also have

(5.13)
∥∥u− u−

b

∥∥
C3,α(P)

+ ‖v‖C3,α(P) +
∥∥ρ− ρ−b

∥∥
C3,α(P)

+
∥∥p− p−b

∥∥
C3,α(P)

≤ C0ε.

Remark 5.2. Hereafter we denote the u, v, p, ρ, w, S obtained in Theorem 5.1 and
Corollary 5.2 as u−, v−, p−, ρ−, w−, S− in accordance with the notation in Theorem
2.6.

The proof of Theorem 5.1 is standard; it just needs a little modification of the
proof of Theorem 3.3 in Chapter 4 of [20] (p. 180). (We may get local existence directly
by this theorem.) In fact, if the boundary condition is a small perturbation of zero,
then the existence can be semiglobal. It means that the life span of the smooth
solution depends on the smallness of the perturbation of boundary data. In other
words, the life span can be larger than any given number, provided the perturbation
is small enough.

Remark 5.3. For Γ′(ξ) < 0 and the case when perturbation is not small, Chen
has proved in [10] that the solution may blow up in finite distance from the entrance
and shocks will appear.



1358 HAIRONG YUAN

6. Free boundary problem (B) and fixed boundary problem (C).

6.1. Problem (B). Knowing the supersonic flow, now we are in the position to
determine the shock front and the subsonic state behind it simultaneously, satisfying
the restrictions of pressure at the exit. We formulate it as the free boundary problem
(B).

Let

(6.1) S : ξ = ψ(η), η ∈ [0, 1],

be the shock front. By (3.14) the following Rankine–Hugoniot jump conditions [12]
should hold across S:

−
[

1

ρu

]
= [w] ψ′(η),(6.2)

−
[
u +

p

ρu

]
= [pw] ψ′(η),(6.3)

[v] = [p] ψ′(η).(6.4)

By (6.4) we have

(6.5) ψ′(η) =
[v]

[p]
.

Due to Remark 2.3 concerning (2.26), we set

(6.6) ψ(0) = 0.

Substituting (6.5) in (6.2) and (6.3), we have

G1(U,U−) := [w][uw] +

[
1

ρu

]
[p] = 0,(6.7)

G2(U,U−) := [pw][uw] +

[
u +

p

ρu

]
[p] = 0.(6.8)

Here U :=
(
u w p

)t
, and U− :=

(
u− w− p−

)t
with U− = U−(ψ(η), η).

Note that (6.5), (6.7), and (6.8) are equivalent to (6.2)–(6.4) provided [p] �= 0, which
is guaranteed by (2.11) if the perturbations are small.

Problem (B) can be stated now as the following:
Find U,ψ(η) and a real number e such that
(i) ψ(η) satisfies (6.1), (6.5), (6.6);
(ii) (6.7), (6.8) hold on S;
(iii) w = 0 on Γ̃−;
(iv) w = Γ′(ξ) on Γ̃+;
(v) p = p+

b + e on Γ̃1.
(vi) Set Ωψ := {(ξ, η) : η ∈ [0, 1], ψ(η) ≤ ξ ≤ 1}; then (4.17), (4.18)
should hold in Ωψ as well as Bernoulli’s law (2.3).

6.2. Problem (C). The idea of dealing with problem (B) is, roughly speaking,
by iteration: first we fix the boundary and solve a fixed boundary problem, use (6.5),
(6.6) to update the boundary, and then solve another fixed boundary problem, etc.
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Set

(6.9) Sσ =
{
ψ(η) ∈ H

′(−1−α)
3+α [0, 1] : ‖ψ‖

′(−1−α)
3+α;[0,1] ≤ σ, ψ(0) = 0

}

with

(6.10) σ ≤ σ0 <
1

2
.

For any ψ ∈ Sσ, we may use transformation (3.23), which is of class H
(−1−α)
3+α;Ωψ

, to state

the fixed boundary problem (Cψ) as follows:
Find U and e ∈ R such that
(i) (4.17), (4.18), and (2.3) hold in Ω := [0, 1] × [0, 1];
(ii) (3.27) holds on Γ̄±;
(iii) (6.7), (6.8) hold on ξ̄ = 0;
(iv) p = p+

b + e holds on ξ̄ = 1.
Now if problem (Cψ) is uniquely solvable, with the solution Uψ, then by the

Cauchy problem of the ODE (note that η = η̄)

(6.11)

{
ψ̃′(η) =

[vψ]
[pψ] ,

ψ̃(0) = 0,

later (section 10) we will construct a mapping Ψ : Sσ → Sσ given by Ψ(ψ) = ψ̃ if ε0

in Theorem 2.6 is small. Clearly the fixed point ψ̄ of Ψ corresponds to the desired
shock front in problem (B), and the solution Uψ̄ obtained by problem (Cψ̄) is the
subsonic state we are looking for. We call Ψ the boundary modifying mapping.

7. Problem (D): An equivalent form of problem (C). This section is de-
voted to writing problem (Cψ) in an equivalent, but more transparent and tractable,
form called problem (Dψ). This is a nonlinear boundary problem for nonlinear sys-
tems.

We first deal with the boundary conditions. Since Gi(U
+
b , U−

b ) = 0 for i = 1, 2
holds, we may write (6.7), (6.8) as

∇+Gi(U
+
b , U−

b ) · (U − U+
b )(7.1)

= ∇+Gi(U
+
b , U−

b ) · (U − U+
b ) − (Gi(U,U

−
b ) −Gi(U

+
b , U−

b ))

+(Gi(U,U
−
b ) −Gi(U,U−))

:= gi(U,U−),

where ∇+Gi(U,U−) is the gradient of Gi(U,U−) with respect to the variables U . By
direct calculations (note that here by Bernoulli’s law we consider ρ as a function of
p, w, u),

∇+Gi(U
+
b , U−

b ) =
∂(G1, G2)(U,U−)

∂(u,w, p)

∣∣∣∣
(U,U−)=(U+

b ,U−
b )

=

(
a1 0 b1
a2 0 b2

)
(7.2)
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with

a1 = − 2c0 + u2

2c0 − u2
· [p]

ρu2

∣∣∣∣
(U+

b ,U−
b )

= −2c0 + u+
b

2

2c0 − u+
b

2 · p
+
b − p−b

ρ+
b u

+
b

2 ,

b1 = − [p]

ρup

∣∣∣∣
(U+

b ,U−
b )

,

a2 = [p]

(
1

γ
− p

ρu2

)∣∣∣∣
(U+

b ,U−
b )

,

b2 =

[
u +

p

ρu

]∣∣∣∣
(U+

b ,U−
b )

= 0.

Thus

d1 := det

(
a1 b1
a2 b2

)
=

[p]2

ρup

(
1

γ
− p

ρu2

)∣∣∣∣
(U+

b ,U−
b )

= − [p]2

γρup

(
a2

u2
− 1

)∣∣∣∣∣
(U+

b ,U−
b )

�= 0,

and we may rewrite (7.1) as

p− p+
b =

1

d1
(a1g2 − a2g1) := h1(U,U−),(7.3)

u− u+
b =

1

d1
(b2g1 − b1g2) := h2(U,U−).(7.4)

They should hold on ξ̄ = 0.
Next we manipulate the equations. In the following we denote the value of U on

ξ̄ = 0 as U0. For example, by (7.3), (7.4), p0 = h1 + p+
b , u0 = h2 + u+

b .
Now by (4.17) and Bernoulli’s law (2.3) we get

ρ0 =
γ

γ − 1
· p0

c0 − 1
2u

2
0(1 + w2

0)
,(7.5)

ρ = ρ0

(
p

p0

) 1
γ

,(7.6)

u =

{
2

1 + w2
·
(
c0 −

γ

γ − 1
· p
ρ

)} 1
2

,(7.7)

while w, p may be solved from (4.18).
Let

(7.8) λi := βi|U=U+
b ,ψ=0 for i = 1, 2,

with βi defined as in (4.19), and let

f1(U,ψ) = −λR∂η̄p + (β1 − λ1)∂η̄w,(7.9)

f2(U,ψ) = −λR∂η̄w + (λ2 − β2)∂η̄p;(7.10)
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then λi is positive and we may write (4.18) as

(7.11)

{
∂ξ̄p− λ1∂η̄w = f1(U,ψ),

∂ξ̄w + λ2∂η̄p = f2(U,ψ).

For subsonic flow this is a first order nonlinear elliptic system.
So far problem (C) may be expressed in the following equivalent way if (4.21)

holds.
Problem (D1)—boundary value problem for a first order elliptic sys-
tem:

(7.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ̄p− λ1∂η̄w = f1(U,ψ) in Ω,

∂ξ̄w + λ2∂η̄p = f2(U,ψ) in Ω,

p = p+
b + h1(U,U−) on ξ̄ = 0,

p = p+
b + e on ξ̄ = 1,

w = 0 on η̄ = 0,

w = Γ′((1 − ψ(1))ξ̄ + ψ(1)) on η̄ = 1.

Problem (D2)—algebraic equations (recall that U0 = U |ξ̄=0):

(7.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 = u+
b + h2(U,U−),

p0 = p+
b + h1(U,U−),

ρ0 =
γ

γ − 1
· p0

c0 − 1
2u

2
0(1 + w2

0)
,

ρ = ρ0

(
p
p0

) 1
γ

,

u =
{

2
1+w2 ·

(
c0 − γ

γ−1 · p
ρ

)} 1
2

.

We call the above two coupled problems problem (Dψ) (or problem (D) for sim-
plicity). The equivalence for smooth solutions is obvious from the deductions in the
above sections.

8. Solving linearized problem (D). It is nature and standard to use iteration
methods, such as the Banach contraction mapping principle, to solve problem (D).
Thus in this section we concentrate on the related “linearized” problems.

8.1. Linearized problem (D1). Problem D1 solves p̄, w̄, and e ∈ R satisfying

(8.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ̄p̄− λ1∂η̄w̄ = f1 in Ω,

∂ξ̄w̄ + λ2∂η̄p̄ = f2 in Ω,

p̄ = p+
b + h1 on ξ̄ = 0,

p̄ = p+
b + e on ξ̄ = 1,

w̄ = 0 on η̄ = 0,

w̄ = g(ξ̄) on η̄ = 1,

where f1, f2, h1, g are suitable nonhomogeneous terms. This is a boundary value
problem on a domain with a piecewise smooth boundary, so we need a generalized
version of the usual Schauder theory for elliptic equations.
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We may separate problem (8.1) into the following two problems:

(8.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ̄p̄1 − λ1∂η̄w̄1 = f1 in Ω,

∂ξ̄w̄1 + λ2∂η̄p̄1 = 0 in Ω,

p̄1 = p+
b + h1 on ξ̄ = 0,

p̄1 = p+
b + e on ξ̄ = 1,

w̄1 = 0 on η̄ = 0,

w̄1 = g(ξ̄) on η̄ = 1;

(8.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ̄p̄2 − λ1∂η̄w̄2 = 0 in Ω,

∂ξ̄w̄2 + λ2∂η̄p̄2 = f2 in Ω,

p̄2 = 0 on ξ̄ = 0,

p̄2 = 0 on ξ̄ = 1,

w̄2 = 0 on η̄ = 0,

w̄2 = 0 on η̄ = 1.

Then

(8.4) p̄ = p̄1 + p̄2, w̄ = w̄1 + w̄2

is the solution of problem (8.1). Since Ω is simply connected, we may introduce
potentials φ1(ξ̄, η̄), φ2(ξ̄, η̄) such that

∂ξ̄φ1 = −λ2(p̄1 − p+
b ), ∂η̄φ1 = w̄1,(8.5)

∂ξ̄φ2 = λ1w̄2, ∂η̄φ2 = p̄2,(8.6)

and write (8.2), (8.3) as

(8.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
λ2
∂2
ξ̄
φ1 + λ1∂

2
η̄φ1 = −f1 in Ω,

∂ξ̄φ1 = −λ2h1 on ξ̄ = 0,

∂ξ̄φ1 = −λ2e on ξ̄ = 1,

∂η̄φ1 = 0 on η̄ = 0,

∂η̄φ1 = g(ξ̄) on η̄ = 1;

(8.8)

{
1
λ1
∂2
ξ̄
φ2 + λ2∂

2
η̄φ2 = f2 in Ω,

φ2 = 0 on ∂Ω.

Equation (8.8) is the Dirichlet problem for Poisson equations. By Theorem 7.2
and Remark (2) following it in [16], and Theorem 1.4 in [21], we know there is a
unique solution φ2 and

(8.9) ‖φ2‖(−1−α)
3+α ≤ C ‖f2‖(1−α)

1+α ,

where C depends only on Ub and σ0, and α ∈ (0, α0) may be arbitrary for a fixed α0.
Next we consider (8.7), which is actually the Neumann problem for Poisson equa-

tions: {
�φ = f in Ω,
∂φ
∂ν = g on ∂Ω,
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where ν is the unit outward normal of ∂Ω. It is well known that such a problem is
solvable if and only if

(8.10)

∫
Ω

f dξ̄dη̄ =

∫
∂Ω

g ds.

This is in essence the reason why we have to introduce the number e in the pressure
giving at the exit of the duct.

Applying (8.10) to (8.7), we get

∫
Ω

f1 dξ̄dη̄ =

∫ 1

0

(e− h1) dη̄ − λ1

∫ 1

0

g(ξ̄) dξ̄;

thus if we take

(8.11) e =

∫
Ω

f1 dξ̄dη̄ + λ1

∫ 1

0

g(ξ̄) dξ̄ +

∫ 1

0

h1 dη̄,

(8.7) is solvable, and any two solutions differ only from a constant.
Now if (8.11) holds, then by Theorem 1.4 in [21] there exists a unique solution φ1

to (8.7) with φ1(0, 0) = 0, and furthermore the following estimate holds for α ∈ (0, α1)
with a fixed α1 ∈ (0, 1):

(8.12) ‖φ1‖(−1−α)
3+α ≤ C

(
‖f1‖(1−α)

1+α + ‖g‖C2+α[0,1] + ‖h1‖
′(−α)
2+α

)
.

So finally by (8.4)–(8.6), (8.9), and (8.12) we get

∥∥p̄− p+
b

∥∥(−α)

2+α
+ ‖w̄‖(−α)

2+α + |e|(8.13)

≤ C
(
‖f1‖(1−α)

1+α + ‖f2‖(1−α)
1+α + ‖g‖C2+α[0,1] + ‖h1‖

′(−α)
2+α

)
.

Remark 8.1. An important observation is that the first equation in (8.1), which
is responsible for the well-posedness or ill-posedness of the transonic shock problem
under pressure giving on the exit, is in essence the equation of conservation of mass,
as can be checked by tracing its origin. This fact can be seen more clearly by using
another completely different method which was developed in [7].

8.2. “Linearized” problem (D2). This problem solves (recall that U0 =
U |ξ̄=0):

(8.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū0 = u+
b + h2(U,U−),

p̄0 = p+
b + h1(U,U−),

ρ̄0 =
γ

γ − 1
· p̄0

c0 − 1
2 ū

2
0(1 + w̄2

0)
,

ρ̄ = ρ̄0

(
p̄
p̄0

) 1
γ

,

ū =
{

2
1+w̄2 ·

(
c0 − γ

γ−1 · p̄
ρ̄

)} 1
2

.

9. Solution of problem (C). With the above preparations, we solve in this
section problem (D) (i.e., problem (C)) by the Banach contraction mapping principle.
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Set

Oδ :=
{
U = (u,w, p, ρ)t :

∥∥u− u+
b

∥∥(−α)

2+α
+ ‖w‖(−α)

2+α

+
∥∥p− p+

b

∥∥(−α)

2+α
+
∥∥ρ− ρ+

b

∥∥(−α)

2+α
≤ δ
}
,(9.1)

with

(9.2) δ < δ0

and δ0 a constant depending only on Ub such that our preparations in the preceding

sections are valid. Oδ is a closed subset of Banach space (H
(−α)
2+α )4. By Proposition

2.2 the norm here is in fact equivalent to that used in Theorem 2.6. We will construct
a mapping T from Oδ to Oδ by problem (D) and show this mapping contracts when
ε0 (the perturbation of the wall of the duct) is small.

For any U = (u,w, p, ρ)t ∈ Oδ, substitute

f1 = f1(U,ψ),(9.3)

f2 = f2(U,ψ),(9.4)

h1 = h1(U,U−),(9.5)

g(ξ̄) = Γ′((1 − ψ(1))ξ̄ + ψ(1))(9.6)

in problem (D1), with fi(U,ψ)(i = 1, 2) as in (7.9), (7.10) and h1(U,U−) defined by
(7.3). By (2.18)–(2.21) and (7.1), (7.9), (7.10) we have the following estimates for
i = 1, 2:

‖fi(U,ψ)‖(1−α)
1+α ≤ C(δ2 + δσ),(9.7)

‖hi(U,U−)‖
′(−α)
2+α ≤ C(δ2 + ε).(9.8)

‖g‖C2,α[0,1] ≤ Cε.(9.9)

We may get unique p̄, w̄, e from problem (D1), and by (8.13) we have

(9.10)
∥∥p̄− p+

b

∥∥(−α)

2+α
+ ‖w̄‖(−α)

2+α + |e| ≤ C(δ2 + δσ + ε).

Now consider problem (D2). By (8.14) and analyticity of each expression, we
easily obtain that ∥∥ū− u+

b

∥∥(−α)

2+α
≤ C(δ2 + δσ + ε),(9.11) ∥∥ρ̄− ρ+

b

∥∥(−α)

2+α
≤ C(δ2 + δσ + ε).(9.12)

So far we obtained the unique Ū := (p̄, ū, w̄, ρ̄)t from U = (p, u, w, ρ)t ∈ Oδ and
have the estimate

(9.13)
∥∥p̄− p+

b

∥∥(−α)

2+α
+‖w̄‖(−α)

2+α +
∥∥ū− u+

b

∥∥(−α)

2+α
+
∥∥ρ̄− ρ+

b

∥∥(−α)

2+α
+|e| ≤ C(δ2+δσ+ε).

Now choosing ε0, σ0 such that

Cδ0 ≤ 1

4
,(9.14)

Cσ0 ≤ 1

4
,(9.15)
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and

(9.16) δ = 2Cε,

we get

(9.17)
∥∥p̄− p+

b

∥∥(−α)

2+α
+ ‖w̄‖(−α)

2+α +
∥∥ū− u+

b

∥∥(−α)

2+α
+
∥∥ρ̄− ρ+

b

∥∥(−α)

2+α
+ |e| ≤ δ.

Thus the mapping T : U = (u,w, p, ρ)t �→ Ū = (ū, w̄, p̄, ρ̄)t maps Oδ into Oδ.

What is left is to show the contraction of T . For i = 1, 2, suppose

ψ(i) ∈ Sσ,

U (i) = (u(i), w(i), p(i), ρ(i))t ∈ Oδ,

and denote

Ū (i) = (ū(i), w̄(i), p̄(i), ρ̄(i))t = T ((u(i), w(i), p(i), ρ(i))t),

(9.18) U
(i)
− = U−(ψ(i)(η̄), η̄),

(9.19) g(i) = Γ′((1 − ψ(i)(1))ξ̄ + ψ(i)(1)).

Recall that
∥∥U− − U−

b

∥∥
C3,α(P)

≤ C0ε; we get

∥∥∥U (1)
− − U

(2)
−

∥∥∥′(−α)

2+α
≤ Cε

∥∥∥ψ(1) − ψ(2)
∥∥∥′(−α)

2+α
≤ Cε

∥∥∥ψ(1) − ψ(2)
∥∥∥′(−1−α)

3+α
.

Then direct calculation shows that for j = 1, 2,∥∥∥fj(U (1), ψ(1)) − fj(U
(2), ψ(2))

∥∥∥(1−α)

1+α
(9.20)

≤ C(δ + σ)
(∥∥∥U (1) − U (2)

∥∥∥(−α)

2+α
+
∥∥∥ψ(1) − ψ(2)

∥∥∥′(−1−α)

3+α

)
,

∥∥∥hj(U
(1), U

(1)
− ) − hj(U

(2), U
(2)
− )
∥∥∥′(−α)

2+α
(9.21)

≤ C(δ + ε)
(∥∥∥U (1) − U (2)

∥∥∥(−α)

2+α
+
∥∥∥ψ(1) − ψ(2)

∥∥∥′(−1−α)

3+α

)
.

∥∥∥g(1) − g(2)
∥∥∥
C2,α[0,1]

≤ Cε
∥∥∥ψ(1) − ψ(2)

∥∥∥′(−1−α)

3+α
.(9.22)

Thus by solving corresponding problem (D) we get∥∥∥Ū (1) − Ū (2)
∥∥∥(−α)

2+α
(9.23)

≤ C(δ + σ + ε)
(∥∥∥U (1) − U (2)

∥∥∥(−α)

2+α
+
∥∥∥ψ(1) − ψ(2)

∥∥∥′(−1−α)

3+α

)
.

For ψ(1) = ψ(2) = ψ, we obtain contraction of T by choosing δ0, ε0, σ0 such that

(9.24) C(ε0 + δ0 + σ0) <
1

2
.

This solves problem (Cψ) for any ψ ∈ Sσ with σ0 small.
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10. Solution of problem (B): Determination of shock front. For any
ψ ∈ Sσ, we have solved problem (Cψ) to obtain the unique solution Uψ. Now by
solving the Cauchy problem

(10.1)

{
ψ̃′(η) =

[vψ]
[pψ] ,

ψ̃(0) = 0,

we constructed a mapping by Ψ(ψ) = ψ̃.
Obviously we have

(10.2)
∥∥∥ψ̃∥∥∥′(−1−α)

3+α
≤ C(δ + ε) ≤ Cε

by using (9.16). Taking

(10.3) σ = Cε,

we then have Ψ : Sσ �→ Sσ provided ε0 is sufficiently small.
For ψ(i) ∈ Sσ, i = 1, 2, denote U (i) as Uψ(i) ; then by (9.23) (recall now that

Ū (i) = U (i)) one gets

(10.4)
∥∥∥U (1) − U (2)

∥∥∥(−α)

2+α
≤ C(δ + σ + ε)

∥∥∥ψ(1) − ψ(2)
∥∥∥′(−1−α)

3+α
;

thus ∥∥∥ψ̃(1) − ψ̃(2)
∥∥∥′(−1−α)

3+α
(10.5)

≤ C
∥∥∥U (1) − U (2)

∥∥∥(−α)

2+α
+ Cε

∥∥∥ψ(1) − ψ(2)
∥∥∥′(−1−α)

3+α

≤ C(δ + σ + ε)
∥∥∥ψ(1) − ψ(2)

∥∥∥′(−1−α)

3+α
.

If (9.24) holds, Ψ contracts on Sσ. By the Banach contraction mapping principle we
know the free boundary problem (B) is uniquely solvable. Combining this result and
Theorem 5.1, we proved Theorem 2.6.

Remark 10.1. We explain here further why the uniqueness claimed in Theorem
2.6 holds. By (10.5) we see the fixed point, i.e., the transonic shock front ψ̄ is unique.
Uniqueness for nonlinear problem (Dψ̄) in section 9 (thus problem (Cψ̄)) follows from
the contraction argument of the mapping T defined on the line after estimate (9.17)
(consult (9.23) with the case ψ(1) = ψ(2) = ψ̄). Moreover, uniqueness of constant e for
nonlinear problem (Dψ̄) follows by writing the nonlinear problem as a linear problem
(8.1) with right-hand sides defined by (9.3)–(9.6), and then using uniqueness of e for
linear problem (8.1). Thus the subsonic flow is also unique.

11. Discussion on well-posedness or ill-posedness for other conditions
given at the exit of duct. In this section we discuss the well-posedness or ill-
posedness of transonic shock problem (A) if other conditions are given at the exit
of the duct. Our tool is the well-posedness or ill-posedness of the corresponding
boundary value problem for elliptic systems (8.1). We remark that all the results
listed below can be proved rigorously in the same fashion as we have done for giving
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pressure at the exit before. We just sketch out the key points that are needed for such
proofs.

1. As have been shown above (in section 8), given p at Γ1 corresponds to the
Neumann problem for Poisson equations. So in general for given pressure at the exit,
problem (A) is ill-posed.

2. However, if we give w at the exit, then we need to solve a mixed boundary
value problem for Poisson equations with Dirichlet data nonempty. It is well known
that such a problem is well-posed; i.e., we can give w at the exit in an arbitrary way
and also obtain a unique solution (although we require that w|Γ1 should be small
since we are dealing with a small perturbation problem). So for w given at the exit,
problem (A) is well-posed.

3. For arbitrarily given v = g at the exit, Problem (A) is still well-posed. In fact,
this corresponds to given

w =
g

u

for any U = (u, v, p, ρ)t ∈ Oδ in the linearized problem (D1). The linearized problem
(D1) is then uniquely solvable, and the contraction by

w(1) − w(2) = g
u(1) − u(2)

u(1)u(2)

is still available, since g is small.
4. For given entropy S = g at the exit, problem (A) is ill-posed. In fact, by

constancy of entropy along streamlines behind the shock front, we get

p0

ργ0
= g.

Now by the third equation in (7.13), one has

w0 =

⎧⎪⎨
⎪⎩2

c0 − p0
γ

γ−1

(
g
p0

) 1
γ

u2
0

⎫⎪⎬
⎪⎭

1
2

.

Since p0, u0 are known, we obtain both p0 and w0 on ξ̄ = 0. This means we encounter
an initial-boundary value problem for the elliptic system (i.e., the first two equations
in (8.1) or (7.12)). It is well known that such problems are ill-posed.

5. For giving Mach number M = g at the exit, Problem (A) is ill-posed. Indeed,
by Bernoulli’s law (2.3) we have

γ
p

ρ
= a2 =

c0
1

γ−1 + 1
2g

2
.

From constancy of entropy we get

p

ργ
=

p0

ργ0
,

where ρ0 can be expressed by the third equation in (7.13). Thus we can solve the
above two equations to obtain

p = p0h,
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where

h =

{
c0

(c0 − 1
2u

2
0(1 + w2

0))(1 + 1
2 (γ − 1)g2)

} γ
γ−1

.

Thus we get

p− p+
b = (p0 − p+

b )h + p+
b (h− 1).

Notice that

h(U+
b ) = 1

and

‖h− 1‖ ≤ C(
∥∥u0 − u+

b

∥∥+
∥∥g −M+

b

∥∥+ ‖w0‖2
).

(Note here that w0 is itself small and that fortunately w2
0 appears in the expression

of h. This observation is of crucial importance!) With such an estimate in hand, the
remaining work is the same as giving pressure at the exit. Thus problem (A) is not
well-posed for the given arbitrary Mach number at the exit of the duct.

6. For given arbitrary density ρ = g at the exit, problem (A) is not well-posed.
From constancy of entropy we have

p =
p0g

γ

ργ0
.

Due to the third equation in (7.13), we get

p =

(
γ

γ − 1

)γ

p1−γ
0 gγ

(
c0 −

1

2
u2

0(1 + w2
0)

)γ

.

The left analysis is the same as in 5.
7. For given u = g at the exit, problem (A) is still ill-posed. By Bernoulli’s law

we get

p

ρ
=

γ − 1

γ

(
c0 −

1

2
g2(1 + w2

1)
)
;

here w1 is the value of w restricted on ξ̄ = 1. Using constancy of entropy we also have

p

ργ
=

p0

ργ0
.

By the expressions of ρ0 (the third equation in (7.13)) we can solve from the above
two equations that

p = p0

(
c0 − 1

2g
2(1 + w2

1)

c0 − 1
2u

2
0(1 + w2

0)

) γ
γ−1

.

Note w0, w1 are small quantities and appeared as squares in the above expressions;
u0, p0 are known and are second order terms as shown in section 9. Thus we can use
similar methods as above to show the ill-posedness of problem (A).

Remark 11.1. All the above results may be surprising at first glance. However, a
deep consideration of the background solution suggests these results are natural, since
for the one-dimensional case, S, p, ρ,M, u have already been completely determined.
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CHEMICAL KINETICS ON SURFACES: A SINGULAR LIMIT OF A
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Abstract. We show that chemical kinetics relations can be used to describe processes that
involve binding and dissociation reactions that take place on surfaces. From a mathematical per-
spective, the problem we study is a singular limit of a reaction-diffusion system in which one of the
variables concentrates on a lower-dimensional set in the limit, while the other continues to diffuse in
a fixed domain.
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1. Introduction. Numerous biological processes involve binding and dissocia-
tion reactions that take place on surfaces. For example, in antibody-antigen interac-
tions, antibodies immobilize and agglutinate infectious agents by binding to specific
receptors located on the surface of antigens [1, 19, 22]. Additional examples include
the binding of proteins to cell membranes either to initiate transduction of external
signals into the cell (signal transduction) or to open the ion channels of the membrane
(see, e.g., [18]); the binding of microbiological cultures to attachment sites on the in-
ner walls of flow reactors [12]; and the phenomenon of surface plasmon resonance,
which involves interactions of biopolymers with various ligands [13].

A natural way to model surface reactions is to adapt the standard chemical-
kinetics approach used for reactions occurring in volumes. This means that the bind-
ing rate for surface reactions is assumed to be proportional to the product of the
volumetric concentration of the reactant at the surface and the surface concentration
of the binding sites [18, 20]. There is a methodological problem with this approach,
however, since chemical-kinetics relations are usually derived under the assumption
that reactions take place in a volume, in which the two reactants are well mixed.

Our goal here is to justify the use of chemical-kinetics relations for reactions that
take place on surfaces. To do so, we will first construct a volumetric model in which
the binding sites, and hence also the binding and dissociation reactions, take place in
a narrow volumetric layer around the surface. We will then show that as the width
of the binding sites layer shrinks to zero, the volumetric model reduces to a surface
model, in which binding sites are located on the surface, and for which the reactions
are still described by chemical-kinetics relations.

From a mathematical perspective, the problem we study is a singular limit of a
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reaction-diffusion system. The problem here differs from the widely studied case of
thin domains (see, e.g., [10]) in that here only one of the variables concentrates on
a lower-dimensional set in the limit, while the other continues to diffuse in a fixed
domain.

In this study we analyze the problem of chemical kinetics on surfaces in the context
of a mathematical model for a novel in-vivo imaging technique for identifying and
locating cancerous tumors, which are sphere-like, isolated, three-dimensional objects,
with a smooth boundary.1 This model consists of a diffusion equation in the volume
surrounding the tumor, and binding and dissociation reactions that take place on
the tumor surface. We note, however, that the methodology developed in this study,
namely, the study of “surface models” as the limit of “volumetric models,” can be
applied to other models that involve binding and dissociation reactions on surfaces.
Moreover, our approach may also be relevant to problems in combustion (e.g., burning
of coal) in which the reactions take place between one or more species (e.g., coal) that
are confined to narrow regions near the reactor boundaries and other species that are
free to diffuse over larger domains (e.g., oxygen) [2].

The paper is organized as follows. In section 2 we construct two mathematical
models, a surface model and a volumetric model. In section 3 we present a heuristic
derivation of the surface model from the volumetric model. This is done by taking the
limit as the width of the volumetric layer tends to zero while assuming that the limits
of the concentrations exist in appropriate senses. For further clarity, we consider only
the radially symmetric case. In section 4 we rigorously prove that solutions of the
volumetric model converge to those of the surface model, without assuming radial
symmetry. Finally, in section 5 we comment briefly on the possibility of extending
our results to other models.

2. Mathematical models.

2.1. Fluorophore-antibody imaging. Our interest in this problem originated
from the need to model a novel in-vivo imaging technique for identifying and locating
cancerous tumors [11]. This method is based on one of the immune system responses
to tumors, which is the concentration of white blood cells, known as T cells, around
the tumor. These T cells have receptors which are specific to some antibodies of
the immune system. The imaging technique involves selecting an antibody with high
specificity to T cells [3], artificially conjugating it with a fluorescent marker compound,
and injecting the fluorescenated antibodies into the suspected tumor area [5, 6, 7, 8, 9].
After some time, the fluorescenated antibodies, hereinafter denoted markers, will
diffuse away from the tumor area, except for those that are bound to the T cell
receptors around the tumor. Hence, when an external laser excitation is applied, the
fluorescence of the markers indicates the location of the tumor.

The mathematical model that we use to describe the method of fluorophore-
antibody imaging involves diffusion of markers in the tissue, binding of markers to
T cells receptors (binding sites), and dissociation of markers that are already bound
to sites. The methodology developed in this study can, however, be extended to more
complex models that allow for diffusion of markers into the tissue area, advection
effects, etc.

To simplify the presentation, in this section we assume that the tumor is the
radially symmetric ball 0 ≤ r < rtumor, where r is the radial distance from the tumor

1This corresponds to the common solid tumors such as breast, lung, and sarcoma, at the early
stages of the tumor (i.e., before it develops a nonsmooth surface).
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Fig. 1. The surface model. Binding sites are located on the boundary of the tumor.

center. The assumption of radial symmetry is reasonable for young, small-size tumors.
Our results, however,are also valid for more advanced tumors, which are half-spheres
or isolated, three-dimensional lumps, so long that their boundary remains smooth
(see section 4). For simplicity we also assume that the initial markers distribution is
radially symmetric.

2.2. The surface model. We first develop a surface model in which the T cell
binding sites are located on the tumor surface (see Figure 1). In the tissue area, the
motion of the markers is governed by the diffusion equation

∂M(r, t)

∂t
= DΔM(r, t), 0 < t, rtumor < r < ∞,(1)

where M(r, t) is the volumetric concentration of the free (i.e., unbound) markers, and
D is the diffusion coefficient of markers in the tissue. The initial condition for (1) is

M(r, 0) = M0(r),(2)

where M0(r) is the initial concentration of markers.
Let us assume that chemical-kinetics relations can be used to model the reactions

that take place on a surface. Then the free sites concentration at the tumor surface
(r = rtumor) is governed by the equation

∂S(t)

∂t
= ksurd [Stot − S(t)] − ksurb M(rtumor, t)S(t),(3)

where S(t) denotes the free sites concentration, ksurb and ksurd are the binding and
dissociation rate constants, respectively, and Stot is the total concentration of sites,
both free and occupied. Equation (3) shows that the free sites concentration increases
as a result of dissociation of marker-site complexes and decreases as a result of binding
of free markers to binding sites. The dissociation rate is linearly proportional to the
bound sites concentration, [Stot − S(t)]. Under the assumption of chemical kinetics,
the binding rate is linearly proportional to the concentration of free binding sites,
S(t), and also linearly proportional to the concentration of free markers on the tumor
boundary, M(rtumor, t).

We assume that before the injection of markers (i.e., at t = 0), all binding sites
are unoccupied, so the initial condition for the sites equation is given by the total
sites concentration Stot, i.e.,

S(0) = Stot.(4)
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We now derive the boundary conditions for the markers at the tumor boundary.
Markers may be either free (i.e., in the tissue area) or bound (to T cell binding sites).
If we assume that a single marker binds to a single site, then the concentration of
bound markers on the surface equals Stot − S(t). In view of the fact that the total
area of the tumor surface is 4πr2

tumor, the total number of bound markers is then
4πr2

tumor [Stot − S(t)]. Thus, the global conservation of markers is given by

4πr2
tumor [Stot − S(t)]

bound markers

+ 4π

∫ ∞

rtumor

M(r, t) r2dr

free markers

= 4π

∫ ∞

rtumor

M0(r) r
2dr

total markers

.

Differentiating this equation with respect to t, and using (1) and the formula for
Δ in polar coordinates, shows that

r2
tumor

∂S(t)

∂t
=

∫ ∞

rtumor

∂M(r, t)

∂t
r2dr

= D

∫ ∞

rtumor

ΔM(r, t) r2dr = D

∫ ∞

rtumor

[
∂2M

∂r2
+

2

r

∂M

∂r

]
r2dr

= D

∫ ∞

rtumor

∂
[
r2 ∂M

∂r

]
∂r

dr = −Dr2
tumor

∂M

∂r
(rtumor, t),

(5)

provided that the concentration of markers decays sufficiently rapidly at large dis-

tances so that they have no flux at infinity. Upon substituting in the value of ∂S(t)
∂t

from (3) we find that the boundary condition at the tumor surface is given by

∂M

∂r
(rtumor, t) =

1

D
{ksurb M(rtumor, t)S(t) − ksurd [Stot − S(t)]}.(6)

2.3. The volumetric model. As mentioned in the introduction, there is a
methodological problem with the surface model since we used chemical-kinetics re-
lations to model surface reactions; see (3). In order to avoid this problem, we now
adopt a different approach and assume that the T cell binding sites are located in
a narrow volumetric layer around the tumor (see Figure 2). This approach also has
a physiological justification. Indeed, data collected in histological staining experi-
ments show that T cells are not located strictly on the tumor surface but rather in
a thin volumetric layer around the tumor (see Figure 3). The existence of a layer
of T-lymphocytes (CD3 positive cells) around the tumor was also reported in, e.g.,
[4, 25].

Let ε denote the width of the volumetric layer in which binding sites are located.
Then the volume density Sε

tot(r) of total binding sites vanishes identically for r >
rtumor + ε, i.e.,

Sε
tot(r) ≡ 0 for r > rtumor + ε.(7)

Of course this implies that the density Sε(t, r) of free binding sites also vanishes for
r > rtumor + ε.

The equation of evolution for the concentration Mε(t, r) of free markers now takes
the form

∂Mε(r, t)

∂t
= DΔMε(r, t) + kvold [Sε

tot(r) − Sε(r, t)] − kvolb Mε(r, t)Sε(r, t),

0 < t, rtumor < r < ∞,(8)
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Fig. 2. The volumetric model. Binding sites are located in a thin volumetric layer around the
tumor.

Fig. 3. Histological staining of a 5-day old tumor squamous cell carcinoma in the oral cavity
(mag. X200). Binding sites (stained in black) can be seen to the left of the solid line. Figure supplied
by Dr. Gallya Gannot, National Institutes of Health, Bethesda, MD.

where kvolb and kvold are the volumetric model binding and dissociation rate constants,
respectively. The first term on the right is the diffusion term, the second term de-
scribes the dissociation of marker-site complexes, and the third term describes the
creation of these complexes. Note that in contrast to (3), there is no problem with
using chemical-kinetics relations.

The rate of change of the free sites concentration is derived using chemical-kinetics
relations, as was done for (3) of the surface model, yielding

∂Sε(r, t)

∂t
= kvold [Sε

tot(r) − Sε(r, t)] − kvolb Mε(r, t)Sε(r, t).(9)

The only difference is that now these reactions take place in a volumetric layer rather
than on a surface as in the previous model.

As in the surface model, we assume that at time t = 0 all the binding sites are
unoccupied. Therefore, the initial condition for the free sites concentration is given
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by

Sε(r, 0) = Sε
tot(r).(10)

The initial distribution of markers will be assumed to be the same as for the surface
model:

Mε(r, 0) = M0(r),(11)

independently of ε. We also assume that markers cannot diffuse into the tumor.
Therefore, at the tumor surface we impose the no-flux boundary condition

∂Mε(r, t)

∂r
(rtumor, t) = 0.(12)

3. Heuristic justification of the surface model from the volumetric
model. We now show, under some scientifically natural assumptions, that as the
width ε of the binding sites layer goes to zero the volumetric model reduces to the
surface model.

As already mentioned, we assume that both models have the same initial distri-
bution of markers, and that in both models all the sites are unoccupied at time t = 0.
We also assume that both models have the same total number of sites, i.e.,

4π

∫ ∞

rtumor

Sε
tot(r) r2 dr

total number of sites

for the volumetric model

= 4πr2
tumorStot.

total number of sites

for the surface model

(13)

Next, we assume that the solution Mε(r, t), Sε(r, t) of the volumetric model (7)–
(12) and the solution M(r, t), S(t) of the surface model (1)–(4), (6) exist for all
positive time and are unique.

Finally, we assume that as ε tends to zero both the concentration Mε(r, t) of
markers in the volumetric model and the radial integral of the concentration Sε(r, t)
of free sites in that model tend to definite values. In other words, we assume that

M0(r, t) := lim
ε→0

Mε(r, t) and S0(t) :=
1

r2
tumor

lim
ε→0

∫ ∞

rtumor

Sε(r, t) r2 dr(14)

exist. Furthermore, we assume that in the region r > rtumor those equations may be
differentiated and integrated as often as needed, and that the order of the resulting
derivatives, integrals, and limits may be freely interchanged.

Proposition 3.1. Under the above assumptions, the limits (14) of the volumetric
model are the solution of the surface model with the same binding and dissociation
constants. In other words,

M0(r, t) ≡ M(r, t),(15)

and

S0(t) ≡ S(t),(16)

the latter of which may also be expressed as

lim
ε→0

Sε(r, t) ≡ S(t) · δ(r − rtumor),
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where δ is the Dirac δ function.
Proof. Since Sε

tot(r) is nonnegative, (7) plus (13) implies that

lim
ε→0

Sε
tot(r) = Stot · δ(r − rtumor).(17)

Similarly, since

0 ≤ Sε(r, t ) ≤ Sε
tot(r),(18)

it follows from (7) plus (14) that

lim
ε→0

Sε(r, t) = S0(t) · δ(r − rtumor),(19)

and (17)–(19) imply further that

0 ≤ S0(t) ≤ Stot.

We now show that for r > rtumor and t ≥ 0, (15)–(16) hold, by showing that M0

and S0 satisfy the surface model equations (1)–(4), (6).
Integrating both sides of (9) and taking the limit as ε → 0 gives

1

r2
tumor

lim
ε→0

∫ ∞

rtumor

∂Sε(r, t)

∂t
r2 dr

=
1

r2
tumor

lim
ε→0

∫ ∞

rtumor

kvold [Sε
tot(r) − Sε(r, t)] r2 dr

− 1

r2
tumor

lim
ε→0

∫ ∞

rtumor

kvolb Mε(r, t)Sε(r, t) r2 dr.

Combining the above with (14), (17), and (19) gives

S0
t = kvold

[
Stot − S0

]
− kvolb M0(rtumor, t)S0,(20)

which corresponds to (3).
Similarly, in light of (14), (17), and (19) the limit ε → 0 of the volumetric markers

equation (8) yields

∂M0(r, t)

∂t
= DΔM0(r, t) for r > rtumor,(21)

which is the analogue of (1).
From (10), (13), and (14) it follows that

S0(0) = Stot.

More simply, (11) plus (14) implies

M0(r, 0) = M0(r).

These two equations correspond to (4) and (2).
Finally, we derive the boundary condition for M0 at r = rtumor. In contrast to

the assumed differentiability of the limits (14) for r > rtumor, on the boundary we
must expect that

∂M0

∂r
∣∣
rtumor

�= lim
ε→0

∂Mε

∂r
∣∣
rtumor

= 0.
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Indeed, although we assume, as in the surface model, that the markers cannot diffuse
into the tumor, the existence of binding sites on the boundary effectively results in
“disappearance” of markers at r = rtumor. Hence, in the surface model the boundary
r = rtumor is absorbing.

To derive the correct boundary condition there, we first note that the conservation
law for the total number of markers may be written as

d

dt

1

r2
tumor

∫ ∞

rtumor

{Mε(r, t) + [Sε
tot(r) − Sε(r, t)]} r2 dr = 0,

since Mε(r, t) and [Sε
tot(r) − Sε(r, t)] are the concentrations of free and bound markers,

respectively. Taking the limit as ε → 0 and using (14), (17), and (19) gives

d

dt

{
1

r2
tumor

∫ ∞

rtumor

M0(r, t) r2 dr +
[
Stot − S0

]}
= 0.

Therefore, by (14), (21), (20), and a calculation similar to (5) we get

∂M0(rtumor, t)

∂r
= − 1

D

∂S0

∂t

= − 1

D
kvold

[
Stot − S0(r, t)

]
+

1

D
kvolb M0(rtumor, t)S

0(r, t),

in accordance with (6).

4. Rigorous justification of the surface model from the volumetric
model. We now present a rigorous derivation of the surface model as the limit of
the volumetric model. Unlike in sections 2 and 3, we do not make the assumption of
radial symmetry.

4.1. Equations and results. When radial symmetry is not assumed we may
write the equations governing the concentrations of unbound markers Mε and unoc-
cupied sites Sε in the volumetric model in the form

Mε
t (t, x) = DΔMε + kd (Sε

tot(x) − Sε) − kbS
εMε,(22)

Sε
t (t, x) = kd (Sε

tot(x) − Sε) − kbS
εMε.(23)

Here x is a vector in R
d for some d > 1 and Sε

tot(x) is the total concentration of
sites, which depends only on x since the sites are still assumed to remain stationary.
Equations (22)–(23) are to hold in a smooth domain Ω in R

d whose inner surface ∂iΩ
is the boundary of the region occupied by the tumor. In order to reduce the technical
complications we will assume that Ω is bounded, and its outer boundary, far from the
tumor, will be denoted ∂oΩ. See Figure 4. However, the case when Ω is the entire
exterior of the tumor surface ∂iΩ could also be treated; in particular, the theorem on
invariant regions (Theorem 3 below) is still valid in that case.

The total concentration of sites is clearly nonnegative, i.e.,

Sε
tot(x) ≥ 0.(24)

Also, since the sites are located near the surface of the tumor,

Sε
tot(x) = 0 for d(x, ∂iΩ) > ε,(25)



CHEMICAL KINETICS ON SURFACES 1379

Ω

∂iΩ

∂oΩ

Fig. 4. The domain Ω and its inner and outer boundaries ∂iΩ and ∂oΩ.

where d(x, ∂iΩ) is the distance from a point x to the interior region Ωi occupied by
the tumor. We shall also assume that

Sε,0
tot(y) :=

∫ ε

0

Sε
tot(y + τν) dτ converges uniformly to some S0

tot(y) as ε → 0,(26)

where ν denotes the unit normal on ∂iΩ pointing into Ω. Note that conditions (24)–
(26) are satisfied when Sε

tot(y + τν) = 1
εφ(y)ψ( τε ), where φ and ψ are nonnegative

continuous functions and ψ(s) vanishes for s > 1.
The boundary condition for Mε is

ν · ∇Mε = 0 on ∂Ω,(27)

which means that markers do not leave the region Ω. The initial conditions are

Sε(0, x) = Sε
tot(x),(28)

which means that all sites are originally unoccupied, and

Mε(0, x) = M0(x) ≥ 0.(29)

Furthermore, we will assume that

Sε
tot(x)M0(x) ≡ 0,(30)

i.e., that initial locations of the markers and sites do not overlap. Physically this is
another expression of the assumption that time zero occurs before the sites start to
become occupied, since if the marker and site locations overlapped at time zero, then
some sites would have become occupied before then. Mathematically it avoids having
an initial layer in which the site-occupation reaction would quickly reduce the size of
the reaction term down to order one.

The local-in-time existence of a unique solution to (22)–(23), (27)–(29) can be
obtained via the method of [23], by substituting the Green’s function for the Neumann
boundary value problem for ut = DΔu in place of the whole-space Green’s function
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in [23, eq. (2.7)]. Furthermore, the uniform bounds on the solution obtained in the
next subsection imply that solution exists for all positive time.

The equations for the surface model are

Mt = DΔM(31)

in Ω,

ν · ∇M =
kd

(
S0

tot(x) − S
)
− kbSM

D
(32)

on the inner boundary ∂iΩ bounding the tumor region, (27) on the outer boundary
∂oΩ, and

St = kd
(
S0

tot(y) − S
)
− kbSM(33)

on the inner boundary ∂iΩ. Although the existence of solutions to the surface model
could be obtained by an appropriate adaptation of the method used for the volumetric
model, we will obtain existence here as a by-product of our convergence result.

Our main result is that solutions of the volumetric model converge to those of the
boundary model as the parameter ε tends to zero.

Theorem 1. Assume that Sε
tot satisfies (24)–(26). Let (Mε, Sε) be the solution

of (22)–(23) and (27) having initial data of the form (28)–(29) belonging to C2(Ω)
and satisfying (30). Then as ε → 0, Mε and

Sε(y, t) :=

∫ ε

0

Sε(y + τν, t) dτ(34)

converge to the unique solution (M,S) of (31) and (33) satisfying (32) on ∂iΩ and
(27) on ∂oΩ and having initial data (29) and S(0, y) = S0

tot(y).
In the next subsection we will prove some uniform bounds that will be used in the

subsequent subsection to take the limit as ε → 0. Those uniform bounds also imply
an upper bound for the fraction of sites that are occupied at any time.

Theorem 2. The ratio ∫
Ω

[Sε
tot(x) − Sε(x, t)] dx∫

Ω
Sε

tot(x) dx

of occupied sites to total sites is never more than

kb maxx∈Ω M0(x)

kd + kb maxx∈Ω M0(x)
.(35)

4.2. Uniform estimates.

4.2.1. Invariant regions. In order to be able to take the limit of the solutions
as ε → 0, we need certain uniform bounds on those solutions. Some of the required
bounds follow from the theory of invariant domains. See [24, Chap. 14] for an intro-
duction and references. The version we will apply, in which the hypotheses have been
weakened somewhat, is the following special case of [21, Thm. 3].

Theorem 3. Assume that the following hold:
1. Domain: Ω is either a smooth bounded domain or the exterior of a smooth

bounded domain.
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2. Smoothness: u := (u1, . . . , up) is continuous on [0, T ] × Ω, and ut, uxj
, and

uxjxk
are continuous on (0, T ) × Ω.

3. PDE: u satisfies the system

∂tuj − djΔuj = fj(t, x, u)(36)

for 0 < t < T ≤ ∞ and x ∈ Ω, where dj ≥ 0 and fj ∈ C1.
4. Region: The region R := {u | aj ≤ uj ≤ bj} is invariant for the system of

ODEs obtained by setting every dj in (36) to zero, i.e., fj ≤ 0 when uj = bj
and ak ≤ u ≤ bk for each k �= j, and fj ≥ 0 when uj = aj and ak ≤ u ≤ bk
for each k �= j.

5. Initial condition: u(0, x) = u0(x) for x ∈ Ω, where u0(x) ∈ R for all such x.
6. Boundary condition: ∂νu = 0 for 0 < t < T and x ∈ ∂Ω, where ν denotes the

exterior normal on the boundary ∂Ω.
7. Behavior at infinity: If Ω is unbounded, then u(t, x) = o(|x|2) as x → ∞.

Then the solution u(t, x) remains in R for 0 ≤ t ≤ T and x ∈ Ω.
The region that we wish to show to be invariant for (22)–(23) depends on x, as

will be apparent below, so Theorem 3 does not apply directly. That theorem could
be extended to the case of x-dependent invariant regions either by using the fact that
the S-component does not diffuse or via the approach of [15]. However, it will in any
case be convenient to transform our system via

Nε = 1 +
kbM

ε

kd
, Rε =

Sε

Sε
tot(x)

,(37)

which yields equations whose invariant sets will not depend on x. Although Sε
tot(x)

vanishes in much of the domain Ω, which makes Rε(0, x) undefined, the initial con-
dition (28) implies that Rε(0, x) ≡ 1 where Sε

tot(x) is nonzero, so the initial data for
Rε extend naturally to

Rε(0, x) = 1.(38)

The initial data

Nε(0, x) = 1 +
kbM0(x)

kd
(39)

for Nε are obtained directly from those of M via the transformation (37).
In terms of the new variables Nε and Rε, system (22)–(23) becomes

Nε
t = DΔNε + kbS

ε
tot(x) [1 −NεRε] ,(40)

Rε
t = kd [1 −NεRε] .(41)

The boundary condition (27) becomes

ν · ∇Nε = 0 on ∂Ω.(42)

Lemma 4. Suppose that Nε and Rε satisfy the system (40)–(41) plus the boundary
condition (42) and have initial data (38)–(39). Define Nmax := maxNε(0, x). Then

1 ≤ Nε ≤ Nmax ,
1

Nmax
≤ Rε ≤ 1.(43)

Proof. The vector field (kbS
ε
tot(x)(1−NεRε), kd(1−NεRε)) points left and down

at points above the curve Rε = 1
Nε , and up and to the right below that curve. For
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any k, that curve intersects the rectangle 1 ≤ Nε ≤ k, 1
k ≤ Rε ≤ 1 at the upper left

and lower right corners, and so points inwards everywhere on the boundary of that
rectangle, except at those corners, where it vanishes. Since M0(x) ≥ 0, the initial
data (39) for Nε satisfy Nε(0, x) ≥ 1, while the initial data for Rε are identically one.
Thus, the initial data lie in the rectangle (43). Now apply Theorem 3.

Translating the bounds (43) back into the original variables (Mε, Sε) yields The-
orem 2.

In order to obtain convergence of solutions as ε → 0 it is necessary to obtain
estimates for derivatives as well. However, since Sε

tot(x) and its derivatives are not
uniformly bounded, it is not convenient to estimate the evolution of spatial derivatives
of Nε. But Sε

tot(x) is independent of time, so we can obtain estimates for time
derivatives; a spatial estimate will then be obtained by using the theory of elliptic
PDEs.

Lemma 5. Let Nε and Rε satisfy the conditions of Lemma 4. Suppose in addition
that condition (30) holds and that for some b̃±,

b̃− ≤ DΔN0(x) ≤ b̃+.(44)

Then for some b−, b+, B−, and B+

b− ≤ Nε
t ≤ b+, B− ≤ Rε

t ≤ B+.(45)

Proof. Since the equation for Rε is an ODE, a uniform bound on its time derivative
follows from the bounds for Nε and Rε; i.e., the second half of (45) holds. Taking
the time derivative of (40) for Nε and substituting for the time derivative of Rε from
(41) yields

(Nε
t )t = DΔ(Nε

t ) − kbR
εSε

tot(x)

[
(Nε

t ) +
kdN

ε(1 −NεRε)

Rε

]
.(46)

The bounds (43) imply both a lower bound b̂− and an upper bound b̂+ for the ex-

pression kdN
ε(1−NεRε)

Rε appearing in (46). Condition (30) implies that Nε
t (0, x) =

DΔNε(0, x), so the bounds (44) imply the same bounds for Nε
t (0, x). Define b− :=

min{b̂−, b̃−} and b+ := max{b̂+, b̃+}. Since differentiating (42) with respect to time
shows that ν ·∇(Nε

t ) also vanishes on the boundary, another application of Theorem 3
shows that the first half of (45) holds.

4.2.2. Elliptic estimate. Solving (40) for ΔNε yields

ΔNε =
Nε

t − kbS
ε
tot(x) [1 −NεRε]

D
.(47)

Although the right side of (47) is not known to be uniformly bounded, it is a uniformly
bounded function times the known expression Sε

tot(x) plus a bounded function. This
will allow us to obtain uniform estimates for Nε and Rε in an appropriate Hölder
space, and also to determine the behavior of ν · ∇Nε near the boundary.

Definition 6. Let Ω be a domain in R
d, let Br(x0) denote the ball of radius r

centered at x0, and suppose that 1 ≤ p ≤ ∞. A measurable function f belongs to the
Morrey space Mp(Ω) if

‖f‖Mp := sup
x0∈Ω

sup
r>0

∫
Br(x0)∩Ω

|f(x)| dx
rd(1−1/p)

< ∞.(48)
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An easy calculation shows that Lp(Ω) ⊂ Mp(Ω) [9, sect. 7.9]. However, the
reverse is not true. In particular, although Sε

tot is uniformly bounded in Lp only for
p = 1, its structural properties (24)–(26) ensure that Sε

tot, and hence also g(x)Sε
tot for

any bounded g, belong to Md(Ω).
Lemma 7. Suppose that Sε

tot satisfies (24)–(26) and that gε(x) is uniformly
bounded. Then for some fixed constant c,

‖gε(x)Sε
tot(x)‖Md ≤ c.(49)

Proof. Since gε is bounded it suffices to prove estimate (49) for gε ≡ 1. Since
assumptions (24)–(26) imply that the total number of sites

∫
Ω
Sε(x) dx is uniformly

bounded, for any positive δ

sup
x0∈Ω

sup
r≥δ

∫
Br(x0)

|Sε
tot(x)| dx

rd(1−1/p)

is uniformly bounded. By picking δ small enough so that the map

(y, τ) �→ y + τν(y)(50)

is one to one ∂iΩ× [0, δ] and satisfies |[y1 + τ1ν(y1)]− [y2 + τ2ν(y2)]| ≥ c|y1 −y2| there
for some fixed positive c, we obtain that the intersection of the support of Sε

tot with
any ball Br(x0) of radius at most δ is contained in a set of the form {y + τν(y) | y ∈
∂iΩ∩Bkr(y0), τ ∈ [0, δ]}. Assumption (26) implies that the integral of Sε

tot over such
a set is bounded by a constant times the volume of a ball of radius kr in dimension
d−1, which is a constant times rd−1. Combining this with the bound for r ≥ δ yields
(49).

Although integration against the Green’s function for the Laplacian does not map
L1 into C0 since functions in L1 can tend weakly to a delta function, it does map Mp

for p sufficiently large into the space C0,α of Hölder-continuous functions for some
appropriate positive α. We begin with a general result.

Lemma 8. Suppose that f ∈ Mp with p > 1. Then for μ > 1
p , Tf(x) :=∫

Ω
f(y)

|x−y|d(1−μ) dy belongs to C0,α for α < min{1, d(μ − 1
p )}, where d is the spatial

dimension. Furthermore, the C0,α seminorm of Tf is bounded by a constant times
the Mp norm of f .

Proof. By interpolating between the elementary inequalities∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤
[

1

|x1 − y|β +
1

|x2 − y|β

]
and ∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤ c|x1 − x2|
[

1

|x1 − y|β+1
+

1

|x2 − y|β+1

]
,

we obtain that for any γ ∈ [0, 1],∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤ c(γ)|x1 − x2|γ
[

1

|x1 − y|β+γ
+

1

|x2 − y|β+γ

]
.(51)

Pick α ∈ (0, 1) such that α < d(μ− 1
p ). Applying (51) with γ = α and β = d(1 − μ)

yields

|[Tf ](x1) − [Tf ](x2)| ≤ c(α)|x1 − x2|α
2∑

j=1

∫
Ω

1

|xj − y|d(1−[μ−α
d ])

f(y) dy.(52)
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Since μ− α
d > 1

p by construction, the integrals on the right side of (52) are bounded

by [9, Lem. 7.18].
Using Lemma 8 we can show that Nε and Rε are uniformly bounded in some

Hölder space.
Lemma 9. Under the conditions of Lemma 5, for bounded times the solutions Nε

and Rε are uniformly bounded in C0,α for α < 1.
Proof. Let G be the Neumann Green’s function for the Laplacian in Ω, so that

for any f having mean zero, the solutions to Δu = f in Ω, ∂u
∂ν = 0 on ∂Ω, are

u(x) =
∫
Ω
G(x, y)f(y) dy + c. The singularity of G when x = y is of the same

order as the Newtonian potential, i.e., 1
|x−y|d−2 , or log(|x − y|) when d = 2. Since

the smooth part of G makes a smooth contribution to u, it suffices to show that∫
Ω

1
|x−y|d(1−μ) ΔNε(y) dy belongs to C0,α for α < 1, where μ = 2

d for d > 2 and is

arbitrarily close to one for d = 2.
Now any bounded function belongs to M∞ and hence also to Mp for any p < ∞.

Hence (47) plus the bounds for Nε, Rε, and Nε
t and Lemma 7 implies that ΔNε

belongs to Md.
Lemma 8 therefore shows that

∫
Ω

1
|x−y|d(1−μ) ΔNε(y) dy belongs to C0,α for α <

d( 2
d − 1

d ) = 1, and that its C0,α seminorm is uniformly bounded.

4.3. Taking the limit. By Ascoli’s theorem, the uniform bounds obtained in
the previous subsection imply the convergence along subsequences as ε → 0.

Corollary 10. Under the conditions of Lemma 5, for every sequence of values
of ε there is a subsequence for which Nε and Rε converge uniformly in Ω for bounded
times. The limits N and R satisfy the same bounds (43) as Nε and Rε.

We first consider the limit in terms of the variables (N,R).
Lemma 11. The limits (N,R) satisfy

Nt = DΔN(53)

in Ω,

ν · ∇N =
kbS

0
tot(y)(1 −NR)

D
(54)

on the inner boundary ∂iΩ bounding the tumor region, (42) on the outer boundary
∂oΩ, and

Rt = kd(1 −NR)(55)

in Ω, including in particular, on the inner boundary ∂iΩ. The initial values of N and
R are the same as for the original system.

Proof. Taking the weak limit of the PDE (40) yields (53) within the domain Ω,
since Nε

t converges weakly to Nt and the reaction term tends to zero in every compact
subset of Ω. Since Rε satisfies an ODE, the convergence of Nε and Rε implies that
the limits satisfy (55). Since the convergence of Nε and Rε is uniform in time as well
as space, their limits have the same initial values.

Finally, in order to obtain (54), let Ωδ denote the subset of Ω whose distance to
the inner boundary ∂iΩ is less than δ. For sufficiently small δ, Ωδ = {y + τν | y ∈
∂iΩ, 0 < τ < δ}. The boundary of Ωδ is then the disjoint union of ∂iΩ, and the set
∂δΩ of points in Ω whose distance to ∂iΩ is exactly δ. Since (53) implies that N is
smooth in Ω, the derivative ∂N

∂ν of N with respect to the outer normal on ∂δΩ is well
defined. As before, let y(x) denote the mapping sending x = y + τν to y.
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By Green’s formula, for any smooth function ψ∫
∂δΩ

ψ(y(x))
∂Nε

∂ν
=

∫
Ωδ

ψΔNε −NεΔψ +

∫
∂δΩ

Nε ∂ψ(y(x))

∂ν
(56)

since both ∂Nε

∂ν and ∂ψ(y(x))
∂ν vanish on ∂iΩ.

Since ∂ψ(y(x))
∂ν vanishes on ∂iΩ, it is O(δ) on ∂δΩ. Also, since Nε is uniformly

bounded and the volume of Ωδ is O(δ),
∫
Ωδ

NεΔψ = O(δ). Similarly, upon substitut-

ing (47) into (56), the term involving Nε
t contributes O(δ). Hence

∫
∂δΩ

ψ(y(x))
∂Nε

∂ν
= −

∫
Ωδ

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
+ O(δ).(57)

Now take the limit as first ε → 0 and then δ → 0. The left side of (57) tends to∫
∂iΩ

ψ(y)∂N∂ν . Since the term O(δ) on the right side is uniform in ε, it contributes
nothing to the combined limit. Hence

∫
∂iΩ

ψ(y)
∂N

∂ν
dσ(y) = − lim

δ→0
lim
ε→0

∫
Ωδ

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
dx

= − lim
δ→0

lim
ε→0

∫
Ωε

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
dx

= − lim
δ→0

lim
ε→0

∫
∂iΩ

ψ(y)

∫ ε

0

kbS
ε
tot(y + τν) [1 −Nε(y + τν)Rε(y + τν)]

D
dτ dσ(y),

(58)

where we have used the fact that the difference between dx and dτ dσ(y) tends to
zero with the distance from the boundary. Since the total integral of Sε

tot is uniformly
bounded, and NεRε converge uniformly, we may replace that expression in (58) with
its limit NR. In addition, N(y + τν)R(y + τν) = N(y)R(y) + o(1), so in fact∫

∂iΩ

ψ(y)
∂N

∂ν
dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D

[
lim
ε→0

∫ ε

0

Sε
tot(y + τν) dτ

]
dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D
Sε,0

tot(y) dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D
S0

tot(y) dσ(y)

(59)

by assumption (26). Since ψ is an arbitrary smooth function, (59) implies (54).
In order to obtain convergence of the full sequence (Nε, Rε) without restrict-

ing to some subsequence, it suffices to show that the limit obtained along different
subsequences is unique.

Lemma 12. A bounded solution of (53) in Ω, (54) and (55) on the inner boundary
∂iΩ, and (42) on the outer boundary, with given initial data, is unique.

Proof. Suppose that (Nj , Rj), j = 1, 2, are solutions having the same initial data.
Define N := N1 − N2 and R := R1 − R2. Multiplying the difference of (53) for N1

and N2 by N , integrating over Ω, and adding the integral over ∂iΩ of R times the
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difference of (55) for R1 and R2 yields

d

dt

1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]

= −D

∫
Ω

∇N2 −
∫
∂iΩ

[
kbS

0(y)

D
N + kdR

]
[R1N + N2R] dσ(y).

(60)

Since both R1 and N2 are bounded and strictly positive, the elementary inequality
−c1x

2 + c2xy − c3y
2 ≤ c4y

2 allows us to reduce (60) to

d

dt

1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]
≤ c

∫
∂iΩ

R2 dσ(y)

≤ c · 1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]
.

(61)

Since N ≡ 0 and R ≡ 0 initially, (61) shows that they remain zero for all time.
We are finally ready to prove the main result in terms of the original variables

Mε and Sε.
Proof of Theorem 1. Lemma 12 implies the convergence of Nε and Rε to N and

R holds without restricting to a subsequence. Upon transforming back to the variable
M , (53) becomes (31). In view of the uniform convergence of Rε, (26) implies the
convergence of (34) to S0

totR, so (54)–(55) yield (32)–(33). The convergence of the
initial data is obtained similarly.

5. Possible extensions. In this study we have aimed to give both heuristic
and rigorous justifications for using the laws of chemical kinetics to describe binding
and dissociation reactions that take place on surfaces. Our results were obtained,
however, for a specific model involving a single reaction taking place on the bound-
ary, with purely diffusive dynamics away from the boundary. Furthermore, a more
realistic model of the fluorophore-antibody–based imaging studied here should also
include advection effects to account for the continuous drainage of the interstitial
fluid. Other chemical and biological systems involve more complicated interactions,
possibly including several reactions on the boundary. To what extent can our methods
be applied in these more general situations?

Since both our heuristic and rigorous analyses implicitly or explicitly require
uniform bounds on reaction concentrations or ratios, our methods seem to require
the presence of an invariant region for the reaction dynamics. Models of a variety
of chemical and biological systems for which the existence of such regions have been
deduced or assumed have been studied [14, 16, 17].

Additional restrictions must be placed on reactants that concentrate at the bound-
ary surface. First, the reaction terms must be at most linear in those reactants. In
terms of our heuristic analysis, this condition arises because the volumetric concen-
trations of those reactants tend to Dirac delta functions, which makes superlinear
functions of those concentrations diverge to infinity even when considered in the sense
of distributions. In our rigorous analysis linearity is needed in order for the second
change of variables in (37) to be helpful.

That reaction terms be at most linear in “surface” reactants seems to be a neces-
sary condition for our results to hold, rather than a technical limitation. The presence
of a superlinear growth term would make the reaction blow up as the reactant concen-
trates at the boundary, while superlinear decay terms would make reactions disappear
in the limit.
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Our methods can accommodate advection terms involving the “volumetric” re-
actants that do not concentrate at the boundary (e.g., advection of markers). Note,
however, that our analysis does not apply to models that allow for advection or even
diffusion of the “surface” reactants. Indeed, such advection or diffusion terms would
change the model substantially, since they would cause the “surface” reactants to
leave the region near the boundary.
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Abstract. From an average (ideal) sampling/reconstruction process, the question arises whether
the original signal can be recovered from its average (ideal) samples and, if so, how. We consider
the above question under the assumption that the original signal comes from a prototypical space
modeling signals with a finite rate of innovation, which includes finitely generated shift-invariant
spaces, twisted shift-invariant spaces associated with Gabor frames and Wilson bases, and spaces of
polynomial splines with nonuniform knots as its special cases. We show that the displayer associated
with an average (ideal) sampling/reconstruction process, which has a well-localized average sampler,
can be found to be well-localized. We prove that the reconstruction process associated with an
average (ideal) sampling process is robust, locally behaved, and finitely implementable, and thus we
conclude that the original signal can be approximately recovered from its incomplete average (ideal)
samples with noise in real time. Most of our results in this paper are new even for the special case
when the original signal comes from a finitely generated shift-invariant space.

Key words. average sampling, ideal sampling, signals with finite rate of innovation, shift-
invariant spaces
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1. Introduction. Modern digital data processing of functions (or signals or im-
ages) uses a discretized version of the original function that is obtained by (average)
sampling on a discrete set [2]. The classical model is the Shannon sampling and recon-
struction on the band-limited space BΩ, the space of all square-integrable functions
on the real line with their Fourier transform supported in [−Ω,Ω]. From the Shannon
sampling theorem, sampling a function f in Bπ on the uniform grid Z yields an �2

sequence (f(k))k∈Z, and conversely the original function f can be recovered from its
sampling data {f(k), k ∈ Z} by the following reconstruction formula:

f(x) =
∑
k∈Z

f(k)sinc(x− k), x ∈ R,(1.1)

where the sinc function is defined by sinc(x) = sinπx
πx . The above sampling and recon-

struction theorem gives a framework for converting analogue signals into sequences,
which can be processed digitally and converted back into analogue signals via the
reconstruction formula (1.1). For the ideal sampling and reconstruction on the band-
limited space and the finitely generated shift-invariant spaces, there is an extensive lit-
erature (see, for example, the recent review papers [2, 57] and monographs [12, 14, 43]).

In most physical circumstances, due to the nonideal acquisition device at the
sampling location, it is not realistic to measure the sample f(γ) of the original signal
f in a space V at the location γ exactly. So a better assumption is that the sampled
data are of the form 〈f, ψγ〉,

A : V � f �−→ (〈f, ψγ〉)γ∈Γ,(1.2)

∗Received by the editors June 24, 2005; accepted for publication (in revised form) July 17, 2006;
published electronically December 26, 2006.

http://www.siam.org/journals/sima/38-5/63444.html
†Department of Mathematics, University of Central Florida, Orlando, FL 32816 (qsun@mail.

ucf.edu).

1389



1390 QIYU SUN

where ψγ , to be known as the average sampling functional, reflects the characteristic
of the nonideal acquisition device at the sampling location γ. We call the above sam-
pling process an average sampling process, and call the collection Ψ := {ψγ , γ ∈ Γ} of
average sampling functionals an average sampler. Clearly, the average sampling pro-
cess becomes an ideal sampling process if the delta function δγ is used as the average
sampling functional ψγ on every sampling location γ.

An easy model for the average sampling process is the discretization of the blurring
process encountered in many practical situations, such as in the process of a remote
camera imaging a scene and an observer viewing the sampled image [59]. For the
average sampling and reconstruction on the band-limited space and on the finitely
generated shift-invariant spaces, the reader may refer [1, 4, 5, 6, 22, 25, 28, 53, 54, 55,
61] and references cited therein.

The question arises from the average sampling process whether the original func-
tion can be recovered from its average samples and, if so, how. Specifically, the first
part of the above question, which will be discussed in section 4, can be described as
follows: Given a class of functions V on Rd, find conditions on the average sampler
Ψ = {ψγ : γ ∈ Γ} under which any function f in V can be reconstructed uniquely
and stably from its average samples {〈f, ψγ〉 : γ ∈ Γ}.

The second part of the above question arising from the average sampling process
is the reconstruction process from the average (ideal) samples:

D : (cγ)γ∈Γ �−→
∑
γ∈Γ

cγψ̃γ ∈ V(1.3)

such that

DAf = f for all f ∈ V.(1.4)

Here for each γ ∈ Γ, the function ψ̃γ , to be known as the display block at the location
γ, reflects the characteristic of the display device at the sampling location γ. We call
the above reconstruction process an average reconstruction process and the collection
Ψ := {ψ̃γ , γ ∈ Γ} of display blocks an displayer.

For the efficiency and stability of the reconstruction process (1.3), (1.4) to recover
a function f in the space V from its averaging samples {〈f, ψγ〉, γ ∈ Γ} or from its

ideal samples {f(γ), γ ∈ Γ}, we require the corresponding displayer Ψ̃ := {ψ̃γ , γ ∈ Γ}
to be well-localized, and the average sampling/reconstruction process (1.3), (1.4) to
be robust, local-behaved, and finitely implementable. In this paper, we show that
those natural requirements for the average (ideal) sampling/reconstruction process
would be met when signals in the space V have a finite rate of innovation and the
average sampler Ψ is well-localized; see section 2.3 for our reasons for considering
sampling/reconstruction of signals with a finite rate of innovation. Here a signal is
said to have a finite rate of innovation if it has a finite degree of freedom per unit of
time; see [23, 34, 40, 42, 45, 46, 58].

The paper is organized as follows. We divide section 2 into five subsections. In
the first three subsections, we make some basic assumptions on the sampling set Γ,
the average sampler Ψ = {ψγ , γ ∈ Γ}, and the space V , which is where the original
function f for the average sampling/reconstruction process comes from. Briefly, we
assume that the sampling set Γ is a relatively separated subset of Rd, the average
sampler Ψ is well-localized in the sense that every average sampling functional ψγ

in the average sampler Ψ is essentially located in a neighborhood of γ ∈ Γ, and the
space V is the space Vq(Φ,Λ), that is, as originally introduced in [52] for modeling
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signals with a finite rate of innovation. In the last two subsections, we recall some
basic properties of the space Vq(Φ,Λ) from [52], and introduce a simplified model of
our average (ideal) sampling/reconstruction process for the readers’ convenience.

Since each display block ψ̃γ in the displayer Ψ̃ := {ψ̃γ , γ ∈ Γ} reflects the char-
acteristic of the display device at the sampling location γ, γ ∈ Γ, it is reasonable to
require that for each γ ∈ Γ, the display block ψ̃γ be essentially supported in a neigh-
borhood of the sampling location γ. In section 3, derived from a general theorem
for localized frames (see [8, Theorem 1], [24, Theorem 3.6], and [32, Theorem 13]), it
is shown that such a requirement would be met for average (ideal) sampling in the
space V2(Φ,Λ) if the average sampler Ψ and the generator Φ for the space V2(Φ,Λ)
are well-localized (Theorems 3.1 and 3.2); see Remark 3.1 for a more general formu-
lation of the well-localization of a displayer. The well-localization of displayers will
play a crucial role in our study of stable average sampling in Vr(Φ,Λ) with r �= 2
(Corollary 3.4), the robustness and local convergence of the reconstruction process
from average (ideal) samples (Theorems 5.1–5.3 and 6.1–6.3), and exponential con-
vergence of an iterative algorithm for the reconstruction process from average (ideal)
samples (Theorems 7.1 and 7.2).

In section 4, we find conditions on the average sampling sampler Ψ = {ψγ : γ ∈ Γ}
(respectively, on the ideal sampling set Γ) under which any function f in V2(Φ,Λ)
can be reconstructed uniquely and stably from its average samples {〈f, ψγ〉 : γ ∈ Γ}
(respectively, from its ideal samples {f(γ), γ ∈ Γ}); see Theorems 4.1 and 4.2.

In the average (ideal) sampling/reconstruction process, we should bring the fol-
lowing situations into our consideration: the average samples {〈f, ψγ〉 : γ ∈ Γ} may
involve some noises (caused by, for example, measurement, storage, or transmission),
and the average sampler Ψ may not be exactly the same as the one we expect (because
of the mathematical modeling or the measurement of the acquisition device). In sec-
tion 5, we consider the numerical stability of the reconstruction process (1.3), (1.4).
We show that if the average sampler Ψ and the generator Φ for the space V2(Φ,Λ) are
well-localized, then the reconstruction process (1.3), (1.4) for f ∈ V2(Φ,Λ) is stable
under the corruption of the average (ideal) sampling data, and under the perturbation
of averaging samplers, ideal sampling sets and the displayers; see Theorems 5.1, 5.2,
and 5.3 for details. Then we conclude that the reconstruction process (1.3), (1.4) for
f ∈ V2(Φ,Λ) is robust.

By the reconstruction process (1.3), (1.4), any function f in the space V can be re-
covered fully when its average (ideal) sampling data are received completely. In some
situations (such as when data missing are in the transmission and in the real-time
reconstruction process), we are required to recover the original function (signal) par-
tially from incomplete (ideal) average samples. We observe from the well-localization
of the average sampler Ψ and of the ideal sampling set Γ that the average sampling
data 〈f, ψγ〉 and the ideal sampling data f(γ) catch the information of the function f
essentially in a neighborhood of the sampling location γ for every γ ∈ Γ, which implies
that the average (ideal) sampling procedure is locally behaved. So a natural question
is whether the reconstruction procedure is locally behaved, or particularly whether
a function f ∈ V2(Φ,Λ) on a certain region K can be recovered approximately (or
exactly) from the average sampling data 〈f, ψγ〉 and the ideal sampling data f(γ)
for the sampling location γ in a neighborhood of that region. In section 6, it is
proved that for any bounded region K, the original function in the space V2(Φ,Λ) can
be approximately recovered from its average (ideal) samples in an R-neighborhood
B(K,R) = {y : infx∈K |y − x| ≤ R} of that region K via a finite algorithm (see
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Theorems 6.1 and 6.2 for details), and moreover that the local convergence rate of the
local reconstruction procedure is almost the same as the rate of polynomial (subex-
ponential) decay of the generator Φ and of the average sampler Ψ. Therefore we con-
clude that the reconstruction process (1.3), (1.4) for f ∈ V2(Φ,Λ) is locally behaved
and finitely implementable (hence it could lead possibly to a real-time reconstruction
algorithm) when the average sampler Ψ and the generator Φ are well-localized. As
a by-product of the local reconstruction theorems, we obtain a necessary condition
on the location Γ of average (ideal) sampling devices, which states that, for a sta-
ble average (ideal) sampling/reconstruction procedure on the space V2(Φ,Λ), there
exists a positive constant R0 such that for any domain K ⊂ Rd, the number of av-
erage (ideal) sampling devices located in R0-neighborhood B(K,R0) of that domain
K should exceed the degrees of freedom of the space V2(Φ,Λ) in the domain K; see
Theorem 6.3 for details. The above necessary condition, which is usually known as
the density property, is established in [3] for the ideal sampling on the B-spline space
(see [2, 3] and references cited therein for nonuniform sampling on the band-limited
space, and see [8, 9] for nonuniform Gabor system).

In the average (ideal) sampling/reconstruction process, we need an efficient and
fast numerical algorithm that recovers any function f ∈ Vr(Φ,Λ) from its average
sampling values 〈f, ψγ〉, γ ∈ Γ, or from its ideal sampling values f(γ), γ ∈ Γ. In
section 7, we modify the standard Richardson–Landweber iterative frame algorithm
to implement the reconstruction process (1.3), (1.4) for signals f ∈ Vr(Φ,Λ) when
average (ideal) samples are received completely, and show that the new iterative
algorithm converges exponentially for any initial data in �r and that the limit agrees
with the signal in the space Vr(Φ,Λ) whenever the initial data are obtained from
average (ideal) sampling of that signal (see [2, 6, 22] for convergence results similar to
the standard Richardson–Landweber iterative frame algorithm in the shift-invariant
setting). The Richardson–Landweber iterative algorithm is easily implemented, but it
provides slow convergence in general. Relaxation and acceleration techniques, such as
the conjugate gradient acceleration, help to alleviate the convergence problem [29, 30],
but their consideration is beyond the scope of this paper and will be discussed in a
subsequent paper.

The proofs of all results are collected in section 8.
In this paper, an uppercase letter C, if unspecified, denotes an absolute constant

which may be different at different occurrences.

2. Preliminaries.

2.1. The sampling set Γ. Every γ in the sampling set Γ is used as the location
of a (non-)ideal sampling acquisition device, which has the average sampling charac-
teristic ψγ . Then reasonable assumptions on the sampling set Γ are that only finitely
many such sampling acquisition devices are located in any unit interval, and that the
distribution of those devices is almost location invariant. So in this paper, we make
the following basic assumption on the sampling set Γ:

(i) The sampling set Γ is a relatively separated subset of Rd.
Here, given a subset X = {xj} of Rd, we say that X is relatively separated if there
exists a positive constant D(X) such that∑

xj∈X

χ
xj+[0,1]d

(x) ≤ D(X) for all x ∈ Rd.(2.1)

2.2. The average sampler Ψ. We say that a positive function u on Rd is
a weight if it is continuous, symmetric, and satisfies 1 = u(0) ≤ u(x) < ∞ for
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all x ∈ Rd, and the inequality u(x + y) ≤ u(x)v(y), x, y ∈ Rd, holds for another
continuous function v on Rd. The model examples of weights convenient for our
consideration of the sampling/reconstruction process are the polynomial weights

uα(x) = (1 + |x|)α(2.2)

with α ≥ 0, and the subexponential weights

eD,δ(x) = exp(D|x|δ)(2.3)

with D > 0 and δ ∈ (0, 1).
Given 1 ≤ p, q ≤ ∞, a weight u, a relatively separated subset Γ of Rd, and a

family Ψ = {ψγ : γ ∈ Γ} of functions on Rd, we define ‖Ψ‖q,p,u by

‖Ψ‖q,p,u := sup
γ∈Γ

∥∥(‖ψγ(·)u(· − γ)‖Lq(k+[0,1]d)

)
k∈Zd

∥∥
�p(Zd)

+ sup
k∈Zd

∥∥(‖ψγ(·)u(· − γ)‖Lq(k+[0,1]d)

)
γ∈Γ

∥∥
�p(Γ)

,(2.4)

where, as usual, ‖·‖Lq(K) denotes the usual Lq norm on the space Lq(K) of all
q-integrable functions on a measurable set K, and ‖·‖�p(X) (or ‖·‖�p for short) is
the usual �p(X) norm on the space of all q-summable sequences on the index set
X. For q = p = ∞, it is obvious that ‖Ψ‖q,p,u < ∞ if and only if |ψγ(x)| ≤
‖Ψ‖q,p,u(u(x−γ))−1 for all x ∈ Rd and γ ∈ Γ. In general, for the family of functions
Ψ = {ψγ : γ ∈ Γ} with ‖Ψ‖q,p,u < ∞, each function ψγ , γ ∈ Γ, is an Lq function
“locally” and a weighted Lp function centered at γ “globally.” Therefore for each
γ ∈ Γ, the function ψγ in the collection Ψ := {ψγ , γ ∈ Γ} with ‖Ψ‖q,p,u < ∞ can be
thought of as essentially supported in a neighborhood of γ ∈ Γ.

For the average sampler Ψ = {ψγ : γ ∈ Γ}, each average sampling functional ψγ

reflects the characteristic of the nonideal acquisition device at the location γ ∈ Γ, and
hence it should be essentially supported in a neighborhood of the sampling location
γ. So we make the following basic assumption on the average sampler Ψ:

(ii) The average sampler Ψ = {ψγ : γ ∈ Γ} satisfies

‖Ψ‖q,p,u < ∞(2.5)

for some 1 ≤ p, q ≤ ∞, and weight u.
We interpret any average sampler that satisfies the basic assumption (ii) as having

polynomial (subexponential) decay, due to the interpretation of the collection Ψ of
average sampling functional ψγ , γ ∈ Γ, with ‖Ψ‖q,p,u < ∞ and the model assumption
on the weight u that is convenient for our consideration of the sampling/reconstruction
process in which u is a polynomial weight uα or a subexponential weight eD,δ.

Remark 2.1. For adapting to different average (ideal) sampling situations, we add
some flexibility to the basic assumption (ii) on the average sampler Ψ with variable
exponents p and q and weights u. For instance, we may use q = 1 for approximating
ideal sampling (ψγ ≈ δγ ; see [6]), q = 2 for frame sampling (for instance, Ψ =
{φ(· − k), k ∈ Zd} for frame sampling in the shift-invariant space V2(φ) generated by
φ, [7, 13, 39, 52]), q = ∞ in local blurring or local averaging (for instance, ψγ = h(·−γ)
for some compactly supported phase function h, [5, 25, 59]), and the subexponential
weight eD,δ for oversampling band-limited signals [35].

Remark 2.2. Given p ∈ [1,∞], a weight u, and two relatively separated subsets
Γ,Γ′ of Rd, we define the matrix algebra Ap,u(Γ,Γ′) of Schur class by

Ap,u(Γ,Γ′) :=
{
A := (A(γ, γ′))γ∈Γ,γ′∈Γ′ : ‖A‖Ap,u < ∞

}
,(2.6)
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where

‖A‖Ap,u := sup
γ∈Γ

∥∥(A(γ, γ′)u(γ − γ′)
)
γ′∈Γ′

∥∥
�p(Γ′)

+ sup
γ′∈Γ′

∥∥(A(γ, γ′)u(γ − γ′)
)
γ∈Γ

∥∥
�p(Γ)

(see, e.g., [32, 37, 51]). Then the basic assumption ‖Ψ‖q,p,u < ∞ on the average
sampler Ψ is characterized by

‖Ψ‖q,p,u < ∞ if and only if (‖ψγ‖Lq(k+[0,1]d))γ∈Γ,k∈Zd ∈ Ap,u(Γ,Zd).(2.7)

For the basic assumption ‖Ψ‖q,p,u < ∞ with different exponents p, q and weights u,
we have the following results, which will be used frequently in the proofs:

‖Ψ‖q1,p,u ≤ C‖Ψ‖q2,p,u(2.8)

if q1 ≤ q2, and

‖Ψ‖q,p1,u ≤ C‖Ψ‖q,p2,v(2.9)

if p1 ≤ p2 and ‖uv−1‖Lr < ∞, where 1/r = 1/p1 − 1/p2; see [52] for details.

2.3. The space V in which functions are sampled and recovered. The
band-limited space BΩ,Ω > 0, is a prototypical space for sampling theory and for
signal processing in the classical band-limited model [2]. By the Whittaker repre-
sentation theorem, the band-limited space Bπ is spanned by the shifted sinc function

sinc(x−k) := sinπ(x−k)
π(x−k) , k ∈ Z, using �2 coefficients, i.e., BΩ = {

∑
k∈Z c(k)sinc(x−k) :

(c(k)) ∈ �2}.
Since the sinc function has infinite support and slow decay at infinity, the band-

limited space is often unsuitable for numerical implementations (see, e.g., [2, 35]).
Hence people consider other models that retain some of the simplicity and structure
of the band-limited model, but are more amenable to numerical implementation and
are more flexible for approximate real data (see [2, 11, 15, 36, 56] and references cited
therein).

Other than the band-limited model, a widely used model is the finitely generated
shift-invariant model; see, e.g., [1, 2, 4, 5, 6, 19, 28, 41, 53, 54, 55]. Here the finitely
generated shift-invariant space Vq(φ1, . . . , φN ), that has functions φ1, . . . , φN on Rd

as its generators, is defined by

Vq(φ1, . . . , φN ) :=

{
N∑

n=1

∑
k∈Zd

cn(k)φn(·−k) : (cn(k))k∈Zd ∈ �q, 1 ≤ n ≤ N

}
,(2.10)

where 1 ≤ q ≤ ∞ (see, e.g., [7, 13, 16, 21, 39] for the applications of finitely generated
shift-invariant spaces in wavelet analysis and approximation theory). Clearly the
finitely generated shift-invariant space Vq(φ1, . . . , φN ) becomes the band-limited space
Bπ if we let q = 2, N = 1, and φ1 = sinc.

The space Vq(Φ,Λ),

Vq(Φ,Λ) :=

{∑
λ∈Λ

c(λ)φλ :
∥∥(c(λ))λ∈Λ

∥∥
�q(Λ)

< ∞
}
,(2.11)

that was recently introduced by the author in [52] is a new model (other than the
above band-limited model and shift-invariant model), where 1 ≤ q ≤ ∞, Λ is a
relatively separated subset of Rd, and Φ = {φλ, λ ∈ Λ} satisfies ‖Φ‖q,p,u < ∞ for
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some 1 ≤ p, q ≤ ∞ and some weight u. We call Φ the generator of the space Vq(Φ,Λ),
and call Λ the location of the generator.

The prototypical space Vq(Φ,Λ) has shift-invariant spaces, twisted shift-invariant
spaces generated by (non-)uniform Gabor frame system (or Wilson basis) in the time-
frequency analysis (see, e.g., [8, 17, 26, 38, 47] and references cited therein), and spaces
of polynomial splines (which are widely used as approximating spaces in data fitting
problems and operator-equation problems [15, 36, 48]) as its special cases. Particularly
the space Vq(Φ,Λ) and the shift-invariant space Vq(φ1, . . . , φN ) are related as follows:

Vq(Φ,Λ) = Vq(φ1, . . . , φN )(2.12)

and

‖Φ‖q,p,u < ∞ if and only if φ1, . . . , φN ∈ Wq(Lp,u)(2.13)

if we let Λ := {x1, . . . , xN} + Zd and φλ := φn(· − k) if λ = xn + k for some k ∈ Zd,
where {x1, . . . , xN} is a discrete set in Rd/Zd; see [52] for details. Here we recall that
the Wiener amalgam space Wq(Lp,u), which consists of functions that are “locally”
in Lq and “globally” in weighted Lp space with weight u [2], is defined by

Wq(Lp,u) :=
{
f : ‖f‖Wq(Lp,u) :=

∥∥(‖fu‖Lq(k+[0,1]d)

)
k∈Zd

∥∥
�p(Zd)

< ∞
}
.(2.14)

The prototypical space Vq(Φ,Λ) is suitable for modeling signals with a finite rate of
innovations [23, 34, 40, 42, 44, 45, 46, 58] in, for instance, (i) stream of pulses

∑
l alp(t−

tl) found in global positioning system (GPS) applications and cellular radio, where
p(t) is the antenna transmit pulse shape; (ii) stream of different pulses

∑
l alpl(t− tl)

found in modeling ultra wide-band, where different incoming paths are subjected
to different frequency-selective attenuations; (iii) band-limited signals with additive
shot noise

∑
k∈Z c(k)sinc(t − k) +

∑
l d(l)δ(t − tl); (iv) sum of band-limited signals

and nonuniform spline signals, convenient for modeling electrocardiogram signals.
The prototypical space Vq(Φ,Λ) retains some of the simplicity and structure of

a finitely generated shift-invariant space of the form (2.10), is amenable to numerical
implementation (see sections 5, 6, and 7), and is more flexible for approximating real
data than the band-limited model and the shift-invariant model (see [52] for details).

So in this paper, we make the following basic assumption on the space V in which
functions are sampled and recovered:

(iii) The space V is of the form Vq(Φ,Λ), where 1 ≤ q ≤ ∞, Λ is a relatively
separated subset of Rd, and Φ = {φλ : λ ∈ Λ} is a family of functions on Rd

satisfying ‖Φ‖q,p,u < ∞ for some 1 ≤ p ≤ ∞ and weight u.
Remark 2.3. Signals in the space V := Vq(Φ,Λ), which satisfies the above basic

assumption (iii), have a finite rate of innovation because a signal f =
∑

λ∈Λ c(λ)φλ ∈
Vq(Φ,Λ) on a unit interval t+[−1/2, 1/2)d is essentially determined by the coefficients
c(λ) with λ ∈ t+[−1/2, 1/2)d because of the well-localization property of the generator
Φ, and the total number of the locations λ ∈ Λ on the unit interval t + [−1/2, 1/2)d

is bounded by some constant C0 independent of the center t of the unit interval due
to the relative separatedness of the location Λ of the generator Φ.

Remark 2.4. We provide some flexibility on the assumption ‖Φ‖q,p,u < ∞ on the
generator Φ of the space Vq(Φ,Λ) for adapting to different modeling situations. For
instance, we may use q = 1 and p = ∞ when modeling slow-varying signals with shot
noises [58], 1 ≤ p, q ≤ ∞ when modeling signals in a finitely generated shift-invariant
space [2], and q = ∞ and 1 ≤ p ≤ ∞ for decomposing a time signal via (non-)uniform
Gabor frame system or Wilson basis [26].
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2.4. The space Vq(Φ,Λ) for modeling signals with a finite rate of inno-
vations. Let δλλ′ stand for the usual Kronecker symbol. For a Hilbert space H with
E = {eλ, λ ∈ Λ} being its Riesz basis, we say that Ed = {edλ : λ ∈ Λ} ⊂ H is a dual
Riesz basis of E if Ed is a Riesz basis of H and 〈eλ, edλ′〉 = δλλ′ for all λ, λ′ ∈ Λ, and
we say that Eo = {eoλ : λ ∈ Λ} is an orthonormal basis for H if Eo is a basis of H
and 〈eoλ, eoλ′〉 = δλλ′ for all λ, λ′ ∈ Λ.

Let 1 ≤ p ≤ ∞. We say that a weight u is p-admissible if there exist a weight v
and two positive constants D := D(u) ∈ (0,∞) and θ := θ(u) ∈ (0, 1) such that

u(x + y) ≤ D(u(x)v(y) + v(x)u(y)) for all x, y ∈ Rd,(2.15)

‖(vu−1)‖Lp′ ≤ D, and(2.16)

inf
τ>0

‖v‖L1(B(τ)) + t‖vu−1‖Lp′ (Rd\B(τ)) ≤ Dtθ for all t ≥ 1,(2.17)

where p′ = p/(p−1) and B(τ) = {x ∈ Rd : |x| ≤ τ}. The p-admissibility of a weight u
is a technical condition in [51] for establishing the Wiener lemma for matrix algebras
of Schur class and of Sjöstrand class; see also Lemmas 8.1 and 8.2. It is verified in [51]
that the polynomial weight uα with α > d(1 − 1/p) and the subexponential weight
eD,δ with D > 0 and δ ∈ (0, 1) are p-admissible weights. The reader may refer to
those two model examples for simplification; see also subsection 2.5.

Now we recall some properties of the space Vq(Φ,Λ) in [52]; see, e.g., [2, 39] for
similar results for our familiar shift-invariant setting.

Proposition 2.1 (see [52]). Let 1 ≤ q ≤ ∞, uα(x) := (1 + |x|)α, α ≥ 0, be the
polynomial weights, Λ be a relatively separated subset of Rd, Φ = {φλ, λ ∈ Λ} satisfy
‖Φ‖q,1,u0

< ∞, and Vq(Φ,Λ) be defined as in (2.11). Then Vq(Φ,Λ) ⊂ Lq. Moreover,∥∥∥∥∥
∑
λ∈Λ

c(λ)φλ

∥∥∥∥∥
Lr

≤ C
∥∥(c(λ)

)
λ∈Λ

∥∥
�r(Λ)

‖Φ‖q,1,u0
(2.18)

for every sequence (c(λ))λ∈Λ ∈ �r(Λ) with 1 ≤ r ≤ q, and∥∥(〈f, φλ〉
)
λ∈Λ

∥∥
�r(Λ)

≤ C‖f‖Lr‖Φ‖q,1,u0
(2.19)

for all f ∈ Lr with q/(q − 1) ≤ r ≤ ∞.
Proposition 2.2 (see [52]). Let 2 ≤ q ≤ ∞, 1 ≤ p ≤ ∞, u be a p-admissible

weight, Λ be a relatively separated subset of Rd, Φ = {φλ, λ ∈ Λ} be a family of
functions on Rd, V2(Φ,Λ) be as in (2.11), and the frame operator S on V2(Φ,Λ) be
defined by

Sf =
∑
λ∈Λ

〈f, φλ〉φλ, f ∈ V2(Φ,Λ).(2.20)

Assume that Φ is a Riesz basis for V2(Φ,Λ) and satisfies ‖Φ‖q,p,u < ∞. Then S−1Φ :=
{S−1φλ : λ ∈ Λ} is a dual Riesz basis of Φ, S−1/2Φ := {S−1/2φλ : λ ∈ Λ} is an
orthonormal basis of V2(Φ,Λ), and ‖S−1Φ‖q,p,u + ‖S−1/2Φ‖q,p,u < ∞. If we further
assume that Λ is a lattice, and that the generator Φ of the space V2(Φ,Λ) is enveloped
by a function in the Wiener amalgam space W∞(Lp,u) (hence ‖Φ‖q,p,u ≤ ‖Φ‖∞,p,u ≤
C‖h‖W∞(Lp,u) < ∞), i.e., |φλ(x)| ≤ h(x − λ) for some h ∈ W∞(Lp,u), then so are

dual Riesz basis S−1Φ and orthonormal basis S−1/2Φ.
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Remark 2.5. Let 1 ≤ p, r ≤ ∞; we say that a weight u is (p, r)-admissible (or we
say that w(x, y) := u(x− y) is a (p, r)-admissible translation-invariant weight [51]) if
there exist a weight v and two positive constants D ∈ (0,∞) and θ ∈ (0, 1) such that
(2.15), (2.16), and

inf
τ>0

‖v‖Lr′ (B(τ)) + t‖vu−1‖Lp′ (Rd\B(τ)) ≤ Dtθ for all t ≥ 1(2.21)

hold, where p′ = p/(p− 1) and r′ = r/(r− 1). Clearly the p-admissibility of a weight
agrees with its (p,∞)-admissibility. Since for any weight v it holds that ‖v||Lr′ (B(τ)) ≤
C‖v‖L1(B(τ)) for all τ ≥ 1, we then conclude that p-admissibility of a weight implies
its (p, r)-admissibility for any 1 ≤ r ≤ ∞.

2.5. Model. The reader may consider the following model for simplification:
(i) The generator Φ := {φλ, λ ∈ Λ} of the space Vr(Φ,Λ) is enveloped by some

function g in the Wiener amalgam space Wq(Lp,u) with 2 ≤ q ≤ ∞, i.e.,

|φλ(x)| ≤ g(x− λ) for all x ∈ Rd and λ ∈ Λ.(2.22)

(The above envelopment assumption (2.22) for the generator Φ implies that
the basic assumption (iii) ‖Φ‖q,p,u < ∞ for the generator Φ is satisfied. The
converse is true in the shift-invariant setting, Vr(Φ,Λ) = Vr(φ1, . . . , φN );
particularly, the above envelopment property for the generator Φ of the
space Vr(Φ,Λ) is equivalent to the basic assumption (iii) ‖Φ‖q,p,u < ∞, and
also equivalent to the property that the generators φ1, . . . , φN of the space
V2(φ1, . . . , φN ) belong to the Wiener amalgam space Wq(Lp,u). The envelop-
ment assumption (2.22) for the generator Φ is not satisfied when the space
Vq(Φ,Λ) is used for modeling slow-varying signals with shot noises [42].)

(ii) The average sampler Ψ = {ψγ : γ ∈ Γ} is enveloped by some function h in
the Wiener amalgam space Wq∗(Lp,u) with q/(q − 1) ≤ q∗ ≤ ∞, i.e.,

|ψγ(x)| ≤ h(x− γ) for all x ∈ Rd and γ ∈ Γ.(2.23)

(The above envelopment assumption (2.23) for the average sampler Ψ implies
that the basic assumption (ii) ‖Ψ‖q∗,p,u < ∞ for the average sampler Ψ is
satisfied. The above envelopment assumption (2.23) for the average sampler
Ψ is not satisfied when it is a family of approximating delta functionals with
variable width [28].)

(iii) The weight u in the above envelopment assumptions on the generator Φ and
the average sampler Ψ is the polynomial weight uα(x) := (1 + |x|)α with
α > d(1 − 1/p) or the exponential weight eD,δ(x) := exp(D|x|δ) with D > 0
and δ ∈ (0, 1).

Remark 2.6. Given an exponent p ∈ [1,∞], a weight u, and two relatively
separated subsets Γ,Γ′ of Rd, we define the matrix algebra Cp,u(Γ,Γ′) of Sjöstrand
class by

Cp,u(Γ,Γ′) :=
{
A := (A(γ, γ′))γ,γ′∈Γ, ‖A‖Cp,u < ∞

}
,(2.24)

where

‖A‖Cp,u := ‖(Au)∗(k))k∈Zd‖�p

and

(Au)∗(k) = sup
γ∈m+[−1/2,1/2)d,γ′∈m+k+[−1/2,1/2)d,m∈Zd

|A(γ, γ′)u(γ − γ′)|, k ∈ Zd
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(see, e.g., [8, 10, 27, 49, 51]). For the case when q = ∞, 1 ≤ p ≤ ∞, and Γ is a
lattice, the envelopment property (2.23) for the average sampler Ψ := {ψγ , γ ∈ Γ} is
characterized by (‖ψγ‖Lq(μ+[0,1]d))γ,μ∈Γ ∈ Cp,u(Γ,Γ). Here a subset X of Rd is said to

be a lattice if 1 ≤
∑

xj∈X χ
xj+[0,1]d

(x) ≤ D(X) for all x ∈ Rd and some D(X) < ∞.

3. Well-localized displayer. Let 1 ≤ q ≤ ∞ and V be a subspace of Lq. We
say that Γ, a subset of Rd, is a stable ideal sampling set for the space V if there exist
two positive constants A,B such that

A‖f‖Lq ≤ ‖(f(γ))γ∈Γ‖�q(Γ) ≤ B‖f‖Lq for all f ∈ V,(3.1)

and that Ψ = {ψγ : γ ∈ Γ}, a family of average sampling functionals, is a stable
averaging sampler for the space V if there exist two positive constants A′, B′ such
that

A′‖f‖Lq ≤ ‖(〈f, ψγ〉)γ∈Γ‖�q(Γ) ≤ B′‖f‖Lq for all f ∈ V(3.2)

(see [5]). From the above definitions of a stable ideal sampling set Γ and a stable
average sampler Ψ, we have that any function f ∈ V can be reconstructed uniquely
and stably from its samples {f(γ) : γ ∈ Γ} if Γ is a stable ideal sampling set for V ,
and similarly that any function f ∈ V can be reconstructed uniquely and stably from
its average samples {〈f, ψγ〉 : γ ∈ Γ} if Ψ is a stable averaging sampler for V .

For average (ideal) sampling on the space V2(Φ,Λ), derived from a general the-
orem for localized frames (see [8, Theorem 1], [24, Theorem 3.6], and [32, Theorem
13]), we have the following well-localization results for its displayer (Theorems 3.1
and 3.2); see Remark 3.1 for a more general formulation of the well-localization of
a displayer. From those results, it concludes that the displayer Ψ̃ associated with a
stable (ideal) averaging sampler Ψ has the same polynomial (subexponential) decay
when both the average sampler Ψ and the generator Φ for the space V2(Φ,Λ) have
polynomial (subexponential) decay.

Theorem 3.1. Let 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞, 1 ≤ r ≤ q, 1 ≤ p ≤ ∞, u
be a p-admissible weight, the subsets Λ,Γ of Rd be relatively separated, the generator
Φ = {φλ : λ ∈ Λ} satisfy

‖Φ‖q,p,u < ∞,(3.3)

the average sampler Ψ = {ψγ : γ ∈ Γ} satisfy

‖Ψ‖q∗,p,u < ∞,(3.4)

and the space Vr(Φ,Λ) be as in (2.11). Assume that Φ is a Riesz basis of V2(Φ,Λ) and
that Ψ is a stable averaging sampler for V2(Φ,Λ) ⊂ L2. Then there exists a displayer
Ψ̃ = {ψ̃γ : γ ∈ Γ} ⊂ V1(Φ,Λ) such that

‖Ψ̃‖q,p,u < ∞,(3.5)

and

f =
∑
γ∈Γ

〈f, ψγ〉ψ̃γ for all f ∈ Vr(Φ,Λ).(3.6)

If we further assume that Λ is a lattice and that the generator Φ and the average
sampler Ψ are enveloped by some functions in the Wiener amalgam space W∞(Lp,u),

then so is the displayer Ψ̃.
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Theorem 3.2. Let 1 ≤ p, r ≤ ∞, u be a p-admissible weight, the subsets Λ,Γ of
Rd be relatively separated, Φ = {φλ : λ ∈ Λ} be a family of continuous functions on
Rd that satisfies

‖Φ‖∞,p,u < ∞,(3.7)

and the space Vr(Φ,Λ) be as in (2.11). Assume that Φ is a Riesz basis of V2(Φ,Λ), and
that Γ is a stable ideal sampling set for V2(Φ,Λ) ⊂ L2. Then there exists a displayer
Ψ̃ = {ψ̃γ : γ ∈ Γ} such that Ψ̃ ⊂ V1(Φ,Λ), ‖Ψ̃‖∞,p,u < ∞, and

f =
∑
γ∈Γ

f(γ)ψ̃γ for all f ∈ Vr(Φ,Λ).(3.8)

If we further assume that Γ is a lattice and that Φ is enveloped by a function in the
Wiener amalgam space W∞(Lp,u), then so is the displayer Ψ̃.

Remark 3.1. For the well-localization of the displayer Ψ̃, the following general
principle can be derived from theorems for localized frames (see [8, Theorem 1], [24,
Theorem 3.6], and [32, Theorem 13]): Let Λ and Γ be two index sets, and let the
families A(Λ) = {(a(λ, λ′))λ,λ′∈Λ} and A(Γ,Λ) = {(a(γ, λ))γ∈Γ,λ∈Λ} of infinite ma-
trices have the following algebraic properties that (i) A(Λ) is an inverse-closed matrix
algebra in B(�2(Λ)) (the space of all bounded operators on �2(Λ)), (ii) ATA ∈ A(Λ)
for any A ∈ A(Γ,Λ), and (iii) AB ∈ A(Γ,Λ) for any A ∈ A(Γ,Λ) and B ∈ A(Λ).
Then on the space V2(Φ,Λ) whose generator Φ := (φλ)λ∈Λ is a frame, there exists an
A(Γ,Λ)-localized displayer Ψ̃ := (ψ̃γ)γ∈Γ associated with a stable average sampling
processing

V2(Φ,Λ) � f �−→ 〈f,Ψ〉 ∈ �2(Γ)(3.9)

whose average sampler Ψ := (ψγ)γ∈Γ is A(Γ,Λ)-localized. Here we say that Ψ :=
(ψγ)γ∈Γ is A(Γ,Λ)-localized on V2(Φ,Λ) if AΨ,Φ := (〈ψγ , φλ〉)γ∈Γ,λ∈Λ ∈ A(Γ,Λ) and

AΨ,Φ̃ := (〈ψγ , φ̃λ〉)γ∈Γ,λ∈Λ ∈ A(Γ,Λ), where Φ̃ = (φ̃λ)λ∈Λ is the dual frame gener-

ator Φ̃ associated with the frame Φ. Thus the well-localization for the displayer in
Theorems 3.1 and 3.2 becomes essentially a concrete example of the above general
principle (particularly in Theorems 3.1 and 3.2, the Schur class Ap,u(Γ,Λ) and the
Sjöstrand class Cp,u(Γ,Λ) are used as A(Γ,Λ) in the above principle, and Ap,u(Λ,Λ)
and Cp,u(Λ,Λ) as A(Λ)). The well-localization of the displayer in the above principle
and the localization of the dual frame in the theory of frames are equivalent since
for the case when Ψ ∈ V2(Φ,Λ) (otherwise replacing Ψ with the projection PΨ of
Ψ on V2(Φ,Λ); see Remark 3.2 below) the stability of the average sampling process
(3.9) is equivalent to the frame property for Ψ, and the displayer AΨ,Φ(AT

Ψ,ΦAΨ,Φ)†Φ
associated with the average sampling processing (3.9) is the canonical dual frame as-
sociated with the frame Ψ, where (AT

Ψ,ΦAΨ,Φ)† is the pseudo-inverse of the matrix

AT
Ψ,ΦAΨ,Φ. Therefore the above principle for the well-localization of a displayer is

established (i) in [8, Theorem 1] for the case when Ψ = Φ, Γ = Λ, A(Λ,Λ), and A(Λ)
are the Sjöstrand class C1,0(Λ,Λ) defined by

C1,0(Λ,Λ) =

{
(c(λ, λ′)λ,λ′∈Λ :

(
sup

a(λ)−a(λ′)=g∈G

|c(λ, λ′)|
)

g∈G

∈ �1(G)

}
,
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where G is an additive discrete group of the form B0Z
d × (Zd′

/B1Z
d′

) for some
nonsingular diagonal matrices B0 and B1, and a : Λ → G is a map with supg∈G #{λ ∈
Λ : a(λ) = g} < ∞; (ii) in [24, Theorem 3.6] for the case when Ψ = Φ, Γ = Λ,
A(Λ,Λ) and A(Λ) are a solid, inverse-closed, involute Banach algebra; and (iii) in
[32, Theorem 13] for the case that Λ = Zd, Γ is a relative separated subset of Rd,
A(Λ) = A, and A(Γ,Λ) = {(a(γ, k))γ∈Γ,k∈Zd : (ã(m,n))m,n∈Zd ∈ A}, where A is a
solid, inverse-closed, involute Banach algebra, and

ã(m,n) =

{
supγ∈(m+[0,1)d)∩Γ |a(γ, n)| if (m + [0, 1)d) ∩ Γ �= ∅,
0 if (m + [0, 1)d) ∩ Γ = ∅.

The above principle for the well-localization of the displayer can be derived from [32,
Theorem 13] with identical proof.

Remark 3.2. Let Φ = {φλ : λ ∈ Λ} and Ψ = {ψγ : γ ∈ Γ} be as in either Theorem
3.1 or Theorem 3.2, and let S−1Φ = {S−1φλ : λ ∈ Λ} be the dual Riesz basis for the
space V2(Φ,Λ) in Proposition 2.2. By Propositions 2.1 and 2.2, the operator P defined
by Pf :=

∑
λ∈Λ〈f, S−1φλ〉φλ is a projection operator from L2 to V2(Φ,Λ). We can

extend the domain of the projection operator P so that Pψγ is well defined for every
sampling functional ψγ in the average sampling case and for the delta functional δγ in
the ideal sampling case. Moreover, 〈f, ψγ〉 = 〈f, Pψγ〉 for all γ ∈ Γ and f ∈ V2(Φ,Λ).
We then have that if Ψ is a stable average sampler, then PΨ = {Pψγ : γ ∈ Γ} is a
frame of V2(Φ,Λ); that is, there exist two positive constants A,B > 0 such that

A‖f‖2 ≤ ‖(〈f, Pψγ〉)γ∈Γ‖�2(Γ) ≤ B‖f‖2 for all f ∈ V2(Φ,Λ).(3.10)

So by the general frame theory, a displayer Ψ̃ ⊂ V2(Φ,Λ), which may or may not have
polynomial (subexponential) decay, can be constructed, while we show in Theorems
3.1 and 3.2 that a displayer Ψ̃ can be constructed to has polynomial (subexponential)
decay whenever the generator Φ and the average sampler Ψ have it. The reader
may refer to [2] and references cited therein for the connection among average (ideal)
sampling, reproducing kernel Hilbert space, and frame theory in the shift-invariant
setting.

By Theorems 3.1 and 3.2, we have the following corollary for the uniform sampling
in the familiar shift-invariant space.

Corollary 3.3. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, 1 ≤ r ≤ q, q/(q − 1) ≤ q∗ ≤ ∞,
u be the polynomial weight uα with α > d(1 − 1/p) or the subexponential weight eD,δ

with D > 0 and δ ∈ (0, 1), and φ1, . . . , φN ∈ Wq(Lp,u), and Φ = {φn(· − k) : 1 ≤ n ≤
N, k ∈ Zd} be a Riesz basis of V2(φ1, . . . , φN ). Then we have that

(i) if ψ1, . . . , ψL ∈ Wq∗(Lp,u), and Ψ := {ψl(·−k) : 1 ≤ l ≤ L, k ∈ Zd} is a stable

average sampler for V2(φ1, . . . , φN ), then there exist functions ψ̃1, . . . , ψ̃L ∈
Wq(Lp,u) such that f =

∑L
l=1

∑
k∈Zd〈f, ψl(· − k)〉ψ̃l(· − k) holds for all f ∈

Vr(φ1, . . . , φN ).
(ii) if φ1, . . . , φN are continuous functions in W∞(Lp,u), and X0 + Zd is a stable

ideal sampling set for V2(φ1, . . . , φN ), where X0 = {x1, . . . , xL} ⊂ [0, 1)d,
then there exist continuous functions ψ̃1, . . . , ψ̃L ∈ W∞(Lp,u) such that f =∑L

l=1

∑
k∈Zd f(xl + k)ψ̃l(· − k) holds for all f ∈ Vr(φ1, . . . , φN ).

Remark 3.3. For the shift-invariant setting V2(Φ,Λ) = V2(φ1, . . . , φN ) for some
functions φ1, . . . , φN , it is shown in [28] that if the generator φ1, . . . , φN satisfies
|φn(x)| ≤ C0(1 + |x|)−α for all 1 ≤ n ≤ N and x ∈ Rd, (i.e., ‖Φ‖∞,∞,uα < ∞,
where Φ := {φn(· − k), 1 ≤ n ≤ N, k ∈ Zd}), and if the average sampling functional
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ψγ is supported in γ + [−a, a] and ‖ψγ‖L1 ≤ C0 for some positive constants C0

and a (which implies that ‖Ψ‖1,∞,u < ∞ for any weight u, where Ψ := {ψγ , γ ∈
Γ}), then the corresponding displayer Ψ̃ := {ψ̃γ : γ ∈ Γ} can be chosen to satisfy

|ψ̃γ(x)| ≤ C1(1 + |x − γ|)−α for some positive constant C1 (i.e., ‖Ψ̃‖∞,∞,uα
< ∞).

A similar result for the ideal sampling process is also established in [28]. The above
results for the average (ideal) sampling process follow from Theorems 3.1 and 3.2 with
p = q = ∞, q∗ = 1, u = uα, and V2(Φ,Λ) being a finitely generated shift-invariant
space. Other than those exponents p, q, q∗ and weight u mentioned above, the results
in Theorems 3.1 and 3.2 are new even for our familiar shift-invariant setting.

By Theorems 3.1 and 3.2, we have the following result for the stability of the
average sampler Ψ in the space Vr(Φ,Λ) ⊂ Lr with r �= 2, which can also derived
from [24, Theorem 2.7] and [28, Theorem 10].

Corollary 3.4. Let 2 ≤ q ≤ ∞, 1 ≤ p ≤ ∞, u be a p-admissible weight, and the
subsets Λ,Γ of Rd be relatively separated. Then we have that

(i) if Φ is a Riesz basis of V2(Φ,Λ) and satisfies (3.3), and if Ψ is a stable
averaging sampler for V2(Φ,Λ) ⊂ L2 and satisfies (3.4) for some q/(q − 1) ≤
q∗ ≤ ∞, then the stable average sampler Ψ for V2(Φ,Λ) is also a stable
averaging sampler for Vr(Φ,Λ) ⊂ Lr for all q∗/(q∗ − 1) ≤ r ≤ q.

(ii) if the family Φ = {φλ : λ ∈ Λ} of continuous functions on Rd is a Riesz
basis of V2(Φ,Λ) and satisfies (3.7), and if Γ is a stable ideal sampling set
for V2(Φ,Λ), then the ideal sampling set Γ for V2(Φ,Λ) is also a stable ideal
sampling set for Vr(Φ,Λ) ⊂ Lr for all 1 ≤ r ≤ ∞.

Remark 3.4. By Corollary 3.4, the stability of the average (ideal) sampler for
V2(Φ,Λ) ⊂ L2 implies the stability of the average (ideal) sampler for Vr(Φ,Λ) ⊂ Lr

with r �= 2. Such an implication can also be derived from [24, Theorem 2.7] and [28,
Theorem 10], where the formulation of localized frames are used. (The author thank
the anonymous referee for pointing out that derivation.) The above implication is
observed in [22, 28] for the shift-invariant setting under slightly stronger assumptions
on the average sampler Ψ, the generator Φ, and the nonuniform sampling set Γ than
the ones in Corollary 3.4. As for the case when the average sampler and the generator
are identical and when the grid Λ and the sampling set Γ are Zd, the above implication
has long been known (and even the converse is also true); see, for instance, [7, 39].

4. Stability of the average (ideal) sampling/reconstruction process. For
a matrix A := (A(λ, λ′))λ∈Λ,λ∈Λ′ , we define its transpose A∗ by A∗ := (A(λ, λ′))λ′∈Λ′,λ∈Λ.
For a space V2(Φ,Λ) generated by Φ := {φλ, λ ∈ Λ}, an average sampling on the space
V2(Φ,Λ) with the average sampler Ψ := {ψγ , γ ∈ Γ}, and an ideal sampling on the
space V2(Φ,Λ) with the sampling set Γ, we define the subspace H of �2 by

H = {(〈f, φλ〉)λ∈Λ : f ∈ V2(Φ,Λ)},(4.1)

and two Gram matrices AΨ,Φ and AδΓ,Φ by

AΨ,Φ =
(
〈ψγ , φλ〉

)
γ∈Γ,λ∈Λ

(4.2)

and

AδΓ,Φ =
(
φλ(γ)

)
γ∈Γ,λ∈Λ

.(4.3)

Theorem 4.1. Let 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞; q∗/(q∗ − 1) ≤ r ≤ q; 1 ≤
p ≤ ∞; u be a p-admissible weight; the subsets Λ,Γ of Rd be relatively separated; the
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generator Φ = {φλ : λ ∈ Λ} satisfy ‖Φ‖q,p,u < ∞; the average sampler Ψ = {ψγ :
γ ∈ Γ} satisfy ‖Ψ‖q∗,p,u < ∞; and the space Vr(Φ,Λ), the subspace H of �2, and the
matrix AΨ,Φ be as in (2.11), (4.1), and (4.2), respectively. Assume that Φ is a frame
of V2(Φ,Λ). Then Ψ is a stable averaging sampler for V2(Φ,Λ) ⊂ L2 if and only if
there exists a positive constant C such that

C−1‖c‖2
�2(Λ) ≤ 〈(AΨ,Φ)∗AΨ,Φc, c〉 ≤ C‖c‖2

�2(Λ) for all c ∈ H.(4.4)

Theorem 4.2. Let 1 ≤ p, r ≤ ∞; u be a p-admissible weight; the subsets Λ,Γ
of Rd be relatively separated; Φ = {φλ : λ ∈ Λ} be a family of continuous functions
on Rd that satisfies (3.7); and the space Vr(Φ,Λ), the space H, and the matrix AδΓ,Φ

be as in (2.11), (4.1), and (4.3), respectively. Assume that Φ is a frame of V2(Φ,Λ).
Then Γ is a stable ideal sampling set for V2(Φ,Λ) if and only if there exists a positive
constant C such that

C−1‖c‖2
�2(Λ) ≤ 〈(AδΓ,Φ)∗AδΓ,Φc, c〉 ≤ C‖c‖2

�2(Λ) for all c ∈ H.(4.5)

Remark 4.1. For the uniform average sampling on finitely generated shift-invariant
spaces, that is, V2(Φ,Λ) = V2(φ1, . . . , φN ) and Ψ = {ψl(· − k), 1 ≤ l ≤ L, k ∈ Zd} for
some functions φn, 1 ≤ n ≤ N , and ψl, 1 ≤ l ≤ L, the matrix (AΨ,Φ)∗AΨ,Φ in (4.4)
can be written as

(AΨ,Φ)∗AΨ,Φ

=

(
N∑
l=1

∑
j∈Zd

〈φn(· − k), ψl(· − j)〉〈ψl(· − j), φn′(· − k′)〉
)

(n,k),(n′,k′)∈{1,...,N}×Zd

.

Due to the shift-invariant structure of the matrix (AΨ,Φ)∗AΨ,Φ, we may use the Fourier
technique to interpret (4.4) in Theorem 4.1 as

C−1G(ξ) ≤ Aas(ξ) ≤ CG(ξ) a.e. ξ ∈ Rd,(4.6)

where the Fourier transform f̂ of an integrable function f is defined by f̂(ξ) =∫
Rd f(x)e−ixξdx, and the N ×N matrices G(ξ) and Aas(ξ) are defined by

G(ξ) =

( ∑
k∈Zd

φ̂n(ξ + 2kπ)φ̂n′(ξ + 2kπ)

)
1≤n,n′≤N

and

Aas(ξ) =

L∑
l=1

∑
k,k′∈Zd

(
φ̂n(ξ + 2kπ)ψ̂l(ξ + 2kπ)ψ̂l(ξ + 2k′π)φ̂n′(ξ + 2k′π)

)
1≤n,n′≤N

.

The above characterization (4.6) of the stable averaging sampler Ψ is given in [5] under
weaker assumptions on the generator φ1, . . . , φN and the average sampler ψ1, . . . , ψL

than the ones for the generator Φ and the average sampler Ψ in Theorem 4.1.
Remark 4.2. For the uniform ideal sampling on a single generated shift-invariant

space, that is, V2(Φ,Λ) = V2(φ) and Γ = Zd, the matrix (AδΓ,Φ)∗AδΓ,Φ in (4.5) can be
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written as (AδΓ,Φ)∗AδΓ,Φ = (
∑

j∈Zd φ(j − k)φ(j − k′))k,k′∈Zd . Similar to the uniform
average sampling case, we may use the Fourier technique to interpret (4.5) in Theorem

4.2 as follows: C−1 ≤ |
∑

k∈Zd φ̂(ξ+2kπ)| ≤ C for almost all ξ ∈ Rd, which was given
in [60].

Remark 4.3. For the characterization of the stable average sampler and stable
ideal sampling set for various spaces, there is an extensive literature (see, for instance,
the recent review papers [2, 57] and monographs [12, 14, 43] for ideal sampling, and
[1, 2, 4, 5, 6, 28, 53, 54, 55] for average sampling).

5. Robustness of the reconstruction process. For the numerical stability
of the reconstruction formulas (3.6) and (3.8) when the average (ideal) sampling data
and the displayer are corrupted, for instance, by the noise in the measurement, we
have the following result.

Theorem 5.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as either in Theorem 3.1 or in
Theorem 3.2. Assume that the original function f belongs to Vr(Φ,Λ), and that G =
{gγ : γ ∈ Γ} and Ψ̃′ = {ψ̃′

γ : γ ∈ Γ} are the corrupted average sampling data and
displayer, respectively. Then there exists a positive constant C (independent of f,G,
and Ψ̃′) such that∥∥∥∥∥f −

∑
γ∈Γ

gγψ̃
′
γ

∥∥∥∥∥
r

≤ C‖(gγ − 〈f, ψγ〉)γ∈Γ‖�r(Γ)‖Ψ̃‖q,p,u

+C‖Ψ̃ − Ψ̃′‖q,p,u‖(gγ)γ∈Γ‖�r(Γ).(5.1)

For the numerical stability of the reconstruction processes (3.6) and (3.8) when
there is certain perturbation for the average sampler and for the ideal sampling set,
we have the following results.

Theorem 5.2. Let p, q, q∗, u,Λ,Γ,Φ,Ψ, Ψ̃, Vq(Φ,Λ) be as in Theorem 3.1. Then
there exist a sufficiently small positive number δ0 and a positive constant C such that
any average sampler Ψ′ = {ψ′

γ : γ ∈ Γ} with the property that

‖Ψ′ − Ψ‖q∗,p,u ≤ δ0(5.2)

is a stable average sampler for the space V2(Φ,Λ), and the corresponding displayer Ψ̃′

satisfies

‖Ψ̃′ − Ψ̃‖q∗,p,u ≤ C‖Ψ′ − Ψ‖q∗,p,u.(5.3)

Theorem 5.3. Let p, u,Λ,Γ,Φ, Ψ̃, Vq(Φ,Λ) be as in Theorem 3.2. Assume that
Φδ = {φγ,δ : γ ∈ Γ} satisfies

‖Φδ‖∞,p,u → 0 as δ → 0,(5.4)

where φγ,δ(x) = sup|t|≤δ |φγ(x + t) − φγ(x)|. Then there exist a sufficiently small
positive number δ0 and a positive constant C such that any sampling set Γ′ := {γ+δγ :
γ ∈ Γ} with supγ∈Γ |δγ | ≤ δ0 is a stable ideal sampling set for the space V2(Φ,Λ), and

the corresponding displayer Ψ̃′ satisfies ‖Ψ̃′ − Ψ̃‖∞,p,u ≤ C‖Φδ0‖∞,p,u.
By Theorems 5.2 and 5.3, we have the following results about perturbation for

nonuniform average (ideal) sampling on a finitely generated shift-invariant space.
Corollary 5.4. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞; u be the

polynomial weight uα with α > d(1 − 1/p) or the subexponential weight eD,δ with
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D > 0 and δ ∈ (0, 1), φ1, . . . , φN ∈ Wq(Lp,u); Γ be a relatively separated subset of
Rd; and Φ := {φn(· − k), 1 ≤ n ≤ N, k ∈ Zd} be a Riesz basis of the shift-invariant
space V2(φ1, . . . , φN ). Then

(i) if ψ1, . . . , ψL ∈ Wq∗(Lp,u), and Ψ := {ψl(· − γ), 1 ≤ l ≤ L, γ ∈ Γ} is a stable
average sampler for V2(φ1, . . . , φN ), then there exists a positive constant δ0
such that for any functions θ1, . . . , θL with

∑L
l=1 ‖ψl−θl‖Wq∗(Lp,u) ≤ δ0, their

generating average sampler Θ := {θl(· − γ), 1 ≤ l ≤ L, γ ∈ Γ} is a stable
average sampler for V2(φ1, . . . , φN ).

(ii) if φ1, . . . , φN are continuous functions in W∞(Lp,u), and Γ is a stable ideal
sampling set for V2(φ1, . . . , φN ), then there exists a positive constant δ0 such
that any relatively separated set Γ̃ = {γ + δγ : γ ∈ Γ} with supγ∈Γ |δγ | ≤ δ0 is
a stable ideal sampling set for V2(φ1, . . . , φN ).

Remark 5.1. From Corollary 5.4, we see that for the shift-invariant setting,
the stability of the nonuniform average (ideal) sampling is preserved under small
perturbation. Such a phenomenon is observed in [19, 41, 57] for the ideal sampling
process in the band-limited spaces and the finite-generated shift-invariant spaces,
and in [4] for the average sampling process in the finitely generated shift-invariant
spaces. We use a different approach than the ones in [4, 19, 41, 57] to consider the
perturbation problem, and then the stability under small perturbation is shown to be
preserved under weak assumptions on the generator Φ and the average sampler Ψ;
see, for instance, [4] in which such a preservation is established only for the case when
q = ∞, q∗ = 1, p = 1, and u = u0.

Remark 5.2. Unlike in the shift-invariant setting, the stability of the ideal sam-
pling set is not preserved under small perturbation in our general setting, or in other
words, assumption (5.4) in Theorem 5.3 cannot be eliminated if we expect that the
stability of the ideal sampling set is preserved under small perturbation. For in-
stance, let Λ = Z and Φ := {φk(x) := h(2(x − k)) cos2(4kπ(x − k)) : k ∈ Z}, where
h(x) = max(1 − |x|, 0) is the hat function. For the space V2(Φ,Z) generated by that
family of functions Φ, we see that f(k) = c(k), k ∈ Z, for any f =

∑
k∈Z c(k)φk ∈

V2(Φ,Z). Thus ‖f‖2 ≤ ‖(f(k))k∈Z‖�2(Z) ≤ 4‖f‖2 for all f ∈ V2(Φ,Z), where we
have also used the facts that φk, k ∈ Z, are supported in k + [−1/2, 1/2] and satisfy
1
4 ≤ ‖φk‖2 ≤ 1. This shows that Z is a stable sampling set for V2(Φ,Z). Noting that
f(k+1/(8k)) = 0, k ∈ Z, for any f =

∑
k∈Z c(k)φk ∈ V2(Φ,Z), we then conclude that

for any 0 < δ < 1/2, the small perturbation Zδ = {k+(−1)k min(δ, 1/(8|k|)), 0 �= k ∈
Z} of the stable sampling set Z is not a stable sampling set for V2(Φ,Λ). Moreover,
assumption (5.4) does not hold for that family of functions Φ, since for any δ > 0,

‖Φδ‖q,p,α ≥ ‖φk − φk

(
· + 1

8k

)
‖Lq(k+[0,1]) ≥

1

2

∫ 1/4

0

| cos 8kπx|dx ≥ 1

16
,

where the integer k is chosen so that 8kδ ≥ 1.

6. Locally finite reconstruction process. For a bounded set K and a positive
number R, we let B(K,R) := {y ∈ Rd : infx∈K |y − x| ≤ R} be the R-neighborhood
of the set K. For an average sampling process on the space Vr(Φ,Λ) with the average
sampler Ψ := {ψγ , γ ∈ Γ}, we define the locally finite reconstruction approximation
of a function f ∈ Vr(Φ,Λ) on a bounded set K using average sampling data on the
R-neighborhood B(K,R) of the set K by

f̃a
K,R =

∑
γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃a
γ,K,R,(6.1)
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where

ψ̃a
γ,K,R =

∑
λ1,λ2∈B(K,2R)

〈ψγ , φλ1〉(ÃΨ,Φ,K,R)−1(λ1, λ2)φλ2(6.2)

and

ÃΨ,Φ,K,R =

( ∑
γ∈Γ∩B(K,4R)

〈φλ, ψγ〉〈ψγ , φλ′〉
)

λ,λ′∈B(K,3R)

.(6.3)

Similarly for the ideal sampling process on the space Vr(Φ,Λ) with the sampling set
Γ, we define the locally finite reconstruction approximation of a function f ∈ Vr(Φ,Λ)
on a bounded set K using the ideal sampling data on the R-neighborhood B(K,R)
of the set K by

f̃ i
K,R =

∑
γ∈Γ∩B(K,R)

f(γ)ψ̃i
γ,K,R,(6.4)

where

ψ̃i
γ,K,R =

∑
λ1,λ2∈B(K,2R)

φλ1
(γ)(ÃδΓ,Φ,K,R)−1(λ1, λ2)φλ2

(6.5)

and

ÃΨ,Φ,K,R =

( ∑
γ∈Γ∩B(K,4R)

φλ(γ)φλ′(γ)

)
λ,λ′∈B(K,3R)

.(6.6)

For any bounded set K, we observe that the locally finite reconstruction approxi-
mation f̃a

K,R for the average sampling/reconstruction process and f̃ i
K,R for the ideal

sampling/reconstruction process are obtained by using the samples in a finite neigh-
borhood of that set K with finitely many steps. Then we conclude from Theorems 6.1
and 6.2 that the locally finite reconstruction approximation could be possibly used in
the real-time reconstruction by selecting the parameter R properly.

Using an idea similar to the finite section method in frame theory (see, e.g.,
[18, 20, 35]), we have the following locally finite reconstruction approximation for the
average (ideal) sampling/reconstruction process.

Theorem 6.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and let f̃a
K,R

be defined as in (6.1) for any bounded set K, positive number R ≥ 1, and function
f ∈ Vr(Φ,Λ). Then there exists a positive constant C (independent of the bounded set
K, the positive number R ≥ 1, and the function f ∈ Vr(Φ,Λ)) such that

‖f̃a
K,R − f‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(〈f, ψγ〉)γ∈Γ‖�r(Γ)

+C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ\B(K,R)‖�r(Γ\B(K,R))(6.7)

holds for any bounded set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
Theorem 6.2. Let p, r, u,Λ,Γ,Φ, Ψ̃ be as in Theorem 3.2, and let f̃ i

K,R be defined
as in (6.4) for any bounded set K, positive number R ≥ 1, and function f ∈ Vr(Φ,Λ).
Then there exists a positive constant C (independent of the bounded set K, the positive
number R ≥ 1, and the function f ∈ Vr(Φ,Λ)) such that

‖f̃ i
K,R − f‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(f(γ))γ∈Γ‖�r(Γ)

+C‖u−1‖Lp′ (Rd\B(R))‖(f(γ))γ∈Γ\B(K,R)‖�r(Γ\B(K,R))(6.8)
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holds for any bounded set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
As a by-product of Theorems 6.1 and 6.2, we have the following result about the

location of (non-)ideal sampling devices.
Theorem 6.3. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in either Theorem 3.1 or The-

orem 3.2. Then there exists a positive constant R0 such that for any bounded set K,
the number of (non-)ideal sampling devices located in B(K,R0) exceeds the degrees of
freedom of the space V2(Φ,Λ) in the domain K, that is,

#(Γ ∩B(K,R0)) ≥ #(Λ ∩K),(6.9)

where #(E) denotes the cardinality of a set E.
Remark 6.1. If V2(Φ,Λ) is a shift-invariant space generated by a compactly sup-

ported continuous function φ, then one may verify that the matrix
(∑

γ∈Γ φλ(γ)φλ′(γ)
)

associated with the ideal sampling on Γ is a band-limited matrix. Furthermore for the
case when finite truncation of that matrix is invertible (which is true if φ is a B-spline
and Γ is a sampling set with sampling density strictly less than the optimal density; see
[3, 4]), Gröchenig and Schwab [33] proposed an efficient local reconstruction algorithm
to recover the original function in a domain exactly, instead of approximately as in
Theorems 6.1 and 6.2, from its samples in a neighborhood of that domain. Comparing
with the locally perfect recovery in [33], we see that the locally finite approximation
in Theorems 6.1 and 6.2 works for the well-localized average sampling process as well
as the ideal sampling process, and for most signals with a finite rate of innovation
instead of signals of B-spline type.

Remark 6.2. The density property (6.9) in Corollary 6.3 is established in [3] for
the ideal sampling of signals in a B-spline space; that is, V2(Φ,Λ) is the shift-invariant
space generated by the integer shifts of a B-spline. The reader may refer to [2] for
similar results for average (ideal) sampling in the band-limited space, and to [8, 9] for
the nonuniform Gabor system.

7. The Richardson–Landweber iterative reconstruction process. Let Φ
be the generator of the space V2(Φ,Λ), Ψ be an average sampler, and Γ be an ideal
sampling set. We define an iterative reconstruction algorithm from average sampling
data (aγ)γ∈Γ ∈ �r by{

f0 = A−2
∑

γ∈Γ,λ∈Λ aγ〈ψγ , φλ〉φλ,

fn = f0 + fn−1 −A−2Tasfn−1 if n ≥ 1,
(7.1)

where A is a positive parameter and the operator Tas is defined by

Tasf =
∑

γ∈Γ,λ∈Λ

〈f, ψγ〉〈ψγ , φλ〉φλ.(7.2)

Similarly we define an iterative reconstruction algorithm from ideal sampling data
(aγ)γ∈Γ ∈ �r by {

f0 = A−2
∑

γ∈Γ,λ∈Λ aγφλ(γ)φλ,

fn = f0 + fn−1 −A−2Tisfn−1, n ≥ 1,
(7.3)

where A is a positive parameter and the operator Tis is defined by

Tisf =
∑

γ∈Γ,λ∈Λ

f(γ)φλ(γ)φλ.(7.4)
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Since the operators Aas in (7.2) and Ais in (7.4) can be written as Tas =
TΦA

∗
Ψ,ΦAΨ,Φ(TΦ)−1 and Tis = TΦA

∗
δΓ,Φ

AδΓ,Φ(TΦ)−1, where TΦ : (c(λ)) �−→
∑

λ∈Λ

c(λ)φλ, we then have that the iterative reconstruction algorithms from average sam-
pling data and from ideal sampling data are equivalent to the familiar Richardson–
Landweber iterative algorithms for the positive operators A∗

Ψ,ΦAΨ,Φ and A∗
δΓ,Φ

AδΓ,Φ

on �2(Λ), respectively. For the iterative reconstruction algorithms from average sam-
pling data and from ideal sampling data, we have the following exponential conver-
gence for signals in Vr(Φ,Λ).

Theorem 7.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Vr(Φ,Λ) be as in Theorem 3.1. We
assume that the parameter A in (7.1) is a positive constant larger than the operator
norm of the matrix AΨ,Φ from �2(Λ) to �2(Γ). Then the sequence {fn, n ≥ 1} in (7.1)
converges to a function f∞ in Vr(Φ,Λ) in the Lr norm exponentially for any initial
data (aγ)γ∈Γ ∈ �r; that is, there exist two positive constants C ∈ (0,∞) and s ∈ (0, 1)
such that

‖fn − f∞‖r ≤ Csn‖(aγ)γ∈Γ‖�r(Γ) for all n ≥ 1.(7.5)

Furthermore if the initial data (aγ)γ∈Γ are obtained from average sampling a function
f in Vr(Φ,Λ), that is, aγ = 〈f, ψγ〉 for all γ ∈ Γ, then the limit function f∞ of the
sequence {fn, n ≥ 1} agrees with the original function f .

Theorem 7.2. Let p, r, u,Λ,Γ,Φ, Vq(Φ,Λ) be as in Theorem 3.2. Assume that the
parameter A in (7.3) is a positive constant larger than the operator norm of the matrix
AδΓ,Φ := (φλ(γ))γ∈Γ,λ∈Λ from �2(Λ) to �2(Γ). Then the sequence {fn, n ≥ 1} in (7.3)
converges to a function f∞ ∈ Vr(Φ,Λ) in the Lr norm exponentially. Moreover if
aγ = f(γ), γ ∈ Γ, holds for some f ∈ Vr(Φ,Λ), then f∞ = f .

Remark 7.1. For Φ = {φλ : λ ∈ Λ}, we let P be the projection operator from L2

to V2(Φ,Λ); see Remark 3.2. Then for the average sampling/reconstruction process
with Ψ as its average sampler (resp., the ideal sampling/reconstruction process with
Γ as its sampling set), PΨ := {Pψγ , ψγ ∈ Ψ} (resp., PδΓ := {Pδγ , γ ∈ Γ}) is a frame
for V2(Φ,Λ), and hence the corresponding frame algorithm is the familiar Richardson–
Landweber iterative algorithm for the positive operator (AΦ,Φ)−1/2A∗

Ψ,ΦAΨ,Φ(AΦ,Φ)−1/2

(resp., (AΦ,Φ)−1/2A∗
δΓ,Φ

AδΓ,Φ(AΦ,Φ)−1/2) on the space �2(Λ); see [2]. Clearly the it-
erative frame algorithm becomes the iterative algorithm proposed in this article when
Φ is an orthonormal basis of V2(Φ,Λ). In general, we need more computation for each
iterative step of the iterative frame algorithm than that of the iterative algorithm
in the paper. The consideration of which iterative algorithm converges faster, and
of other implementations of the reconstruction process associated with the average
(ideal) sampling/reconstruction process, is beyond the scope of this paper and will
be discussed in a subsequent paper. By the general frame theory, the iterative frame
algorithm associated with the average (ideal) sampling/reconstruction process on the
space V2(Φ,Λ) ⊂ L2 converges exponentially. Similar to the proofs of Theorems 7.1
and 7.2, we have the exponential convergence of the iterative frame algorithm on the
space Vr(Φ,Λ) with r �= 2, under the assumption that p, q, q∗, r, u,Λ,Λ,Φ,Ψ are as
in Theorems 3.1 or 3.2. The above exponential convergence theorem for the iterative
frame algorithm is established in [2, 22] for the shift-invariant setting with some minor
additional assumptions on the exponents p, q, q∗ and weight u.

8. Proofs. In this section, we collect the proofs of all theorems and corollaries
stated in Sections 3, 4, 5, 6, and 7.
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8.1. Proof of Theorem 3.1. Unlike in the study of average (ideal) sampling
signals in a shift-invariant space, the main obstacle when considering well-localization
of the displayer comes from the nongroup structure on the generator Φ and the average
sampler Ψ, which makes the standard approach from Fourier analysis inapplicable.
In the proof of Theorem 3.1, we will use the procedure used in the study of localized
frames (see [8, 24, 31, 32, 37, 50, 51, 52] and references cited therein) with some
nonessential modification (see also Remark 3.1). For the completeness of this paper,
we include a complete proof.

For a matrix A = (a(λ, λ′))λ,λ′∈Λ, we denote by ‖A‖B2 its operator norm on
�2(Λ). To prove Theorem 3.1, we recall some properties of the matrix algebras of
the Schur class Ap,u(Λ,Λ′) and of the Sjöstrand class Cp,u(Λ,Λ) in [51]. The third
property in Lemmas 8.1 and 8.2 below is usually known as Wiener’s lemma; see, for
instance, [8, 10, 24, 27, 31, 32, 37, 49, 50, 51] and references cited therein for its recent
development and various applications.

Lemma 8.1 (see [51]). Let 1 ≤ p ≤ p̃ ≤ ∞, u and ũ be weights, and Λ,Λ′,Λ′′ be
relatively separated subsets of Rd. Then the following statements are true:

(i) If ‖uũ−1‖Lr < ∞, where r = pp̃/(p̃− p), then

‖A‖Ap,u ≤ C‖A‖Ap̃,ũ for all A ∈ Ap̃,ũ(Λ,Λ′).(8.1)

(ii) If there exists another weight v such that (2.15) and (2.16) hold, then

‖AB‖Ap,u ≤ C‖A‖Ap,u‖B‖Ap,u(8.2)

for all A ∈ Ap,u(Λ,Λ′) and B ∈ Ap,w(Λ′,Λ′′), where

AB :=

( ∑
λ′∈Λ′

A(λ, λ′)B(λ′, λ′′)

)
λ∈Λ,λ′′∈Λ′′

.

(iii) If u is a p-admissible weight and A is a matrix in Ap,u(Λ,Λ) satisfying

‖Ac‖�2 ≥ D0‖c‖�2 for all c ∈ �2(8.3)

for some positive constant D0, then the inverse A−1 of the matrix A belongs
to Ap,u(Λ,Λ).

(iv) If u is a p-admissible weight, then there exist positive constants C1, C2 ∈
(0,∞) and θ ∈ (0, 1) such that the following estimate holds for all A ∈
Ap,u(Λ,Λ):

‖An‖Ap,u
≤

(
C1

‖A‖Ap,u

‖A‖B2

)C2n
θ

‖A‖nB2 , n ≥ 1.(8.4)

Lemma 8.2 (see [51]). Let 1 ≤ p ≤ p̃ ≤ ∞, u and ũ be weights on Rd, and Λ be
a lattice of Rd. Then the following statements are true:

(i) If ‖uũ−1‖Lr < ∞, where r = pp̃/(p̃− p), then

‖A‖Cp,u ≤ C‖A‖Cp̃,ũ for all A ∈ Cp̃,ũ(Λ,Λ).(8.5)

(ii) If there exists another weight v such that (2.15) and (2.16) hold, then

‖AB‖Cp,u ≤ C‖A‖Cp,u
‖B‖Cp,u

for all A,B ∈ Cp,u(Λ,Λ).(8.6)
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(iii) If u is a p-admissible weight on Rd and if A is a matrix in Cp,u(Λ,Λ) that
satisfies (8.3), then the inverse A−1 of the matrix A belong to Cp,u(Λ,Λ).

Now we are ready to start the proof of Theorem 3.1.
Proof of Theorem 3.1. By Proposition 2.2, without loss of generality, we may

assume that Φ is an orthonormal basis of V2(Φ,Λ) for otherwise replacing Φ with
S−1/2Φ. Therefore

∥∥c∥∥
�2(Λ)

=

∥∥∥∥∥
∑
λ∈Λ

c(λ)φλ

∥∥∥∥∥
2

for all c :=
(
c(λ)

)
λ∈Λ

∈ �2(Λ)(8.7)

and

f =
∑
λ∈Λ

〈f, φλ〉φλ for all f ∈ V2(Φ,Λ).(8.8)

From (2.8), (3.3), and (3.4), it follows that ‖Ψ‖q/(q−1),p,u + ‖Φ‖q,p,u < ∞. This,
together with (2.7), Lemma 8.1, and the trivial estimate

|AΨ,Φ(γ, λ)| ≤
∑
k∈Zd

‖ψγ‖Lq/(q−1)(k+[0,1]d)‖φλ‖Lq(k+[0,1)d),

proves that the matrix AΨ,Φ = (AΨ,Φ(γ, λ))γ∈Γ,λ∈Λ in (4.2) belongs to Ap,u(Γ,Λ):

AΨ,Φ ∈ Ap,u(Γ,Λ).(8.9)

Furthermore, there exists a positive constant C such that

‖AΨ,Φ‖Ap,u ≤ C‖Ψ‖q/(q−1),p,u‖Φ‖q,p,u.(8.10)

Clearly the transpose A∗ of a matrix A ∈ Ap,u has the same Ap,u norm as the
one of the matrix A,

‖A∗‖Ap,u
= ‖A‖Ap,u .(8.11)

Combining (8.2), (8.9), and (8.11) then yields

A∗
Ψ,ΦAΨ,Φ ∈ Ap,u(Λ,Λ).(8.12)

For the matrix AΨ,Φ, we obtain from (8.7) and the stable assumption on the
averaging sampler Ψ that

C−1‖c‖2 ≤
∥∥∥∥∥
(∑

λ∈Λ

AΨ,Φ(γ, λ)c(λ)

)
γ∈Γ

∥∥∥∥∥
�2(Γ)

≤ C‖c‖2(8.13)

for any �2(Λ)-sequence c = (c(λ))λ∈Λ.
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Combining (8.2), (8.12), and (8.13), and applying Lemma 8.1 to the matrix
A∗

Ψ,ΦAΨ,Φ, we conclude that

(A∗
Ψ,ΦAΨ,Φ)−1 ∈ Ap,u(Λ,Λ).(8.14)

Let

R := AΨ,Φ(A∗
Ψ,ΦAΨ,Φ)−1,(8.15)

write R = (R(γ, λ))γ∈Γ,λ∈Λ, and define Ψ̃ := {ψ̃γ : γ ∈ Γ} by

ψ̃γ =
∑
λ∈Λ

R(γ, λ)φλ, γ ∈ Γ.(8.16)

Now we prove that Ψ̃ satisfies all requirements of the displayer associated with the
average sampler Ψ. By (8.2), (8.9), and (8.14), we have

R ∈ Ap,u(Γ,Λ).(8.17)

This implies that the sequence (R(γ, λ))λ∈Λ ∈ �1(Λ) for any γ ∈ Γ, and hence Ψ̃ ⊂
V1(Φ,Λ).

From (2.7), (8.2), (8.17), and the trivial estimate for Ψ̃: ‖ψ̃γ‖Lq(k+[0,1]d) ≤∑
λ∈Λ |R(γ, λ)|‖ψλ‖Lq(k+[0,1]d), we have

‖Ψ̃‖q,p,u ≤ C‖R‖Ap,u‖Φ‖q,p,u < ∞.(8.18)

For any f ∈ V2(Φ, λ), it follows from (8.8), (8.15), and (8.17) that(〈∑
γ∈Γ

〈f, ψγ〉ψ̃γ , φλ

〉)
λ∈Λ

=

( ∑
λ1∈Λ

〈f, φλ1〉 ×
∑
λ2∈Λ

〈φλ2
, φλ〉

(∑
γ∈Γ

A∗
Ψ,Φ(λ1, γ)R(γ, λ2)

))
λ∈Λ

=

( ∑
λ1∈Λ

〈f, φλ1
〉〈φλ1

, φλ〉
)

λ∈Λ

=
(
〈f, φλ〉

)
λ∈Λ

.(8.19)

This proves the reconstruction formula (3.6) for r = 2,

f =
∑
γ∈Γ

〈f, ψγ〉ψ̃γ for any f ∈ V2(Φ,Λ).(8.20)

For 1 ≤ r < ∞, we obtain from (2.8), (2.9), (8.2), (8.9), (8.17), and Proposition 2.1
that ∥∥∥∥∥

∑
γ∈Γ

∑
λ,λ′∈Λ

|c(λ)| × |〈φλ, ψγ〉| × |R(γ, λ′)| × |φλ′ |
∥∥∥∥∥
Lr

≤ C‖c‖�r(Λ)‖AΨ,Φ‖Ap,u‖R‖Ap,u‖Φ‖r,p,u
≤ C‖c‖�r(Λ)‖AΨ,Φ‖Ap,u‖R‖Ap,u‖Φ‖q,p,u < ∞(8.21)

for any sequence c := (c(λ))λ∈Λ ∈ �r(Λ). Then for 1 ≤ r < ∞, the reconstruction
formula (3.6) follows easily from (8.20), (8.21), and the density of �2 ∩ �r in �r.
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For r = ∞, we have that p = ∞. Take c = (c(λ))λ∈Λ ∈ �∞(Λ). We let f =∑
λ∈Λ c(λ)φλ and fk,τ =

∑
|λ−k|≤τ c(λ)φλ for τ ≥ 1. Then there exists a positive

constant C (independent of k ∈ Zd and τ ≥ 1) such that

sup
x∈k+[0,1]d

|f(x) − fk,τ (x)| ≤
∑

|γ−k|>τ

|c(λ)| sup
x∈k+[0,1]d

|φλ(x)|

≤ C‖c‖�∞(Λ)‖Φ‖∞,p,u‖u−1‖Lp′ (Rd\B(τ))

and

sup
x∈k+[0,1]d

∣∣∣∣∑
γ∈Γ

〈f − fk,τ , ψγ〉ψ̃γ(x)

∣∣∣∣
≤ ‖c‖�∞

( ∑
|γ−k|≥τ/2,γ∈Γ

∑
λ∈Λ

+
∑
γ∈Γ

∑
|λ−γ|≥τ/2,λ∈Λ

)
|〈φλ, ψγ〉| sup

x∈k+[0,1]d
|ψ̃γ(x)|

≤ C‖c‖�∞(Λ)‖AΨ,Φ‖Ap,u‖Ψ̃‖∞,p,u‖u−1‖Lp′ (Rd\B(τ/2)).

The above two estimates, together with (8.20), lead to

sup
x∈k+[0,1]d

∣∣∣∣f(x) −
∑
γ∈Γ

〈f, ψγ〉ψ̃γ(x)

∣∣∣∣
= sup

x∈k+[0,1]d

∣∣∣∣(f − fk,τ )(x) −
∑
γ∈Γ

〈f − fk,τ , ψγ〉ψ̃γ(x)

∣∣∣∣
≤ C‖c‖�∞(Λ)‖u−1‖Lp′ (Rd\B(τ/2)) → 0 as τ → ∞

for all k ∈ Zd, where we have used assumption (2.17) to obtain the last limit. This
proves the reconstruction formula (3.6) for r = ∞, and hence completes the verifica-
tion that the collection Ψ̃ in (8.16) is the desired displayer associated with the average
sampler Ψ.

Now we prove that the displayer Ψ̃ in (8.16) is enveloped by a function in
W∞(Lp,u) when Λ is a lattice, and the average sampler Ψ and the generator Φ for the
space V2(Φ,Λ) are enveloped by some functions g, h ∈ W∞(Lp,u), respectively. Let
AΨ,Φ = (AΨ,Φ(γ, λ))γ∈Γ,λ∈Λ be as in (4.2). Then for any λ ∈ m + [−1/2, 1/2)d and
λ′ ∈ m′ + [−1/2, 1/2)d with m,m′ ∈ Zd,

|(A∗
Ψ,ΦAΨ,Φ)(λ, λ′)| ≤

∑
k,l∈Zd

∑
μ∈Γ

‖h(· + λ− k)‖L∞([0,1]d)‖g(· + μ− k)‖L∞([0,1]d)

×‖g(· + μ− l)‖L∞([0,1]d)‖h(· + λ′ − l)‖L∞([0,1]d)

≤ C
∑

k,l,n∈Zd

‖h(· + m− k)‖L∞([−1,2]d)‖g(· + n− k)‖L∞([−1,2]d)

×‖g(· + n− l)‖L∞([−1,2]d)‖h(· + m′ − l)‖L∞([−1,2]d)

≤ d(m−m′)

for some sequence (d(m))m∈Zd with (d(m)u(m))m∈Zd ∈ �p. This implies that

A∗
Ψ,ΦAΨ,Φ ∈ Cp,u(Λ,Λ).(8.22)
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Therefore using (8.13) and (8.22), and applying Lemma 8.2 to the matrix A∗
Ψ,ΦAΨ,Φ,

we conclude that

(A∗
Ψ,ΦAΨ,Φ)−1 ∈ Cp,u(Λ,Λ).(8.23)

Let R be the matrix in (8.15) and Ψ̃ := {ψ̃γ , γ ∈ Γ} be the displayer defined in (8.16).
Then for γ ∈ k + [0, 1)d and x ∈ l + [0, 1)d,

|ψ̃γ(x)| ≤
∑

λ,λ′∈Λ

∑
m∈Zd

‖g(· + γ −m)‖L∞([0,1]d)‖h(· + λ′ −m)‖L∞([0,1]d)

× |(A∗
Ψ,ΦAΨ,Φ)−1(λ′, λ)|h(x− λ)

≤ C
∑

n,n′,m∈Zd

‖g‖L∞(m−k+[−1,2]d)‖h‖L∞(m−n′+[−1,2]d)

× b(n− n′) sup
y∈l−n+[−1,2]d

|h(y)| ≤ c(k − l),

where (b(k))k∈Zd and (c(k))k∈Zd are sequences with (b(k)u(k))k∈Zd and (c(k)u(k))k∈Zd

belonging to �p. This proves that Ψ̃ := {ψ̃γ , γ ∈ Γ} is enveloped by some function in
W∞(Lp,u), and hence completes the proof.

8.2. Proof of Theorem 3.2. By (3.7) and the relative separatedness of the sets
Γ and Λ, the matrix AδΓ,Φ = (φλ(γ))γ∈Γ,λ∈Λ in (4.3) belongs to Ap,u(Γ,Λ). Then we
may reach the conclusion of Theorem 3.2 using the same argument as the one in the
proof of Theorem 3.1, except we replace the average sampler Ψ with the ideal sampler
δΓ. We omit the details of the proof here.

8.3. Proof of Theorem 4.1. Let S be the frame operator (2.20) on the space
V2(Φ,Λ). By the frame assumption on the generator Φ, we have

C−1‖f‖2 ≤ ‖Sf‖2 ≤ C‖f‖2 for all f ∈ V2(Φ,Λ)(8.24)

and

C−1‖f‖2 ≤
∥∥(〈f, φλ〉

)
λ∈Λ

∥∥
�2(Λ)

≤ C‖f‖2 for all f ∈ V2(Φ,Λ).(8.25)

Then the conclusion follows from (8.24), (8.25), and

〈A∗
Ψ,ΦAΨ,Φc, c〉 =

∥∥(〈Sf, ψγ〉
)
γ∈Γ

∥∥2

�2(Λ)

for any c = (〈f, φλ〉)λ∈Λ, where f ∈ V2(Φ,Λ).

8.4. Proof of Theorem 4.2. Note that 〈A∗
δΓ,Φ

AδΓ,Φc, c〉 = ‖(Sf(γ))γ∈Γ‖2
�2(Λ)

for c = (〈f, φλ〉)λ∈Λ, where f ∈ V2(Φ,Λ). This, together with (8.24) and (8.25),
proves the conclusion.

8.5. Proof of Theorem 5.1. The estimate (5.1) follows from (3.6), (3.8),
Proposition 2.1, and the following inequality:∣∣∣∣∣f −

∑
γ∈Γ

gγψ̃
′
γ

∣∣∣∣∣ ≤
∑
γ∈Γ

|〈f, ψγ〉 − gγ ||ψ̃γ | +
∑
γ∈Γ

|gγ ||ψ̃γ − ψ̃′
γ |.
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8.6. Proof of Theorem 5.2. Let AΨ,Φ and AΨ′,Φ be the Gram matrices as in
(4.2). Then there exists a positive constant C independent of the average samplers
Ψ′ and Ψ by (2.8) and (8.10) such that

‖AΨ,Φ −AΨ′,Φ‖Ap,u = ‖AΨ−Ψ′,Φ‖Ap,u

≤ C‖Ψ − Ψ′‖q/(q−1),p,α‖Φ‖q,p,u ≤ C‖Ψ − Ψ′‖q∗,p,u‖Ψ‖q,p,u.(8.26)

This, together with (8.2), yields the following estimate:

‖(AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ‖Ap,u
≤ C‖Ψ − Ψ′‖q∗,p,u,(8.27)

which then implies that

‖((AΨ′,Φ)∗AΨ′,Φ)−1 − ((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

≤ C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

×
∞∑
k=1

∥∥∥(((AΨ,Φ)∗AΨ,Φ

)−1(
(AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ

))k∥∥∥
Ap,u

≤ C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

×
∞∑
k=1

(
C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

‖
(
(AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ)‖Ap,u

)k

≤ C

∞∑
k=1

(
C‖Ψ − Ψ′‖q∗,p,u

)k ≤ C2‖Ψ − Ψ′‖q∗,p,u
1 − C‖Ψ − Ψ′‖q∗,p,u

≤ C2δ0
1 − Cδ0

< ∞

when δ0 in (5.2) is sufficiently small, where we have used the estimates in (5.2), (8.2),
(8.14), and (8.27). This proves that ((AΨ′,Φ)∗AΨ′,Φ)−1 ∈ Ap,u(Λ,Λ) as δ0 in (5.2)
is sufficiently small. Moreover using the argument in the proof of Theorem 3.1, we
conclude that Ψ′ is a stable average sampler for the space V2(Φ,Λ), and

‖R′ −R‖p,α ≤ C‖Ψ − Ψ′‖q∗,p,α(8.28)

for some positive constant C, where R′ = AΨ′,Φ((AΨ′,Φ)∗AΨ′,Φ)−1 = (R′(γ, λ))γ∈Γ,λ∈Λ

and R = AΨ,Φ((AΨ,Φ)∗AΨ,Φ)−1 = (R(γ, λ))γ∈Γ,λ∈Λ. Therefore the displayers Ψ̃′ =

{ψ̃′
γ : γ ∈ Γ} and Ψ̃ = {ψ̃γ : γ ∈ Γ} associated with the stable average samplers

Ψ′ and Ψ, respectively, which are defined by ψ′
γ =

∑
λ∈Λ R′(γ, λ)φλ and ψγ =∑

λ∈Λ R(γ, λ)φλ, γ ∈ Γ, satisfy

‖Ψ̃′ − Ψ̃‖q∗,p,u ≤ C‖R−R′‖Ap,u‖Φ‖q∗,p,u ≤ C‖Ψ − Ψ′‖q∗,p,u.(8.29)

Hence (5.3) follows.

8.7. Proof of Theorem 5.3. We can use the same technique as the one in
the proof of Theorem 5.2, except the matrices AΨ,Φ and AΨ′,Φ and the estimate
(8.26) are replaced with the matrices AδΓ,Φ = (φλ(γ))γ∈Γ,λ∈Λ and AδΓ′ ,Φ = (φλ(γ +
δγ))γ∈Γ,λ∈Λ, and the estimate ‖AδΓ,Φ − AδΓ′ ,Φ‖Ap,u ≤ ‖Φδ0‖∞,p,u for sequences {δγ}
with supγ∈Γ |δγ | ≤ δ0, respectively. We omit the details of the proof here.

8.8. Proof of Corollary 5.4. The first conclusion follows from Theorem 5.2 and
the equivalence between

∑L
l=1 ‖θn‖Wq∗ (Lp,u) and ‖Θ‖q∗,p,α, where Θ = {θl(·−γ) : 1 ≤

l ≤ L, γ ∈ Γ}.
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For any continuous function φ in W∞(Lp,u), there exist continuous functions
φn, n ≥ 1, with compact support such that limn→∞ ‖φn − φ‖W∞(Lp,u) = 0. Therefore
the modulus of continuity ω(φ, δ)(x) := sup|t|≤δ |φ(x + t) − φ(x)| of the continuous
function φ in W∞(Lp,u) has the property that ‖ω(φ, δ)‖W∞(Lp,u) → 0 as δ → 0 [2].
This together with (2.13) and Theorem 5.3 proves the second conclusion.

8.9. Proof of Theorem 6.1. For average sampling on the space Vr(Φ,Λ) with
the average sampler Ψ := {ψγ , γ ∈ Γ}, we introduce two local reconstruction approx-
imations of a function f ∈ Vr(Φ,Λ) on a bounded set K using average sampling data
on the R-neighborhood B(K,R) of the set K by

fK,R =
∑

γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃γ(8.30)

and

f1
K,R =

∑
γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃1
γ,K,R,(8.31)

where

ψ̃γ =
∑

λ1,λ2∈Λ

〈ψγ , φλ1
〉(A∗

Ψ,ΦAΨ,Φ)−1(λ1, λ2)φλ2

and

ψ̃1
γ,K,R =

∑
λ1,λ2∈B(K,2R)∩Λ

〈ψγ , φλ1〉(A∗
Ψ,ΦAΨ,Φ)−1(λ1, λ2)φλ2 .

For a bounded domain K and a positive number R > 0, define the projection
matrices PK,R and QK,R by

(PK,Rc)(λ) =

{
c(λ) if λ ∈ Λ ∩B(K,R),
0 if λ �∈ Λ ∩B(K,R)

for any c := (c(λ))λ∈Λ, and

(QK,Rd)(γ) =

{
d(γ) if γ ∈ Γ ∩B(K,R),
0 if γ �∈ Γ ∩B(K,R)

for any d := (d(γ))γ∈Γ.
To prove Theorem 6.1, we need the following estimates for f − fK,R and fK,R −

f1
K,R.

Lemma 8.3. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and set p′ =
p/(p− 1). Then there exists a positive constant C (independent of the bounded set K,
the positive number R ≥ 1, and the function f ∈ Vr(Φ,Λ)) such that

‖fK,R − f‖Lr(K) ≤ C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ\B(K,R)‖�r(Γ\B(K,R))(8.32)

and

‖fK,R − f1
K,R‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(〈f, ψγ〉)γ∈B(K,R)‖�r(B(K,R))(8.33)

for any compact set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
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Proof. Let K̃ ⊂ Zd be the minimal subset of Zd such that K ⊂ K̃ + [0, 1)d. For
1 ≤ r ≤ q and r < ∞,

‖f − fK,R‖rLr(K) =

∥∥∥∥∥
∑

γ �∈ΓK,R

〈f, ψγ〉ψ̃γ

∥∥∥∥∥
r

Lr(K)

≤
∫
K̃+[0,1]d

( ∑
γ �∈ΓK,R

|〈f, ψγ〉|r|ψ̃γ(x)|
)

×
( ∑

γ �∈ΓK,R

|ψ̃γ(x)|
)r−1

dx

≤
∑

γ �∈ΓK,R

|〈f, ψγ〉|r
∑
k∈K̃

‖ψ̃γ‖Lr(k+[0,1]d) ×
( ∑

γ �∈ΓK,R

‖ψ̃γ‖Lr(k+[0,1]d)

)r−1

≤
∥∥(〈f, ψγ〉)γ∈Γ\ΓK,R

‖r�r(Γ\ΓK,R) ×
(

sup
γ �∈ΓK,R

∑
k∈K̃

‖φ̃γ‖Lr(k+[0,1]d)

)

×
(

sup
k∈K̃

∑
γ �∈ΓK,R

‖ψ̃γ‖Lr(k+[0,1]d)

)r−1

(8.34)

where we set ΓK,R = Γ ∩B(K,R). Then for all r ∈ [1,∞) with 1 ≤ r ≤ q, we have

‖f − fK,R‖Lr(K) ≤ C‖(〈f, ψγ〉)γ∈Γ\ΓK,R
‖�r(Γ\ΓK,R)

×‖u‖Lp′ (Rd\B(R))‖Ψ̃‖r,p,u.(8.35)

For r = ∞, it follows from r ≤ q that q = ∞. Then using standard modification to
the estimate (8.35), we obtain

‖f − fK,R‖L∞(K) ≤ C‖(〈f, ψγ〉)γ∈Γ\ΓK,R
‖�∞(Γ\ΓK,R)

×‖u‖Lp′ (Rd\B(R))‖Ψ̃‖∞,p,u.(8.36)

Then the local estimate (8.32) follows from (8.18), (8.35), and (8.36).
Set RΦ,r = (‖φλ‖Lr(k+[0,1]d))λ∈Λ,k∈Zd and |A| = (|aλ,λ′ |) for a matrix A = (aλ,λ′).

Then it follows from (2.7), (2.9), and Lemma 8.1 that

sup
k∈K̃

∑
γ∈B(K,R)∩Γ

‖ψ̃γ − ψ̃1
γ,K,R‖Lr(k+[0,1]d)

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

‖ψ̃γ − ψ̃1
γ,K,R‖Lr(k+[0,1]d)

≤ C

(
sup
k∈K̃

∑
γ∈B(K,R)∩Γ

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

)
( ∑

λ∈B(K,2R)∩Λ

∑
λ′∈Λ\B(K,2R)

+
∑

λ∈Λ\B(K,2R)

∑
λ′∈Λ

)

|〈ψγ , φλ〉| |(A∗
Ψ,ΦAΨ,Φ)−1(λ, λ′)| ‖φλ′‖Lr(k+[0,1]d)

≤ C‖QK,R |AΨ,Φ| PK,2R |(A∗
Ψ,ΦAΨ,Φ)−1| (I − PK,2R)RΦ,rPK,1‖A1,u0

+C‖QK,R |AΨ,Φ| (I − PK,2R) |(A∗
Ψ,ΦAΨ,Φ)−1| RΦ,rPK,1‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

‖ |AΨ,Φ| PK,2R |(A∗
Ψ,ΦAΨ,Φ)−1| ‖Ap,u‖RΦ,r‖Ap,u

+C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖Ap,u‖ |(A∗
Ψ,ΦAΨ,Φ)−1| RΦ,r‖Ap,u

≤ C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖Ap,u‖(A∗
Ψ,ΦAΨ,Φ)−1‖Ap,u‖Φ‖r,p,u.(8.37)



1416 QIYU SUN

This together with (8.10) and (8.14) proves (8.33).
To prove Theorem 6.1, we need another lemma.
Lemma 8.4. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and AΨ,Φ be as

in (4.2). Then there exist positive constants C and δ0 (independent of the bounded set
K and the positive number R ≥ 1) such that

‖PK,2R(A∗
Ψ,ΦAΨ,Φ)−1PK,2R − PK,2RRΨ,Φ,K,3RPK,2R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

(8.38)

holds for all bounded sets K and all positive numbers R with ‖u‖Lp′ (Rd\B(R)) ≤ δ0,

where RΨ,Φ,K,3R is the generalized inverse of the matrix PK,3RÃΨ,Φ,K,RPK,3R, that is,

RΨ,Φ,K,3RPK,3RÃΨ,Φ,K,RPK,3R = PK,3R and PK,3RRΨ,Φ,K,3RPK,3R = RΨ,Φ,K,3R.
Proof. By (8.13), for any A ≥ (‖A∗

Ψ,ΦAΨ,Φ‖B2)1/2 there exists a matrix B ∈
Ap,u(Λ,Λ) such that

A∗
Ψ,ΦAΨ,Φ = A2(I −B)(8.39)

and

‖B‖B2 < 1,(8.40)

where I is the usual unit matrix. By (8.4), (8.40), and the estimates ‖PK,3RBPK,3R‖B2 ≤
‖B‖B2 and ‖PK,3RBPK,3R‖Ap,u ≤ ‖B‖Ap,u , we have

‖Bk‖Ap,u
+ ‖(PK,3RBPK,3R)k‖Ap,u

≤ C

(
‖B‖B2 + 1

2

)k

, k ≥ 1.(8.41)

Therefore for k ≥ 2,∥∥∥∥∥PK,2R

∞∑
k=1

BkPK,2R − PK,2R

∞∑
k=1

(PK,3RBPK,3R)kPK,2R

∥∥∥∥∥
A1,u0

≤
∞∑
k=2

k−2∑
l=0

‖PK,2R(PK,3RBPK,3R)lB(I − PK,3R)Bk−1−lPK,2R‖A1,u0

≤ C

∞∑
k=2

k−2∑
l=0

‖PK,2R(PK,3RBPK,3R)lB(I − PK,3R)‖A1,u0

×‖(I − PK,3R)Bk−1−lPK,2R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

∞∑
k=2

k−2∑
l=0

‖(PK,3RBPK,3R)lB‖Ap,u
‖Bk−1−l‖Ap,u

≤ C‖u‖2
Lp′ (Rd\B(R))

‖B‖Ap,u

∞∑
k=2

(k − 1)

(
‖B‖B2 + 1

2

)k−1

≤ C‖u‖2
Lp′ (Rd\B(R))

,(8.42)

where we have used (8.40) and (8.41) to obtain the last inequality.
Write

PK,3RÃΨ,Φ,K,RPK,3R = PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R = A2(PK,3R −B′),(8.43)
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where A is the positive constant in (8.39). Since

‖PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R − PK,3RA

∗
Ψ,ΦAΨ,ΦPK,3R‖B2

≤ ‖PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R − PK,3RA

∗
Ψ,ΦAΨ,ΦPK,3R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖2
Ap,u

,(8.44)

we have that

‖PK,3RBPK,3R −B′‖B2 ≤ D0‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖2
Ap,u

≤ 1 − ‖B‖B2

3
,(8.45)

when ‖u‖2
Lp′ (Rd\B(R))

≤ δ0 for some sufficiently small positive number δ0, where D0

is a positive constant. Therefore

‖(B′)k‖Ap,u
≤ C

(
‖B‖B2 + 1

2

)k

, k ≥ 1,(8.46)

by (8.4), (8.40), and (8.45). Similar to the argument in the proof of the estimate
(8.42), we have

∥∥∥∥∥PK,2R

∞∑
k=1

(B′)kPK,2R − PK,2R

∞∑
k=1

(PK,3RBPK,3R)kPK,2R

∥∥∥∥∥
A1,u0

≤
∞∑
k=1

k−1∑
l=0

‖(B′)l(B′ − PK,3RBPK,3R)(PK,3RBPK,3R)k−1−l‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R)

‖AΨ,Φ‖Ap,u

∞∑
k=1

k

(
‖B‖B2 + 1

2

)k

≤ C‖u‖2
Lp′ (Rd\B(R))

,(8.47)

where the second inequality follows from (8.41), (8.44), (8.45), and (8.46). Combining
(8.39), (8.42), (8.43), and (8.47) proves the desired estimate (8.38).

Now we start to prove Theorem 6.1.
Proof of Theorem 6.1. By Lemma 8.4,

sup
λ∈B(K,2R)

∑
λ′∈B(K,2R)

|(A∗
Ψ,ΦAΨ,Φ)−1(λ, λ′)−(ÃΨ,Φ,K,R)−1(λ, λ′)| ≤ C‖u‖2

Lp′ (Rd\B(R))
,

which, together with (8.9) and Lemma 8.1, implies that(
sup
k∈K̃

∑
γ∈B(K,R)∩Γ

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

)
‖ψ̃a

γ,K,R − ψ̃1
γ,K,R‖Lr(k+[0,1]d)

≤ C‖u‖2
Lp′ (Rd\B(R))

.(8.48)

Therefore estimate (6.7) follows from (8.48), Proposition 2.1, and Lemma 8.3.

8.10. Proof of Theorem 6.2. Theorem 6.2 can be proved using an argument
similar to the one in the proof of Theorem 6.1, except the average sampler Ψ is
replaced with the ideal sampler δΓ. We omit the details of the proof here.
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8.11. Proof of Theorem 6.3. For any bounded set K, we let

V2(Φ,Λ ∩K) =

{ ∑
λ∈Λ∩K

c(λ)φλ,
∑

λ∈Λ∩K

|c(λ)|2 < ∞
}
.

By the Riesz assumption on Φ,

C−1‖c‖�2(Λ∩K) ≤
∥∥∥∥∥

∑
λ∈Λ∩K

c(λ)φλ

∥∥∥∥∥
L2(Rd)

≤ C‖c‖�2(Λ∩K)(8.49)

for any sequence c := (c(λ))λ∈Λ∩K . For any R ≥ 1, it follows by the localization
assumption on the generator Φ that∥∥∥∥∥

∑
λ∈Λ∩K

c(λ)φλ

∥∥∥∥∥
2

L2(Rd\B(K,R))

≤
∑

λ∈Λ∩K

|c(λ)|2
∑

k∈Zd\B(K,R−1)

‖φλ‖L2(k+[0,1]d)

( ∑
λ′∈Λ∩K

‖φλ′‖L2(k+[0,1]d)

)

≤ C‖Φ‖2
2,p,u‖u−1‖2

Lp′ (Rd\B(R))

∑
λ∈Λ∩K

|c(λ)|2.(8.50)

We recall that

‖u−1‖Lp′ (Rd\B(R)) → 0 as R → ∞(8.51)

by (2.17). Therefore by (8.49), (8.50), and (8.51), there exist positive constants C
and R1 such that

C−1‖c‖�2(Λ∩K) ≤
∥∥∥∥∥

∑
λ∈Λ∩K

c(λ)φλ

∥∥∥∥∥
L2(B(K,R1))

≤ C‖c‖�2(Λ∩K)(8.52)

for all sequences c := (c(λ))λ∈Λ∩K .
Set K1 = B(K,R1). For the average sampling/reconstruction process, there

exists a positive constant C by Theorem 6.1 and Lemma 8.1 such that for any R ≥ 1
and f =

∑
λ∈Λ∩K c(λ)φλ,

‖f̃a
K1,R − f‖L2(K1) ≤ C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ‖�2(Γ)

≤ C‖u−1‖Lp′ (Rd\B(R))‖AΨ,Φ‖Ap,u

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

.(8.53)

Similarly for the ideal sampling/reconstruction procedure, there exists a positive con-
stant C such that for any R ≥ 1 and f =

∑
λ∈Λ∩K c(λ)φλ,

‖f̃ i
K1,R − f‖L2(K1) ≤ C‖u−1‖Lp′ (Rd\B(R))‖AδΓ,Φ‖Ap,u

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

.(8.54)

Therefore there exists a positive constant R2 independent of K by (8.9) and (8.51)–
(8.54) so that

C−1

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

≤ ‖fa
K1,R2

‖L2(K1) ≤ C

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

(8.55)
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for the average sampling/reconstruction process, and

C−1

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

≤ ‖f i
K1,R2

‖L2(K1) ≤ C

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

(8.56)

for the ideal sampling/reconstruction process. Therefore conclusion (6.9) follows by
letting R0 = R1 + R2.

8.12. Proof of Theorem 7.1. Let AΨ,Φ be as in (4.2), and the matrix B ∈
Ap,u(Λ,Λ) be as in (8.39) and (8.40). Write the sequence (aγ)γ∈Γ as a vector, to be
denoted by a, and the family of functions Φ as a vector, which is still denoted by Φ.
We claim that

fn =

n∑
k=0

aTAΨ,ΦB
kΦ, n ≥ 0,(8.57)

where aT denotes the transpose of the vector a. The above claim is obviously true
for n = 0. Inductively we assume that the claim is true for n. By (7.1), (8.39), and
the inductive hypothesis, we have

fn+1 = aTAΨ,ΦΦ +

n∑
k=0

aTAΨ,ΦB
kΦ −A−2

n∑
k=0

aTAΨ,ΦB
kA∗

Ψ,ΦAΨ,ΦΦ

= aTAΨ,ΦΦ +

n∑
k=0

aTAΨ,ΦB
kΦ −

n∑
k=0

aTAΨ,ΦB
k(I −B)Φ

=

n+1∑
k=0

aTAΨ,ΦB
kΦ.

This proves claim (8.57) by induction.
By (8.9), (8.41), (8.57), and Proposition 2.1, we have

‖fn+1 − fn‖r = ‖aTAΨ,ΦB
n+1Φ‖r

≤ C‖a‖�r(Γ)‖AΨ,Φ‖Ap,u‖Bn+1‖Ap,u‖Φ‖q,p,u

≤ C

(
‖B‖B2 + 1

2

)n

‖a‖�r(Γ) for all n ≥ 0,(8.58)

where a := (aγ)γ∈Γ. The first conclusion then follows from (8.58).
Now we assume that the initial data a := (aγ)γ∈Γ are obtained from average

sampling a function f ∈ Vr(Φ,Λ). Taking limits at both sides of fn = f0 + fn−1 −
A−2Tasfn−1 and using the Riesz property of Φ, we obtain∑

γ∈Γ

〈f − f∞, ψγ〉〈ψγ , φλ〉 = 0 for all λ ∈ Λ.(8.59)

Write

f − f∞ =
∑
λ∈Λ

dλφλ(8.60)

for some �r sequence d = (dλ)λ∈Λ. We then may write (8.59) as

dTA∗
Ψ,ΦAΨ,Φ = 0.(8.61)

Combining (8.13), (8.60), and (8.61) leads to the second conclusion of the theorem
that the limit function f∞ agrees with the original function f .
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8.13. Proof of Theorem 7.2. We may use the same argument as in the proof
of Theorem 7.1 with standard modification, for instance, the matrix AΨ,Φ in the proof
of Theorem 7.1 by the matrix AδΓ,Φ := (φλ(γ))γ∈Γ,λ∈Λ. We omit the details of the
proof here.
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[25] H. G. Feichtinger and K. Gröchenig, Irregular sampling theorems and series expansions of
band-limited functions, J. Math. Anal. Appl., 167 (1992), pp. 530–556.
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ON THE PARTIAL DIFFERENTIAL EQUATIONS OF
ELECTROSTATIC MEMS DEVICES: STATIONARY CASE∗

NASSIF GHOUSSOUB† AND YUJIN GUO†

Abstract. We analyze the nonlinear elliptic problem Δu =
λf(x)

(1+u)2
on a bounded domain

Ω of RN with Dirichlet boundary conditions. This equation models a simple electrostatic micro-
electromechanical system (MEMS) device consisting of a thin dielectric elastic membrane with bound-
ary supported at 0 above a rigid ground plate located at −1. When a voltage—represented here by
λ—is applied, the membrane deflects towards the ground plate, and a snap-through may occur when
it exceeds a certain critical value λ∗ (pull-in voltage). This creates a so-called pull-in instability,
which greatly affects the design of many devices. The mathematical model leads to a nonlinear
parabolic problem for the dynamic deflection of the elastic membrane, which will be considered in
a forthcoming paper. Here, we focus on the stationary equation and on estimates for λ∗ in terms
of material properties of the membrane, which can be fabricated with a spatially varying dielectric
permittivity profile f . Applying analytical and numerical techniques, we establish upper and lower
bounds for λ∗ in terms of the volume and shape of the domain, the dimension of the ambient space,
as well as the permittivity profile. We analyze the first branch of stable steady states when λ < λ∗

and prove that a semistable (extremal) solution exists at λ = λ∗ in dimension 1 ≤ N ≤ 7, and that
classical extremal solutions may not exist for dimension N ≥ 8. More refined properties of stable
steady states—such as regularity, stability, uniqueness, multiplicity, energy estimates, and compar-
ison results—are also established. The analysis of branches of unstable solutions is more elaborate
and is tackled in the companion paper [P. Esposito, N. Ghoussoub, and Y. Guo, Comm. Pure Appl.
Math., (2006), to appear].
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1. Introduction. Micro-electromechanical systems (MEMS) are often used to
combine electronics with microsize mechanical devices in the design of various types
of microscopic machinery. MEMS devices have therefore become key components of
many commercial systems, including accelerometers for airbag deployment in auto-
mobiles, ink jet printer heads, optical switches, chemical sensors, and so on (see, for
example, [20]). The key component of many modern MEMS is a simple idealized elec-
trostatic device consisting of a thin and deformable elastic membrane that is held fixed
along its boundary and which lies above a rigid grounded plate. This elastic membrane
is modeled as a dielectric with a small but finite thickness. The upper surface of the
membrane is coated with a negligibly thin metallic conducting film. When a voltage
V is applied to the conducting film, the thin dielectric membrane deflects towards the
bottom plate, and when V is increased beyond a certain critical value V ∗—known as
the pull-in voltage—the steady state of the elastic membrane is lost and proceeds to
touchdown or snap through at a finite time, creating the so-called pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differential
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equation for the dimensionless dynamic deflection of the membrane, was derived and
analyzed in [10] and [12]. In the damping-dominated limit, and using a narrow-
gap asymptotic analysis, the dimensionless dynamic deflection u = u(x, t) of the
membrane on a bounded domain Ω in R2 is found to satisfy the following parabolic
problem:

∂u

∂t
= Δu− λf(x)

(1 + u)2
for x ∈ Ω,

u(x, 0) = 0 for x ∈ Ω,
u(x, t) = 0 for x ∈ ∂Ω.

(1.1)

The initial condition in (1.1) assumes that the membrane is initially undeflected and
that the voltage is suddenly applied to the upper surface of the membrane at time
t = 0. The parameter λ > 0 in (1.1) characterizes the relative strength of the
electrostatic and mechanical forces in the system, and is given in terms of the applied

voltage V by λ = ε0V
2L2

2Ted3 , where d is the undeflected gap size, L is the length scale of
the membrane, Te is the tension of the membrane, and ε0 is the permittivity of free
space in the gap between the membrane and the bottom plate. From now on we shall
use the parameter λ and λ∗ to represent the applied voltage V and pull-in voltage
V ∗, respectively. Referred to as the permittivity profile, f(x) in (1.1) is defined by the
ratio f(x) = ε0

ε2(x) , where ε2(x) is the dielectric permittivity of the thin membrane.

There are several issues that must be considered in the actual design of MEMS
devices. Typically one of the primary goals is to achieve the maximum possible stable
deflection before touchdown occurs, which is referred to as the pull-in distance (cf.
[12] and [19]). Another consideration is to increase the stable operating range of the
device by improving the pull-in voltage λ∗ subject to the constraint that the range of
the applied voltage is limited by the available power supply. Such improvements in
the stable operating range are important for the design of certain MEMS devices such
as microresonators. One way of achieving larger values of λ∗, while simultaneously
increasing the pull-in distance, was studied in [19] and [12] and consists of introducing
a spatially varying dielectric permittivity ε2(x) of the membrane. The idea is to locate
the region where the membrane deflection would normally be largest under a spatially
uniform permittivity, and then make sure that a new dielectric permittivity ε2(x) is
largest—and consequently the profile f(x) smallest—in that region.

Pelesko studied in [19] the steady states of (1.1), when f(x) is assumed to be
bounded away from zero, i.e., 0 < C ≤ f(x) ≤ 1 for all x ∈ Ω. He established in
this case an upper bound for λ∗, and derived numerical results for the power-law per-
mittivity profile, from which the larger pull-in voltage and thereby the larger pull-in
distance, existence, and multiplicity of the steady states were observed. From the
strictly mathematical point of view, it turned out that—at least for f ≡ 1—there
already exist in the literature many interesting results concerning the properties of
the branch of semistable solutions for Dirichlet boundary value problems of the form
−Δu = λh(u), where h is a regular nonlinearity (e.g., h(u) = eu or (1+u)p for p > 1).
See, for example, the seminal papers [8, 14, 15] and also [6] for a survey on the subject
and an exhaustive list of related references. After a first version of this paper was cir-
culated, X. Cabre informed us that even the case of singular nonlinearities involved in
MEMS devices had already been considered in [4] and in a more general context in [17].

Recently, Guo, Pan, and Ward studied in [12] the dynamic behavior of (1.1),
which is also of great practical interest. They considered a more general class of
profiles f(x), where the membrane is allowed to be perfectly conducting, i.e., 0 ≤
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f(x) ≤ 1 for all x ∈ Ω, with f(x) > 0 on a subset of positive measure of Ω. By using
both analytical and numerical techniques, they obtained larger pull-in voltage λ∗ and
larger pull-in distance for different classes of varying permittivity profiles. Besides
the above practical considerations, the model turned out to be a very rich source of
interesting mathematical phenomena. Numerics give lots of information and point to
many conjectures, but the available arsenal of nonlinear analysis and PDE techniques
can tackle only a precious few, even in the case of power-law permittivity profiles
f(x) = |x|α.

This paper is a first in a series where we try to provide a rigorous mathematical
analysis for various phenomena related to this model, which were observed numeri-
cally. Estimates on the pull-in voltage λ∗ depend on the size and geometry of the
domain, but also on the dimension of the ambient space and the permittivity profile
f . A similar dependence occurs for the refined properties of steady states—such as
regularity, stability, uniqueness, multiplicity, energy estimates, and comparison re-
sults. The same complexity carries to the dynamic case, where issues related to the
“touchdown profile”—in finite or infinite time—or to global convergence towards a
stable steady state present many interesting mathematical challenges.

In this first paper, we focus on the stable and semistable stationary deflections
of the membrane, while the unstable case is considered in [9], and the dynamic case
in [11]. For convenience, we shall set v = −u in such a way that our discussion will
center on the following elliptic problem:

(S)λ − Δv =
λf(x)

(1 − v)2
and 0 < v < 1 for x ∈ Ω , while v = 0 on ∂Ω.

Throughout the paper and unless mentioned otherwise, solutions for (S)λ will be taken
in the classical sense. The permittivity profile f will be allowed to vanish somewhere,
and will be assumed to satisfy

f ∈ Cα(Ω̄) for some α ∈ (0, 1], 0 ≤ f ≤ 1, and
f > 0 on a subset of Ω of positive measure.

(1.2)

This paper is organized as follows. In section 2 we mainly show the existence
of a specific pull-in voltage and study its dependence on the size and shape of the
domain as well as on the permittivity profile. These monotonicity properties will
help us establish in section 3 new lower and upper bound estimates on the pull-in
voltage. We shall write |Ω| for the volume of a domain Ω in RN and P (Ω) :=

∫
∂Ω

ds
for its “perimeter,” with ω

N
referring to the volume of the unit ball B1(0) in RN .

We denote by μΩ the first eigenvalue of −Δ on H1
0 (Ω), and by φΩ the corresponding

positive eigenfunction normalized with
∫
Ω
φΩdx = 1.

Theorem 1.1. Assume that f is a function satisfying (1.2) on a bounded domain
Ω; then there exists a finite pull-in voltage λ∗ := λ∗(Ω, f) > 0 such that we have the
following:

1. If 0 ≤ λ < λ∗, there exists at least one solution for (S)λ.
2. If λ > λ∗, there is no solution for (S)λ.
3. The following bounds on λ∗ hold for any bounded domain Ω:

max

{
8N

27
,

6N − 8

9

}
1

supΩ f

(
ω

N

|Ω|

) 2
N

≤ λ∗(Ω),(1.3)

min

{
λ̄1 :=

4μΩ

27 inf
x∈Ω

f(x)
, λ̄2 :=

μΩ

3
∫
Ω
fφΩ dx

}
≥ λ∗(Ω).(1.4)
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0
0
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f(x) ≡ 1 with different ranges of N

  u(0) 

N = 1 2 ≤ N ≤ 7

N ≥ 8 

λ* λ
*
 λ* λ* = (6N−8)/9

λ 

Fig. 1.1. Plots of u(0) versus λ for the constant permittivity profile f(x) ≡ 1 defined in the
unit ball B1(0) ⊂ RN with different ranges of N . In the case of N ≥ 8, we have λ∗ = (6N − 8)/9.

4. If Ω is a strictly star-shaped domain, that is if x ·ν(x) ≥ a > 0 for all x ∈ ∂Ω,
where ν(x) is the unit outer normal at x ∈ ∂Ω, and if f ≡ 1, then

λ∗(Ω) ≤ λ̄3 =
(N + 2)2P (Ω)

8aN |Ω| .

In particular, if Ω = B1(0) ⊂ RN , then we have the bound

λ∗(B1(0)) ≤ (N + 2)2

8
.

5. If f(x) ≡ |x|α with α ≥ 0 and Ω is a ball of radius R, then we have

λ∗(BR, |x|α) ≥ max

{
4(2 + α)(N + α)

27R(2+α)
,
(2 + α)(3N + α− 4)

9R(2+α)

}
.(1.5)

Moreover, if N ≥ 8 and 0 ≤ α ≤ α∗∗(N) := 4−6N+3
√

6(N−2)
4 , we have

λ∗(B1, |x|α) =
(2 + α)(3N + α− 4)

9
.(1.6)

In section 3.3 we give some numerical estimates on λ∗ to compare them with
the analytic bounds given in Theorem 1.1 above. Note that the upper bound λ̄1 is
relevant only when f is bounded away from 0, while the upper bound λ̄2 is valid for all
permittivity profiles. However, the order between these two upper bounds can vary
in general. For example, in the case of exponential permittivity profiles of the form
f(x) = eα(|x|2−1) on the unit disc, one can see that λ̄1 is a better upper bound than
λ̄2 for small α, while the reverse holds true for larger values of α. The lower bounds in
(1.3) and (1.5) can be improved in small dimensions, but they are optimal—at least
for the ball—in dimension larger than 8.

We also consider issues of uniqueness and multiplicity of solutions for (S)λ with
0 < λ ≤ λ∗. The bifurcation diagrams in Figure 1.1 show the complexity of the
situation, even in the radially symmetric case. One can see that the number of
branches—and of solutions—is closely connected to the space dimension, a fact that
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we establish analytically in section section 4, by focussing on the very first branch of
solutions considered to be “minimal” in the following way.

Definition 1.2. A solution uλ(x) of (S)λ is said to be minimal if for any other
solution u of (S)λ we have uλ(x) ≤ u(x) for all x ∈ Ω.

One can also consider for any solution u of (S)λ the linearized operator at u

defined by Lu,λ = −Δ − 2λf(x)
(1−u)3 and its eigenvalues {μk,λ(u); k = 1, 2, . . .}. The first

eigenvalue is then simple and is given by

μ1,λ(u) = inf

{
〈Lu,λφ, φ〉H1

0 (Ω) ; φ ∈ C∞
0 (Ω),

∫
Ω

|φ(x)|2dx = 1

}
.

Stable solutions (resp., semi-stable solutions) of (S)λ are those solutions u such that
μ1,λ(u) > 0 (resp., μ1,λ(u) ≥ 0). Our main results in this direction can be stated as
follows.

Theorem 1.3. Assume that f is a function satisfying (1.2) on a bounded domain
Ω, and consider λ∗ := λ∗(Ω, f) as defined in Theorem 1.1. Then the following hold:

1. For any 0 ≤ λ < λ∗ there exists a unique minimal solution uλ of (S)λ such
that μ1,λ(uλ) > 0. Moreover, for each x ∈ Ω the function λ → uλ(x) is
strictly increasing and differentiable on (0, λ∗).

2. If 1 ≤ N ≤ 7, then one has supλ∈(0,λ∗) ‖ uλ ‖∞< 1, and consequently u∗ =

limλ↑λ∗ uλ exists in C2,α(Ω̄) and is a solution for (S)λ∗ such that μ1,λ∗(u∗) =
0. In particular, u∗—often referred to as the extremal solution of problem
(S)λ—is unique.

3. On the other hand, if N ≥ 8, f(x) = |x|α with 0 ≤ α ≤ α∗∗(N) :=
4−6N+3

√
6(N−2)

4 , and Ω is the unit ball, then the extremal solution is nec-

essarily u∗(x) = 1 − |x| 2+α
3 and is therefore singular.

We note that, in general, the function u∗ exists in any dimension, does solve (S)λ∗

in a suitable weak sense, and is the unique solution in an appropriate class. The
above theorem says that it is, however, a classical solution in dimensions 1 ≤ N ≤ 7,
and this will allow us to start another branch of nonminimal (unstable) solutions.
Indeed, we show in section 5—following ideas of Crandall and Rabinowitz [8]—that,
for 1 ≤ N ≤ 7 and for λ close enough to λ∗, there exists a unique second branch Uλ

of solutions for (S)λ, bifurcating from u∗, with

μ1,λ(Uλ) < 0 while μ2,λ(Uλ) > 0.(1.7)

In the companion paper [9], we shall provide a variational (mountain pass) charac-
terization of these unstable solutions, and more importantly we establish—under the
same dimension restriction as above—a compactness result along the second branch
of unstable solutions leading to a—nonzero—second bifurcation point.

Issues of uniqueness, multiplicity, and other qualitative properties of the solutions
for (S)λ are still far from being well understood, even in the radially symmetric case
which we consider in section 6. Some of the classical work of Joseph and Lundgren [14]
and many that followed can be adapted to this situation when the permittivity profile
is constant. However, the case of a power-law permittivity profile f(x) = |x|α defined
in a unit ball already presents a much richer situation. In section 6 we present some
numerical evidence for various conjectures relating to this case, some of which have
been tackled in [9]. A detailed and involved analysis of compactness along the un-
stable branches will be discussed there, as well as some information about the second
bifurcation point.
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2. The pull-in voltage. In this section, we establish the existence and some
monotonicity properties for the pull-in voltage λ∗, which is defined as

λ∗(Ω, f) = sup{λ > 0 | (S)λ possesses at least one solution}.(2.1)

2.1. Existence of the pull-in voltage. For any bounded domain Γ in RN ,
we denote by μ

Γ the first eigenvalue of −Δ on H1
0 (Γ) and by ψ

Γ
the corresponding

positive eigenfunction normalized with supx∈Γ ψΓ = 1. We also associate with any
domain Ω in RN the following parameter:

ν
Ω = sup

{
μΓH(inf

Ω
ψΓ); Γ domain of RN , Γ ⊃ Ω̄

}
,(2.2)

where H is the function H(t) = t(t+1+2
√
t)

(t+1+
√
t)3

.

Theorem 2.1. Assume that f is a function satisfying (1.2) on a bounded domain
Ω in RN; then there exists a finite pull-in voltage λ∗ := λ∗(Ω, f) > 0 such that

1. if λ < λ∗, there exists at least one solution for (S)λ;
2. if λ > λ∗, there is no solution for (S)λ.

Moreover, we have the lower bound

λ∗(Ω, f) ≥ νΩ

supx∈Ω f(x)
.(2.3)

Proof. We need to show that (S)λ has at least one solution when λ <
ν
Ω

supΩ f(x) . It

is clear that u ≡ 0 is a subsolution of (S)λ for all λ > 0. To construct a super-solution,
consider a bounded domain Γ ⊃ Ω̄ with smooth boundary, and let (μ

Γ , ψΓ) be its first
eigenpair normalized in such a way that

sup
x∈Γ

ψΓ(x) = 1 and inf
x∈Ω

ψΓ(x) := s1 > 0.

We construct a supersolution in the form ψ = Aψ
Γ , where A is a scalar to be chosen

later. First, we must have Aψ
Γ ≥ 0 on ∂Ω and 0 < 1−AψΓ < 1 in Ω, which requires

that 0 < A < 1. We also require

−Δψ − λf(x)

(1 −Aψ)2
≥ 0 in Ω,(2.4)

which can be satisfied as long as μ
ΓA ψΓ ≥ λ supΩ f(x)

(1−A ψ
Γ
)2 in Ω or

λ sup
Ω

f(x) < β(A,Γ) := μΓ inf{g(sA); s ∈ [s1(Γ), 1]},(2.5)

where g(s) = s(1 − s)2. In other words, λ∗ supΩ f(x) ≥ sup{β(A,Γ); 0 < A < 1,
Γ ⊃ Ω̄}, and therefore it remains to show that

νΩ = sup{β(A,Γ); 0 < A < 1,Γ ⊃ Ω̄}.(2.6)

For that, we note first that infs∈[s1,1] g(As) = min
{
g(As1), g(A)

}
. We also have that

g(As1) ≤ g(A) if and only if A2(s3
1 − 1) − 2A(s2

1 − 1) + (s1 − 1) ≤ 0, which happens
if and only if A2(s2

1 + s1 + 1)− 2A(s1 + 1) + 1 ≥ 0 or if and only if either A ≤ A− or
A ≥ A+, where

A+ =
s1 + 1 +

√
s1

s2
1 + 1 + s1

=
1

s1 + 1 −√
s1

, A− =
s1 + 1 −√

s1

s2
1 + 1 + s1

=
1

s1 + 1 +
√
s1

.
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Since A− < 1 < A+, we get that

G(A) = inf
s∈[s1,1]

g(As) =

{
g(As1) if 0 ≤ A ≤ A−,

g(A) if A− ≤ A ≤ 1.
(2.7)

We now have that dG
dA = g′(As1)s1 ≥ 0 for all 0 ≤ A ≤ A−. And since A− ≥ 1

3 , we

have dG
dA = g′(A) ≤ 0 for all A− ≤ A ≤ 1. It follows that

sup
0<A<1

inf
s∈[s1,1]

g(As) = sup
0<A<1

G(A) = G(A−) = g(A−)

=
1

s1 + 1 +
√
s1

(
1 − 1

s1 + 1 +
√
s1

)2

=
s1(s1 + 1 + 2

√
s1)

(s1 + 1 +
√
s1)3

= H

(
inf
Ω

ψΓ

)
,

which proves our lower estimate.
Now we know that λ∗ > 0, so we can pick λ ∈ (0, λ∗) and use the definition of λ∗

to find a λ̄ ∈ (λ, λ∗) such that (S)λ̄ has a solution uλ̄; i.e.,

−Δuλ̄ = λ̄f(x)
(1−uλ̄)2 , 0 ≤ uλ̄ < 1, on Ω and uλ̄ = 0 on ∂Ω,

and in particular −Δuλ̄ ≥ λf(x)
(1−uλ̄)2 on Ω, which then implies that uλ̄ is a supersolution

of (S)λ. Since u ≡ 0 is a subsolution of (S)λ, we can again conclude that there is a
solution uλ of (S)λ.

It is also easy to show that λ∗ is finite, since if (S)λ has at least one solution
0 < u < 1, then, by integrating against the first (positive) eigenfunction φ

Ω , we get

+∞ > μ
Ω
≥ μ

Ω

∫
Ω

uφ
Ω

= −
∫

Ω

uΔφ
Ω = −

∫
Ω

φ
Ω
Δu

= λ

∫
Ω

φΩf

(1 − u)2
dx ≥ λ

∫
Ω

φ
Ω
fdx(2.8)

and therefore λ∗ < +∞. The definition of λ∗ implies that there is no solution of (S)λ
for any λ > λ∗.

2.2. Monotonicity results for the pull-in voltage. In this subsection, we
give a more precise characterization of λ∗, namely as the endpoint for the branch
of minimal solutions. This will allow us to establish various monotonicity properties
for λ∗ that will help in the estimates given in the next subsections. First we give a
recursive scheme for the construction of minimal solutions.

Theorem 2.2. Assume that f is a function satisfying (1.2) on a bounded domain
Ω in RN; then for any 0 < λ < λ∗(Ω, f) there exists a unique minimal positive
solution uλ for (S)λ. It is obtained as the limit of the sequence {un(λ;x)} constructed
recursively as follows: u0 ≡ 0 in Ω and, for each n ≥ 1,

−Δun =
λf(x)

(1 − un−1)2
, x ∈ Ω ;

0 ≤ un < 1, x ∈ Ω ; un = 0, x ∈ ∂Ω.

(2.9)
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Proof. Let u be any positive solution for (S)λ, and consider the sequence
{un(λ;x)} defined in (2.9). Clearly u(x) > u0 ≡ 0 in Ω, and whenever u(x) ≥ un−1

in Ω, then

−Δ(u−un) = λf(x)

[
1

(1 − u)2
− 1

(1 − un−1)2

]
≥ 0, x ∈ Ω ; u−un = 0, x ∈ ∂Ω.

The maximum principle and an immediate induction yield that 1 > u(x) ≥ un in
Ω for all n ≥ 0. In a similar way, the maximum principle implies that the sequence
{un(λ;x)} is monotone increasing. Therefore, {un(λ;x)} converges uniformly to a
positive solution uλ(x), satisfying u(x) ≥ uλ(x) in Ω, which is a minimal positive
solution of (S)λ. It is also clear that uλ is unique in this class of solutions.

Remark 2.1. Let g(x, ξ,Ω) be Green’s function of the Laplace operator, with
g(x, ξ,Ω) = 0 on ∂Ω. Then the iteration in (2.9) can be replaced by u0 ≡ 0 in Ω, and
for each n ≥ 1,

un(λ;x) = λ

∫
Ω

f(ξ)g(x, ξ,Ω)

(1 − un−1(λ; ξ))2
dξ, x ∈ Ω ; un(λ;x) = 0, x ∈ ∂Ω.(2.10)

The same reasoning as above yields that limn→∞ un(λ;x) = uλ(x) for all x ∈ Ω.
The above construction of solutions yields the following monotonicity result for

the pull-in voltage.
Proposition 2.3. If Ω1 ⊂ Ω2 and if f is a function satisfying (1.2) on Ω2,

then λ∗(Ω1) ≥ λ∗(Ω2) and the corresponding minimal solutions satisfy uΩ1
(λ, x) ≤

uΩ2
(λ, x) on Ω1 for every 0 < λ < λ∗(Ω2).
Proof. Again the method of sub/supersolutions immediately yields that λ∗(Ω1) ≥

λ∗(Ω2). Now consider, for i = 1, 2, the sequences {un(λ, x,Ωi)} on Ωi defined by
(2.10), where g(x, ξ,Ωi) are the corresponding Green’s functions on Ωi. Since Ω1 ⊂
Ω2, we have that g(x, ξ,Ω1) ≤ g(x, ξ,Ω2) on Ω1. Hence, it follows that

u1(λ, x,Ω2) = λ

∫
Ω2

f(ξ)g(x, ξ,Ω2)dξ ≥ λ

∫
Ω1

f(ξ)g(x, ξ,Ω1)dξ = u1(λ, x,Ω1)

on Ω1. By induction we conclude that un(λ, x,Ω2) ≥ un(λ, x,Ω1) on Ω1 for all n.
On the other hand, since un(λ, x,Ω2) ≤ un+1(λ, x,Ω2) on Ω2 for n, we get that
un(λ, x,Ω1) ≤ u

Ω2
(λ, x) on Ω1, and we are done.

We also note the following easy comparison results, and we omit the details.
Corollary 2.4. Suppose that f1, f2 : Ω → R are two functions satisfying (1.2)

and such that f1(x) ≤ f2(x) on Ω; then λ∗(Ω, f1) ≥ λ∗(Ω, f2), and for 0 < λ <
λ∗(Ω, f2) we have u1(λ, x) ≤ u2(λ, x) on Ω, where u1(λ, x) (resp., u2(λ, x)) are the
unique minimal positive solution of

−Δu =
λf1(x)

(1 − u)2

(
resp., −Δu =

λf2(x)

(1 − u)2

)
on Ω and u = 0 on ∂Ω.

Moreover, if f2(x) > f1(x) on a subset of positive measure, then u1(λ, x) < u2(λ, x)
for all x ∈ Ω.

The following result is similar to Theorem 4.10 of [2], which deals only with non-
singular nonlinearities. It can, however, be extended to our setting, but the adaptation
of the proof is left to the interested reader.

Proposition 2.5. For any bounded domain Γ in RN and any function f satis-
fying (1.2) on Γ, we have λ∗(Γ, f) ≥ λ∗(BR, f

∗), where BR = BR(0) is the Euclidean
ball in RN with radius R > 0 and with volume |BR| = |Γ|, and where f∗ is the Schwarz
symmetrization of f .
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3. Estimates for the pull-in voltage. While the lower bound in (2.3) is useful
to prove existence, it is not easy to compute. The following subsection gives more
computationally accessible lower estimates for λ∗.

3.1. Lower bounds for λ∗.
Proposition 3.1. Assume that f is a function satisfying (1.2) on a bounded

domain Ω in RN; then we have the following lower bound:

λ∗(Ω, f) ≥ max

{
8N

27
,

6N − 8

9

}
1

supΩ f

(
ω

N

|Ω|

) 2
N

.(3.1)

Moreover, if f(x) ≡ |x|α with α ≥ 0 and Ω is a ball of radius R, then we have

λ∗(BR, |x|α) ≥ max

{
4(2 + α)(N + α)

27
,
(2 + α)(3N + α− 4)

9

}
R−(2+α).(3.2)

Finally, if N ≥ 8 and 0 ≤ α ≤ α∗∗(N) := 4−6N+3
√

6(N−2)
4 , we have

λ∗(B1, |x|α) =
(2 + α)(3N + α− 4)

9
.(3.3)

Proof. Setting R =
( |Ω|
ω

N

) 1
N , it suffices—in view of Proposition 2.5 and since

supBR
f∗ = supΩ f—to show that

λ∗(BR, f
∗) ≥ max

{
8N

27R2 supΩ f∗ ,
6N − 8

9R2 supΩ f∗

}
(3.4)

for the case where Ω = BR. In fact, the function w(x) = 1
3 (1 − |x|2

R2 ) satisfies on BR

−Δw =
2N

3R2
=

2N(1 − 1
3 )2

3R2

1

(1 − 1
3 )2

≥ 8N

27R2 supΩ f

f(x)

[1 − 1
3 (1 − |x|2

R2 )]2

=
8N

27R2 supΩ f

f(x)

(1 − w)2
.

So for λ ≤ 8N
27R2 supΩ f , w is a supersolution of (S)λ in BR. Since, on the other hand,

w0 ≡ 0 is a subsolution of (S)λ and w0 ≤ w in BR, then there exists a solution of
(S)λ in BR, which proves a part of (3.4).

A similar computation applied to the function v(x) = 1 − ( |x|R )
2
3 shows that v is

also a supersolution as long as λ ≤ 6N−8
9R2 supΩ f .

In order to prove (3.2), it suffices to note that w(x) = 1
3

(
1 − |x|2+α

R2+α

)
is a super-

solution for (S)λ on BR, provided λ ≤ 4(2+α)(N+α)
27R2+α , and that v(x) = 1 − ( |x|R )

2+α
3 is

a supersolution for (S)λ on BR, provided λ ≤ (2+α)(3N+α−4)
9R2+α .

In order to complete the proof of Proposition 3.1, we need to establish that

the function u∗(x) = 1 − |x| 2+α
3 is the extremal function as long as N ≥ 8 and

0 ≤ α ≤ α∗∗(N) = 4−6N+3
√

6(N−2)
4 . This will then yield that for such dimensions and

these values of α, the voltage λ = (2+α)(3N+α−4)
9 is exactly the pull-in voltage λ∗.
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First, it is easy to check that u∗ is a H1
0 (Ω)-weak solution of (S)λ∗ . Since ‖u∗‖∞ =

1, and by the characterization of Theorem 5.1 below, we need to prove only that∫
Ω

|∇φ|2 ≥
∫

Ω

2λ|x|α
(1 − u∗)3

φ2 for all φ ∈ H1
0 (Ω).(3.5)

However, Hardy’s inequality gives for N ≥ 2 that
∫
B1

|∇φ|2 ≥ (N−2)2

4

∫
B1

φ2

|x|2 for any

φ ∈ H1
0 (B1), which means that (3.5) holds whenever 2λ∗ ≤ (N−2)2

4 or, equivalently, if

N ≥ 8 and 0 ≤ α ≤ α∗∗ = 4−6N+3
√

6(N−2)
4 .

Remark 3.1. The above lower bounds can be improved at least in low dimensions.

First note that if N > 12+α
5 , then λ2 = (2+α)(3N+α−4)

9 is the better lower bound and
is actually sharp on the ball as soon as N ≥ 8 and α ≤ α∗∗. For lower dimensions,
the best lower bounds are more complicated even when one considers supersolutions

of the form v(x) = a(1 − ( |x|R )k) and optimizes λ(a, k,R) over a and k. For example,
in the case where α = 0, N = 2, and R = 1, one can see that a better lower bound
can be obtained via the supersolution v(x) = 1

2.4 (1 − |x|1.6).

3.2. Upper bounds for λ∗. We note that (2.8) already yields a finite upper
bound for λ∗. However, Pohozaev-type arguments can be used to establish better and
more computable upper bounds. In this subsection, we establish the upper estimates
claimed in Theorem 1.1. For a general domain Ω, the following upper bounds on λ∗(Ω)
were established in Theorem 3.1 of [19] and in Theorem 2.2 of [12], respectively.

Proposition 3.2. (1) Assume that f is a function satisfying (1.2) on a bounded
domain Ω in RN such that infΩ f > 0; then

λ∗(Ω, f) ≤ λ̄1 ≡ 4μΩ

27

(
inf
Ω

f

)−1

.(3.6)

(2) If we only suppose that f > 0 on a set of positive measure, then

λ∗(Ω, f) ≤ λ̄2 ≡ μΩ

3

(∫
Ω

fφΩ dx

)−1

.(3.7)

If, in addition, Ω ⊂ RN is a strictly star-shaped domain around 0, then we can
prove the following estimate.

Proposition 3.3. Suppose f ≡ 1 and that Ω ⊂ RN is a strictly star-shaped
smooth domain such that x · ν ≥ a > 0 for x ∈ ∂Ω, where ν is the unit outer normal
to ∂Ω, then

λ∗(Ω) ≤ λ̄3 =
(N + 2)2P (Ω)

8aN |Ω| .(3.8)

In particular, if Ω is the Euclidean unit ball in RN , then we have the bound

λ∗(B1(0)) ≤ (N + 2)2

8
.

Proof. Recall Pohozaev’s identity: If u is a solution of

Δu + λg(u) = 0 for x ∈ Ω ; u = 0 for x ∈ ∂Ω,



PDES OF MEMS DEVICES: STATIONARY CASE 1433

then

Nλ

∫
Ω

G(u)dx− N − 2

2
λ

∫
Ω

ug(u)dx =
1

2

∫
∂Ω

(x · ν)

(
∂u

∂ν

)2

ds,(3.9)

where G(u) =
∫ u

0
g(s)ds. Applying this with g(u) = 1

(1−u)2 and G(u) = u
1−u yields

λ

2

∫
Ω

u(N + 2 − 2Nu)

(1 − u)2
dx =

1

2

∫
∂Ω

(x · ν)

(
∂u

∂ν

)2

ds

≥ a

2P (Ω)

(∫
∂Ω

∂u

∂ν
ds

)2

=
a

2P (Ω)

(
−
∫

Ω

Δudx

)2

=
aλ2

2P (Ω)

(∫
Ω

dx

(1 − u)2

)2

,

(3.10)

where we have used the divergence theorem and Hölder’s inequality

∫
∂Ω

∂u

∂ν
ds ≤

(∫
∂Ω

(
− ∂u

∂ν

)2

ds

)1/2(∫
∂Ω

ds

)1/2

.

Since∫
Ω

u(N + 2 − 2Nu)

(1 − u)2
dx =

∫
Ω

[
− 2N

(
u− N + 2

4N

)2

+
(N + 2)2

8N

]
1

(1 − u)2
dx

≤ (N + 2)2

8N

∫
Ω

dx

(1 − u)2
,

we deduce from (3.10) that

(N + 2)2

8N
≥ aλ

P (Ω)

∫
Ω

dx

(1 − u)2
≥ aλ|Ω|

P (Ω)
,

which implies the upper bound (3.8) for λ∗.

Finally, for the special case where Ω = B1(0) ⊂ RN , we have a = 1 and P (B1(0))
ω

N
=

N and hence the bound λ∗(B1(0)) ≤ λ̄3 = (N+2)2

8 .

3.3. Numerical estimates for λ∗. In the computations below we shall consider
two choices for the domain Ω,

Ω : [−1/2, 1/2] (slab), Ω : x2 + y2 ≤ 1 (unit disk).(3.11)

Simple calculations yield that

μΩ
= π2, φ

Ω
=

π

2
sin

[
π

(
x +

1

2

)]
(slab),

μ
Ω = z2

0 ≈ 5.783, φΩ =
z0

J1(z0)
J0(z0|x|) (unit disk).

(3.12)
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Table 3.1

Numerical values for pull-in voltage λ∗ with the bounds given in Theorem 1.1, where f(x) is
the exponential permittivity profile.

Ω α λ λ∗ λ̄1 λ̄2

Slab 0 1.185 1.401 1.462 3.290
Slab 1.0 1.185 1.733 1.878 4.023
Slab 3.0 1.185 2.637 3.095 5.965
Slab 6.0 1.185 4.848 6.553 10.50

Unit disk 0 0.593 0.789 0.857 1.928
Unit disk 0.5 0.593 1.153 1.413 2.706
Unit disk 1.0 0.593 1.661 2.329 3.746
Unit disk 3.0 0.593 6.091 17.21 11.86

Table 3.2

Numerical values for pull-in voltage λ∗ with the bounds given in Theorem 1.1, where f(x) is
the power-law permittivity profile.

Ω α λc(α) λ∗ λ̄1 λ̄2

Slab 0 1.185 1.401 1.462 3.290
Slab 1.0 3.556 4.388 ∞ 9.044
Slab 3.0 11.851 15.189 ∞ 28.247
Slab 6.0 33.185 43.087 ∞ 76.608

Unit disk 0 0.593 0.789 0.857 1.928
Unit disk 1.0 1.333 1.775 ∞ 3.019
Unit disk 5.0 7.259 9.676 ∞ 15.82
Unit disk 20 71.70 95.66 ∞ 161.54

Here J0 and J1 are Bessel functions of the first kind, and z0 ≈ 2.4048 is the first zero
of J0(z). The bounds λ̄1 and λ̄2 can be evaluated by substituting (3.12) into (3.6) and
(3.7). Notice that λ̄2 is, in general, determined only up to a numerical quadrature.
Using Newton’s method and COLSYS [1], one can also solve the boundary value
problem (S)λ and numerically calculate λ∗ as the saddle-node point for the following
two choices of the permittivity profile:

slab : f(x) = |2x|α (power-law) ; f(x) = eα(x2−1/4) (exponential),

unit disk : f(x) = |x|α (power-law) ; f(x) = eα(|x|2−1) (exponential),

where α ≥ 0. Table 3.1 contains numerical values for λ∗ in the case of exponential
profiles, while Table 3.2 deals with power-law profiles. What is remarkable is that λ̄1

and λ̄2 are not comparable even when f is bounded away from 0 and that neither
one of them provides the optimal value for λ∗. This leads us to conjecture that there
should be a better estimate for λ∗, one involving the distribution of f in Ω, as opposed
to the infimum or its average against the first eigenfunction φΩ .

4. The branch of minimal solutions. The branch of minimal solutions cor-
responds to the lowest branch in the bifurcation diagram, the one connecting the
origin point λ = 0 to the first fold at λ = λ∗. In this section, we analyze further
the properties of this branch. To do so, we consider for each solution u of (S)λ the
operator Lu,λ = −Δ − 2λf

(1−u)3 associated with the linearized problem around u. We

denote by μ1(λ, u) the smallest eigenvalue of Lu,λ, that is, the one corresponding to
the following Dirichlet eigenvalue problem:

−Δφ− 2λf(x)

(1 − u)3
φ = μφ, x ∈ Ω ; φ = 0, x ∈ ∂Ω.(4.1)
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In other words,

μ1(λ, u) = inf
φ∈H1

0 (Ω)

∫
Ω

{
|∇φ|2 − 2λf(1 − u)−3φ2

}
dx∫

Ω
φ2dx

.

4.1. Spectral properties of minimal solutions. We start with the follow-
ing crucial lemma, which shows among other things that semistable solutions are
necessarily minimal solutions.

Lemma 4.1. Let f be a function satisfying (1.2) on a bounded domain Ω in RN ,
and let λ∗ := λ∗(Ω, f). Suppose that u is a positive solution of (S)λ, and consider
any (classical) supersolution v of (S)λ, that is,

−Δv ≥ λf(x)

(1 − v)2
and 0 ≤ v(x) < 1, x ∈ Ω ; v = 0, x ∈ ∂Ω.(4.2)

If μ1(λ, u) > 0, then v ≥ u on Ω, and if μ1(λ, u) = 0, then v ≡ u on Ω.

Proof. For a given λ and x ∈ Ω, use the fact that f(x) ≥ 0 and that t → λf(x)
(1−t)2

is convex on (0, 1) to obtain

−Δ(u + τ(v − u)) − λf(x)

[1 − (u + τ(v − u))]2
≥ 0, x ∈ Ω,(4.3)

for τ ∈ [0, 1]. Note that (4.3) is an identity at τ = 0, which means that the first
derivative of the left-hand side for (4.3) with respect to τ is nonnegative at τ = 0;
i.e.,

−Δ(v − u) − 2λf(x)

(1 − u)3
(v − u) ≥ 0, x ∈ Ω ; v − u = 0, x ∈ ∂Ω.(4.4)

Thus, the maximal principle implies that if μ1(λ, u) > 0, we have v ≥ u on Ω, while
if μ1(λ, u) = 0, we have

−Δ(v − u) − 2λf(x)

(1 − u)3
(v − u) = 0, x ∈ Ω.(4.5)

The second derivative of the left-hand side for (4.3) with respect to τ is therefore
nonnegative at τ = 0; i.e.,

− 6λf(x)

(1 − u)4
(v − u)2 ≥ 0, x ∈ Ω.(4.6)

From (4.6) we deduce that v ≡ u in Ω\Ω0, where Ω0 = {x ∈ Ω : f(x) = 0 for x ∈ Ω}.
On the other hand, (4.5) reduces to −Δ(v − u) = 0 for x ∈ Ω0, while v − u = 0 on
∂Ω0, which implies v ≡ u on Ω0. Hence if μ1(λ, u) = 0, then v ≡ u on Ω.

Theorem 4.2. Assume that f is a function satisfying (1.2) on a bounded domain
Ω in RN , and consider the branch λ → uλ of minimal solutions on (0, λ∗). Then the
following hold:

1. For each x ∈ Ω, the function λ → uλ(x) is differentiable and strictly increas-
ing on (0, λ∗).

2. For each λ ∈ (0, λ∗), uλ is a stable solution and λ → μ1,λ := μ1(λ, uλ) is
decreasing on (0, λ∗).

Proof. Consider λ1 < λ2 < λ∗, their corresponding minimal positive solutions uλ1

and uλ2 , and let u∗ be a positive solution for (S)λ2 . For the monotone increasing series
{un(λ1;x)} defined in (2.9), we then have u∗ > u0(λ1;x) ≡ 0, and if un−1(λ1;x) ≤ u∗
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in Ω, then

−Δ(u∗−un) = f(x)

[
λ2

(1 − u∗)2
− λ1

(1 − un−1)2

]
≥ 0, x ∈ Ω ; u∗−un = 0, x ∈ ∂Ω.

So we have un(λ1;x) ≤ u∗ in Ω. Therefore, uλ1 = limn→∞ un(λ1;x) ≤ u∗ in Ω, and

in particular uλ1 ≤ uλ2 in Ω. Therefore, duλ(x)
dλ ≥ 0 for all x ∈ Ω.

That λ → μ1,λ is decreasing follows easily from the variational characterization
of μ1,λ, the monotonicity of λ → uλ, as well as the monotonicity of (1 − u)−3 with
respect to u.

Now we define λ∗∗ = sup{λ; uλ is a stable solution for (S)λ}. It is clear that
λ∗∗ ≤ λ∗, and to show equality it suffices to prove that there is no minimal solution
for (S)μ with μ > λ∗∗. For that, suppose w is a minimal solution of (S)λ∗∗+δ with
δ > 0; then we would have, for λ ≤ λ∗∗,

−Δw =
(λ∗∗ + δ)f(x)

(1 − w)2
≥ λf(x)

(1 − w)2
, x ∈ Ω.

Since for 0 < λ < λ∗∗ the minimal solutions uλ are stable, it follows from Lemma
4.1 that 1 > w ≥ u

λ
for all 0 < λ < λ∗∗. Consequently, u

¯
= limλ↗λ∗∗ u

λ
exists in

C1(Ω) and is a solution for (S)λ∗∗ . Now from the definition of λ∗∗, we necessarily
have μ1,λ∗∗ = 0; hence by again applying Lemma 4.1, we obtain that w ≡ u

¯
and δ = 0

on Ω, which is a contradiction, and hence λ∗∗ = λ∗.
Since each uλ is stable, then by setting F (λ, uλ) := −Δ − λf

(1−uλ)2 , we get that

Fuλ
(λ, u

λ
) is invertible for 0 < λ < λ∗. It then follows from the implicit function

theorem that u
λ
(x) is differentiable with respect to λ.

Finally, by differentiating (S)λ with respect to λ, and since λ → uλ(x) is non-
decreasing, we get

−Δ
duλ

dλ
− 2λf(x)

(1 − u
λ
)3

duλ

dλ
=

f(x)

(1 − u
λ
)2

≥ 0, x ∈ Ω ;
duλ

dλ
≥ 0, x ∈ ∂Ω.

Applying the strong maximum principle, we conclude that duλ

dλ > 0 on Ω for all
0 < λ < λ∗.

Remark 4.1. Lemma 3 of [8] yields μ1(1, 0) as an upper bound for λ∗∗—at least in
the case where infΩ f > 0 on Ω. Since λ∗∗ = λ∗, this gives another upper bound for
λ∗ in our setting. Note, however, that in the case where f ≡ 1, we have μ1(1, 0) = μΩ

2 ,

while the estimate in Theorem 1.1 gives 4μΩ

27 for an upper bound.

4.2. Energy estimates and regularity. We start with the following easy ob-
servations.

Lemma 4.3. Let f be a function satisfying (1.2) on a bounded domain Ω in RN .
1. Any (weak) solution u in H1

0 (Ω) of (S)λ then satisfies
∫
Ω

f
(1−u)2 dx < ∞.

2. If infΩ f > 0 and N ≥ 3, then any solution u such that f/(1 − u) ∈ L3N/2 is
a classical solution.

Proof. (1) Since u ∈ H1
0 (Ω) is a positive solution of (S)λ, we have

∫
Ω

λf

(1 − u)2
−
∫

Ω

λf

1 − u
=

∫
Ω

λuf

(1 − u)2
=

∫
Ω

|∇u|2 =: C < +∞,



PDES OF MEMS DEVICES: STATIONARY CASE 1437

which implies that∫
Ω

λf

(1 − u)2
≤ C +

∫
Ω

λf

1 − u
≤ C +

∫
Ω

[
Cε

λf

(1 − u)2
+

C

ε
f

]
≤ C + Cε

∫
Ω

λf

(1 − u)2

with ε > 0. Therefore, by choosing ε > 0 small enough, we conclude that
∫
Ω

f
(1−u)2

< ∞.
(2) Suppose u is a weak solution such that f(x)

(1−u)3 ∈ Lp(Ω), which means that
f(x)

(1−u)2 ∈ L3p/2(Ω). By Sobolev’s theorem we can already deduce that u ∈ C0,α

with α = 2 − 2N
3p . To get more regularity, it suffices to show that u < 1 on Ω,

but then if not, we consider x0 ∈ Ω̄ such that u(x0) = ‖u‖C(Ω̄) = 1; then we have

|1 − u(x)| = |u(x0) − u(x)| ≤ C|x0 − x|α on Ω̄. This inequality shows that if p ≥ N
2 ,

then we have

∞ >

∫
Ω

(
f(x)

(1 − u)3

)p

dx ≥ C ′
∫

Ω

|x− x0|−3pαdx = C ′
∫

Ω

|x− x0|−Ndx = ∞,

a contradiction, which implies that we must have ‖u‖C(Ω̄) < 1.
Note that the above argument cannot be applied to the case where f(x) ≥ 0

vanishes on Ω, and therefore we have to use the iterative scheme outlined in the next
theorem.

Theorem 4.4. Let f be a function satisfying (1.2) on a bounded domain Ω in
RN . Then for any constant C > 0 there exists 0 < K(C,N) < 1 such that a positive
weak solution u of (S)λ (0 < λ < λ∗) is a classical solution and ‖u‖

C(Ω)
≤ K(C,N),

provided that
1. N = 1 and ‖ f

(1−u)3 ‖L1(Ω)
≤ C,

2. N ≥ 2 and ‖ f
(1−u)3 ‖LN/2(Ω)

≤ C.

Proof. We prove this lemma by considering the following three cases separately.
(1) If N = 1, then for any I > 0 we write using the Sobolev inequality with

constant K(1) > 0,

K(1) ‖ (1 − u)−1 − 1 ‖2
L∞

≤
∫

Ω

∣∣∇[(1 − u)−1 − 1]
∣∣2

=
λ

3

∫
Ω

f(1 − u)−2[(1 − u)−3 − 1]

≤ CI + C

∫
{(1−u)−3≥I}

8f(1 − u)−2

+C

∫
{(1−u)−3≥I}

f

[
1

(1 − u)3
+

2

(1 − u)2
+

4

1 − u

][
(1 − u)−1 − 1

]2

≤ CI + C + C ‖ (1 − u)−1 − 1 ‖2
L∞({(1−u)−3≥I})

∫
{(1−u)−3≥I}

f

(1 − u)3

≤ CI + C + Cε(I) ‖ (1 − u)−1 − 1 ‖2
L∞ ,

(4.7)
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with ε(I) =
∫
{(1−u)−3≥I}

f
(1−u)3 , where Lemma 4.3(1) is applied in the second in-

equality. From the assumption f/(1 − u)3 ∈ L1(Ω), we have ε(I) → 0 as I → ∞.

We now choose I such that ε(I) ≤ K(1)
2C , so that the above estimates implier that

‖ (1 − u)−1 − 1 ‖L∞< C. Standard regularity theory for elliptic problems now im-
plies that 1/(1 − u) ∈ C2,α(Ω). Therefore, u is classical, and there exists a constant
K(C,N) which can be taken strictly less than 1 such that ‖ u ‖

C(Ω)
≤ K(C,N) < 1.

(2) Assuming N = 2, we need to show that

(1 − u)−1 ∈ Lp(Ω) for any p > 1.(4.8)

Fix p > 1 and let us introduce Tku = min{u, 1 − k}, the truncated function of u at
level 1−k, 0 < k < 1. For k small, we take (1−Tku)−1−1 ∈ H1

0 (Ω) as a test function
for (S)λ:

∫
Ω

|∇Tku|2
(1 − Tku)2

=

∫
Ω

λf(x)

(1 − u)2
((1 − Tku)−1 − 1) ≤

∫
Ω

λf(x)

|1 − u|3 ≤ C < +∞.(4.9)

Since now log
(

1
1−Tku

)
∈ H1

0 (Ω), by the Moser–Trudinger inequality and (4.9) we get
that for any p > 1

∫
Ω

(1 − Tku)−p ≤ C1exp

(
p2

16π

∫
Ω

∣∣∣∣∇ log

(
1

1 − Tku

)∣∣∣∣
2)

≤ C2,

where C1, C2 denote positive constants depending only on p and C. Taking the limit
as k → 0 and using that u ≤ 1, we get the validity of (4.8).

(3) The case when N > 2 is more elaborate, and we first show that (1 − u)−1 ∈
Lq(Ω) for all q ∈ (1,∞). Since u ∈ H1

0 (Ω) is a solution of (S)λ, we already have∫
Ω

f
(1−u)2 < C. Now we proceed by iteration to show that if

∫
Ω

f
(1−u)2+2θ < C for

some θ ≥ 0, then
∫
Ω

1
(1−u)2∗(1+θ) < C.

Indeed, for any constant θ ≥ 0 and � > 0 we choose a test function φ = [(1 −
u)−3 − 1] min{(1 − u)−2θ, �2}. By applying this test function to both sides of (S)λ,
we have

λ

∫
Ω

f(1 − u)−2[(1 − u)−3 − 1] min{(1 − u)−2θ, �2}

=

∫
Ω

∇u · ∇
[(

(1 − u)−3 − 1
)
min{(1 − u)−2θ, �2}

]

= 3

∫
Ω

|∇u|2(1 − u)−4 min{(1 − u)−2θ, �2}

+ 2θ

∫
{(1−u)−θ≤�}

|∇u|2(1 − u)−2θ−1[(1 − u)−3 − 1].

(4.10)

We now suppose
∫
Ω

f
(1−u)2+2θ < C. We then obtain from (4.10) and the fact that
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1
(1−u)5 ≤ C

I

1
(1−u)3 ( 1

1−u − 1)2 whenever (1 − u)−3 ≥ I > 1 that

∫
Ω

∣∣∇[
(
(1 − u)−1 − 1

)
min{(1 − u)−θ, �}]

∣∣2
= 2

∫
Ω

|∇u|2(1 − u)−4 min{(1 − u)−2θ, �2}

+ 2θ2

∫
{(1−u)−θ≤�}

|∇u|2(1 − u)−2θ−1

[
1

(1 − u)3
+

1

1 − u
− 2

(1 − u)2

]

≤ Cλ

∫
Ω

f(1 − u)−2[(1 − u)−3 − 1] min{(1 − u)−2θ, �2}

≤ CI + C

∫
{(1−u)−3≥I}

f(1 − u)−3
[
(1 − u)−1 − 1

]2
min{(1 − u)−2θ, �2}

≤ CI + C

[ ∫
{(1−u)−3≥I}

(
f

(1 − u)3

)N
2
] 2

N

×
[ ∫

{(1−u)−3≥I}

([
(1 − u)−1 − 1

]
min{(1 − u)−θ, �}

) 2N
N−2

]N−2
N

≤ CI + Cε(I)

∫
Ω

∣∣∇[
(
(1 − u)−1 − 1

)
min{(1 − u)−θ, �}]

∣∣2

(4.11)

with ε(I) =
[ ∫

{(1−u)−3≥I}
(

f
(1−u)3

)N
2
] 2

N .

From the assumption f/(1 − u)3 ∈ L
N
2 (Ω) we have ε(I) → 0 as I → ∞. We now

choose I such that ε(I) = 1
2C , and the above estimates imply that

∫
{(1−u)−θ≤�}

∣∣∇[(1 − u)−θ−1 − (1 − u)−θ]
∣∣2 ≤ CI,

where the bound is uniform with respect to �. This estimate leads to

1

(θ + 1)2

∫
{(1−u)−θ≤�}

∣∣∇[(1 − u)−θ−1]
∣∣2 =

∫
{(1−u)−θ≤�}

(1 − u)−2θ−4
∣∣∇u

∣∣2

≤ CI + C

∫
{(1−u)−θ≤�}

(1 − u)−2θ−3
∣∣∇u

∣∣2

≤ CI +

∫
{(1−u)−θ≤�}

[
Cε(1 − u)−2θ−4 + C/ε

]∣∣∇u
∣∣2

≤ CI + C/ε + Cε

∫
{(1−u)−θ≤�}

(1 − u)−2θ−4
∣∣∇u

∣∣2
with ε > 0. This means that for ε > 0 sufficiently small∫

{(1−u)−θ≤�}

∣∣∇(1 − u)−θ−1
∣∣2 =

∫
{(1−u)−θ≤�}

(θ + 1)2(1 − u)−2θ−4
∣∣∇u

∣∣2 < C.

Thus we can let � → ∞, and we get that (1 − u)−θ−1 ∈ H1(Ω) ↪→ L2∗
(Ω), which

means that
∫
Ω

1
(1−u)2∗(1+θ) < C.
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By iterating the above argument for θi +1 = N
N−2 (θi−1 +1) for i ≥ 1 and starting

with θ0 = 0, we find that 1/(1 − u) ∈ Lq(Ω) for all q ∈ (1,∞).
Standard regularity theory for elliptic problems applies again to give that 1/

(1 − u) ∈ C2,α(Ω). Therefore, u is a classical solution, and there exists a constant
0 < K(C,N) < 1 such that ‖u‖

C(Ω)
≤ K(C,N) < 1.

Theorem 4.5. For any dimension 1 ≤ N ≤ 7 there exists a constant 0 < C(N) <
1 independent of λ such that for any 0 < λ < λ∗ the minimal solution uλ satisfies
‖u

λ
‖

C(Ω)
≤ C(N).

Consequently, u∗ = limλ↑λ∗ uλ exists in the topology of C2,α(Ω̄) with 0 < α < 1.
It is the unique classical solution for (S)λ∗ and satisfies μ1,λ∗(u∗) = 0.

This result—which yields Theorem 1.3(2)—will follow from the following uniform
energy estimate on the minimal solutions u

λ
.

Proposition 4.6. There exists a constant C(p) > 0 such that for λ ∈ (0, λ∗) the

minimal solution u
λ

satisfies ‖ f
(1−u

λ
)3 ‖Lp(Ω) ≤ C(p) as long as p < 1 + 4

3 + 2
√

2
3 .

Proof. Since minimal solutions are stable, we have

λ

∫
Ω

2f(x)

(1 − u
λ
)3
w2dx ≤ −

∫
Ω

wΔwdx =

∫
Ω

|∇w|2dx(4.12)

for all 0 < λ < λ∗ and nonnegative w ∈ H1
0 (Ω̄). Setting

w = (1 − u
λ
)i − 1 > 0, where − 2 −

√
6 < i < 0,(4.13)

then (4.12) becomes

i2
∫

Ω

(1 − u
λ
)2i−2|∇u

λ
|2dx ≥ λ

∫
Ω

2[1 − (1 − u
λ
)i]2f(x)

(1 − u
λ
)3

dx.(4.14)

On the other hand, multiplying (S)λ by i2

1−2i [(1−u
λ
)2i−1−1] and applying integration

by parts yields that

i2
∫

Ω

(1 − u
λ
)2i−2|∇u

λ
|2dx = λ

i2

2i− 1

∫
Ω

[1 − (1 − u
λ
)2i−1]f(x)

(1 − u
λ
)2

dx.(4.15)

Hence (4.14) and (4.15) reduce to

λ i2

2i− 1

∫
Ω

f(x)

(1 − u
λ
)2
dx− 2λ

∫
Ω

f(x)

(1 − u
λ
)3
dx + 4λ

∫
Ω

f(x)

(1 − u
λ
)3−i

dx

≥ λ

(
2 +

i2

2i− 1

)∫
Ω

f(x)

(1 − u
λ
)3−2i

dx.

(4.16)

From the choice of i in (4.13) we have 2+ i2

2i−1 > 0. So (4.16) and Holder’s inequality
imply that∫

Ω

f(x)

(1 − u
λ
)3−2i

dx ≤ C

∫
Ω

f(x)

(1 − u
λ
)3−i

dx

≤ C

(∫
Ω

∣∣∣ f
3−i
3−2i

(1 − u
λ
)3−i

∣∣∣ 3−2i
3−i

dx

) 3−i
3−2i

·
(∫

Ω

∣∣∣f −i
3−2i

∣∣∣ 3−2i
−i

dx

) −i
3−2i

≤ C

(∫
Ω

f(x)

(1 − u
λ
)3−2i

dx

) 3−i
3−2i

.

(4.17)
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It follows that
∫
Ω

f(x)
(1−u

λ
)3−2i dx ≤ C, and therefore we have

∫
Ω

∣∣∣∣ f(x)

(1 − u
λ
)3

∣∣∣∣
3−2i

3

dx =

∫
Ω

f
−2i
3 · f

(1 − u
λ
)3−2i

dx

≤ C

∫
Ω

f

(1 − u
λ
)3−2i

dx ≤ C.

(4.18)

In view of (4.13) we finally get that ‖ f(x)
(1−u

λ
)3 ‖

Lp≤ C, where p = 3−2i
3 ≤ 1 + 4

3 +

2
√

2
3 .

Proof of Theorem 4.5. The existence of u∗ as a classical solution follows from

Proposition 4.6 and Theorem 4.4, as long as N
2 < 1 + 4

3 + 2
√

2
3 , which happens when

N ≤ 7.
Since μ1,λ > 0 on the minimal branch for any λ < λ∗, we have the limit μ1,λ∗ ≥ 0.

If now μ1,λ∗ > 0, the implicit function theorem could be applied to the operator
Lu

λ∗ ,λ∗ and would allow the continuation of the minimal branch λ �→ u
λ

of classical
solutions beyond λ∗, which is a contradiction, and hence μ1,λ∗ = 0. The uniqueness
in the class of classical solutions then follows from Lemma 4.1.

5. Uniqueness and multiplicity of solutions. We first note that in view of
the monotonicity in λ and the uniform boundedness of the first branch of solutions,
the extremal function defined by u∗(x) = limλ↑λ∗ uλ(x) always exists and can always
be considered as a solution for (S)λ∗ in a generalized sense. Now if there exists
0 < C < 1 such that ‖ u

λ
‖

C(Ω̄)
≤ C for each λ < λ∗—just like in the case where

1 ≤ N < 8—then we have seen in Theorem 4.5 that u∗ is unique among the classical
solutions. In the sequel, we tackle the important case when u∗ is a weak solution (i.e.,
in H1

0 (Ω)) of (S)λ∗ but with the possibility that ‖u∗‖∞ = 1.

5.1. Uniqueness of the solution at λ = λ∗. We shall borrow ideas from
[3, 5, 16], where the authors deal with the case of regular nonlinearities. However,
unlike those papers, where solutions are considered in a very weak sense, we consider
here a more focused and much simpler situation. We establish the following useful
characterization of the extremal solution.

Theorem 5.1. Assume that f is a function satisfying (1.2) on a bounded domain
Ω in RN . For λ > 0, consider u ∈ H1

0 (Ω) to be a weak solution of (S)λ (in the H1
0 (Ω)

sense) such that ‖u‖L∞(Ω)= 1. Then the following assertions are equivalent:

1. μ1,λ ≥ 0; that is, u satisfies
∫
Ω
|∇φ|2 ≥

∫
Ω

2λf(x)
(1−u)3φ

2 for all φ ∈ H1
0 (Ω).

2. λ = λ∗ and u = u∗.
We need the following uniqueness result.
Proposition 5.2. Let f ∈ C(Ω̄) be a nonnegative function. Let u1, u2 be two

H1
0 (Ω)-weak solutions of (S)λ so that μ1,λ(ui) ≥ 0 for i = 1, 2. Then u1 = u2 almost

everywhere (a.e.) in Ω.
Proof. For any θ ∈ [0, 1] and φ ∈ H1

0 (Ω), φ ≥ 0, we have that

Iθ,φ : =

∫
Ω

∇
(
θu1 + (1 − θ)u2

)
∇φ−

∫
Ω

λf(x)(
1 − θu1 − (1 − θ)u2

)2φ
= λ

∫
Ω

f(x)

(
θ

(1 − u1)2
+

1 − θ

(1 − u2)2
− 1(

1 − θu1 − (1 − θ)u2

)2
)
φ ≥ 0
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due to the convexity of u → 1/(1 − u)2. Since I0,φ = I1,φ = 0, the derivative of Iθ,φ
at θ = 0, 1 provides

∫
Ω

∇
(
u1 − u2

)
∇φ−

∫
Ω

2λf(x)(
1 − u2

)3 (u1 − u2)φ ≥ 0,

∫
Ω

∇
(
u1 − u2

)
∇φ−

∫
Ω

2λf(x)(
1 − u1

)3 (u1 − u2)φ ≤ 0,

for any φ ∈ H1
0 (Ω), φ ≥ 0. Testing the first inequality on φ = (u1 − u2)

− and the
second one on (u1 − u2)

+, we get that

∫
Ω

[
|∇(u1 − u2)

−|2 − 2λf(x)

(1 − u2)3
(
(u1 − u2)

−)2] ≤ 0,

∫
Ω

[
|∇(u1 − u2)

+|2 − 2λf(x)

(1 − u1)3
(
(u1 − u2)

+
)2] ≤ 0.

Since μ1,λ(u1) ≥ 0, we have
(1) either μ1,λ(u1) > 0 and then u1 ≤ u2 a.e.,

(2) or μ1,λ(u1) = 0, which then gives
∫
Ω
∇(u1−u2)∇φ̄−

∫
Ω

2λf(x)
(1−u1)3

(u1−u2)φ̄ = 0,

where φ̄ = (u1 − u2)
+. Since Iθ,φ̄ ≥ 0 for any θ ∈ [0, 1] and I1,φ̄ = ∂θI1,φ̄ = 0, we

get that ∂2
θθI1,φ̄ = −

∫
Ω

6λf(x)
(1−u1)4

((u1 − u2)
+)3 ≥ 0. Letting Z0 = {x ∈ Ω : f(x) =

0}, we clearly have (u1 − u2)
+ = 0 a.e. in Ω \ Z0, and from the above we obtain∫

Ω
|∇(u1−u2)

+|2 = 0. Hence, u1 ≤ u2 a.e. in Ω. The same argument applies to prove
the reversed inequality, and the proof is complete.

Since ‖ uλ ‖< 1 for any λ ∈ (0, λ∗), we need—in order to prove Theorem 5.1—to
show only that (S)λ does not have any H1

0 (Ω)-weak solution for λ > λ∗. By the
definition of λ∗, this is already true for classical solutions. We shall now extend this
property to the class of weak solutions by means of the following result.

Proposition 5.3. If w is a H1
0 (Ω)-weak solution of (S)λ, then for any ε ∈ (0, 1)

there exists a classical solution wε of (S)λ(1−ε).
Proof. First we prove that for any ψ ∈ C2([0, 1]) concave function so that ψ(0) = 0

we have that ∫
Ω

∇ψ(w)∇ϕ ≥
∫

Ω

λf

(1 − w)2
ψ̇(w)ϕ(5.1)

for any ϕ ∈ H1
0 (Ω), ϕ ≥ 0. Indeed, by the concavity of ψ we get

∫
Ω

∇ψ(w)∇ϕ =

∫
Ω

ψ̇(w)∇w∇ϕ =

∫
Ω

∇w∇
(
ψ̇(w)ϕ

)
−
∫

Ω

ψ̈(w)ϕ|∇w|2

≥
∫

Ω

λf(x)

(1 − w)2
ψ̇(w)ϕ

for any ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, and by density we get (5.1) for any ϕ ∈ H1

0 (Ω), ϕ ≥ 0.

Now let ε ∈ (0, 1), and define ψε(w) := 1−
(
ε + (1 − ε)(1 − w)3

) 1
3 for 0 ≤ w ≤ 1.

Since ψε ∈ C2([0, 1]) is a concave function, ψε(0) = 0, and since ψ̇ε(w) = (1 − ε)
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g(ψε(w))
g(w) , where g(s) := (1 − s)−2, we obtain from (5.1) that for any ϕ ∈ H1

0 (Ω),
ϕ ≥ 0, ∫

Ω

∇ψε(w)∇ϕ ≥
∫

Ω

λf(x)

(1 − w)2
ψ̇ε(w)ϕ = λ(1 − ε)

∫
Ω

f(x)g
(
ψε(w)

)
ϕ

=

∫
Ω

λ(1 − ε)f(x)

(1 − ψε(w))2
ϕ.

Hence, ψε(w) is a H1
0 (Ω)-weak supersolution of (S)λ(1−ε) so that 0 ≤ ψε(w) ≤ 1−ε

1
3 <

1. Since 0 is a subsolution for any λ > 0, we get the existence of a H1
0 (Ω)-weak solution

wε of (S)λ(1−ε) so that 0 ≤ wε ≤ 1− ε
1
3 . By standard elliptic regularity theory, wε is

a classical solution of (S)λ(1−ε).

5.2. Uniqueness of low energy solutions for small voltage. We now focus
on the uniqueness when λ is small. We first define nonminimal solutions for (S)λ as
follows.

Definition 5.4. A solution 0 ≤ u < 1 is said to be a nonminimal positive
solution of (S)λ if there exist another positive solution v of (S)λ and a point x ∈ Ω
such that u(x) > v(x).

Lemma 5.5. Suppose u is a nonminimal solution of (S)λ with λ ∈ (0, λ∗). Then
μ1(λ, u) < 0, and the function w = u − uλ is in the negative space of Lu,λ = −Δ −
2λf(x)
(1−u)3 .

Proof. For a fixed λ ∈ (0, λ∗), let u
λ

be the minimal solution of (S)λ. We have

w = u−u
λ
≥ 0 in Ω, and −Δw− λ(2−u−u

λ
)f

(1−u)2(1−u
λ
)2w = 0 in Ω. Hence the strong maximum

principle yields that u
λ
< u in Ω.

Let Ω0 = {x ∈ Ω : f(x) = 0} and Ω/Ω0 = {x ∈ Ω : f(x) > 0}. Direct calculations
give that

−Δ(u− u
λ
) − 2λf(u− u

λ
)

(1 − u)3
= λf

[
1

(1 − u)2
− 1

(1 − u
λ
)2

− 2(u− u
λ
)

(1 − u)3

]
= 0, x ∈ Ω0 ; < 0, x ∈ Ω/Ω0.

(5.2)

From this we get

〈Lu,λw,w〉 = λ

∫
Ω/Ω0

f(x)(u− u
λ
)

·
[

1

(1 − u)2
− 1

(1 − u
λ
)2

− 2

(1 − u)3
(u− u

λ
)

]
dx < 0.

(5.3)

Now we are able to prove the following uniqueness result.
Theorem 5.6. For every M > 0 there exists 0 < λ∗

1(M) < λ∗ such that for
λ ∈ (0, λ∗

1(M)) the equation (S)λ has a unique solution v satisfying the following:
1. ‖ f

(1−v)3 ‖1 ≤ M and the dimension N = 1,

2. ‖ f
(1−v)3 ‖1+ε ≤ M for some ε > 0 and N = 2,

3. ‖ f
(1−v)3 ‖N/2 ≤ M and N > 2.

Proof. For any fixed λ ∈ (0, λ∗), let u
λ

be the minimal solution of (S)λ, and
suppose (S)λ has a nonminimal solution u. The preceding lemma then gives∫

Ω

|∇(u− u
λ
)|2dx <

∫
Ω

2λ(u− u
λ
)2f(x)

(1 − u)3
dx.
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This implies in the case where N > 2 that

C(N)

(∫
Ω

|u− u
λ
| 2N
N−2 dx

)N−2
N

< λ

∫
Ω

2f(x)

|1 − u|3 |u− u
λ
|2dx

≤ 2λ

(∫
Ω

∣∣∣∣ f

|1 − u|3

∣∣∣∣
N
2
) 2

N
(∫

Ω

|u− u
λ
| 2N
N−2

)N−2
N

≤ 2λM
2
N

(∫
Ω

(u− u
λ
)

2N
N−2 dx

)N−2
N

,

which is a contradiction if λ < C(N)

2M
2
N

unless u ≡ u
λ
. If N = 1, then we write

C(1)‖(u− u
λ
)‖2

∞ < λ

∫
Ω

2f(x)

(1 − u)3
(u− u

λ
)2dx ≤ 2λ‖(u− u

λ
)‖2

∞

∫
Ω

f

(1 − u)3
dx,

and the proof follows. A similar proof holds for dimension N = 2.
Remark 5.1. The above gives uniqueness for small λ among all solutions that

either stay away from 1 or those that approach it slowly. We do not know whether, if
λ is small enough, any positive solution v of (S)λ satisfies

∫
Ω
(1 − v)−

3N
2 dx ≤ M for

some uniform bound M independent of λ. Numerical computations do show that we
may have uniqueness for small λ—at least for radially symmetric solutions—as long
as N ≥ 2.

5.3. Second solutions around the bifurcation point. Our next result is
quite standard.

Lemma 5.7. Suppose there exists 0 < C < 1 such that ‖u
λ
‖

C(Ω̄)
≤ C for each

λ < λ∗. Then there exists δ > 0 such that the solutions of (S)λ near (λ∗, u
λ∗ ) form a

curve ρ(s) = {(λ̄(s), v(s)) : |s| < δ}, and the pair (λ̄(s), v(s)) satisfies

λ̄(0) = λ∗, λ̄′(0) = 0, λ̄′′(0) < 0, and v(0) = u
λ∗ , v′(0)(x) > 0 in Ω.(5.4)

In particular, if 1 ≤ N ≤ 7, then for λ close enough to λ∗ there exists a unique second
branch Uλ of solutions for (S)λ, bifurcating from u∗, such that μ1,λ(Uλ) < 0 while
μ2,λ(Uλ) > 0.

Proof. The proof is similar to a related result of Crandall and Rabinowitz (cf. [7,
8]) so we will be brief. First, the assumed upper bound on u

λ
in C1 and standard

regularity theory shows that if f ∈ C(Ω̄), then ‖u
λ
‖

C2,α(Ω̄)
≤ C < 1 for some 0 < α < 1

(while if f ∈ L∞, then ‖u
λ
‖

C1,α(Ω̄)
≤ C < 1). It follows that {(λ, u

λ
)} is precompact

in the space R × C2,α, and hence we have a limiting point (λ∗, u
λ∗ ), as desired.

Since λ∗f(x)
(1−u

λ∗ )2 is nonnegative, Theorem 3.2 of [7] characterizes the solution set of

(S)λ near (λ∗, u
λ∗ ): λ̄(0) = λ∗, λ̄′(0) = 0, v(0) = u

λ∗ , and v′(0) > 0 in Ω. The
same computation as in Theorem 4.8 in [7] gives that λ̄′′(0) < 0. In particular, if
1 ≤ N ≤ 7, then our Theorem 4.5 gives the compactness of u∗ = u

λ∗ , and the theory
of Crandall and Rabinowitz in [8] then implies that, for λ close enough to λ∗, there
exists a unique second branch Uλ of solutions for (S)λ, bifurcating from u∗, such that
μ1,λ(Uλ) < 0 while μ2,λ(Uλ) > 0.

Remark 5.2. A version of these results will be established variationally in the
companion paper [9]. Indeed, we shall give there a variational characterization for
both the stable and unstable solutions uλ, Uλ in the following sense: For 1 ≤ N ≤ 7,
there exists δ > 0 such that for any λ ∈ (λ∗− δ, λ∗) the minimal solution uλ is a local
minimum for some regularized energy functional Jε,λ on the space H1

0 (Ω), while the
second solution Uλ is a mountain pass for the functional Jε,λ.
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6. Radially symmetric case and power-law permittivity profiles. In this
section, we discuss issues of uniqueness and multiplicity of solutions for (S)λ when Ω
is a symmetric domain and when f is a radially symmetric permittivity profile. Here,
one can again define the corresponding pull-in voltage λ∗

r(Ω, f) requiring the solutions
to be radially symmetric, that is,

λ∗
r(Ω, f) = sup{λ; (S)λ has a radially symmetric solution}.

Proposition 6.1. Let Ω be a symmetric domain, and let f be a nonnegative
bounded radially symmetric permittivity profile on Ω; then the minimal solutions of
(S)λ are necessarily radially symmetric, and consequently λ∗

r(Ω, f) = λ∗(Ω, f). More-
over, if Ω is a ball, then any radial solution of (S)λ attains its maximum at 0.

Proof. It is clear that λ∗
r(Ω, f) ≤ λ∗(Ω, f), and the reverse will be proved if

we establish that every minimal solution of (S)λ with 0 < λ < λ∗(Ω, f) is radially
symmetric. This is a straightforward application of the recursive scheme defined in
Theorem 2.2, which gives a radially symmetric function at each step, and therefore
the resulting limiting function—which is the minimal solution—is radially symmetric.

For any radially symmetric u(r) of (S)λ defined in the ball of radius R, we have
ur(0) = 0 and

−urr −
N − 1

r
ur =

λf

(1 − u)2
in (0, R).

Multiplying by rN−1, we get that −d(rN−1ur)
dr = λfrN−1

(1−u)2 ≥ 0, and therefore ur < 0 in

(0, R) since ur(0) = 0. This shows that u(r) attains its maximum at 0.
The bifurcation diagrams shown in the introduction actually reflect the radially

symmetric situation, and our emphasis in this section is on whether there is a better
chance to analyze mathematically the higher branches of solutions in this case. Now
some of the classical work of Joseph and Lundgren [14] and many that followed can be
adapted to this situation when the permittivity profile is constant. However, the case
of a power-law permittivity profile f(x) = |x|α defined in a unit ball already presents
a much richer situation. We now present various analytical and numerical evidence
for various conjectures relating to this case, some of which are established rigorously
in [9].

Power-law permittivity profiles. Consider the domain Ω to be a unit ball
B1(0) ⊂ RN (N ≥ 1), and let f(x) = |x|α (α ≥ 0). We analyze in this case the
branches of radially symmetric solutions of (S)λ for λ ∈ (0, λ∗]. In this case, (S)λ
reduces to

−urr −
N − 1

r
ur =

λrα

(1 − u)2
, 0 < r ≤ 1, u′(0) = 0, u(1) = 0.(6.1)

Here r = |x| and 0 < u = u(r) < 1 for 0 < r < 1. Looking first for a solution of
the form u(r) = 1 − βw(P ) with P = γr, where γ, β > 0, equation (6.1) implies
that γ2β(w′′ + N−1

P w′) = λPα

β2γα
1
w2 . We set w(0) = 1 and λ = γ2+αβ3. This yields the

following initial value problem:

w′′ +
N − 1

P
w′ =

Pα

w2
, P > 0 ; w′(0) = 0, w(0) = 1.(6.2)

Since u(1) = 0 we have β = 1/w(γ), where w(γ) is a solution of (6.2). Therefore, we
conclude that

u(0) = 1 − 1

w(γ)
, λ =

γ2+α

w3(γ)
.(6.3)
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0
0

1
N = 1 and f(x) = |x|α with different ranges of α

λ  

|u(0)| 

 λ* λ* λ* λ 
*
 λ 

*
 

α >α* 

1<α<=α* 

α<=1 

Fig. 6.1. Plots of u(0) versus λ for the power-law permittivity profile f(x) = |x|α (α ≥ 0)
defined in the slab domain (N = 1). The numerics point to a constant α∗ > 1 (analytically given in
(6.10)) such that the bifurcation diagrams are greatly different for different ranges of α: 0 ≤ α ≤ 1,
1 < α ≤ α∗, and α > α∗.

As was done in [19], one can numerically integrate the initial value problem (6.2)
and use the results to compute the complete bifurcation diagram for (6.1). We show
such a computation of u(0) versus λ defined in (6.3) for the slab domain (N = 1) in
Figure 6.1. In this case, one observes from the numerical results that when N = 1 and
0 ≤ α ≤ 1, there exist exactly two solutions for (S)λ whenever λ ∈ (0, λ∗). On the
other hand, the situation becomes more complex for α > 1 as u(0) → 1. This leads
to the question of determining the asymptotic behavior of w(P ) as P → ∞. Towards
this end, we proceed as follows.

Setting η = logP and w(P ) = PBV (η) > 0 for some positive constant B, we
obtain from (6.2) that

PB−2V ′′ + (2B + N − 2)PB−2V ′ + B(B + N − 2)PB−2V =
Pα−2B

V 2
.(6.4)

Choosing B − 2 = α− 2B so that B = (2 + α)/3, we get that

V ′′ +
3N + 2α− 2

3
V ′ +

(2 + α)(3N + α− 4)

9
V =

1

V 2
.(6.5)

We can already identify from this equation the following regime.
Case 1. Assume that

N = 1 and 0 ≤ α ≤ 1.(6.6)

In this case, there is no equilibrium point for (6.5), which means that the bifur-
cation diagram vanishes at λ = 0, from which one infers that in this case there exist
exactly two solutions for λ ∈ (0, λ∗) and just one for λ = λ∗.

Case 2. N and α satisfy either one of the following conditions:

N = 1 and α > 1,
N ≥ 2.

(6.7)

There exists then an equilibrium point Ve of (6.5) which must be positive and satisfies

V 3
e =

9

(2 + α)(3N + α− 4)
> 0.(6.8)
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Linearizing around this equilibrium point by writing V = Ve + Ceση, 0 < C � 1, we

obtain that σ2 + 3N+2α−2
3 σ + (2+α)(3N+α−4)

3 = 0. This reduces to

σ± = −3N + 2α− 2

6
±

√
�
6

, where

� = −8α2 − (24N − 16)α + (9N2 − 84N + 100).(6.9)

We note that σ± < 0 whenever � ≥ 0. Now define

α∗ = −1

2
+

1

2

√
27

2
, α∗∗ =

4 − 6N + 3
√

6(N − 2)

4
(N ≥ 8).(6.10)

Next, we discuss different ranges of N and α in terms of their effect on the sign of �.
Case 2.A. N and α satisfy either one of the following:

N = 1 with 1 < α ≤ α∗ ,
N ≥ 8 with 0 ≤ α ≤ α∗∗.

(6.11)

In this case, we have � ≥ 0 and V ∼ ( 9
(2+α)(3N+α−4) )

1
3 + C1e

− 3N+2α−2−
√

�
6 η + · · · as

η → +∞. Further, we conclude that w ∼ P
2+α

3 ( 9
(2+α)(3N+α−4) )

1
3 +C1P

−N−2
2 +

√
�
6 +· · ·

as P → +∞. In both cases, the branch monotonically approaches the value 1 as
η → +∞. Moreover, since λ = γ2+α/w3(γ), we have

λ ∼ λ∗ =
(2 + α)(3N + α− 4)

9
as γ → ∞,(6.12)

which is another important critical threshold for the voltage.
In the case (6.11) illustrated by Figure 6.1, we have λ∗ < λ∗, and the number of

solutions increases but remains finite as λ approaches λ∗. On the other hand, in the
case of (6.11) illustrated by Figure 6.2(bottom), we have λ∗ = λ∗, and there seems to
be only one branch of solutions.

Case 2.B. N and α satisfy any one of the following three conditions:

N = 1 with α > α∗ ,
2 ≤ N ≤ 7 with α ≥ 0 ,
N ≥ 8 with α > α∗∗.

(6.13)

In this case, we have � < 0 and

V ∼
(

9

(2 + α)(3N + α− 4)

) 1
3

+ C1e
− 3N+2α−2

6 ηcos

(√
−�
6

η + C2

)
+ · · ·

as η → +∞.

We also have

w ∼ P
2+α

3

(
9

(2 + α)(3N + α− 4)

) 1
3

+ C1P
−N−2

2 cos

(√
−�
6

logP + C2

)
+ · · ·

as P → +∞,(6.14)

and from the fact that λ = γ2+α/w3(γ) we get again that λ ∼ λ∗ = (2+α)(3N+α−4)
9 as

γ → ∞. Note the oscillatory behavior of w(P ) in (6.14) for large P , which means that
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0
0

1
(a). 2 <= N <= 7 and f(x) = |x|α  for any α >= 0

λ 

|u(0)| 

λ 
*
 λ * 

0
0

1
(b). N >= 8 and f(x) = |x|α with different ranges of α 

|u(0)| 

λ  λ * λ 
*
 λ * 

0 <= α <= α ** 

α > α ** 

Fig. 6.2. Top figure: Plots of u(0) versus λ for the power-law permittivity profile f(x) =
|x|α (α ≥ 0) defined in the unit ball B1(0) ⊂ RN with 2 ≤ N ≤ 7. In this case, u(0) oscillates
around the value λ∗ defined in (6.12), and u∗ is regular. Bottom figure: Plots of u(0) versus λ
for the power-law permittivity profile f(x) = |x|α (α ≥ 0) defined in the unit ball B1(0) ⊂ RN

with N ≥ 8. The characters of the bifurcation diagrams depend on different ranges of α: when
0 ≤ α ≤ α∗∗, there exists a unique solution for (S)λ with λ ∈ (0, λ∗) and u∗ is singular; when
α > α∗∗, u(0) oscillates around the value λ∗ defined in (6.12) and u∗ is regular.

u(0) is expected to oscillate around the value λ∗ = (2+α)(3N+α−4)
9 as P → ∞. The

diagrams below point to the existence of a sequence {λi} satisfying λ0 = 0, λ1 = λ∗,
λ2k ↗ λ∗, λ2k−1 ↘ λ∗ as k → ∞ and such that exactly 2k+1 solutions for (S)λ exist
when λ ∈ (λ2k, λ2k+2), while there are exactly 2k solutions when λ ∈ (λ2k+1, λ2k−1).
Furthermore, (S)λ has infinitely multiple solutions at λ = λ∗.

The three cases (6.13) considered here for N and α are illustrated by the diagrams
in Figures 6.1, 6.2(top), and 6.2(bottom), respectively.
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Abstract. Effective boundary conditions (wall laws) are commonly employed to approximate
PDEs in domains with rough boundaries, but it is neither easy to design such laws nor to estimate the
related approximation error. A two-scale asymptotic expansion based on a domain decomposition
result is used here to mitigate such difficulties, and as an application we consider the Poisson equation.
The proposed scheme considers rough curved boundaries and allows a complete asymptotic expansion
for the solution, highlighting the influence of the boundary curvature. The derivation and estimation
of high order effective conditions is a corollary of such development. Sharp estimates for first and
second order wall law approximations are considered for different Sobolev norms and show superior
convergence rates in the interior of the domain. A numerical test illustrates several of the results
obtained here.

Key words. Poisson equation, rough boundary, effective boundary conditions, asymptotic
expansion, wall laws, curved domain
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1. Introduction. In several applications, it is necessary to solve PDEs in do-
mains with boundaries that are rough. Analytic solutions are rarely available, and
direct numerical computations are usually out of reach since the rapidly varying wrin-
kles and the domain have different length scales. The traditional remedy is to pose
special boundary conditions on a mollified domain to capture the geometrical influence
of the wrinkles. The development of such conditions is cumbersome in general, and
modeling error estimates can be out of reach. The aim of this paper is to investigate
and explicate such issues.

Problems posed on domains with rough boundary pervade many fields of research.
In aerodynamics, aircrafts and space shuttles are often covered with tiles, hence their
walls have an array of periodic gaps [22].

Similarly, small air injecting nozzles are periodically introduced over wings of
aircrafts to decrease the drag [6]. Another interesting example in the fluid mechanics
is the flow field around golf balls, in which the wrinkles associated to the curvature
decrease the gap between the air-pressure behind and in front of the ball. Finally,
in hemodynamics, the cell surfaces of the endothelium modifies the wall shear stress
produced by the blood flow, and realistic computer simulations must take this effect
into account [32].

To avoid discretizing such intricate boundaries, practitioners start resorting to
wall laws, which are effective boundary conditions that try to emulate the effect of
the wrinkles without actually resolving them. Ingenious methods were developed,
some in ad hoc fashion, but many of them based on firm mathematical ground.
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†Departamento de Matemática Aplicada, Laboratório Nacional de Computação Cient́ıfica, Av.
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Nonetheless, even when mathematics played a significant role and error estimates
were found, some qualitative aspects of the resulting models that were observed nu-
merically were missed by the theory. For instance, close to the wrinkles, the exact
solution wiggles, where the model solution does not. Hence the approximation there is
precarious in the H1 norm, but fine in the L2 norm. However, far from the boundary,
where the solution is “smooth,” a better approximation occurs, even when deriva-
tives are considered. Previously, some authors considered some of these effects, but it
seems hard to generalize their results to other operators, or to second order, curvature
dependent approximations.

There are several papers devoted to finding good wall laws as well as the cor-
responding modeling errors estimates. Most of the articles fit in the framework of
two-scale asymptotic expansions [14, 23, 29, 30]. For fluids, [9, 11] deal with the
Stokes equations, and [5, 7, 13, 24] focus on the steady and unsteady incompressible
Navier–Stokes equations. An interesting alternative way to derive effective boundary
conditions is based on domain decomposition strategies as introduced in [3] for the
Laplace operator, and extended to other operators [4, 7]; see also [31] for a survey
and [10, 27, 28] for related techniques and problems.

The previous references considered the wrinkles to be laid upon a flat line or
surface, or considered first order approximations only. In [1] first and second order
models for diffraction of an electromagnetic wave by a cylindrical curved grating were
considered, and some H1 norm estimates were obtained. The references [2, 20, 21]
also developed wall laws for wave scattering problems.

We extend here the results of [25], where we considered first and second order wall
laws for general curved boundaries. We estimate the modeling errors in the L2 and
H1 norms, both on the whole domain and in its interior, confirming several numerical
predictions. Our mathematical framework mixes two-scale asymptotic expansions and
domain decomposition ideas. Using such procedure, wall laws of arbitrary order come
by naturally, and we derive first and second order effective boundary conditions. Local
boundary fitted coordinates expose how the exact solution depends on the curvature
of the boundary (in a sense that we make clear in what follows). This is crucial
to develop high order models, which depend on the curvature. We believe that our
approach is quite general and can handle more sophisticated operators.

We now outline the contents of this paper. In the next section, we introduce basic
definitions and highlight the main ingredients of the approach. Section 3 presents
wall laws of different orders, along with error estimates and a summary of effective
conditions. Section 4 contains the development of the asymptotic expansion, and
the details necessary to define the boundary layer terms are in section 5. The errors
associated with the asymptotic expansion are considered in section 6. Finally, in
section 7 we validate the models numerically.

We now briefly introduce and explain some basic notation that we use throughout
this paper. As usual, if D is an open set, then ∂D denotes its boundary, D its closure,
L2(D) is the set of square integrable functions in D, and Hs(D) is the corresponding
Sobolev space of order s, for a real number s. We denote the norms of those spaces by
‖ · ‖L2(D) and ‖ · ‖Hs(D). Also, the symbol ·|D denotes the restriction of a function to
the domain D. Without loss of generality, we have chosen to work in two dimensions.
Nonetheless, all that follows can be generalized to the three-dimensional case. Bold
fonts indicate two-dimensional vectors, and the symbol ∂n indicates the (outward)
normal derivative with respect to the domain Ωs. Similarly, ∂x denotes the derivative
with respect to the variable x, etc. We denote by c a generic constant (not necessarily
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the same in all occurrences) which is independent of ε, but may depend on Ωs and
Sobolev norms of f .

2. Definitions and main results. We denote the domain of interest by Ωε ⊂
R

2, which is open, bounded, and ε-dependent. Here, ε indicates the length scale of
the roughness element. It is convenient to consider Ωε = Ωs ∪Ωε

r ∪Γ, where the limit
domain Ωs is open and ε-independent, the open set Ωε

r depends on ε with Ωs∩Ωε
r = ∅,

and the interface Γ = ∂Ωs ∩ ∂Ωε
r. The precise definition of these subdomains follow.

We assume that Ωs has its boundary ∂Ωs constituted of two disjoint parts, a
smooth inner boundary Γ, and a Lipschitz-continuous outer boundary. We arc length
parameterize the smooth curve Γ by an ε-independent function ψ : R → R

2, which is
periodic with period L, and injective in (0, L). In other words, Γ is a simple closed
curve with length L, and it bounds a region of the plane, which we call its interior.
We orient Γ in such a way that it is positively oriented, i.e., going along the direction
of increasing parameter, the interior of the curve stays on the left. We assume that
ε = L/N , for some positive integer N .

The domain Ωε
r has Γ as its outer boundary and Γε

r as its inner boundary. The
curve Γε

r, which is also closed, is defined as a perturbation of Γ, and is parameterized
by

ψε(θ) = ψ(θ) + ε
[
d0 − ψr(ε

−1θ)
]
n(θ),

where n is the normal vector pointing towards the interior of Γ, and d0 > 1 is such that
d0ε is smaller than the minimum radius of curvature of Γ. The function ψr : R → R

is independent of ε, Lipschitz-continuous with ψr(0) = 0, and periodic with period 1.
Without loss of generality, we assume that ‖ψr‖L∞(R) = 1. Formally,

Ωε
r = {x = ψ(θ) + (ε d0 − ρ)n(θ) : θ ∈ [0, L), ρ ∈ (εψr(ε

−1θ), ε d0) }.

Hence, Ωε has its boundary constituted of two parts, a rough inner boundary
Γε
r, and a Lipschitz-continuous outer boundary that is independent of ε and does not

intersect Γ. Note that Γ splits the original domain Ωε into two regions Ωs and Ωε
r,

one ε-independent, and the other containing the wrinkles. The subdomain Ωε
r is the

set of points between Γ and Γε
r, and Ωs is the ε-independent domain comprehended

between Γ and the outer boundary of Ωε. This is the set of all points at least “slightly
away” from the wrinkles. See Figure 1. Finally, we denote a typical point in it by
x = (x1, x2).

We consider the problem

−Δuε = f in Ωε,

uε = 0 on ∂Ωε,
(1)

where f has support in Ωs.

It is clear that the solution uε depends in a nontrivial way on the small parameter
ε. It is our goal to unfold this dependence and show how to develop models for (1).
It is possible to expand uε in a formal power series with respect to ε. This expansion
is far from trivial since it has to take into account effects from the wrinkles as well
as from the curvature. To focus on the main steps of our approach, we start by
presenting the first few terms of this expansion, and only in Ωs. The details of the
asymptotics are considered in section 4.
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Ωs

Ωε
r

Γε
r

ε

εd0

Γ

n

Fig. 1. The domain Ωε.

The asymptotic expansion of uε in Ωs is a formal combination of an ε-independent
part and a highly oscillatory part which decays exponentially to zero away from Γ,

uε ∼ u0 + ε u1 + εW 1,0 + . . . in Ωs.(2)

While u0, u1 are ε-independent, the oscillatory function W 1,0 depends on ε, but only
in a trivial manner.

It is natural to define the first term of the asymptotic such that

−Δu0 = f in Ωs,

u0 = 0 on ∂Ωs.
(3)

To continue the description of the expansion, it is necessary to introduce a cell
problem. This is no different from other singularly perturbed problems, perhaps el-
liptic PDEs with highly oscillatory coefficients being the most notorious. Such cell
problems are a essential part in up-scaling procedures and brings information related
to the small scale geometry into the large scale behavior of the solution.

In the present case, the cell problem is defined in the semi-infinite strip Ωr, which
“contains” the geometry of the wrinkles,

Ωr = { (θ̂, ρ̂) ∈ R
2 : θ̂ ∈ (0, 1), ρ̂ ∈ (ψr(θ̂),+∞) },

i.e., Ωr occupies the region delimited by straight lateral boundaries at θ̂ = 0 and
θ̂ = 1, and by the lower boundary Γr = { (θ̂, ψr(θ̂)) : θ̂ ∈ (0, 1) }; see Figure 2.

We define C∞
per(Ωr) by restricting to Ωr the functions in C∞(R2) which are one-

periodic with respect to θ̂. Let H1
per(Ωr) be the closure of C∞

per(Ωr) with respect to
the H1(Ωr) norm. We also introduce the space of exponentially decaying functions

S(Ωr) = {w ∈ H1
per(Ωr) : w eαρ̂ ∈ H1(Ωr) for some α > 0} .
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Ω r

Γ r
ρ̂

θ̂ x1

x2

x−1(ρ̂, θ̂)

x(ρ̂, θ̂)

Fig. 2. The cell domain.

The following result guarantees that certain Poisson problems posed in Ωr are well
posed, and the solutions have nice properties. The reference [5] deals with related
questions for the Stokes operator.

Lemma 1. Let F ∈ S∗(Ωr), the dual space of S(Ωr). Then there is a unique

solution w ∈ H1
loc(Ωr) that is one-periodic with respect to θ̂, and such that ∇w ∈

L2(Ωr), and

(∂θ̂θ̂ + ∂ρ̂ρ̂)w = F in Ωr,

w = ρ̂ on Γr.
(4)

Moreover, there exists a unique constant z such that w − z ∈ S(Ωr), and, if F ≡ 0,

z ≤ ‖ψr‖L∞(R).

Proof. A simple modification of the beautiful arguments of [8, Lemma 4.4]
guarantees well posedness and yields a proof of the decaying behavior of the solution
towards a constant. Assume now that w is harmonic, and for t ≥ ‖ψr‖L∞(R), let
γt = (0, 1) × {t}. Then Green’s identity yields that

∫
γt
∂n w is constant with respect

to t. Letting t → ∞, we have that actually
∫
γt
∂n w = 0 for all t ≥ ‖ψr‖L∞(R). Using

again Green’s identity in St,t̃ = (0, 1) × (t, t̃), for t̃ > t ≥ ‖ψr‖L∞(R), we gather that∫
∂St,t̃

w ∂n ρ̂ =

∫
∂St,t̃

ρ̂ ∂n w = 0.

Thus
∫
γt
w =

∫
γt̃
w, and letting t̃ → ∞, we see that z =

∫
γt
w. Then z ≤ ‖w‖L∞(γt),

and we conclude from the maximum principle [17] that z ≤ ‖ψr‖L∞(R).
Remark 1. Note that S∗(Ωr) contains, for instance, functions that grow at most

algebraically with respect to ρ̂.
We define w0,0 ∈ S(Ωr), and the constant z0,0 as the solution of

(∂θ̂θ̂ + ∂ρ̂ρ̂)w
0,0 = 0 in Ωr,

w0,0 = ρ̂− z0,0 on Γr.
(5)
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It follows immediately from Lemma 1 that (5) is well defined. Both z0,0 and w0,0 are
related to the boundary layers that naturally appear in the original problem.

To incorporate the influence of the cell problem into the asymptotic expansion (2),
we introduce boundary fitted coordinates (θ, ρ) for points “close enough” to Γ; see [12].
Let ρ0 be a positive number smaller than the minimum radius of curvature of Γ. For
a given θ ∈ [0, L) and ρ ∈ (εψr(ε

−1θ), ε d0 + ρ0), we have

x(θ, ρ) = ψ(θ) + (ε d0 − ρ)n(θ) ∈ Ωε.

Note that |ρ− ε d0| = dist(x,Γ) is the distance between x and Γ and that the above
map defines a local diffeomorphism. The change of coordinates x → (ρ, θ) is not well
defined globally in Ωε, but only for points with distance from Γ smaller than the
minimum radius of curvature of Γ.

In such a new system of coordinates, we simply write the normal derivative of u0

at a point x ∈ Γ as ∂n u0(θ, ε d0), where θ is such that x = ψ(θ). We set

W 1,0(θ, ρ) = Υ(εd0 + ρ)w0,0(ε−1θ, ε−1ρ) ∂n u0(θ, ε d0)(6)

in the formal expansion (2), where Υ(·) is a smooth ε-independent cutoff function,
such that Υ(ρ) equals one if ρ is smaller than a fixed number smaller than ρ0, and
vanishes for ρ ≥ ρ0. For instance, we may set Υ identically equal to one in (−∞, ρ0/3]
and vanishing in [ρ0,+∞). The following estimates follow from standard regularity
results and scaling arguments (see also Lemma 3):

‖W 1,0‖L2(Ωε) ≤ c ε1/2, ‖W 1,0‖H1(Ωε) ≤ c ε−1/2.(7)

Finally, let

−Δu1 = 0 in Ωs,

u1 =
(
−d0 + z0,0

)
∂n u0 on Γ, u1 = 0 on ∂Ωs\Γ.

(8)

Albeit (2) is formal, we show below (Theorem 4) that if

e = uε − u0 − ε u1 − εW 1,0,

then there exists an ε-independent constant c such that

‖e‖H1(Ωs) ≤ c ε3/2.(9)

Several other estimates follow from a combination of (9), the triangle inequality,
and (7). For instance, we easily find that

‖uε − u0 − ε u1‖H1(Ωs) ≤ ‖e‖H1(Ωs) + ‖εW 1,0‖H1(Ωs) ≤ c ε1/2,(10)

‖uε − u0 − ε u1‖L2(Ωs) ≤ ‖e‖H1(Ωs) + ‖εW 1,0‖L2(Ωs) ≤ c ε3/2.(11)

The culprit for the low convergence rates in some of the estimates above are the
boundary layers. Hence, interior estimates, i.e., estimates that bound the errors in
domains that are away from the boundary ought to show better rates. It is possible to
obtain such estimates by adding a higher order boundary layer term similar to (6) to
the expansion. The new term, which we denote by W̌, behaves like W 1,0, i.e., decays
exponentially fast to zero with ρ/ε, and

‖W̌‖L2(Ωε) ≤ c ε1/2, ‖W̌‖H1(Ωε) ≤ c ε−1/2.
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Table 1

Relative error convergence rates for a zeroth order model.

quantity L2(Ωs) error L2(Ωint
s ) error

u O(ε) O(ε)

∇u O(ε1/2) O(ε)

For the sake of simplicity, we do not describe W̌ now. Such a function is defined after
two different cell problems are solved; see (19) and (20). It is now possible to derive
a better estimate in the H1 norm:

‖uε − u0 − ε u1 − εW 1,0 − ε2 W̌‖H1(Ωs) ≤ c ε2.(12)

Finally, let Ωint
s ⊂ Ωs be such that Ωint

s ∩ Γ = ∅. Then

(13) ‖uε − u0 − ε u1‖H1(Ωint
s )

≤ ‖uε−u0−ε u1−εW 1,0−ε2 W̌‖H1(Ωs)+‖εW 1,0‖H1(Ωint
s )+‖ε2 W̌‖H1(Ωint

s ) ≤ c ε2.

Note in (13) that the exponential decay of both W 1,0 and W̌ guarantees that their
H1(Ωint

s ) norms are also exponentially small and hence bounded by c ε2.

3. Derivation of wall laws.

3.1. Zeroth order wall law. A first attempt to approximate uε would use u0.
It immediately follows from (10), (11) and regularity estimates for u1 that

‖uε − u0‖H1(Ωs) ≤ ‖uε − u0 − ε u1‖H1(Ωs) + ‖ε u1‖H1(Ωs) ≤ c ε1/2,

‖uε − u0‖L2(Ωs) ≤ ‖uε − u0 − ε u1‖L2(Ωs) + ‖ε u1‖L2(Ωs) ≤ c ε.

‖uε − u0‖L2(Ωint
s ) ≤ ‖uε − u0 − ε u1‖H1(Ωint

s ) + ‖ε u1‖H1(Ωs) ≤ c ε.

The O(ε1/2) error in the H1(Ωs) norm is due to the inability of this approximation
to capture the oscillatory behavior of the solution close to the wrinkles. This explains
the better performance in the L2(Ωs) and interior norms. Table 1 presents various
relative error estimates with respect to ε, including interior estimates.

3.2. First order wall law. Inspired by (2), (10)–(13), we would like to approx-
imate uε by the first terms of its asymptotic expansion, but without solving the PDEs
that define these terms. A first step in this direction is to consider only the functions
that actually have influence in the interior of the domain, i.e., we assume

uε ≈ u0 + ε u1.(14)

Thus, over Γ, from (3), (8), and (14),

uε ≈ ε (−d0 + z0,0) ∂n u0, ∂n uε ≈ ∂n u0 + ε ∂n u1.(15)

So

uε + ε (d0 − z0,0) ∂n uε ≈ ε2 (d0 − z0,0) ∂n u1,
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Table 2

Relative error convergence rates for a first order model.

quantity L2(Ωs) error L2(Ωint
s ) norm error

u O(ε3/2) O(ε2)

∇u O(ε1/2) O(ε2)

on Γ, and this amount can be small enough for certain applications. We define then
ū ∈ H1(Ωs) approximating uε in Ωs by

−Δ ū = f in Ωs,

ū + ε (d0 − z0,0) ∂n ū = 0 on Γ, ū = 0 on ∂Ωs\Γ.
(16)

It follows from Lemma 1 that z0,0 ≤ ‖ψr‖L∞(R), and since ‖ψr‖L∞(R) = 1 < d0, the
difference d0 − z0,0 is positive. Thus (16) is well posed for all positive ε.

To estimate the modeling error, we first note that if ē = ū− u0 − ε u1, then

−Δ ē = 0 in Ωs,

ē + ε (d0 − z0,0) ∂n ē = −ε2 (d0 − z0,0) ∂n u1 on Γ, ē = 0 on ∂Ωs\Γ.
(17)

It follows from regularity estimates [16, Theorem 4.24] that there exists an ε-indepen-
dent constant c such that

‖ē‖H1(Ωs) ≤ c ε2.

The modeling error estimates are then as follows:

‖uε − ū‖H1(Ωs) ≤ ‖uε − u0 − ε u1‖H1(Ωs) + ‖ū− u0 − ε u1‖H1(Ωs) ≤ c ε1/2,

where we used the triangle inequality and (10).

Analogously, using (11), (13), we obtain L2 and interior estimates

‖uε − ū‖L2(Ωs) ≤ c ε3/2 ‖uε − ū‖H1(Ωint
s ) ≤ c ε2.

We summarize the convergence results in Table 2.

3.3. Second order wall law. The derivation of higher order approximations to
uε follows the same modus operandi as in the previous subsection. We first consider
only the terms that have influence away from Γε

r and assume that

uε ≈ u0 + ε u1 + ε2 u2.(18)

To define the term u2 above we introduce two new cell problems, seeking w1,0

and w1,1 in S(Ωr), and the constants z1,0 and z1,1 satisfying

−(∂θ̂θ̂ + ∂ρ̂ρ̂)w
1,0 = χ− ∂ρ̂ w

0,0 + 2 ρ̂ ∂θ̂θ̂ w
0,0 in Ωr, w1,0 = −z1,0 on Γr,

(19)

−(∂θ̂θ̂ + ∂ρ̂ρ̂)w
1,1 = 2 ∂θ̂ w

0,0 in Ωr, w1,1 = z1,1 on Γr,(20)
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where χ(ρ̂) = 1 if ρ̂ < d0, and χ(ρ̂) = 0 if ρ̂ ≥ d0. The previous cell problems are well
posed, as Lemma 1 guarantees. The expression of W̌ mentioned on page 1455 is as
follows:

W̌ (θ, ρ) = Υ(εd0 + ρ)
[
w1,0(ε−1θ, ε−1ρ)κ(θ) ∂n u0(θ, ε d0)

+ w1,1(ε−1θ, ε−1ρ)∂θ ∂n u0(θ, ε d0) + w0,0(ε−1θ, ε−1ρ) ∂n u1(θ, ε d0)
]
,

where κ(θ) is the curvature of Γ at the point ψ(θ).
Next, we define u2 by

−Δu2 = 0 in Ωs,

u2 = (−d0 + z0,0) ∂n u1 + z1,0κ ∂n u0 + z1,1∂θ ∂n u0 on Γ, u2 = 0 on ∂Ωs\Γ,

and the estimates below follow:

‖uε − u0 − ε u1 − ε2 u2‖H1(Ωs) ≤ c ε1/2,(21)

‖uε − u0 − ε u1 − ε2 u2‖L2(Ωs) ≤ c ε3/2,(22)

‖uε − u0 − ε u1 − ε2 u2‖H1(Ωint
s ) ≤ c ε3.(23)

If (18) holds, then

uε ≈ ε (−d0 + z0,0 + ε z1,0κ) ∂n u0 + ε2 (−d0 + z0,0) ∂n u1 + ε2 z1,1∂θ ∂n u0

= ε (−d0 + z0,0 + ε z1,0κ) ∂n u0 + ε2 (−d0 + z0,0) ∂n u1 + ε2 z1,1

−d0 + z0,0
∂θu

1

over Γ, where we used from (8) that ∂θu
1 = (−d0 + z0,0)∂θ ∂n u0 to obtain the last

equality. We also have

∂n uε ≈ ∂n u0 + ε ∂n u1 + ε2 ∂n u2, ∂θu
ε ≈ ∂θu

0 + ε ∂θu
1 + ε2 ∂θu

2,

over Γ. Hence,

uε + (ε d0 − ε z0,0 − ε2 z1,0 κ) ∂n uε − ε2 z1,1

−d0 + z0,0
∂θu

ε ≈ −ε3 z1,0 κ ∂n u1

− ε3(−d0 + z0,0 + ε z1,0 κ) ∂n u2 − ε3 z1,1

−d0 + z0,0
∂θu

1 − ε4 z1,1

−d0 + z0,0
∂θu

2.

So we define ¯̄u ∈ H1(Ωs) approximating uε in Ωs by

−Δ ¯̄u = f in Ωs,

¯̄u + (ε d0 − ε z0,0 − ε2 z1,0 κ) ∂n ¯̄u− ε2 z1,1

−d0 + z0,0
∂θ ¯̄u = 0 on Γ,

¯̄u = 0 on ∂Ωs\Γ.

(24)

Since Γ is a closed curve, ∫
Γ

¯̄u∂θ ¯̄u dθ = 0,
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Table 3

Relative error convergence rates for a second order model.

quantity L2(Ωs) error L2(Ωint
s ) norm error

u O(ε3/2) O(ε3)

∇u O(ε1/2) O(ε3)

and for ε small enough the well posedness of (24) follows from Lemma 1 and the
Lax–Milgram’s lemma. To estimate the modeling error we first define ¯̄e = ¯̄u − u0 −
ε u1 − ε2 u2. Thus

−Δ¯̄e = 0 in Ωs,

¯̄e + (ε d0 − ε z0,0 − ε2 z1,0κ) ∂n ¯̄e− ε2 z1,1

−d0 + z0,0
∂θ¯̄e = −ε3z1,0 κ ∂n u1

− ε3 (−d0 + z0,0 + ε z1,0 κ) ∂n u2 − ε3 z1,1

−d0 + z0,0
∂θu

1 − ε4 z1,1

−d0 + z0,0
∂θu

2 on Γ,

¯̄e = 0 on ∂Ωs\Γ.

Regularity estimates [16, Theorem 4.24] guarantee the existence of an ε-independent
constant c such that

‖¯̄e‖H1(Ωs) ≤ c ε3.

Using the triangle inequality and (21), it is possible to estimate the H1(Ωs) norm
modeling error,

‖uε − ¯̄u‖H1(Ωs) ≤ ‖uε − u0 − ε u1 − ε2 u2‖H1(Ωs) + ‖¯̄u− u0 − ε u1 − ε2 u2‖H1(Ωs) ≤ c ε1/2.

Analogously, using (22), (23), we obtain L2 and interior estimates,

‖uε − ¯̄u‖L2(Ωs) ≤ c ε3/2 ‖uε − ¯̄u‖H1(Ωint
s ) ≤ c ε3.

These results are displayed in Table 3.

3.4. Summary: The proposed effective problems. The first order bound-
ary value problem in Ωs is the following: find ū ∈ H1(Ωs) such that

−Δ ū = f in Ωs,

∂n ū = − 1

ε (d0 − z0,0)
ū on Γ, ū = 0 on ∂Ωs\Γ,

(25)

where z0,0 is obtained from (5). For error estimates, see Table 2.
The second order boundary value problem in Ωs is: find ¯̄u ∈ H1(Ωs) such that

−Δ ¯̄u = f in Ωs,

∂n ¯̄u = −Cε
1

¯̄u + Cε
2 ∂θ ¯̄u on Γ, ¯̄u = 0 on ∂Ωs\Γ,

(26)

with

Cε
1 =

1

ε (d0 − z0,0 − ε z1,0 κ)
, Cε

2 =
ε z1,1

(d0 − z0,0 − ε z1,0 κ)(z0,0 − d0)
,

and where z0,0 is computed from (5), and z1,0, z1,1 from (19), (20). For error estimates,
see Table 3.
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4. Asymptotic expansion definition. We now find and justify the terms pre-
sented previously. Consider a formal asymptotic expansion in the general form

uε ∼ u0 + ε u1 + ε2 u2 + · · · + WBL(ε) in Ωs.(27)

Here, WBL(ε) corresponds to the oscillatory part of the solution, which dies away
exponentially fast with the distance to the boundary. Our procedure to find out the
terms in the expansion uses a domain decomposition result that we state below.

It is convenient to introduce the jump function [[·]] that assigns the absolute value
of the jump over the interface Γ.

Lemma 2. Let Ωε, Ωs, Ωε
r, and Γ be as above. Then there exists an ε-independent

constant c such that

(28) ‖e‖H1(Ωε
r) + ‖e‖H1(Ωs)

≤ c
(
‖Δ e‖L2(Ωε

r) + ‖Δ e‖L2(Ωs) + ‖[[e]]‖H1/2(Γ) + ‖[[∂n e]]‖H−1/2(Γ)

)
whenever e|Ωε

r
∈ H1(Ωε

r), Δ e|Ωε
r
∈ L2(Ωε

r), and e|Ωs ∈ H1(Ωs), Δ e|Ωs ∈ L2(Ωs),
with e = 0 on ∂Ωε

r\Γ ∪ ∂Ωs\Γ.
Proof. We first define

e− = e|Ωε
r
, e+ = e|Ωs

.

It follows from Green’s identity that∫
Ωε

r

| ∇ e−|2 dx = −
∫

Ωε
r

e− Δ e− dx− < e−, ∂n e− >H1/2(Γ)×H−1/2(Γ),∫
Ωs

| ∇ e+|2 dx = −
∫

Ωs

e+ Δ e+ dx+ < e+, ∂n e+ >H1/2(Γ)×H−1/2(Γ),

where < ·, · >H1/2(Γ)×H−1/2(Γ) indicates the duality pairing between H1/2(Γ) and

H−1/2(Γ). Combining both identities and then adding and subtracting the quantity
< e−, ∂n e+ >H1/2(Γ)×H−1/2(Γ), we gather that

|e−|2H1(Ωε
r) + |e+|2H1(Ωs)

= −
∫

Ωε
r

e− Δ e− dx −
∫

Ωs

e+ Δ e+ dx

+ < e−, ∂n e+ − ∂n e− >H1/2(Γ)×H−1/2(Γ) + < e+ − e−, ∂n e+ >H1/2(Γ)×H−1/2(Γ).

When estimating the above quantities, a delicate question is how the constants depend
on the domains. For u ∈ H1/2(Γ) and v ∈ H−1/2(Γ), the inequality

< u, v >H1/2(Γ)×H−1/2(Γ)≤ ‖u‖H1/2(Γ)‖v‖H−1/2(Γ)

comes by naturally by inducing the operator norm in H−1/2(Γ). Thus, with the aid
of the Cauchy–Schwarz inequality it follows that

|e−|2H1(Ωε
r) + |e+|2H1(Ωs)

≤ ‖e−‖L2(Ωε
r)‖Δ e−‖L2(Ωε

r) + ‖e+‖L2(Ωs)‖Δ e+‖L2(Ωs)

+ ‖e−‖H1/2(Γ)‖[[∂n e]]‖H−1/2(Γ) + ‖[[e]]‖H1/2(Γ)‖ ∂n e+‖H−1/2(Γ).

Next, let Ω′ be the interior of Γ, i.e., the open domain circumvented by Γ. Hence
Ωε

r ⊂ Ω′, and since the trace of e vanishes on Γε
r, the extension (by zero) operator

P : {v ∈ H1(Ωε
r) : v = 0 on Γε

r} → H1(Ω′)



PDES IN DOMAINS WITH CURVED ROUGH BOUNDARIES 1461

given by Pv = v in Ωε
r and Pv = 0, otherwise, is an isometry [26, 19]. By construction,

P preserves L2 norms as well and we gather the trace and Poincaré inequalities,

‖v‖H1/2(Γ) ≤ c‖Pv‖H1(Ω′) = c‖v‖H1(Ωε
r)(29)

‖v‖L2(Ωε
r) = ‖Pv‖L2(Ω′) ≤ c|Pv|H1(Ω′) = c|v|H1(Ωε

r)(30)

for all v ∈ H1(Ωε
r), where the constant c is independent of ε.

Using now the trace inequality ‖v‖H1/2(Γ) ≤ c‖v‖H1(Ωs) for all v ∈ H1(Ωs)
and (29), it follows that

(31) |e−|2H1(Ωε
r) + |e+|2H1(Ωs)

≤ (‖Δ e−‖L2(Ωε
r) + ‖Δ e+‖L2(Ωs))‖e‖L2(Ωε)

+ ‖e−‖H1(Ωε
r)‖[[∂n e]]‖H−1/2(Γ) + c‖[[e]]‖H1/2(Γ)‖e+‖H1(Ωs).

To conclude the proof, it is enough to use in (31) the Poincaré inequality in Ωε
r given

by (30) and also in Ωs.
We shall apply Lemma 2 repeatedly with e being the difference between uε and

a truncated asymptotic expansion. Hence, to make such a difference as small as
possible, we ought to minimize the L2 norm of Δ e in Ωε

r and Ωs and control the
jumps of both e and ∂n e over Γ.

A natural choice for the first term of the asymptotic of uε is u0 given by (3), plus
the condition u0 = 0 in Ωε

r. Applying Lemma 2 with e = uε − u0, we see that the
source of error is the normal derivative jump [[∂n u0]]. We remedy this by adding ε ζ1

to the asymptotic, where

ζ1(x) =

{
−ε−1ρ ∂n u0(θ, d0 ε) in Ωε

r,

0 in Ωs.

The function ζ1 defined as above satisfies the following properties:
1. ζ1 ≡ 0 outside Ωε

r,
2. [[ε ∂n ζ1]] ≡ | ∂n u0| on Γ,
3. ζ1 = ψr(ε

−1θ) ∂n u0(θ, d0 ε) on Γε
r.

So, in general, the correction of the jump of the normal derivative on Γ violates the
zero Dirichlet condition at Γε

r.
Proceeding with the computations, we have to add a boundary corrector to com-

pensate for the value of ζ1 on Γε
r. This is nontrivial since a “typical” boundary

corrector does not decay to zero; see Lemma 1 and (5). A similar, but actually sim-
pler situation occurs for the asymptotics of plates [18]. Thus, we add a boundary
corrector that is the sum of two functions and is given by ε

[
W 1(ε) + χε

rZ
1(ε)

]
. One

part, corresponding to W 1(ε), decays exponentially fast to zero with ε−1ρ and undu-
lates with ε−1θ. The other part, corresponding to Z1(ε), depends only on θ and is
nonzero only in Ωε

r. Hence,

−ΔW 1(ε) = χε
r Δ

[
ζ1 + Z1(ε)

]
in Ωε,(32)

W 1(ε) = −ζ1 − Z1(ε) on Γε
r,(33)

and the characteristic function of Ωε
r is given by χε

r, where

χε
r(ρ) =

{
1 if ρ < εd0,

0 otherwise.
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At first sight, finding W 1(ε) and Z1(ε) satisfying (32), (33) seems (at least!) as
hard as solving the original problem (1). Nevertheless, it is possible to make use
of the periodicity of the wrinkles, and formally recast (32), (33) as a sequence of
ε-independent problems which are easier to solve. We write

W 1(ε) ∼ W 1,0 + εW 1,1 + ε2 W 1,2 + · · · ,(34)

Z1(ε) ∼ Z1,0 + εZ1,1 + ε2 Z1,2 + · · · .(35)

We shall impose on Γε
r that W 1,0 = −ζ1 −Z1,0 and that W 1,j = −Z1,j for j �= 0. We

postpone the precise definition of these terms for now, but add, formally, the term
ε χε

r(x)Z1,0(θ) + εW 1,0(θ, ε−1θ, ε−1ρ) to the asymptotic. The remaining terms of the
expansion for W 1(ε), Z1(ε) shall be added as we continue to develop the expansion.

So far the asymptotic reads as{
ε ζ1 + εW 1,0 + εZ1,0 in Ωε

r,

u0 + εW 1,0 in Ωs.
(36)

Note that now the normal derivative of the difference between uε and the expression
in (36) has zero jump on Γ, but the difference itself has nontrivial jump equal to
−d0 ε ∂n u0 + εZ1,0 on Γ. Such error no longer depends on the fast variable and it
can be corrected adding to the asymptotic expansion a new term that depends only
on the slow variable.

We continue to define the terms of the expansion, this time trying to cancel out
the error due to the jump of the expression in (36) on Γ. Consider u1 the solution of

−Δu1 = 0 in Ωs,

u1 = −d0 ∂n u0 + Z1,0 on Γ, u1 = 0 on ∂Ωs\Γ, u1 = 0 on Ωε
r.

(37)

Remark 2. Although (37) looks different from (8), it is not. In fact, Z1,0 =
z0,0 ∂n u0, but that will become clear later.

Adding ε u1 to the expansion corrects the previous error, but results in a jump in
the normal derivative across Γ. Mimicking what we did before, we add ε2 ζ2 to the
expansion, where

ζ2(x) = −ε−1ρχε
r(ρ) ∂n u1(θ, d0ε).

Ideally the next contribution would be ε2
[
W 2(ε) + χε

rZ
2(ε)

]
, where

−ΔW 2(ε) = χε
r Δ

[
ζ2 + Z2(ε)

]
in Ωε,(38)

W 2(ε) = −ζ2 − Z2(ε) on Γε
r.(39)

As in (34), (35),

W 2(ε) ∼ W 2,0 + εW 2,1 + ε2 W 2,2 + · · · ,(40)

Z2(ε) ∼ Z2,0 + εZ2,1 + ε2 Z2,2 + · · · .(41)

On Γε
r we shall have W 2,0 = −ζ2 − Z2,0, and W 2,j = −Z2,j for j �= 0. Then, we

simply add ε2
[
W 1,1 + W 2,0 + χε

r

(
Z1,1 + Z2,0

)]
to our asymptotic expansion. Note

that terms in ε2 corresponding to the expansions for W 1(ε), Z1(ε) are included now.
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At this point, the asymptotic reads as{
ε ζ1 + ε2 ζ2 + εW 1,0 + εZ1,0 + ε2

(
W 1,1 + W 2,0

)
+ ε2

(
Z1,1 + Z2,0

)
in Ωε

r,

u0 + ε u1 + εW 1,0 + ε2
(
W 1,1 + W 2,0

)
in Ωs.

(42)

The expansion pattern should be clear by now, and the successive terms are
defined in similar manner. In general, after the kth step, the asymptotic expansion
reads as {

ζk,ε + WBL
k,ε + Zk,ε in Ωε

r,

usmooth
k−1,ε + WBL

k,ε in Ωs,
(43)

where ζk,ε(θ, ρ) = ε ζ1 + · · · + εk ζk, and ζi = −ε−1ρχε
r ∂n ui−1(θ, d0ε). Also,

WBL
k,ε = εW 1,0 + ε2

(
W 1,1 + W 2,0

)
+ · · · + εk

(
W 1,k−1 + W 2,k−2 + · · · + W k,0

)
,

Zk,ε = χε
r

[
εZ1,0 + ε2

(
Z1,1 + Z2,0

)
+ · · · + εk

(
Z1,k−1 + Z2,k−2 + · · · + Zk,0

)]
.

Here, although we did not fully define these functions yet, W i,j , Zi,j depend only on
ui−1, W i,j−1, · · · ,W i,0 and Zi,j−1, · · · , Zi,0. Also, we shall have on Γε

r that

W i,0 = −ζi − Zi,0, W i,j = −Zi,j for j �= 0.

Finally, usmooth
k−1,ε = u0 + ε u1 + · · ·+ εk−1 uk−1, where u0 is as in (3), and for i positive,

−Δui = 0 in Ωs,

ui = −d0 ∂n ui−1 + Z1,i−1 + Z2,i−2 + · · · + Zi,0 on Γ, ui = 0 on ∂Ωs\Γ,
ui = 0 in Ωε

r.

5. The boundary corrector problem. We now analyze the boundary correc-
tor problem, as (32), (33) and (38), (39), in more detail. The presence of the curvature
makes this problem cumbersome and a lot of insight can be gained by studying the
zero curvature case first; see [5] and references therein.

Consider the problem

−Δw(ε) = χε
r Δ

[
−ε−1ρφ(θ) + z(ε)

]
in Ωε,(44)

w(ε) = ε−1ρφ(θ) − z(ε) on Γε
r.(45)

Here, φ is a given function of θ only. The function z(ε) is unknown a priori, but it is
introduced to guarantee that w(ε) decays exponentially to zero with ρ. It is desirable
to have z(ε) as simple as possible, and it suffices to assume z(ε) independent of ρ.

Although φ is not necessarily periodic, we try to make use of the periodicity of
the wrinkles, and recast the corrector problem as a sequence of problems in periodic
domains. Using the stretched coordinates (θ̂, ρ̂) = (ε−1θ, ε−1ρ), we seek solutions that
are product of functions in the stretched coordinates with functions of θ only. With
this in mind, we write the Laplacian of a function in the form v(x) = h(θ̂, ρ̂) g(θ) as

−Δ v = − ε−2
(
∂θ̂θ̂h + ∂ρ̂ρ̂h

)
g + ε−1

(
κ ∂ρ̂ h− 2κ ρ̂ ∂θ̂θ̂ h

)
g − ε−12 ∂θ̂ h g

′(46)

−
∞∑
j=0

εj ρ̂j
[(

ρ̂ aj+1
1 ∂ρ̂ h + aj+1

3 ρ̂ ∂θ̂ h + aj+2
2 ρ̂2 ∂θ̂θ̂ h

)
g +

(
aj3 h + 2 aj+1

2 ρ̂ ∂θ̂ h
)
g′

+ aj2 h g
′′],
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where

aj1 = −[κ(θ)]j+1, aj2 = (j + 1) [κ(θ)]j , aj3 =
j(j + 1)

2
[κ(θ)]j−1 κ′(θ),

and we recall that κ is the curvature of Γ.
From (46), and using that z(ε) is independent of ρ,

−Δ[ε−1ρφ(θ)] = ε−1κφ−
∞∑
j=0

εj ρ̂j
[
ρ̂ aj+1

1 φ + ρ̂(aj3 φ
′ + aj2 φ

′′)
]
,

Δ z(ε) =

∞∑
j=0

εj ρ̂j
[
aj3 ∂θz(ε) + aj2 ∂θθ z(ε)

]
.

(47)

Assuming the expansion

z(ε) ∼ z0 + ε z1 + ε2 z2 + · · ·(48)

and using the formal identity

∞∑
j=0

∞∑
i=0

εi+j cj di =

∞∑
j=0

j∑
k=0

εj ck dj−k,(49)

we gather from (47), (48), (49) the identity

(50) Δ
[
−ε−1ρφ + z(ε)

]
= ε−1 κφ +

∞∑
j=0

εj
{
−ρ̂j

[
ρ̂ aj+1

1 φ + ρ̂ (aj3 φ
′ + aj2 φ

′′)
]

+

j∑
k=0

ρ̂k
(
ak3 ∂θz

j−k + ak2 ∂θθ z
j−k

)}
.

Assuming the expansion

w(ε) ∼ w0 + εw1 + ε2 w2 + · · ·(51)

and that w0(θ, ρ) = w0,0(θ̂, ρ̂)φ(θ) and z0(θ) = z0,0 φ(θ), where z0,0 is a constant, we
gather that (44), (45), (46), and (50) lead to (5).

It is clear that w0, z0 do not satisfy (44) exactly, but only the highest order (with
power ε−2) term. In fact, if φ is smooth, it follows from usual regularity estimates
and a scaling argument that∥∥Δ

(
Υw0

)
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c ε−1/2.

Here, as in page 1455, we need the cutoff function Υ, since w0 is not well defined all
over Ωε.

The remainder shall be corrected by the equations defining w1, w2, etc. Note also
that defining w0 as a product between w0,0 and φ allows us to impose periodic bound-
ary conditions in the PDE defining w0,0. This trick reduces the original boundary
corrector problem (44), (45) to a much easier to solve sequence of cell problems.

Continuing the procedure with the aid of (46), we set

w1(θ, ρ) = w1,0(θ̂, ρ̂)κ(θ)φ(θ) + w1,1(θ̂, ρ̂)φ′(θ),
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and z1(θ) = z1,0 κ(θ)φ(θ)+z1,1 φ′(θ), where w1,0 and w1,1 ∈ S(Ωr), and z1,0 and z1,1

are constants such that (19), (20) holds.
Now, w0 + εw1 is a better approximate solution to (44) since,∥∥Δ

[
Υ
(
w0 + εw1

)]
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c ε1/2.

It is easy to see that the right-hand sides of the equations become more involved
as we proceed. The crucial point is to note that in the above cases, the equations do
not involve the nonperiodic terms φ, κ or their derivatives.

Proceeding in a similar manner, we define w2, w3, etc., and∥∥Δ
[
Υ
(
w0 + εw1 + · · · + εk wk

)]
− ε−1χε

r Δ
(
ρφ− z0

)∥∥
L2(Ωε)

≤ c εk−1/2.(52)

Finally, it follows from our computations that

w ∼ w0,0 φ + ε (w1,0 κφ + w1,1 φ′) + ε2 · · · ,(53)

z ∼ z0,0 φ + ε (z1,0 κφ + z1,1 φ′) + ε2 · · · .(54)

In terms of the expansions for the boundary corrector for our original problem,
see (32)–(35), we define

W 1,0(x) = Υ(ρ)w0,0(θ̂, ρ̂) ∂n u0(θ, d0 ε),

W 1,1(x) = Υ(ρ) [w1,0(θ̂, ρ̂)κ(θ) ∂n u0(θ, d0 ε) + w1,1 (θ̂, ρ̂) ∂θ ∂n u0(θ, d0 ε)],

Z1,0(θ) = z0,0 ∂n u0(θ, d0 ε),

Z1,1(θ) = z1,0 κ(θ) ∂n u0(θ, d0 ε) + z1,1 ∂θ ∂n u0(θ, d0 ε),

(55)

etc. Similarly, from (38)–(41), we define

W 2,0(x) = Υ(ρ)w0,0(ρ̂, θ̂) ∂n u1(θ, d0 ε),

W 2,1(x) = Υ(ρ) [w1,0(θ̂, ρ̂)κ(θ) ∂n u1(θ, d0 ε) + w1,1 (θ̂, ρ̂) ∂θ ∂n u1(θ, d0 ε)],

Z2,0(θ) = z0,0 ∂n u1(θ, d0 ε),

Z2,1(θ) = z1,0 κ(θ) ∂n u1(θ, d0 ε) + z1,1 ∂θ ∂n u1(θ, d0 ε),

and so on.

6. Convergence estimate. In this section we estimate the difference between
a truncated asymptotic expansion and the exact solution. To bound such difference,
some a priori estimates are necessary, thus the regularity of the terms in the expan-
sion is worthy of consideration. The results below are based on standard regularity
estimates [15].

The boundary layer terms wi,j solve Poisson problems of the form (4), and we
assume first that Ωr is a convex polygon. Then w0,0 ∈ H2(Ωr). For i > 1, it follows
from (46) that the right-hand side of the Poisson problem for wi,j depends on a linear
combination of wk,l, ∂ρ̂w

k,l, ∂θ̂w
k,l, ∂θ̂θ̂w

k,l, where k < i. Thus, wi,j ∈ H2(Ωr).
Similarly, if Ωr is a nonconvex polygon with largest angle equal to ω, then wi,j ∈
Hs(Ωr) for all s < 1 + π/ω. Note that the regularity results above depend only on
the geometry of Ωr and not on f . On the other hand, the regularity of W i,j depends
on f , since it also depends on the ui; see, e.g., (55).

Concerning the regularity of ui, we rely on smoothness of Ωs to conclude from (3)
that ‖u0‖Hm+2(Ωs) ≤ c‖f‖Hm(Ωs) for all real m, where c depends only on Ωs. Since
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ui is harmonic for i positive, its regularity is determined by its Dirichlet boundary
condition on Γ. Using (46), (50), we gather that the boundary condition for ui

depends, among other more regular terms, on ∂j
θ ∂n ui−j−1, for j = 0, . . . , i−1. Thus,

an induction argument leads to the existence of a constant c depending only on Ωs

and m such that ‖ui‖Hm+2−i(Ωs) ≤ c‖f‖Hm(Ωs), for all real m.
Standard scaling arguments lead to the result below.
Lemma 3. Assume that f is a smooth function with support in Ωs. Then, for

every integers i, j, there exists a constant c such that

‖W i,j‖L2(Ωε) ≤ c ε1/2, ‖W i,j‖H1(Ωε) ≤ c ε−1/2,

‖Zi,j‖H1(Ωε
r) + ‖ζi‖H1(Ωε

r) ≤ c ε1/2, ‖ui‖H1(Ωs) ≤ c.

The constant c might depend on f , Ωs, and Ωr, but it is independent of ε.
Considering now the truncated expansion as in (43), we define the error

ek =

{
uε − ζk,ε −WBL

k,ε − Zk,ε in Ωε
r,

uε − usmooth
k−1,ε −WBL

k,ε in Ωs.
(56)

Aiming to use Lemma 2, we first note that ek vanishes on ∂Ωε. Also, the jumps across
Γ are such that

[[ek]] = 0, [[∂n ek]] = εk| ∂n uk|.(57)

Estimating Δ ek is nontrivial since ek is not harmonic in general. Indeed,

−Δ ek =

{
Δ
[
ζk,ε + WBL

k,ε + Zk,ε

]
in Ωε

r,

ΔWBL
k,ε in Ωs.

It follows from the construction of WBL
k,ε in section 5, (52), and Lemma 3, that

‖Δ ek‖L2(Ωε) ≤ c εk−1/2.(58)

With the above estimates it is not hard to prove the following result, which shows the
rate of convergence in ε of the asymptotic expansion.

Theorem 4. For any positive integer k there exists a constant c such that the dif-
ference between the truncated asymptotic expansion and the original solution measured
in the original domain is bounded as follows:

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ c εk+1/2.(59)

Proof. From Lemmas 2 and 3 and estimates (57), (58), we have that

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ c εk−1/2.(60)

Although the above estimate is not sharp, it is not hard to improve it. In fact,

‖ek‖H1(Ωs) + ‖ek‖H1(Ωε
r) ≤ ‖ek+1‖H1(Ωs) + ‖ek+1‖H1(Ωε

r)

+ ‖ek+1 − ek‖H1(Ωs) + ‖ek+1 − ek‖H1(Ωε
r) ≤ c εk+1/2,

where we used (60) and Lemma 3 to obtain the last inequality.
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MESH

Fig. 3. Mesh of rough domain.

7. Numerical validation: Rough cylinder. We consider Ωs ⊂ R
2 as the two-

dimensional region having as outer boundary a square of size 4 and as inner boundary
a circle of radius 1.15. Formally we have

Ωs = {x = (x1, x2) ∈ R
2 : |x| > 1.15, |xi| < 2, i = 1, 2}.

We define the rough domain as having the same square as outer boundary and a
“perturbed” circle as the inner boundary. We lay upon a circle of unitary radius 20
periodic wrinkles of height 0.1. Thus d0ε = 0.15. The test considered is a variation
of (1), where f = 0, and u = 1 at the outer boundary. We obtain an “exact” solution
by fully discretizing the rough domain with a refined mesh shown in Figures 3 and 4.
We remark that the polygonal appearance of the boundary in Figure 4 is deceiving and
results from approximation a smooth domain using polygonal meshes. Equations (25)
yield the first order solution, and (26) yield the second order solution. Figures 5
and 6 show the isolines and profiles of the solutions for the first and second order cell
problems (5) and (19). Note that we plot only w1,0, since z1,1 = 1.0 × 10−5 and can
be disregarded in the computations. The computed effective constants are z0,0 = 0.77
and z1,0 = 0.27. In Figure 7 we plot the level curves for the exact solution and the
second order approximation. In Figures 8, 9, and 10 we compare the profiles of the
exact solution with the first and second order approximations, at different heights
above the wrinkles. It is possible to see that the second order approximation yields
the best results, as predicted by the theory.
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ZOOM

Fig. 4. Zoom of the wrinkles.

FIRST  CORRECTOR SECOND  CORRECTOR

Fig. 5. Isovalues of corrector ρ̂ − (w0,0 + z0,0) (left) and w1,0 + z1,0 (right) corresponding to
the first and second order cell problems.
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FIRST  CORRECTOR (1)

(1)

(2)

0.0 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SECOND  CORRECTOR (2)

0.25 0.5 0.75 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 6. Profiles at θ̂ = 0.78 of ρ̂− (w0,0 + z0,0) and w1,0 + z1,0.

DIRECT  COMPUTATION SECOND  ORDER

Fig. 7. Second order approximation solves accurately the original problem.
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DIRECT  COMPUTATION (1)
(2)
(3)
(4)

(1)

(2)

(3)

(4)

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21

0.25

ZEROTH ORDER

-0.4 -0.2 0 0.2 0.4
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0.13

0.17

0.21

0.25

FIRST  ORDER

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21

0.25

SECOND  ORDER

-0.4 -0.2 0 0.2 0.4
0.09

0.13

0.17

0.21
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Fig. 8. Profile of solutions at x1 = 1.15.
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Fig. 9. Profile of solutions at x1 = 1.2.
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0.24

0.26

0.28

SECOND  ORDER (3)

0.22

0.24

0.26

0.28

Fig. 10. Profile of solutions at x1 = 1.25.

8. Conclusions. We investigated in this paper the problem of developing and
estimating wall laws for problems defined in domains with rough and curved bound-
aries. For the sake of simplicity, the Poisson problem was considered. We developed
a general methodology consisting of a two-scale expansion technique based on a do-
main decomposition result and obtained high order effective boundary conditions.
Numerical tests accompanied the several sharp error estimates presented for first and
second order approximations. In particular, this work proves that to obtain accurate
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numerical results, the curvature must be considered.

Our approach can be carried over to more sophisticated operators and to higher
dimensions, yielding then a general procedure to develop and estimate effective bound-
ary conditions.

Acknowledgments. The authors thank the anonymous referees for several cor-
rections and suggestions.
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Paris, 1967.

[27] N. Neuss, M. Neuss-Radu, and A. Mikelić, Effective laws for the Poisson equation on
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OPTIMAL TRACING OF VISCOUS SHOCKS IN SOLUTIONS OF
VISCOUS CONSERVATION LAWS∗
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Abstract. This paper contains a qualitative study of a scalar conservation law with viscosity:
ut + f(u)x = uxx . We consider the problem of identifying the location of viscous shocks, thus
obtaining an optimal finite dimensional description of solutions to the viscous conservation law. We
introduce a nonlinear functional whose minimizers yield the viscous traveling profiles which optimally
fit the given solution. We prove that outside an initial time interval and away from times of shock
interactions, our functional remains very small, i.e., the solution can be accurately represented by a
finite number of viscous traveling waves.

Key words. optimal viscous shock tracing, viscous conservation laws, viscous traveling shocks,
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1. Introduction. Consider a scalar conservation law with viscosity

ut + f(u)x = uxx .(1.1)

We assume that the flux f is smooth and genuinely nonlinear, so that f ′′(u) ≥ κ > 0
for every u. Our main interest here is how to identify the emergence of viscous shocks
in a solution, and how to optimally trace their locations and strengths.

More generally, one may ask the following question. Assume that a particular
solution u = u(t, x) has already been computed. If we are allowed only a finite
number of parameters to describe its most relevant features, what is the best way
to compress the information? In the literature, the problem of finite dimensional
approximation of a dynamical system has been studied mainly by looking at ω-limit
sets [T]. Several results, valid for evolution equations of parabolic type, provide
estimates on the dimension of an attractor. Of course, this yields a bound on the
number of parameters needed to describe the evolution of the system asymptotically
as t → +∞.

In the present paper, the focus is different. Namely, we seek a finite dimensional
description which is accurate not only in the asymptotic limit as t → +∞ but also
in the transient regime. For solutions to a scalar, viscous conservation law, this
transient behavior is actually the most interesting feature that can be observed. On
the other hand, at least in the case of convex flux, the ω-limit set is rather trivial. The
asymptotic limit of any solution t �→ u(t, ·) can be described in terms of the solution
of a Riemann problem, i.e., either a single rarefaction or a viscous shock wave. For
general theory on hyperbolic conservation laws, we refer to the books [Sm, B, S].

The problem of optimal location of viscous shock profiles was mentioned also in
[W]. In this connection, we introduce a scalar functional whose minimizers identify
the strengths and locations of viscous shock profiles present in the solution. We also
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prove that outside a set of times with finite measure, at all other times our functional
has very small values. In other words, the description of the solution profile u(t, ·) in
terms of finitely many viscous shocks is accurate, for most times t. The exceptional
set consists of an initial time interval and times at which shock interactions occur; see
Figure 1.

t0

(Riemann Problem)
asymptotic limitinteractionspositive waves

decay of 

Fig. 1. The exceptional set of times where the finite dimensional representation is not accurate.

2. The main result. We consider here the single conservation law with viscosity

ut + f(u)x = uxx .(2.1)

We fix M > 0 and let FM denote the set of all solutions to the Cauchy problem for
(2.1) with initial data

u(0, x) = ū(x)(2.2)

satisfying

Tot.Var.{ū} ≤ M , ‖ū‖L∞ ≤ M .(2.3)

We shall assume that the flux f is C2 and strictly convex, so that f ′′(u) > 0 for all
u ∈ R. In particular, this implies that there exist constants κ, κ′,

0 < κ ≤ f ′′(u) ≤ κ′ for all u ∈ [−M,M ] .(2.4)

In essence, what we want to show is the following. Apart from a small set of times
J ⊂ [0,∞[ , the profile u(t, ·) of any solution of (2.1) can be accurately described
in terms of the superposition of finitely many traveling viscous shocks. Indeed, the
assumption (2.4) of genuine nonlinearity implies that all rarefaction waves will decay
within an initial time interval. Moreover, in regions where the gradient ux is large and
negative, viscous shock profiles will form. These can travel for a long time without
much changing their shape, except when they interact with each other. The set J of
exceptional times where our description is not accurate will thus include an initial time
interval and also the intervals where wave interactions occur. Much of the following
analysis aims at making rigorous the above claims.

For every u− > u+ and y ∈ R, let ω(u±,y) be the unique viscous shock profile
joining the states u−, u+, centered at y. This profile can be found as the unique
solution to the ODE

ω′ = f(ω) − σ ω −
[
f(u−) − σu−] , σ =

f(u−) − f(u+)

u− − u+
,(2.5)

satisfying the additional conditions

ω′′(y) = 0 , ω(−∞) = u−, ω(+∞) = u+.(2.6)
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Notice that the last two identities in (2.6) follow from (2.5) and the convexity of
f . Given any solution u ∈ FM of the conservation law, for each t > 0 we introduce
a description based on optimal location of shock profiles. Fix an integer N ≥ 1 and

let ωi = ω(u±
i ,yi) be the ith viscous shock profile we try to fit in. We consider the

functional

J
(
u(t), ω1, . . . , ωN

) .
=

N∑
i=1

∫
R

∣∣∣u(t, x) − ωi(x)
∣∣∣ · ∣∣ωi,x(x)

∣∣2 dx
+

∫
R

∣∣∣∣∣ux(t, x) −
N∑
i=1

ωi,x(x)

∣∣∣∣∣
2

dx .(2.7)

Notice that the first integral measures the distance between u and the traveling
viscous shock ωi, multiplied by a weight function |ωi,x|2 which is vanishingly small
away from the center of the ith shock. The second integral measures how well the
derivative ux is approximated by derivatives of traveling shock profiles. See Figure 2
for an illustration of fitting two viscous shocks in a solution.

u

j
y

j

k
y x

ω

kω

Fig. 2. Fitting two viscous shocks ωj , ωk in a solution.

If we fix a priori the complexity of our description, i.e., the integer N , how small
can we render the integral J ? This problem can be formulated as

inf
ω1,...,ωN

J
(
u(t), ω1, . . . , ωN

)
,(2.8)

where the infimum is taken over all N -tuples of traveling shock profiles ωi = ω(u±
i ,yi),

for some states u−
i > u+

i and yi ∈ R. Notice that if we choose ωi ≡ 0 for i = 1, . . . , N
(i.e., all traveling waves of zero amplitude), then the first integral in (2.7) vanishes

because trivially ωi,x ≡ 0. However, in this case the second integral equals
∥∥ux(t, ·)

∥∥2
L2 ,

which is of order Tot.Var.(u)3 due to regularization and can be large.
To estimate the quantity in (2.8), an intuitive argument goes as follows. Set

δ = M/N , where M is given in (2.3). Since the total variation of u(t) is bounded by
M , there can be at most N shock profiles of strength ≥ δ. Each one of these can be
traced accurately. In addition, there may be an arbitrarily large number of smaller
shocks, say, of strengths σj , j ≥ 1, with

σj ≤ δ ,
∑
j

σj ≤ M .(2.9)

Each shock which is not traced produces an error in the second integral of (2.7) of
the order ∫ ∣∣ωj,x(x)

∣∣2 dx = O(1) · σ3
j .(2.10)
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Because of (2.9) we thus expect that the minimum of J is approximately

Jmin ≈ O(1) ·Mδ2 = O(1) · M
3

N2
.(2.11)

The estimate (2.11) should indeed hold outside an initial time interval, where
positive waves will decay, and away from interaction times. Our main results are as
follows.

Theorem 2.1. Assume f ′′(u) ≥ κ > 0 for every u ∈ R. Let u ∈ FM be a
solution of the viscous conservation law (2.1), and fix N ≥ 1. Then, for every t > 0,
the minimization problem (2.8) has at least one solution.

Theorem 2.2. There exist constants α (uniformly valid for all N ≥ 1 and
u ∈ FM ) and β = βN,M (depending only on N and M) such that

Jmin

(
u(t)
)
≤ α · 1

N2
(2.12)

for all t ∈ [0,∞[ \Iu for an exceptional set Iu of times, with meas(Iu) ≤ β.
The remainder of the paper contains a proof of the above two theorems. We

remark that Theorem 2.1 states the existence of a minimizer for the scalar function
J : R

3N �→ R. Since J is continuous and positive, the result would be trivial if
J (y) → ∞ as |y| → ∞. However, it is easily seen that this coercivity condition
fails. The heart of the proof consists in showing that, if {X(m)}m≥1 is a minimizing

sequence with |X(m)| → ∞, then a second minimizing sequence X̃(m) can be defined
(in terms of X(m)) whose elements remain uniformly bounded.

The proof of Theorem 2.2 involves a deeper argument. With a solution of the
viscous equation (2.1) we associate a curve γ moving in the plane. By results in
[BB, BB1, BB2], the total area swept by this curve in its motion is a priori bounded
in terms of a monotone decreasing area functional Q(u). We then show that at every
time t where the rate of decrease d

dtQ(u(t)) is sufficiently small, the inequality (2.12)
holds.

We remark that in (2.8), the integer N is fixed. Of course, one could let N vary
and look at the minimization problem

min
N≥0

inf
ω1,...,ωN

{
εN + J

(
u(t), ω1, . . . , ωN

)}
.(2.13)

Here the first term penalizes the complexity of the description, adding a cost for
each new viscous profile. The small constant ε > 0 acts as a threshold parameter.
Small viscous shock waves, whose strength ‖ωx‖2

L2 is of order < ε, will not be traced.
From Theorem 2.1 it immediately follows that the problem (2.13) also admits a global
minimizer. This can be interpreted as an optimal description of the solution profile
u(t, ·) as superposition of traveling viscous shocks.

3. Proof of Theorem 2.1.
Step 1. At any fixed time t > 0, the solution u(t, ·) of the viscous conservation law

(2.1) is a C1 function with bounded total variation. We shall prove, more generally,
that the functional J (u; ω1, . . . , ωN ) admits a global minimum for every C1 function
u : R �→ R with bounded variation.

Step 2. Recall that ωk
.
= ω(u±

k ,yk). Observing that the traveling wave profiles
ωk as well as their derivatives ωk,x depend continuously on the scalar parameters
u−
k , u+

k , yk (k = 1, . . . , N), we have to prove that the continuous scalar function
J (u; ·) : R

3N �→ R admits a global minimum.
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Since J ≥ 0, this function has a nonnegative infimum Jmin. We can thus con-
struct a minimizing sequence in R

3N , converging to Jmin, say,{
X(m) .

=
(
y
(m)
1 , u

(m)+
1 , u

(m)−
1 , . . . , y

(m)
N , u

(m)+
N , u

(m)−
N

)
; m ≥ 1

}
.(3.1)

By possibly taking a subsequence, we can assume that each component of the vector
X(m) ∈ R

3N either converges to a finite limit or else diverges to ±∞.
Step 3. If

sup
m≥1

{∣∣∣y(m)
k

∣∣∣+ ∣∣∣u(m)+
k

∣∣∣+ ∣∣∣u(m)−
k

∣∣∣} < ∞

for each k = 1, . . . , N , then the entire minimizing sequence {X(m)}m≥1 is bounded in
R

3N . By our previous assumption, it converges to some limit

X̄ =
(
ȳ1, ū

+
1 , ū

−
1 , . . . , ȳN , ū+

N , ū−
N

)
.

By continuity, we thus have J (u; X̄) = Jmin, proving the existence of a minimizer.
Step 4. In general, however, one cannot guarantee the minimizing sequence to be

bounded, because the function J (u ; ·) is not coercive on R
3N . We shall thus adopt

an alternative strategy. Assume that for some index j,

lim
m→∞

{∣∣∣y(m)
j

∣∣∣+ ∣∣∣u(m)+
j

∣∣∣+ ∣∣∣u(m)−
j

∣∣∣} = ∞ .

Consider the new sequence

X̃(m) .
=
(
ỹ
(m)
1 , ũ

(m)+
1 , ũ

(m)−
1 , . . . , ỹ

(m)
N , ũ

(m)+
N , ũ

(m)−
N

)
,

obtained by setting the parameters of the jth traveling profile to zero. More precisely,
for every m ≥ 1 we set(

ỹ
(m)
i , ũ

(m)+
i , ũ

(m)−
i

)
=
(
y
(m)
i , u

(m)+
i , u

(m)−
i

)
if i �= j ,(

ỹ
(m)
j , ũ

(m)+
j , ũ

(m)−
j

)
= (0, 0, 0) .

We claim that

lim sup
m→∞

J (u; X̃(m)) ≤ lim
m→∞

J (u; X(m)) .(3.2)

If the original sequence had k unbounded components, say, for j ∈ {i1, i2, . . . , ik} ⊂
{1, 2, . . . , N}, the above construction yields a new minimizing sequence having k − 1
unbounded components. By induction, in a finite number of steps we obtain a min-
imizing sequence where all components are bounded. Hence, by Step 3, a global
minimizer exists.

Step 5. It now remains to show that (3.2) holds. Equivalently, for every ε > 0 we
will prove that

lim sup
m→∞

J (u; X̃(m)) ≤ lim
m→∞

J (u; X(m)) + ε .(3.3)

We shall consider different cases.
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Case 1. Assume that, as m → ∞,

‖ω(m)
j,x ‖L2 → 0 .(3.4)

By the assumption f ′′(u) ≥ κ > 0, the strict convexity of the flux function implies

‖ω(m)
j,x ‖L∞ → 0 .(3.5)

In this case, observing that ω
(m)
i,x ≤ 0 because all viscous shock profiles are decreasing,

we have the estimate

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i= 1

ω
(m)
i,x

∣∣∣∣∣
2

dx

≥
∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �= j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx − 2

∫ ∞

−∞
|ux| ·

∣∣∣ω(m)
j,x

∣∣∣ dx

≥
∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �= j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx − 2 · ‖ux‖L1 ·
∥∥∥ω(m)

j,x

∥∥∥
L∞

.

Here we used the elementary inequality (a− b− c)2 ≥ (a− b)2 − 2|ac|, valid whenever
b and c have the same sign. Therefore,

lim
m→∞

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i= 1

ω
(m)
i,x

∣∣∣∣∣
2

dx ≥ lim sup
m→∞

∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �= j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx ,(3.6)

provided that (3.4) holds. Clearly, (3.6) implies (3.2). Notice that the condition (3.4)
is certainly satisfied if u(m)+ and u(m)− remain uniformly bounded and |u(m)+ −
u(m)−| → 0.

Case 2. Assume that

lim inf
m→∞

∥∥∥ω(m)
j,x

∥∥∥
L2

.
= δ2 > 0 .(3.7)

This breaks down into three different subcases.

Case 2a. We have the limits
∣∣y(m)

j

∣∣→ ∞ while u
(m)+
j → u+

j , u
(m)−
j → u−

j . To fix

the ideas, assume y
(m)
j → +∞. Observe that in this case δ2 = ‖ωj,x‖L2 , where ωj is

a viscous shock profile connecting u−
j with u+

j . Given ε > 0, choose L so large that

(∫ ∞

L

|ux|2 dx

)1/2

<
ε

2 δ2
.
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We then have the estimate∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i= 1

ω
(m)
i,x

∣∣∣∣∣
2

dx

≥
∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �=j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx− 2

∫ L

−∞
|ux| ·

∣∣∣ω(m)
j,x

∣∣∣ dx− 2

∫ ∞

L

|ux| ·
∣∣∣ω(m)

j,x

∣∣∣ dx

≥
∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �=j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx − 2

(∫ L

−∞
|ux| dx

)
· sup
x<L

∣∣∣ω(m)
j,x (x)

∣∣∣
− 2

(∫ ∞

L

|ux|2 dx

)1/2

·
∥∥∥ω(m)

j,x

∥∥∥
L2

.

Observing that

lim
m→∞

sup
x<L

∣∣∣ω(m)
j,x (x)

∣∣∣ = 0 , lim
m→∞

∥∥∥ω(m)
j,x

∥∥∥
L2

= δ2

from the above estimate we deduce

lim inf
m→∞

∫ ∞

−∞

∣∣∣∣∣ux −
N∑
i=1

ω
(m)
i,x

∣∣∣∣∣
2

dx ≥ lim inf
m→∞

∫ ∞

−∞

∣∣∣∣∣∣ux −
∑
i �=j

ω
(m)
i,x

∣∣∣∣∣∣
2

dx− 2
ε

2δ2
δ2 .

This clearly implies (3.3).

Case 2b. Assume that both sequences u
(m)+
j and u

(m)−
j diverge to +∞. The case

where they both tend to −∞ is entirely similar. We then have

lim inf
m→∞

∫ ∞

−∞

∣∣∣u− ω
(m)
j

∣∣∣ · ∣∣∣ω(m)
j,x

∣∣∣2 dx

≥ lim
m→∞

(
inf
x∈R

∣∣∣u(x) − ω
(m)
j (x)

∣∣∣) ·
∥∥∥ω(m)

j,x

∥∥∥2
L2

= ∞ .

Hence the original sequence was not minimizing. This contradiction shows that this
case cannot happen.

Case 2c. Assume that the strength of the jth traveling wave becomes arbitrarily

large as m → ∞, so that u
(m)−
j − u

(m)+
j → ∞. In this case, it is easy to check that

J (u ; X(m)) → ∞. Indeed, let K
.
= ‖u‖L∞ . We then have

lim inf
m→∞

∫ ∞

−∞

∣∣∣u− ω
(m)
j

∣∣∣ · ∣∣∣ω(m)
j,x

∣∣∣2 dx ≥ lim inf
m→∞

∫
∣∣∣ω(m)

j (x)
∣∣∣>K+1

∣∣∣ω(m)
j,x

∣∣∣2 dx .

Obviously, this integral diverges to infinity. Indeed, let’s consider the case when

lim
m→∞

u(m)− = +∞ .

For the case when limm→∞ u(m)+ = −∞ it is entirely similar. We have

lim inf
m→∞

∫
∣∣∣ω(m)

j (x)
∣∣∣>K+1

∣∣∣ω(m)
j,x

∣∣∣2 dx ≥ lim inf
m→∞

∫
ω

(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣2 dx

≥ lim inf
m→∞

min
ω

(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣ · ∫
ω

(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣ dx = ∞.
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This proves that the original sequence was not minimizing. We again conclude
that this case cannot happen. This completes the proof of Theorem 2.1.

4. Proof of Theorem 2.2. We shall rewrite the parabolic equation (2.1) using
a different set of variables:

v = f(u) − ux , τ = t , η = u .(4.1)

This change of variable was first introduced in [BB] and then used in later papers
[BB1, BB2]. For each fixed time t > 0, the solution of (2.1)–(2.2) is smooth. The
map

x �→ γt(x)
.
=
(
u(t, x) , v(t, x)

)
(4.2)

parameterizes a curve γt in the u-v plane. To see how this curve evolves in time, from
(2.3) one obtains

vt + f ′(u)vx = vxx .(4.3)

On regions where ux �= 0 we can now use (τ, η) as independent variables, instead of
(t, x). From (4.1) and (4.3) we obtain

ux = f(u) − v , vη =
vx
ux

, vηη =
vxx
u2
x

− vx
u3
x

uxx ,

vτ = vt −
ut

ux
vx = (vxx − f ′(u)vx) − vx

ux
(uxx − f ′(u)ux) = vxx − uxx

ux
vx .

Therefore

vτ = (ux)2vηη =
(
v − f(η)

)2
vηη .(4.4)

In particular, the curve γ = γ(τ, η) = (η, v(τ, η)) evolves in the direction of the
curvature and its total length is monotone decreasing in time. Another functional
which is monotonically decreasing in time is the area functional

Q(γ)
.
=

1

2

∫ ∫
η<η̃

∣∣∣γη(η) ∧ γη(η̃)
∣∣∣ dηdη̃,(4.5)

defined as the double integral of a wedge product. In terms of the original coordinates
u, x, we have

Q(u) =

∫ ∫
x<x̃

|ux(x̃) · [f ′(u(x)) · ux(x) − uxx(x)]

−ux(x) · [f ′(u(x̃)) · ux(x̃) − uxx(x̃)]| dxdx̃ .(4.6)

All these calculations, (4.1)–(4.6), can be found in [BB, BB1]. As proved in [BB1],
the decrease of the functional Q controls the area swept by the curve γ in its motion.

By parabolic regularization estimates, at time t = 1 we now have

Q
(
u(1)

)
≤ C1(4.7)
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for some constant C1, uniformly valid for all solutions u ∈ FM . Therefore∫ ∞

1

∫ (
v − f(η)

)2|vηη| dηdτ ≤
∫ ∞

1

∫ ∣∣vτ (τ, η)∣∣ dηdτ
≤
∫ ∞

1

−
{

d

dt
Q
(
u(t)
)}

dt ≤ Q
(
u(1)

)
≤ C1 .(4.8)

As a consequence, for any given ε > 0, there exists a set of times Iu ⊂ [1,∞[ with

meas(Iu) ≤ C1/ε(4.9)

such that ∫ (
v(t, η) − f(η)

)2 · ∣∣vηη(t, η)∣∣ dη ≤ ε for all t ≥ 1, t /∈ Iu.(4.10)

In addition, the assumption (2.4) of genuine nonlinearity yields the well-known decay
estimate ux(t, x) ≤ (κt)−1, hence

−∞ < ux(t, x) ≤ ε, x ∈ R ,(4.11)

for all t ≥ (κε)−1. To achieve a proof of Theorem 2.2, it now suffices to show that at
every time t where (4.10)–(4.11) hold with some ε > 0 sufficiently small, the profile of
u(t, ·) can be suitably approximated by a finite superposition of viscous shock profiles,
and (2.12) holds.

As before, set δ
.
= M/N . We can single out finitely many disjoint intervals

Ik = [ak, bk], k = 1, . . . , ν, such that

min
x∈Ik

ux(t, x) ≤ −7δ2 for all k ,

ux(t, x) ≤ ux(t, ak) = ux(t, bk) = −2δ3 for all x ∈ Ik ,(4.12)

ux(t, x) > −7δ2 for all x /∈ I1 ∪ · · · ∪ Iν .(4.13)

The images of these intervals through the mapping x �→ γ(x) are graphs of func-
tions v = v(k)(η), say, with η ∈ [b′k, a

′
k]

.
=
[
u(bk), u(ak)

]
; see Figure 3. For each k we

now choose a point xk ∈ [ak, bk] such that

−mk
.
= ux(t, xk) = min

ak≤x≤bk
ux(t, x)(4.14)

and call γk the segment in the u-v plane with endpoints on the graph of the function
f , tangent to the graph of the function v(k) at the point ck

.
= u(t, xk), as in Figure 4.

Let u+
k < u−

k be the points where γk intersects the graph of f , and call ωk the unique
viscous traveling wave profile satisfying

ω(−∞) = u−
k , ω(∞) = u+

k ,

ω′ = f(ω) − σk ω −
[
f(u−

k ) − σku
−
k

]
, σk =

f(u−
k ) − f(u+

k )

u−
k − u+

k

= f ′(u(t, xk)
)
,

ω(xk) = u(t, xk) , f ′(ω(xk)) = σk .(4.15)

It is important to notice that, by the previous construction, the image of the
one-to-one map

x �→
(
ωk(x) , f

(
ωk(x)

)
− ωk,x(x)

)
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Fig. 3. Example of a solution of the viscous conservation law and the corresponding curve in
the v − η plane.
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ck+
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u u−

Fig. 4. Fitting in a viscous shock ωk, illustrated in the v − η plane.

is precisely the segment γk. Moreover, the tangency condition and the maximality
condition (4.14) imply that, at x = xk,

ux(t, xk) = ωk,x(xk) , uxx(t, xk) = ωk,xx(xk) = 0 .

Geometrically, this means that both u(t, ·) and ωk(·) have an inflection point at x =
xk. We now recall that, by (4.10),

∑
k

∫ a′
k

b′k

(
v(k)(η) − f(η)

)2

·
∣∣∣v(k)

ηη (t, η)
∣∣∣ dη ≤ ε .(4.16)

Restricted to the region where ux ≤ −δ3, the previous inequality implies the key
estimate

ν∑
k=1

∫
{v(k)(η)−f(η)≥δ3}

∣∣∣v(k)
ηη (t, η)

∣∣∣ dη ≤ ε

δ6
.(4.17)

Since ε > 0 can be chosen arbitrarily small, according to (4.17) every function v(k) is
almost affine, hence its graph is very well approximated by the tangent line γk. Revert-
ing to the original variables t, x, this in turn implies that u(t, ·) is closely approximated
by the corresponding traveling profile ωk on the appropriate interval x ∈ [ak, bk].
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Lemma 4.1. Assume that the flux function satisfies

0 < κ ≤ f ′′(u) ≤ κ′ for all u ∈ R .(4.18)

Then for every ε′ > 0 there exists ε > 0 small enough so that (4.17) implies the
following:

‖u− ωk‖L∞([ak,bk]) ≤ ε′ , ‖u− ωk‖2
H1([ak,bk]) ≤ ε′ for all k .(4.19)

Moreover,

u(t, ak) − u(t, bk) ≥
√

mk

κ′ ,(4.20)

sup
x/∈[ak,bk]

|ωk,x(x)| ≤ 3δ3 ,(4.21)

∫
R\[ak,bk]

|ωk,x(x)| dx ≤ 6δ2

√
κ
.(4.22)

Proof. By choosing ε > 0 sufficiently small, we can assume that the C1 distance∥∥∥v(k) − γk
∥∥∥
C1([b′k,a′

k])
(4.23)

is as small as we like. By (4.12), when x ∈ [ak, bk] we have ux ≤ −2δ3. The map
x �→ u(x) is thus invertible on each interval [ak, bk]. The two norms in (4.19) can both
be estimated in terms of the distance (4.23).

We now prove (4.20). Using (4.23) and recalling (4.12), by taking ε > 0 sufficiently
small we can assume that

γk(a′k) − f(a′k) ≤ v(k)(a′k) − f(a′k) + ‖v(k) − γk‖C0 ≤ 3δ3 ,

γk(b′k) − f(b′k) ≤ v(k)(b′k) − f(b′k) + ‖v(k) − γk‖C0 ≤ 3δ3 .

The inequality (4.20) now follows from a simple geometrical inequality (see Fig-
ure 5(a)). If f ′′ < κ′ and γ is a linear function such that

γ(a′) − f(a′) ≤ 3δ3, γ(b′) − f(b′) ≤ 3δ3, γ(c) − f(c) = mk ,

for some points b′ < c < a′, then

a′ − b′ ≥
√

2(mk − 3δ3)

κ′ .

Since we are assuming δ < 1, mk ≥ 7δ2 > 2(3δ3), from the previous inequality we
deduce

a′k − b′k ≥
√

mk

κ′ ,

proving (4.20).
The inequality (4.21) follows from

sup
x/∈[ak,bk]

|ωk,x(x)| = max {|ωk,x(a′k)| , |ωk,x(b′k)|} ≤ 2δ3 +
∥∥∥v(k) − γk

∥∥∥
C1([b′k,a

′
k])

≤ 3δ3 .
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Fig. 5. Some geometrical properties of convex functions.

To prove (4.22), call αk, βk the points where the line γk intersects the graph of
f , as in Figure 5(b). Then∫

R\[ak,bk]

|ωk,x(x)| dx = (αk − a′k) + (b′k − βk) .

Consider the function g(u)
.
= γk(u) − f(u). Clearly, we have

g(ck) = max
u

g(u) ≥ 7δ2,

and ck is the midpoint of the interval [βk, αk]. Assuming f ′′ ≥ κ, then

a′k − ck ≥ 1

2

√
4(mk − 3δ3)

κ
.

Recalling that

g(a′k) ≤ 3δ3 , g(b′k) ≤ 3δ3 , g′′ = −f ′′ ≤ −κ ,

we conclude that

−g′(a′k) = −
∫ a′

k

ck

g′′(u) du ≥ κ(a′k − ck) ≥
√
κ(mk − 3δ3).

Recalling that mk ≥ 7δ2 and δ < 1, we obtain

αk − a′k ≤ 3δ3√
κ(mk − 3δ3)

≤ 6δ3

√
8κδ2

≤ 3δ2

√
κ
.

The estimate for b′k − βk is totally similar. Together, these yield (4.22). The proof of
the lemma is completed.

As approximations to u(t, ·) we now choose the N traveling profiles ωk in the
above list, corresponding to the N largest values of mk, say, m1 ≥ m2 ≥ · · · ≥ mN .
Notice that (4.20) implies

N

√
mN

κ′ ≤ M , mN ≤ κ′
(
M

N

)2

.

Hence

|ux(t, x)| ≤ κ′
(
M

N

)2

, x /∈
N⋃

k=1

[ak, bk] .(4.24)
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Using the estimates (4.19)–(4.21) we now check that the functional J at (2.7) is
small, as claimed by Theorem 2.2. The first half of the right-hand side in (2.7) can
be estimated as

N∑
k=1

∫
R

|u(t, x) − ωk(x)| · |ωk,x(x)|2 dx

=

N∑
k=1

(∫
x∈[ak,bk]

+

∫
x/∈[ak,bk]

)
|u(t, x) − ωk(x)| · |ωk,x(x)|2 dx

≤
∑
k

‖u− ωk‖L∞([ak,bk]) · ‖ωk,x‖2
L2(R)

+
∑
k

(
‖u‖L∞(R) + ‖ωk‖L∞(R)

)
sup

x/∈[ak,bk]

|ωk,x(x)| ·
∫

R\[ak,bk]

|ωk,x(x)| dx

≤ O(1) ·N ε′ + N · 2M · 3δ3 6δ2

√
κ

= O(1) · 1

N4
.

For the second half of the right-hand side of (2.7), we can use the inequality (a+b)2 ≤
2(a2 + b2), valid for all real numbers of a, b, and we get

∫
R

∣∣∣∣∣ux(t, x) −
N∑

k=1

ωk,x(x)

∣∣∣∣∣
2

dx

=
∑
k

∫ bk

ak

∣∣∣∣∣ux(t, x) −
N∑

k=1

ωk,x(x)

∣∣∣∣∣
2

dx +

∫
R\∪k[ak,bk]

∣∣∣∣∣ux(t, x) −
N∑

k=1

ωk,x(x)

∣∣∣∣∣
2

dx

≤
∑
k

∫ bk

ak

⎛
⎝|ux(t, x) − ωk,x(x)| +

∑
j �=k

|ωj,x(x)|

⎞
⎠

2

dx

+

∫
R\∪k[ak,bk]

(
|ux(t, x)| +

∑
k

|ωk,x(x)|
)2

dx

≤ 2
∑
k

⎧⎪⎨
⎪⎩
∫ bk

ak

|ux(t, x) − ωk,x(x)|2 dx +

∫ bk

ak

⎛
⎝∑

j �=k

|ωj,x(x)|

⎞
⎠

2

dx

⎫⎪⎬
⎪⎭

+ 2

∫
R\∪k[ak,bk]

⎡
⎣|ux(t, x)|2 +

(∑
k

|ωk,x(x)|
)2
⎤
⎦ dx

≤ I1 + I2 + I3 + I4 ,

where

I1 = 2
∑
k

|u− ωk|H1([ak,bk]) ,
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I2 = 2
∑
j

⎛
⎝∑

k �=j

∫ bk

ak

|ωj,x(x)|2 dx

⎞
⎠ ≤ 2

∑
j

∫
R\[aj ,bj ]

|ωj,x(x)|2 dx

≤ 2
∑
j

{
sup

x/∈[aj ,bj ]

|ωj,x(x)| ·
∫

R\[aj ,bj ]

|ωj,x(x)| dx
}

,

I3 = 2

{
sup

x/∈∪[ak,bk]

|ux(t, x)|
}

·
∫

R

|ux(t, x)| dx ,

I4 = 2
∑
k

{
sup

x/∈[ak,bk]

|ωk,x(x)|
}

·
∫

R\∪k[ak,bk]

∑
k

|ωk,x(x)| dx .

Using the estimates in Lemma 4.1 and (4.24), we get

I1 ≤ 2Nε′ ,

I2 ≤ 2N 3δ3 6δ2

√
κ
,

I3 ≤ 2κ′M
2

N2
M ,

I4 ≤ 2 ·N3δ3 ·N 6δ2

√
κ
.

Note that I1 measures how well the viscous shock profile matches the solution on the
interval [ak, bk], and this term is arbitrarily small. I2 measures the H1 norm of the
viscous shock waves outside the interval [ak, bk], and it is of O(1)/N4. And I3 is the
sum of all the shock waves that are not represented. This is the largest term here,
and is of O(1)/N2. Finally, I4 is similar to I2, and is of O(1)/N3. In summary, we
have

∫
R

∣∣∣∣∣ux(t, x) −
N∑

k=1

ωk,x(x)

∣∣∣∣∣
2

dx ≤ O(1) · 1

N2
.

Putting these two parts together, we get the desired result.

5. Concluding remarks. For solutions to the conservation law (2.1), the tran-
sient behavior is nontrivial and can last an arbitrarily long time. This happens because
we are considering solutions defined on the whole real line. On the other hand, if the
equation is restricted to a bounded interval, say,

ut + f(u)x = uxx, x ∈ ]a, b[ ,(5.1)

with boundary conditions

u(a) = α , u(b) = β ,(5.2)

then all solutions would converge at an exponential rate to a unique steady state w(·).
Indeed, from basic theory of parabolic equations [H] it follows that there exists a

unique function w : [a, b] �→ R which satisfies the two-point boundary value problem

f(w)x = wxx , w(a) = α , w(b) = β .(5.3)
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Linearizing (5.1) around the steady state w, one obtains the existence of some δ > 0
such that, for every initial data ū ∈ L2 the corresponding solution of (5.1)–(5.2)
satisfies

‖u(t) − w‖Ck([a,b]) ≤ C e−δt.

Here one can choose a constant C uniformly valid on bounded subsets of L2. After
an initial time interval, the long-term behavior of the solution is thus trivial.

In the case of a bounded domain, the corresponding equation (4.4) in the (η, v)
variables must be supplemented with the boundary conditions

vη(α) = vη(β) = 0 .

The unique steady state solution of (5.3) corresponds to a constant function:

v(η) ≡ κ for all η ∈ [α, β] .

Observing that

b− a =

∫ β

α

1

ux
du =

∫ β

α

1

f(η) − v(η)
dη ,

one can uniquely determine the constant κ from the relation

b− a =

∫ β

α

1

f(η) − κ
dη .
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SYNCHRONIZATION OF A STOCHASTIC REACTION-DIFFUSION
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Abstract. A system of semilinear parabolic stochastic partial differential equations with additive
space-time noise is considered on the union of thin bounded tubular domains D1,ε := Γ × (0, ε) and
D2,ε := Γ × (−ε, 0) joined at the common base Γ ⊂ R

d, where d ≥ 1. The equations are coupled by
an interface condition on Γ which involves a reaction intensity k(x′, ε), where x = (x′, xd+1) ∈ R

d+1

with x′ ∈ Γ and |xd+1| < ε. Random influences are included through additive space-time Brownian
motion, which depend only on the base spatial variable x′ ∈ Γ and not on the spatial variable xd+1

in the thin direction. Moreover, the noise is the same in both layers D1,ε and D2,ε. Limiting
properties of the global random attractor are established as the thinness parameter of the domain ε
→ 0, i.e., as the initial domain becomes thinner, when the intensity function possesses the property
limε→0 ε−1k(x′, ε) = +∞. In particular, the limiting dynamics is described by a single stochastic
parabolic equation with the averaged diffusion coefficient and a nonlinearity term, which essentially
indicates synchronization of the dynamics on both sides of the common base Γ. Moreover, in the case
of nondegenerate noise we obtain stronger synchronization phenomena in comparison with analogous
results in the deterministic case previously investigated by Chueshov and Rekalo [EQUADIFF -2003,
F. Dumortier et al., eds., World Scientific, Hackensack, NJ, 2005, pp. 645–650; Sb. Math., 195 (2004),
pp. 103–128].
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1. Introduction. Let D1,ε and D2,ε be thin bounded domains in R
d+1, where

d ≥ 1, of the form

D1,ε = Γ × (0, ε), D2,ε = Γ × (−ε, 0),

where 0 < ε ≤ 1 and Γ is a bounded C2-domain in R
d. We write x ∈ Dε := D1,ε∪D2,ε

as x = (x′, xd+1), where x′ ∈ Γ and xd+1 ∈ (0, ε) or xd+1 ∈ (−ε, 0), and will not
distinguish between the sets Γ × {0} ⊂ R

d+1 and Γ ⊂ R
d.

We consider the following system of semilinear parabolic equations:

∂

∂t
U i − νiΔU i + aU i + fi(U

i) + hi(x) = Ẇ (t, x′), t > 0, x ∈ Di,ε, i = 1, 2,(1)

with the initial data

U i(0, x) = U i
0(x), x ∈ Di,ε, i = 1, 2,(2)

∗Received by the editors December 12, 2005; accepted for publication (in revised form) August
28, 2006; published electronically January 12, 2007. This work was partly supported by Ministerio
de Educación y Ciencia (Spain) and FEDER (European Community), project MTM2005-01412.

http://www.siam.org/journals/sima/38-5/64728.html
†Departamento Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de
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1489



1490 T. CARABALLO, I. D. CHUESHOV, AND P. E. KLOEDEN

where the Ẇ (t, x′) is a Gaussian white noise depending on the spatial variable x′ ∈
Γ (but not on the xd+1 spatial variable).

We assume that U1 and U2 satisfy the Neumann boundary conditions(
∇U i, ni

)
= 0, x ∈ ∂Di,ε \ Γ, i = 1, 2,(3)

on the external part of the boundary of the compound domain Dε, where n is the
outer normal to ∂Dε, and a matching condition on Γ of the form(

−ν1
∂U1

∂xd+1
+ k(x′, ε)(U1 − U2)

)∣∣∣∣
Γ

= 0,

(
ν2

∂U2

∂xd+1
+ k(x′, ε)(U2 − U1)

)∣∣∣∣
Γ

= 0.

(4)

Here the above constants νi and a are positive numbers.
We impose the following assumptions:
• for i = 1, 2 the function fi ∈ C1(R) possesses the property f ′

i(v) ≥ −c for all
v ∈ R and also satisfies the relations

vfi(v) ≥ a0|v|p+1 − c, |f ′
i(v)| ≤ a1|v|p−1 + c, v ∈ R,(5)

where aj and c are positive constants and 1 ≤ p < 3;
• hi ∈ H1(Di,1), i = 1, 2;
• the interface reaction intensity k(x′, ε) satisfies

k(·, ε) ∈ L∞(Γ), k(x′, ε) > 0 for x′ ∈ Γ, ε ∈ (0, 1],

and

lim
ε→0

1

ε
k(x′, ε) = +∞, x′ ∈ Γ, in Lebesgue measure (see Remark 1.1);(6)

• W (t), t ∈ R, is a two-sided L2(Γ)-valued Wiener process with covariance
operator K = K∗ ≥ 0 such that

tr
[
K (−ΔN + 1)

2β−1
]
< ∞ for some β > max

{
1 ,

d

4

}
,(7)

where ΔN is the Laplace operator in L2(Γ) with the Neumann boundary con-
ditions on ∂Γ. We denote by (Ω,F ,P) the corresponding probability space,
and by Ẇ ≡ ∂tW the generalized derivative with respect to t.

Remark 1.1. Our main example of the interface reaction intensity is the following
function:

k(x′, ε) = εαk0(x
′) ∈ L∞(Γ), k0(x

′) > 0 for x′ ∈ Γ, ε ∈ (0, 1],

for some α ∈ [0, 1). We also note that the convergence in (Lebesgue) measure to
infinity means that

lim
ε→0

Leb
{
x′ ∈ Γ : ε−1k(x′, ε) ≤ N

}
= 0 for any N > 0.

Problem (1)–(4) is a model for a reaction-diffusion system consisting of two com-
ponents filling thin contacting layers D1,ε and D2,ε separated by a penetrable mem-
brane Γ. Reaction of the components is possible on the surface Γ only, and the reaction
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intensity k(x′, ε) depends on the thickness of the domains filled by the reactants. The
deterministic version of the model was considered by Chueshov and Rekalo [12, 13],
while Rekalo [27] investigated the special case of identical equations in both layers
with k(ε, x) independent of ε. The stochastic version considered in the present paper
allows for irregularities and random effects on the separating membrane.

Hale and Raugel [21, 22] initiated the analysis of asymptotic dynamics of deter-
ministic semilinear reaction-diffusion equations on thin domains. Some extensions
of their results can be also found in [16] and [26]. In all these papers, a reaction-
diffusion equation is endowed with homogeneous Neumann boundary conditions. To
our knowledge stochastic evolution equations have not previously been investigated
on thin domains.

In this paper we investigate the pathwise asymptotic behavior of the above stochas-
tic evolution system by converting it into a system of pathwise random partial differ-
ential equations (PDEs) to which deterministic methods can be applied in a pathwise
manner.

Our main result deals with properties of random (global) pullback attractors for
the random dynamical system generated by (1)–(4) in L2(Dε). In particular, we prove
that these pullback attractors are closely related to the corresponding object for the
problem

∂

∂t
U − νΔx′U + aU + f(U) + h(x′) = Ẇ (t, x′), t > 0, x′ ∈ Γ,(8)

on the spatial domain Γ with the Neumann boundary conditions on ∂Γ. Here we
denote

ν =
ν1 + ν2

2
, f(U) =

f1(U) + f2(U)

2
, h(x′) =

h1(x
′, 0) + h2(x

′, 0)

2
.(9)

This is essentially a statement about the synchronization of the dynamics of the system
in the two thin layers at the level of global pullback attractors. Since, in principle,
a global attractor can be a rather complicated set, the synchronization at this level
does not imply that any pair of trajectories becomes asymptotically synchronized.
However, in the case of nondegenerate noise (Kh = 0 if and only if h = 0 and
the image of K is dense in L2(Γ)) we can prove, in contrast with the deterministic
counterpart, that the global pullback attractor for (8) is a singleton. This means that
we also have asymptotic synchronization in our system at the level of trajectories.
Thus we observe a stronger synchronizing effect of a nondegenerate stochastic noise
in the system under consideration.

The synchronization of stochastic stationary solutions (i.e., single-valued random
attractors) of finite dimensional stochastic systems was considered in [5]. See also
[1, 23] for similar results in deterministic nonautonomous systems and [7, 28] for
autonomous infinite dimensional systems.

The synchronization of coupled systems is a ubiquitous phenomenon in the bio-
logical and physical science and is also known to occur in a number of social science
contexts. A descriptive account of its diversity of occurrence can be found in the re-
cent book of Strogatz [32], which contains an extensive list of references. In particular,
synchronization provides an explanation for the emergence of spontaneous order in
the dynamical behavior of coupled systems, which in isolation may exhibit chaotic dy-
namics. It has been shown to persist in the presence of environmental noise provided
that appropriate concepts of random attractors and stochastic stationary solutions
are used instead of their deterministic counterparts [5]. As mentioned above, in this
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paper we will see that the presence of additive noise can lead to a strengthening of
the synchronization, i.e., at the level of trajectories rather than attractors, which does
not occur in the absence of noise.

Since most of our analysis is a pathwise analysis applied to pathwise defined
random PDEs, i.e., with the stationary Ornstein–Uhlenbeck process appearing as a
space-time dependent coefficient, it is reasonable to expect that similar results will
also hold for other kinds of noise, for example, with fractional Brownian motion in
the original stochastic partial differential equations (SPDEs). The results will be
presented in a forthcoming paper.

The paper is organized as follows. We start with preliminary section 2 containing
background material from the theory of random systems which we need to state and
discuss our main results in section 3. Further sections are devoted to the proof of our
main theorem, Theorem 3.1.

2. Random dynamical systems. In order to formulate our results we need
some notation and results from the theory of random dynamical systems (with con-
tinuous time) and random attractors.

Let (Ω,F ,P) be a probability space and let (X , dX ) be a complete separable
metric (Polish) space. Arnold [2] defined a random dynamical system (RDS) (θ, φ)
on Ω × X in terms of a metric dynamical system θ on Ω, which represents the noise
driving the system, and a cocycle mapping φ : R+ × Ω × X → X , which represents
the dynamics in the state space X and satisfies the following properties:

1. φ(0, ω)φ0 = φ0 for all φ0 ∈ X and ω ∈ Ω;
2. φ(s + t, ω)φ0 = φ(s, θtω)φ(t, ω)φ0 for all s, t ≥ 0, φ0 ∈ X , and ω ∈ Ω;
3. (t, φ0) �→ φ(t, ω)φ0 is continuous for each ω ∈ Ω; and
4. ω �→ φ(t, ω)φ0 is F-measurable for all (t, φ0) ∈ R+ ×X .
We recall that a metric dynamical system θ ≡ (Ω,F ,P, {θt, t ∈ R}) is a family of

measure-preserving transformations {θt : Ω �→ Ω, t ∈ R} such that
(i) θ0 = id, θt ◦ θs = θt+s for all t, s ∈ R;
(ii) the map (t, ω) �→ θtω is measurable, and θtP = P for all t ∈ R.
RDSs (with continuous time) are generated by differential equations with random

coefficients or stochastic differential equations with a unique and global solution, as
well as by infinite dimensional stochastic evolution equations with additive noise. We
refer to [2] for more details on the general theory of RDS theory.

To construct an RDS in our case we first need to associate a metric dynamical
system θ with the Wiener process W on (Ω,F ,P) with values in L2(Γ). The prob-
ability measure P of this process can be realized on F = B(C0(R, L2(Γ))), where
C0(R, L2(Γ)) is the Fréchet space of continuous functions on R with values in L2(Γ)
which are zero at time zero. For this realization we introduce the flow (θt)t∈R given
by the Wiener shift

θtω(·) = ω(· + t) − ω(t), t ∈ R.(10)

Interpreting the above Wiener process in the canonical sense W (·, ω) = ω(·), it follows
that (10) is the well-known helix property of a Wiener process:

W (t + s, ω) −W (s, ω) = W (t, θsω), s, t ∈ R, ω ∈ Ω.

We now introduce the Ornstein–Uhlenbeck process as a stationary solution of the
linear stochastic evolution equation

∂

∂t
U = νΔx′U − aU + Ẇ (t, x′), t > 0, x′ ∈ Γ,
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on the spatial domain Γ with Neumann boundary conditions on ∂Γ. Here, as above,
we denote ν = (ν1 + ν2)/2. This process η(t) can be written in the form

η(t, ω) :=

(∫ t

−∞
e−(t−τ)A0dW (τ)

)
(ω),(11)

where A0 = −νΔN + a and ΔN is the Laplace operator in L2(Γ) with the Neumann
boundary conditions on ∂Γ. The integral in (11) exists as an operator stochastic
integral (see, e.g., [24] or [19]) We can also involve a perfection procedure to define
η(t, ω) ≡ η̄(θtω) for all ω ∈ Ω (for details see [14]). Moreover, under condition (7),

t �→ η̄(θtω) is continuous from R into D(Aβ′

0 ) ⊂ H2β′
(Γ) for each ω ∈ Ω, where

β′ ∈ [0, β) is arbitrary, and the temperedness condition

sup
t∈R

{‖ Aβ′

0 η̄(θtω) ‖ e−γ|t|} < ∞ ∀ γ > 0, ω ∈ Ω,

is satisfied. We also note that under condition (7), since Hs(Γ) ⊂ C(Γ) for s > d/2,
we have that t �→ η̄(θtω) is a pathwise continuous tempered process with values in
D(A0) ∩ C(Γ). In particular

η̄(θtω) ∈ C
(
R;C(Γ) ∩

{
ψ ∈ H2(Γ) : ψ satisfies Neumann b.c. on ∂Γ

})
(12)

for every ω ∈ Ω. We will use this observation later.
We recall the following definition of a random set (see [2] or [4]).
Definition 2.1 (random set). Let X be a Polish space with a metric dX . A multi-

function ω �→ D(ω) �= ∅ is said to be a random set if the mapping ω �→ distX (v,D(ω))
is measurable for any v ∈ X , where distX (v,B) is the distance in X between the ele-
ment v and the set B ⊂ X . For ease of notation we denote the random set ω �→ D(ω)

by D̂ or {D(ω)}. If D(ω) is closed for each ω ∈ Ω, then D̂ is called a random closed

set, while if D(ω) is a compact set for all ω ∈ Ω, then D̂ is called a random com-
pact set. A random set {D(ω)} is said to be tempered if there exists a v0 ∈ X such
that D(ω) ⊂ {v ∈ X : dX (v, v0) ≤ r(ω)} for all ω ∈ Ω, where the random variable
r(ω) > 0 is tempered, i.e.,

sup
t∈R

{r(θtω)e−γ|t|} < ∞ ∀ γ > 0, ω ∈ Ω.

We denote by D the collection of all tempered random sets in X .
Below we also need the concept of a random attractor for RDSs (see, e.g., [2, 17,

18, 29] and the references therein), which extends the corresponding definition of a
global attractor in autonomous systems (cf. [3, 9, 33], for example).

Definition 2.2. Let (θ, φ) be an RDS with the phase space X . A random closed

set {A(ω)} from D is said to be a random pullback attractor for (θ, φ) in D if (i) Â

is an invariant set, i.e., φ(t, ω)A(ω) = A(θtω) for t ≥ 0 and ω ∈ Ω, and (ii) Â is
pullback attracting in D, i.e.,

lim
t→+∞

dX {ϕ(t, θ−tω)D(θ−tω) |A(ω)} = 0, ω ∈ Ω,

for all D̂ ∈ D, where dX {A|B} = supa∈A distX (a,B).
Note that a pullback attractor is also a weak forward attractor; i.e., we have that

lim
t→+∞

∫
Ω

dX {ϕ(t, ω)D(ω) |A(θtω)}P(dω) = 0 ∀D̂ ∈ D.
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If the random attractor consists of singleton sets, i.e., A(ω) = {X∗(ω)} for some ran-
dom variable X∗ with X∗(ω) ∈ X , then X∗

t (ω) := X∗(θtω)) is a stationary stochastic
process on X .

The following result [18] ensures the existence of a random attractor for an RDS
on a Polish space.

Theorem 2.3. Let (θ, φ) be a continuous or discrete time RDS on Ω × X such
that φ(t, ω, ·) : X → X is a compact operator for each fixed t > 0 and ω ∈ Ω. If there

exists a tempered random set B̂ = {B(ω), ω ∈ Ω} and a TD̂,ω ≥ 0 such that

φ(t, θ−tω)D(θ−tω) ⊂ B(ω) ∀t ≥ TD̂,ω,

for every tempered random set D̂, then the RDS (θ, φ) has a random pullback attractor

Â = {A(ω), ω ∈ Ω} with the component subsets defined for each ω ∈ Ω by

A(ω) =
⋂
s>0

⋃
t≥s

φ(t, θ−tω)B(θ−tω)
dX

.

The family {B(ω)} is called a pullback absorbing random set for the RDS.

3. Main results. Now we are in position to state our main results which we
formulate in the theorem below. This says that the limiting dynamics of the system
(1)–(4) is given by that of the averaged system (8) on Γ, which one can interpret as the
synchronization of dynamics of the original system on the two sides of the membrane
Γ. In addition, if the system is the same on both sides of the membrane, then the
limiting behavior is independent of the thinness parameter ε when it is sufficiently
small.

Theorem 3.1. Under the conditions above the following assertions hold.
1. Problem (1)–(4) generates an RDS (θ, φ̄ε) in the space

Hε = L2(D1,ε) ⊕ L2(D2,ε) ∼ L2(Dε)

with the metric dynamical system θ generated by the Wiener process W and the
cocycle φ̄ε defined by the formula φ̄ε(t, ω)U0 = U(t, ω), where U(t, ω) =
(U1(t, ω);U2(t, ω)) is a strong (in the sense of stochastic equations [19]) so-
lution to problem (1)–(4) and U0 = (U1

0 ;U2
0 ).

2. Similarly, problem (8) generates an RDS (θ, φ̄0) in the space L2(Γ).
3. The cocycles φ̄ε converge to φ̄0 in the sense that

lim
ε→0

sup
t∈[0,T ]

1

ε

∫
Dε

|φ̄ε(t, ω)v − φ̄0(t, ω)v|2dx = 0 ∀ω ∈ Ω,

for any v(x) ∈ Hε independent of the variable xd+1, and for any T > 0.
4. These RDS (θ, φ̄ε) and (θ, φ̄0) have random compact pullback attractors {Āε(ω)}

and {Ā0(ω)} in their corresponding phase spaces. Moreover, if the correlation
operator K of the Wiener process W is nondegenerate in the sense that (i)
Kh = 0 if and only if h = 0, and (ii) the image of K is dense in L2(Γ), then
the attractor {Ā0(ω)} is a singleton, i.e., Ā0(ω) = {v̄0(ω)}, where v̄0(ω) is a
tempered random variable with values in L2(Γ).

5. The attractors {Āε(ω)} are upper semicontinuous as ε → 0 in the sense that

lim
ε→0

sup
v∈Āε(ω)

{
inf

v0∈Ā0(ω)

1

ε

∫
Dε

|v(x′, xd+1) − v0(x
′)|2dx

}
= 0 ∀ω ∈ Ω.(13)
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6. In addition, if

ν1 = ν2 := ν, f1(U) = f2(U) := f(U),

h1(x
′, xd+1) = h(x′), h2(x

′, xd+1) = h(x′);(14)

f(U) is globally Lipschitz, i.e., there exists a constant L > 0 such that

|f(U) − f(V )| ≤ L|U − V |, U, V ∈ R,(15)

and also that

k(x′, ε) > kε for x′ ∈ Γ, ε ∈ (0, 1]; and lim
ε→0

ε−1kε = +∞,(16)

then there exists ε0 > 0 such that for all ε ∈ (0, ε0] the global random pullback
attractor {Āε(ω)} for (θ, φ̄ε) has the form

Ā
ε(ω) ≡

{
v(x′, xd+1) ≡ v0(x

′) : v0 ∈ Ā
0(ω)

}
,

where {Ā0(ω)} is the random pullback attractor for the RDS (θ, φ̄0).
Remark 3.2. In the case when Ā0(ω) = {v̄0(ω)} is a singleton, relation (13) turns

into the equality

lim
ε→0

sup
v∈Āε(ω)

{
1

ε

∫
Dε

|v(x′, xd+1, ω) − v̄0(x
′, ω)|2dx

}
= 0 ∀ω ∈ Ω.

In particular, this implies that for any U0, U
∗
0 ∈ Hε we have that

lim
ε→0

lim sup
t→+∞

{
1

ε
‖φ̄ε(t, θ−tω)U0 − φ̄ε(t, θ−tω)U∗

0 ‖2
L2(Dε)

}
= 0 ∀ω ∈ Ω,(17)

where we can omit the limε→0 under conditions (14)–(16). Thus we obtain the syn-
chronization effect not only at the level of global attractors (see (13)) but also at the
level of trajectories in relation (17). We emphasize that this double synchronization
phenomenon is not true for the deterministic (K ≡ 0) counterpart of the problem.
In the latter case the global attractor for (8) (without the noise Ẇ ) is not a single
point when the reaction term au + f(u) has several roots, and thus (17) cannot be
true for all initial data. In this case we have synchronization at the level of the global
attractors only.

Remark 3.3. The statements of Theorem 3.1 deal with the case when the intensity
interaction k(x′, ε) between layers is asymptotically strong enough (see condition (6)).
However, similarly to [12, 13] we can also consider the case when the limit in (6) is
finite by assuming that

lim
ε→0

ε−1k(x′, ε) = k(x′) strongly in L2(Γ)(18)

for some bounded nonnegative function k(x′) ∈ L2(Γ). In this case the limiting
problem for (1)–(4) is a system of two parabolic SPDEs on Γ of the form

∂

∂t
U i − νiΔx′U i + aU i + fi(U

i) + k(x′)(−1)i+1(U1 − U2) + hi(x
′, 0) = Ẇ (t, x′),

(19)
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where i = 1, 2 and (t;x′) ∈ R+ × Γ, with the Neumann boundary condition on
∂Γ. Using the same method as for the case (6) in combination with deterministic
arguments given in [13] for a particular case of (18), one can prove upper semi-
continuity of {Āε(ω)} in the limit ε → 0 in the case (18). However we will not present
the case because (i) our main point of interest is the phenomenon of synchronization,
and (ii) under condition (18) synchronization is possible only in some very special
cases.

The proof of Theorem 3.1 is given in the remaining sections of the paper. To
begin, in section 4 the problem is reformulated in terms of pathwise random PDEs on
a scaled domain and appropriate function spaces are introduced. Then we show that
(1)–(4) generates an RDS. In section 5 the existence of a random pullback attractor
is proved. Then in section 5.1 the limiting dynamics on finite time intervals as ε → 0
is established, and in section 7 the upper continuous dependence of the attractors as
ε → 0 is shown. Finally, in section 8 the synchronization of the systems for fixed ε >
0 is considered.

4. Generation of an RDS by the two-layer problem.

4.1. Equivalent random PDEs. We introduce the new dependent variables
V i (which are also stochastic processes):

V i(t, x, ω) := U i(t, x′, xd+1, ω) − η̄(θtω, x
′), t > 0, x = (x′, xd+1) ∈ Di,ε, i = 1, 2,

where η̄(ω, x′) is given by (11) after perfection. Let

h1(x, ω) = −1

2
(ν1 − ν2)Δη̄(ω) + h1(x),

h2(x, ω) =
1

2
(ν1 − ν2)Δη̄(ω) + h2(x).

(20)

Then equations (1)–(4) can be transformed into the pathwise random semilinear
parabolic PDEs

∂tV
i − νiΔV i + aV i + fi

(
V i + η̄(θtω)

)
+ hi(x, θtω) = 0, t > 0, x ∈ Di,ε,(21)

for i = 1, 2, with the random initial data

V i(0, x, ω) = U i
0(x) − η̄(ω), x ∈ Di,ε, i = 1, 2.(22)

Since the Ornstein–Uhlenbeck process η̄(θtω;x′) does not depend on xd+1, due to (12)
we obtain the Neumann boundary conditions(

∇V i(x), ni(x)
)

= 0, x ∈ ∂Di,ε \ Γ, i = 1, 2,(23)

on the external part of the boundary of the compound domain Dε, where n is the
outer normal to ∂Dε. Condition (4) turns into a matching condition on Γ of the form(

−ν1
∂V 1

∂xd+1
+ k(x′, ε)(V 1 − V 2)

)∣∣∣∣
Γ

= 0,

(
ν2

∂V 2

∂xd+1
+ k(x′, ε)(V 2 − V 1)

)∣∣∣∣
Γ

= 0,

(24)

which is now pathwise random and homogeneous.
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4.2. Scaling and functional spaces. It is convenient to deal with a fixed do-
main where every equation is defined for ε > 0. Let us introduce the new coordinates
(x, y) ∈ R

d+1, as follows:

x = x′, x ∈ Γ, y = ε−1xd+1, y ∈ (−1, 1).

In so doing, we transform the domain Dε into D = D1 ∪D2, where D1 = Γ × (0, 1),
D2 = Γ × (−1, 0); the operator ∇ = (∇x′ and ∂xd+1

) into ∇ε = (∇x, ε
−1∂y); and

Δ = Δx′ + ∂2
xd+1

into Δε = Δx + ε−2∂yy. Problem (21)–(24) takes the form

∂tv
i − νiΔεv

i + avi + fi(v
i + η̄) + hε

i (x, y, θtω) = 0, t > 0, (x, y) ∈ Di,(25)

for i = 1, 2, with the initial data

vi(0, x, y) = V i
0 (x, y), (x, y) ∈ Di, i = 1, 2,(26)

and the boundary conditions

∂vi

∂ni

∣∣∣∣
∂Di\Γ

= 0, i = 1, 2,(27)

(
νi
∂vi
∂y

− εk(x, ε)(v1 − v2)

)∣∣∣∣
y=0

= 0, i = 1, 2.(28)

Here hε
i (x, y, ω) = hi(x, εy, ω) and ni is the outward normal to the boundary ∂Di. A

solution V (t, x′, xd+1) to problem (21)–(24) is expressed in terms of a solution v(t, x, y)
to problem (25)–(28) by the formula V (t, x′, xd+1) = v(t, x′, ε−1xd+1).

Let us introduce the space

H = L2(D1) ⊕ L2(D2) � L2(D)

endowed with the norm ‖u‖2 ≡ ‖u1‖2
L2(D1)

+ ‖u2‖2
L2(D2)

, where u = (u1;u2), ui ≡
u|Di

, and let us define a family of Sobolev spaces

H1
ε = H1(D1) ⊕H1(D2), ε ∈ (0, 1],

endowed with the norm

‖u‖2
1,ε ≡

2∑
i=1

(
‖ui‖2

H1(Di)
+ ε−2‖∂yui‖2

L2(Di)

)
.

Every element v ∈ H1(Γ) ⊕H1(Γ) can be extended naturally to an element u ∈ H1
ε

by the formula ui(x, y) ≡ vi(x), (x, y) ∈ Di, i = 1, 2; in what follows, this will be
done without further comment.

4.3. Abstract representation. Now we represent problem (25)–(27) in the
abstract form. To do this we first consider the bilinear form

aε(u, v) =

2∑
i=1

νi

[
(∇xui,∇xvi)L2(Di) +

1

ε2
(∂yui, ∂yvi)L2(Di)

]
+ a · (u, v)H

+
1

ε

∫
Γ

k(x, ε)(u1(x, 0) − u2(x, 0))(v1(x, 0) − v2(x, 0)) dx,
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defined on the elements u = (u1;u2), v = (v1; v2) of the space H1
ε = H1(D1)⊕H1(D2).

One can show that aε(u, v) is a closed symmetric form in H possessing the property

c0
∑
i=1,2

‖u‖2
H1(Di)

≤ c1‖u‖2
1,ε ≤ aε(u, u), u ∈ H1

ε.(29)

Here and in what follows we drop the subscript ε in constants which can be chosen
independently of ε ∈ (0, 1]. Therefore, there exists a unique positive self-adjoint
operator Aε such that D(Aε) ⊂ H1

ε and

aε(u, v) = (Aεu, v)H, u ∈ D(Aε), v ∈ H1
ε.

It can be shown that

D(Aε) =
{
u ∈ H2(D1) ⊕H2(D2) : u satisfies (27) and (28)

}
and also that

Aεu = (−ν1Δεu1 + au1, −ν2Δεu2 + au2), u = (u1, u2) ∈ D(Aε).

Moreover, D(A
1/2
ε ) = H1

ε, aε(u, u) = ‖A1/2
ε u‖2. For more details concerning the

operator Aε we refer to [13].
Now we can rewrite the pathwise random PDE in problem (25)–(28) in the ab-

stract form

d

dt
v + Aεv = B(v, θtω), v|t=0 = v0,(30)

in the space H, where

B(v, ω) =

{ −f1(v
1 + η̄(ω)) − h1(x, εy, ω), y > 0,

−f2(v
2 + η̄(ω)) − h2(x, εy, ω), y < 0.

4.4. Generation of an RDS. By the same method as in [25] (see also [30,
Chap. 3]) one can prove that there exists a deterministic constant M such that the
nonlinear mapping Aε−B(·, ω)+M is a maximal monotone operator on D(Aε). This
observation makes it possible (some details can be found in [8, Chap. 15] for the
general nonautonomous case) to prove that for each ω ∈ Ω and v0 ∈ H on any time
interval [0, T ] there exists a unique weak solution v(t, ω) to (30) from the class

Lp+1(0, T ;Lp+1(D)) ∩ L2(0, T ;H1
ε) ∩ C(0, T ;H).

Since this solution can be constructed as a limit of the corresponding Galerkin approx-
imations, the mapping (t;ω) �→ v(t, ω) is measurable. Moreover, it is easy to derive
from the uniqueness property that the mapping φε(t, ω) : H �→ H defined by the
relation φε(t, ω)v0 = v(t, ω), where v(t, ω) solves (30), satisfies the cocycle property.
Thus (30) generates an RDS.

Now using inverse transformation we define the cocycle φ̄ε for problem (1)–(4) by
the formula

φ̄ε(t, ω) = R−1
ε (θtω) ◦ φε(t, ω) ◦Rε(ω),

where Rε(ω) : L2(Dε) �→ L2(D) is an affine random mapping of the form

[Rε(ω)U ] (x, y) = U(x, εy) − η̄(ω), U ∈ L2(Dε).

This proves the first statement in Theorem 3.1.
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It is clear that Rε(ω) maps tempered random sets in L2(Dε) into tempered sets in
L2(D). Therefore all other statements of Theorem 3.1 can be easily reformulated as
statements concerning the RDS (θ, φε) generated by the random evolution equation
in (30). In our further considerations we deal with this RDS (θ, φε).

5. Random pullback attractors. In this section we prove the existence of a
random pullback attractor for problem (25)–(28) for every fixed ε ∈ (0, 1] and also for
the limiting problem (8).

5.1. The case ε > 0. We first want to emphasize that we do not use any
information concerning the behavior of the intensity k(x′, ε) as ε → 0, and hence our
results in this subsection cover both of the cases (6) and (18).

Our main result in this section is the following assertion.
Proposition 5.1. In the space H the RDS (θ, φε) generated by problem (25)–(28)

possesses a compact pullback attractor Âε which belongs to the space H1
ε. Moreover,

there exists a tempered random variable R(ω), which does not depend on ε, such that

A
ε(ω) ⊂

{
v ∈ H1

ε : aε(v, v) + ‖v‖p+1
Lp+1(D) ≤ R2(ω)

}
, ω ∈ Ω.(31)

We split the proof into several lemmata which are also important for the limit
transition on finite time intervals.

Lemma 5.2 (pullback dissipativity). The RDS (θ, φε) is pullback dissipative in
D; i.e., there exists a tempered random variable R(ω) > 0 such that for any random

set D̂ from D we can find t0(ω, D̂) > 0 for which

‖φε(t, θ−tω)U‖H ≤ R(ω) ∀ U ∈ D(θ−tω), t ≥ t0(ω, D̂).

Thus the random ball B0(ω) = {U ∈ H : ‖U‖H ≤ R(ω)} is pullback absorbing. This
ball is also forward invariant and absorbing if we take

R2(ω) = c1

∫ 0

−∞
ec0τ

(
1 + ‖η̄(θτω)‖p+1

Lp+1(Γ) + ‖η̄(θτω)‖2
H1(Γ)

)
dτ,

with appropriate c0 > 0 and c1 > 0 independent of ε ∈ (0, 1].
Proof. The calculations below are formal, but can be justified by considering

Galerkin approximations.
Multiplying (25) by vi in L2(Di) for i = 1, 2, after some calculations we obtain

that

1

2

d

dt
‖v‖2

H + aε(v, v) +
∑
i=1,2

[∫
Di

fi(v
i + η̄)vidx + (hε, vi)L2(Di)

]
= 0.(32)

From (5) we have that

(fi(v
i + η̄), vi) =

∫
Di

f(vi)vidx +

∫
Di

[∫ 1

0

f ′
i(v

i + λη̄)dλ

]
η̄vidx

≥ a0‖vi‖p+1
Lp+1(Di)

− c1

∫
Di

(
1 + |vi|p−1 + |η̄|p−1

)
|η̄||vi|dx− c2

≥ a0

2
‖vi‖p+1

Lp+1(Di)
− b0

(
1 + ‖η̄‖p+1

Lp+1(Γ)

)
(33)
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and from (20) and (29) we also have that

∑
i=1,2

(hε, vi)L2(Di) ≤ C

⎛
⎝‖η̄‖H1(Γ) +

∑
i=1,2

‖h‖H1(Di)

⎞
⎠ [aε(v, v)]

1/2
.(34)

Now from (32)–(34) we obtain that

d

dt
‖v‖2

H + aε(v, v) + a0‖v‖p+1
Lp+1(D) ≤ R2

0(θtω),(35)

where

R2
0(ω) = c

(
1 + ‖η̄(ω)‖p+1

Lp+1(Γ) + ‖η̄(ω)‖2
H1(Γ)

)
.(36)

Since aε(v, v) ≥ c0‖v‖2
H + 1

2aε(v, v), by differentiating eν∗t‖v‖2
H, taking into account

(35), and integrating, we have that

‖v(t)‖2
H +

∫ t

0

e−ν∗(t−τ)V 0
ε (v(τ))dτ ≤ ‖v0‖2

He−ν∗t +

∫ t

0

e−ν∗(t−τ)R2
0(θτω)dτ,(37)

for any 0 < ν∗ ≤ c0, where R0(ω) is given by (36) and

V 0
ε (v) =

1

2
aε(v, v) + a0‖v‖p+1

Lp+1(D).(38)

This allows us to complete the proof of Lemma 5.2.
Lemma 5.3 (compact absorbing set). For each ε ∈ (0, 1] there exists a compact,

forward invariant tempered absorbing set.
Proof. Multiplying (25) by ∂tv

i in L2(Di) we find that

∂tΨε(v(t)) + ‖∂tv(t)‖2
H(39)

+
∑
i=1,2

∫
Di

[
f(vi + η̄) − f(vi)

]
∂tv

idxdy +

∫
D

hε∂tv
idxdy = 0,

where

Ψε(u) =
1

2
aε(u, u) +

2∑
i=1

∫
Di

Fi(u
i) dxdy, u = (u1;u2) ∈ H1

ε.(40)

Here Fi(u) =
∫ u

0
fi(ξ)dξ. It is clear from the assumptions concerning fi that∣∣∣∣∣∣

∑
i=1,2

∫
Di

[
f(vi + η̄) − f(vi)

]
∂tv

idxdy

∣∣∣∣∣∣
≤ c

∑
i=1,2

∫
Di

∣∣f(vi + η̄) − f(vi)
∣∣2 dxdy +

1

4
‖∂tv(t)‖2

H

≤ c1 + c2

∫
D

|v|p+1
dxdy + c3

[
|η̄|p+1

Lp+1(Γ) + |η̄|p∗
Lp∗ (Γ)

]
+

1

4
‖∂tv(t)‖2

H,

where p∗ = 2(p + 1)/(3 − p). We also have that∣∣∣∣
∫
D

hε∂tv
idxdy

∣∣∣∣ ≤ c1 + c2‖η̄‖2
H2(Γ) +

1

4
‖∂tv(t)‖2

H
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Therefore from (39) we have that

∂tΨε(v(t)) +
1

2
‖∂tv(t)‖2

H(41)

≤ c1 + c2‖v‖p+1
Lp+1(D) + c3

(
‖η̄‖2

H2(Γ) + |η̄|p+1
Lp+1(Γ) + |η̄|p∗

Lp∗ (Γ)

)
.

Consequently, choosing positive constants b0 and b1 in an appropriate way one can
see that

Vε(u) := b0‖u‖2
H + Ψε(u) + b1(42)

with Ψε given by (40) satisfies the relations

c0V
0
ε (v) ≤ Vε(v) ≤ c1

[
1 + V 0

ε (v)
]

(43)

with V 0
ε (v) given by (38). Moreover, due to (35) we can choose b0 and b1 such that

d

dt
Vε(v) + γVε(v) +

1

2
‖∂tvε(t)‖2

H ≤ R2
1(θtω),(44)

with positive γ, where

R2
1(ω) = c

(
1 + ‖η̄(ω)‖p+1

Lp+1(Γ) + |η̄(ω)|p∗
Lp∗ (Γ) + ‖η̄(ω)‖2

H2(Γ)

)
, p∗ =

2p + 2

3 − p
.(45)

We note that R1(ω) is a tempered random variable because t �→ η̄(θtω) is a tempered
process with values in H2(Γ) ∩ C(Γ). From (44) we have that

Vε(v(t)) ≤ e−γ(t−s)Vε(v(s)) +

∫ t

s

e−γ(t−τ)R2
1(θτω)dτ, t ≥ s.(46)

By (43) we also have

V 0
ε (v(t)) ≤ c1e

−γ(t−s)V 0
ε (v(s)) + c2

∫ t

s

e−γ(t−τ)R2
1(θτω)dτ, t ≥ s.

Therefore using (37) after integration with respect to s over the interval [0, t] we
obtain

V 0
ε (v(t)) ≤ c1

t
‖v0‖2

He−γ∗t + c2

(
1 +

1

t

)∫ t

0

e−γ∗(t−τ)R2
1(θτω)dτ, t > 0,(47)

for some 0 < γ∗ ≤ γ. Relations (46) and (47) makes it possible to conclude that there
exists a tempered random variable R∗(ω) such that the set

B(ω) =
{
v : Vε(v) ≤ R2

∗(ω)
}

(48)

is forward invariant and absorbing. It is clear that B(ω) is compact in H for each
ω ∈ Ω. Moreover, R2

∗(ω) does not depend on ε.
Completion of the proof of Proposition 5.1. The proof follows from Theo-

rem 2.3 and Lemmata 5.2 and 5.3. Relation (31) follows from (47), (48), and properties
of the functionals V 0

ε and Vε given in (38), (42), and (43).
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Remark 5.4. It also follows from (44) and (37) that

∫ t

0

τe−γ∗(t−τ)‖∂tvε(τ)‖2
Hdτ ≤ c1‖v0‖2

He−γ∗t + c2

∫ t

0

(1 + τ)e−γ∗(t−τ)R2
1(θτω)dτ,

(49)

for all t ≥ 0, where γ∗ > 0. Below we will also need the next lemma.
Lemma 5.5. For any initial data v, v∗ ∈ H we have the estimate

‖φε(t, ω)v − φε(t, ω)v∗‖H ≤ c1e
c2t‖v − v∗‖H, ω ∈ Ω,(50)

where c1 and c2 do not depend on ω ∈ Ω and ε ∈ (0, 1].
Proof. We use the same method as in Lemma 5.2 by considering the difference of

two solutions and relying on the property(
fi(v

i + η̄) − fi(v
i
∗ + η̄)

)
(vi − vi∗) ≥ −c0|vi − vi∗|2,

where c0 does not depend on ω and ε.

5.2. Limiting system. The same change of unknown variable U = v+ η̄ trans-
forms equation (8) into the following random PDE on Γ:⎧⎨

⎩
∂tv − νΔv + av + f(v + η̄(θtω)) + h(x′) = 0, t > 0, x′ ∈ Γ,

∂v
∂n

∣∣
∂Γ

= 0, v|t=0 = v0,
(51)

where ν, f(v), and h are given by (9). The same argument as in section 4 allows us
to prove that problem (51) generates an RDS (θ, φ0) in the space L2(Γ) and thus to
establish Theorem 3.1(2).

The following assertion states the existence of a pullback attractor for this RDS
(θ, φ0).

Proposition 5.6. In the space L2(Γ), problem (51) generates an RDS (θ, φ0)
possessing a compact pullback attractor {A0(ω)} which belongs to the space H1(Γ). If
the correlation operator K possesses the properties (i) Kh = 0 if and only if h = 0
and (ii) the image of K is dense in L2(Γ), then the attractor {A0(ω)} is a singleton;
i.e., there exists a tempered random variable v0(ω) with values in H1(Γ) such that
A0(ω) = {v0(ω)} for all ω ∈ Ω.

Proof. To prove the existence of the attractor we argue exactly as in Proposi-
tion 5.1 and we do not repeat it again.

As for the second part, we first note that the RDS (θ, φ0) is monotone; i.e., the
property v(x) ≤ v∗(x) for almost all x ∈ Γ implies that

[φ0(t, ω)v] (x) ≤ [φ0(t, ω)v∗] (x) for almost all x ∈ Γ,

for all t > 0, and for ω ∈ Ω. This monotonicity property can be established by
the standard (pathwise) argument (see, e.g., [31]). We also refer to [10] for a general
discussion of monotone RDSs. Our next step is to apply a result from [15] which states
that, under some conditions, the global pullback attractor of a monotone RDS consists
of a single random equilibrium. The main hypothesis in [15] is the weak convergence
of distributions of the process t �→ φ0(t, ω)v to some limiting probability measure. In
our case we can guarantee this property because the noise Ẇ is nondegenerate in the
phase space of the system (θ, φ0). We refer to [15, subsection 4.5] for details.
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Propositions 5.1 and 5.6 imply Theorem 3.1(4).
Remark 5.7. Although it is possible to prove that the RDS (θ, φε) generated by

problem (25)–(28) is also monotone, we cannot apply the result from [15] to prove that

Âε is a single equilibrium. The point is that the noise Ẇ is nondegenerate in L2(Γ) (the
phase space of the system (θ, φ0)), but it is degenerate in H = L2(D) (the phase space
for (θ, φε)), and hence we cannot guarantee the weak convergence of distributions of

the process t �→ φε(t, ω)U0. Thus the pullback attractor Âε may contain more than
one equilibrium. The same conclusion is valid for problem (19). One can prove that
(19) generates a monotone RDS with a compact pullback attractor, but to conclude
that this attractor is a random equilibrium we need the nondegeneracy of the noise
in L2(Γ) × L2(Γ), which is obviously not true for this case.

Remark 5.8. 1. It is clear from the argument in the proof of Lemma 5.5 that

‖φ0(t, ω)v − φ0(t, ω)v∗‖L2(Γ) ≤ c1e
c2t‖v − v∗‖L2(Γ), ω ∈ Ω,(52)

for some constants c1 and c2 independent of ω, where v, v∗ ∈ L2(Γ).
2. Since L2(Γ) can be embedded naturally into L2(D) ∼ H as the subspace of

functions independent of y, we can consider the cocycle φ0 as a mapping from L2(Γ)

into H. Therefore we can compare it with φε. Below we also consider the image Ã0(ω)
of A0(ω) under this embedding.

6. Limit transition on finite time intervals. Our main result in this section
is the following theorem, which implies the third statement in Theorem 3.1.

Theorem 6.1. For any time interval we have that

lim
ε→0

sup
t∈[δ,T ]

‖φε(t, ω)v − φ0(t, ω)v∗‖H = 0 ∀δ ∈ (0, T ),(53)

where v∗ = 〈v〉 := 1
2

∫ 1

−1
v(x, y)dy. If v does not depend on y, i.e., v = v∗, then

lim
ε→0

sup
t∈[0,T ]

‖φε(t, ω)v − φ0(t, ω)v∗‖H = 0.(54)

Proof. Let wε(t) = φε(t, ω)v. It follows from (37), (47), and (49) that

sup
t∈[0,T ]

∑
i=1,2

‖wi
ε(t)‖2

L2(Di)
+

∫ T

0

‖wi
ε(t)‖2

H1(Di)
dt ≤ CT (ω),(55)

and, for every δ > 0,

sup
t∈[δ,T ]

∑
i=1,2

‖wi
ε(t)‖2

H1(Di)
+
∑
i=1,2

∫ T

δ

‖∂twi
ε(t)‖2

L2(Di)
dt ≤ CT,δ(ω),(56)

1

ε2

⎡
⎣ sup
t∈[δ,T ]

∑
i=1,2

‖∂ywi
ε(t)‖2

L2(Di)
+
∑
i=1,2

∫ T

0

‖∂ywi
ε(t)‖2

L2(Di)
dt

⎤
⎦ ≤ CT,δ(ω).(57)

Moreover, we have that

sup
t∈[δ,T ]

∫
Γ

k(x′, ε)

ε
|w1

ε(t) − w2
ε(t)|2dx′ +

∫ T

0

dt

∫
Γ

k(x′, ε)

ε
|w1

ε(t) − w2
ε(t)|2dx′ ≤ CT,δ(ω)

(58)
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for all intervals [0, T ] and ε ∈ (0, 1]. Therefore, using relations (55)–(57) and Aubin’s
compactness theorem we can conclude that there exist a pair of functions

ui ∈ C(δ, T ;L2(Γ)) ∩ L∞(δ, T ;H1(Γ)), i = 1, 2, ∀δ > 0

and a sequence {εn} such that

lim
n→∞

∑
i=1,2

sup
t∈[δ,T ]

‖wi
εn(t) − ui(t)‖L2(Di) = 0.(59)

Moreover, we also have weak convergence in L2(0, T ;H1(D)). One can also see from
(58) and (6) that u1(t) = u2(t) ≡ u(t) on the set Γ. Considering a variational form of
(25)–(28), one can show that u(t) solves problem (51). The corresponding argument
is exactly the same as in [13] for the deterministic case and therefore we do not give
details here. Thus (53) follows from (59) and from the uniqueness theorem for (51).

To prove (54) we first consider v ≡ v∗ from the space H1(Γ) ∩ Lp+1(Γ). In this
case relying on (46) with s = 0 and using the fact that Vε(v) does not depend on ε
for this choice of v, we can easily prove estimates (56) and (57) with δ = 0. Thus the
same argument as above gives (54) for v ≡ v∗ from H1(Γ) ∩ Lp+1(Γ). To obtain (54)
for v∗ ∈ L2(Γ) we use an appropriate approximation procedure and relations (50) and
(52).

Remark 6.2. By a standard argument we can prove that (53) and (54) hold
uniformly with respect to v in every compact set.

Remark 6.3. Since the arguments given in Lemmata 5.2 and 5.3 do not depend
on the behavior of k(x, ε) as ε → 0, the estimates in (55)–(58) hold for both cases
(6) and (18). Thus, in the latter case, we can also conclude from (55)–(57) that w1

ε

and w2
ε converge to some functions u1 and u2 defined on Γ. However, in that case we

cannot prove that u1 and u2 are the same because under condition (18) estimate (58)
does not lead to the conclusion. In the case (18) the same arguments as in [12, 13]
give us the convergence of φ̄ε(t, ω) generated by (1)–(4) to the cocycle generated by
(19).

7. Upper semicontinuity of attractors. In this section we prove the following
assertion, which is our first result on synchronization.

Theorem 7.1. Let {Aε(ω)} be the global random pullback attractor for the RDS
(θ, φε) generated by (25)–(28). Then

lim
ε→0

sup
{

distH

(
u, Ã0(ω)

)
: u ∈ A

ε(ω)
}

= 0 ∀ω ∈ Ω,(60)

where Ã0(ω) =
{
J(v) : v ∈ A0(ω)

}
⊂ H. Here {A0(ω)} is the random pullback at-

tractor for the RDS (θ, φ0) and J : L2(Γ) �→ L2(D) = H is the natural embedding
operator.

Proof. Assume that (60) does not hold for some ω ∈ Ω. Then there exist a
sequence {εn} with εn → 0 and a sequence un ∈ Aεn(ω) such that

distH(un, Ã
0(ω)) ≥ δ > 0 ∀ n = 1, 2, . . . .(61)

By the invariance property of the attractor Aεn(ω), for every t > 0 there exists
vtn ∈ Aεn(θ−tω) such that un = φεn(t, θ−tω)vtn. Since Aεn(ω) is compact and estimate
(31) holds, we can assume that there exist u∗ and vt∗ in H1(D1) ⊕H1(D2) such that

lim
n→∞

‖un − u∗‖H = 0, lim
n→∞

‖vtn − vt∗‖H = 0.(62)
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As in the proof of Theorem 6.1 one can see that

u∗ = ũ⊕ ũ, vt∗ = ṽt ⊕ ṽt,

where ũ, ṽt ∈ H1(Γ). Therefore, if we show that ũ ∈ A0(ω), then we obtain a
contradiction to (61).

It follows from Lemma 5.5 and Theorem 6.1 that

ũ = φ0(t, θ−tω)ṽt.

However, it follows from (31) and (62) that ṽt ∈ B0(θ−tω), where

B0(ω) =
{
v ∈ H1(Γ) : ‖v‖H1(Γ) ≤ R̃(ω)

}
,

where R̃(ω) is a tempered random variable. Thus we have that

ũ ∈ φ0(t, θ−tω)B0(θ−tω) for every t > 0.

Since φ0(t, θ−tω)B0(θ−tω) → A0(ω) as t → ∞, this implies that ũ ∈ A0(ω).
Theorem 3.1(5) follows from Theorem 7.1.
Remark 7.2. In the case (18), similarly to the deterministic case (see [12, 13]), we

can prove the upper convergence of the pullback attractors Âε to the corresponding
object for the RDS generated by (19). We also refer to [6] and to the references
therein for a general study of upper semicontinuity of random and nonautonomous
attractors.

8. Synchronization for fixed ε > 0. Now we consider the case when the
equations are the same in both domains; i.e., we assume that relations (14), (15), and
(16) hold.

Under conditions (14) the cocycle φε has a deterministic forward invariant sub-
space L in H consisting of functions which are independent of the variable y, i.e.,

L = {u(x, y) ∈ L2(D) : u(x, y) ≡ u(x, 0) ≡ v ∈ L2(Γ)} .

It is clear that φε(t, ω)L ⊂ L and φε(t, ω) ≡ φ0(t, ω) on L.
Theorem 8.1. Under conditions (14), (15), and (16) there exists ε0 > 0 such

that for all ε ∈ (0, ε0] the global random pullback attractor Aε(ω) for (θ, φε) has the
form

A
ε(ω) ≡ Ã

0(ω) =
{
J(v) : v ∈ A

0(ω)
}
⊂ H,(63)

where J : L2(Γ) �→ L2(D) = H is the natural embedding operator and A0(ω) is the
random pullback attractor for the RDS (θ, φ0).

Proof. Let P be the orthoprojector in H onto L. This operator has the form

(Pu)(x, y) =
1

2

∫ 1

−1

u(x, ξ)dξ, u ∈ H ∼ L2(D).

Let Q = 1−P . Both of the operators P and Q map the domain D(Aε) of the operator
Aε into itself and commute with Aε. Therefore it follows from (30) that Qvε satisfies
the equation

d

dt
Qvε + AεQvε = QB(vε, θtω), Qv|t=0 = Qv0.(64)
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Multiplying this equation by Qvε we obtain

1

2

d

dt
‖Qvε‖2

H + aε(Qvε, Qvε)H = (QB(vε, θtω), Qvε)H.(65)

From (15) we have that

(QB(vε, θtω), Qvε)H =

∫
D

[
f(vε(x, y)) −

1

2

∫ 1

−1

f(vε(x, ξ))dξ

]
Qvε(x, y)dxdy

≤ L

2

∫
D

∫ 1

−1

|vε(x, y) − vε(x, ξ)|Qvε(x, y)dξdxdy

≤ L√
2

[∫
Γ

dx

∫ 1

−1

dy

∫ 1

−1

dξ |vε(x, y) − vε(x, ξ)|2
]1/2

‖Qvε‖H.

If we add and subtract Pvε in the expression under the integral, then we easily arrive
at the relation

(QB(vε, θtω), Qvε)H ≤ 2L‖Qvε‖2
H.(66)

Thus from (65) we obtain that

1

2

d

dt
‖Qvε‖2

H + aε(Qvε, Qvε)H ≤ 2L‖Qvε‖2
H.(67)

Lemma 8.2. Under conditions (14) and (16) we have that

lim
ε→0

sup

{
aε(Qvε, Qvε)H

‖Qvε‖2
H

: v ∈ H1
ε

}
= +∞.(68)

Proof. Basically we use the same calculations of the spectrum of Aε as
in [11].

Lemma 8.2 implies that there exists ε0 > 0 such that

d

dt
‖Qvε‖2

H + γ0‖Qvε‖2
H ≤ 0

for all 0 < ε ≤ ε0 and for some γ0 > 0. Therefore,

‖Qvε(t)‖2
H ≤ ‖Qvε(0)‖2

He−γ0t, t ≥ 0.

This implies that the subspace L attracts all tempered sets (in both the forward and
the pullback sense) with exponential (deterministic) speed. Since φε(t, ω) ≡ φ0(t, ω)
on L, this implies (63).

Theorem 8.1 implies Theorem 3.1(6).
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Abstract. An effective macroscopic model for a stochastic microscopic system is derived. The
original microscopic system is modeled by a stochastic partial differential equation (SPDE) defined
on a domain perforated with small holes or heterogeneities. The homogenized effective model is still
an SPDE but defined on a unified domain without holes. The solutions of the microscopic model
are shown to converge to those of the effective macroscopic model in probability distribution as the
size of holes diminishes to zero. Moreover, the long time effectivity of the macroscopic system, in
the sense of convergence in probability distribution, and the effectivity of the macroscopic system, in
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1. Introduction. In recent years there has been an explosive growth of activi-
ties in multiscale modeling of complex phenomena in many areas, including material
science, climate dynamics, chemistry, and biology [15, 31]. Stochastic partial dif-
ferential equations (SPDEs or stochastic PDEs)—evolutionary equations containing
noises—arise naturally as mathematical models of multiscale systems under random
influences. In fact, the need to include stochastic effects in mathematical model-
ing of realistic physical phenomena has become widely recognized in, for example,
condensed matter physics, climate and geophysical sciences, and materials sciences.
But implementing this idea poses some challenges both in theory and in computation
[17, 33].

This paper is devoted to the effective macroscopic dynamics of microscopic sys-
tems modeled by parabolic SPDEs in perforated media which exhibit small-scale
heterogeneities. One example of such microscopic systems of interest is composite
materials with microscopic heterogeneities under the impact of external random fluc-
tuations. The heterogeneity scale is taken to be much smaller than the macroscopic
scale, which is equivalent, here, to assuming that the heterogeneities are evenly dis-
tributed. From a mathematical point of view, one can assume that microscopic het-
erogeneities (holes) are periodically placed in the media. This periodicity can be
represented by a small positive parameter ε (i.e., the period). In fact we work on the
space-time cylinder Dε × (0, T ), with T > 0, and Dε is the spatial domain obtained
by removing a number Nε of holes, of size ε, periodically distributed, from a fixed

∗Received by the editors December 31, 2005; accepted for publication (in revised form) August
30, 2006; published electronically January 12, 2007. This work was partly supported by NSF grants
DMS-0209326 and DMS-0542450 and by the Outstanding Overseas Chinese Scholars Fund of the
Chinese Academy of Sciences.

http://www.siam.org/journals/sima/38-5/64876.html
†Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, 100080, China

(wangwei@amss.ac.cn, dmcao@amt.ac.cn).
‡Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616 (duan@

iit.edu).

1508



EFFECTIVE MACROSCOPIC DYNAMICS OF SPDES 1509

domain D. When taking ε → 0, the holes inside D are smaller and smaller and their
numbers go to ∞. This signifies that the heterogeneities become finer and finer.

There has been much work done on the homogenization problem for the determin-
istic systems defined in such perforated domains or other heterogeneous media; see,
for example, [6, 24, 25, 28, 29, 30] for heat transfer in a composite material, [6, 8, 11]
for the wave propagation in a composite material, and [21, 23] for the fluid flow in
porous media. For an introduction to homogenization, see [2, 9, 18, 27].

Recently there also has been work done on homogenization of partial differential
equations (PDEs) in the random context; see [19, 22, 26] for PDEs with random
coefficients, and see [5, 35, 36] for PDEs in randomly perforated domains. Also see
the survey book [18] about the homogenization results in a random context. A basic
assumption in these texts is the ergodic hypotheses on the coefficients for the passing
of the limit of ε → 0. Note that the microscopic models in these works are PDEs with
random coefficients, so-called random PDEs, instead of stochastic PDEs.

In the present paper, the microscopic model is an SPDE defined in a perforated
domain. Homogenization techniques are employed to derive an effective, simplified,
macroscopic model. Homogenization is a formal mathematic procedure for deriving
macroscopic models from microscopic systems. It has been applied to a variety of
problems including composite materials modeling, porous media, and climate mod-
eling; see [9, 10, 18, 27]. Homogenization provides effective macroscopic behavior of
the systems with microscopic heterogeneities for which direct numerical simulations
are usually too expensive.

We consider a spatially extended system, where stochastic effects are taken into
account in the model equation, defined on a deterministic domain but perforated with
small scale holes. Specifically, we study a class of SPDEs driven by white noise on a
perforated domain in the following form:

duε(t) = (Aεuε + Fε(x, t))dt + Gε(x, t)dW (t), 0 < t < T, ε > 0,(1.1)

which will be described in detail in the next section. For the general theory of SPDEs
we refer to [12]. The goal here is to derive the homogenized equation (effective equa-
tion), which is still an SPDE, for (1.1) by the homogenization techniques in the sense
of probability.

Homogenization theory has been developed for deterministic systems, and a com-
pactness discussion for the solutions {uε}ε in some function space is a key step in vari-
ous homogenization approaches [9]. However, due to the appearance of the stochastic
term in the above microscopic system considered in this paper, such compactness re-
sult does not hold for this stochastic system. Fortunately the compactness in the sense
of probability, that is, the tightness of the distributions for {uε}, still holds. So one
appropriate approach is to homogenize the stochastic system in the sense of probabil-
ity. The goal in this paper is to derive an effective macroscopic equation for the above
microscopic system by homogenization in the sense of probability. It is shown that
the solution uε of the microscopic or heterogeneous system converges to that of the
macroscopic or homogenized system as ε ↓ 0 in probability distribution. This means
that the distribution of {uε}ε weakly converges, in some appropriate space, to the
distribution of a stochastic process which solves the macroscopic effective equation.
Moreover, the long time effectivity of the homogenized macroscopic system is demon-
strated; that is, the solution uε(t) is shown to converge to the stationary solution of
the homogenized equation as t → ∞ and ε ↓ 0 in the sense of probability distribution.
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Y = [0, l1) × [0, l2)

O

Fig. 1. Geometric setup in R2.

Furthermore, the effectivity of the macroscopic system in the sense of convergence in
energy is also shown.

In our approach, one difficulty is that the spatial domain is changing as ε → 0.
To overcome this we use the extension operator introduced in [8] and introduce a
new probability space depending on a parameter in which the solution is uniformly
bounded. One novelty here is that the original microscopic model is a stochastic PDE,
instead of a random PDE, as studied by others; see e.g., [19, 26, 7].

This paper is organized as follows. The problem formulation is stated in sec-
tion 2. Section 3 is devoted to basic properties of the microscopic system. The
effective macroscopic equation is derived in section 4. The long time effectivity of the
homogenized macroscopic system is considered in section 6. Finally, the effectivity of
the macroscopic system in the sense of convergence in energy is shown in section 5.
Moreover, in the appendix we present the explicit expression of the homogenization
matrix.

2. Problem formulation. Let D be an open bounded set in Rn, n ≥ 2, with
smooth boundary ∂D and ε > 0 a small parameter. Let Y = [0, l1)×[0, l2)×· · ·×[0, ln)
be a representative (cubic) cell in Rn and S an open subset of Y with smooth boundary
∂S, such that S ⊂ Y . Write l = (l1, l2, . . . , ln). Define εS = {εy : y ∈ S}. Denote by
Sε,k the translated image of εS by kl, k ∈ Zn, kl = (k1l1, k2l2, . . . , knln). Also let Sε

be the set of all the holes contained in D and Dε = D\Sε. Then Dε is a periodically
perforated domain with holes of the same size as period ε. We assume that the holes
do not intersect with the boundary ∂D, which implies that ∂Dε = ∂D ∪ ∂Sε. See
Figure 1 for the case n = 2. This assumption allows us to avoid technicalities, and
the results of our paper will remain valid without this assumption; see [1].

In what follows we use the notation

Y ∗ = Y \S, ϑ =
|Y ∗|
|Y |

with |Y | and |Y ∗| the Lebesgue measure of Y and Y ∗, respectively. Also denote by ṽ
the zero extension to the whole D for any function defined on Dε:

ṽ =

{
v on Dε,
0 on Sε.
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Now for T > 0 fixed final time, we consider the following Itô-type nonautonomous
SPDE defined on the perforated domain Dε in Rn:

duε(x, t) =
(
div

(
Aε(x)∇uε(x, t)

)
+ fε(x, t)

)
dt + gε(t)dW (t)(2.1)

in Dε × (0, T ),

uε = 0 on ∂D × (0, T ),(2.2)

∂uε

∂νAε

= 0 on ∂Sε × (0, T ),(2.3)

uε(0) = u0
ε in Dε,(2.4)

where the matrix Aε is

Aε =
(
aij

(x
ε

))
ij
,

and

∂ ·
∂νAε

=
∑
ij

aij

(x
ε

) ∂ ·
∂xj

ni

with n the exterior unit normal vector on the boundary ∂Dε.
We make the following assumptions on the coefficients:
1. aij ∈ L∞(Rn), i, j = 1, . . . , n;
2.

∑n
i,j=1 aijξiξj ≥ α

∑n
i=1 ξ

2
i for ξ ∈ Rn and α a positive constant;

3. aij are Y -periodic.
Furthermore we assume that

fε ∈ L2(Dε × [0, T ]),(2.5)

and for 0 ≤ t ≤ T , gε(t) is a linear operator from �2 to L2(Dε) defined as

gε(t)k =

∞∑
i=1

giε(x, t)ki, k = (k1, k2, . . .) ∈ �2,

where giε(x, t) ∈ L2(Dε × [0, T ]), i = 1, 2, . . . , are measurable functions with

∞∑
i=1

|giε(x, t)|2L2(Dε)
< CT , t ∈ [0, T ],(2.6)

for some positive constant CT independent of ε. In (2.1), W (t) = (W1(t),W2(t), . . .)
is a Wiener process in �2 with covariance operator Q = Id�2 , and {Wi(t) : i = 1, 2, . . .}
are mutually independent real valued standard Wiener processes on a complete prob-
ability space (Ω,F ,P) with a canonical filtration (Ft)t≥0. Then

|gε(t)|2LQ
2

=

∞∑
i=1

|giε(x, t)|2L2(Dε)
< CT , t ∈ [0, T ].(2.7)

Here LQ
2 is the space of Hilbert–Schmit operators [12, 16]. Denote by E the expecta-

tion operator with respect to P.
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The following compactness result [20] will be used in our approach. Let X ⊂ Y ⊂
Z be three reflective Banach spaces and X ⊂ Y with compact and dense embedding.
Define the Banach space as

G =

{
v : v ∈ L2(0, T ;X ),

dv

dt
∈ L2(0, T ;Z)

}

with norm

|v|2G =

∫ T

0

|v(s)|2Xds +

∫ T

0

∣∣∣dv
ds

(s)
∣∣∣2
Z
ds, v ∈ G.

Lemma 2.1. If B is bounded in G, then it is precompact in L2(0, T ;Y).
Let S be a Banach space and S ′ be the strong dual space of S. We recall the

definitions and some properties of weak convergence and weak∗ convergence [34].
Definition 2.2. A sequence {sn} in S is said to converge weakly to s ∈ S if

∀s′ ∈ S ′,

lim
n→∞

(s′, sn)S′,S = (s′, s)S′,S ,

which is written as sn ⇀ s weakly in S. Note that (s′, s) denotes the value of the
continuous linear functional s′ at the point s.

Lemma 2.3 (Eberlein–Shmulyan). Assume that S is reflexive and let {sn} be a
bounded sequence in S. Then there exists a subsequence {snk} and s ∈ S such that
snk ⇀ s weakly in S as k → ∞. If all the weakly convergent subsequence of {sn} has
the same limit s, then the whole sequence {sn} weakly converges to s.

Definition 2.4. A sequence {s′n} in S ′ is said to converge weakly∗ to s′ ∈ S ′ if
∀s ∈ S,

lim
n→∞

(s′n, s)S′,S = (s′, s)S′,S ,

which is written as s′n ⇀ s′ weakly∗ in S ′.
Lemma 2.5. Assume that the dual space S ′ is reflexive and let {s′n} be a bounded

sequence in S ′. Then there exists a subsequence {s′nk} and s′ ∈ S ′ such that s′nk ⇀ s′

weakly∗ in S ′ as k → ∞. If all the weakly∗ convergent subsequence of {s′n} has the
same limit s′, then the whole sequence {s′n} weakly∗ converges to s′.

We also use the following definition of the weak convergence of the Borel proba-
bility measures on S; for more details we refer to [14].

Definition 2.6. Let {με}ε be a family of Borel probability measures on the
Banach space S. We say με weakly converges to a Borel measure μ on S if∫

S
hdμε →

∫
S
hdμ as ε ↓ 0

for any h ∈ Cb(S), the space of bounded continuous functions on S.
In the following, for a fixed T > 0, we always denote by CT a constant independent

of ε.

3. Basic properties of the microscopic model. In this section we will present
some estimates of the solutions of microscopic model (2.1), useful for the tightness
result of the distributions of solution processes in some appropriate space.
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Let H = L2(D) and Hε = L2(Dε). Define the space

Vε = {u ∈ H1(Dε), u|∂D = 0}

provided with the norm

|v|Vε
= |∇Aε

v|⊕nHε
=

∣∣∣∣∣∣
⎛
⎝ n∑

j=1

aij

(x
ε

) ∂v

∂xj

⎞
⎠

n

i=1

∣∣∣∣∣∣
⊕nHε

.

This norm is equivalent to the usual H1(Dε)-norm, with an embedding constant
independent of ε, due to the assumptions on aij in the last section. Here ⊕n denotes
the direct sum of the Hilbert spaces with a usual direct sum norm. Let

D(Aε) =

{
v ∈ Vε : div(Aε∇v) ∈ Hε and

∂v

∂νAε

∣∣∣∣
∂Sε

= 0

}

and define operator Aεv = div(Aε∇v) for v ∈ D(Aε). Then system (2.1)–(2.4) can be
written as the following abstract stochastic evolutionary equation:

duε = (Aεuε + fε)dt + gεdW, uε(0) = u0
ε .(3.1)

By the assumptions on aij , operator Aε generates a strongly continuous semigroup
Sε(t) on Hε. The solution of (3.1) can then be written in the mild sense as

uε(t) = Sε(t)u
0
ε +

∫ t

0

Sε(t− s)fε(s)ds +

∫ t

0

Sε(t− s)gε(s)dW (s).(3.2)

The variational formulation is

(
duε(t), v

)
H−1

ε ,Vε
=

(
−
∫
Dε

Aε(x)∇uε(x, t)∇v(x)dx +

∫
Dε

fε(x, t)v(x)dx

)
dt

+

∫
Dε

gε(x, t)v(x)dW (t), in D′(0, T ), v ∈ Vε,(3.3)

with uε(0, x) = u0
ε(x).

For the well-posedness of system (3.1) we have the following result.
Theorem 3.1 (global well-posedness of the microscopic model). Assume that

(2.5) and (2.7) hold. Let u0
ε be an

(
F0,B(Hε)

)
-measurable random variable. Then

system (3.1) has a unique mild solution u ∈ L2
(
Ω, C(0, T ;Hε) ∩ L2(0, T ;Vε)

)
, which

is also a weak solution in the following sense:

(uε(t), v)Hε

= (u0
ε , v)Hε +

∫ t

0

(Aεuε(s), v)Hεds +

∫ t

0

(fε, v)Hεds +

∫ t

0

(gεdW, v)Hε(3.4)

for t ∈ [0, T ) and v ∈ Vε. Moreover, if u0
ε is independent of W (t) with E|u0

ε |2Hε
, < ∞,

then

E|uε(t)|2Hε
+ E

∫ t

0

|uε(s)|2Vε
ds ≤ E|u0

ε |2Hε
+ CT for t ∈ [0, T ],(3.5)
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and

E

∫ t

0

|u̇ε(s)|2H−1
ε

ds ≤ CT (E|u0
ε |2Hε

+ 1) for t ∈ [0, T ].(3.6)

If we further assume that

|∇Aε
gε(t)|2LQ

2

=

∞∑
i=1

|∇Aεg
i
ε(t)|2⊕nHε

≤ CT , for t ∈ [0, T ](3.7)

and u0
ε ∈ Vε with E|u0

ε |2Vε
< ∞, then

E|uε(t)|2Vε
+ E

∫ t

0

|Aεuε(s)|2Hε
ds ≤ E|u0

ε |2Vε
+ CT for t ∈ [0, T ].(3.8)

Moreover, system (3.1) is well-posed on [0,∞) when

fε ∈ L2(0,∞;Hε), gε ∈ L2(0,∞;LQ
2 ).(3.9)

Proof. By assumption (2.7), we have

|gε(t)|2LQ
2

=

∞∑
i=1

|giε(t, x)|2Hε
< ∞.

Then the classical result of [12] yields the local existence of uε. Applying the stochastic
Fubini theorem, it is easy to verify that the local mild solution is also a weak solution.

Now we give the following a priori estimate which yields the existence of a weak
solution on [0, T ], provided (2.5) and (2.7) hold.

Applying the Itô formula to |uε|2, we obtain

d|uε(t)|2Hε
− 2(Aεuε, uε)Hεdt = 2(fε, uε)Hεdt + 2(gεdW, uε)Hε + |gε|2LQ

2

dt.(3.10)

By the assumption on aij , we see that

−(Aεuε, uε)Hε ≥ λ|uε|2Hε

for some constant λ > 0 independent of ε. Then integrating (3.10) with respect to t
yields

|uε(t)|2Hε
+

∫ t

0

|uε|2Vε
ds

≤ |u0
ε |2Hε

+ λ−1|fε|2L2(0,T ;Hε)
+

∫ t

0

(gεdW, uε)Hε
ds +

∫ t

0

|gε|2LQ
2

ds.

Taking expectation on both sides of the above inequality, we derive (3.5).
In a similar way, application of the Itô formula to |uε|2Vε

= |∇Aεuε|2⊕nHε
results

in the relation

d|uε(t)|2Vε
+ 2(Aεuε,Aεuε)Hεdt

= −2(fε,Aεuε)Hεdt− 2(gεdW,Aεuε)Hε + |∇Aεgε|2LQ
2

dt.(3.11)
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Integrating both sides of (3.11), and by the Cauchy–Schwarz inequality, it is easily to
obtain

|uε(t)|2Vε
+

∫ t

0

|Aεuε|2Hε
ds

≤ |uε(0)|2Vε
+ |fε|2L2(0,T ;Hε)

− 2

∫ t

0

(gεdW,Aεuε)Hε
ds +

∫ t

0

|∇Aε
gε|2LQ

2

ds,

Then taking the expectation, we derive (3.8). By (3.3) and the property of the
stochastic integral we easily have (3.6).

Thus, by the above estimates, the solution can be extended to [0,∞) if (3.9)
holds. The proof is complete.

We recall a probability concept. Let z be a random variable taking values in a
Banach space S, namely, z : Ω → z. Denote by L(z) the distribution (or law) of z.
In fact, L(z) is a Borel probability measure on S defined as [12]

L(z)(A) = P{ω : z(ω) ∈ A},

for every event (i.e., a Borel set) A in the Borel σ-algebra B(S), which is the smallest
σ-algebra containing all open balls in S.

As stated in section 1, for the SPDE (2.1) we aim at deriving an effective equation
in the sense of probability. A solution uε may be regarded as a random variable taking
values in L2(0, T ;Hε). So for a solution uε of (2.1)–(2.4) defined on [0, T ], we focus on
the behavior of the distribution of uε in L2(0, T ;Hε) as ε → 0. For this purpose, the
tightness [14] of distributions is needed. Note that the function space changes with
ε, which is a difficulty in obtaining the tightness of distributions. Thus, we will treat
{L(uε)}ε>0 as a family of distributions on L2(0, T ;H) by extending uε to the whole
domain D. Recall that the distribution (or law ) of uε is defined as

L(uε)(A) = P{ω : uε(·, ·, ω) ∈ A}

for Borel set A in L2(0, T ;Hε). First, we define an extension operator Pε in the
following lemmas.

In the following we denote by L
(
X ,Y) the space of a bounded linear operator

from Banach space X to Banach space Y.
Lemma 3.2. There exists a bounded linear operator

Q̂ ∈ L(Hk(Y ∗), Hk(Y )), k = 0, 1,

such that

|∇Q̂v|⊕nL2(Y ) ≤ C|∇v|⊕nL2(Y ∗), v ∈ H1(Y ∗),

for some constant C > 0.
For the proof of Lemma 3.2 see [8].
In the following lemma we define an extension operator Pε in terms of the above

bounded linear operator Q̂.
Lemma 3.3. There exists an extension operator

Pε ∈ L
(
L2(0, T ;Hk(Dε)), L

2(0, T ;Hk(D))
)
, k = 0, 1,

such that for any v ∈ Hk(Dε),
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(1) Pεv = v on Dε × (0, T ),
(2) |Pεv|L2(0,T ;H) ≤ CT |v|L2(0,T ;Hε),
(3) |∇Aε(Pεv)|L2(0,T ;⊕nL2(D)) ≤ CT |∇Aεv|L2(0,T ;⊕nL2(Dε)),

where CT is a constant independent of ε.
Proof. If ϕ ∈ Hk(Dε), then

ϕε(y) =
1

ε
ϕ(ε y)

belongs to Hk(Y ∗
l ) with Y ∗

l the translation of Y ∗ for some l ∈ Rn. Define

Q̂εϕ(x) = ε(Q̂ϕε)
(x
ε

)
.(3.12)

Now for ϕ ∈ L2(0, T ;Hk(Dε)), we define

(Pεϕ)(x, t) = [Q̂εϕ(t, ·)]
(x
ε

)
= ε[Q̂ϕε(t, ·)]

(x
ε

)
.

It is known [8] that the operator Pε ∈ L
(
L2(0, T ;Hk(Dε)), L

2(0, T ;Hk(D))
)
, k = 0, 1,

and satisfies conditions (1)–(3) listed in the lemma. This completes the proof.
Remark 3.4. In Lemma 2.1 of [8], the operator Pε defined in L(L∞(0, T ;Hk(Dε)),

L∞(0, T ;Hk(D))), k = 0, 1, coincides with the operator defined in Lemma 3.3 above.
Remark 3.5. The estimates in Theorem 3.1 for uε also hold for Pεuε. In fact

estimates (3.5) and (3.8) are easily derived due to the property of the operator of Pε.
Since the operator Pε is defined on L2(0, T ;Hk(Dε), k = 0, 1, we define

Pεu̇ε ≡ AεPεuε + f̃ε + g̃εẆ on D × (0, T ).

By the property of Pε and the estimates of uε, it is easy to see that

Pεu̇ε = ˙(Pεuε) in Dε × (0, T )

and

E|Pεu̇ε|L2(0,T ;H−1) ≤ E|u̇ε|L2(0,T ;H−1
ε ).

4. Effective macroscopic model. We now derive the effective macroscopic
model for the original model (2.1). Let uε ∈ L2(0, T ;Hε) be the solution of system
(2.1)–(2.4). Then by the estimates in Theorem 3.1, Remark 3.5, and the Chebyshev
inequality [12, 14], it is clear that for any δ > 0 there is a bounded set Kδ ⊂ G with
the spaces X , Y, and Z in Lemma 2.1 (and in the paragraph immediately before it)
replaced by H1

0 (D), H, and H−1(D), respectively, such that

P{Pεuε ∈ Kδ} > 1 − δ.

Thus, Kδ is compact in L2(0, T ;H) by Lemma 2.1. Then {L(Pεuε)}ε is tight in
L2(0, T ;H). The Prokhorov theorem and the Skorohod embedding theorem [12] as-
sure that for any sequence {εj} with εj → 0 as j → ∞, there exists a subsequence
{εj(k)}, random variables {ûεj(k)

} ⊂ L2(0, T ;Hεj(k)
) and u ∈ L2(0, T ;H) defined on a

new probability space (Ω̂, F̂ , P̂), such that

L(Pεj(k)
ûεj(k)

) = L(Pεj(k)
uεj(k)

)
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and

Pεj(k)
ûεj(k)

→ u in L2(0, T ;H) as k → ∞,

for almost all ω ∈ Ω̂. Moreover, Pεj(k)
ûεj(k)

solves system (2.1)–(2.4) with W replaced

by Wiener process Ŵk defined on the probability space (Ω̂, F̂ , P̂) with the same distri-
bution as W . The limit u is unique; see [4, p. 333]. In the following, we will determine
the limiting equation (homogenized effective equation) that u satisfies and see that
the limiting equation is independent of ε. After this is done we see that L(uε) weakly
converges to L(u) as ε ↓ 0.

We always assume the following conditions

f̃ε ⇀ f weakly in L2(0, T ;H) as ε → 0,(4.1)

and

g̃iε ⇀ gi weakly in L2(0, T ;H) as ε → 0.(4.2)

Define a new probability space (Ωδ,Fδ,Pδ) as

Ωδ = {ω ∈ Ω : uε(ω) ∈ Kδ},

Fδ = {F ∩ Ωδ : F ∈ F},

and

Pδ(F ) =
P(F ∩ Ωδ)

P(Ωδ)
for F ∈ Fδ.

Denote by Eδ the expectation operator with respect to Pδ.
Now we restrict the system on the probability space (Ωδ,Fδ,Pδ). In the following

discussion we aim at obtaining L2(Ωδ) convergence for any δ > 0, which means the
convergence in probability [3, 14].

From the estimates (3.5), (3.6), Remark 3.5, and the compact embedding of
G ↪→ L2(0, T ;H), there exists a subsequence of uε in Kδ, still denoted by uε, such
that for a fixed ω ∈ Ωδ,

Pεuε ⇀ u weakly∗ in L∞(0, T ;H),(4.3)

Pεuε ⇀ u weakly in L2(0, T ;H1),(4.4)

Pεuε → u strongly in L2(0, T ;H),(4.5)

Pεu̇ε ⇀ u̇ weakly in L2(0, T ;H−1).(4.6)

Define

ξε =

⎛
⎝ n∑

j=1

aij

(x
ε

)∂uε

∂xj

⎞
⎠ = Aε∇uε

which satisfies

−div ξε = fε + gε Ẇ − u̇ε in Dε × (0, T ),(4.7)

ξε · n = 0 on ∂Sε × (0, T ).(4.8)
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By the hypothesis of aij and the fact that (ũε)ε is bounded in L2(0, T ;H1
0 ), we have

ξ̃ε ⇀ ξ weakly in L2(0, T ;⊕nH).(4.9)

We make use of Tartar’s method of oscillating test functions to determine the limiting
equation [9].

Note that∫ T

0

∫
D

ξ̃ε · ∇vϕdxdt =

∫ T

0

∫
D

f̃εvϕdxdt +

∞∑
i=1

∫ T

0

∫
D

g̃iεvdxϕdWi(t)

+

∫ T

0

∫
D

PεuεχDεϕ̇vdxdt(4.10)

∀ v ∈ H1
0 (D) and ϕ ∈ D(0, T ). We pass to the limit in (4.10) as ε → 0. Due to the

facts

Pεuε → u strongly in L2(0, T ;H),(4.11)

χDε ⇀ ϑ weakly∗ in L∞(D),(4.12)

and the estimate

E
∣∣∣ ∞∑
i=1

∫ T

0

∫
D

g̃iεvdxϕdWi(t)
∣∣∣2 ≤

∞∑
i=1

|g̃iε|2L2(0,T ;H)|vϕ|2L2(0,T ;H),

by assumption (4.2) we see that

∞∑
i=1

∫ T

0

∫
D

g̃iεvdxϕdWi(t) →
∞∑
i=1

∫ T

0

∫
D

givdxϕdWi(t), in L2(Ω).

Thus, letting ε → 0 in (4.10), and since L2(Ωδ) is a subspace of L2(Ω), one finds
that in L2(Ωδ)∫ T

0

∫
D

ξ · ∇vϕdxdt =

∫ T

0

∫
D

fvϕdxdt +

∞∑
i=1

∫ T

0

∫
D

givdxϕdWi(t)

+

∫ T

0

∫
D

ϑuϕ̇vdxdt.(4.13)

Hence

−div ξ(x, t) = f(x, t) + g(x, t)Ẇ − ϑu̇ in D × (0, T ).(4.14)

In the following we identify the limit ξ. We follow the approach of the determin-
istic case for the elliptic problem with homogeneous Neumann boundary condition
[9].

For any λ ∈ Rn, let wλ be the solution of

−
n∑

j=1

∂

∂yj

(
n∑

i=1

aij(y)
∂wλ

∂yi

)
= 0 in Y ∗,(4.15)

wλ − λ · y is Y -periodic,(4.16)

∂wλ

∂νA
= 0 on ∂S,(4.17)
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and define

wε
λ = ε(Q̂wλ)

(x
ε

)
,

where Q̂ is as in Lemma 3.2. Then we have [9]

wε
λ ⇀ λ · x weakly in H1(D),(4.18)

∇wε
λ ⇀ λ weakly in ⊕n L2(D).(4.19)

Now we define

(ηλj (y))j =

(
n∑

i=1

aji(y)
∂wλ(y)

∂yi

)
j

, y ∈ Y ∗,

and (ηλε )(x) = (ηλj (x/ε))j = At
ε∇wε

λ. Then

−div η̃λε = 0 in D,(4.20)

and due to (4.18) and (4.19)

η̃λε ⇀ MY (ηλ) weakly in L2(D).(4.21)

It is easy to see that MY (ηλ) = Btλ with Bt = (βji) a constant matrix, which is
determined in the appendix.

Using test function ϕvwε
λ with ϕ ∈ D(0, T ), v ∈ D(D) in (4.10) and multiplying

both sides of (4.20) with ϕvPεuε, we thus obtain

∫ T

0

∫
D

ξ̃ε · ∇vϕwε
λdxdt +

∫ T

0

∫
Dε

ξε · ∇wε
λvϕdxdt

−
∫ T

0

∫
D

η̃λε · ∇vϕPεuεdxdt−
∫ T

0

∫
D

η̃λε · ∇(Pεuε)vϕdxdt

=

∫ T

0

∫
D

f̃εϕvw
ε
λdxdt +

∞∑
i=1

∫ T

0

∫
D

g̃iεvw
ε
λdxϕdWi(t) +

∫ T

0

∫
D

PεuεχDε ϕ̇vw
ε
λdxdt.

Then by the definition of ξε, η
λ
ε and assumptions (4.1), (4.2), using the convergences

(4.9), (4.11), (4.12), (4.18), (4.19) and (4.21), we have in L2(Ωδ)∫ T

0

∫
D

ξ · ∇vϕλ · xdxdt−
∫ T

0

∫
D

Btλ · ∇vϕudxdt

=

∫ T

0

∫
D

fϕvλ · xdxdt +

∞∑
i=1

∫ T

0

∫
D

givλ · xdxϕdWi(t) +

∫ T

0

∫
D

ϑuvϕ̇λ · xdxdt.

That is,

∫ T

0

∫
D

ξ · ∇(vλ · x)ϕdxdt−
∫ T

0

∫
D

ξ · λvϕdxdt−
∫ T

0

∫
D

Btλ · ∇vϕudxdt

=

∫ T

0

∫
D

fϕvλ · xdxdt +

∞∑
i=1

∫ T

0

∫
D

givλ · xdxϕdWi(t) +

∫ T

0

∫
D

ϑuvϕ̇λ · xdxdt.
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Then by using (4.13) with the test function replaced by vλ · xϕ, one has

∫ T

0

∫
D

ξ · λvϕdxdt =

∫ T

0

∫
D

Btλ · ∇uϕvdxdt,

which yields

ξ · λ = Btλ · ∇u = B∇u · λ.

Then

ξ = B∇u

since λ is arbitrary. Then u satisfies the equation

ϑdu =
(
div(B∇u) + f

)
dt + gdW (t).(4.22)

Assume that

ũ0
ε ⇀ u0, weakly in H as ε → 0.(4.23)

We now determine the initial value by suitable test functions. In fact, taking v ∈ D(D)
and ϕ ∈ D([0, T ]) with ϕ(T ) = 0, we have

∫ T

0

∫
D

ξ̃ε · ∇vϕdxdt =

∫ T

0

∫
D

f̃εvϕdxdt +

∞∑
i=0

∫ T

0

∫
D

g̃εivdxϕdWi(t)

−
∫ T

0

∫
D

ũεvϕ̇dxdt +

∫
D

ũ0
εϕ(0)vdx.

Now let ε → 0. Noticing that

∫ T

0

∫
D

ũεvϕ̇dxdt =

∫ T

0

∫
D

χDεPεũεvϕ̇dxdt →
∫ T

0

∫
D

ϑuvϕ̇dxdt

= −
∫ T

0

∫
D

ϑu̇vϕdxdt +

∫
D

ϑu(0)ϕ(0)vdx

by (4.14), we have

u(0) =
u0

ϑ
.

Here one should notice that the above result is in the sense of L2(Ωδ). Then the
above analysis yields

lim
ε→0

Eδ|Pεuε − u|2L2(0,T ;H) = 0(4.24)

and

lim
ε→0

Eδ

∫ T

0

∫
D

(AεPεuε −B∇u)vϕdxdt = 0(4.25)

for any v ∈ D(D) and ϕ ∈ D([0, T ]).
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Now we are in the position to present the homogenized effective equation in the
following theorem.

Theorem 4.1 (effective macroscopic model). For any T > 0, assume that (4.1),
(4.2), and (4.23) hold. Let uε be the solution of (2.1)–(2.4). Then the distribution
L(Pεuε) converges weakly to μ in the space of probability measures on L2(0, T ;H)
as ε ↓ 0, with μ being the distribution of u, which is the solution of the following
homogenized effective SPDE

ϑdu =
(
div(B∇u) + f

)
dt + gdW (t) in D × (0, T ),(4.26)

u = 0 on ∂D × (0, T ),(4.27)

u(x, 0) =
u0

ϑ
in D,(4.28)

where the constant coefficient ϑ = |Y ∗|
|Y | is defined in the beginning of section 2, and

the effective matrix B = (βij) is determined by (7.4) in the appendix at the end of this
paper. Moreover, the coefficients f, g and initial datum u0 are defined in (4.1), (4.2),
and (4.23), respectively.

Remark 4.2. This theorem implies that the macroscopic model (4.26) is an ef-
fective approximation for the microscopic model (2.1), on any finite time interval
0 < t < T , in the sense of probability distribution. In other words, if we intend
to numerically simulate the microscopic model up to finite time, we could use the
macroscopic model as an approximation when ε is sufficiently small.

Remark 4.3. Due to the appearance of the stochastic integral term (see (4.10)),
this theorem on weak convergence of probability measures does not follow from the
deterministic homogenization results and the mild formulation (3.2).

Remark 4.4. The SPDE (4.26) is defined on the homogenized domain D. By
the analysis in [12], for any fixed T > 0, the macroscopic system (4.26)–(4.28) is

well-posed, as long as f ∈ L2(0, T ;H) and g ∈ L2(0, T ;LQ
2 ).

Proof of Theorem 4.1. Noticing the arbitrariness of δ, we see that this is a direct
result of the analysis of the first part in this section by the Skorohod theorem and the
L2(Ωδ) convergence of Pεuε on (Ωδ,Fδ,Pδ).

We finish this section with the following remark.
Remark 4.5. Note that there are several papers on effective dynamics for PDEs

with random coefficients (so-called random PDEs, not stochastic PDEs); see [19, 26,
32] and references therein. In [19, 26], a random PDE is obtained as the homogenized
effective equation for a random system with fast or small scales on its time or spatial
variable. The distribution of the solution of the heterogeneous system converges
weakly to that of the homogenized equation. However, in [32], the effective equation
is obtained as an averaged deterministic equation for a random system with fast scales
in time. The fluctuation of the solution of the random equation around the solution
of the averaged equation converges to a generalized Ornstein–Uhlenbeck process in
distribution. In the present paper, the original microscopic model is an SPDE (i.e.,
PDE with white noise) and the effective macroscopic equation is still an SPDE.

5. Long time effectivity of the macroscopic model. In this section we
consider the long time effectivity of the homogenized system (4.26) in the autonomous
case, i.e., when fε and gε (and thus f and g) are independent of time t. It is proved
in section 4 that for fixed T > 0 the macroscopic behavior of the microscopic system
(2.1)–(2.4) can be approximated by the macroscopic model (4.26) in the sense of
probability distribution. In fact we can show the long time approximation. More
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specifically, we now prove that in the sense of distribution, all solutions of (2.1)–(2.4)
converge to the unique stationary solution of (4.26) as T → ∞ and ε → 0, under the
assumption that fε ∈ Hε and giε ∈ Vε are independent of time t and

∞∑
i=1

|∇Aε
giε(x)|2⊕nHε

< C∗.(5.1)

Here C∗ is a positive constant independent of ε.
By the above assumptions, as well as the properties of aij and βij , a standard

argument (see [13, section 6]) yields that the system (3.1) and (4.26) have unique
stationary solutions u∗

ε (x, t) and u∗(x, t), defined for t > 0. We denote by μ∗
ε and μ∗

the distributions of Pεu
∗
ε and u∗ in the space H, respectively. Then if E|u0

ε |2 < ∞
and E|u0|2 < ∞, ∣∣∣ ∫

H

hdμε(t) −
∫
H

hdμ∗
ε

∣∣∣ ≤ C(u0
ε)e

−γt, t > 0,(5.2)

∣∣∣ ∫
H

hdμ(t) −
∫
H

hdμ∗
∣∣∣ ≤ C(u0)e−γt, t > 0,(5.3)

for some constant γ > 0 and any h : H → R1 with sup |h| ≤ 1 and Lip(h) ≤ 1. Here

με(t) = L(Pεuε(t, u
0
ε)), μ(t) = L(u(t, u0

ϑ )), and C(u0
ε) and C(u0) are positive constants

depending only on the initial values u0
ε and u0, respectively. The above convergence

also yields that με(t) and μ(t) weakly converge to μ∗
ε and μ∗, respectively, as t → ∞.

We will give some additional a priori estimates which are uniform with respect
to ε to ensure the tightness of the stationary distributions. For Banach space U and
p > 1, we define W 1,p(0, T ;U) as the space of functions h ∈ Lp(0, T ;U) such that

|h|pW 1,p(0,T ;U) = |h|pLp(0,T ;U) +
∣∣∣dh
dt

∣∣∣p
Lp(0,T ;U)

< ∞.

For any α ∈ (0, 1), define Wα,p(0, T ;U) as the space of function h ∈ Lp(0, T ;U) such
that

|h|pWα,p(0,T ;U) = |h|pLp(0,T ;U) +

∫ T

0

∫ T

0

|h(t) − h(s)|pU
|t− s|1+αp

dsdt < ∞.

For ρ ∈ (0, 1), we denote by Cρ(0, T ;U) the space of functions h : [0, T ] → X that are
Hölder continuous with exponent ρ.

In the remaining part of this section, we always assume that fε and giε are in-
dependent of time t with (5.1) holding. For T > 0 denote by u∗

ε,T (respectively,
u∗
T ) the distribution of stationary process Pεu

∗
ε (·) (respectively, u∗(·)) in the space

L2(0, T ;H1). Then we have the following result.
Lemma 5.1. For any T > 0 the family u∗

ε,T is tight in the space L2(0, T ;H2−ι)
with ι > 0.

Proof. Since u∗
ε is stationary, by (3.8), we see that

E|u∗
ε |2L2(0,T ;H2

ε ) < CT .(5.4)

Now represent u∗
ε in the form

u∗
ε (t) = u∗

ε (0) +

∫ t

0

Aεu
∗
ε (s)ds +

∫ t

0

fε(x)ds +

∫ t

0

gε(x)dW (s).
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Also by the stationarity of u∗
ε and (3.8) we obtain

E
∣∣∣ ∫ t

0

AεPεu
∗
ε (s)ds +

∫ t

0

f̃ε(x)ds
∣∣∣2
W 1,2(0,T ;H)

≤ CT .(5.5)

Let Mε(s, t) =
∫ t

s
g̃ε(x)dW (s). By Lemma 7.2 of [12] and the Hölder inequality, we

derive that

E|Mε(s, t)|4Vε
≤ c

(∫ t

s

|∇Aε
g̃ε(x)|2LQ

2

dτ

)2

≤ K(t− s)

∫ t

s

|∇Aε
g̃ε(x)|4LQ

2

dτ

≤ KC∗2|t− s|2

for t ∈ [s, T ], where K is a positive constant independent of ε, s, and t. Then

E

∫ T

0

|Mε(0, t)|4Vε
dt ≤ CT(5.6)

and

E

∫ T

0

∫ T

0

|Mε(0, t) −Mε(0, s)|4Vε

|t− s|1+4α
dsdt ≤ CT .(5.7)

Combining (5.4)–(5.7) and the compact embedding of

L2(0, T ;H2) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;H2−ι)

and

L2(0, T ;H2) ∩Wα,4(0, T ;H1) ⊂ L2(0, T ;H2−ι),

we obtain the tightness of u∗
ε,T . This completes the proof.

The above lemma directly yields the following result.
Corollary 5.2. The family {μ∗

ε} is tight in the space H1.
By Lemma 5.1, for any fixed T > 0, the Skorohod embedding theorem asserts

that for any sequence {εn}n with εn → 0 as n → ∞, there is a subsequence {εn(k)}k,
a new probability space (Ω,F ,P), and random variables u∗

εn(k)
∈ L2(0, T ;Vε), u

∗ ∈
L2(0, T ;H1), such that

L(Pεu
∗
εn(k)

) = u∗
εn(k),T

, L(u∗) = u∗
T ,

and

u∗
εn(k)

→ u∗ in L2(0, T ;H1) as k → ∞.

Moreover, u∗
εn(k)

(respectively, u∗) is the unique stationary solution of (3.1) (respec-

tively, (4.26)) with W replaced by W k (respectively, W ). W k and W are some Wiener
processes defined on (Ω,F ,P) with the same distribution as W . Then by the analysis
of section 4 and the uniqueness of the invariant measure,

u∗
ε,T ⇀ u∗

T as ε → 0

for any T > 0.
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To show the long time effectivity, let uε(t), t ≥ 0, be a weak solution of system
(2.1)–(2.4), and define ut

ε(·) = uε(t+ ·) which is in the space L2
loc(R+;Vε) by Theorem

3.1. Then by (5.2)

L(Pεu
t
ε(·)) ⇀ L(Pεu

∗
ε (·)), t → ∞,

in the space of probability measures on L2
loc(R+;H1). From the above analysis we

draw the following result which implies the long time effectivity of the homogenized
effective equation (4.26).

Theorem 5.3 (long time effectivity of the macroscopic model). Assume that
fε ∈ Hε and giε ∈ Vε are independent of time t with (5.1) being satisfied, and further
assume that (4.1) and (4.2) hold in H. Denote by uε(t), t ≥ 0, the solution of (2.1)–
(2.4) and by u∗ the unique stationary solution of (4.26). Then

lim
ε↓0

lim
t→∞

L(Pεu
t
ε(·)) = L(u∗(·)),(5.8)

where the limits are understood in the sense of weak convergence of Borel probability
measures in the space L2

loc(R+;H1). That is, the solution of (2.1)–(2.4) converges to
the stationary solution of (4.26) in probability distribution as t → ∞ and ε → 0.

Remark 5.4. This theorem implies that the macroscopic model (4.26) is an effec-
tive approximation for the microscopic model (2.1), on a very long time scale. In other
words, if we intend to numerically simulate the long time behavior of the microscopic
model, we could just simulate the macroscopic model as an approximation when ε is
sufficiently small.

6. Effectivity in energy convergence. In sections 4 and 5, we have considered
finite time and long time effectivity of the macroscopic model (4.26), in the sense of
convergence in probability distribution. In this section we focus on the finite time
effectivity of the macroscopic model (4.26), but in the sense of convergence in energy.
Namely, we show that the solution of the microscopic model (2.1) or (3.1) converges
to the solution of the macroscopic model (4.26), in an energy norm.

Let uε be a weak solution of (3.1) and u be a weak solution of (4.26). We introduce
the following energy functionals:

Eε(uε)(t) =
1

2
E|ũε|2H + E

∫ t

0

∫
D

χDεAε∇
(
Pεuε(x, τ)

)
∇
(
Pεuε(x, τ)

)
dxdτ(6.1)

and

E0(u)(t) =
1

2
E|u|2H + E

∫ t

0

∫
D

B∇u(x, τ)∇u(x, τ)dxdτ.(6.2)

By the Itô formula, it is clear that

Eε(uε)(t) =
1

2
E|ũ0

ε |2H + E

∫ t

0

∫
D

f̃ε(x, τ)ũε(x, τ)dxdτ +
1

2
E

∫ t

0

|g̃ε(x, τ)|2LQ
2

dτ

and

E0(u)(t) =
1

2
E|u0|2H + E

∫ t

0

∫
D

f(x, τ)u(x, τ)dxdτ +
1

2
E

∫ t

0

|g(x, τ)|2LQ
2

dτ.

Then we have the following result on effectivity of the macroscopic model in the
sense of convergence in energy.
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Theorem 6.1 (effectivity in energy convergence). Assume that (4.1) and (4.2)
hold. If

ũ0
ε → u0 strongly in H as ε → 0,

then

Eε(uε) → E0(u) in C([0, T ]) as ε → 0.

Proof. By the analysis of section 4, for any δ > 0, uε → u strongly in L2(0, T ;H)
on Ωδ, and then by the arbitrariness of δ, it is easy to see that

E

∫ t

0

∫
D

f̃ε(x, τ)ũε(x, τ)dxdτ → E

∫ t

0

∫
D

f(x, τ)u(x, τ)dxdτ for t ∈ [0, T ].

Then by g̃ε ⇀ g weakly in L2(0, t;LQ
2 ), we have

Eε(uε)(t) → E0(u)(t) for any t ∈ [0, T ].(6.3)

We now need only show that {Eε(uε)(t)}ε is equicontinuous, as then the Ascoli–
Arzela theorem [14] will imply the result in the theorem.

In fact, given any t ∈ [0, T ], and h > 0 small enough, we have

|Eε(uε)(t + h) − Eε(uε)(t)|

≤
∣∣∣E∫ t+h

t

∫
D

f̃ε(x, τ)ũε(x, τ)dxdτ
∣∣∣ + E

∫ t+h

t

|g̃ε(x, τ)|2LQ
2

dτ

≤ E

{
|f̃ε|L2(0,T ;H)

∫ t+h

t

|ũε(x, τ)|2Hdxdτ

}
+ E

∫ t+h

t

|g̃ε(x, τ)|2LQ
2

dτ.

Noting that ũε ∈ L2(0, T ;H) a.s. and (2.7), we have

|Eε(uε)(t + h) − Eε(uε)(t)| → 0 as h → 0,

uniformly on ε, which means the equicontinuity of the family {Eε(uε)}ε. This com-
pletes the proof.

7. Appendix: The homogenized matrix. In this appendix, we give the ex-
plicit expression of the homogenized matrix B; for more details see [9]. Let χi,
i = 1, . . . , n, be the solutions of

−
n∑

l,k=1

∂

∂yl

(
akl

∂(χi − yi)

∂yk

)
= 0 in Y ∗,(7.1)

n∑
l,k=1

akl
∂(χi − yi)

∂yk
nl = 0 on ∂S,(7.2)

χi is Y -periodic.(7.3)

It is easy to calculate that χi = −wei + ei with {ei}ni=1 the canonical basis of Rn.
Then

βij =
1

|Y |

∫
Y

n∑
k=1

akj
∂wei

∂yk
dy =

1

|Y |

∫
Y

aijdy −
1

|Y |

∫
Y

n∑
k=1

akj
∂χi

∂yk
dy.(7.4)
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Moreover, the operator B = (βij) satisfies the uniform ellipticity condition: there is
a constant b > 0 such that

n∑
i,j=1

βijξiξj ≥ b

n∑
i=1

ξ2
i for ξ = (ξ1, . . . , ξn) ∈ Rn.
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LOCAL SMOOTHING AND LOCAL SOLVABILITY FOR THIRD
ORDER DISPERSIVE EQUATIONS∗
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Abstract. Two-dimensional deep water waves can be described by various third order dispersive
equations, modifying and generalizing the KdV equations as well as nonlinear Schrödinger equations.
We establish local well-posedness for initial data u0 ∈ H3/2(R2) for many of the proposed models
using local smoothing estimates with respect to the forcing term and the initial data.
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1. Introduction. The weakly nonlinear dynamics of a quasi-monochromatic
wave train propagating at the surface of water can be described by nonlinear
Schrödinger-type equations. This has been established in one dimension and two
dimensions by Zakharov [19] for infinitely deep water and by Hasimoto and Ono
[10] in the one-dimensional finite depth case. They obtained the cubic nonlinear
Schrödinger equation. For nearly one-dimensional wave trains in finite depth wa-
ter, Davey and Stewartson [4] and Djordjevic and Redekopp [7] derived the so-called
Davey–Stewartson systems for, respectively, purely gravity and gravity-capillary waves.
Those systems involve a wave-induced mean flow resulting in a nonlocal nonlinear
Schrödinger equation. They reduce to the cubic nonlinear Schrödinger equation in
the infinitely deep water limit. Let a be a typical wave amplitude and k be the mod-
ulus of the mean wave number. All the models above are found by a perturbation
analysis up to O(ε3) when ε = k a � 1 is the wave steepness.

Taking perturbation analysis one step further to O(ε4), Dysthe [8] has derived a
system which improves significantly upon the results on the stability of finite ampli-
tude waves in infinite depth. One of the dominant new effects is the wave-induced
mean flow with potential Φ. Solving the equation for Φ in terms of the complex
amplitude of the wave packet allows one to put the Dysthe system (in dimensionless
variables) in the following form (see [9]):

2i

(
∂A

∂t
+

1

2

∂A

∂x

)
+

1

2

∂2A

∂y2
− 1

4

∂2A

∂x2
−A|A|2 =

i

8

(
∂3

∂x3
− 6

∂3

∂x∂y2

)
A

+
i

2
A

(
A
∂A

∂x
−A

∂A

∂x

)
− 5i

2
|A|2 ∂A

∂x
+ AR1

∂

∂x
|A|2,

(1.1)

where R1 is the Riesz transform in R
2, that is,

F (R1ψ) = i
ξ1
|ξ| ψ̂.

Here F and ψ̂ denote the Fourier transform.
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The usual nonlinear Schrödinger equation (NLS) is obtained by neglecting the
right-hand side of (1.1), which is of order ε4 in the dimensional variables. Note that
going one step further in the perturbation introduces higher dispersive terms as well
as new nonlinear ones.

A similar derivation of the fourth order (in ε) evolution equations for the ampli-
tude of a train of nonlinear gravity-capillary waves on the surface of an ideal fluid of
infinite depth was performed by Hogan [11]. The equation reads

2i

(
∂A

∂t
+ cg

∂A

∂x

)
+ p

∂2A

∂x2
+ q

∂2A

∂y2
− γ|A|2A = −is

∂3A

∂x∂y2
− ir

∂3A

∂x3

−iuA2 ∂A

∂x
+ iv|A|2 ∂A

∂x
+ AR1

∂

∂x
|A|2,

(1.2)

where cg is the group velocity and γ, p, q, s, r, u, and v are real parameters depending
on the surface tension parameter. Note that q and s are strictly positive, while p can
achieve both signs (in particular, the sign is negative for purely gravity waves as in
the Dysthe system and positive for purely capillary waves). We refer to the survey of
Dias and Kharif [6] for a more complete description of the models of water waves.

Similar problems occur in nonlinear optics (see, for instance, [20]), in particular
in the modeling of the dynamics of femtosecond laser pulses in a nonlinear media with
temporal dispersion. The evolution of the complex envelope E(x, y, z, t) of the field
is described by the third order NLS

i
∂

∂z
E + (1 − iε1∂t)Δ⊥E − ∂2E

∂t2
− iε2

∂3E

∂t3
+ (1 + iε1∂t)g(|E|2)E = 0,(1.3)

where Δ⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian and ε2 ∈ R, ε1 > 0, and typi-

cally, g(z) = z. As is usual in nonlinear optics, the evolution variable (which plays,
mathematically, the role of time, whereas t will be treated as spatial variable later) is
z. The transverse Laplacian accounts for diffraction, while the second and third time
derivatives describe group velocity and third order dispersion.

Very little is known concerning the Cauchy problem for (1.1)–(1.3). The only
results available are local existence for analytic Cauchy data for (1.1) and (1.2) by de
Bouard [5], and, very recently, well-posedness in H3(R2) by Chihara [3], who applies
techniques developed for derivative nonlinear Schrödinger equations to these third
order equations.

Sharp estimates on the fundamental solution of the linearization of (1.2) at 0 have
been recently derived in [2]. They lead naturally to Strichartz estimates. Because of
the presence of derivatives in the nonlinear terms, Strichartz estimates do not suffice
by themselves to obtain the local well-posedness of (1.2) by a contraction argument.

The aim of this paper is to give a proof of local well-posedness of (1.2) and (1.3)
in two space dimensions for data in the Sobolev space H3/2 by a contraction argument
involving spaces related to the local smoothing properties of the group associated to
the linear equation

iut + P (D)u = f in R
n × R,

u(x, 0) = u0(x) for x ∈ R
n,

(1.4)

where P (D) is a differential operator of order κ ≥ 2 with real symbol p(ξ). Let pκ be
the part of degree κ.
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Assumption. We assume that there exist c1, c2 > 0 such that

|∇p(ξ)| ≥ c1|ξ|κ−1 − c2.(1.5)

Straightforward calculations show that (1.5) is satisfied for problem (1.1). It is
satisfied for (1.2) provided s and r are nonzero and for (1.3) if ε1 and ε2 are nonzero.

Let

Q̃x =

{
y|max

j
|xj − yj | ≤

1

2

}

and, for T > 0,

Qx,T = Q̃x × [0, T ].

The local smoothing estimate is the following.
Proposition 1.1. Suppose that p satisfies (1.5). Let T > 0. Then we have

sup
x

‖(1 − Δ)
κ−1

4 u‖L2(Qx,T ) + sup
0≤t≤T

‖u(t)‖L2

≤ c

(
‖u0‖L2 +

∑
k∈Zn

‖(1 − Δ)−
κ−1

4 f‖L2(Qk,T )

)
.

Note that the cubes Qk,T cover R
n × (0, T ). We apply it with κ = 3 and n = 2

to construct a solution to

iut + P (D)u = f(u, ∂νu) in R
2 × R,

u(x, 0) = u0(x) for x ∈ R
2,

(1.6)

where P is of order 3, ν is a unit vector in R
2, and, with the Riesz transform Rν

defined by the Fourier multiplier ξ·ν
|ξ| and with real or complex constants aj ,

f(u, ∂νu) = a0|u|2u + a1u
2∂ν ū + a2|u|2∂νu + a3u∂νRν |u|2.(1.7)

Note that in (1.3) z becomes the time variable and t a spatial variable. In most models
the L2 norm is preserved. This is the case when

a0, a3 ∈ R, a1, a2 ∈ iR.(1.8)

We fix a smooth compactly supported function φ, identically 1 on Q̃0.
Definition 1.2. We define the function spaces Xt0 ⊂ C([0, t0];H

3/2(R2)) and
Yt0 through the norms

‖u‖Xt0
= sup

0≤t≤t0

‖u(t)‖H3/2(R2) + sup
x∈R2

‖(1 − Δ)5/4x u‖L2(Qx,t0
)

+ t
−1/2
0

(∑
k∈Z2

sup
0≤t≤t0

(
‖φ(.− k)u(t)‖2

H1/2(R2) − ‖φ(.− k)u(0)‖2
H1/2(R2)

))1/2

(1.9)

and

‖f‖Yt0
= inf

f1+f2=f

{∑
k∈Z2

‖(1 − Δ)−1/4f1‖L2(Qk,t0
) +

∫ t0

0

‖f2(τ)‖H3/2(R2)dτ

}
.

After these preparations we can formulate the main result.
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Theorem 1.3. Suppose that p satisfies (1.5) and that the nonlinearity is of the
form (1.7). Given c > 1 there exists t0 ∼ c−2 such that for u0 ∈ H3/2(R2) with
‖u0‖H3/2 ≤ c there exists a unique solution u ∈ Xt0 to (1.6) and (1.7) with initial

value u0. Moreover, the map H
3
2 (R2) → Xt0 , u0 → u is analytic. In the particular

case of (1.2) and (1.3) we have, furthermore, ‖u(t)‖L2(R2) = ‖u0‖L2(R2).
Proposition 1.1 is proved in section 2 by a reduction to a one-dimensional estimate.

In section 3 we prove the main result, which implies in particular that the Cauchy
problem for (1.1), for (1.2) if s and r are nonzero, and for (1.3) if ε1 and ε2 are nonzero
and g(z) = z, is locally well-posed for data in H3/2(R2). It is likely that one could
consider data in Sobolev spaces of lower order by using the Strichartz estimates of
[1] and maximal function estimates. Note that for solutions of (1.2) and (1.3) the L2

norm is formally conserved, which could possibly be used to get global existence from
local existence in L2(R2) since L2(R2) is a critical space for scaling. The dispersive
estimates obtained in [2] might be useful to establish global existence for small data.

2. Local smoothing estimates. In this part we consider dispersive equations
in all space dimensions and of all orders. Local smoothing estimates with respect to
the initial data for general dispersive equations are well known; see, for example, [13].
There are fewer results concerning the smoothing property with respect to the forcing
term f . As far as we know, such results have been established in the case when κ = 2
(Schrödinger-type equations) [18, 16], in one space dimension for all κ [15, 14, 17],
and more recently, by Hoshiro [12] who established related local smoothing estimates
using arguments which are very different from those in this section.

Let a, b, s ∈ R and b �= 0. Then by the residue theorem we have

1

2πi

∫
R

eisσ

σ − a− ib
dσ =

{
0 if bs < 0,

eias−bs if bs > 0.
(2.1)

This simple identity has important and simple consequences for similar integrals for
polynomials.

Lemma 2.1. Let p(σ) be a real polynomial of degree κ. Then for all real ε �= 0,∣∣∣∣ 1

2πi

∫
R

eisσp′(σ)

p(σ) − iε
dσ

∣∣∣∣ ≤ κ.

Proof. We may assume without loss of generality that the degree κ is at least 1.
Let bi ∈ C, i = 1, . . . ,m ≤ κ, be the zeros of the polynomial p− iε of multiplicity Ni.
Then

p′

p− iε
=

m∑
i=1

Ni

s− bi
.

No zero of p− iε is real, and the assertion follows from the previous calculation (2.1).
There is even a precise formula for ε → 0. Let H(s) = 1 for s < 0 and 0 otherwise.

Then

lim
ε→0+

∫
R

eisσp′(σ)

p(σ) − iε
dσ =

k1∑
j=1

Nje
iajsH(±s) +

∑
{j:Imajs>0}

Nje
iajs,

where the first sum is over all zeros on the real line and the second one over all zeros
where the imaginary part is positive. The sign in H(±s) is determined by the sign of
the imaginary part of the root of p− i0.
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Let p be a real polynomial of degree κ in R
n. We denote the group generated by

P (D) by S(t), which has the kernel function

k(x, t) =

{
0 if t ≤ 0,

1
(2π)n

∫
eixξ+itp(ξ) dξ otherwise,

where the integral is a standard oscillatory integral, and

Kf(x, t) =

∫ t

−∞

∫
Rn

k(x− y, t− s)f(y, s)dy ds.

Then

i(τ − p(ξ))K̂f(ξ, τ) = f̂(ξ, τ)

and

k(x, t) = lim
ε>0,ε→0

F−1
( 1

τ + p(ξ) − iε

)
.

In what follows we fix a unit vector v ∈ R
n and define for r ∈ R the n-dimensional

hyperplane

Hv
r = {(x, t)|〈v, x〉 = r}.(2.2)

Let u and f be measurable functions. We define function spaces by their norm

‖u‖L∞(R,L2(Hv)) =ess sup
r

‖u|Hv
r
‖L2(Hv

r),

‖f‖L1(R,L2(Hv)) =

∫
R

‖u|Hv
r′
‖L2(Hv

r′ )
dr′.

Let pv be the derivative of the symbol p in direction v.
Lemma 2.2. The following inequality holds for all τ and all ξ perpendicular to v

and ε small: ∥∥∥F v
[ pv
τ + p(ξ) − iε

]∥∥∥
L∞(R)

≤
√

2πκ,

where F v is the partial inverse Fourier transform in the direction of v.
Proof. We fix (ξ, τ) ∈ Hv and set

q(σ) = τ + p(ξ + σv)

which is a polynomial of order at most κ. The assertion follows now from Lem-
ma 2.1.

Theorem 2.3. Let A = pv(D) be the differential operator defined by the Fourier
multiplier pv. Suppose that f ∈ L1(R;L2(Hv

r)). Then

sup
r

‖(AKf)|Hv
r
‖L2(Hv

r) ≤
√

2πκ

∫
R

‖f |Hv
r′
‖L2(Hv

r′ )
dr′.

Proof. The Fourier transform of K is

lim
ε→0

1

τ + p(ξ) − iε
.
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The Fourier transform in the direction v satisfies the desired bounds. Hence, if f ∈
L2(Hv) and r′, r ∈ R, then

‖K(δr′(.)f)|Hv
r
‖L2(Hv

r) ≤
√

2πκ‖f |Hv
r′
‖L2(Hv

r′ )
,

where δ denotes the Dirac measure, because this map is defined by a bounded Fourier
multiplier. Integration with respect to r′ yields the desired result.

We consider the initial boundary value problem

i∂tu− P (D)u = f, u(., 0) = u0,

where we assume that

|pv(D)|−1/2f ∈ L1(R;L2(Hv))

and u(0) = u0 ∈ L2. If f = 0, then there is a unique solution in C(R;L2(Rn)). Then
formally the solution for positive t is given by

u(t) = k(., t) ∗ u0 +

∫ t

0

k(., t− s) ∗ f(., s)ds.

In what follows we study this solution.
Proposition 2.4. We have

sup
t

‖u(t)‖L2 + (2π)−1/4κ−1/2‖|pv|1/2(D)u‖L∞(R,L2(Hv))

≤ ‖u0‖L2 + (2π)1/4
√
κ‖|pv|−1/2(D)f)‖L1(R,L2(Hv)).

It is part of the statement that the left-hand side is finite if the right-hand side
is finite.

Proof. There are four estimates to prove. We suppose that f is defined on R
n×R.

The estimate

(2π)−1/4κ−1/2‖|pv|1/2(D)u‖L∞(R,L2(Hv)) ≤ (2π)1/4
√
κ‖|pv|−1/2(D)f‖L1(R,L2(Hv))

for u(t) =
∫ t

−∞ S(t− s)f(s) ds is the content of Theorem 2.3.
The estimate

sup
t

‖u(t)‖L2 ≤ (2π)1/4
√
κ‖|pv|−1/2(D)f‖L1(R,L2(Hv))

follows from

‖u(0)‖L2 ≤ (2π)1/4
√
κ‖|pv|−1/2(D)f‖L1(R,L2(Hv))(2.3)

for u = Kf . More precisely we define

T1 : L1(R;L2(Hv ∩ {t < 0})) → L2(Rn),

T1f = (Kf)(0),

and

T2 : L2(Rn) → L∞(R;L2(Hv ∩ {t < 0})),

T2(u0)(t) = S(−t)u0.
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Then

T2 = T ∗
1

since ∫
Rn

∫ 0

−∞
T2vf dt dx =

∫ ∞

0

∫
Rn

S(−t)vf(−t)dxdt

=

∫
Rn

v

∫ ∞

0

S(t)f(−t)dt dx

=

∫
Rn

vT1(f)dx.

We observe that the kernel of K is supported in the half space t ≤ 0, and hence
we may assume that f is supported in the same half space. On the other hand, if f
is supported in the half space {t ≤ 0}, and t > 0, then

Kf(t) = T2T1f(−t).

Hence, the bounds for T1 and T2 follow by an application of Theorem 2.3.
Now we define

v(t) = u(t) −
∫ t

−∞
S(t− s)f(s) ds,

and we obtain

i∂tv − P (D)v = 0,

v(0) = u0 −
∫ 0

−∞
S(−s)f(s) ds.

The theorem is proved if we show ‖v(t)‖L2 = ‖v(0)‖L2 and

‖v‖L∞(R,L2(Hv)∩{t>0}) ≤ (2π)1/4
√
κ‖v(0)‖L2 .

The first estimate follows from the energy equality and the second from the estimate
for T2.

In what follows we will need an elementary estimate. We study

i∂tv − P (D)v = f,

where p is a real polynomial of order κ in n variables. We recall that

Q̃x :=

{
y ∈ R

2 : max{|xi − yi|} ≤ 1

2

}
and Qx,t0 = Q̃x × (0, t0).

Lemma 2.5. Let φ ∈ Cκ
0 (Rn) be supported in BR(x). Then

∣∣‖φv(t)‖2
L2 − ‖φv(0)‖2

L2

∣∣ ≤ 4t

∫ t

0

‖φf(s)‖2
L2ds + c

∫ t

0

‖v(s)‖2

H
κ−1

2 (BR(x))
ds.

Proof. We write

‖φv(t)‖2
L2 − ‖φv(0)‖2

L2 =

∫ t

0

〈φv(s),−iφf(s) − iφP (D)v(s)〉

+ 〈−iφf(s) − iφP (D)v(s), φv(s)〉ds
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and estimate∫ t

0

|〈φv(s), φf(s)〉|ds ≤ 2t

∫ t

0

‖φf(s)‖2
L2 + (8t)−1

∫ t

0

‖φv(s)‖2
L2 ,

where the last term is controlled by sup0≤s≤t 8−1‖φv(s)‖2
L2 . Moreover, since P (D) is

self-adjoint,

〈φv(s), φP (D)v(s)〉 − 〈φP (D)v(s), φv(s)〉
=〈φv(s), [φ, P (D)]v(s)〉 − 〈[φ, P (D)]v(s), φv(s)〉.

Clearly [φ, P (D)] is an operator of order κ− 1, and we can distribute the derivatives
on both terms.

Now we are in a position to formulate the local smoothing estimate.
Proposition 2.6. Suppose that p satisfies (1.5). Let T > 0. Then we have

sup
x

‖(1 − Δ)
κ−1

4 u‖L2(Qx,T ) + sup
0≤t≤T

‖u(t)‖L2 � ‖u0‖L2 +
∑
k∈Zn

‖(1 − Δ)−
κ−1

4 f‖L2(Qk,T ).

Proof. We fix a finite number of unit vectors vi, 1 ≤ i ≤ M , such that

M∑
j=1

|pvj
| ≥ δ|ξ|κ−1

for ξ sufficiently large. We choose η ∈ C∞(R) to be identically 0 in [−δ/n, δ/n], 1
outside [−2δ/n, 2δ/n], and define

pj(ξ) = pvj (ξ)η(pvj (ξ)(1 + |ξ|2)1−κ).

By construction,

δ|ξ|κ−1 ≤ n
∑

|pj(ξ)|

for |ξ| � 1. This inequality may fail, however, in a bounded set. If pj(ξ) is small,
then we do not obtain a gain in the local smoothing estimate. We use the function
η to localize the local smoothing estimates to values of ξ, where we gain in the local
smoothing estimate.

By the previous arguments, we may assume u(0) = 0 because we obtain the
dependence on the initial data by a T -T ∗ argument, as above, from the smoothing
with respect to forcing. Let x be given. We fix a smooth function ψ, identically 1 on
Q̃x, supported in a hypercube of twice the size of Q̃x. Then it suffices to bound

‖(1 − Δ)
κ−1

4 (ψu)‖L2((0,T )×Rn).

Clearly for fixed t, with Q̄x, respectively, Q̄x,T , the hypercube of twice the spatial

scale of Q̃x, and F the spatial Fourier transform,

‖(1 − Δ)
κ−1

4 (ψu)‖2
L2(Rn) =〈|ξ|κ−1F (ψu), F (ψu)〉

�
∑
j

〈|pj(Dx)|(ψu), ψu〉 + ‖(1 − Δ)−
κ−1

4 ψu‖L2

�
∑
j

‖ψ|pj |1/2u‖2
L2(Rn) + ‖(1 − Δ)

κ−3
4 u‖2

L2(Q̄x).

(2.4)



1536 HERBERT KOCH AND JEAN-CLAUDE SAUT

Integration over t together with the bound of Theorem 2.3 gives

‖(1 − Δ)
κ−1

4 ψu‖L2(Q̄x,T ) �‖(1 − Δ)
κ−3

4 u‖L2(Q̄x,T )

+
∑
k∈Z2

∑
j

‖(|pj |1/2/|pvj
|)(Dx)|f‖L2(Qk,T )

�‖(1 − Δ)
κ−3

4 u‖L2(Q̄x,T ) +
∑
j

∑
k∈Z2

‖(1 − Δ)−
κ−1

4 f‖L2(Qk,T ).

Now, with Hs the standard Sobolev space, we denote the space of function with values
in Hs(Qx) by L2(Hs(Qx,T )). Since the kernel of 1 − Δ decays exponentially, and by
compact embeddings, we obtain for some δ > 0 and all ε > 0

‖(1 − Δ)
κ−3

4 u‖L2(Qx,T ) ≤c1
∑
k∈Z2

e−δ|x−k|‖u‖
L2(H

κ−3
2 (Qk,T ))

≤c2 sup
k∈Z2

‖u‖
L2(H

κ−3
2 (Qx+k,T ))

≤ sup
k

ε‖u‖
L2(H

κ−1
2 (Qk,T ))

+ cε‖u‖
L2(H−κ−1

2 (Qk,T ))

≤ sup
k

ε‖(1 − Δ)
κ−1

4 u‖L2(Qk,T ) + cε‖(1 − Δ)−
κ−1

4 u‖L2(Qk,T ).

We take the sup with respect to x and choose ε small to arrive at

sup
x

‖(1 − Δ)
κ−1

4 u‖L2(Qx,T ) � sup
x

‖(1 − Δ)−
κ−1

4 u‖L2(Qx,T )

+
∑
k∈Zn

‖(1 − Δ)−
κ−1

4 f‖L2(Qk,T ).

Using Lemma 2.5 for (1 − Δ)−
κ−1

4 u, since u(0) = 0, we may bound

sup
x

‖(1 − Δ)−
κ−1

4 u‖L2(Qx,T ) � T
1
2 sup

x
sup
t

‖(1 − Δ)−
κ−1

4 u(t)‖L2(Qx)

� T 1/2 sup
x

‖(1 − Δ)−
κ−1

4 f‖L2(Qx,T ) + T 1/2 sup
x

‖u‖L2(Qx,T )

� T 1/2 sup
x

‖(1 − Δ)−
κ−1

4 f‖L2(Qx,T ) + T 1/2 sup
x

‖(1 − Δ)
κ−1

4 u‖L2(Qx,T ).

We choose T small to absorb the last term and obtain

sup
x

‖(1 − Δ)
κ−1

4 u‖L2(Qx,T ) � ‖u0‖L2(Rn) +
∑
k∈Z2

‖(1 − Δ)−
κ−1

4 f‖L2(Qk,T ).

Next we shall add supt ‖u(t)‖L2 on the left-hand side. That this can be done
follows from the standard energy estimate if f = 0; hence we can reduce our attention

to the case u0 = 0. Let Ỹ and X̃ be the spaces defined by
∑

k ‖(1−Δ)−
κ−1

4 f‖L2(Qk,T )

and supk ‖(1 − Δ)
κ−1

4 u‖L2(Qk,T ), respectively. Let K : L2 � u0 → u ∈ X̃ be the map
from u0 to the solution u to the homogeneous equation with initial data u0. Its adjoint
is the map K∗ : Y � f → u(T ) ∈ L2 which maps the right-hand side to the solution
with zero initial data evaluated at time T . Thus K∗ is bounded since K is bounded
if T is small. The arguments work uniformly for small T and we obtain the claimed
bound for small T . This last restriction is removed by an iterative application of the
estimate on small time intervals.

From now on we restrict ourselves to κ = 3 and n = 2.
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Lemma 2.7. Suppose that |∇p(ξ)| ∼ |ξ|2 for large ξ,

iut − P (D)u = f in R
2 × (0, T ),(2.5)

and u(0) = u0 ∈ H3/2(R2). Then

‖u‖Xt0
� ‖u0‖H3/2(R2) + ‖f‖Yt0

.

Proof. Proposition 2.6 implies

sup
0≤t≤t0

‖u‖H1 + sup
x∈R2

‖D2
xu‖L2(Qx,t0

) � ‖Dxu0‖L2

+ inf
f1+f2=f

(∑
k∈Z2

‖f1‖L2(Qk,t0
) +

∫ t0

0

‖f2(t)‖L2

)
.

We apply (1 − Δ)1/4 to (2.5) and obtain

sup
0≤t≤t0

‖u‖H3/2(R2) + sup
x∈R2

‖(1 − Δ)5/4u‖L2(Qx,t0 ) � ‖u0‖H3/2(R2) + ‖f‖Yt0
.

We combine this inequality with Lemma 2.5 and choose φ ∈ C∞
0 (R2), which is

identically 1 in [−1, 1]2 and supported in [−2, 2]2. Then by Lemma 2.5

∑
k∈Z2

∣∣‖φ(x− k)u(t)‖2
L2 − ‖φ(x− k)u(0)‖2

L2

∣∣ � t

∫ t

0

‖f(s)‖2
L2ds +

∫ t

0

‖u‖2
H1(Rn)ds.

We apply this estimate to (1 − Δ)1/4u. The commutators [(1 − Δ)1/4, φ] are of
order −1/2. Their kernels decay quickly and the corresponding terms can be easily
controlled. Hence,

t−1
0

∑
k∈Z2

∣∣∣‖φ(x− k)u(t)‖2
H1/2(R2) − ‖φ(x− k)u(0)‖2

H1/2(R2)

∣∣∣
�

∫ t

0

‖f(s)‖2
H1/2(R2)ds + sup

0≤t≤t0

‖u(t)‖2
H3/2(R2).

This completes the proof.

3. The main result. Here we study the problem

iut − P (D)u = f(u), u(x, 0) = u0(x),

where the symbol p(ξ) satisfies (1.5) and where f is as in (1.7). We can write the
problem in the form

f(u) = F [u, u, u]

with

F [u, v, w] =
1

6
(f(u + v + w) + f(u) + f(v) + f(w)

−f(u + v) − f(u + w) − f(v + w)) ,

where F is symmetric and linear in each argument. A typical term is

F [u, v, w] = u∂νRν(vw) + v∂νRν(wu) + w∂νRν(uv).(3.1)

After these preparations we turn to the proof of Theorem 1.3.
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Proof. We will choose w0 ∈ H4(R2) below and define w as the solution to

iwt − P (D)w = 0, u(0, x) = w0(x).

Instead of u we search the solution to

ivt − P (D)v = f(v + w), v(0) = u0 − w0

by a fixed point argument. As a by-product of the proof we will obtain Lipschitz—and
even analytic—dependence on the initial data.

Clearly by Sobolev’s embedding

‖D2
xw‖L∞(R×R2) � ‖w0‖H4(R2).

Let c0 = ‖u0‖H3/2 . We choose ε small and w0 ∈ H4(R2) with ‖u0 − w0‖H1/2 ≤ ε,

‖u0−w0‖H3/2 � 2c0, and ‖w0‖H4(R2) � c
5/2
0 ε−3/2. The result will follow from Lemma

2.7 and from the following.
Lemma 3.1. Suppose that f = f(u,∇u) is of the form (1.7). Then, with F

related to f as in (3.1), if t0 ≤ 1,

‖F [u, v, w]‖Yt0
�
(
‖u(0)‖H1/2 + t

1
2
0 ‖u‖Xt0

)(
‖v(0)‖H1/2 + t

1
2
0 ‖v‖Xt0

)
‖w‖Xt0

+
(
‖v(0)‖H1/2 + t

1
2
0 ‖v‖Xt0

)(
‖w(0)‖H1/2 + t

1
2
0 ‖w‖Xt0

)
‖u‖Xt0

+
(
‖w(0)‖H1/2 + t

1
2
0 ‖w‖Xt0

)(
‖u(0)‖H1/2 + t

1
2
0 ‖u‖Xt0

)
‖v‖Xt0

.

Proof. It suffices to show that

‖f(u)‖Yt0
≤ c

(
‖u(0)‖2

H1/2 + t0‖u‖2
Xt0

)
‖u‖Xt0

.(3.2)

This can be seen either by polarization or by checking the proof below.
It suffices to estimate the L2 norm of (1 − Δ)1/4f in cylinders as in (3.2). More

precisely, since by a Sobolev embedding

‖h(s)‖H1/2(Q̃x) ≤ ‖h(s)‖W 1,4/3(Q̃x),

we have to show that∑
k∈Z2

‖|g| + |∇g|‖L4/3(Qk) ≤ c
(
‖u(0)‖H1/2 + t

1/2
0 ‖u‖2

Xt0

)2

‖u‖Xt0
,(3.3)

where g is one of the following terms:

u3, u2∂νu, u∂νRν |u|2.(3.4)

The treatment of u∂νRν |u|2 is typical and contains all the difficulties. For clarity we
first consider the term ∇(u2Du). By Hölder’s inequality,

‖∇(u2(s)Du(s))‖L4/3(Q̃x) � ‖u(s)‖2
L8(Q̃x)

‖D2u(s)‖L2(Q̃x) + ‖u(s)‖L8(Q̃x)‖∇u‖2
L16/5(Q̃x)

,

and by interpolation,

‖∇u‖2
L16/5(Q̃x)

� ‖u‖L8(Q̃x)(‖u‖L2(Q̃x) + ‖D2u‖L2(Q̃x));



THIRD ORDER DISPERSIVE EQUATIONS 1539

hence∫ t0

0

‖∇(u2(s)Du(s))‖2
L4/3(Q̃x)

ds �
∫ t0

0

‖u(s)‖4
L8(Q̃x)

(‖u‖2
L2(Q̃x)

+ ‖D2u(s)‖2
L2(Q̃x)

)ds

≤c1

∫ t0

0

‖u(s)‖4
H1/2(Q̃x)

‖u(s)‖2
H5/2(Q̃x)

ds

≤c2 sup
0≤t≤t0

‖(1 − Δ)1/4u(t)‖2
L2(Q̃x)

‖(1 − Δ)5/4u‖L2(Qx,t0
),

and thus, by the definition of the spaces Xt0 ,

∑
k∈Z2

{∫ t

0

‖u2(s)Du(s)‖2
H1/2(Q̃k)

ds

}
≤ c

(
‖(1 − Δ)1/4u(0)‖L2 + t

1/2
0 ‖u‖Xt0

)2

‖u‖Xt0
.

We now turn to the most difficult term∑
k

‖∇(u∂νRν |u|2)‖L2([0,t0],L4/3(Qk)).

There are two terms to control:∑
k

‖(∇u)∂νRν |u|2‖L2([0,t0],L4/3(Qk))(3.5)

and ∑
k

‖u∇∂νRν |u|2‖L2([0,t0],L4/3(Qk)).(3.6)

By Hölder’s inequality, for fixed t,

‖(∇u)∂νRν |u|2‖L4/3(Qk) � ‖∇u‖L16/5(Qk)‖∂νRν |u|2‖L16/7 .

The kernel K(x, y) of ∂νRν decays fast for |x− y| → ∞,

|K(x, y)| ≤ c|x− y|−3;

hence we estimate

‖∂νRν |u|2‖
L

16
7 (Qk)

�
∑
k̄

(1 + |k − k̄|)−3 sup
k̄

‖u‖2
L2(Qk) +

∑
|k−k̄|≤2

‖∂ν |u|2‖
L

16
7 (Qk̄)

.

Now we proceed as above and bound
∑

k ‖∇(u∂vRv|u|2)‖L2([0,t0],L4/3(Qk)) following
the arguments above.

We complete the proof of Theorem 1.3 using Lemmas 2.7 and 3.1. First we obtain

‖w‖Xt0
≤ c(n)‖w0‖H3/2 ≤ c(n)c0.

Let J : Xt0 → Xt0 , J : ṽ → v, be defined as a solution to

vt + P (D)v = f(w + ṽ), v(0) = u0 − w0.
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Then by Lemmas 2.7 and 3.1,

‖v‖Xt0
� c0 +

(
‖w0‖H1/2 +‖u0 − w0‖H1/2 + t

1/2
0 (‖w0‖H3/2 +‖ṽ‖Xt0

)
)2

(‖w0‖H3/2 +‖ṽ‖Xt0
)

� c0 + t0(c0 + ‖ṽ‖Xt0
)3.

(3.7)

We shall see that this map is a contraction—at least if we decrease t0 if necessary.
The lower bound on the life span follows from (3.7).

Let

vjt + P (D)vj = f(w + ṽj), vj(0) = u0 − w0,

for j = 1, 2. We expand the trilinear term

f(w + ṽ2) − f(w + ṽ1) = 3F [w,w, ṽ2 − ṽ1] + 3F [w, ṽ2 + ṽ1, ṽ2 − ṽ1]

+F [ṽ2 + ṽ1, ṽ2 + ṽ1, ṽ2 − ṽ1].

It is straightforward to estimate

‖F [w(t), w(t), ṽ2 − ṽ1]‖L1(H3/2) � t
1/2
0 ‖w0‖2

H4‖ṽ2 − ṽ1‖Xt0
,

and hence,

‖v2 − v1‖Xt0
≤ γ‖ṽ2 − ṽ1‖Xt0

,

where γ can be chosen as

γ ∼ t
1/2
0 ‖w0‖2

H4 + (‖w0‖H1/2 + t
1/2
0 ‖w‖Xt0

+ μ)μ � t
1/2
0 c50ε

−3 + (c0 + μ)μ

with

μ = ε + t
1/2
0 (‖ṽ2‖Xt0

+ ‖ṽ1‖Xt0
).

Suppose that ‖ṽj‖Xt0
≤ R with R > c0. Then

‖v2 − v1‖Xt0
≤ 1

2
‖ṽ2 − ṽ1‖Xt0

provided εR � 1, t
1/2
0 R2 � 1, t

1/2
0 (c0 + 1) � 1 and t0 � c−10

0 ε6. Given R we can
satisfy all these inequalities. Let R0 = ‖J(0)‖Xt0

, R ≥ 2R0, and ε, t0 be as above.
Then

‖J(ṽ)‖Xt0
≤ R0 +

1

2
R ≤ R

if ‖ṽ‖Xt0
≤ R and ‖ṽ(0)‖H1/2(R2) ≤ ε. Now J maps this ball into itself and is a

contraction. The same argument gives uniqueness of solutions in that class. Finally,
we may reinterpret the considerations above as an application of the implicit function
theorem with analytic nonlinearities, which implies analytic dependence on the initial
data.

By similar arguments one could establish the local well-posedness of (1.3) for
n = 3 in R

3 in the cubic case for initial data in H2(R2), provided ε1 and ε2 are
nonzero.
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RESONANCE AND INTERIOR LAYERS IN AN INHOMOGENEOUS
PHASE TRANSITION MODEL∗

MANUEL DEL PINO† , MICHA�L KOWALCZYK‡ , AND JUNCHENG WEI§

Abstract. We consider the problem ε2Δu + (u− a(x))(1 − u2) = 0 in Ω, ∂u
∂ν

= 0 on ∂Ω, where

Ω is a smooth and bounded domain in R
2, −1 < a(x) < 1. Assume that Γ = {x ∈ Ω, a(x) = 0} is a

closed, smooth curve contained in Ω in such a way that Ω = Ω+ ∪ Γ ∪ Ω− and ∂a
∂n

> 0 on Γ, where
n is the outer normal to Ω+. Fife and Greenlee [Russian Math. Surveys, 29 (1974), pp. 103–131]
proved the existence of an interior transition layer solution uε which approaches −1 in Ω− and +1
in Ω+, for all ε sufficiently small. A question open for many years has been whether an interior
transition layer solution approaching 1 in Ω− and −1 in Ω+ exists. In this paper, we answer this
question affirmatively when n = 2, provided that ε is small and away from certain critical numbers.
A main difficulty is a resonance phenomenon induced by a large number of small critical eigenvalues
of the linearized operator.

Key words. interior transition layer, Fife–Greenlee problem, infinite-dimensional reduction,
spectral gap
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1. Introduction and statement of main result. Let Ω be a bounded, smooth
domain in R

2. In the gradient theory of phase transitions it is common to seek critical
points in H1(Ω) of energy of the form

Jε(u) =
ε

2

∫
Ω

|∇u|2 + ε−1

∫
Ω

W (x, u),

where W (x, ·) is a double-well potential with exactly two strict local minimizers at
u = +1 and u = −1, which also correspond to trivial local minimizers of Jε in H1(Ω).
For simplicity of exposition we shall restrict ourselves to a potential of the form

W (x, u) =

∫ u

−1

(s2 − 1)(s− a(x))ds,(1.1)

for a smooth function a(x) with

−1 < a(x) < 1 for all x ∈ Ω.

Critical points of Jε correspond to solutions of the problem⎧⎨
⎩
ε2Δu + (u− a(x))(1 − u2) = 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.2)
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where ε > 0 is a small parameter and ν denotes unit outer normal to ∂Ω. The
function u(x) represents a continuous realization of the phase present in a material
confined to the region Ω at the point x which, except for a narrow region, is expected
to take values close to +1 or −1. Of interest are, of course, nontrivial steady state
configurations in which the two phases coexist.

The case a ≡ 0 corresponds to the standard Allen–Cahn equation [6]{
ε2Δu + u(1 − u2) = 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.3)

for which extensive literature on transition layer solutions is available; see, for instance,
[4, 17, 18, 24] and the references therein. We observe that in this case, +1 and −1 are
both global minimizers of the potential (1.1). We are interested in an inhomogeneous
situation in which +1 is the absolute minimizer of W (x, ·) in one region of the domain,
while −1 is such a minimizer in its complement. More precisely, we shall assume that
the set

Γ = {x ∈ Ω / a(x) = 0}

is a smooth, simple, closed curve in Ω which separates the domain into two disjoint
components,

Ω = Ω− ∪ Ω+ ∪ Γ(1.4)

such that

a(x) < 0 in Ω+, a(x) > 0 in Ω−,
∂a

∂n
> 0 on Γ .(1.5)

Observe in particular that for the potential (1.1) we have

W (x,−1) < W (x,+1) in Ω−, W (x,+1) < W (x,−1) in Ω+ .

Thus, if one considers a global minimizer uε for Jε, which exists by standard ar-
guments, then uε should minimize W (x, u); namely, uε should intuitively have the
following asymptotic behavior as ε → 0:

uε → −1 in Ω−, uε → +1 in Ω+.(1.6)

A solution uε to problem (1.2) with these characteristics was constructed, and pre-
cisely described, by Fife and Greenlee [15] in 1974 via matching asymptotic and
bifurcation arguments.

Supersubsolutions were later used by Angenent, Mallet-Paret, and Peletier in the
one-dimensional case [7] for construction and classification of stable solutions. Radial
solutions were found variationally by Alikakos and Simpson [5]. The construction of
the Fife–Greenlee solution allowing Γ to be any closed subset of Ω in any dimension
was given by the first author in [10]. Further constructions have been found recently
by Dancer and Yan [9] and Do Nascimento [13]. In particular, it was found in [9] that
this solution is precisely a minimizer of Jε. Related results can be found in [1, 3].

On the other hand, a solution exhibiting a transition layer in the opposite direc-
tion, namely,

uε → +1 in Ω−, uε → −1 on Ω+,(1.7)
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has been believed to exist for many years. Hale and Sakamoto [19] established the
existence of this solution in the one-dimensional case, while this was done in the
radial case in a ball in [11]; see also [8]. The opposite direction layer (1.7) in this
scalar problem is meaningful in finding transition layer solutions in pattern-formation–
reaction-diffusion systems such as the Gierer–Meinhardt system with saturation; see
[11, 14, 25, 28, 27] and the references therein. While the singular perturbation methods
used in these one-dimensional or radial equations and systems do not see a substantial
difference between the stable and unstable layers, except for the sign of the principal
O(ε) eigenvalue of the linearization, one faces a dramatically different situation in
higher-dimensional, nonsymmetric situations. This is clearly seen when linearizing
around a spherically symmetric solution like (1.7), as bifurcations of nonradial solu-
tions along certain infinite discrete sets of values for ε → 0 take place, as established
in [27]. In particular, the radial solution has a large ε-dependent Morse index. This
poses an important difficulty for a general construction. A phenomenon of this type
was previously observed in the one-dimensional case by Alikakos, Bates, and Fusco
[2] in a construction of solutions with any prescribed Morse index.

In this paper we are able to prove that the opposite-layer solution (1.7) exists as
long as ε remains properly away from a set of critical values. More precisely, there is
an explicit number λ∗ > 0 such that given c > 0, if ε is sufficiently small and satisfies
the gap condition

|k2ε− λ∗| ≥ c
√
ε for all k ∈ N,(1.8)

then a solution uε with the required concentration property indeed exists. In other
words, this will be the case whenever ε is small and away from the critical numbers
λ∗
k2 , in the sense that for fixed and arbitrarily small c < λ∗,

ε 	∈
[
λ∗
k2

− c

k3
,
λ∗
k2

+
c

k3

]
for all k ∈ N.

Here λ∗ is defined by

λ∗ =
1

3π2
∫

R
H2

xdx

(∫
Γ

√
∂a

∂ν

)2

,(1.9)

where H(y) is the unique heteroclinic solution of

H
′′

+ H −H3 = 0, H(0) = 0, H(±∞) = ±1.(1.10)

We can now state our main result.
Theorem 1. Given c > 0, there exists ε0 > 0 such that for all ε < ε0 satisfying

the gap condition (1.8), problem (1.2) has a solution uε satisfying

uε(x) → +1 in Ω−, uε(x) → −1 in Ω+

as ε → 0.
Much more accurate information on the solution will be provided by its construc-

tion; in particular, its shape near Γ is governed by the heteroclinic solution H, in the
sense that

uε(x) ∼ H

(
t− εf(θ)

ε

)
,
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where f is a bounded function of θ, a choice of arclength coordinate of Γ, and t is the
(signed) normal coordinate along the outer normal to Ω+ on Γ.

The main difficulty in the construction of the interior layer solution in the op-
posite direction is the appearance of a large number of small critical eigenvalues, or
resonance. This kind of phenomenon has been dealt with in various problems, for
example, in the study of periodic orbits for strongly attractive potentials [21, 29] and
in boundary concentrations for singularly perturbed Neumann problems [22, 23]. It
also arises in our previous work [12] on the construction of a concentrating solution on
weighted geodesics for nonlinear Schrodinger equations. The scheme employed here
follows the general lines set in [12].

More precisely, the solution to the full problem is roughly decomposed into the
form

uε(x) = H (s− f(εz)) + φ1 (s− f(εz)) + φ̃(s, z),(1.11)

where x = (t, θ) = (εs, εz), t = εs is the signed distance to Γ, θ = εz is the arclength
coordinate of Γ whose length is l, f is an l-periodic function left as a parameter, and
φ1 is the correction term to be defined, while φ̃(s, z) is L2(ds)-orthogonal for each z
to Hs(s − f(εz)). Solving first in φ̃ a natural projected problem, where the linear
operator is uniformly invertible, the resolution of the full problem becomes reduced
to a nonlinear, nonlocal second order system of differential equations in f which
turns out to be directly solvable thanks to the assumptions made. This approach
is familiar when the parameter f lies in a finite-dimensional space (as in the papers
[5, 9, 13, 19]), corresponding this time to adjusting infinitely many parameters. To
stress the difference in the radial case, we note that the parameter f is just a single
number. The analysis we make takes special advantage through Fourier analysis of the
fact that the objects to be adjusted are one-variable functions, while we still believe
that the current approach may be modified to the higher-dimensional case. We also
believe that the gap condition may be improved to size εq, any q > 1

2 .
Additionally we point out the following:
1. The results of Theorem 1 remain true when Ω is an unbounded domain, for

instance, Ω = R
2. Indeed, our proofs, and in particular the matching argument below,

can easily be adapted to handle this case.
2. The method and results presented in Theorem 1 can be generalized to more

general bistable equations of the form

ε2Δu− h(x, u, ε) = 0 in Ω, ε
∂u

∂ν
− σ(x, ε)u = f(x, ε) on ∂Ω,

as treated originally by Fife and Greenlee [15].
3. Our general approach seems also to work when N = 3. It will be an interesting

problem to consider N ≥ 4. Note that there is no restriction of dimension in the
construction of Fife–Greenlee solutions (1.6); see [10].

The organization of this paper is as follows. In section 2, we set up the local
coordinates near Γ and transform (1.2) into a new equation in the stretched variable
(s, z). We then introduce the first correction term φ1 and estimate the errors. In
section 3, we use a gluing procedure to reduce the nonlinear problem to one on the
infinite cylinder and another one away from the interface. Then we solve the inner
problem modulo the projections in section 4 and the full problem modulo projections
in section 5. In section 6 and section 7, we derive a nonlinear ODE for f , which will
be solved in section 8 using the gap condition.
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2. The setup near the curve. Let Γ = {x ∈ Ω, a(x) = 0} be a simple, closed,
smooth curve in Ω ⊂ R

2 and let � = |Γ| denote its total length. We consider the
natural parameterization γ(θ) of Γ with positive orientation, where θ denotes the
arclength parameter measured from a fixed point of Γ. Let ν(θ) denote outer unit
normal to Γ. Points y which are δ0-close Γ for sufficiently small δ0 can be represented
in the form

y = γ(θ) + t ν(θ), |t| < δ0, θ ∈ [0, �) ,(2.1)

where map y → (t, θ) is a local diffeomorphism. By slight abuse of notation we denote
a(t, θ) to actually mean a(y) for y in (2.1). Let k(θ) denote the curvature of Γ.

Stretching variables, absorbing ε from Laplace’s operator, and replacing u(y) with
u(εy), (1.2) becomes

Δu + (u− a(εy))(1 − u2) = 0 in Ωε,
∂u

∂ν
= 0 on ∂Ωε,(2.2)

where Ωε = Ω
ε .

Let (s, z) = ε−1(t, θ) be the natural stretched coordinates associated with the
curve Γε = ε−1Γ, now defined for

z ∈ [0, ε−1�), s ∈ (−ε−1δ0, ε
−1δ0).(2.3)

Equation (2.2) for u expressed in these coordinates becomes

uzz + uss + B1(u) + B2(u) + u− u3 = 0,(2.4)

in the region (2.3), where

B1(u) = −uzz

[
1 − 1

(1 + εk(εz)s)2

]
+

εk(εz)us

1 + εk(εz)s
− ε2s k′(εz)uz

(1 + εk(εz)s)3
,

B2(u) = −a(εs, εz)(1 − u2).

For further reference, it is convenient to expand B1 in the form

B1(u) = (εk(εz) − ε2sk2(εz))us + B0(u),(2.5)

where

B0(u) = ε2sa1(εs, εz)uz + εsa2(εs, εz)uzz + ε3s2a3(εs, εz)us,(2.6)

for certain smooth functions aj(t, θ), j = 1, 2, 3. Observe that all terms in the operator
B1 have ε as a common factor.

We consider now a further change of variables in (2.4). Let f(θ) be a twice
differentiable, �-periodic function whose exact form is to be specified later (see (2.25)).
We define v(x, z) by the relation

u(s, z) = v(x , z), x = s− f(εz).(2.7)
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We want to express (2.4) in terms of these new coordinates. We compute

us = vx, uss = vxx,(2.8)

uz = vx(−f)z + vz,(2.9)

uzz = vxx|fz|2 + 2vxz(−f)z + vx (−f)zz + vzz.(2.10)

In order to write down the equation it is also convenient to expand

a(εs, εz) = a(0, εz) + at(0, εz)εs +
1

2
att(0, εz)ε

2s2 + a4(εs, εz)ε
3s3(2.11)

for a smooth function a4(t, θ). It turns out that u solves (2.4) if and only if v defined
by (2.7) solves

S(v) ≡ vzz + vxx + B3(v) + B4(v) + v − v3 = 0,(2.12)

where B3(v) is a linear differential operator defined by

B3(v) =
[
εk − ε2k2 (x + f )

]
vx

+
[
ε2 |f ′|2 vxx − 2εf ′vxz − ε2f ′′vx

]
+B5(v),

with

B5(v) = B0(u) − a4(εs, εz)ε
3s3(1 − v2)(2.13)

and

B4(v) = −
[
εat (x + f) +

ε2

2
att (x + f)

2

]
(1 − v2).(2.14)

B0(u) is the operator in (2.6), where the derivatives are expressed in terms of the
formulas (2.8)–(2.10), a4 is given by (2.11), and s is replaced with x + f .

Let H(x) denote the unique positive solution of (1.10). Then, taking H(x) as
a first approximation, the error produced is of ε times a function with exponential
decay. Let us be more precise. We need to identify both the terms of order ε and
those of order ε2:

S(H) = B3(H) + B4(H) =
[
εk − ε2k2 (x + f )

]
Hx

+
[
ε2|f ′|2 Hxx − ε2f ′′Hx

]
−

[
εat (x + f) +

ε2

2
att (x + f)

2

]
(1 −H2) + B5(H),

where

B5(H) = B0(H) − ε3s3a4(εs, εz)(1 −H2).
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Gathering terms of order ε and ε2 we get

S(H) = −εatx(1 −H2)

+ ε
[
kHx − atf(1 −H2)

]
− ε2

[
k2(xHx) − |f ′ |2Hxx + attfx(1 −H2)

]
− ε2

[
k2fHx + f

′′
Hx +

att
2

[x2 + f2](1 −H2)
]

+ B6(H)

= εS1 + εS2 + ε2S3 + ε2S4 + B6(H) .

Let us observe that, grouped this way, the quantities S1, S3 are odd functions of x
while S2, S4 are even. In addition, B6(H) is a term of order ε3 times an exponen-
tially decaying function. We want now to construct a further approximation to a
solution which eliminates the terms of order ε in the error. If φ represents such an
approximation, then we see that

S(H + φ) = S(H) + L0(φ) + B7(φ) + N0(φ),

where

L0(φ) = φzz + φxx + (1 − 3H2)φ,(2.15)

B7(φ) = B3(H + φ) + B4(H + φ) −B3(H) −B4(H),(2.16)

and

N0(φ) = −3Hφ2 − φ3.(2.17)

We write

S(H + φ) = [ ε(S1 + S2) + φxx + (1 − 3H2)φ](2.18)

+ε2S3 + ε2S4 + B6(H) + φzz + B7(φ) + N0(φ).

We choose φ = φ1 in order to eliminate the term between brackets in the above
expression. Namely, for fixed z, we need a solution of

−φxx + (3H2 − 1)φ = ε(S1 + S2), φ(±∞) = 0.

As it is well known, this problem is solvable provided that∫ ∞

−∞
(S1 + S2)Hx dx = 0.(2.19)

Furthermore, the solution is unique under the constraint∫ ∞

−∞
φHx dx = 0.(2.20)

We compute∫ ∞

−∞
(S1 + S2)Hx dx =

∫ ∞

−∞
S2Hx dx = k

∫ ∞

−∞
H2

x − atf

∫ ∞

−∞
(1 −H2)Hx,
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where ∫ ∞

−∞
(1 −H2)Hx =

4

3
.

Since at(0, θ) 	= 0, we have that the first approximation of f should be

f0(θ) = c0
k(θ)

at(0, θ)
, where c0 =

3
∫

R
H2

x

4
.

The solution has the form

φ1 = φ11 + φ12,(2.21)

where

φ11 = εa11(εz)H1(x), φ12 = εf0(εz)a12(εz)H2(x),(2.22)

a11 = at(0, θ), a12 = k(θ),

H1 is the unique odd function satisfying

−H1,xx −H1 + 3H2H1 = x(1 −H2),(2.23)

and H2 is the unique even solution satisfying

−H2,xx −H2 + 3H2H2 = Hx − c0(1 −H2),

∫
R

H2Hxdx = 0.(2.24)

Let us now choose f :

f(θ) = f0(θ) + f(θ).(2.25)

In all what follows, we will assume the validity of the following constraints on the
parameter f :

‖f‖ ≡ ε‖f ′′‖L2(0,�) +
√
ε‖f ′‖L2(0,�) + ‖f‖L∞(0,�) ≤ ε,(2.26)

so that

‖f‖L∞(0,�) ≤ ε, ‖f ′‖L2(0,�) ≤
√
ε, ‖f ′′‖L2(0,�) ≤ 1.(2.27)

By interpolation, it also holds that

‖f ′‖L∞(0,�) ≤
√
ε.(2.28)

We now take our basic approximation to a solution to the problem near the curve
Γε to be

f(θ) = f0(θ) + f(θ), H = H + φ1.(2.29)

Substituting φ = φ1 in (2.18), we can compute the new error:

E1 = S(H) = S(H + φ1)

= ε(S1 + S2) + φ1,xx + (1 − 3H2)φ1

+ ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1)

= −εatf(1 −H2) + ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1).(2.30)



1550 MANUEL DEL PINO, MICHA�L KOWALCZYK, AND JUNCHENG WEI

Observe that since φ1 and f are of size O(ε), all terms above carry ε2 in front.
Observe also that all functions involved are expressed in (x, z) variables, and the
natural domain for those variables is the infinite strip

S = {−∞ < x < ∞, 0 < z < �/ε}.

We now want to measure the size of the error in the L2(S) norm.
Note that

‖ − εatf(1 −H2) + ε2S3 + ε2S4‖L2(S) ≤ Cε
3
2 .(2.31)

A rather delicate term in the cubic remainder B6(H) is the one carrying f ′′ since
in reality we shall only assume a uniform bound on ‖f ′′‖L2(0,�). For instance, one
term arising from B6(H) can be written as

R = ε3(x + f)f ′′(εz)a2(ε(x + f), εz)Hx(x), f = f0 + f ,

with a2 smooth (see (2.6)). Observe that

∫
S
|R|2 ≤ Cε6

∫ �
ε

0

|f ′′(εz)|2dz = ε5‖f ′′‖2
L2(0,�).

Hence

‖R‖L2(S) ≤ Cε
5
2 ‖f ′′‖L2(0,�).

Since φ1 can be bounded by Cε|x|2e−c|x| for large |x|, we obtain that

‖B7(φ1)‖L2(S) ≤ Cε
3
2 .

A similar bound holds for the term N0(φ1):

‖N0(φ1)‖L2(S) ≤ Cε
3
2 .(2.32)

In summary, we have

‖S(H + φ1)‖L2(S) ≤ Cε
3
2 .(2.33)

We set up the full problem in the form S(H + φ) = 0, which takes the form near
the curve,

S(H + φ) = L0(φ) + B8(φ) + E1 + N1(φ) = 0,(2.34)

where E1 = S(H) and

L0(φ) = φxx + φzz + (1 − 3H2)φ ,(2.35)

B8(φ) = B7(φ + φ1) −B7(φ1),(2.36)

N1(φ) = N0(φ + φ1) −N0(φ1).(2.37)

We recall that the description made here is only local. However, we will be able to
reduce the problem to one qualitatively similar to that of the above form in the infinite
strip.
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3. The matching procedure. We follow [12] to perform a procedure that we
refer to as an infinite-dimensional Liapunov–Schmidt reduction (see the explanations
at the end of this section). Since it is quite similar to that of [12], we shall only sketch
the proofs.

First, we need to match solutions near and outside Γ. The idea is to solve the
problem outside a tubular neighborhood of Γ and then to reduce the problem to an
infinite strip.

Let H(y) denote the first approximation constructed near the curve in the coor-
dinate y = (y1, y2) in R

2. Let δ < δ0/100 be a fixed number. We consider a smooth
cut-off function ηδ(t) such that ηδ(t) = 1 if |t| < δ and = 0 if |t| > 2δ. Denote as well
ηεδ(s) = ηδ(ε|s|), where s is the normal coordinate to Γε. We define our first global
approximation to be simply

H(y) =

{
ηε3δ(s)(H + 1) − 1 if y ∈ Ω+,

ηε3δ(s)(H− 1) + 1 if y ∈ R
2 \ Ω+.

Denote S(u) = Δu + (u− a(εs, εz))(1 − u2) for u = H + φ̃. Then S(H + φ̃) = 0
if and only if

L̃(φ̃) = Ẽ + Ñ(φ̃),(3.1)

where

Ẽ = −S(H),

L̃(φ̃) = Δφ̃ + [1 − 3H2 + 2a(εy)H]φ̃,

and

Ñ(φ̃) = −3H(φ̃)2 − (φ̃)3 + a(εy)(φ̃)2.

We further separate φ̃ in the following form:

φ̃ = ηε3δφ + ψ,

where, in coordinates (x, z), we assume that φ is defined in the whole strip S. We
want

L̃(ηε3δφ) + L̃(ψ) = Ẽ + Ñ(ηε3δφ + ψ).

We achieve this if the pair (ψ, φ) satisfies the following nonlinear coupled system:

ηε3δL̃(φ) = ηεδẼ + ηεδÑ(ηε3δφ + ψ) − 3ηεδ(1 − H2)ψ,(3.2)

Δψ − 2(1 − aH)ψ + 3(1 − ηεδ)(1 − H2)ψ = (1 − ηεδ ) Ẽ − 2ε∇ηε3δ ∇φ

− 2ε2(Δηε3δ)φ + (1 − ηεδ) Ñ( ηε3δ φ + ψ ),(3.3)

where φ is defined globally on S and ψ is defined in Ωε and is required to satisfy the
Neumann boundary condition.

Notice that the operator L̃ in the strip S may be taken as any compatible extension
outside the 6δ/ε-neighborhood of the curve.
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What we want to do next is to reduce the problem to one in the strip. To do this,
we solve, given a small φ, problem (3.3) for ψ. This can be done in an elementary
way: Let us observe first that since |a(x)| < 1, we have

γ2
0 = min

x∈Ω̄
2(1 − |a(x)|) > 0.(3.4)

Since 1−H2 is exponentially small for |s| > δε−1, where s is the normal coordinate
to Γε, then the problem

Δψ − 2(1 − a(εy)H)ψ + 3(1 − ηεδ)(1 − H2)ψ = h, in Ω,
∂ψ

∂ν
= 0 on ∂Ωε,(3.5)

has a unique bounded solution ψ whenever ‖h‖∞ < +∞. Moreover,

‖ψ‖∞ ≤ C‖h‖∞.

Assume now that φ satisfies the following decay condition:

|∇φ(y)| + |φ(y)| ≤ e−
γ
ε for |s| > δ

ε
.(3.6)

Since Ñ has a power-like behavior with power greater than one, a direct application
of the contraction mapping principle yields that problem (3.3) has a unique (small)
solution ψ = ψ(φ) with

‖ψ(φ)‖∞ ≤ Ce−δ/ε + Cε[ ‖φ‖L∞(|s|>δε−1) + ‖∇φ‖L∞(|s|>δε−1) ],

where with some abuse of notation by {|s| > δ/ε} we denote the complement of the
δ/ε-neighborhood of Γε. The nonlinear operator ψ satisfies a Lipschitz condition of
the form

‖ψ(φ1) − ψ(φ2)‖∞ ≤ Cε[ ‖φ1 − φ2‖L∞(|s|>δε−1) + ‖∇(φ1 − φ2)‖L∞(|s|>δε−1) ].

The full problem has been reduced to solving the (nonlocal) problem in the infinite
strip S,

L2(φ) = ηεδẼ + ηεδÑ(ηε3δφ + ψ(φ)) − 3ηεδ(1 − H2)ψ(φ),(3.7)

for a φ ∈ H2(S) satisfying condition (3.6). Here L2 denotes a linear operator that
coincides with L̃ on the region |s| < 10δ/ε.

We shall define this operator next. The operator L̃ for |s| > 20δ/ε is given in
coordinates (x, z) by

L1(φ) = φxx + φzz + (1 − 3H2)φ.

We extend it for functions φ defined in the entire strip S, in terms of (x, z), as follows:

L2(φ) = L1(φ) + 2χ (ε|x|)a(εs, εz)Hφ + χ (ε|x|)B1(φ),(3.8)

where χ (r) is a smooth cut-off function which equals 1 for r < 10δ and vanishes
identically for r > 20δ.
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Rather than solving problem (3.1) directly, we shall do it in steps. We consider
the following projected problem in H2(S): Given f = f0 + f , with f satisfying bounds
(2.26), find functions φ ∈ H2(S), c such that

L2(φ) = ηεδẼ + N2(φ) + c(εz)χε
δ Hx in S,(3.9)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(3.10) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(3.11)

Here N2(φ) = ηεδÑ(ηε3δφ + ψ(φ)) − 3ηεδ(1 − H2)ψ(φ) and χε
δ(x) = χ1(ε|x|/δ), where

χ1(t) is a cut-off function equal to 1 for |t| < 1/2 and equal to 0 for |t| > 1.
We will prove that this problem has a unique solution whose norm is controlled by

the L2 norm of ηεδẼ = E1 = S(H). The main step here is to show bounded invertibility
of a suitable perturbation of the operator L2. The proof of this fact is a combination
of an a priori estimate (Lemma 4.1) with an application of the Fredholm alternative
(Lemma 4.2). After this first step, our task is to adjust the parameter f in such a way
that c is identically zero. As we will see, this turns out to be equivalent to solving a
nonlocal, nonlinear, second order differential equation for f under periodic boundary
conditions. This system is solvable in a region where the bound (2.26) holds.

We call the entire procedure described above as infinite-dimensional Lyapunov–
Schmidt reduction because of its analogy to a method devised by Floer and Weinstein
[16] in a finite-dimensional context for a related problem. In a finite-dimensional
setting, the main step in this method, which corresponds to adjustment of a parameter
to make c = 0, is also known as quasi-invariant manifold reduction. The whole scheme
has been refined and widely used in singular perturbation elliptic problems.

We will carry out the outlined program in the next sections. To solve (3.9)–(3.11)
we need to investigate invertibility of L2 in the L2-H2 setting under periodic boundary
conditions and orthogonality conditions.

4. Invertibility of L2. Let L2 be the operator defined in H2(S) by (3.8). In
this section we study the linear problem

L2(φ) = h + c(εz)χε
δ Hx in S,(4.1)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.2) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
(4.3)

for a given h ∈ L2(S). Our main result in this section is the following.
Proposition 4.1. If δ in the definition of L2 is chosen sufficiently small, then

there exists a constant C > 0, independent of ε, such that for all small ε, problem
(4.1)–(4.3) has a unique solution φ = T (h), which satisfies the estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

For the proof of this result we need the validity of the corresponding assertion for
a simpler operator which does not depend on δ. Let us consider the problem

L(φ) = φss + φzz + (1 − 3H2)φ = h in S,(4.4)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.5) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(4.6)
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Lemma 4.1. There exists a constant C > 0, independent of ε such that the
solutions of (4.4)–(4.6) satisfy the a priori estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

Proof. Let us consider Fourier series decompositions for h and φ of the form

φ(x, z) =

∞∑
k=0

[
φ1k(x) cos

(
2πk

�
εz

)
+ φ2k(x) sin

(
2πk

�
εz

)]
,

h(x, z) =

∞∑
k=0

[
h1k(x) cos

(
2πk

�
εz

)
+ h2k(x) sin

(
2πk

�
εz

)]
.

Then we have the validity of the equations

−4π2k2ε2

l2
φlk + L0(φlk) = hlk, x ∈ R,(4.7)

with orthogonality conditions ∫ ∞

−∞
φlk Hx dx = 0.(4.8)

We have denoted here

L0(φlk) = φlk,xx + (1 − 3H2)φlk.

Let us consider the bilinear form in H1(R) associated with the operator L0, namely,

B(ψ,ψ) =

∫ ∞

−∞
[|ψx|2 + (3H2 − 1)|ψ|2] dx .

Since (4.8) holds, we conclude that

C[‖φlk‖2
L2(R) + ‖φlk,x‖2

L2(R)] ≤ B(φlk, φlk)(4.9)

for a constant C > 0 independent of l, k. Using this fact and (4.7) we conclude with
the estimate

(1 + k4ε4)‖φlk‖2
L2(R) + ‖φlk,x‖2

L2(R) ≤ C‖hlk‖2
L2(R).

In particular, we see from (4.7) that φlk satisfies an equation of the form

−φlk,xx + 2φlk = h̃lk, x ∈ R,

where ‖h̃lk‖L2(R) ≤ C‖hlk‖L2(R). Hence it follows that additionally we have the
estimate

‖φlk,xx‖2
L2(R) ≤ C‖hlk‖2

L2(R).(4.10)

Adding up estimates (4.9), (4.10) in k and l we conclude that

‖D2φ‖2
L2(S) + ‖Dφ‖2

L2(S) + ‖φ‖2
L2(S) ≤ C‖h‖2

L2(S),

which ends the proof.
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We consider now the following problem: Given h ∈ L2(S), find functions φ ∈
H2(S), c ∈ L2(0, �) such that

L(φ) = h + c(εz)χε
δHx in S,(4.11)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.12) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(4.13)

Lemma 4.2. Problem (4.11)–(4.13) possesses a unique solution. Moreover,

‖φ‖H2(S) ≤ C‖h‖L2(S).

Proof. To establish existence, we assume that

h(x, z) =

∞∑
k=0

[
h1k(x) cos

(
2πk

�
εz

)
+ h2k(x) sin

(
2πk

�
εz

)]

and consider the problem of finding φlk ∈ H1(R), and constants clk, such that

−4π2k2ε2

l2
φlk + L0(φlk) = hlk + clkχ

ε
δHx, x ∈ R,

and ∫ ∞

−∞
φlk Hx dx = 0.

Fredholm’s alternative yields that this problem is solvable with the choices

clk = −
∫∞
−∞ hlkHxdx∫∞
−∞ H2

xχ
ε
δdx

.

Observe in particular that

∞∑
k=0

|clk|2 ≤ Cε‖h‖2
L2(S).(4.14)

Finally, define

φ(x, z) =

∞∑
k=0

[
φ1k(x) cos

(
2πk

�
εz

)
+ φ2k(x) sin

(
2πk

�
εz

)]
,

and correspondingly

c(z) =
∞∑
k=0

[
c1k cos

(
2πk

�
z

)
+ c2k sin

(
2πk

�
z

)]
.

The estimate (4.14) gives that c(εz)χε
δHx has the L2(S) norms controlled by that

of h. The a priori estimates of the previous lemma tell us that the series for φ is
convergent in H2(S) and defines a unique solution for the problem with the desired
bounds.
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Proof of Proposition 4.1. Problem (4.1)–(4.3) can be reduced to a small pertur-
bation of a problem of the form (4.11)–(4.13) in which Lemma 4.2 is applicable. In
fact, we have

L2(φ) = L(φ) + B̃(φ),(4.15)

where

B̃(φ) = 3(H2 − 3H2)φ + 2χ(ε|x|)a(εs, εz)φ + χ(ε|x|)B1(φ).

In the operator B1(φ), consider for instance the following term involving f ′′:

Bf (φ) = ε2f ′′(εz)φx.

Then we have

‖Bf (φ)‖2
L2(S) ≤ ε3

∫ �

0

|f ′′(θ)|2dθ
(

sup
z

∫ ∞

−∞
|φx(x, z)|2 dx

)
.

Let ϕ(z) =
∫∞
−∞ |φx(x, z)|2dx. Then

sup
z

ϕ(z) ≤ ε

∫
S
|φx|2 + 2

∫
S
|φx||φxz|

≤ 1

2
sup
z

ϕ(z) + 4ε−1

∫
S
|φxz|2 + ε

∫
S
|φx|2.

Hence

ϕ(z) ≤ Cε−1‖φ‖2
H2(S),(4.16)

so that finally

‖Bf (φ)‖L2(S) ≤ Cε‖f ′′‖L2(0,�).

For other terms the analysis follows in a simpler way. In fact we get

‖B̃(φ)‖L2(S) ≤ Cδ‖φ‖H2(S).

This last estimate is a rather straightforward consequence of the fact that |εs| < 20δ
wherever the operator χ(ε|x|)B1 is supported, and |a(εs, εz)| ≤ Cδ in S. Thus, by
reducing δ if necessary, we apply the invertibility result of Lemma 4.2. This concludes
the proof.

5. Solving the nonlinear intermediate problem. In this section we will
solve problem (3.9)–(3.11). For brevity we let E2 = ηεδẼ.

Notice that

‖E2‖L2(S) ≤ Cε
3
2 .

For further reference, it is useful to point out the Lipschitz dependence of the term
of error E2 on the parameters f for the norms defined in (2.26). We have the validity
of the estimate

‖E2(f1) − E2(f2)‖L2(S) ≤ Cε
1
2 [‖f1 − f2‖].(5.1)
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Let T be the operator defined by Proposition 4.1. Then the equation is equivalent
to the fixed point problem

φ = T (E2 + N2(φ)) ≡ A(φ).(5.2)

The operator T has a useful property: Assume h has support contained in |x| ≤ δ
ε .

Then by elliptic estimates, φ = T (h) satisfies the estimate

|φ(x, z)| + |∇φ(x, z)| ≤ ‖φ‖∞e−
γ0δ

ε for |x| > δ

ε
.(5.3)

Now we recall that the operator ψ(φ) satisfies, as seen directly from its definition,

‖ψ(φ)‖L∞ ≤ C
[
‖ |∇φ| + |φ| ‖L∞(|s|> δ

ε ) + e−
γ0δ

ε

]
,(5.4)

and also the Lipschitz condition

‖ψ(φ1) − ψ(φ2)‖L∞ ≤ C
[
‖ |∇(φ1 − φ2)| + |φ1 − φ2| ‖L∞(|s|> δ

ε )

]
;(5.5)

here s = x + f . These facts will allow us to construct a region where the contraction
mapping principle applies. As we have said,

‖E2‖L2(S) ≤ C∗ε
3
2

for certain constant C∗ > 0. We consider the following closed, bounded subset of
H2(S):

B =

⎧⎨
⎩φ ∈ H2(S)

∣∣∣∣∣∣
‖φ‖H2(S) ≤ Dε

3
2 ,

‖ |φ| + |∇φ| ‖L∞(|s|> δ
ε ) ≤ ‖φ‖H2(S)e

− γ0δ

2ε

⎫⎬
⎭ .

We claim that if the constant D is fixed sufficiently large, then the map A defined in
(5.2) is a contraction from B into itself.

Let us analyze the Lipschitz character of the nonlinear operator N2(φ), involved
in A for functions in B. Arguing as in [12], we have the following Lipschitz estimates
for N2(φ):

‖N2(φ1) −N2(φ2)‖L2(S) ≤ Cε
3
2 ‖φ1 − φ2‖H2(S).(5.6)

Now let φ ∈ B; then ϕ = A(φ) satisfies

‖ϕ‖H2(S) ≤ C∗ε
3
2 ‖T‖.

Choosing any number D > C∗‖T‖ we get that for small ε

‖ϕ‖H2(S) ≤ Dε
3
2 .

On the other hand we have

‖ϕ‖L∞(S) ≤ C‖ϕ‖H2(S).

But ϕ satisfies an equation of the form L2(ϕ) = h with h compactly supported. Hence
ϕ belongs to B thanks to the discussion above. A is clearly a contraction mapping
thanks to (5.6). We conclude that A has a unique fixed point in B.
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We recall that the error E2 and the operator T themselves carry the function f as
a parameter. A tedious but straightforward analysis of all terms involved in the dif-
ferential operator and in the error yield that this dependence is indeed Lipschitz with
respect to the H2 norm (for each fixed ε). Indeed, emphasizing now the dependence
of L2 on f we can write

L2,f1(φ(f1)) − L2,f2(φ(f2)) = L2,f1 [φ(f1) − φ(f2)] + [L2,f1 − L2,f2 ](φ(f1))

and use the theory just developed to estimate φ(f1)− φ(f2). Taking advantage of the
Lipschitz character of the error term E2(f), we can show the Lipschitz character of
T , and we find

‖Tf1 − Tf2‖ ≤ Cε‖f1 − f2‖.
Hence

‖φ(f1) − φ(f2)‖H2(S) ≤ Cε‖f1 − f2‖.(5.7)

We summarize the result we have obtained in the following.
Proposition 5.1. There is a number D > 0 such that for all sufficiently small ε

and all f satisfying (2.26), problem (3.9)–(3.11) has a unique solution φ = φ(f) which
satisfies

‖φ‖H2(S) ≤ Dε
3
2 ,

‖ |φ| + |∇φ| ‖L∞(|s|> δ
ε ) ≤ ‖φ‖H2(S)e

− γ0δ

2ε .

Besides, φ depends Lipschitz continuously on f in the sense of estimate (5.7).
Next we carry out the second part of the program, which is to set up an equation

for f , which is equivalent to making c identically zero. The equation is obtained by
simply integrating the equation (only in x) against Hx. It is therefore of crucial im-
portance to carry out computations of the terms

∫
R
E2Hx dx. We do that in the next

section.

6. Estimates for projections of the error. In this section we carry out some
estimates for the terms

∫
R
E2Hx dx, where E2 = ηεδE1 and E1 was defined as in (2.30).

Observe that it suffices to evaluate
∫

R
E1Hx dx instead since the difference E2 − E1

is exponentially small in ε. Notice that the odd terms in x in E1 do not contribute
to the value of the integral since Hx is an even function.

We recall

S(H + φ1) = −εatf(1 −H2) + ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1),

where S3 is an odd function, S4 is an even function, and B6(H) is of order ε3. Thus,
we see that∫

R

S(H + φ1)Hx

= −εatf

∫
R

(1 −H2)Hx

−ε2

{
f ′′

∫
R

H2
x + f

[
k2

∫
R

H2
x + attf0

∫
R

(1 −H2)Hx

]

+
f2

2
att

∫
R

(1 −H2)Hxdx

}

+

∫
R

N0(φ1)Hx +

∫
R

B7(φ1)Hx + ε2γ0(εz) + ε3b1εf
′′ + ε3b2ε .
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Here and below we denote by blε, l = 1, 2, generic, uniformly bounded continuous
functions of the form

blε = blε(z, f(εz), f
′(εz)),

where additionally b1ε is uniformly Lipschitz in its last two arguments. Here and
below, functions γj(θ), j = 0, 1, 2, . . . , are C2 smooth in its argument θ ∈ (0, �).

Next we estimate
∫

R
N0(φ1)Hx. This term is to main order of the form

∫
R
Hφ2

1Hx.
Since φ1 doesn’t depend on f , we have∫

R

N0(φ1)Hx = ε2γ1(εz).

Now, let us consider
∫

R
B7(φ1)Hx. All terms in this expression, with the exception of

the terms of size ε in B7, carry in the L2 norm as functions of θ = εz powers 3 or
higher. Thus, we find∫

R

B7(φ1)Hx = ε

∫
R

[kφ1,x − at(0, εz)(x + f)φ1] Hx + O(ε3)

= −ε2fat(0, εz)

∫
R

φ1Hx dx + ε2γ2(εz) + ε3b3εf
′′

+ ε3b4ε,

where b3ε is uniformly Lipschitz in f and f
′
.

In summary, we have established that

∫
R

S(H + φ1)Hx dx = −
[
ε2(f ′′(εz) + γ3(εz)f ) + εfγ4(εz)

]∫
R

H2
x

+ ε2γ5(εz) + ε3[b5εf
′′ + b6ε],(6.1)

where γ4 is given by

γ4(θ) =
at(0, θ)

∫
R
(1 −H2)Hx∫

R
H2

x

,(6.2)

and b5ε is uniformly Lipschitz in f and f
′
.

7. Projections of terms involving φ. We will estimate next the terms that
involve φ in (3.9)–(3.11) integrated against Hx. We call the sum of them ϕ(φ):

ϕ = −2

∫
R

χ(ε|x|)a(εs, εz)φHx dx

−
∫

R

χ(ε|x|)B8(φ)Hx dx +

∫
R

N2(φ)Hx dx

+ 3

∫
R

[H2 −H2]φHx dx =

4∑
i=1

ϕi.

Let ϕ1(εz) = −2
∫

R
a(εs, εz)χ(ε|x|)φHx. Then it is easy to see that

∫ �

0

|ϕ1(θ)|2dθ ≤ Cε3‖φ‖2
H2(S),
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and hence

‖ϕ1‖L2(0,�) ≤ Cε3.

The Lipschitz continuity of ϕ1 follows from the Lipschitz continuity of φ.
Next we let ϕ2(εz) =

∫
R
B1(φ)χ(ε|x|)Hx. We make the following observation: All

terms in B1(φ) carry ε and involve powers of x times derivatives of powers of 0, 1 or
two orders of φ. The conclusion is that since Hx has exponential decay, then∫ �

0

|ϕ2(θ)|2dθ ≤ Cε3‖φ‖2
H2(S).

Hence

‖ϕ2‖L2(0,�) ≤ Cε3.

To prove the Lipschitz regularity of ϕ2, we single out one less regular terms in B8(φ).
The one whose coefficient depends on f ′′ explicitly has the form

ϕ2∗ = ε2f ′′
∫

R

φxHx = −ε2f ′′
∫

R

φHxx.

Since φ has Lipschitz dependence on f in the form (5.7), we see that this is transmitted
from Sobolev’s embedding into

‖φ(f1) − φ(f2)‖L∞(S) ≤ Cε
3
2 ‖f1 − f2‖,

from where it follows

‖ϕ2∗(f1) − ϕ2∗(f2)‖L2(0,�) ≤ Cε1+α‖f1 − f2‖.

The remainder ϕ2 − ϕ2∗ actually defines for fixed ε a compact operator for f in
L2(0, �). This is a consequence of the fact that weak convergence in H2(S) implies
local strong convergence in H1(S), and the same is the case for H2(0, �) and C1[0, �].
If fj are weakly convergent sequences in H2(0, �), then clearly the functions φ(fj)
constitute a bounded sequence in H1(S). In the above remainder one can integrate
by parts, if necessary, once in x. Averaging against Hx, which decays exponentially,
localizes the situation, and the desired fact follows.

We observe also that ϕ3(εz) =
∫

R
N2(φ)Hx can be estimated similarly. Using the

definition of N2(φ) and the exponential decay of Hx we obtain

‖ϕ3‖L2(0,�) ≤ Cε
1
2 ‖φ‖2

H2(S) ≤ Cε3.

Let us consider now

ϕ4(εz) =

∫
R

3[H2 −H2]φHx.

Since H = H + φ1 and φ1 can be estimated as

|φ1(x, z)| ≤ Cε(|x|2 + 1) e−c|x|,

we easily see that

‖ϕ4‖L2(0,�) ≤ Cε
3
2 ‖φ‖H2(S) ≤ Cε3 .

These terms define compact operators similarly as before.
In summary, we have

‖ϕ(φ)‖L2(0,�) ≤ Cε3.(7.1)
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8. The reduced equation for f: Proof of the theorem. In this section we
set up an equation relating f such that for the solution φ of (3.9)–(3.10) obtained via
Proposition 5.1 one has that the coefficient c(εz) is identically zero. To achieve this
we multiply first the equation against Hx and integrate only in x. The equation c = 0
is then equivalent to the relation∫

R

E2Hxdx + ϕ(φ) = 0.

Using the estimates in the previous sections we then find that these relations are
equivalent to the following nonlinear, nonlocal, differential equation for f :

L(f) ≡ εf ′′ + (εγ3 + γ4)f = εγ5(εz) + ε2Mε.(8.1)

We further set

f = ε
γ5

γ4 + εγ3
+ f̂ .

Then (8.1) becomes a nonlocal equation for f̂ ,

L(f̂) ≡ εf̂ ′′ + (εγ3 + γ4)f̂ = ε2Mε.(8.2)

The operators Mε = Mε(f̂) can be decomposed into the following form:

Mε(f̂) = Aε(f̂) + Kε(f̂),

where Kε is uniformly bounded in L2(0, �) for f̂ satisfying constraints (2.26) and is
also compact. The operator Aε is Lipschitz in this region:

‖Aε(f̂1) −Aε(f̂2)‖L2(0,�) ≤ Cε‖f̂1 − f̂2‖.

The functions γi, i = 1, 2, are smooth. Furthermore, we have

γ4 =
4

3

(∫
R

H2
x

)−1

at(0, θ) > 0.

We will solve now (8.2). First we need to use assumption (1.8) to deal with the
invertibility of L. We have the following lemma.

Lemma 8.1. Assume that condition (1.8) holds. If d ∈ L2(0, �), then there is a

unique solution f̂ ∈ H2(0, �) of L(f̂) = d which is �-periodic and satisfies

ε‖f̂ ′′‖L2(0,�) +
√
ε‖f̂ ′‖L2(0,�) + ‖f̂‖L∞(0,�) ≤ Cε−1/2‖d‖L2(0,�).

Moreover, if d is in H2(0, �), then

ε‖f̂ ′′‖L2(0,�) + ‖f̂ ′‖L2(0,�) + ‖f̂‖L∞(0,�) ≤ C[‖d′′‖L2(0,�) + ‖d′‖L2(0,�)]

+C‖d‖L2(0,�).

Let us accept for the moment the validity of this result and let us conclude the
proof of the theorem. From the contraction mapping principle, the equation

Lf̂ = g
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is uniquely solvable for f̂ satisfying (2.26) if ‖g‖2 < ε
3
2+ρ for some ρ > 0. The desired

result for the full problem (8.2) then follows directly from Schauder’s fixed point

theorem. In fact, refining the fixed point region, we can actually get ‖f̂‖ = O(ε3/2)
for the solution.

Proof of Lemma 8.1. We consider the boundary value problem

L(f̂) = d, f̂(0) = f̂(�), f̂ ′(0) = f̂ ′(�).(8.3)

We notice that it suffices to show Lemma 8.1 with

L1(f̂) = εβ−2f̂ ′′ + f̂ ,

where β =
√
γ4. We make the following Liouville transformation (cf. [20]):

�0 =

∫ �

0

β(θ)dθ, t =

∫ θ

0
β(θ)dθ

�0
π, λ0 =

�20
π2

,

Ψ(θ) = (β(θ))−
1
2 , y(t) = Ψ−1(θ)f̂(θ), q(t) =

�20
π2

Ψθθ

β2Ψ
,

d̃(t) = Ψ−1(θ)d(θ).

Then (8.3) with L replaced by L1 is transformed into

L̃2(y) = ε(y′′ + q(t)y) + λ0y = d̃, y(0) = y(π), y′(0) = y′(π),(8.4)

and it then suffices to establish the estimates in Lemma 8.1 for the solution of this
problem in terms of the corresponding norms of d̃. It is standard that the eigenvalue
problem

y′′ + q(t)y + λy = 0, y(0) = y(π), y′(0) = y′(π)(8.5)

has an infinite sequence of eigenvalues λk, k ≥ 0, with an associated orthonormal basis
in L2(0, π), {yk}, constituted by eigenfunctions. A result in [20] provides asymptotic
expressions as k → +∞ for these eigenvalues and eigenfunctions, which turn out to
correspond to those for q ≡ 0. We have

√
λk = 2k + O

( 1

k3

)
, k → ∞.(8.6)

Problem (8.4) is then solvable if and only if λkε 	= λ0 for all k ≥ 1. In such a
case, the solution to (8.3) then can be written as

y(t) =

∞∑
k=1

d̃k
λ0 − λkε

yk(t)

with this series convergent in L2. Hence

‖y‖2
L2(0,π) =

∞∑
k=0

|d̃k|2
(λ0 − λkε)2

.

We then choose ε such that

|4k2ε− λ0| ≥ c
√
ε(8.7)
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for all k, where c is small. This corresponds precisely to condition (1.8). From (8.6)
we then find that |λ0 − λkε| ≥ c

2

√
ε if ε is also sufficiently small. It follows that

‖y‖L2(0,π) ≤ Cε−
1
2 ‖d̃‖L2(0,π). Next we notice that

|y(t)| ≤
∞∑
k=1

∣∣∣∣∣ d̃kyk(t)

λ0 − λkε

∣∣∣∣∣
≤

( ∞∑
k=1

d̃2
ky

2
k(t)

)1/2 ( ∞∑
k=1

1

(λ0 − λkε)2

)1/2

≤ C√
ε
‖d̃‖L2(0,π);

hence the L∞ estimate for y follows, and thus we get

ε‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ Cε−
1
2 ‖d̃‖L2(0,π).

Observe also that

‖y′‖2
L2(0,π) ≤ C

∞∑
k=0

|d̃k|2
1 + |λk|

(λ0 − λkε)2
≤ C

∞∑
k=0

(1 + k4)|d̃k|2.

Besides, if d is in H2(0, π) with d(0) = d(π), d′(0) = d′(π), then the sum
∑

k k
4d2

k is
finite and bounded by the H2 norm of d. This and the equation automatically imply

ε‖y′′‖L2(0,π) + ‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ C‖d̃‖H2(0,π),

and the proof is complete.
Remark 8.1. In section 3 of [26], an equivalent form of (8.2) was also derived for a

system of singularly perturbed elliptic equations on N -dimensional domains (N ≥ 2).
There it was assumed that γ4(θ) < 0 (condition (A7) in [26]). It was also observed
that when γ4 > 0, there is a resonance of eigenvalues hitting 0.
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Abstract. A problem of homogenization of a divergence-type second order uniformly elliptic
operator is considered with arbitrary bounded rapidly oscillating periodic coefficients, either with
periodic “outer” boundary conditions or in the whole space. It is proved that if the right-hand side is
Gevrey regular (in particular, analytic), then by optimally truncating the full two-scale asymptotic
expansion for the solution one obtains an approximation with an exponentially small error. The
optimality of the exponential error bound is established for a one-dimensional example by proving
the analogous lower bound.
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1. Introduction. Classical homogenization theory describes the relation of so-
lutions uε(x) of boundary value problems with rapidly oscillating coefficients to so-
lutions u0(x) of a homogenized problem, i.e., a problem without rapidly oscillating
coefficients. In appropriate function spaces convergence can be established as ε → 0
(with ε describing the period or wavelength of the coefficients’ oscillations); see, e.g.,
[1, 2, 3, 4] and the references therein. For particular homogenization problems, e.g.,
for those described by linear second order elliptic PDEs with periodic coefficients, the
rate of convergence with respect to ε can often also be determined, see, e.g., [4, 5, 6, 7].
The order of convergence can sometimes be improved further by constructing higher
order correctors. The presence of a boundary creates additional “boundary layers,”
which substantially complexifies the problem of constructing the higher order terms;
see, e.g., [5, 3, 4, 8, 9]. However, in the absence of the boundary, either for a problem
with outer periodicity conditions or in the whole space (away from the spectrum),
higher order terms can often be explicitly constructed. In particular, under the as-
sumptions of sufficient regularity of the coefficients and the right-hand side of the
equation, it is possible to construct and rigorously justify a full two-scale asymptotic
expansion for uε(x), i.e., to establish the error bounds both for linear problems (e.g.,
[3, 10]) and even for appropriate nonlinear ones [11].

The above can be referred to, in the context of homogenization, as “homogeniza-
tion in all orders,” by analogy with “asymptotics in all orders”: by appropriately
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truncating the infinite asymptotic series one arrives at an asymptotic approximation
to the actual solution uε with accuracy of any desirable polynomial order in ε as
ε → 0. We address in this paper the question of homogenization “beyond all orders,”
i.e., with an exponentially small error, via an optimal truncation of the (generally
divergent) asymptotic expansion. The ideas of exponential asymptotics have been in-
tensively developed in the recent literature (see, e.g., [12] and the references therein);
however, not that much progress has been achieved in this direction specifically for
problems of averaging and more specifically of homogenization. An exponential aver-
aging technique was developed for ODEs by Neishtadt [13] and recently adjusted to
PDEs with a temporal [14] and then one-dimensional spatial oscillations [15].

To the best of our knowledge, the present work represents the first example of a
rigorous analytic exponential averaging for truly multidimensional spatial oscillations,
i.e., for multidimensional homogenization. On the other hand, exponentially accurate
approximations are potentially relevant to the problem of achieving exponentially
convergent numerical schemes for homogenization; see, e.g., [16].

We consider the abovementioned “classical” elliptic homogenization problems
with periodic coefficients, both for the case of periodic boundary conditions and in
the whole space. We will assume that the right-hand side is sufficiently regular (not
only infinitely smooth as required for constructing the full asymptotic expansion, but
additionally “Gevrey regular,” in particular, analytic). Then we show that one ob-
tains an approximation with an exponentially small error by optimally truncating the
full two-scale asymptotic series for the solution. Importantly, the above exponential
bounds are sharp in the sense that we establish analogous lower bounds for the error
in an explicit but rather generic one-dimensional example.

The Gevrey regularity techniques have proved useful in exploring exponentially
small effects in different problems, for example, in diffraction/scattering for describing
the wave field in the shadow [17] and the asymptotic distribution of resonances [18],
and in the one-dimensional exponential averaging [14, 15] for controlling the effect
of Galerkin approximation of PDEs via ODEs. In the present work, however, the
Gevrey regularity allows us to control the error of the truncation of a full asymptotic
expansion both with respect to the short period or wavelength of the oscillations ε
and the large number n of the terms in the truncated asymptotic series.

The next section gives a precise formulation of the problems and the statements
of the main results, which are Theorems 1 and 1′, and specifically the exponential
error bounds (17) and (19). The rest of the paper is devoted to the proof of the
theorems, as well as of the optimality of the estimates (17) and (19) for an explicit
one-dimensional example; see Theorem 5. In particular, for analytic right-hand sides
f(x), in Theorems 1 and 5, the exponential bounds (17) and (79) hold with β = 1,
with the “rate” of decay (the constants C2 and C̃2) related to the imaginary part of the
“nearest” singularity in the analytic continuation of f(x) for complex x; see Remark 7.

2. Statement of the problem and main results. We consider a family of
differential operators with rapidly oscillating periodic coefficients:

(1) (Lεu)(x) := −∇ ·
(
A
(x
ε

)
∇u

)
(x).

The matrix A(y) = (Aij(y))ij ∈ L∞(T), i, j = 1, . . . , d, where T = R
d/Z

d, d ≥ 1,
is a d-dimensional torus, is assumed to be symmetric1 and uniformly elliptic; i.e.,

1The assumption of the symmetry of matrix A(y) holds in most physically relevant examples,
but could be waived for the purposes of this paper: the stated results would still hold at the expense
of a slightly more complicated algebra in the exposition.
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Aij(y) = Aji(y) for any i, j and y ∈ T and there exists ν0 > 0 such that for all ξ ∈ R
d

and y ∈ T

(2) Aij(y)ξiξj ≥ ν0|ξ|2.

Here and throughout the paper we use the Einstein summation convention with re-
spect to repeated indices.

The main problem considered in this paper is for the right-hand side f being
infinitely smooth and periodic with a “fixed” period chosen to be equal to unity and
having zero mean, with the solution also required to have zero mean and to satisfy
the periodic boundary conditions; cf. [3, 10]. Namely, assuming ε−1 ∈ N to be a
large integer, we address the following homogenization problem: for a given f with
zero-mean value

(3) 〈f〉 :=

∫
T

f(x) dx = 0,

we seek a solution to the problem

(Lεuε)(x) = f(x) in T,(4)

〈uε〉 :=

∫
T

uε(x) dx = 0.(5)

Equation (4) is a “classical” model of periodic homogenization, physically corre-
sponding to, e.g., stationary heat conduction, electric conductivity, linear elasticity in
anti-plane shear, etc.

For a special class of functions f , namely for Gevrey regular functions, we will
construct an exponentially accurate asymptotic approximation to uε. Thus, we adopt
the following definition (cf., e.g., [20], [21]).

Definition 1. We say that a C∞(T) function f is β-Gevrey regular, where
β ≥ 1, if there exists B > 0 such that for all l ∈ N

(6) ‖f ; H l(T)‖ ≤ Bl(l!)β ,

where B may depend on f but is independent of l. We use notation f ∈ Gβ(T).
Here and below we use the scale of Sobolev spaces H l(X), l ∈ N, on a Riemannian

manifold X, with the norm

(7) ‖f ; H l(X)‖ =
∑
|k|=l

‖Dkf ; L2(X)‖ + ‖f ; L2(X)‖,

where ‖ · ; L2(X)‖ is the standard L2 norm on X, and we adopt the following con-
ventional multi-index notation: k = (k1, . . . , kd) ∈ Z

d
+, where Z+ := N∪{0} is the set

of nonnegative integers; |k| := k1 + · · · + kd; and Dk := ∂|k|/∂xk1
1 . . . ∂xkd

d . We will
also deal with H−1(X) norms, defined as duals to the space H1

0 (X) of functions from
H1(X) with zero mean.

Definition 1 gives one of several equivalent definitions of the Gevrey “extreme
regularity” class Gβ (see also [19]). In particular, for β = 1 the functions are from
Gβ if and only if they are real analytic; for β > 1 the functions are infinitely smooth
but not necessarily analytic. A conventional way of clarifying these relations is by
reformulating them in the Fourier space. For the above T-periodic functions f , when
represented by their Fourier series

(8) f(x) =
∑
p∈Zd

fp exp(2iπp · x),
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a sufficient condition for f to belong to Gβ is for its Fourier coefficients fp to decay
exponentially with the “rate” |p|1/β ; i.e.,

(9) |fp| ≤ c1 exp

(
−c2|p|1/β

)

with some p-independent positive constants c1 and c2. The latter is well known and
can be seen, for example, by applying the Plancherel theorem to (7), using (9), then
replacing the resulting series by “asymptotically equivalent” integrals, and finally
employing the Stirling asymptotic formulae; see, e.g., [29, (6.1.37)]. Throughout the
paper we will use various minor modifications of the direct implication of the Stirling
formula for

(10) Γ(z) :=

∫ ∞

0

exp(−s)sz−1ds, z > 0; Γ(l + 1) = l!, l ∈ N,

which we display below for the reader’s convenience:

(11) A1

(z
e

)z−1/2

≤ Γ(z) ≤ A2

(z
e

)z−1/2

, z ≥ 1,

with some “universal” constants A1 and A2.
Notice that for real-analytic f (9) holds with β = 1, and the rate of exponential

decay c2 is determined by the absolute value of the imaginary part of the “nearest”
singularity in the analytic continuation.

For any fixed ε > 0 the problem (4)–(5) is a well-posed elliptic problem which
has a unique solution uε ∈ H1(T). Given n ∈ Z+ we seek an approximation to this
solution in the standard form of the appropriately truncated two-scale asymptotic
series (cf., e.g., [3]):

(12) uε,n(x) =

n+2∑
m=0

εmu(m)
(
x,

x

ε

)
,

where the functions u(m)(x, y) are required to be periodic in the “fast” variable y. It
is known that for the present problem one can construct in this way a full asymptotic
expansion with u(m) adopting the following form (see, e.g., [3, 10]):

(13) u(m)(x, y) =

m∑
l=0

∑
|k|=l

Nk(y)D
k
x vm−l(x),

where N0(y) ≡ 1 and Nk(y) are periodic solutions of the “main” (|k| = 1) and “higher
order” (|k| > 1) “canonical” unit cell problems in the “fast” variable y. The functions
vs(x), s ≥ 0, solve certain recurrent systems of equations in the “slow” variable x (see
[3]), which are briefly reviewed in the next section.

Before formulating the main result, for convenience of the future referencing, we
combine (12) and (13) to give

(14) uε,n(x) =

n+2∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
(n−l+2)(x, ε).
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The slowly varying part in (14) is a partial sum of the formal asymptotic series
V (∞)(x, ε) (see (29)):

(15) V (M)(x, ε) :=

M∑
s=0

εsvs(x).

The main results of the present paper are the following.
Theorem 1. Suppose A ∈ L∞(T) and satisfies (2), and f ∈ Gβ(T), β ≥ 1, 〈f〉 =

0. Let uε be the unique solution of (4)–(5). Then there exist ε-independent constants
C1 > 0, C2 > 0, κ1 > 0, and κ2 > κ1, such that for any n satisfying

(16) κ1ε
−1/β ≤ n ≤ κ2ε

−1/β

the approximation (14) has the error bound

(17) ‖uε − uε,n ; H1(T)‖ ≤ C1 exp(−C2ε
− 1

β ).

The above result may be interpreted in the sense that if the (generally divergent)
asymptotic series (12) is, for sufficiently small ε, “optimally” truncated by choosing
n = n(ε) according to (16), for example, n(ε) =

[
κ2ε

−1/β
]

with the square brackets
denoting the entire part, then this produces an exponentially small error in the sense
of (17).

Note also that for less regular f the earlier results on the polynomial rather
than exponential error (see, e.g., [5, Thm. 11.1], [3, section 4.2, Thm. 2]) will be a
by-product of our analysis: if, e.g., f has a finite regularity in the scale of Sobolev
spaces, say f belongs to HM (T) but does not belong to HM+1(T) for some M , one
can construct only finitely many terms in the expansion (12). As a result one obtains
only an error bound of polynomial order εn with a finite n related to M . On the other
hand, if one assumes f ∈ C∞ but makes no assumption on the “rate” of growth of its
H l norms when l → ∞, one does reproduce the “homogenization in all orders” with
an error bound Cnε

n for any n. However, in the latter case one has no control on the
growth of Cn as n → ∞, which disallows any possible further “a priori” improvement
of the error bound.

Let us also note that Theorem 1 can be generalized further in a number of ways.
Assuming higher regularity of the coefficients Aij , one can get in (17) the same rate
of convergence but in stronger norms. One can also consider another case without
the boundary for a “shifted” operator Lε + 1 in entire R

d rather than for Lε in a
fixed domain with periodic boundary condition. Then the same exponential estimate
holds; i.e., the following theorem can be obtained adapting the proof of Theorem 1
with minor changes.

Theorem 1
′
. Suppose A ∈ L∞(T) and satisfies (2); f ∈ Gβ(Rd), β ≥ 1, i.e.,

f ∈ C∞(Rd) and there exists B > 0 such that for all l ∈ N, ‖f ; H l(Rd)‖ ≤ Bl(l!)β .
Let uε ∈ H1(Rd) be the unique solution of

(18) (Lε + 1)uε = f.

Then there exist ε-independent constants C1 > 0, C2 > 0, κ1 > 0, and κ2 > κ1,
such that for any n satisfying κ1ε

−1/β ≤ n ≤ κ2ε
−1/β the corresponding asymptotic

approximation of the form (12) has the error bound

(19) ‖uε − uε,n ; H1(Rd)‖ ≤ C1 exp(−C2ε
− 1

β ).
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Note that in the latter case the explicit structure of the two-scale asymptotics
(12) is slightly different from that of (14); see (57).

We expect similar results to be valid also for nonlinear elliptic divergence opera-
tors (cf. [11]). Accounting for the presence of a boundary is in general a difficult open
problem; cf. [8, 9].

The proof of the theorems will be divided into three steps. First we derive a priori
estimates on appropriate norms of the coefficients Nk and vs in suitable functional
spaces for fixed k and s in section 3. Then, in section 4, we estimate the right-hand
side error term Lεuε,n − f for fixed n and ε (in the H−1 norm). In section 5 we
translate this into the error estimates for uε,n(ε) − uε via analysis of the “mean” and
standard ellipticity estimates, and finally “minimize” the error by an optimal choice
of n(ε) dependence on ε. This establishes the desired exponential error bound and
hence proves Theorem 1. Proof of Theorem 1′ follows the same strategy with minor
technical alterations listed in Remark 2 immediately following the proof of Theorem 1.

Optimality of the exponential error bound (17) is proved in section 6 for an explicit
one-dimensional example; see Theorem 5.

3. Recurrent relations and a priori estimates. We briefly describe the pro-
cedure for determining the coefficients in (14) and (15) (see, e.g., [3, 10] for the
detailed derivation in a slightly different notation). Below, we give one possible way
to summarize it.

First, the infinite series version of (14),

(20) uε(x) ∼
∞∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
∞(x, ε),

is formally substituted into (4). After appropriate differentiations and re-grouping
the terms with equal powers of ε (treating at this stage V ∞(x, ε) as a “whole”) we
arrive at

(21)
∞∑
l=0

εl−2
∑
|k|=l

{
L1
yNk(y) − Tk(y)

}
y=x/ε

DkV ∞(x, ε) ∼ f(x),

where

(22) N0(y) ≡ 1, T0(y) ≡ 0,

and

|k| = 1 : Tk(y) = Aij,j(y), k = ei,(23)

|k| ≥ 2 : Tk(y) =
∑

i,j=1,...,d

k′=k−ei≥0

((AijNk′),j + AijNk′,j) (y) +
∑

i,j=1,...,d

k′′=k−ei−ej≥0

Aij(y)Nk′′(y).(24)

Here we denote by ei the unit ith axis vector in Z
d and adopt the standard convention

denoting derivatives by the indices following the comma in the subscript; k ≥ 0 for a
multi-index k means ki ≥ 0 for any 1 ≤ i ≤ d (k > 0 will mean k ≥ 0 and ki > 0 for
some i, with k′ < k meaning k − k′ > 0, etc.).

We then require the “coefficients”
{
L1
yNk(y) − Tk(y)

}
in (21) to be independent

of the fast variable y, i.e., to be equal to constants which are denoted by −hk. This
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implies that Nk are solutions to the following “cell problems” for |k| ≥ 1:

L1
yNk = Tk(y) − hk in T,(25)

〈Nk〉 = 0,(26)

with periodic conditions for Nk.
The solvability condition for (25)–(26) implies, necessarily, that hk are the mean

values of Tk over the periodicity cell:

(27) hk = 〈Tk〉.

Combining (21) with (25) yields an infinite order formal asymptotic equation for
the “slow” part V ∞(x, ε):

(28) −
∞∑
l=0

εl−2
∑
|k|=l

hkD
kV ∞(x, ε) ∼ f(x).

A formal asymptotic solution of (28) is in turn sought in the form of an “infinite
order” version of (15):

(29) V ∞(x, ε) ∼
∞∑
s=0

εsvs(x).

The substitution of (29) into (28) with subsequent rearrangements and equating terms
with the same powers of ε yields

−Ahom
i,j=1vs,ij(x) = fs(x),(30)

〈vs〉 = 0,(31)

with the right-hand sides

f0= f,(32)

fs=

s+2∑
l=3

∑
|k|=l

hkD
k
xvs−l+2, s ≥ 1.(33)

In (30) Ahom =
(
Ahom

ij

)d
i,j=1

is a “classical” homogenized matrix, which is known to

be positive definite (with the same ellipticity constant ν0 as in (2)) and symmetric:

Ahom
ij = 〈Aij〉 + 〈AisNej ,s〉 =

{
hei+ej , i = j,
1
2hei+ej , i �= j.

Notice that (30) is uniquely solvable for any s ≥ 0: a necessary and sufficient condition
for the solvability is 〈fs〉 = 0 which does hold for s = 0 by assumption (3) and for
s ≥ 1 by (33). The slowly varying terms vs are hence found recurrently as solutions
to homogenized equations (30) with constant coefficients on a torus T.

The relations (22)–(27) and (30)–(33) are hence sufficient for uniquely identifying
all Nk and vs, respectively. Then the so-defined asymptotic “double series” (20),
(29) provides a full asymptotic expansion of the solution uε(x) “in all orders”: in
particular, its truncation uε,n produces an error of polynomial order in ε (see, e.g.,
[3, section 4.2, Thm. 2] or section 4 below).
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We next aim at estimating the quantities

N (l) := max
|k|=l

‖Nk ; H1(T)‖,(34)

V(s,m) := ‖vs ; Hm(T)‖.(35)

We will prove the following lemma.
Lemma 2. Under the assumptions of Theorem 1 the following estimates hold for

all l, s,m ∈ N ∪ {0}: (i)

(36) N (l) ≤ (MN )
l
,

(ii)

(37) V(s,m) ≤
s∑

k=0

(MV)
k+1 ‖f ; Hm+k(T)‖

for appropriate constants MN and MV , depending only on ‖A ; L∞(T)‖ and the
ellipticity constant ν0 (see (2)).

Proof. Further on we will use the abbreviated notation | · |l := ‖· ; H l(T)‖, l ≥ −1
(| · |0 := ‖· ; L2(T)‖) and denote by C, M1, M2, etc. various positive constants whose
precise values are insignificant and can change during the proof.

(i) Due to the standard ellipticity estimates we have

(38) |v|1 ≤ C(ν0)|G|0

for a solution of L1v = ∇ · G, 〈v〉 = 0 with arbitrary G ∈
(
L2(T)

)d
. So we deduce

from (22)–(24), (25)–(26), and (27) for |k| ≥ 2 that

(39) |Nk|1 ≤ C(ν0)‖A ;L∞(T)‖

⎛
⎝ ∑

k′<k, |k−k′|=1

|Nk′ |1 +
∑

k′′<k,|k−k′′|=2

|Nk′′ |0

⎞
⎠ .

The latter reads in terms of (34) as

(40) N (l) ≤ M1N (l−1) + M2N (l−2), l ≥ 2,

and implies (36) by induction: from (22) we have N (0) = 1 and, due to (23) and (38),
N (1) ≤ C(ν0)‖A ;L∞(T)‖ ≤ M1. Therefore choosing MN > max{1,M1 + (M2)

1/2}
we arrive at (36).

(ii) Now turning to vs, due to (30)–(33) we estimate for s ≥ 1 and m ≥ 1

(41) |vs|m ≤ C(Ahom)

s+2∑
l=3

∑
|k|=l

|hk||Dk
xvs−l+2|m−2.

This can be established, e.g., using again the ellipticity estimates applied to (30),
which being an elliptic equation with constant coefficients can be differentiated m
times. Applying also a version of the Poincaré inequality, which in our choice of the
domain and the norms (see (7)) is the obvious estimate

(42) ‖g;Hk(T)‖ ≤ ‖g;H l(T)‖, k ≤ l,

we conclude that C(Ahom) can be chosen independently of m.
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Since (24) and (27) obviously imply that max|k|=l |hk| ≤ C
(
N (l−1) + N (l−2)

)
,

from (41) we arrive after a straightforward manipulation at

(43) V(s,m) ≤ C

s∑
r=1

N (r+1)rd−1V(s−r,m+r).

The latter in turn, combined with (36), implies that with large enough M0

(44) V(s,m) ≤
s∑

r=1

Mr
0V(s−r,m+r).

Let us finally show by induction in s that the latter is sufficient to deduce (37)
with some MV > 2M0. Indeed for s = 0, due to (30) for all m ≥ 0, we have
|v0|m ≤ |v0|m+2 ≤ M3|f |m with M3 independent of m, implying (37). Now we
proceed with the induction step: suppose (37) holds for s = 0, . . . , S with a constant
MV > max{2M0,M3}. Then due to (44) we have

V(S+1,m) ≤
S+1∑
r=1

Mr
0V(S+1−r,m+r) ≤

S+1∑
r=1

S+1−r∑
k=0

Mr
0M

k+1
V |f |m+r+k

≤
S+1∑
q=1

Mq+1
V |f |m+q

q∑
r=1

(
M0

MV

)r

,

which by our choice of MV implies (37) for s = S + 1.

4. Remainder estimates. Next we derive estimates for the error in the right-
hand side of the original equation (4) as a result of substitution into its left-hand
side of the truncated asymptotic ansatz uε,n; see (12)–(15). The following lemma is
in effect an implication of the above described formal asymptotic construction: it is
supplemented by a more accurate bookkeeping of the structure of the remainder term
Rε,n (as needed for purposes of this work), which is bound, by the construction, to
contain only the terms of orders εn+1 and εn+2 for fixed n and small ε; cf. [3, 10].

Lemma 3. Under the assumptions of Theorem 1 one has Lεuε,n = f +Rε,n with
Rε,n ∈ H−1(T), and

Rε,n = −εn+1

⎛
⎝n+2∑

l=0

∑
|k|=l

( (AijNk),j + AijNk,j)DxiD
k
xvn−l+2(45)

+
n+1∑
l=0

∑
|k|=l

AijNkDxixj
Dk

x(vn−l+1 + εvn−l+2)

+ ε
∑

|k|=n+2

AijNkDxixjD
k
xv0

⎞
⎠

(denoting Dxi := ∂/∂xi, Dxixj := ∂2/(∂xi∂xj)).
Proof. The proof is a straightforward calculation by substituting the expansion

(14), (15) into (4). We notice that since Aij ∈ L∞(T), Nk ∈ H1(T), and vs ∈ C∞(T),
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all the “product” terms in (45) are in H−1(T). For example,

( (AijNk),j)
(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε) = ε
∂

∂xj

(
(AijNk)

(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε)
)

−ε
(
(AijNk)

(x
ε

)
DxixjD

k
xV

(n−l+2)(x, ε)
)
,

(46)

with the first term in the latter expression being a derivative of an L2 function and
the last one an L2 function itself.

The terms up to order O(εn) equal f by (14), (15), (30), (32), and (33). Via
direct inspection,

(Lεuε,n)(x) = −∇ ·
(
A
(x
ε

)
∇uε,n

)
(x)

= −∇ ·

⎛
⎝A

(x
ε

)
∇

n+2∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
(n−l+2)(x, ε)

⎞
⎠

=
n+2∑
l=0

εl−2
∑
|k|=l

(L1
yNk)

(x
ε

)
Dk

xV
(n−l+2)(x, ε)

−
n+2∑
l=0

εl−1
∑
|k|=l

( (AijNk),j + AijNk,j)
(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε)

−
n+2∑
l=0

εl
∑
|k|=l

(AijNk)
(x
ε

)
Dxixj

Dk
xV

(n−l+2)(x, ε).

Now we replace V (n−l+2)(x, ε) by V (n−l+1)(x, ε) + εn−l+2vn−l+2 in the second term
and by V (n−l)(x, ε) + εn−l+1vn−l+1 + εn−l+2vn−l+2 in the last term; see (15). These
“remainders” containing vn−l+1 and vn−l+2 as well as the term corresponding to
l = n + 2 in the last sum, all being of order εn+1 and εn+2, produce exactly Rε,n.
Therefore we have

(Lεuε,n)(x) = Rε,n +

n+2∑
l=0

εl−2
∑
|k|=l

(L1
yNk)

(x
ε

)
Dk

xV
(n−l+2)(x, ε)

−
n+1∑
l=0

εl−1
∑
|k|=l

( (AijNk),j + AijNk,j)
(x
ε

)
DxiD

k
xV

(n−l+1)(x, ε)

−
n∑

l=0

εl
∑
|k|=l

(AijNk)
(x
ε

)
Dxixj

Dk
xV

(n−l)(x, ε).

Now we change the summation indices in the two latter terms to obtain the first n+2
terms of the series (21)

(Lεuε,n)(x) = Rε,n +

n+2∑
l=2

(L1
yNk − Tk)D

kV (n−l+2)

= Rε,n −
n+2∑
l=2

εl−2
∑
|k|=l

hkD
kV (n−l+2) = f + Rε,n,

having used in the last equality (30)–(33).
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Using the above formula (45) for the remainder term, we estimate Rε,n with an
explicit dependence on both ε and n as in the following lemma ([·] denotes the entire
part).

Lemma 4. Under the assumptions of Theorem 1, there exist C3, ε0 such that for
all n and all 0 < ε < ε0 the remainder term Rε,n can be estimated as follows:

(47) ‖Rε,n; H−1(T)‖ ≤ Cn
3 ε

n+1‖f ; Hn+5+[d/2](T)‖.

Proof. Here we combine the formula for the error term in Lemma 3 with the esti-
mates in Lemma 2. To estimate the H−1 norm of the aggregates like ((AijNk)D

|k|+1v),j
(see (46)) and AijNkD

|k|+2v we need to ensure that D|k|+2v is in L∞. By the Sobolev
embedding theorems this holds if v ∈ H |k|+3+[d/2]. Therefore

‖Rε,n; H−1(T)‖ =

∥∥∥∥∥∥εn+1

⎛
⎝n+2∑

l=0

∑
|k|=l

( (AijNk),j + AijNk,j)DxiD
k
xvn−l+2

+

n+1∑
l=0

∑
|k|=l

AijNkDxi,xjD
k
x(vn−l+1 + εvn−l+2)

+ ε
∑

|k|=n+2

AijNkDxi,xjD
k
xv0

⎞
⎠ ; H−1(T)

∥∥∥∥∥∥
≤ εn+1

(
C

n+2∑
l=0

ld−1‖A;L∞‖N (l)V(n−l+2,l+3+[d/2])

+C

n+1∑
l=0

ld−1‖A;L∞‖N (l)
(
V(n−l+1,l+3+[d/2])

+ εV(n−l+2,l+3+[d/2])
)

+Cεnd−1‖A;L∞‖N (n+2)V(0,n+5+[d/2])

)

≤ Cεn+1

(
max{MN ,MV}

)n+2

nd‖f ;Hn+5+[d/2]‖.

Here we have used again the Poincaré inequality (42). An appropriate choice of C3

yields the result.
Remark 1. The last lemma could also be used to rederive results for finite regular-

ity f , or smooth f , which are not necessarily in any Gevrey space Gβ . If, for example,
f has finite regularity, i.e., f ∈ HM (T) and f /∈ HM+1(T) for some M , then, as
the above procedure demonstrates, only a finite number of terms in the asymptotic
expansion can be constructed, and the H−1 norms can be bounded only for n <
M − 4 − d/2. If, however, f ∈ C∞(T), but no assumptions are made on the rate of
growth of its H l norms for large l, the estimate (47) still holds for any n, but there is
no control over the growth of the Sobolev norms of f with n in the right-hand side of
(47). The latter would prevent us from improving the polynomial “asymptotics in all
orders” any further. This highlights the importance of the Gevrey extreme regularity
of f for the exponential error bounds.

5. Proof of Theorem 1. The proof of the theorem is now essentially a corollary
of Lemma 4, the estimates (6) holding due to the assumption of Gevrey regularity
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of f and standard elliptic regularity theory. Let us first introduce a “normalized”
approximation

(48) ũε,n := uε,n − 〈uε,n〉.

By the elliptic regularity theory for all n we have

(49) ‖ũε − uε,n ; H1(T)‖ ≤ C‖Rε,n; H−1(T)‖.

Using Lemma 4, we obtain

(50) ‖ũε − uε,n ; H1(T)‖ ≤ CCn
3 ε

n+1‖f ;Hn+4+[d/2]‖.

Let us next show that the mean 〈uε,n〉 can also be estimated in a similar way. Due
to representations (12), (13) we have

(51) 〈uε,n〉 =

n+2∑
m=0

εm
m∑
l=0

∑
|k|=l

〈
Nk

(x
ε

)
Dk

x vm−l(x)

〉
.

Note that 〈Nk〉 = 0; therefore for any s > 0 the functions ((−Δy)
−sNk(·)) (y) and(

(−Δx)−sNk(
·
ε )
)
(x) are correctly defined functions with zero mean, using, for exam-

ple, the Fourier representation for (−Δy) on a torus T. Moreover, they are linked
via

(52)
(
(−Δx)−sNk

( ·
ε

))
(x) = ε2s

(
(−Δy)

−sNk(·)
) (x

ε

)
(recall ε−1 ∈ N). Thus, integrating (51) by parts sufficiently many times, we get

〈uε,n〉(53)

=

n+2∑
m=0

εm
m∑
l=0

∑
|k|=l

εn+2−m

〈(
(−Δy)

−n+2−m
2 Nk

)(x
ε

)
(−Δx)

n+2−m
2 Dk

x vm−l(x)

〉
.

Now, via the Cauchy–Schwartz inequality,

(54)

|〈uε,n〉| ≤ εn+2
n+2∑
m=0

m∑
l=0

∑
|k|=l

‖(−Δy)
−n+2−m

2 Nk; L
2(T)‖ ‖vm−l; H

n+2−m+l(T)‖.

Therefore, applying the Poincaré inequality (42) to the first norm and then using
estimates (36), (37) of Lemma 2, we have

|〈uε,n〉| ≤ εn+2
n+2∑
m=0

m∑
l=0

Cld−1

(
sup
|k|=l

‖Nk; H1‖
)

m−l∑
p=0

Mp+1
V ‖f ;Hn+2−m+l+p‖

≤ εn+2‖f ;Hn+2‖
n+2∑
m=0

m∑
l=0

CldM l
N

m−l∑
p=0

Mp+1
V

≤ εn+2‖f ;Hn+2‖
n+2∑
m=0

m∑
l=0

CldM l
NMm−l

V ,
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and therefore

(55) |〈uε,n〉| ≤ εn+2CCn
4 ‖f ;Hn+2‖.

Combining the latter with (50) we finally get

(56) ‖uε − uε,n ; H1(T)‖ ≤ CCn
5 ε

n+1‖f ;Hn+5+[d/2]‖

for small enough ε with an appropriate constant C5 > 0.
Further, by (6), ‖f ;Hn+5+[d/2]‖ ≤ Bn+5+[d/2]((n+5+[d/2])!)β . Using the Stirling

formula (11) for the factorial (implying M ! = Γ(M + 1) ≤ CMM+1/2e−M for any
M ∈ N with some C > 0), we obtain

‖uε − uε,n ; H1(T)‖
≤ CCn

5 ε
n+1Bn+5+[d/2](n + 5 + [d/2])(n+5+[d/2])βe−β(n+5+[d/2])n1/2

≤ Cεn+1(C6B)nnnβ = Cε exp(n ln(nβC6Bε)).

Thus, we get the desired decay of this norm if the logarithm in the latter exponent is
uniformly negative. The latter can be assured by choosing n(ε) ∈ (κ1ε

−1/β , κ2ε
−1/β)

with any choice of constants κ1 and κ2 such that 0 < κ1 < κ2 < (C6B)−1/β . Indeed,
we then estimate

‖uε,n(ε) − uε ; H1(T)‖ ≤ Cε exp[(κ1 ln(κβ
2C6B))ε−1/β ],

which implies (17) by choosing C1 = C and C2 = −κ1 ln(κβ
2C6B) > 0. The theorem

is proved.
Remark 2 (on the proof of Theorem 1′). The proof of Theorem 1′ conceptually

follows the above proof of Theorem 1. We briefly sketch the proof emphasizing only
the most significant alterations to the above argument. First note that, although we
still use the asymptotic series (12) for the approximation, its precise structure slightly
differs from (14); namely, (12) is now represented in the following form:

(57) uε,n(x) =

n+2∑
l=0

εl
[ l
2 ]∑

s=0

∑
|k|=l−2s

N
(s)
k

(x
ε

)
Dk

x V
(n−l+2)(x, ε).

For N
(s)
k , analogously to (25), (26), one deduces the recurrence relations

L1
yN

(s)
k = T

(s)
k (y) − h

(s)
k −N

(s−1)
k , 〈N (s)

k 〉 = 0, s ≥ 0,(58)

assuming henceforth that N
(−1)
k ≡ 0. If |k| ≥ 2, then one finds

T
(s)
k =

∑
i,j=1,...,d

k′=k−ei≥0

(
(AijN

(s)
k′ ),j + AijN

(s)
k′,j

)
+

∑
i,j=1,...,d

k′′=k−ei−ej≥0

AijN
(s)
k′′ ,(59)

and otherwise

|k| = 1, k = ei : T
(s)
k = (AijN

(s)
0 ),j + AijN

(s)
0,j ,(60)

k = 0 : T
(s)
k = 0, N

(0)
0 ≡ 1.(61)
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Further, in all the cases h
(s)
k = 〈T (s)

k 〉, except h
(1)
0 = −1. Obviously one has N

(0)
k = Nk

(see (22)–(26)), and thus by induction in s one finds all N
(s)
k . Now let us intro-

duce Nq = max|k|+2s=q |N (s)
k |1. Due to (59) we obviously have |T (s)

k − h
(s)
k |−1 ≤

C(N|k|+2s−1 + N|k|+2s−2). The basic elliptic estimate (38) for the problem (58) still
holds and therefore implies that Nq ≤ M1Nq−1+M2Nq−2, which gives an exponential
estimate of growth of Nq: with large enough MN for all q ≥ 0

(62) Nq ≤ (MN)q.

Turning now to evaluation of vs(x), substituting the expansion (57) into (18) we
observe that V (∞)(x, ε) formally satisfies

(63)

⎛
⎝−Ahom

ij Dij + 1 +

∞∑
l=3

εl−2

[ l
2 ]∑

s=0

∑
|k|=l−2s

h
(s)
k Dk

x

⎞
⎠V ∞(x, ε) = f(x) in R

d;

therefore we have

(64) −Ahom
ij vs,ij + vs = fs in R

d,

where

f0= f,(65)

fs=

s+2∑
l=3

[ l
2 ]∑

r=0

∑
|k|=l−2r

h
(r)
k Dk

xvs−l+2, s ≥ 1.(66)

The latter differs from (33) only by the presence of lower order derivatives, and without
any significant alteration one deduces an exponential estimate (37) in very much the
same way as in Lemma 2. As a result, introducing V(s,m) = ‖vs; Hm(Rd)‖ with large
enough MV, we get by induction in s an estimate

(67) V
(s,m) ≤

s∑
k=0

(MV)
k+1 ‖f ; Hm+k(Rd)‖.

The remainder estimate is bound to be of order εn+1, and with some minor
technical alteration of the argument in section 4 one also gets

(68) ‖Rε,n;H−1(Rd)‖ ≤ Cεn+1Mn‖f ;Hn+5+[d/2](Rd)‖.

Finally, repeating the argument at the beginning of this section (omitting the consid-
eration of the mean), employing appropriate modifications of the Poincaré inequality,
ellipticity estimates, Sobolev embedding, etc. from (68), and the fact that f ∈ Gβ(Rd),
one finally deduces Theorem 1′.

Remark 3. Note that as formulated the theorems admit some further sharpening:
for example, one can replace H1(T) norm in (17) with W 1,p(T) norm, where p ∈
(2, p0(d, ν0)) with some p0(d, ν0) > 2. Indeed, as can be seen from the structure of
our argument, we select a functional space according to the fundamental ellipticity
estimate (38), whereas the latter (38) can be refined in the case of bounded measurable
coefficients and the right-hand side being the divergence of an L∞ (vector-)function
(see, e.g., [22, Chapter 6]).
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Remark 4. The proof of the theorems has been via a straightforward “book-
keeping” of the terms in the full two-scale asymptotic expansion (20)–(29). On the
other hand, this is known to be related to the so-called spectral method in homog-
enization and closely related “Bloch approximation” approach; see, e.g., [24, 25, 26,
27, 28, 6]. There is no doubt that these spectral methods are capable of at least
reestablishing the background results on the “homogenization in all orders” (i.e., ap-
proximations with arbitrary high order polynomial error bounds). An interesting
further prospect would be to interpret the results presented here on exponential ho-
mogenization in terms of underlying analytic spectral properties of the Floquet–Bloch
operator with periodic coefficients.

6. On the optimality of the exponential error (17): An example. In this
section we demonstrate that the main exponential error bound (17) of Theorem 1 for
‖uε − uε,n ; H1(T)‖ is “optimal” for a particular class of one-dimensional examples.
Namely, we show that by whatever choice of the truncation n(ε) the error bound (17)
cannot be improved apart from “optimizing” the choice of constants C1 and C2. This
is done by proving an analogous exponential lower bound for the error; see (79). The
latter is obtained by an optimal truncation n(ε) of lower bounds derived for each n
and ε, which in turn is observed to be delivered by n(ε) within the range (16). In this
sense the exponential error bound (17) is sharp.

We consider the following one-dimensional example. Consider elliptic problem

(69) − d

dx

(
a(x/ε)

d

dx
u(x)

)
= f(x),

with one-periodic boundary conditions, 〈u〉 = 〈f〉 = 0, ε = 1/N , N ∈ N, which is the
one-dimensional version of the problem (4)–(5), with unique solution uε(x). To be
specific, let us consider2

(70) a(y) =
1

3/2 − cos(2πy − π/4)
.

We fix arbitrary β ≥ 1 and assume the right-hand side f to be an infinitely
differentiable real-valued 1-periodic function with real nonnegative Fourier coefficients
fk (hence f−k = fk), i.e.,

(71) f(x) =
∑

k∈Z,k �=0

fk exp(2iπkx) = 2

∞∑
k=1

fk cos(2πkx), fk ≥ 0.

We further assume that f satisfies the “converse” inequality to (6) determining β-
Gevrey regular functions; i.e., there exists b > 0 such that

(72) ‖f ; H l(T)‖ ≥ bl(l!)β for all l ∈ N.

In particular, for “sharp” β-Gevrey regular functions both (6) and (72) hold simulta-
neously:

(73) bl(l!)β ≤ ‖f ; H l(T)‖ ≤ Bl(l!)β , 0 < b ≤ B < +∞, for all l ∈ N.

2The analysis of this section can be generalized in a straightforward way to more general a(y),
for example, a(y) = (a0 − a1 cos(2πy) − a2 sin(2πy))−1, a0 > 0, a1 �= 0, a2 �= 0, a2

1 + a2
2 < a2

0. We
do not pursue maximal generality to avoid unnecessary further algebraic complications.



1580 V. KAMOTSKI, K. MATTHIES, AND V. P. SMYSHLYAEV

A sufficient condition for f to satisfy (73) is for its Fourier coefficients fk to decay
exponentially with the “rate” |k|1/β , i.e.,

(74) A1 exp(−B1|k|1/β) ≤ fk ≤ A2 exp(−B2|k|1/β)

with positive A1, A2, B1, and B2.
To see that such f satisfies (73) one can first apply the Plancherel theorem to

definition (7), implying

(2π)2lA1

∑
k∈N

exp(−2B1k
1/β)k2l ≤ (2π)2l

∑
k∈N

k2lf2
k ≤ ‖f ; H l(T)‖2

(75) ≤ 4(2π)2l
∑
k∈N

k2lf2
k ≤ 4(2π)2lA2

∑
k∈N

exp(−2B2k
1/β)k2l.

Then one can notice that the sums in (75) can be further bounded both from above
and from below as follows: there exist l-independent positive constants D1 and D2

such that

D1β(2B1)
−β(2l+1)Γ((2l + 1)β) = D1

∫ ∞

0

exp(−2B1s
1/β)s2lds

≤
∑
k∈N

exp(−2B1k
1/β)k2l ≤

∑
k∈N

exp(−2B2k
1/β)k2l

≤ D2l

∫ ∞

0

exp(−2B2s
1/β)s2lds = D2lβ(2B2)

−β(2l+1)Γ((2l + 1)β).(76)

(A way to establish (76) is by noticing that the series, asymptotically for large l,
coincides to the main order with the integral.) Finally, by the application of the Stir-
ling formula (11) we obtain D2l

3 (l!)2β ≤ Γ((2l + 1)β) ≤ D2l
4 (l!)2β with l-independent

D3, D4, which implies (73).
An example of a function f satisfying (71) and (73) is

(77) f(x) =
∑

k∈Z,k �=0

exp(−|k|1/β) exp(2iπkx).

In particular, for β = 1

(78) f(x) = 2 Re

∞∑
k=1

exp(k(2iπx− 1)) =
2e cos(2πx) − 2

(e2 + 1) − 2e cos(2πx)

is clearly analytic, with poles at x = ±i/(2π) + n, n ∈ Z.
We formulate the following optimality theorem for the above one-dimensional

case.
Theorem 5. For any f satisfying (74) with B1 = B2 there exist positive constants

C̃1 and C̃2 such that the following lower error bound for the exact solution uε of the
problem (69)–(70) and its asymptotic approximation uε,n holds for any n ∈ N and
any ε = 1/N, N ∈ N:

(79) ‖uε − uε,n ; H1(T)‖ ≥ C̃1 exp(−C̃2ε
− 1

β ).

Proof. In the one-dimensional case, the general recurrence relations (22)–(27),
(30)–(33) for the correctors Nk, the “homogenized coefficients” hk, and “slowly vary-
ing” parts vs specialize to simple ODEs (see, e.g., [23, section 1F]), which can be
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solved explicitly.3 In particular, the equations (25)–(26) for the “main corrector” N1

specialize to

(80)
d

dy
N1(y) =

a−1(y)

〈a−1〉 − 1 =
2

3

(
3

2
− cos

(
2πy − π

4

))
− 1 = − 2

3
cos

(
2πy − π

4

)
,

implying N1(y) = − (3π)−1 sin(2πy−π/4). All the higher order correctors Nk, k ≥ 2,
have a similar form, due to the recurrence relations

(81)
d

dy
Nk = −Nk−1

(the latter also immediately follows by direct substitution of (20) into (69)). As a
result,

N2m = (−1)m
cos(2πy − π/4)

3π(2π)2m−1
= (−1)m21/2 cos(2πy) + sin(2πy)

3(2π)2m
, m ≥ 1,

N2m+1 = (−1)m+1 sin(2πy − π/4)

3π(2π)2m
= (−1)m21/2 cos(2πy) − sin(2πy)

3(2π)2m+1
, m ≥ 0.

(82)

Further, v0 is given by homogenized equation (30) (s = 0) specializing in the one-
dimensional case to

(83) −h2
d2

dx2
v0 = f,

where h2 = Ahom = 〈a−1〉−1 = 2/3. Furthermore, in the one-dimensional case hk = 0
for all k ≥ 3 via a straightforward analysis of the recurrent relations (23)–(27) (see,
e.g., [23, section 1F]). The latter immediately implies via (30) and (33) that vk = 0
for all k ≥ 1. Taking the above into account specializes the remainder term (45) in
Lemma 3 to

Rε,n(x) = −εn+1
((

aN ′
n+2 + a′Nn+2

) (x
ε

)
Dn+3v0(x)

+εa
(x
ε

)
Nn+2

(x
ε

)
Dn+4v0(x)

)
= − d

dx

(
εn+2a

(x
ε

)
Nn+2

(x
ε

)
Dn+3v0(x)

)
= − d

dx
Φε,n(x),(84)

where

(85) Φε,n(x) := εn+2a
(x
ε

)
Nn+2

(x
ε

)
Dn+3v0(x).

Employing in the above the explicit solutions (82) for Nk and (83) for v0, we arrive
at

(86)

Φε,n(x) =
(−1)n/2εn+2(cos(2πx/ε) + sin(2πx/ε))

21/2(2π)n+2 [3/2 − cos(2πx/ε− π/4)]
Dn+1f(x), n = 2m, m ≥ 1,

Φε,n(x) =
(−1)(n+1)/2εn+2(cos(2πx/ε) − sin(2πx/ε))

21/2(2π)n+2 [3/2 − cos(2πx/ε− π/4)]
Dn+1f(x), n = 2m + 1, m ≥ 0.

(87)

3We remark that the present one-dimensional case is integrable, and an alternative but related
approach for analyzing the error term in the asymptotics is from the exact solution; see Remark 5.
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From (84), by the definition of the H−1 norm, we have

(88) ‖Rε,n; H−1‖2 ≥ C‖Φε,n−〈Φε,n〉 ; L2‖2 = C

(
‖Φε,n; L2‖2 −

∣∣∣∣
∫ 1

0

Φε,n(x)dx

∣∣∣∣
2)

(recalling that C denotes constants whose precise value is insignificant).
With the aim of further bounding (88) from below, we introduce for any given

ε = 1/N and n functions hN (x) as follows:

hN (x) = h(Nx) =
cos(2πNx) + sin(2πNx)

[3/2 − cos(2πNx− π/4)]
, N = 2m,

(89)

hN (x) = h(Nx) =
cos(2πNx) − sin(2πNx)

[3/2 − cos(2πNx− π/4)]
, N = 2m + 1.

We prove the following lemma.
Lemma 6. There exists a constant C such that for any f satisfying (71) and for

all n and N

(90) ‖hNDn+1f ; L2‖2 ≥ C‖Dn+1f ; L2‖2.

Proof. Choosing first n to be even, n = 2m, notice that

‖hN (x)Dn+1f(x); L2‖2 :=

∫ 1

0

(cos(2πNx) + sin(2πNx))
2

[3/2 − cos(2πNx− π/4)]
2

(
Dn+1f

)2
dx

≥ 4

25

∫ 1

0

(cos(2πNx) + sin(2πNx))
2 (

Dn+1f
)2

dx

=
4

25
‖ (cos(2πNx) + sin(2πNx))Dn+1f(x); L2‖2.

We next notice that for n even and for f given by (71) Dn+1f is represented by a
sine Fourier series, implying that cos(2πNx)Dn+1f(x) and sin(2πNx)Dn+1f(x) are
orthogonal in L2(0, 1) and hence

‖ (cos(2πNx) + sin(2πNx))Dn+1f(x); L2‖2 ≥ ‖ cos(2πNx)Dn+1f(x); L2‖2.

Further,

gNn(x) := cos(2πNx)Dn+1f(x) =
1

2

∑
k∈Z

(
e2iπNx + e−2iπNx

)
(2iπk)n+1fke

2iπkx

=
1

2

∑
m∈Z

e2iπmx
[
(i2π(m−N))n+1fm−N + (i2π(m + N))n+1fm+N

]
.
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Hence, applying the Plancherel theorem,

‖gNn(x); L2‖2 =
(2π)2n+2

4

∑
m∈Z

[
(m−N)n+1fm−N + (m + N)n+1fm+N

]2

≥ (2π)2n+2

4

∞∑
m=N+1

[
(m−N)n+1fm−N + (m + N)n+1fm+N

]2

≥ (2π)2n+2

4

∞∑
m=N+1

(
(m−N)n+1fm−N

)2
=

(2π)2n+2

4

∞∑
m=1

(
mn+1fm

)2

=
(2π)2n+2

8

∑
m∈Z

(
mn+1fm

)2
=

1

8
‖Dn+1f(x); L2‖2.

In the latter we have used the nonnegativity of Fourier coefficients fk, their symmetry
(f−k = fk), and the fact that 〈f〉 = 0 (hence f0 = 0).

The above proves the lemma for even n. The proof for odd n is fully analogous,
with the sign alteration between the “sine” and “cosine” terms, then noticing that
Dn+1f is represented by a cosine Fourier series, and then using the orthogonality and
neglecting the sine term as before.

We next aim at showing that, at least for sufficiently large n, the last term in the
right-hand side of (88) can be bounded from the above as in (90) but with a smaller
constant.

Lemma 7. For any f satisfying (74) with B1 = B2 there exists n0 > 0 such that
for all n > n0 and all N

(91)
〈
hN (x)Dn+1f(x)

〉2
:=

∣∣∣∣
∫ 1

0

hN (x)Dn+1f(x)dx

∣∣∣∣
2

≤ 1

2
C‖Dn+1f(x); L2‖2,

where C is same as in Lemma 6.
Proof. The Fourier series of hN (x) has the form

(92) hN (x) =
∑
�∈Z

h� exp(i2πN	x),

with {h�} being two possible sets of (rapidly decaying) Fourier coefficients (for N even
and odd, according to (89)), independent of N for all 	 ∈ Z. Then,

〈
hN (x)Dn+1f(x)

〉2
=

∣∣∣∣∣
∑
�∈Z

h�(2πN	)n+1f−N�

∣∣∣∣∣
2

≤ (2π)2n+2 max
k∈N

(
k2n+2f2

k

)(∑
�∈Z

|h�|
)2

≤ H(2π)2n+2 max
t≥0

φn(t)

≤ H(2π)2n+2

(
β

eB1
(n + 1)

)2β(n+1)

,(93)

where

(94) φn(t) := t2n+2 exp
(
−2B1t

1/β
)

and H is independent of N and n.
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On the other hand, we have

‖Dn+1f ; L2‖2 = (2π)2n+2
∑
k∈Z

k2n+2f2
k ≥ A1(2π)2n+2

∑
k∈Z

φn(|k|)

≥ 2A1(2π)2n+2

(∫ ∞

0

φn(t)dt− max
t≥0

φn(t)

)

= 2A1(2π)2n+2

(∫ ∞

0

φn(t)dt−
(

β

eB1
(n + 1)

)2β(n+1))
(95)

using the fact that φn(t), t ≥ 0, has a single maximum for any n. Further, we estimate

(96)

∫ ∞

0

φn(t)dt = β(2B1)
−β(2n+3)Γ((2n + 3)β) ≥ C

(
β

eB1
(n + 1)

)2β(n+1)

nβ−1/2

with some C > 0, having used

(97) Γ((2n + 3)β) ≥ c

(
(2n + 3)β

e

)(2n+3)β−1/2

with some c > 0 which is a direct implication of the Stirling formula (11), and then
performing further straightforward manipulations.

Comparing finally (93) with (95) and (96), we conclude that

〈
hN (x)Dn+1f(x)

〉2 ≤ cn1/2−β‖Dn+1f(x); L2‖2

with some c > 0, and hence (91) holds with appropriate choice of n0.
Now we complete the proof of Theorem 5. Let C be a constant from Lemma 6

and let n0 be as in Lemma 7. Denote

GnN := ‖hN (x)Dn+1f(x); L2‖2 −
〈
hN (x)Dn+1f(x)

〉2

=

∫ 1

0

(
hN (x)Dn+1f(x) −

〈
hN (x)Dn+1f(x)

〉)2

dx > 0.(98)

(GnN is strictly positive for any n and N since hN (x)Dn+1f(x) is not a constant: hN

vanishes at some points, but Dn+1f(x) is clearly not identically zero.)
By Lemmas 6 and 7, for any N and for any n > n0

(99) GnN ≥ 1

2
C‖Dn+1f(x); L2‖2.

Further, for any 0 < n ≤ n0

(100) lim
N→∞

GnN = C1‖Dn+1f(x); L2‖2,

where

C1 :=

〈(
hN − 〈hN 〉

)2〉
> 0

is N -independent positive constant by (89). (A standard way to establish (100) is
to subtract from h2

N and hN in (98) their means, represent the resulting zero-mean
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periodic functions as derivatives of other periodic functions, and then integrate by
parts.) It follows from (100) that there exists C2 > 0 such that

GnN ≥ C2‖Dn+1f(x); L2‖2

for any N and for any n ≤ n0. Combining the latter with (99) implies that

(101) GnN ≥ C3‖Dn+1f(x); L2‖2

for all n and N with C3 = min(C/2, C2).
Next, from (86)–(87)

(102)

‖Φε,n(x) − 〈Φε,n〉 ; L2‖2 =
1

4

( ε

2π

)2n+4

GnN ≥ C4

( ε

2π

)2n+4

‖Dn+1f(x); L2‖2.

Using again the lower bounds in (95)–(97) implies

‖Dn+1f(x); L2‖2 ≥ Cn
5 n

2βn

with some C5 > 0, which combined with (102) yields

(103) ‖Φε,n(x) − 〈Φε,n〉 ; L2‖ ≥ Cn
6 ε

n+2nβn.

Now, by uniform continuity of Lε as an operator from H1 to H−1, we have

(104) ‖uε,n − uε ; H1(T)‖ ≥ ‖uε,n − 〈uε,n〉 − uε ; H1(T)‖ ≥ C‖Rε,n(x); H−1‖.

Combining this with (88) and (103) implies

(105) ‖uε,n − uε ; H1(T)‖ ≥ Cn
7 ε

n+2nβn.

We can now “optimize” the lower bound (105) for any fixed small ε by choosing
n = n(ε) so that the right-hand side of (105) is minimized:

(106) ‖uε,n − uε ; H1(T)‖ ≥ ε2 min
t≥1

[
(C7ε)

ttβt
]
.

The latter minimum is attained at

(107) t = e−1(C7ε)
−1/β ;

substituting this back into (106), we finally obtain a lower bound of the form

(108) ‖uε,n − uε ; H1(T)‖ ≥ ε2 exp

[
−βe−1(C7ε)

−1/β

]
.

Finally, since obviously there exists such a positive constant C̃1 such that ε2 >
C̃1 exp(−ε1/β) for any 0 < ε ≤ 1 , (108) implies (79) for any 0 < ε ≤ 1, for example,

with the above C̃1 and C̃2 = βe−1C
−1/β
7 + 1. The theorem is proved.

We conclude from Theorem 5 that up to the choice of the constants C1, C2 > 0, the
main error estimate (17) in Theorem 1 is sharp, at least for the above one-dimensional
case. Note also that the above lower bound (79) was obtained by “optimizing” the
lower bound (105) for a given small ε by choosing n = n(ε) in the range given by
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(107), which is consistent with (16) for the upper bound. In this sense, the range of
truncation given by (16) is also “optimal.”

Remark 5. Notice that the present one-dimensional case is “integrable” and that
Theorem 5 could have been alternatively derived from the exact solution of (69):

(109) uε(x) =

∫ x

0

(F (s) −Aε) a−1
(s
ε

)
ds − Bε,

where F (x) := −
∫ x

0
f(t)dt is periodic, Aε := 〈F (·)a−1(·/ε)〉〈a−1〉−1, and Bε :=∫ 1

0
(F (s)−Aε)a−1(s/ε)(1−s)ds. One then employs a−1(x/ε) = 〈a−1〉+ε〈a−1〉 d

dxN1(x/ε)
(cf. (80)), in (109) and integrates by parts. Then employing iteratively (81) and inte-
grating by parts n times is expected to explicitly reproduce uε,n, with the rest being
the “error term.” The latter would then still have to be analyzed in a fashion similar
if not identical to that in the above proofs (the details are omitted).

Remark 6. The same arguments (Lemmas 6 and 7) can be used to obtain lower
bounds of finite order in ε if f ∈ HM but f /∈ HM+1 for some M ∈ N. Namely, on one
hand, only a finite number of terms in the asymptotic expansion can be constructed.
On the other hand, for each such n (from a finite set) a lower bound of the form (105)
holds with appropriate choice of C7. Optimizing finally with respect to the final set of
lower bounds (105), one arrives at an unimprovable polynomial lower bound. On the
other hand, if f ∈ C∞(T) and is not from any Gevrey-type class with no other control
on the growth of its H l norms for large l (equivalently, on ‖Dn+1f ;L2‖ for large n),
there is no control on the “coefficients” multiplying εn+2 in the error bounds for large
n (cf. (104), (86)–(88)), which does not allow us to improve the homogenization in all
orders any further. This indicates the importance of the Gevrey extreme regularity
of f for the exponential lower bounds.

Remark 7. For analytic f(x) Theorems 1 and 5, i.e., the exponential upper bound
(17) and lower bound (79), respectively, both hold with β = 1. The “rate” of the
exponential decay is then determined by the values of the constants C2 and C̃2 in
(17) and (79). By tracing back the proofs of both theorems, one observes that these
constants are dependent on the rate of the exponential decay of the Fourier coefficients
of f , i.e., by the constants c2 in (9) and B1 in (74). On the other hand, for analytic
f , the latter constants are directly related to the “width” of analytic continuation of
f(x) into the complex plane off the real axis, i.e., the absolute value of the imaginary
part of the “first singularity”; for example, f in (78) has a pole in x = ±i/(2π),
corresponding to B1 = 1. In this sense one could argue that the rate of exponential
error bound for analytic f is determined by the nearest singularity in the analytic
continuation.
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MAGNETIC FIELD-INDUCED INSTABILITIES IN LIQUID
CRYSTALS∗

FANGHUA LIN† AND XING-BIN PAN‡

Abstract. We use the Landau–de Gennes model to investigate the magnetic field-induced
instabilities in liquid crystals. In particular, we examine the change of weak and strong stabilities in
the pure smectic states and in the pure nematic states. Motivated by de Gennes’ discovery on the
analogies between liquid crystals and superconductors, we introduce critical magnetic fields Hs and
Hsh. The pure smectic states lose their global minimality (strong stability) at Hs and lose their local
minimality (weak stability) at Hsh. We also examine the change of stability in the pure nematic
states. We show in the case of equal elastic coefficients that a liquid crystal in a sufficiently strong
magnetic field will not be in a pure nematic state, which exhibits a significant difference between the
Landau–de Gennes model for liquid crystals and the Ginzburg–Landau model for superconductivity.

Key words. liquid crystal, phase transition, critical magnetic field, Landau–de Gennes model
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1. Introduction. A liquid crystal configuration will change its stability under
applied electric or magnetic fields. The classical mathematical description of transi-
tions of stabilities in nematic liquid crystals under applied magnetic fields is given by
introducing a magnetic energy density −χ(H ·n)2 to the classical Oseen–Frank energy
density FN (n,∇n) of nematic liquid crystals to obtain a modified energy functional
(one may call it the Oseen–Frank model with magnetic effect):∫

Ω

{FN (n,∇n) − χ(H · n)2}dx.

Here n : Ω̄ → S
2 denotes the director field of the nematic liquid crystals, H is an

applied magnetic field, and χ is a positive parameter; see [E], [dGP, p. 287], [K],
[HKL], and [CL]. It was widely accepted that adding the term χ(H · n)2 into the
Oseen–Frank energy is only a lower order perturbation from an analysis point of view
and that one does not expect substantially new phenomena. The physical phenomena,
however, say otherwise (see [LL, section 2.2]).

In this paper we consider the influence of magnetic fields on the states of liquid
crystals and on phase transitions from a nematic state to a smectic state. We shall
work in the framework of the Landau–de Gennes theory [dGP]. According to this
theory, the states and phase transitions of nematic to smectic liquid crystals can
be described by the minimizers (ψ,n) of Landau–de Gennes energy, where ψ is a
complex-valued function called order parameter and n is the director field. This
model was proposed by de Gennes when he discovered the analogies of liquid crystals
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and superconductors; see [dG], [dGP]. To understand the effects of magnetic fields
on liquid crystals, including nematics and smectics phase transitions, we follow the
earlier work of Ericksen [E] by introducing the term −χ(H · n)2 to the Landau–
de Gennes model to get a modified energy functional (which one may refer to as
the Landau–de Gennes model with magnetic effect). We then examine the behavior
of minimizers of the functional when the applied magnetic fields vary. Throughout
this paper we consider the strong anchoring condition, which is simply the Dirichlet
boundary condition on the director fields:

n = u0 on ∂Ω,

where u0 ∈ C1(∂Ω,S2). As in [HKL], we can drop the divergence term (surface
energy) in the Oseen–Frank energy. For simplicity, we also assume, as in [P2], [P4],
that the bend and twist coefficients in the Oseen–Frank energy functional are equal:
K2 = K3. This leads to a simplified form of the Landau–de Gennes energy functional
with an applied magnetic field
(1.1)

E [ψ,n] =

∫
Ω

{
|∇qnψ|2 +

κ2

2
(1 − |ψ|2)2 + K1|divn|2 + K2|curln|2 − χ(H · n)2

}
dx,

where κ, K1, K2, and χ are positive constants and q is a real number. Without loss
of generality we shall always assume that q ≥ 0. We may write the functional as

E [ψ,n] = G[ψ,n] + F [n] −
∫

Ω

χ(H · n)2dx,

where

F [n] =

∫
Ω

{K1|divn|2 + K2|curln|2}dx

is the simplified Oseen–Frank energy for nematics and

G[ψ,n] =

∫
Ω

{
|∇qnψ|2 +

κ2

2
(1 − |ψ|2)2

}
dx

is the Ginzburg–Landau energy of smectics. The functional E is well defined in the
space

W 1,2(Ω,C) ×W 1,2(Ω,S2,u0),

where W 1,2(Ω,C) is the usual Sobolev space of complex valued functions and

W 1,2(Ω,S2,u0) = {u ∈ W 1,2(Ω,R3) : |u(x)| = 1 a.e. in Ω, u = u0 on ∂Ω}.

Analysis shows that the minimizers of E undergo complicated changes when the
applied fields vary, indicating that magnetic fields have a very important influence
on phase transitions of liquid crystals. To make our presentations more explicit so
that one can compare our analysis with numerical computations as well as physical
experiments, in this paper (except in section 2) we shall restrict ourselves to a simple
situation where the applied field H and the boundary data u0 are a pair of constant
vectors orthogonal to each other; i.e., we assume that

(1.2) H = σh, u0 = e,
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where σ is a positive number measuring the strength of the applied magnetic field
and h and e are unit vectors such that h · e = 0. The energy functional can then be
rewritten as

(1.3) E [ψ,n] = G[ψ,n] + F [n] − χσ2

∫
Ω

(h · n)2dx.

We shall write

Fσh[n] = F [n] − χσ2

∫
Ω

(h · n)2dx

=

∫
Ω

{K1|divn|2 + K2|curln|2 − χσ2(h · n)2}dx.

Under the above assumptions, one can easily see that the energy functional E has
two families of trivial critical points. One is given by

(1.4) ψ = 0, n = nσ,

where nσ is a global minimizer of Fσh:

Fσh[nσ] = inf
n∈W 1,2(Ω,S2,e)

Fσh[n].

The second family is

(1.5) ψ = ceiqe·x, n = e,

where c is an arbitrary complex number such that |c| = 1. Following de Gennes’ view
on the analogies of superconductors and liquid crystals, we may compare the family
(1.4) with the normal state of superconductors and call them pure nematic states and
compare the family (1.5) with the Meissner state of superconductors and call them
pure smectic states. We shall see in section 5 (Lemma 5.1) that nσ = e if σ is below
a critical field Hn(0). Hence for 0 ≤ σ < Hn(0), the only pure nematic state is (0, e).

In this paper we shall introduce critical magnetic fields Hsh and Hs, where the
pure smectic states change their weak stability (local minimality) at Hsh and change
their strong stability (global minimality) at Hs.

One of the main goals of the paper is to show that
(i) if 0 ≤ σ < Hs(κ, q), the pure smectic states are the only global minimizers of

the functional E ;
(ii) if Hs(κ, q) < σ < Hsh(q), the pure smectic states are local minimizers but

not global minimizers; and
(iii) if σ > Hsh(q), the pure smectic states are not local minimizers.

We shall also give a criterion to test the minimality of the pure nematic states.
One believes that the critical field Hsh given here is an analogy of the superheating

field of superconductors.1 One may also expect existence of a critical magnetic field
for liquid crystals that is an analogy of the upper critical magnetic field HC3 for type
II superconductors.2 However, we are not able to provide a formal result to verify that

1See recent mathematical research on the superheating field for cylindrical superconductors by
Chapman [Ch2], Lin and Du [LD], and Pan and Kwek [PK] and for bulk superconductors by Bates
and Pan [BP].

2Nucleation of superconductivity and the upper critical field for type II superconductors have been
studied by many mathematicians in recent years, among them Chapman [Ch1], Bauman, Phillips,
and Tang [BPT], Bernoff and Sternberg [BS], Lu and Pan [LP1], [LP2], Helffer and Pan [HP], Helffer
and Morame [HM1], [HM2], and Pan [P1], [P3].
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this simple analogy exists, as liquid crystals and superconductors may have different
responses in strong magnetic fields. In fact, when applied magnetic fields are above
HC3 , superconductors will be in the normal state, i.e., the normal state is the global
minimizer of the Ginzburg–Landau functional. However, a liquid crystal under very
strong magnetic fields may not be in a pure nematic state. Indeed, in section 5, we
will give a proof of this conclusion in the case that K1 = K2.

Besides the normal and Meissner states, a superconductor may be in the so-called
mixed state or in the surface superconducting state. Liquid crystals may also have
many phases. Naturally, one is interested in various intermediate states of liquid
crystals that can be described by nontrivial minimizers of E . One also wishes to
understand phase transitions between these states, as applied magnetic fields vary.
We leave these problems to the future.

The outline of this paper is as follows. In section 2 we recall the concept of
weak stability used by Cohen and Luskin [CL]. In section 3 we examine the weak
instability in pure smectic states induced by external magnetic fields, and we introduce
the critical magnetic field Hsh. In section 4 we introduce the critical field Hs. We also
introduce an auxiliary field Hn and show that Hs ≤ Hn ≤ Hsh. We then discuss the
properties of these critical fields. In section 5 we examine the minimality of the pure
nematic states. We then prove in the case of equal elastic coefficients that a liquid
crystal under a strong magnetic field may not be in a pure nematic state.

We should point out that there exist many mathematical research works on liquid
crystals done by physicists and mathematicians; see, for instance, [dGP], [K], [B],
[E], [HKL], [L1], [L2], [L3], [LL], and the references therein. The magnetic field-
induced instabilities and the Freedericksz transitions of nematic liquid crystals have
been investigated in some simple cases by Cohen and Luskin [CL] and Atkin and
Stewart [AS1], [AS2]. For recent work on the Landau–de Gennes model we refer to
[Ca] and [BCLP].

2. Weak stability of critical points. In this section we consider the functional
E defined in (1.1) for a general magnetic field H. Following the earlier works [H], [CT],
and [CL], we define the weak stability of critical points of E as follows.

Definition 2.1. (ψ0,n0) ∈ W 1,2(Ω,C)×W 1,2(Ω,S2,u0) is called a critical point
of the functional E if for any φ ∈ W 1,2(Ω,C) and v ∈ W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3), we
have

d

dt

∣∣∣
t=0

E [ψt,nt] = 0;

here

(2.1) ψt = ψ0 + tφ, nt =
n0 + tv

|n0 + tv| .

A critical point (ψ0,n0) is said to be weakly stable if for any φ ∈ W 1,2(Ω,C) and
v ∈ W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3), there exists a positive number T depending on φ and
v such that for all 0 < t < T it holds that

E [ψ0,n0] ≤ E [ψt,nt].

For ψt and nt given in (2.1), computations show that (also see [CL])

(2.2)

nt = n0 + tn1 + t2n2 + O(t3), where

n1 = v − (v · n0)n0,

n2 = −(v · n0)v +
1

2

[
3(v · n0)

2 − |v|2
]
n0,
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and

(2.3)

∇qnt
ψt = ∇qn0

ψ0 + tΦ1 + t2Φ2 + O(t3), where

Φ1 = ∇qn0φ− iqn1ψ0,

Φ2 = −iq(n1φ + n2ψ0).

For small t, we have

G[ψt,nt] = G[ψ0,n0]

+ 2t

∫
Ω

{
�[∇qn0

φ∇qn0
ψ0 − κ2φ̄(1 − |ψ0|2)ψ0] − qn1	(ψ̄0∇qn0

ψ0)
}
dx

+ t2
∫

Ω

{
|Φ1|2 − κ2(1 − |ψ0|2)|φ|2 + 2κ2(�(φ̄ψ0))

2 − 2q	[(n1φ̄ + n2ψ̄0)∇qn0ψ0]
}
dx

+ O(t3);

F [nt] = F [n0] + 2t

∫
Ω

{K1divn0 divn1 + K2curln0 · curln1}dx

+ t2
∫

Ω

{
K1[(divn1)

2 + 2divn0 divn2] + K2[|curln1|2 + 2curln0 · curln2]
}
dx

+ O(t3);

and ∫
Ω

(H · nt)
2dx =

∫
Ω

(H · n0)
2dx + 2t

∫
Ω

(H · n0)(H · n1)dx

+ t2
∫

Ω

{(H · n1)
2 + 2(H · n0)(H · n2)}dx.

So

(2.4)

E [ψt,nt] = E [ψ0,n0]

+ 2t

{
A(ψ0,n0;φ,v) − χ

∫
Ω

(H · n0)(H · n1)dx

}

+ t2
{
B(ψ0,n0;φ,v) − χ

∫
Ω

{(H · n1)
2 + 2(H · n0)(H · n2)}dx

}
+ O(t3),

where

(2.5)

A(ψ0,n0;φ,v) =

∫
Ω

{
�[∇qn0

φ∇qn0
ψ0 − κ2φ̄(1 − |ψ0|2)ψ0] − qn1	(ψ̄0∇qn0

ψ0)

+ K1divn0 divn1 + K2curln0 · curln1

}
dx

and

(2.6)

B(ψ0,n0;φ,v)

=

∫
Ω

{
|∇qn0

φ− iqn1ψ0|2 − κ2(1 − |ψ0|2)|φ|2 + 2κ2[�(φ̄ψ0)]
2

− 2q	[(n1φ̄ + n2ψ̄0)∇qn0ψ0] + K1[(divn1)
2 + 2divn0 divn2]

+ K2[|curln1|2 + 2curln0 · curln2]
}
dx.
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Therefore we have the following conclusions.
Lemma 2.2. (ψ0,n0) ∈ W 1,2(Ω,C) × W 1,2(Ω,S2,u0) is a critical point of the

functional E if and only if for any φ ∈ W 1,2(Ω,C) and v ∈ W 1,2
0 (Ω,R3) ∩ L∞(Ω,R3)

it holds that

(2.7) A(ψ0,n0;φ,v) − χ

∫
Ω

(H · n0)(H · n1)dx = 0.

If a critical point (ψ0,n0) ∈ W 1,2(Ω,C) × W 1,2(Ω,S2,u0) is weakly stable, then for
any φ ∈ W 1,2(Ω,C) and v ∈ W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3) we have

(2.8) B(ψ0,n0;φ,v) ≥ χ

∫
Ω

{(H · n1)
2 + 2(H · n0)(H · n2)}dx.

Remark 2.1. From (2.7) we see that if (ψ,n) is a critical point of E , then it
satisfies the equation

(2.9)

{
−∇2

qnψ = κ2(1 − |ψ|2)ψ in Ω,

∇qnψ · ν = 0 on ∂Ω.

3. Magnetic field-induced instability: Loss of local minimality of pure
smectic states. Henceforth, we assume H = σh and u0 = e as in (1.2), where σ is
a positive number, h and e are unit vectors such that h · e = 0, and we assume the
functional E is given by (1.3). We shall examine, in this section, the weak stability of
the critical points given in (1.5) that correspond with a pure smectic state. For any
v ∈ W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3), let ψt and nt be defined by (2.1). In the present case
we have

n1 = v − (v · e)e, H · n1 = σ(v · h).

Using Lemma 2.2 we conclude that if the critical point (ψ0,n0) = (ceiqe·x, e) given in
(1.5) is weakly stable, then for any φ ∈ W 1,2(Ω,C) and v ∈ W 1,2

0 (Ω,R3)∩L∞(Ω,R3)
there holds that

(3.1) B(ψ0,n0;φ,v) ≥ χσ2

∫
Ω

|v · h|2dx.

Note that W 1,2
0 (Ω,R3) ∩ L∞(Ω,R3) is dense in W 1,2

0 (Ω,R3). If the above inequality
holds for all v ∈ W 1,2

0 (Ω,R3)∩L∞(Ω,R3), then it must hold for all v ∈ W 1,2
0 (Ω,R3).

With the particular choice of H and n0 given in (1.2), we can simplify the ex-
pression of B(ψ0,n0;φ,v). Since

∇qn0ψ0 = 0, |ψ0| = 1,

we have

B(ψ0,n0;φ,v)

=

∫
Ω

{|∇qn0φ− iqn1ψ0|2 + 2κ2(�(φ̄ψ0))
2 + K1|divn1|2 + K2|curln1|2}dx.

For any φ ∈ W 1,2(Ω,C), one can always write

φ = icqeiqn0·xu, where u ∈ W 1,2(Ω,C).
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Thus

∇qn0φ− iqn1ψ0 = icqeiqn0·x(∇u− n1),

�(φ̄ψ0) = |c|2�(iqu) = −q	(u).

Here we have used the condition |c| = 1. Let us change the notation by writing w for
n1, namely,

n1 = w ∈ W 1,2
0 (Ω,R3), w(x) · e = 0 in Ω.

Then one has

B(ψ0,n0;φ,v) =

∫
Ω

{q2|∇u− w|2 + 2κ2q2(	(u))2 + K1|divw|2 + K2|curlw|2}dx.

Obviously, if (φ,v) is such that B(ψ0,n0;φ,v)/‖v · h‖2
L2(Ω) is minimal, then

u = − i

cq
e−iqn0·xφ

is real-valued. Thus it suffices to consider u as a real-valued function for our purposes,
and we write

B(ψ0,n0;φ,v) = B(u,w),

where

(3.2) B(u,w) =

∫
Ω

{q2|∇u− w|2 + K1|divw|2 + K2|curlw|2}dx.

We define now a nonnegative number Hsh as follows.
Definition 3.1. Given q ≥ 0, K1 > 0, K2 > 0, and a pair of mutually orthogonal

unit vectors h and e, we define Hsh = Hsh(q,K1,K2,Ω,h, e) by

(3.3)

H2
sh =

1

χ
inf

{
q2‖∇u− w‖2

L2(Ω) + F [w]∫
Ω
|h · w|2dx :

(u,w) ∈ W 1,2(Ω) ×W 1,2
0 (Ω,R3), w(x) · e = 0 in Ω

}
.

From the above discussion we have the next lemma.
Lemma 3.2. Under condition (1.2), the pure smectic states lose their weak sta-

bility when σ increases to the critical value Hsh. More precisely, a pure smectic state
is weakly stable if |σ| < Hsh, and it is not weakly stable if |σ| > Hsh.

We may further simplify the expression in the right-hand side of (3.3). Note that
if (u,w) is a minimizer of Hsh, then

u = ξw,

where ξw is a solution of

(3.4) Δξw = divw in Ω,
∂ξw
∂ν

= γνw on ∂Ω,

∫
Ω

ξwdx = 0,
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where γνw is the trace of w on the boundary, which is equal to the restriction of ν ·w
on ∂Ω when w is smooth. Moreover,∫

Ω

|∇ξw − w|2dx = ω(w)|Ω|,

where

(3.5) ω(w) = inf
ξ∈W 1,2(Ω)

∫
−

Ω

|∇ξ − w|2dx.

Write

(3.6) B(w) = B(ξw,w).

Obviously we have, for any b > 0,

ξbw = bξw.

Thus

B(bw) = bB(w).

We have therefore verified

(3.7)

H2
sh =

1

χ
inf

{
B(w) : w ∈ W 1,2

0 (Ω,R3), w(x) · e = 0 in Ω, ‖h · w‖L2(Ω) = 1
}
.

Note that the minimizers (ψ0,n0) given in (1.5) contain a complex number c.
However, B(u,w) and B(w) are independent of c.

In the following, we write Hsh by Hsh(q) to emphasize the dependence on the
parameter q. We will see in section 5 that the critical value Hsh(0) is particularly
interesting:
(3.8)

H2
sh(0) =

1

χ
inf

{
F [w] : w ∈ W 1,2

0 (Ω,R3), w(x) · e = 0 in Ω, ‖h · w‖L2(Ω) = 1
}
.

Proposition 3.3. Hsh(q) > 0 and it is achieved. For fixed K1, K2, Ω, h, e, we
have

(3.9) lim
q→+∞

Hsh(q) = ∞.

Proof. Step 1. Let wj ∈ W 1,2
0 (Ω,R3) and ξj = ξwj be such that

wj · e = 0 in Ω, ‖wj · h‖L2(Ω) = 1, B(wj) → χH2
sh as j → ∞.

Since wj ∈ W 1,2
0 (Ω,R3), we have∫

Ω

|∇wj |2dx =

∫
Ω

{|divwj |2 + |curlwj |2}dx ≤ 1

min{K1,K2}
B(wj) ≤ C.

Hence {wj} is bounded in W 1,2
0 (Ω,R3). After passing to a subsequence we may

assume that, as j → ∞,

wj → w0 weakly in W 1,2
0 (Ω,R3) and strongly in L2(Ω,R3).
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Then w0(x) · e = 0 for a.e. x ∈ Ω. We also have∫
Ω

|∇ξj − wj |2dx ≤ 1

q2
B(wj) ≤ C.

From this and the fact
∫
Ω
ξjdx = 0, we see that {ξj} is bounded in W 1,2(Ω). Note

that

‖divwj‖2
L2(Ω) ≤ C(Ω)‖wj‖2

W 1,2(Ω) ≤ C,

and wj = 0 on ∂Ω. Applying elliptic estimates to (3.4) for ξj with w = wj , we find
that {ξj} is bounded in W 2,2(Ω). Passing to a subsequence we have ξj → ξ0 weakly
in W 2,2(Ω) and strongly in W 1,2(Ω) as j → ∞, and ξ0 satisfies (3.4) for w = w0.
Thus ξ0 = ξw0

. Hence we have proved that

B(w0) = B(ξw0 ,w0) ≤ lim inf
j→∞

B(ξj ,wj) = χH2
sh.

On the other hand, since ‖w0 · h‖L2(Ω) = limj→∞ ‖wj · h‖L2(Ω) = 1, we have

B(w0) ≥ χH2
sh(q).

Thus w0 is a minimizer of B(w), i.e., (ξ0,w0) achieves Hsh(q). It in turn implies that
Hsh(q) > 0.

Step 2. Suppose Hsh(q) ≤ c for all q. We may assume e = e1. Let us choose
qj → +∞ and choose uj ∈ W 1,2(Ω) and wj ∈ W 1,2

0 (Ω,R3) such that
∫
Ω
ujdx = 0,

e1 · wj = 0, and (uj ,wj) achieves Hsh(qj). Thus∫
Ω

{q2
j |∇uj − wj |2 + K1|divwj |2 + K2|curlwj |2}dx ≤ χc2

∫
Ω

(h · wj)
2dx.

In particular, one has ‖divwj‖L2(Ω) ≤ C and ‖curlwj‖L2(Ω) ≤ C. Recall that for a
bounded and simply connected domain with smooth boundary, the following inequal-
ity holds:

(3.10)

‖B‖Hk+1(Ω) ≤ C(Ω, k)

{
‖divB‖Hk(Ω) + ‖curlB‖Hk(Ω) +

∥∥∥∥ ν · B
ν × B

∥∥∥∥
Hk+1/2(∂Ω)

}
,

where
∥∥ ν · B
ν × B

∥∥
Hk+1/2(∂Ω)

means either ‖ν · B‖Hk+1/2(∂Ω) or ‖ν × B‖Hk+1/2(∂Ω); see

Theorem 3 on p. 209 and Proposition 6 on p. 237 in [DL]. Since wj ∈ W 1,2
0 (Ω,R3),

from the above inequalities we see that {wj} is bounded in W 1,2
0 (Ω,R3). After passing

to a subsequence we may assume that

wj → ŵ weakly in W 1,2
0 (Ω,R3) and strongly in L4(Ω,R3) as j → ∞.

In particular, ‖ŵ‖L2(Ω) = 1. Since ‖∇uj −wj‖L2(Ω) = O(q−1
j ) and wj → ŵ strongly

in L2(Ω,R3), we conclude that

uj → û strongly in W 1,2(Ω) and ∇û = ŵ.

In particular, ∂û
∂x1

= e1 · ∇û = e1 · ŵ = 0, and hence û = û(x2, x3). On the other

hand, via the W 2,2-estimates for uj ’s described in the first step, one concludes that
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∇û = w = 0 on ∂Ω. These two facts together imply that ∇û = 0 on the whole Ω, and
hence w = ∇û = 0, which contradicts the fact that ‖ŵ‖L2(Ω) = 1. This completes
the proof.

Now we derive the Euler–Lagrange equation for the minimizers of Hsh. We can
rotate the coordinate system and assume without loss of generality that h = e1 and
u0 = e3. Hence

H = σe1 = (σ, 0, 0), u0 = e3 = (0, 0, 1),

and

w = (w1, w2, 0), w · h = w1.

Define an operator

P : R
3 → R

2, P (x1, x2, x3) = (x1, x2).

Let w = (w1, w2, 0) be a minimizer of Hsh. Then w satisfies the following Euler–
Lagrange equations:{

P (−K1∇divw + K2 curl2w + q2(w −∇ξw)) = (χH2
shw1, 0) in Ω,

w = 0 on ∂Ω.

In the special case when K1 = K2 ≡ K we have

(3.11)

⎧⎪⎨
⎪⎩

−KΔw1 + (q2 − χH2
sh)w1 = q2∂1ξw,

−KΔw2 + q2w2 = q2∂2ξw in Ω,

w1 = w2 = 0 on ∂Ω.

We would like to point out that (3.7) defines a minimization problem under the
pointwise orthogonality condition

(3.12) w(x) · e = 0 for all x ∈ Ω.

It is the orthogonality condition (3.12) that makes the minimization problem for
Hsh interesting. In particular, from (3.9) we see that, for fixed h, e, K1 and K2 >
0, Hsh(q) diverges as q → ∞. In contrast, if we consider a similar minimization
problem formulated by removing the orthogonality condition (3.12) from the definition
of Hsh(q) and define H̃(q) = H̃(q,K1,K2,Ω,h) by

H̃2(q) =
1

χ
inf

{
B(w) : w ∈ W 1,2

0 (Ω,R3), ‖h · w‖L2(Ω) = 1
}
,

then there exists a constant C independent of q such that

(3.13) H̃(q) ≤ C

(
K1

χ

)1/2

for all q.

To prove (3.13), we assume h = e1. For any u ∈ W 2,2(Ω) such that ∇u = 0 on ∂Ω,
take w = ∇u. Then

B(∇u) = B(u,∇u) = K1‖Δu‖2
L2(Ω).

Therefore (3.13) holds with C defined by

C = inf

{
‖Δu‖2

L2(Ω)

‖∂1u‖2
L2(Ω)

: u ∈ W 2,2(Ω), ∇u = 0 on ∂Ω

}
.
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4. Magnetic field-induced instabilities: Loss of global minimality of
pure smectic states. In this section we examine the change of the global minimality
of the pure smectic states when the applied magnetic fields vary. For a pure smectic
state (ψ0,n0) given in (1.5), we have

h · n0 ≡ 0 in Ω, E [ψ0,n0] = 0.

Now we consider a global minimizer (ψ,n) of the functional E in the space W 1,2(Ω,C)×
W 1,2(Ω,S2,u0). A simple computation shows that if the global minimizer (ψ,n) is
not a pure smectic state, then h · n ≡ 0 in Ω, and E [ψ,n] ≤ E [ψ0,n0] ≤ 0. (See
Lemma 5.1 for a similar discussion for minimizers of the functional Fσh.) Therefore

G[ψ,n] + F [n] ≤ χσ2

∫
Ω

(h · n)2dx.

This observation leads to the following definition.
Definition 4.1. Given q ≥ 0, κ > 0, K1 > 0, K2 > 0, and given a pair of mutu-

ally orthogonal unit vectors h and e, the critical magnetic field Hs = Hs(q, κ,K1,K2,
Ω,h, e) is defined by

(4.1)

H2
s =

1

χ
inf

{
G[ψ,n] + F [n]∫

Ω
(h · n)2dx

: (ψ,n) ∈ W 1,2(Ω,C) ×W 1,2(Ω,S2, e), h · n ≡ 0

}
.

The critical field Hs can be used to test whether the pure smectic states are global
minimizers. If we fix the parameters κ, q, K1, and K2, then the pure smectic states
remain as global minimizers for small σ, and they lose the global minimality when σ
increases and reaches the critical field Hs.

Lemma 4.2. Under the above assumptions we have the following:
(i) If there exists a global minimizer (ψ,n) that is not a pure smectic state, then

σ ≥ Hs.
(ii) If σ > Hs, then the global minimizers are not pure smectic states.
(iii) If 0 ≤ σ < Hs, then the only global minimizers are the pure smectic states.
In the following, we write Hs as Hs(κ, q) to emphasize its dependence on the

parameters κ and q. Note that the pure smectic states lose their global minimality
at the critical magnetic field Hs(κ, q) and lose their local minimality at the critical
magnetic field Hsh(q). So we always have

0 < Hs(κ, q) ≤ Hsh(q).

To get a better estimate of Hs(q), we define a number Hn which is closely related to
Hs as follows.

Definition 4.3. The number Hn = Hn(q,K1,K2,Ω,h, e) is defined by

(4.2)

H2
n =

1

χ
inf

{
q2‖∇u− n‖2

L2(Ω) + F [n]∫
Ω
(h · n)2dx

:

(u,n) ∈ W 1,2(Ω) ×W 1,2(Ω,S2, e), h · n ≡ 0

}
.

In the following we write Hn as Hn(q) to emphasize its dependence on q. In
particular,

(4.3) H2
n(0) =

1

χ
inf

{
F [n]∫

Ω
(h · n)2dx

: n ∈ W 1,2(Ω,S2, e), h · n ≡ 0

}
.
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Note that Hn(0) depends on K1, K2, Ω, h, and e.
Lemma 4.4. Hs(κ, 0) is independent of κ. In fact we have

(4.4) Hs(κ, 0) = Hn(0) for all κ.

For any κ and q we have

(4.5) Hs(κ, q) ≥ Hn(0).

Proof. To verify (4.4), we take ψ = 1 as a test function. Equation (4.5) follows
from (4.4) and the definition of Hs(κ, q) immediately.

The following theorem gives the relations between Hs(κ, q), Hn(q), and Hsh(q).
Theorem 4.5. Assume Ω is a simply connected and bounded domain with smooth

boundary.
(i) For all κ > 0, q ≥ 0, we have

(4.6) 0 < Hs(κ, q) ≤ Hn(q) ≤ Hsh(q).

(ii) For any κ and q, if Hs(κ, q) < Hsh(q), then Hs(κ, q) is achieved.
(iii) For any q ≥ 0, if Hn(q) < Hsh(q), then Hn(q) is achieved (and hence

Hs(κ, q) < Hsh(q) and Hs(κ, q) is achieved).
Proof of (i). The inequality Hs(κ, q) ≤ Hn(q) is easy to verify. In fact, for any

φ ∈ W 1,2(Ω) and n ∈ W 1,2(Ω,S2, e) with h ·n ≡ 0, choose (eiqφ,n) as a test function
for Hs(κ, q). It is easy to show that

H2
s (κ, q) ≤ 1

χ

q2‖∇φ− n‖2
L2(Ω) + F [n]∫

Ω
(h · n)2dx

.

Then we take infimum for all such (φ,n) to get the inequality Hs(κ, q) ≤ Hn(q).
To prove Hn(q) ≤ Hsh(q), let u ∈ W 1,2(Ω) and w ∈ W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3),
with e · w ≡ 0 in Ω and h · w ≡ 0. Set

φt = e · x + tqu, nt =
e + tw

|e + tw| = e + tw + O(t2).

Then

q2‖∇φt − nt‖2
L2(Ω) + F [nt]

= t2{q2‖∇u− w + O(t)‖2
L2(Ω) + F [w + O(t)]}

= t2{q2‖∇u− w‖2
L2(Ω) + F [w]} + O(t3),∫

Ω

(h · nt)
2dx = t2

∫
Ω

(h · w)2dx + O(t3).

Hence

q2‖∇φt − nt‖2
L2(Ω) + F [nt]∫

Ω
(h · nt)2dx

=
q2‖∇u− w‖2

L2(Ω) + F [w]∫
Ω
(h · w)2dx

+ O(t).

Letting t → 0 we get

χH2
n(q) ≤

q2‖∇u− w‖2
L2(Ω) + F [w]∫

Ω
(h · w)2dx

.
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Then we take infimum in the right-hand side to get

χH2
n(q) ≤ inf

{
q2‖∇u− w‖2

L2(Ω) + F [w]∫
Ω
(h · w)2dx

:

u ∈ W 1,2(Ω), w ∈ W 1,2
0 (Ω,R3) ∩ L∞(Ω,R3), e · w ≡ 0, h · w ≡ 0

}
.

Since W 1,2
0 (Ω,R3) ∩ L∞(Ω,R3) is dense in W 1,2

0 (Ω,R3), we conclude that Hn(q) ≤
Hs(q).

To prove Hs(κ, q) > 0, recall that Hsh(q) > 0. If Hs(κ, q) = Hsh(q), then we
have Hs(κ, q) > 0; if Hs(κ, q) < Hsh(q), then from conclusion (ii), which we shall
prove below, we know that Hs(κ, q) is achieved. Assume (ψ,n) achieves Hs(κ, q) and
suppose Hs(κ, q) = 0. Then

G[ψ,n] + F [n] = χH2
s (κ, q)

∫
Ω

(h · n)2dx = 0, h · n ≡ 0.

Thus n satisfies

divn = 0, curln = 0, |n(x)| = 1 a.e. in Ω, n = e on ∂Ω.

Since Ω is simply connected, n is a constant vector and hence must be equal to e
since n = e on ∂Ω. (See step 1.1 in the proof of Theorem 3.6 in [P2].) Then h ·n ≡ 0,
which contradicts the assumption that h · n ≡ 0.

Proof of (ii). In the following we assume Hs(κ, q) < Hsh(q) and prove that Hs(κ, q)
is achieved.

Step 1. Let {(ψj ,nj)} be a minimizing sequence for Hs(κ, q). Then

(4.7) G[ψj ,nj ] + F [nj ] = (χH2
s (κ, q) + o(1))

∫
Ω

(h · nj)
2dx.

Since |h ·nj | ≤ 1, the right-hand side in (4.7) is bounded. Thus {divnj} and {curlnj}
are bounded in L2(Ω). Since |nj | = 1 a.e. and nj = e on the boundary, from (3.10)
we see that {nj} is bounded in W 1,2(Ω,R3). Therefore we can pass to a subsequence
and assume that, as j → ∞,

nj → n̂ weakly in W 1,2(Ω,R3) and strongly in L2(Ω,R3).

It follows that |n̂(x)| = limj→∞ |nj(x)| = 1 for a.e. x ∈ Ω and n̂ = e on ∂Ω. Thus
n̂ ∈ W 1,2(Ω,S2, e). On the other hand, (4.7) implies that {|∇qnjψj |} is bounded in
L2(Ω) and {ψj} is bounded in L4(Ω). Then from

‖∇ψj‖L2(Ω) = ‖∇qnj
ψj + iqnjψj‖L2(Ω) ≤ ‖∇qnj

ψj‖L2(Ω) + ‖qnjψj‖L2(Ω)

we see that {ψj} is bounded in W 1,2(Ω,C). Passing to subsequence again we assume
that, as j → ∞,

ψj → ψ̂ weakly in W 1,2(Ω,C) and strongly in L4(Ω).

Taking limit in (4.7) we find

(4.8) G[ψ̂, n̂] + F [n̂] ≤ lim inf
j→∞

{G[ψj ,nj ] + BF [nj ] } = χH2
s (κ, q)

∫
Ω

(h · n̂)2dx.
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If h · n̂ ≡ 0, then (4.8) implies that (ψ̂, n̂) achieves Hs(κ, q).
In the next two steps we shall prove that if Hs(κ, q) < Hsh(q), then we must have

h · n̂ ≡ 0.
Step 2. In the following we assume h · n̂ ≡ 0. Then from (4.8) we see that

div n̂ = 0 and curl n̂ = 0 in Ω. Since Ω is simply connected, |n̂(x)| = 1 a.e. in Ω,
and n̂ = e on ∂Ω, we have n̂ ≡ e. (See step 1.1 in the proof of Theorem 3.6 in [P2].)
From (4.8) we also see that

(4.9) ∇ψ̂ − iqeψ̂ = 0, |ψ̂| = 1.

We claim that

ψ̂ = ceiqe·x

for some complex number c with |c| = 1. In fact, since ψ̂ = 0, for any x0 ∈ Ω, there

exists a neighborhood of x0, say, U(x0), on which ψ̂ has a representation ψ̂ = feiqφ

with f > 0. The condition |ψ̂| = 1 implies f = 1. From the first equality in (4.9)

we have ∇φ = e. So on U(x0) we have ψ̂ = ceiqe·x for some complex number c with
|c| = 1. Since Ω is connected, the constant c does not depend on x0. So the claim is
true.

In the following, for simplicity we assume c = 1 and

ψ = eiqe·x.

Recall that h · nj ≡ 0, so nj ≡ e. Let us write

(4.10) nj = e + εjwj , ψj = eiqe·x(1 + iqεjgj),

where

εj = ‖nj − e‖W 1,2(Ω) > 0,

wj ∈ W 1,2
0 (Ω,R3), ‖wj‖W 1,2(Ω) = 1.

We shall estimate wj and gj .

Since wj ∈ W 1,2
0 (Ω,R3), we have

1 =

∫
Ω

{|∇wj |2 + |wj |2}dx ≤ C

∫
Ω

|∇wj |2dx

= C

∫
Ω

{|divwj |2 + |curlwj |2}dx ≤ C

min{K1,K2}
F [wj ]

=
C

ε2
j min{K1,K2}

F [nj ],

so

ε2
j ≤ C

min{K1,K2}
F [nj ] = o(1).

Since {wj} is bounded in W 1,2
0 (Ω,R3), after passing to a subsequence again we may

assume that, as j → ∞,

wj → ŵ weakly in W 1,2
0 (Ω,R3), strongly in L4(Ω,R3).
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Moreover,

1 = |nj(x)|2 = |e + εjwj(x)|2 = 1 + 2εje · wj(x) + ε2
j |wj(x)|2,

so

e · wj(x) = −εj
2
|wj(x)|2 → 0 strongly in L2(Ω).

Thus

(4.11) e · ŵ(x) = 0 for a.e. x ∈ Ω.

Using (4.10) we compute

|∇qnjψj |2 = q2ε2
j |∇gj − (1 + iqεjgj)wj |2,

|ψj |2 = 1 + qεj(−2	(gj) + qεj |gj |2).

Using these and (4.7), (4.11) we get

(4.12)

(χH2
s (κ, q) + o(1))

∫
Ω

(h · wj)
2dx

=
1

ε2
j

∫
Ω

(h · nj)
2dx =

1

ε2
j

G[ψj ,nj ] +
1

ε2
j

F [nj ]

=

∫
Ω

{
q2|∇gj − (1 + iqεjgj)wj |2 +

κ2

2
q2(−2	(gj) + qεj |gj |2)2

}
dx + F [wj ].

In particular, we have∫
Ω

|∇gj − ψje
−iqe·xwj |2dx =

∫
Ω

|∇gj − (1 + iqεjgj)wj |2dx ≤ C1.

So

‖∇gj‖L2(Ω) ≤‖∇gj − ψje
−iqe·xwj‖L2(Ω) + ‖ψje

−iqe·xwj‖L2(Ω)

≤C1 + ‖ψjwj‖L2(Ω) ≤ C1 + ‖ψj‖W 1,2(Ω)‖wj‖W 1,2(Ω) ≤ C2.

We now write

g̃j = gj − bj , bj =

∫
−

Ω

gjdx.

To estimate g̃j , we note that
∫
−

Ω
g̃jdx = 0 and use the Poincaré inequality to get

‖g̃j‖L2(Ω) ≤ C‖∇g̃j‖L2(Ω) ≤ C3.

Then we use the Sobolev inequality to get

(4.13) ‖g̃j‖L4(Ω) ≤ C‖g̃j‖W 1,2(Ω) ≤ C4.

Thus

‖g̃jwj‖L2(Ω) ≤ C‖g̃j‖L4(Ω)‖wj‖W 1,2(Ω) ≤ C5.
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To estimate bj , we note that

ψj = eiqe·x(1 + iqεjgj) = ψ̂ + iqεjgje
iqe·x.

So we have

iqεjgj = e−iqe·x(ψj − ψ̂) → 0 in L4(Ω);

hence

εjgj → 0 in L4(Ω),

and

(4.14) εjbj = εjgj − εj g̃j = o(1).

Now we have

‖∇gj − (1 + iqεjgj)wj‖L(Ω)

=‖∇g̃j − (1 + iqεjbj)wj − iqεj g̃jwj‖L2(Ω)

=‖∇g̃j − (1 + iqεjbj)wj‖L2(Ω) + O(εj‖g̃jwj‖L2(Ω))

=‖∇g̃j − (1 + iqεjbj)wj‖L2(Ω) + O(εj).

Set

uj =
g̃j

1 + iqεjbj
.

Then we use (4.14) to get

‖∇gj − (1 + iqεjgj)wj‖2
L(Ω)

=|1 + iqεjbj |2‖∇uj − wj‖2
L2(Ω) + O(ε2

j )

=(1 + o(1))‖∇uj − wj‖L2(Ω) + o(1).

Since the left-side term in the above equalities is bounded, we see that

‖∇uj − wj‖L2(Ω) ≤ C5,

which implies

‖∇uj‖L2(Ω) ≤ C6.

Since
∫
ujdx = 0, we apply the Poincaré inequality to conclude that {uj} is bounded

in W 1,2(Ω,C). Passing to a subsequence again we may assume that

uj → û weakly in W 1,2(Ω,C) and strongly in L2(Ω).

Now we go back to (4.12) and find

(χH2
s + o(1))

∫
Ω

(h · wj)
2dx

=

∫
Ω

{
q2(1 + o(1))|∇uj − wj |2 +

κ2

2
q2(−2	(gj) + qεj |gj |2)2

}
dx + F [wj ].
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Hence

(4.15) q2‖∇uj − wj‖2
L2(Ω) + F [wj ] ≤ (χH2

s (κ, q) + o(1))

∫
Ω

(h · wj)
2dx.

Letting j → ∞ we find

(4.16) q2‖∇û− ŵ‖2
L2(Ω) + F [ŵ] ≤ χH2

s (κ, q)

∫
Ω

(h · ŵ)2dx.

Step 3. We claim that

h · ŵ ≡ 0.

Suppose the claim were false. Then h · ŵ ≡ 0 on Ω. Since wj → ŵ strongly in
L2(Ω,R3), we have, as j → ∞, ∫

Ω

(h · wj)
2dx → 0.

From (4.15) we have

‖divwj‖L2(Ω) → 0, ‖curlwj‖L2(Ω) → 0,

and from (4.16),

div ŵ = 0 and ŵ = ∇û in Ω, ŵ = 0 on ∂Ω.

Hence

Δû = 0 in Ω, ∇û = 0 on ∂Ω.

The maximum principle for harmonic functions yields that û is constant on Ω, and
hence w = 0. Thus

wj → 0 strongly in L2(Ω,R3).

Since wj ∈ W 1,2
0 (Ω,R3), from (3.10) we have

‖wj‖W 1,2(Ω) ≤ C(‖divwj‖L2(Ω) + ‖curlwj‖L2(Ω) + ‖wj‖L2(Ω)) → 0,

which contradicts the assumption ‖wj‖W 1,2(Ω) = 1. So the claim is true.
Using the claim, (4.11), and (4.16) we have

χH2
s (κ, q) ≥

q2‖∇û− ŵ‖2
L2(Ω) + F [ŵ]∫

Ω
(h · ŵ)2dx

≥ χHsh(q).

Thus we must have

Hs(κ, q) = Hsh(q).

In other words, under the assumption Hs(κ, q) < Hsh(q), we must have h · n̂ ≡ 0, and
hence we use the result proved in Step 1 to conclude that Hs(κ, q) is achieved. Now
conclusion (ii) is proved.

The proof of conclusion (iii) is similar to the proof of (ii) and hence is
omitted.
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5. Magnetic field-induced instabilities in pure nematic states. In this
section we examine the local minimality as well as global minimality of the pure
nematic states given in (1.4). Note that (0,n) is a critical point of the functional E if
and only if n is a critical point of the functional Fσh. Let

(5.1)
C(σ) ≡ C(σ,K1,K2,h, e) = inf

n∈W 1,2(Ω,S2,e)
Fσh[n],

M(σ) ≡ M(σ,K1,K2,h, e) = {n ∈ W 1,2(Ω,S2, e) : Fσh[n] = C(σ)}.

If n ∈ M(σ), then (0,n) is a critical point of E .
We first look for a criterion for n to be a global minimizer of Fσh in the set

W 1,2(Ω,S2, e). If n is a minimizer of Fσh, then n satisfies the Euler–Lagrange equa-
tion

(5.2)

{
−K1∇divn + K2 curl 2n = χσ2(h · n)h + λ(x)n in Ω,

n = e on ∂Ω,

where λ(x) is a function of x which is dependent on n. By a simple computation we
find

λ(x) = n · [−K1∇divn + K2 curl 2n] − χσ2(h · n)2

= K2|∇n|2 + (K1 −K2)[(divn)2 − div ((divn)n)] − χσ2(h · n)2.

In the particular case where K1 = K2 = K, we have

(5.3)

⎧⎨
⎩−Δn = |∇n|2n +

χσ2

K
[(h · n)h − (h · n)2n] in Ω,

n = e on ∂Ω.

Since h · e = 0, the constant vector e is a critical point of Fσh for all σ. The
following lemma gives a simple criterion for n = e to be a global minimizer. Recall
the numbers Hsh(0) and Hn(0) defined in (3.8) and (4.3), respectively, and recall that
we have

0 < Hn(0) ≤ Hsh(0).

Lemma 5.1. (i) If 0 ≤ σ < Hn(0), then n = e is the only global minimizer of
Fσh in W 1,2(Ω,S2, e).

(ii) If Hn(0) < Hsh(0) and if Hn(0) < σ < Hsh(0), then n = e is not a global
minimizer of Fσh in W 1,2(Ω,S2, e), but it is weakly stable (a local minimizer).

(iii) If σ > Hsh(0), then n = e is not weakly stable.
Lemma 5.1 shows that if K1 and K2 are fixed, the constant critical point n = e

remains as a global minimizer for small σ, and it loses the global minimality when σ
increases and reaches Hn(0).

Proof of Lemma 5.1. We first note that Fσh[e] = 0. If n is a global minimizer,
then Fσh[n] ≤ Fσh[e] = 0. If h · n ≡ 0, then from

Fσh[n] =

∫
Ω

{K1|divn|2 + K2|curln|2}dx ≤ Fσh[e] = 0

we see that divn = 0 and curln = 0 on Ω. Since Ω is simply connected and |n| = 1,
n must be a constant vector, and it must be equal to e since n = e on ∂Ω.
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Therefore a nonconstant global minimizer n must satisfy h · n ≡ 0. From

0 = Fσh[e] ≥ Fσh[n] = F [n] − χσ2

∫
Ω

(h · n)2dx,

we have

σ2 ≥ 1

χ

F [n]∫
Ω
(h · n)2dx

≥ H2
n(0).

Thus if 0 ≤ σ < Hn(0), then the only global minimizer is n = e.
Next, assume σ > Hn(0). Take ñ ∈ W 1,2(Ω,S2, e) such that h · ñ ≡ 0 on Ω and

1

χ

F [ñ]∫
Ω
(h · ñ)2dx

< Hn(0)2 + δ < σ2.

Then

Fσh[ñ] = F [ñ] − χσ2

∫
Ω

(h · ñ)2dx < F [ñ] − χ(Hn(0)2 + δ)

∫
Ω

(h · ñ)2dx < 0.

Hence

inf{Fσh[n] : n ∈ W 1,2(Ω,S2, e)} < 0,

and the constant map n = e is not a global minimizer.
To finish the proof, we use the definition of weak stability given in section 2 to

derive the conclusion about weak stability of n = e for 0 < σ < Hsh(0) and instability
for σ > Hsh(0).

Let us consider next the following question: If nσ ∈ M(σ,K1,K2,h, e) is a global
minimizer of Fσh, when is (0,nσ) a global minimizer of the functional E? To answer
this question, let μ = μ(qn) denote the lowest eigenvalue of the following equation:

(5.4) −∇2
qnφ = μφ in Ω, ∇qnφ · ν = 0 on ∂Ω.

Note that

μ(qn) = inf
φ∈W 1,2(Ω,C)

‖∇qnφ‖2
L2(Ω)

‖φ‖2
L2(Ω)

.

Define

(5.5) μ∗(q, σ) ≡ μ∗(q, σ,K1,K2,h, e) = inf
n∈M(σ,K1,K2,h,e)

μ(qn).

Lemma 5.2. (i) If (ψ,n) is a global minimizer of E which is not a pure nematic
state, then μ(qn) < κ2.

(ii) If μ∗(q, σ) < κ2, then the pure nematic states are not global minimizers of E.
Proof. To prove (i), we note that if (ψ,n) is a global minimizer, and if ψ = 0, then

we must have n ∈ M(σ), and hence (ψ,n) = (0,n) is a pure nematic state. Thus if
(ψ,n) is not a pure nematic state, then ψ ≡ 0. Choose nσ ∈ M(σ). We have

G[ψ,n] + Fσh[n] ≤ G[0,nσ] + Fσh[nσ];
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hence ∫
Ω

{
|∇qnψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

}
dx ≤ Fσh[nσ] −Fσh[n] ≤ 0,

so ∫
Ω

{|∇qnψ|2 − κ2|ψ|2}dx ≤ −κ2

2

∫
Ω

|ψ|4dx < 0.

Thus

μ(qn) ≤
‖∇qnψ‖2

L2(Ω)

‖ψ‖2
L2(Ω)

< κ2.

To prove (ii), note that for a pure smectic state (0,nσ) we have E [0,nσ] = κ2

2 |Ω|. If
μ∗(q, σ) < κ2, we choose n ∈ M(σ) such that μ(qn) < κ2 and let φ be an eigenfunction
of−∇2

qn associated with μ(qn). Then we choose (tφ,n) as a test function for E and find

E [tφ,n] < κ2

2 |Ω| if t is small. So a global minimizer (ψ,n) must satisfy E [ψ,n] < κ2

2 |Ω|,
and hence it cannot be a pure nematic state.

Proposition 5.3. If 0 ≤ σ ≤ Hn(0) and κ > 0, or if σ > Hn(0) and μ∗(q, σ) <
κ2, then the pure nematic states are not global minimizers of E.

Proof. We note that if 0 ≤ σ < Hn(0), then from Lemma 5.1 we have M(σ) = {e};
and if σ = Hn(0), then we have e ∈ M(σ). It is easy to see that μ(qe) = 0 with
associated eigenfunction ψ = eiqe·x. Thus μ∗(q, σ) ≤ μ(qe) = 0 < κ2 for any κ > 0.
Then the conclusion follows from Lemma 5.2(ii).

When σ > Hn(0) and μ∗(q, σ) < κ2, the conclusion was proved in Lem-
ma 5.2.

Note that the conclusion of Proposition 5.3 for the case 0 ≤ σ < Hn(0) is a
direct consequence of Lemma 4.2(iii). In fact, for any q we have Hs(κ, q) ≥ Hn(0).
If 0 ≤ σ < Hn(0), then 0 ≤ σ < Hs(κ, q), and the pure smectic states are global
minimizers with energy equal to zero. But the pure nematic state (0, e) has energy
κ2

2 |Ω|, and so it cannot be a global minimizer.
Let us define

σ∗(κ, q) = inf{σ > 0 : μ∗(q, σ) ≥ κ2},
Q∗(κ, σ) = inf{q > 0 : μ∗(q, σ) ≥ κ2}.

From Proposition 5.3, when σ > Hn(0), we have the following statement about the
global minimality of the pure nematic states.

Claim. In the following cases, the pure nematic states are not global minimizers
of E:

(i) 0 < σ < σ∗(κ, q), for given κ and q.
(ii) κ2 > μ∗(q, σ), for given q and σ.
(iii) 0 ≤ q < Q∗(κ, σ), for given κ and σ.
Our next question arises in a comparison of liquid crystals with superconductivity.

Recall that type II superconductors will always stay in the normal state if the applied
magnetic field is sufficiently strong. Considering the analogies of liquid crystals to
superconductors, one might expect that a liquid crystal would be in a pure nematic
state if the applied magnetic field is sufficiently strong. However, this is not true. In
fact we have the next theorem.
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Theorem 5.4. Fix q, κ, K1, K2, h, and e, with K1 = K2. When σ is sufficiently
large, the pure nematic states are not global minimizers.

The conclusion of Theorem 5.4 reveals an important difference in the responses
to applied magnetic fields for smectic liquid crystals and for superconductors. For
superconductors, a sufficiently strong applied magnetic field will penetrate the mate-
rial and destroy superconductivity. In contrast, smectic liquid crystals in an applied
magnetic field also undergo phase transitions, but the applied magnetic field will not
completely destroy the smectic structure, and the molecules of the liquid crystals will
not be completely layered and aligned along the direction of the applied magnetic
field.

To prove Theorem 5.4 we shall establish estimates of C(σ) (see (5.1)) and μ∗(q, σ)
(see (5.5)) for large σ.

Lemma 5.5. (i) For large σ we have

(5.6) C(σ) ≤ −χ|Ω|σ2 + C1σ,

where C1 > 0 depends only on K1, K2, h, e, and Ω.
(ii) Let nσ be a global minimizer of Fσh. Then

|h · nσ(x)| → 1 in L2(Ω) as σ → ∞.

(iii) If K1 = K2, then h · nσ(x) converges in L2(Ω) to 1 or to −1 as σ → ∞.
Proof. After rotating the coordinate system we may assume that h = e3 and

e = e1. Then for any n = (n1, n2, n3) ∈ W 1,2(Ω,S2, e) we may write

Fσh[n] = Jσ[n] − χ|Ω|σ2,

where

(5.7) Jσ[n] =

∫
Ω

{K1|divn|2 + K2|curln|2 + χσ2(n2
1 + n2

2)}dx.

Step 1. Proof of (i). We estimate the lower bound of Jα for large σ. Let us
consider a test map of the form

n = (cosφ, 0, sinφ),

where φ is a smooth function and φ = 0 on ∂Ω. Hence n = e1 on ∂Ω. We compute

divn = ∂1n1 + ∂3n3 = − sinφ∂1φ + cosφ∂3φ,

curln = (∂2n3, ∂3n1 − ∂1n3,−∂2n1) = (cosφ∂2φ,− sinφ∂3φ− cosφ∂1φ,− sinφ∂2φ).

So we have

Jσ[n] = Jσ[φ] ≡
∫

Ω

fσ(φ)dx,

where

fσ(φ) = K1| sinφ∂1φ− cosφ∂3φ|2 +K2|∂2φ|2 +K2| sinφ∂3φ+cosφ∂1φ|2 +χσ2 cos2 φ.

Note that

| sinφ∂1φ− cosφ∂3φ|2 ≤ |∂1φ|2 + |∂3φ|2,
| sinφ∂3φ + cosφ∂1φ|2 ≤ |∂1φ|2 + |∂3φ|2.
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So

fσ(φ) ≤ K1(|∂1φ|2 + |∂3φ|2) + K2|∇φ|2 + χσ2 cos2 φ.

For small ε > 0, let

Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}, Ωε = {x ∈ Ω : dist(x, ∂Ω) ≥ ε}.

Then we split Jσ[φ] into two parts:

Jσ[φ] = Jσ1[φ] + Jσ2[φ],

where

Jσ1[φ] =

∫
Ωε

fσ(φ)dx, Jσ2[φ] =

∫
Ωε

fσ(φ)dx.

We choose φ such that

φ =
π

2
in Ωε, φ = 0 on ∂Ω, |∇φ| ≤ C

ε
on Ω.

Then Jσ2[φ] = 0, and

Jσ1[φ] ≤
∫

Ωε

{(K1 + K2)|∇φ|2 + χσ2 cos2 φ}dx ≤
[
C2(K1 + K2)

ε2
+ χσ2

]
|Ωε|.

When ∂Ω is smooth, there exists C0 > 0 only depending on ∂Ω such that for all small
ε > 0 we have

|Ωε| ≤ C0ε.

Therefore

Jσ[φ] = Jσ1[φ] ≤ C0

ε
[C2(K1 + K2) + χσ2ε2].

For large σ we choose

ε =
C

σ

√
K1 + K2

χ

and find

Jσ[φ] ≤ 2σC0C
√
χ(K1 + K2).

This yields estimate (5.6).
Step 2. Proof of (ii). From (i) we have

Jσ[nσ] =

∫
Ω

{K1|divnσ|2 + K2|curlnσ|2 + χσ2|n′
σ|2}dx ≤ Cσ,

where n′
σ = (nσ1, nσ2 , 0). Thus, as σ → ∞,∫

Ω

|n′
σ|2dx ≤ C√

σ
→ 0,
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namely, ∫
Ω

(1 − |nσ3|2)dx → 0.

So |nσ3| → 1 in L1(Ω). Since |nσ3(x)| ≤ 1 a.e., we use the Lebesgue dominated
convergence theorem to conclude that |nσ3| → 1 in Lp(Ω) for any 1 < p < ∞.

Step 3. Now we assume h = e3, e = e1, and K1 = K2 = K. We prove that the
minimizer nσ has the following property: nσ3 does not change sign, namely, either
nσ3 is always positive, or it is always negative, or it is identically equal to zero.

Now the Euler–Lagrange equation reads

(5.8)

{
−Δn = |∇n|2n + b2σ2[n3e3 − n2

3n] in Ω,

n = e1 on ∂Ω,

where

b2 =
χ

K
.

To investigate the behavior of the minimizers for large σ, we borrow the proof from
[HL, Lemma 2.2]. For simplicity we drop the subscript σ and let n = (n1, n2, n3)
denote a minimizer. Set u = (n1, n2, |n3|). Since n3 ∈ W 1,2(Ω), we have |∇ |n3|| =
|∇n3| a.e., and so |n3| ∈ W 1,2(Ω). Note that n3 = 0 on ∂Ω. Hence u ∈ W 1,2(Ω,S2, e),
and ∫

Ω

|∇u|2dx =

∫
Ω

|∇n|2dx.

Since K1 = K2 = K, we have

Jσ[n] =

∫
Ω

{K|∇n|2 + χσ2(n2
1 + n2

2)}dx.

Thus u is also a global minimizer of Fσh, and hence it is a weak solution of (5.8). In
particular, u3 = |n3| ≥ 0, and it is a weak solution of{

−Δu3 = |∇n|2u3 + b2σ2(u3 − u3
3) in Ω,

u3 = 0 on ∂Ω.

Thus

−Δu3 = |∇n|2u3 + b2σ2(1 − u2
3)u3 ≥ 0.

So u3 satisfies

Δu3 ≤ 0 in Ω, u3 = 0 on ∂Ω.

Using the weak Harnack inequality for bounded nonnegative superharmonic functions,
we have

ess infBθR
u3 ≥ c

(∫
−
BR

up
3dx

)1/p

for all BR ⊂ Ω,
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where p is some positive number. Thus if u3 ≡ 0, then u3 > 0 in Ω, namely, either
n3 > 0 everywhere in Ω or n3 < 0 everywhere in Ω.

Step 4. Proof of (iii). Assume K1 = K2 = K. From Step 2 we see that, for large
σ, nσ3 ≡ 0; from Step 3, nσ3 does not change its sign. We may assume nσ3 > 0.
Then, as σ → ∞, nσ3 → 1 in L2(Ω) and n′

σ → 0 in L2(Ω,R3). Thus nσ → e3 in
L2(Ω,R3).

Proof of Theorem 5.4. Assume K1 = K2 = K. Without loss of generality we
assume h = e3 and e = e1. Let nσ be a global minimizer of Fσh. We estimate
μ(qnσ) for large σ. From Lemma 5.5, we may pass to a subsequence and assume that
nσ → e3 strongly in L2(Ω,R3). Take φ = eiqx3 . We have, as σ → ∞,∫

Ω

|∇qnσ
φ|2dx = q2

∫
Ω

|nσ − e3|2dx → 0,

μ(qnσ) ≤
‖∇qnσ

φ‖2
L2(Ω)

‖φ‖2
L2(Ω)

=
q2‖nσ − e3‖2

L2(Ω)

|Ω| → 0.

So for any κ > 0, we have μ(qnσ) < κ2 for all large σ. Hence μ∗(q, σ) < κ2 for all
large σ. From Lemma 5.2 we conclude that for any given κ, there exists σ̂ depending
on κ such that, for all σ > σ̂, the pure nematic states are not global minimizers.

Acknowledgments. The authors would like to thank the referees for valuable
comments on the manuscript.
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A MATHEMATICAL ANALYSIS OF THE OPTIMAL EXERCISE
BOUNDARY FOR AMERICAN PUT OPTIONS∗
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Abstract. We study a free boundary problem arising from American put options. In particular
we prove existence and uniqueness for this problem, and we derive and rigorously prove high order
asymptotic expansions for the early exercise boundary near expiry. We provide four approximations
for the boundary: one is explicit and is valid near expiry (weeks); two others are implicit involving
inverse functions and are accurate for longer time to expiry (months); the fourth is an ODE initial
value problem which is very accurate for all times to expiry, is extremely stable, and hence can be
solved instantaneously on any computer. We further provide an ode iterative scheme which can
reach its numerical fixed point in five iterations for all time to expiry. We also provide a large
time (equivalent to regular expiration times but large interest rate and/or volatility) behavior of the
exercise boundary. To demonstrate the accuracy of our approximations, we present the results of a
numerical simulation.

Key words. early exercise boundary, existence and uniqueness, numerical and analytical ap-
proximations
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1. Introduction. With the Black–Scholes hypothesis of log-normal stock prices,
the price P (S, T ) for an American put option on a share of price S at time T can be
formulated as the solution to following free boundary problem (cf. [27]):

(P )

⎧⎪⎪⎨
⎪⎪⎩

PT + 1
2σ

2S2 PSS + r S PS − r P = 0 for T < TF , S > Sf (T ),

P (S, T ) = E − S, PS(S, T ) = −1 for T < TF , S ≤ Sf (T ),

Sf (TF ) = E, P (S, TF ) = max{0, E − S} for T = TF , S > 0.

Here E is the exercise (strike) price, TF the expiration time, σ the constant volatility,
r the constant risk-free interest rate, and S = Sf (T ) the free boundary separating
regions of optimally holding and exercising.

There is a considerable literature on the optimal exercise boundary, both analyt-
ical and numerical; see, for example, [1, 2, 3, 4, 6, 14, 15, 16, 18, 20, 21, 24, 25, 26]
and the references therein. A recent list of references, together with numerical ap-
proximations, can be found in [1, 8, 24].

For notational simplicity, we write problem (P) in a nondimensional form. Let

k = 2r/σ2, S = E ex, T = TF − 2t/σ2 , P (S, T ) = E p(x, t), Sf (T ) = E es(t).

Then problem (P) becomes, for the transformed price p(x, t) and the optimal exercise
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boundary x = s(t),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pt − pxx − (k − 1)px + k p = 0 for t > 0, x > s(t),

p(x, t) = 1 − ex, px(x, t) = −ex for t > 0, x ≤ s(t),

s(0) = 0, p(x, 0) = max{1 − ex, 0} for t = 0, x ∈ R,

p(x, t) > max{1 − ex, 0} for t > 0, x > s(t).

(1.1)

The last condition corresponds to the physical condition P > E−S when S > Sf (T ).
Though not necessary, we include this condition in (1.1) to make the definition of the
free boundary clearer.

Unlike the American call option with dividend where s(t) ∼ −2
√
tα with α being

a constant [27] when the (continuous) dividend rate is less than the risk-free interest
rate, here for the put option, α becomes unbounded as t ↘ 0 (i.e., T ↗ TF ), leading
to difficulties in the theoretical analysis, numerical simulation, and accurate pricing
and strategic trading during this extremely volatile period, i.e., the period in which
the relation between the asset and option prices is rapidly varying.

Although the analysis to be presented is quite technical, the high accuracy of the
ensuing global estimates for the location of the early exercise boundary is important
for practitioners. Knowing the location of the early exercise boundary a priori makes
the pricing of American style financial derivatives amenable by Monte Carlo simula-
tion, which is the preferred systematic method of fund managers with thousands of
instruments. In addition to the practical importance of these estimates, the technical
methods to obtain them are also of theoretical interest. Since the methods do not use
the convexity of the free boundary (we have proven the convexity of the free bound-
ary for problem (P) in a separate paper [7]), they serve as a prototype for problems
with nonconvex free boundary problems. We expect this to be the most likely case
in finance since even for the closely related problem (P) on a dividend-paying asset,
numerical simulations by Detemple suggest (private communication) that the early
exercise boundary may not be convex for all choices of the parameters.

In recent developments, Kuske and Keller [18], Bunch and Johnson [5], and
Stamicar et al. [25] derived independently the following similar asymptotic expan-
sions for α(t) := s2(t)/(4t):

(KK) 9πk2 t α2 e2α ∼ 1 ,

(BJ) 4k2 t α e2α ∼ 1 − k2/[2(1 + k)2] ,

(SSC) 4πk2 t e2α ∼ 1

for all sufficiently small positive t. Regardless of their differences, all these asymptotics

capture the dominant behavior limt↘0
2α(t)
| log t| = 1 that was rigorously established by

Barles et al. [4]. Nevertheless, any two of the asymptotics (KK), (BJ), and (SSC)
cannot hold simultaneously at the next order. For example, by taking logarithms,
(SSC) implies that 2α(t) ∼ | log(t)|− log(4πk2), while (KK) implies 2α(t) ∼ | log(t)|−
log(9πk2) with additional log log corrections from the α2 term. Similarly, (BJ) implies
yet another constant term along with log log corrections.

On the other hand, due to the singularity of problem (1.1) near the origin, nu-
merical simulations are very difficult, and typical methods such as the binomial or
trinomial tree methods can hardly capture any asymptotic behavior of α(t) more
accurately than the above approximations.
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One purpose of this paper is to give a complete and rigorous mathematical justifi-
cation to show that indeed (SSC) is the correct asymptotic behavior of α(t) as t ↘ 0.
In addition, we shall prove rigorously that as t ↘ 0, α(t) = s2(t)/(4t) has the more
general asymptotic expansion

(1.2)

α(t) = −ξ− 1

2ξ
+

1

8ξ2
+

17

24ξ3
− 51

64ξ4
− 287

120ξ5
+

199

32ξ6
+O(ξ−7), ξ := log

√
4πk2t.

Due to our particular choice of ξ, this expansion does not have a constant term and
also does not depend otherwise on any parameters. This differentiates it from the
behavior obtained in (KK) and (BJ) that give other constants and log log rather than
inverse log corrections. Please see Remark 3.2 and section 7.2 for further discussions
of this point.

Another purpose of this paper is to provide the following noniterative approxi-
mations to s(t) for both small and large t:

(expl) α = −ξ − 1

2(ξ − a)
+

1/8 + a/2

(ξ − a)2
, a = 0.96621 . . . ,

(imp1) ξ = −α− log

{
1 − 1

2(α + 1)
− 1

2(α + 1)2

}
,

(imp2) ξ = −α− log
{

2√
π

∫√
α

0
e−z2

dz
}

+ log eα+2k log(1+1/k) e1/α

eα+e1/α
,

(ODE) d
dts(t) = s(t)

2kt Γ(s(t), t), Γ(z, t) := 1
2
√
πt
e−z2/(4t)−(k−1)z/2−(k+1)2t/4.

There have also been many contributions to the study of early exercise boundaries
for American options with dividends; see, for example, Evans et al. [11] and Knessl
[17]. An earlier theoretical work using a variational approach for American options
with multiple assets as well as a numerical algorithm for the pricing problem was
supplied by Jaillet et al. [15]. By contrast, the main focus of this paper is to give a
complete treatment, with particular attention on the singular behavior of the optimal
exercise boundary near expiry, for the simplest nontrivial case of the American put
without dividends. It is expected that analysis similar to ours can be carried over,
with appropriate modifications, to the case with other payoffs, dividends, and/or
multiple assets. On the other hand, as mentioned earlier, even in the closely related
case of problem (P) on a dividend-paying asset, the dependence of the near expiring
behavior, and possibly the convexity, on the choice of parameters suggests that the
necessary modifications may be subtle.

The explicit approximation (expl) and the first implicit approximation (imp1)
are derived directly from the asymptotic expansion (1.2); they are fourth order in the
sense that for small t, the α values calculated from (expl) or (imp1) have error of order
O(|ξ|−4). Our numerical simulation (cf. [8]) shows that both (expl) and (imp1) are far
better than any straightforward truncations of (1.2) (assuming TF −T is larger than 1
second) both in accuracy and in the length of interval of validity of the formulas. For
our running example (cf. Figure 7.1), where E = 1, r = 0.1/year and σ = 0.25/

√
year,

the approximation (expl) is accurate for TF − T less than several weeks and (imp1)
is accurate for TF − T less than several months.

The second implicit approximation (imp2) is an interpolation of the small time
behavior α ≈ −ξ and large time behavior s(t) ≈ log[(1 + k)/k] derived from Merton’s
solution for the infinite horizon problem for American put [22]. In general (imp2) is
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better than (imp1). For our running example, the error of the approximation (imp2)
is less than 2 × 10−3 for TF − T up to 3 years.

The ODE approximation is to be solved with an initial condition compatible with
the limit α + ξ → 0 as ξ → −∞. In numerical implementation, it is transformed
to an equation for α in the ξ = log

√
4πk2t variable and the initial condition is

approximated by α|ξ=ξ0 = −ξ0 − 1/(2ξ0), where ξ0 is a large negative number, say,
ξ0 = −10. Numerical simulation shows that this ODE initial value problem is very
stable and highly insensitive to any change of initial conditions, and hence can be
solved instantaneously on any computer. The ODE approximation is better than any
of the above three. For our running example, its error is less than 5 × 10−5 when
TF − T is less than 2 months, 10−3 when TF − T less than 1 year, and 6 × 10−3 for
all TF − T > 0. We would like to point out that our ODE approximation has already
surpassed those numerical approximations from the standard binomial or trinomial
tree methods (with 1000 division points), which are typically used in literature as the
“exact” solutions for comparisons; see the curve marked Bino in Figure 7.1.

The ODE approximation is derived from the following exact system:⎧⎪⎨
⎪⎩

ṡ(t) = s(t)
2kt Γ(s(t), t)

{
1 + m(t)},

m(t) = k

∫ t

0

{
s(t)−s(τ)

t−τ
2t
s(t) − 1

}
Γ(s(t)−s(τ),t−τ)

Γ(s(t),t) d s(τ).
(1.3)

From this system, we obtain an iterative scheme. Starting with the ODE approxi-
mation (corresponding to m ≡ 0), successively solve (1.3) with m evaluated at the
previous iteration of s. As it turns out, this iteration converges very rapidly; a nu-
merical fixed point (difference less than 10−7) is obtained after only five iterations.
The first iteration takes less than 1 minute and the total of five iterations takes less
than 10 minutes (on a Sparc server). See Figure 7.1 for the error estimate of the first
three iterations.

Note that t = σ2(TF − T )/2 = r(TF − T )/k is large when σ and/or r are large.
Hence, to include cases where r and/or σ are large, we also provide a long time
behavior of s. For large t,

(long) s(t) ∼ s∞ exp

{
m̂

∫ ∞

(k+1)2t/4

ρ−3/2e−ρ dρ

}
,

s∞ = s(∞) = log[k/(1 + k)],

m̂ =
k + 1

4
√
π

∫ ∞

0

s(τ)

s∞
exp

{
k − 1

2
(s(τ) − s∞) +

(k + 1)2

4
τ

}
d s(τ).

Here m̂ can be calculated approximately by using the ODE approximation for s, which
is instantaneous since we can do so by solving ODE. When (long) is incorporated
with our noniterative schemes such as ODE, we can instantaneously obtain reliable
approximate values of s(t) for any t and any parameters r and σ; see Figure 7.1 for
r = 0.1/year and σ = 0.25/

√
year, and see [8] for other values of the parameters.

This paper is organized as follows. In section 2, we briefly establish, for mathe-
matical completeness, the well-posedness of problem (1.1) via a classical variational
approach [12]. We show that the solution (p, s) to (1.1) exists and is unique, that
s(t) is continuous and nondecreasing, and as t → ∞, (s(t), p(·, t)) → (s∞, p∞(·)),
the solution to the infinite horizon problem [22]. During the review and revision of
this manuscript, an alternative proof of the existence and uniqueness appeared in the
literature [23].
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In section 3 we derive several integral and integrodifferential equations for s by
using the fundamental solution Γ for the linear parabolic PDE for p; in particular we
derive (1.3).

Sections 4 through 6 are devoted to showing that (1.3) has a solution s(·) with
α := s2(t)/(4t) satisfying the asymptotic behavior (1.2). In section 4, we transform
(1.3) into an equation of the form

(I + L)[u′] + G(u, ξ) = F [u],(1.4)

where u = u(ξ) = α(t) = s2(t)/(4t), ξ = log
√

4πk2t, I is the identity operator, L a
linear operator defined in (4.5), F [u] a small nonlinear operator, and G a function. In
section 5 we show that the operator (I+L) is invertible from C0 to C0 and that L[φ] is
always 1/2 more differentiable than φ, although ‖φ−L[φ]‖C0((−∞,ξ]) → 0 as ξ → −∞
for any uniformly continuous function φ. In section 6, we first establish the existence
of a unique solution to (1.4), with F [u] replaced by any known small function, in a
finite interval ξ ∈ (−j, ξ0] for any j and some fixed negative large constant ξ0. To
take the limit j → ∞, we show that (1.4), in a finite interval [−j, ξ0] or half finite
interval (−∞, ξ0], possesses a comparison principle, which allows us to construct sub
and super solutions to sandwich the solutions. We let j → ∞ to obtain solutions of
(1.4) with given known F . A Schauder’s fixed point theorem then can be used to
establish the existence of a solution to (1.4). Uniqueness of the solution follows from
the well-posedness result of section 3. The asymptotic expansion (1.2) is proved by
the comparison principle and construction of sub and super solutions.

Finally, in section 7 we derive our approximation formula mentioned earlier and,
for the purpose of illustration, provide a numerical simulation to support the advan-
tages of our new approximations.

We repeat that recently we have shown [7] that the optimal boundary is convex;
see also [10]. Using this property, many of the proofs here can be greatly simplified.
Nevertheless, the method provided here is general enough to be extended to many
similar option problems where the optimal exercise boundaries may not be convex.

2. Well-posedness of problem (P). In this section we establish the well–
posedness of the free boundary problem (1.1). Though many techniques and results
are standard and may be cited from references, we still provide a certain degree of
detail for completeness of the paper.

For convenience, we denote by L the operator

L[p] = pxx + (k − 1)px − k p.

Lemma 2.1. Let p(x, t), together with a free boundary x = s(t), be a solution to
(1.1). Then

{
min{p− p0, pt − L[p]} = 0 in R × (0,∞),

p(x, 0) = p0(x) := max{1 − ex, 0} ∀ x ∈ R.
(2.1)

The proof follows from a straightforward verification and is omitted.
Theorem 2.2. There exists a unique solution p to (2.1). Define s(t) =

sup{x|p(x, t) = p0(x)} for all t > 0. Then (i) s(·) is a strictly decreasing contin-
uous function on (0,∞), (ii) limt↘0 s(t) = 0, (iii) p(x, t) > p0(x) for all x > s(t) and
t > 0, and p(x, t) = p0(x) for all x ≤ s(t) and t ≥ 0, and (iv) (p, s) solves (1.1).
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Proof. The existence of a unique solution p follows from a well-developed parabolic
theory for obstacle problems; see, for example, [12, Chap. 1, sec. 8]. Here for com-
pleteness and for the existence of s(·), we provide the main idea of the proof.

Uniqueness. Let p1 and p2 be arbitrary two solutions to (2.1). Denote γi =
(∂t − L)pi ≥ 0. Then

(p1 − p2){(p1 − p2)t − L[(p1 − p2)]} = (p1 − p2)(γ1 − γ2) ≤ 0 in R × (0,∞)

since γ1 = 0 when p1 − p2 > 0 (as p1 > p2 ≥ p0) and γ2 = 0 when p1 − p2 < 0.
Integrating the above inequality over x ∈ R and using the Gronwall’s inequality, one
concludes that p1 ≡ p2.

Existence. For every ε > 0, let qε(x, t) be the solution to the semilinear parabolic
Cauchy problem {

qεt − L[qε] = βε(q
ε − pε0) in R × (0,∞),

qε(·, 0) = pε0(·) := ρε ∗ p0 on R × {0},

where ρε(z) := ε−1ρ(ε−1z) with ρ(·) being a smooth and nonnegative mollifier of unit
integral over R

1, and βε(·) is any nonnegative, bounded, and smooth function defined
on R with the properties

β′
ε(z) ≤ 0 for all z ∈ R, βε(0) = k, and βε(z) = 0 for z > ε.

Existence of a unique smooth solution qε follows from standard parabolic PDE theory;
see, for example, [13]. To take the limit ε → 0 to obtain a solution to (2.1), we need
to establish a few ε-independent a priori estimates for qε.

Differentiating the differential equation with respect to t gives (∂t−L−β′
ε)q

ε
t = 0

in R × (0,∞). When t = 0, qεt (·, 0) = L[pε0] + βε(0) ≥ 0 in R
1 since βε(0) = k and in

the distributional sense L[p0] ≥ −k which implies L[pε0] = ρε ∗L[p0] ≥ −k. Therefore,
by comparison, qεt > 0 on R × [0,∞).

Also one can show that pε0 is a subsolution and 1 is a supersolution so that
pε0 < qε < 1 in R × (0,∞).

Note that pε0 < qε implies βε(qε − pε0) ∈ [0, k) on R × (0,∞). Consequently, by
local PDE regularity estimates, the set {qε}0<ε<1 is bounded in Cβ,β/2(R× [0,∞))∩
W 2,1

r ((−R,R)× (0, R) \ (−δ, δ)× (0, δ)) for every β ∈ (0, 1), r > 1, δ > 0, and R > δ.
Hence, there exist γ ∈ L∞(R × (0,∞)) and p ∈ Cβ,β/2(R × [0,∞)) ∩ W 2,1

r,loc(R ×
[0,∞) \ (0, 0)) such that, along some sequence ε ↘ 0, βε(q

ε − pε0) → γ weakly in
Lr(BR(0) × (0, R)), and qε → p strongly in Cβ,β/2([−R,R] × [0, R]) and weakly in
W 2,1

r ((−R,R) × (0, R) \ ((−δ, δ) × (0, δ)) for every r > 1, β ∈ (0, 1), δ > 0 and R > δ.
Taking the limit of the differential equation for qε along that convergent sequence, we
conclude that p(·, 0) = p0(·) and

pt − L[p] = γ ∈ [0, k], p ≥ p0, pt ≥ 0 in R × (0,∞).

Since qε → p locally uniformly, p(x0, t0) − p0(x0) > 0 implies qε > pε0 + ε, i.e.,
βε(qε − pε) = 0, in a ε-independent neighborhood of (x0, t0) for all sufficiently small
positive ε in the sequence, and therefore, γ = 0 in a neighborhood of (x0, t0). Thus p
is a solution to (2.1).

The free boundary. Let C := {(x, t) ∈ R × [0,∞) | p(x, t) = p0(x)} be
the contact set in the obstacle problem terminology. Since pt ≥ 0, there exists a
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(semicontinuous) function T : R → [0,∞) ∪ {∞}, such that C = {(x, t) | x ∈ R
1, 0 ≤

t ≤ T (x)}.
Since pt − L[p] = γ ≥ 0 in R × (0,∞), a comparison principle implies that p > 0

in R× (0,∞). It then follows that T (x) = 0 for all x > 0 since p0(x) = 0 for all x ≥ 0.
Now we show that T (·) is nonincreasing. Indeed, if T (x0) > 0, then defining a

new function p̃ by p̃ = p in [x0,∞) × [0, T (x0)] and p̃ = p0 in (−∞, x0] × [0, T (x0)],
one can verify that p̃ is a solution to (2.1) in R × [0, T (x0)], so that, by uniqueness,
p = p̃. Consequently, (−∞, x0] × [0, T (x0)] ∈ C, and therefore T (x) ≥ T (x0) for all
x ≤ x0. Thus T (·) is nonincreasing.

Next we show that T (x) is strictly decreasing for x ≤ 0. Suppose this is not true.
Then for some x2 < x1 ≤ 0, T (x2) = T (x1) < ∞. Consequently, p(·, t0) = p0(·) in
[x2, x1] and p > p0 in (x2,∞) × (T (x2),∞). It then follows that pt − L[p] = γ ≡ 0 in
(x2,∞) × (T (x2),∞). Since p0 is smooth in (x2, x1), so is p in (x2, x1) × [T (x2),∞).
Thus pt(

x1+x2

2 , T (x2)) = L[p0](
x1+x2

2 ) = −k, contradicting pt ≥ 0. Hence, T (x) is
strictly decreasing on (−∞, 0].

It then follows that the function t = T (x) for x ≤ 0 admits an inverse x = s(t)
defined for all t ≥ 0 and is nondecreasing. As inverse functions of strictly monotonic
functions are continuous, s(·) is continuous. Note that T (x) = 0 for x > 0 and
T (x) > 0 for x < 0 implies that s(0) = 0.

Finally we verify that s(t) is strictly decreasing. In fact, if s(t) is a constant over an
interval [t1, t2], then pt−L[p] = 0 in (s(t1),∞)× (t1, t2) and p(s(t1), t) = p0(s(t1)) for
all t ∈ [t1, t2], so that p ∈ C∞([s(t1),∞) × (t1, t2). As pt ≥ (�≡)0 and (∂t − L)pt = 0
in [s(t1),∞) × (t1, t2), the Hopf lemma then gives ptx > 0 on {s(t1)+} × (t1, t2),
which implies that px(s(t)+, t) is strictly increasing for t ∈ (t1, t2). On the other
hand, p ∈ W 2,1

r,loc(R × (0,∞)) for any r > 1 and the definition of s(·) implies that
px(s(t), t) = p0x(s(t1)) is a constant for all t ∈ (t1, t2), and we have a contradiction.
Hence, s(t) is strictly decreasing. This completes the proof.

Theorem 2.3. There exists a unique solution (p, s) to (1.1). In addition, p ∈
W 2,1

r,loc(R× [0,∞) \ (0, 0)) for any r > 1, and p > 0, pt ≥ 0, and px < 0 in R× (0,∞).
Furthermore, s(·) is continuous and strictly decreasing and as t → ∞,

s(t) → s∞ := log(1 + 1/k),(2.2)

p(x, t) → p∞(x) :=

{
1 − ex if x ≤ s∞,
(1 − es∞)e−k(x−s∞) if x > s∞.

(2.3)

Proof. We need only show the assertions (2.2), (2.3), and px < 0 in R × (0,∞)
since the rest follows from Lemma 2.1 and the proof of Theorem 2.2. As γ = k for
x < s(t) and = 0 for x > s(t), (∂t − L)[px] = γx ≤ 0 in the distributional sense. A
strong maximum principle then implies that px < 0 in R× (0,∞). It remains to show
(2.2) and (2.3).

First of all, we can use comparison to show that p(·, t) < p∞(·) for all t ≥ 0. This
inequality implies, by the definition of s, that s(t) > s∞ for all t > 0.

Next, as we know that pt(·, ·) ≥ 0 and s(·) is strictly decreasing, the existence of an
upper bound p∞(·) for p(·, t) and a lower bound s∞ for s(·) then implies that the limits
p∗(·) = limt→∞ p(·, t) and s∗ = limt→∞ s(t) exist. From the differential equation, we
can derive that L[p∗] = 0 in (s∗,∞), p∗ = p0 in (−∞, s∗], and p∗ ∈ W 2

r,loc(R) for any
r > 1. Solving for (p∗, s∗) from these relations we find that s∗ = s∞ and p∗(·) = p∞(·).
This completes the proof.

Remark 2.1. The limit (s∞, p∞(·)) is the classical solution of Merton [22] for the
infinite horizon problem for American puts.
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Remark 2.2. That s(t) is not differentiable at t = 0 is due to the nonsmoothness
of the initial data p(·, 0) = p0 = max{1 − ex, 0}. To see this, consider the hodo-
graph transformation: Let x = X(z, t) be the inverse function of z = px(x, t) + ex.
Then s(t) = X(0, t), and X(z, t) solves the following initial Neumann boundary value
problem for a quasi-linear parabolic PDE:⎧⎪⎪⎨

⎪⎪⎩
Xt − 1

X2
z
Xzz + (k − 1) − kzXz = 0 for z > 0, t > 0,

Xz(0, t) = 1/k for t > 0,

X(·, 0) = max{0, log(z)} ∀z > 0.

(2.4)

This problem is highly singular since X(z, 0) = 0 for z ∈ (0, 1), which is due to the
fact that −p0x(0) has a jump from 0 to 1.

It is important to note that if the initial data X(z, 0) = max{0, log(z)} is replaced
by Xε(z, 0), a smooth function with positive slope, the resulting solution satisfies
Xε

z > 0 on [0,∞)× [0,∞). Our numerical simulation (not shown here) indicates that
a numerical scheme based on (2.4) is much better than the binomial or trinomial tree
method.

From (2.4), we see that if for some β > 0, s(t) is C1+β near some t = t0 > 0,
then s(·) ∈ C∞((t0,∞)). Indeed, s in C1+β near t0 implies p(x, t) in C2+β,1+β/2

in a neighborhood of R × {t0}, so that X(·, t0) is in C1+β([0,∞)). With a more
detailed a priori estimate on the previous ε problem one can show that (px +ex)x > 0
so Xz(·, t0) > 0 on [0,∞). A maximum principle for the equation for Xz can be
used to show that Xz > 0 on [0,∞) × [t0,∞). Since the Neumann boundary value
Xz(0, t) = 1/k is a constant function, a boot strap argument and a classical local
Hölder estimate for quasi-linear parabolic equation (see for example, [19]) then implies
that X ∈ C∞([0,∞) × (t0,∞)). In particular, s(t) = X(0, t) is also in C∞((t0,∞)).

In the subsequent sections, we shall show (by a totally different method) that
s(·) ∈ C2((0, δ)) for some δ > 0, so that s ∈ C∞((0,∞)).

3. Integral representation for the free boundary x = s(t). In this section,
we use the Green’s representation for solutions of the linear parabolic PDE in (1.1)
to derive, for the free boundary x = s(t), several integral and integrodifferential
equations, including (1.3), which is to be solved later to establish the asymptotic
behavior of s(t) for small positive t.

We denote by Γ(x, t) the fundamental solution to the operator ∂t − L; more
precisely,

Γ(x, t) =
1

2
√
πt

exp

{
− [x + (k − 1)t]2

4t
− kt

}
(3.1)

=
1

2
√
πt

exp

{
− [x + (k + 1)t]2

4t
+ x

}
.

Since (∂t − L)[p] = γ in Lr
loc(R × (0,∞)) for any r > 1 and γ = k for x < s(t) and

γ = 0 for x > s(t), the Green’s identity gives, for the unique solution (p, s) of (1.1),

(3.2)

p(x, t) =

∫ 0

−∞
(1−ey)Γ(x−y, t) dy+k

∫ t

0

∫ s(t−τ)

−∞
Γ(x−y, τ) dydτ x ∈ R, t > 0.

It is worth mentioning that the first integral on the right-hand side is the price for
the European put option because ektΓ(x − y, t)dy is the probability that at expiry
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the stock price (after scaling) is y, for which the option has value e−kt max{1 −
ey, 0}. Consequently, the second integral in (3.2) is the extra value (premium) of
the American put option over the European put option, if the option is exercised
optimally (i.e., exercise the option as soon as the (scaled) stock price s is below s(t)).

Lemma 3.1. Let s ∈ C0([0,∞)) ∩ C1((0,∞)) ∩W 1,1((0, 1)) be any function and
p(x, t) be defined as in (3.2). Set p0(x) = max{1 − ex, 0}. Then for all t > 0 and
x �= 0 and x �= s(t),

p(x, t) = p0(x) +

∫ t

0

{
Γ(x, τ) − k

∫ 0

s(t−τ)

Γ(x− y, τ)dy

}
dτ,(3.3)

px(x, t) = p0x(x) +

∫ t

0

{
Γx(x, τ) + k Γ(x, τ) − k Γ(x− s(t− τ), τ)

}
dτ,

pt(x, t) = Γ(x, t) + k

∫ t

0

Γ(x− s(t− τ), τ)ṡ(t− τ) dτ,

pxx(x, t) = p0xx(x) + Γ(x, t) +

∫ t

0

{
Γx(x, τ) + kΓ(x, τ) − k Γx(x− s(t− τ), τ)

}
dτ,

pxt(x, t) = Γx(x, t) + k

∫ t

0

Γx(x− s(t− τ), τ)ṡ(t− τ) dτ.

Consequently, (p, s) solves (1.1) if and only if s satisfies one of the following equations,
for all t > 0:∫ t

0

Γ(s(t), τ)dτ = k

∫ t

0

∫ 0

s(t−τ)

Γ(s(t) − y, τ)dydτ,(3.4)

∫ t

0

{
Γx(s(t), τ) + k Γ(s(t), τ)

}
dτ = k

∫ t

0

Γ(s(t) − s(t− τ), τ) dτ,(3.5)

Γ(s(t), t) = −k

∫ t

0

Γ(s(t) − s(t− τ), τ)ṡ(t− τ) dτ,(3.6)

Γ(s(t), t) =
k

2
+ k

∫ t

0

{
Γx(s(t) − s(t− τ), τ) − Γ(s(t) − s(t− τ), τ)

}
dτ,(3.7)

ṡ(t) = −2Γx(s(t), t)

k
− 2

∫ t

0

Γx(s(t) − s(t− τ), τ)ṡ(t− τ) dτ.(3.8)

Theorem 3.2. Let s ∈ C1((0,∞)) ∩ C0([0,∞)) be nonpositive and α(t) =
s2(t)/(4t). Assume that as t ↘ 0, α(t) = [−1 + o(1)] log

√
t and t α̇(t) = O(1).

Then s, together with p defined in (3.2), solve (1.1) if and only if s satisfies the inte-
grodifferential equation, for all t > 0,

(3.9)

ṡ(t) =
s(t)Γ(s(t), t)

2kt
+

∫ t

0

{s(t) − s(t− τ)

τ
− s(t)

2t

}
Γ(s(t)− s(t− τ), τ)ṡ(t− τ) dτ.

One notices that (3.9) is exactly equivalent to (1.3).

Remark 3.1. Since Γx(x, t) = −x+(k−1)t
2t Γ(x, t), adding (3.8) and (3.6) multiplied

by λs(t)+2(k−1)t
2kt gives

(3.10)

ṡ(t) =
(2 − λ)sΓ(s, t)

2kt
+

∫ t

0

{s(t) − s(t− τ)

τ
−λs(t)

2t

}
Γ(s(t)−s(t−τ), τ)ṡ(t−τ) dτ.
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Setting λ = 1 gives (3.9) or (1.3). We choose the particular value λ = 1 is to make the
integral as small as possible, because the most significant contribution of the integral

comes from small τ and when τ is small, s(t)−s(t−τ)
τ ≈ s′(t) = s(t)

2t [1 + tα̇(t)
α ] ≈ s(t)

2t .
Indeed, the cancellation is even stronger than this. A linear combination of equations
(3.6)–(3.8) shows that the integral on the right-hand side of (3.9) is equal to

∫ t

0

{ ṡ(t) + ṡ(t− τ)

2

s(t) − s(t− τ)

τ
− ṡ(t)ṡ(t− τ) + k+1

2 ṡ(t)
}

Γ(s(t) − s(t− τ), τ) dτ.

Due to the strong cancellation of the first two terms in the integrand, the ratio m(t)
of the integral and the first term on the right-hand side of (3.9) can be expanded as

0 + 0ξ−1 + 0ξ−2 + 1
4ξ

−3 + O(ξ−4), where ξ = log[
√

4πk2t]. Thus, we can drop the
integral in (3.9) to obtain the ODE in section 1 approximating s(t) accurately for

small as well as large t (when t is large, ṡ(t) = O(t−3/2e−(k+1)2t/4) is exponentially
small).

Remark 3.2. From (3.4) one can immediately obtain a rough estimate for s(t)

for small t. In fact, since
∫ 0

−∞ Γ(y, t) dy = 1
2e

−kt, the double integral in (3.4) can be

written as θ(t) kt with θ(t) ∈ (0, 1/2). Also since Γ(s(t), t) = 1+o(1)√
4πt

e−s(t)2/(4t) for

small t,
∫ t

0
Γ(s(t), τ) dτ = [1+o(1))]

√
t α√

π

∫∞√
α
η−2e−η2

dη, where α = s2/(4t). Thus (3.4)

gives limt↘0 α(t) = ∞. Consequently,
∫∞√

α
η−2e−η2

dη = 1
2α

−3/2e−α(1+O(α−1)) and,

from (3.4),

α−1e−α[1 + O(α−1)] =
√

4πk2t θ(t) .

Hence α is of order at least O(| log t|). One can further calculate, assuming α = [−1+

o(1)] log
√
t, that θ = α−1(1 + o(1)). It then follows that α = | log

√
4πk2t|(1 + o(1)),

a conjecture first made correctly in [25]. It is worth mentioning here that θ(t) ≈ α−1

eliminates any log | log t| corrections ( as suggested in [18] and [5]) to the leading order
approximation α ≈ − log[

√
t] for small t.

The smallness of θ(t) results from the strong cancellation of the integral

k
∫ t

0

∫ s(t−τ)

−∞ Γ(x − y, τ)dydτ which represents the extra value of the American put

over the European put, and the integral −k
∫ t

0

∫ 0

−∞ Γ(x − y, τ)dydτ = p0 ∗ Γ(·, t) −
{p0 +

∫ t

0
Γ(x, τ)dτ} which relates to that part of the premium added on to the Eu-

ropean put to account for the possibility that the future stock price drops below x.
It seems to us that this strong cancellation was not observed in [18], resulting in
log | log t| terms appearing in their expansion of α.

The asymptotic behavior α = − log
√

4πk2t+o(1) for small t can also be similarly
derived from (3.5).

Remark 3.3. Equation (3.6) or (3.7) can be used to derive an interesting and
highly nontrivial limit: limt→0 Γ(s(t), t) = k. Indeed, using the change of variable

η = s(t−τ)−s(t)
2
√
τ

, one obtains from (3.6)

Γ(s(t), t) = k[ 1 + o(1) ]

∫ √
α

0

2e−η2

√
π

(
2 − s(t) − s(t− τ)

ṡ(t− τ)τ

)−1

dη = k + o(1)

since when τ/t is small, s(t)−s(t−τ)
ṡ(t−τ)τ ≈ 1, whereas when τ/t is not small, η � 1 so that

s(t)−s(t−τ)
ṡ(t−τ)τ can be replaced by 1 as an approximation.
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Remark 3.4. A system exactly equivalent to (3.7) was derived in [25] and was used
to derive formally (SSC) in section 1. The system was also used to obtain accurate
approximations of s for small t, via an iteration scheme: starting with s ≡ 0, update s
by solving (3.7) with the right-hand side evaluated at a previous s. Nevertheless, this
scheme does not seem to converge, although its first several iterations converge rapidly
(for small t); for more details, see [8, 25]. This is one of our reasons for deriving (3.9)
and using it to analyze s(t) theoretically and also numerically.

Remark 3.5. The nonpositivity assumption on s for the integrodifferential equa-
tion in (3.9) is important since if s is a solution, then when k = 1, ŝ = −s is also a
solution.

Proof of Lemma 3.1. Since Γ(·, 0) is the Delta function,

∫ 0

−∞
(1 − ey)Γ(x− y, t) dy = p0(x) +

∫ t

0

∫ 0

−∞
p0(y)Γτ (x− y, τ)dydτ

= p0(x) +

∫ t

0

{
Γ(x, τ) − k

∫ 0

−∞
Γ(x− y, τ) dy

}
dτ

by using Γτ (x− y, τ) = Γxx + (k − 1)Γx − kΓ and integrating by parts. Substituting
this identity into (3.2) we obtain (3.3). The rest of the equations, for px, pt, pxx,
and pxt, follow by differentiating (3.3) (a substitution Γxx + kΓx = Γτ + Γx + kΓ is
needed for pxx). We remark that all the integrals are convergent due to the regularity
assumption we made on s. It remains to show the second part of the lemma.

First we assume that (p, s) solves (1.1). Then p(x, t) − p0(x), as well as all its
derivatives, vanish when x < s(t). Thus, letting x ↗ s(t) we obtain from the equations
for p, px, pt, pxx − px, and pxt the corresponding equations asserted. Here, in taking
the limits for pxx and pxt, we need the following fact: for any continuous function f ,

lim
x→s(t)±

∫ t

0

Γx(x−s(t−τ), τ)f(t−τ) dτ = ∓f(t)

2
+

∫ t

0

Γx(s(t)−s(t−τ), τ)f(t−τ) dτ.

Next we assume that s satisfies one of the equations in the second part of the
lemma and show that (p, s) solves (1.1). First we notice that p satisfies p(·, 0) = p0(·)
and for t > 0, pt − L[p] = 0 for x > s(t), and = k for x < s(t). In addition,
p ∈ W 2,1

r,loc(R × [0,∞) \ {(0, 0)}) for any r > 0. From the equations we derived for
p, px, pt, pxx, and pxt, we see that the equations in the second part of the lemma
are, respectively, equivalent to the conditions p = p0, px = p0x, pt = 0, pxx − px =
p0xx − p0x, and pxt = 0 at (s(t)−, t) for all t > 0. Each of these conditions provides,
by the uniqueness of solutions of the initial boundary value problem of the parabolic
equation pt − L[p] = k in the set {(x, t) | x ≤ s(t), t > 0}, that p ≡ p0 in the set,
which implies that (p, s) satisfies all the equations (1.1). Also, (p, s) satisfies all the
other integral equations we derived.

It remains to show that p > p0 when x > s(t). That p ∈ W 2,1
r for any r implies

that p ∈ C1+β,(β+1)/2 so p0 = p and p0x = px on x = s(t). Now the function
q := (p − p0)x satisfies qt − L[q] = 0. In addition, q = 0 and qx = k > 0 on
x = s(t). Using lap number theory, one concludes that the number of zeroes of q(·, t)
is nonincreasing. One can show that for sufficiently small positive t, q(·, t) = 0 has
exactly one root in (s(t),∞), so that q(·, t) = 0 has at most one root for all t > 0.
Consequently, q(·, t) = 0 has exactly one root in (s(t),∞). Thus, starting from s(t),
p(·, t) − p0(·, t) first increases, then decreases to zero as x → ∞; i.e. p > p0 for all
x > s(t). This completes the proof.
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Proof of Theorem 3.2. Assume that (p, s) solves (1.1). Then pxt = pt = 0 at

(s(t)−, t) for all t > 0. Equation (3.9) then follows from pxt + s(t)+2(k−1)t
4t pt = 0 at

(s(t)−, t).
Now we assume that s satisfies (3.9) and show that (p, s) solves (1.1). We need

only show that pt = 0 for all x < s(t). Note that p defined in (3.2) is smooth
(enough in our subsequent analysis) in the set {(x, t) | x ≤ s(t)−, t > 0}, and (3.9)

implies pxt + s(t)+2(k−1)t
4t pt = 0 at (s(t)−, t) for all t > 0. Since s(t)+2(k−1)t

4t ∼ −
√

α(t)√
4t

is negative and pt is singular near the origin, we cannot directly apply a standard
parabolic PDE theory to conclude that pt = 0 for x < s(t) and all t ≥ 0.

Differentiating the equation pt − L[p] = k with respect to t, multiplying the
resulting equation by pt, and integrating over (−∞, s(t)) we obtain, after integration

by parts and the substitution pxt = − s(t)+2(k−1)t
4t pt at the boundary x = s(t)−,

1

2

d

dt

∫ s(t)

−∞
p2
tdx +

∫ s(t)

−∞
(p2

xt + k p2
t )dx

=
{ ṡ(t)

2
− s(t)

4t

}
p2
t (s(t)−, t) = −

√
t α̇(t)

2
√
α(t)

p2
t (s(t)−, t)

by the definition α(t) = s2/(4t). Using p2
t (s(t)−, t) =

∫ s(t)

−∞ 2ptpxtdx ≤
∫ s(t)

−∞ (δp2
t +

δ−1p2
xt)dx with δ = | tα̇(t)

2
√

α(τ)
| and canceling the integral involving p2

xt on both sides

we then obtain

d

dt

∫ s(t)

−∞
p2
t (x, t)dx ≤ t(α̇(t))2

2α(t)

∫ s(t)

−∞
p2
t (x, t)dx for all t > 0.

Solving the differential inequality over (ε, t) (0 < ε < t) then gives∫ s(t)

−∞
p2
t (x, t) dx ≤ exp

{∫ t

ε

τα̇2(τ)

2α(τ)
dτ

}∫ s(ε)

−∞
p2
t (x, ε) dx.(3.11)

We now show that the right-hand side approaches zero as ε ↘ 0.
First, using the assumptions on α we can calculate

exp

{∫ t

ε

τα̇2(τ)

2α(τ)
dτ

}
≤ | log ε|O(1).(3.12)

Next we estimate
∫ s(ε)

−∞ p2
t (x, ε)dx by using the representation of pt in Lemma

3.1. First we consider the integral in the representation of pt. Observe that our as-
sumption on α implies ṡ(ε−τ) < 0 and [s(ε)−s(ε−τ)+(k−1)τ ] < 0 for all small ε and
τ ∈ (0, ε). Therefore, for all x < s(ε), Γ(x − s(ε − τ), τ) ≤ C

exp{− [x−s(ε)]2

4ε }τ−1/2 exp{− [s(ε)−s(ε−τ)]2

4τ }, where C is independent of ε. Hence, with

a change of variable τ → η via η = [s(ε − τ) − s(ε)]/(2
√
τ) (dη = − ṡ(ε−τ)dτ

2
√
τ

(1 −
s(ε)−s(ε−τ)

2τṡ(ε−τ) ), we can estimate

0 < −
∫ ε

0

Γ(x− s(ε− τ), τ)ṡ(ε− τ) dτ ≤ C exp{− [x−s(ε)]2

4ε }
∫ √

α(ε)

0

e−η2

1 − s(ε)−s(ε−τ)
2τṡ(ε−τ)

dη

≤ C exp{− [x−s(ε)]2

4ε }
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since the assumption on α implies that 0 < s(ε)−s(ε−τ)
2τṡ(ε−τ) < 3

4 for all small ε and

τ ∈ (0, ε). It then follows from the representation for pt in Lemma 3.1 that∫ s(ε)

−∞
pt(x, ε)

2dx ≤
∫ s(ε)

−∞

{
2Γ2(x, ε) + C exp{− [x−s(ε)]2

2ε }
}

≤ C
{
ε−1/2

∫ ∞

√
α(ε)

e−2η2

dη +
√
ε
}

by using Γ(x, ε) ≤ Cε−1/2 exp{−x2

4ε } and a change of variable x = −2
√
εη. Since

α(ε) = − 1
2 log ε+O(1) for small ε,

∫∞√
α(ε)

e−2η2

dη = [1+O(α(ε)−1)]e−2α(ε)/(4
√
α(ε)) =

O(ε). Hence,
∫ s(ε)

−∞ p2
t (x, ε) = O(

√
ε). Substituting this last estimate and (3.12) into

(3.11) and sending ε ↘ 0 we then conclude that
∫ s(t)

−∞ p2
t (x, t) = 0 for any t > 0.

This implies that pt = 0 for all x < s(t), thereby completing the proof of the
theorem.

4. Asymptotic behavior of s(t). In this section, we study the integrodiffer-
ential equation (3.9) for small t.

4.1. Reformulation of the problem. To study (3.9), it is convenient to study
the function s2(t)/(4t) in the log(t) scale. For this purpose, we change variables from
(s, t) to (u, ξ) by{

t = 1
4πk2 e

2ξ,

s(t) = −2
√
t u(ξ),

⇔
{

ξ = log
√
t + log

√
4πk2,

u(ξ) = s2(t)/(4t) (= α(t)).

To transform the integrodifferential equation (3.9) into the new unknown u(ξ), we
bear in mind that we are interested in small t, i.e., large negative ξ. Also, one expects
u(ξ) = −ξ−O(ξ−1) and u′(ξ) = −1+O(ξ−2). The absence of a constant term in the
expansion of u(ξ) is due to the presence of the particularly chosen constant 4πk2 in
the definition of ξ.

In the sequel, ′ = d
dξ and F [u](ξ) denotes the value at ξ of the function F [u]

when F is an operator.
Now we transform (3.9) into the new variables (u, ξ). Simple substitution yields

s(t)
{
ṡ(t) − s(t)

2kt
Γ(s(t), t)

}
= u′(ξ) + G(u(ξ), ξ),

G(u, ξ) := 2u
(
1 − exp{−u− ξ + (k−1)

√
ueξ

2k
√
π

− (k+1)2e2ξ

16k2π }
)
.(4.1)

To convert the integral in (3.9), we notice that the singularity on the exponent looks

like ξ z, where z = (
√
t−

√
t−τ)2

τ if we were to suppose s(t) ∼
√

4tξ. This suggests the
use of the change of variable from τ to z via τ = 4zt

(1+z)2 . Then

z = τ
(
√
t+

√
t−τ)2

= (
√
t−

√
t−τ)2

τ , η := log
√

4πk2(t− τ) = ξ + log 1−z
1+z .

For notational simplicity, we write u = u(ξ), û = u(η), and û′ = u′(η). Then

s(t) = −2
√
tu, s(t− τ) = −2

√
(t− τ)û, ṡ(t− τ) = −

√
û√

t−τ
[1 + û′/(2û)], and

s(t)

∫ t

0

(s(t)
2t

− s(t) − s(t− τ)

τ

)
ṡ(t− τ) Γ(s(t) − s(t− τ), τ) dτ

=

∫ 1

0

{
1 + z2

z

√
u− 1 − z2

z

√
û

}{
1 +

û′

2û

}√
û
√
−ξ e ξz−b

√
πz

dz,
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where

b = log
√
−ξ/u + (u + ξ)z + log[1 + z]

+ 1−z
2 {u− û} + 1−z2

4z {
√
u−

√
û}2 − (k−1)eξ

2k
√
π

{
√
u− 1−z

1+z

√
û} + (k+1)2ze2ξ

4k2π(1+z)2 .(4.2)

One observes that η − ξ = log 1−z
1+z ∼ 2z for small z. This suggests that we

can approximate û = u(η) by u(ξ − 2z). Hence, writing (1+z2

z

√
u − 1−z2

z

√
û)
√
û as

u−u(ξ−2z)
2z + u(ξ−2z)−û

2z − (
√
u−

√
û)2

2z + z(
√
uû + û), we can transform (3.9) (multiplied

by s(t)) to

u′(ξ) +

∫ 1

0

u(ξ) − u(ξ − 2z)

2z

√
−ξe ξz

√
πz

dz + G(u(ξ), ξ) = F [u](ξ),(4.3)

where G(u, ξ) is as in (4.1) and the operator F is defined by

F [u](ξ) = −
∫ 1

0

{
f1 + f2 + û′f3

}
dz ,(4.4)

f1 =
{

u−u(ξ−2z)
2z (e−b − 1) + u(ξ−2z)−û

2z e−b − (
√
u−

√
û)2

2z e−b
} √

−ξe ξz

√
πz

,

f2 = z(
√
uû + û)

√
−ξe ξz−b

√
πz

,

f3 =
{

1+z2

z

√
u
û − 1−z2

z

}√
−ξe ξz−b

√
πz

.

Now we introduce a linear operator L : φ → L[φ] by

L[φ](ξ) =

∫ 1

0

(1

z

∫ z

0

φ(ξ − 2ζ)dζ
)√−ξe ξz

√
πz

dz .

=

∫ 1

0

φ(ξ − 2ζ)�(ξ, ζ) dζ, �(ξ, ζ) :=

∫ 1

ζ

√
−ξe ξz

z
√
πz

dz .(4.5)

Then equation (3.9) or (4.3) can be written as, for ξ < 0 (i.e., t < 1/(4πk2)),

(I + L)[u′](ξ) + G(u(ξ), ξ) = F [u](ξ),(4.6)

where I represents the identity operator.
Theorem 4.1. Assume that k > 0. Then there exists a constant ξ0 < 0 such

that (4.6) admits a unique positive solution u(·) ∈ C2((−∞, ξ0]) having the asymptotic
expansion, as ξ → −∞,

u(ξ) = u0(ξ) + O(ξ−4), u0 := −ξ − 1

2ξ
+

1

8ξ2
+

17

24ξ3
.(4.7)

4.2. Proof of Theorem 4.1. We use the following Schauder’s fixed point the-
orem:

A continuous map T from a compact and convex subset D of a Ba-
nach space X to D possesses at least a fixed point.

To apply this theorem, we define, for some negative constant ξ0 to be chosen later,

X = C1((−∞, ξ0]) , ‖v‖X := sup
ξ∈(−∞,ξ0]

{|v(ξ)| + |v′(ξ)| } ,

D = {v ∈ X | |v(ξ)| + |v′(ξ)| + |v′′(ξ)| ≤ |ξ|−1 ∀ ξ ∈ (−∞, ξ0]} .
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The uniform decay of derivatives of functions in D ensures that D is compact and
convex in X. We also need two technical lemmas.

Lemma 4.2. Let u0 be as in (4.7). There exists a positive constant C0, depending
only on k, such that for every ξ0 ≤ −2 and every u ∈ {u0} + D, the function F [u](·)
defined in (4.4) is continuous differentiable on (−∞, ξ0] and

∣∣∣F [u](ξ) + 1
∣∣∣ +

∣∣∣ d
dξ

F [u](ξ)
∣∣∣ ≤ C0|ξ|−2 ∀ ξ ∈ (∞, ξ0] .(4.8)

Lemma 4.3. Let C0 be as in the previous lemma. There exist a positive constant
M(C0) and a negative constant Ξ(C0) ≤ −2 such that if ξ0 ≤ Ξ[C0] and f ∈
C1((−∞, ξ0]) satisfies

|f(ξ) + 1| + |f ′(ξ)| ≤ C0|ξ|−2 ∀ξ ∈ (−∞, ξ0],

then there exists a unique solution w ∈ C2((−∞, ξ0]) to

(P1)

{
(I + L)[w′](ξ) + G(w(ξ), ξ) = f(ξ) ∀ ξ ∈ (−∞, ξ0],

limξ→−∞(w(ξ) + ξ) = 0 .
(4.9)

In addition, the solution satisfies, for u0 defined as in (4.7),

|w(ξ) − u0(ξ)| + |w′(ξ) − u′
0(ξ)| + |ξ|−1 |w′′(ξ) − u′′

0(ξ)| ≤ M(C0)|ξ|−3 ∀ ξ ≤ ξ0.

Proof of Theorem 4.1. We choose ξ0 = min{Ξ[C0],−M(C0)}, where C0,M(C0)
and Ξ[C0], depending only on k, are as in the previous two lemmas.

For every v ∈ D, we define T[v] = w − u0, where w is the solution to (4.9) with
f := F [u0 + v]. By Lemma 4.2 and Lemma 4.3, T is well defined. In addition, from
the estimates for w and the definition of ξ0, T[v] ∈ D; i.e., T maps D into itself.

Now we show that T : D ⊂ X → X is continuous. For this purpose, let vj ,
j = 1, 2, . . . ,∞, be functions in D such that vj → v∞ in X = C1((−∞, ξ0]) as j → ∞.
We want to show that T[vj ] → T[v∞] in X. As every member of {T[vj ]}∞j=1 is in D,
which is compact in X, any subsequence of {T[vj ]} has a subsubsequence convergent
to a limit, say, ṽ, in X. Since along that subsubsequence, F [u0 + vj ] → F [u0 + v∞],
(T[vj ])

′ → ṽ′, and L[(u0 + T[vj ])
′ ] → L[(u0 + ṽ)′] in C0((−∞, ξ0]), we conclude

by taking the limit of the integrodifferential equation satisfied by T[vj ] that u0 + ṽ
is a solution to (4.9) with f = F [u0 + v∞]. It then follows by uniqueness of (4.9)
that ṽ = T[v∞]. Consequently, the whole sequence {T[vj ]} converges to T[v∞] in X.
Thus, T is continuous. The Schauder fixed point theorem then shows that T has at
least one fixed point, which, after adding u0, gives a solution to (4.3).

Finally, by Theorem 3.2, such a solution u is unique. This proves Theorem 4.1.

4.3. Proof of Lemma 4.2. For notational simplicity, in the sequel, O(f) stands
for a quantity satisfying |O(f)| ≤ C|f |, where C is a positive constant depending only
on k.

Since u−u0 ∈ D, |u′(ξ)+ 1| ≤ 2/|ξ|, so that, by the mean value theorem and the
definition η = ξ + log 1−z

1+z ,

u− û = u(ξ) − u(η) = u′(ξ − θ){ξ − η} = [1 + O(|ξ|−1)] log 1−z
1+z .

It then follows from the Lebesgue dominated convergence theorem that
F ∈ C1((−∞, ξ0]). It remains to estimate F [u] and its derivative.
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Note that b, defined in (4.2), is uniformly bounded in z ∈ (0, 1) and ξ ∈ (−∞, ξ0].
When z ∈ [1/2, 1], the term eξz < eξ/2 is exponential small in terms of ξ < ξ0 ≤ −2.
All other terms are of order log[1− z], so the total contribution of the integral for z ∈
[1/2, 1] is exponential small in ξ. Thus, we need only pay attention when z ∈ (0, 1/2].

First we estimate f1. That u− u0 ∈ D and η − ξ = log 1−z
1+z = −2z + (z2) implies

b = O(z2 + z|ξ|−1 + ξ−2) so that |f1| = O(z2 + z|ξ|−1 + ξ−2)
√
−ξeξz√
πz

. Note that for

every ξ < 0 and i > −1/2,

∫ 1

0

zi
√
−ξe ξz

√
πz

dz ≤ |ξ|−i

√
π

∫ ∞

0

zi−1/2e−z dz = O(|ξ|−i).

It then follows that
∫ 1

0
|f1|dz = O(ξ−2). A direct differentiation also shows that∫ 1

0
| d
dξf1| dz = O(ξ−2) since u′′ = O(|ξ|−1).

Similarly, we can show that
∫ 1

0
(|û′f3| + | d

dξ û
′f3|)dz = O(ξ−2).

For the integral involving f2, we write
√
uû+ û = 2u− 1

2 (
√
u−

√
û)2− 3

2 (u− û) =

−2ξ + O(|ξ|−1 + |ξ|−1 log2 1+z
1−z + log 1+z

1−z ). Hence,
∫ 1

0
f2 dz =

∫ 1

0
−2zξ

√
−ξe ξz

√
πz

dz +

O(|ξ|−2) = −1 + O(ξ|−2). A differentiation also gives |
∫ 1

0
d
dξf2 dz| = O(ξ−2). This

completes the proof.
Remark 4.1. The integral in (3.10) is of size |ξ|/s(t) if λ �= 1. When λ = 1,

this integral is of size (L[u′] − F [u])/s(t) = O(ξ−2)/s(t) since u′ = −1 + O(ξ−2)
and L[u′] = −1 + O(ξ−2). Hence, the ratio of the integral and the first term on the
right-hand side of (3.9) is of size O(ξ−3); see Remark 3.1.

4.4. Idea for the proof of Lemma 4.3. To complete the proof of Theorem
4.1, it remains to prove Lemma 4.3, which will be done in the next two sections. Here
we provide the main idea of the proof.

We first investigate in section 5 the linear operator L. In particular, we show that
the inverse operator (I + L)−1 is a bounded operator from C0 to C0. Also, we show
that L[φ] is always 1/2 more differentiable than φ.

Then in section 6, we study, for any large integer j, an initial value problem (P1)j
of the integrodifferential equation in (P1) in the interval [−j, ξ0] with “initial value”
w = u0 in (−∞,−j]. The existence of a solution follows from a standard Picard
iteration technique.

To obtain certain desired behavior of the solution of (P1)j , we find that (P1)j , as
well as (P1), satisfy a comparison principle: larger initial data and larger source term
produce larger solutions. Because of the large positive derivative ∂

∂uG(u0, ξ) ∼ 2|ξ|,
this comparison principle allows us to construct sub and super solutions of the form
u0 ±M |ξ|−3 to sandwich the solution to (P1)j . Thus, we can take the limit j → ∞
to obtain a solution to (P1) with the desired asymptotic behavior. Uniqueness of
solutions to (P1) also follows from the comparison principle.

5. The operator L. In this section we study the operator L defined in (4.5).
Lemma 5.1. There exists a universal positive constant c0 such that for every

ξ0 ≤ −2,

(5.1)
c0‖φ‖C0(−∞,ξ0]) ≤ ‖(I + L)[φ]‖C0(−∞,ξ0])

≤ 2‖φ‖C0((−∞,ξ0]) ∀φ ∈ C0((−∞, ξ0]) .
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Consequently, I + L admits a bounded inverse (I + L)−1 from C0((−∞, ξ0]) to itself
and

1
2 ≤ ‖ (I + L)−1 ‖C0((−∞,ξ0]→C0((−∞,ξ0]) ≤ 1

c0
.(5.2)

Proof. The second inequality in (5.1) follows easily from the first definition of L
(one line above (4.5)).

To prove the first inequality, we make a scaling change a change of variables
z → Z/|ξ| and ζ → θ/|ξ|. Then L[φ] in (4.5) can be written as

L[φ](ξ) =

∫ −ξ

0

φ(ξ + 2θ/ξ)�1(ξ, θ) dθ, �1(ξ, θ) =

∫ −ξ

θ

e−Z

Z
√
πZ

dZ.

To prove the first inequality in (5.1), we notice that L is linear, so that we can without
loss of generality assume ‖φ‖C0 = 1 = supξ<ξ0 φ(ξ).

Let j ≥ 2 be any integer, and let ξj ∈ (−∞, ξ0] be a point such that φ(ξj) ≥
1 − 1/j. Since

∫ −ξj
0

�1(ξj , θ) < 1 for any m ∈ (0, 1/2),

(I + L)[φ](ξj)

≥
∫ −ξj

0

{
1 + φ(ξj + 2θ/ξj)

}
�1(ξj , θ) dθ −

1

j
≥ m�1(ξj , 1){1 −A(ξj ,m)} − 1

j
,

where A(ξ,m) = measure{θ ∈ [0, 1]
∣∣ φ(ξ + 2θ/ξ) + 1 < m}. Suppose A(ξj ,m) > 0.

Then there is a unique ξ̂j ∈ (ξj + 2/ξj , ξj) such that φ(ξ) + 1 > m in (ξ̂j , ξj ] and

φ(ξ̂j) + 1 = m. Since ξ̂j + 2/ξ̂j < ξj + 2/ξj ,

A(ξj ,m) =
ξ

2
measure{z ∈ [ξj + 2/ξj , ξj ] | φ(z) < m− 1}

≤ ξ

2
measure{z ∈ [ξ̂j + 2/ξj , ξ̂j ] | φ(z) < m− 1} =

ξ

ξ̂
A(ξ̂j ,m) � A(ξ̂j ,m).

Hence

−(I + L)[φ](ξ̂j) = 1 −m− L[φ](ξ̂j) ≥ −m +

∫ −ξ̂j

0

{1 − φ(ξ̂j + 2θ/ξ̂j)}�1(ξ̂j , θ) dθ

≥ −m + (2 −m)A(ξ̂j ,m)�1(ξ̂j , 1) ≥ −m + (2 −m)A(ξj ,m)�1(ξj , 1)

≥ �(ξj , 1)[−m + (1 −m)A(ξj ,m)].

It then follows that, regardless of the size of A(ξj ,m),

‖(I + L)[φ]‖C0 + 1
j ≥ �1(ξj , 1) max

{
m[1 −A(ξj ,m)],−m + (2 −m)A(ξj ,m)

}
≥ �1(−2, 1)m(1 −m).

Sending j → ∞ and taking m = 1/2 we then conclude that (5.1) holds with c0 =
�1(−2, 1)/4.

The invertibility of I + L and the estimate (5.2) follow from (5.1) and the Hahn–
Banach theorem.

Next, we show that L[φ] is 1/2 more differentiable than φ.
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Lemma 5.2. For every β ∈ [0, 1], there exists a positive constant C(β) such that

‖φ‖C0([a−2,b]) + C(β)
√
|a| [φ]β,[a−2,b] ≥

⎧⎪⎪⎨
⎪⎪⎩

[ L[φ] ]β+1/2,[a,b] if β ∈ [0, 1/2),

[L[φ] ]∗1,[a,b] if β = 1/2,

[(L[φ])′ ]β−1/2,[a,b] if β ∈ (1/2, 1],

(5.3)

where [ψ]∗1,[a,b] := supa≤ξ2<ξ1≤b
|ψ(ξ2)−ψ(ξ1)|

|ξ2−ξ1| max{1,| log(ξ1−ξ2)|} and

[ψ]β,[c,d] = sup
c≤ξ2<ξ1≤d

|ψ(ξ2) − ψ(ξ1)|
|ξ2 − ξ1|β

∀β ∈ [0, 1].(5.4)

We remark that L[φ](ξ) depends only on values of φ in [ξ − 2, ξ]. Also the factor√
|a| on the left-hand side of (5.3) is necessary since limξ→∞{L[φ](ξ)− φ(ξ)} = 0 for

any bounded and uniformly continuous function φ.
Proof. Let ξ1 and ξ2 be any numbers such that a ≤ ξ2 < ξ1 ≤ b. Set h = ξ1 − ξ2.

Since ‖L‖C0→C0 ≤ 1, we need only consider the case h < 1/4. Also, L[1](ξ) =∫ −ξ

0
�(ξ, θ)dθ =

∫ −ξ

0
e−z
√
πz

dz, so that ‖L[1]‖C1 ≤ 1. Hence, by considering the function

φ(ξ) − φ(ξ2)1 if necessary, we can assume that φ(ξ2) = 0.
First, we consider the case β ∈ [0, 1/2]. Using (4.5) and changing of variable

ζ → ζ + h/2 for the integral for L[φ](ξ1) we have

L[φ](ξ2) − L[φ](ξ1) =

∫ 1−h/2

0

φ(ξ2 − 2ζ)
{
�(ξ2, ζ) − �(ξ1, ζ + h/2)

}
dζ

+

∫ 1

1−h/2

φ(ξ2 − 2ζ)�(ξ2, ζ) dζ −
∫ h/2

0

φ(ξ1 − 2ζ)�(ξ1, ζ) dζ .

Now φ(ξ2) = 0 implies |φ(ξ2−2ζ)| ≤ [φ]β |2ζ|β for all ζ ∈ [0, 1] and |φ(ξ1−2ζ)| ≤ hβ [φ]β
for all ζ ∈ [0, h/2]. Hence, |L[φ](ξ2) − L[φ](ξ1)| is bounded by

[φ]β

{∫ 1−h/2

0

(2ζ)β
∣∣∣�(ξ1 − h, ζ) − �(ξ1, ζ + h/2)

∣∣∣ dζ
+

∫ 1

1−h/2

�(ξ2, ζ) dζ +

∫ h/2

0

hβ�(ξ1, ζ) dζ

}
.

(5.5)

Note that �(ξ, ζ) <
√

|ξ|/π
∫ 1

ζ
z−3/2dz ≤ 2

√
|ξ|ζ−1/2. The last two integrals are

bounded by O(1)
√
|ξ2|hβ+1/2 when β ∈ [0, 1/2]. Also

|�(ξ1 − h, ζ) − �(ξ1, ζ + h/2)| ≤
∫ 1

ζ+h/2

|
√
|ξ1 − h|e(ξ1−h)z −

√
ξ1e

ξ1z|√
πz3

dz

+

∫ ζ+h/2

ζ

√
|ξ1 − h|e(ξ1−h)z

√
πz3

dz

The first integral is bounded by O(1)
√
|ξ2|hζ−1/2 whereas the second integral is

bounded by

O(1)
√
|ξ2

( 1√
ζ + h/2

− 1√
ζ

)
=

O(1)
√
|ξ2| h/2

√
ζ
√
ζ + h/2(

√
ζ + h/2 +

√
ζ)

=
O(1)

√
|ξ2| h

ζ
√
ζ + h/2

.
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Finally, note that∫ 1

0

ζβh

ζ
√
ζ + h/2

dζ = hβ+1/2

∫ 1/h

0

zβ−1√
z + 1/2

dz =

{
O(β)hβ+1/2 if β ∈ (0, 1/2),

O(1)h| log h| if β = 1/2.

Therefore, the quantity in (5.5) is bounded by C(β)
√
|ξ2|[φ]βh

β+1/2 if β ∈ [0, 1/2)

and by C(β)
√
|ξ2|[φ]βh | log h| if β = 1/2. This proves (5.3) for the case β ∈ [0, 1/2].

Next we consider β ∈ (1/2, 1]. Set Φ(ξ) =
∫ ξ

ξ2
φ(η) dη. Then

L[φ] =

∫ 1

0

Φ(ξ) − Φ(ξ − 2z)

2z

√
−ξeξz√
πz

,

and

d

dξ
L[φ](ξ) =

∫ 1

0

φ(ξ) − φ(ξ − 2z)

2z

√
−ξe ξz

√
πz

dz

+
1

2ξ

∫ 1

0

Φ(ξ) − Φ(ξ − 2z)

2z

(1 + 2ξz)
√
−ξe ξz

√
πz

dz =: I(ξ) + II(ξ) .

Note that d
dξ II(ξ) is bounded by [φ]β since Φ′ = φ and |φ(ξ)− φ(ξ − 2z)| ≤ [φ]β(2z)β

and β > 1/2. It remains to consider I(·). We write

I(ξ1) − I(ξ2) =

∫ 1

0

φ(ξ1) − φ(ξ1 − 2z) − φ(ξ2) + φ(ξ2 − 2z)

2z

√
−ξ1e

ξ1z

√
πz

dz

+

∫ 1

0

φ(ξ2) − φ(ξ2 − 2z))

2z

√
−ξ1e

ξ1z −
√
−ξ2e

ξ2z

√
πz

dz.

Since |φ(ξ2)−φ(ξ2−2z)| ≤ [φ]β(2z)β with β > 1/2, the second integral is bounded by
h[φ]β |ξ1|−β

∫∞
0

(1 + Z)Zβ−3/2e−Z dZ ≤ Ch[φ]β |ξ1|−β . To estimate the first integral,
we use

|φ(ξ1) − φ(ξ1 − 2z) − φ(ξ2) + φ(ξ2 − 2z)| ≤ 2[φ]β min{hβ , (2z)β}

so that the first integral is bounded by

2[φ]β

∫ ∞

0

min{(2z)β , hβ}
2z

√
−ξ2e

ξ2z

√
πz

dz ≤ C
√
−ξ2[φ]βh

β−1/2.

In summary, we have | d
dξL[φ](ξ1) − d

dξL[φ](ξ2)| ≤ C[φ]β
√
−ξ2h

β−1/2. This completes
the proof.

Remark 5.1. With the same technique, one can show that for any positive non-
integer β, L[φ] ∈ Cβ if φ ∈ Cβ−1/2. Also we can show that F [u] defined in (4.4) is
always 1/2 more differentiable that u′, assuming that u ∼ −ξ + o(1/ξ). We omit the
details.

6. Proof of Lemma 4.3.

6.1. The truncated problem. We first study problem (P1) in a finite interval
[−j, ξ0]:

(P1)j

{
(I + L)[w′](ξ) + G(w(ξ), ξ) = f(ξ) ∀ ξ ∈ (−j, ξ0],

w(ξ) = u0(ξ) ∀ξ ∈ (−∞,−j] .
(6.1)

Since we aim for positive solutions, we extend G(w, ξ) for negative w by 0.
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Lemma 6.1. Let −j < ξ0 ≤ −2, f(·) be any continuous function on [−j, ξ0], and
u0 be any differentiable function on (−∞, ξ0]. Then (P1)j admits a unique solution
w ∈ C1([−j+, ξ0]).

Proof. We first note that L[w′] =
∫ 1

0
w(ξ)−w(ξ−2z)

2z

√
−ξeξz√
πz

dz, so that ‖L[w′]‖C0([−j,ξ])

≤ Cj [w]3/4,[−j−2,ξ] for all ξ ∈ [−j, ξ0], where Cj = j1/4
∫∞
0

Z−3/4e−ZdZ and [φ]β,[a,b]
is as in (5.4). We remark that if φ(a) = 0, then [φ]0,[a,b] ≥ ‖φ‖C0([a,b]) := supξ∈[a,b] |φ(ξ)|.

Next we note that the function G(w, ξ), after extension by 0 for negative w,
is bounded, uniformly in ξ ∈ [−j, ξ0] and u ∈ [−M,M ] for every M > 0. Also
Lj = supξ∈[−j,0],w≥0 |Gw(w, ξ)| < ∞.

We now use the Picard iteration to establish the existence and uniqueness. Start-
ing with w0 ≡ u0, we successively define wi, i = 1, 2, . . . , by wi = u0 in (−∞,−j]
and

wi(ξ) = u0(−j) +

∫ ξ

−j

{
f(ξ̂) −G(wi−1(ξ̂), ξ̂) − L[w′

i−1](ξ̂)
}
dξ̂, ξ ∈ [−j, ξ0].

Taking the difference of the equations (and also their derivative) for wi+1 and wi we
obtain for all i ≥ 1 and all ξ ∈ (−j, ξ0]

[wi+1 − wi]0,[−j,ξ] ≤ L

∫ ξ

−j

{
[wi − wi−1]0,[−j,ξ̂] + [wi − wi−1]3/4,[−j,ξ̂]

}
dξ̂,

[wi+1 − wi]1,[−j,ξ] ≤ L
{

[wi − wi−1]0,[−j,ξ] + [wi − wi−1]3/4,[−j,ξ]

}
,

where L = max{Cj , Lj}. Since [φ]3/4,[a,b] ≤ ([φ]1,[a,b])
3/4([φ]0,[a,b])

1/4 for any φ and
any interval [a, b], mathematical induction then gives for β = 0, 3/4, 1 and all i ≥ 2

[wi+1 − wi]β,[−j,ξ] ≤
M i(ξ + j)i/4

(i !)1/4

( i

4(ξ + j)

)β

∀ξ ∈ (−j, ξ0]

for some sufficiently large constant M depending only on j and u0. Following the
rest steps of the Picard iteration method (see, for example, [9]), we then complete the
proof.

To take the limit j → ∞ for solutions of (P1)j , we need certain estimates. This
will be done via a comparison principle and construction of sub and super solutions.

6.2. The comparison principle. For convenience, we introduce a nonlinear
operator N defined by

N[w](ξ) = (I + L)[w′](ξ) + G(w(ξ), ξ) .(6.2)

Lemma 6.2 (comparison principle). Let ξ0 ≤ −2 be any number and w1 and
w2 be two (piecewise) continuous differentiable functions on (−∞, ξ0] satisfying the
following:

(i) min{w1, w2} ≥ 3/2 in (−∞, ξ0];
(ii) there exists j ∈ {∞} ∪ (−ξ0,∞) such that

N[w1](ξ) ≥ N[w2](ξ) ∀ ξ ∈ (−j, ξ0]

and lim infξ→−∞{w1(ξ) − w2(ξ)} ≥ 0 if j = ∞, and w1(ξ) ≥ w2(ξ) on (−∞,−j] if
j < ∞.

Then w1(ξ) ≥ w2(ξ) for all ξ ∈ (−∞, ξ0].
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Proof. Let ε ∈ (0, 1/4) be any constant. We define

ξε = sup{ξ ≤ ξ0 | w1 + ε > w2 in (−∞, ξ)}.

The “initial condition” in assumption (ii) implies that ξε is well defined and ξε > −j.
We claim that ξε = ξ0. In fact, if this is not true, then w2 < w1 + ε in (−∞, ξε), and
at ξ = ξε, w2 = w1 + ε and w′

2 ≥ w′
1. In addition, G(w2(ξε), ξε) = G(w1(ξε)+ ε, ξε) >

G(w1(ξε), ξε) since w1(ξε) = −ε+max{w1(ξε), w2(ξε)} > 5/4 and Gw(w, ξ) > 0 when
w > 5/4. Hence

N[w1](ξε)

= w′
1(ξε) +

∫ 1

0

{w1(ξε) + ε} − {w1(ξε − 2z) + ε}
2z

√
−ξεe

ξεz

√
πz

dz + G(w1(ξε), ξε)

< w′
2(ξε) +

∫ 1

0

w2(ξε) − w2(ξε − 2z)

2z

√
−ξεe

ξεz

√
πz

dz + G(w2(ξε), ξε) = N[w2](ξε),

which contradicts the assumption that N[w1] ≥ N[w2] in (−j, ξ0]. This contradiction
shows that ξε = ξ0; namely, w1(ξ) + ε ≥ w2(ξ) in (−∞, ξ0]. Sending ε to 0 we then
obtain the assertion of the lemma.

One notices that the condition (i) is used only to ensure that Gw(w, ξ) > 0 for
any w ≥ max{w1, w2}.

For later applications, we also provide the following maximum principle.
Lemma 6.3 (maximum principle). Let L(·) be a continuous and uniformly pos-

itive function on (−∞, ξ0] and W be a Lipschitz continuous functions on (−∞, ξ0]
satisfying

(I + L)[W ′](ξ) + L(ξ)W (ξ) ≥ 0 ∀ξ ∈ (−∞, ξ0], infξ≤ξ0 W (ξ) > −∞.

Then W ≥ 0 on (−∞, ξ0].
The proof follows closely the proof for the previous lemma and is omitted.

6.3. Estimates for solutions of (P1)j. Let C0 be the constant in Lemma 4.2.
Lemma 6.4. There exists a large negative constant Ξ1(C0) such that if ξ0 ≤

Ξ1(C0) and f(·) ∈ C0((−∞, ξ0]) satisfying

|f(ξ) + 1| ≤ C0ξ
−2,(6.3)

then the unique solution w to (P1)j with u0 = −ξ − 1
2ξ

−1 + 3
8ξ

−2 + 17
24ξ

−3 satisfies

|w(ξ) − u0| ≤ (1 + 1
2C0)|ξ|−3 ∀ξ ∈ (−∞, ξ0],(6.4)

|w′(ξ) − u′
0| ≤

2C0 + 2

c0
ξ−2 ∀ξ ∈ (−∞, ξ0].(6.5)

Proof. Let w± = u0∓Mξ−3, where M > 0 is to be determined. Then w±(ξ)−w±(ξ−2z)
2z

= w′
±(ξ) + z O(|ξ|−3). It then follows that L[w′

±] =
∫ 1

0
w±(ξ)−w±(ξ−2z)

2z

√
−ξeξz√
πz

dz =

w′
±(ξ) + O(|ξ|−4). Consequently,

N[w±] − f(ξ) = (I + L)[w′
±] + G(w±, ξ) − f(ξ)

= 2w′
±(ξ) + 2w±(1 − e−w±−ξ) − f(ξ) + O(|ξ|−4)

= −1 − f(ξ) ± 2Mξ−2 + O(|ξ|−3).
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Hence, taking M = C0/2 + 1 and Ξ1[C0] large enough, we have ±N[w±] > 0 in
(−∞, ξ0]. The comparison principle then gives w− ≤ w ≤ w+ in (−∞, ξ0] and there-
fore also (6.4). In addition,

(I + L)[w′ − u′
0](ξ) = f(ξ) −G(w(ξ), ξ) − 2u′

0 + O(|ξ|−4) = O(ξ−2).

The estimate (6.5) then follows from the boundedness of ‖(I + L)−1‖C0→C0 .
Now we are ready to prove Lemma 4.3.

6.4. Proof of Lemma 4.3. Let C0 and Ξ1(C0) be as in Lemmas 4.2 and 6.4,
respectively. Let ξ0 ≤ Ξ1(C0].

For each integer j > |ξ0|, let wj be the solution to (P1)j . From Lemma 6.4,
we know that we can extract a subsequence from {wj}j>|ξ0|, which converges to

w in Cβ((−∞, ξ0]) for any β ∈ (0, 1) and some Lipschitz continuous function w
satisfying the estimates (6.4) and (6.5). Consequently, G(wj(·), ·) → G(w(·), ·) in

C0((−∞, ξ0]). Also, from the expression L[w′
j ](ξ) =

∫ 1

0
wj(ξ)−wj(ξ−2z)

2z

√
−ξe ξz

√
πz

dz we

see that L[w′
j ] → L[w′] uniformly in (−∞, ξ0]. Hence, from w′

j = f −L[w′
j ]−G(wj , ·),

we conclude that wj(·)′ → w′(·) in C0((−∞, ξ0]) and w is a C1((−∞, ξ0]) solution to
(P1). Uniqueness of the solution to (P1) follows from the comparison principle, i.e.,
Lemma 6.2 with j = ∞.

It remains to show that w ∈ C2 and to estimate w′′ and w′ (better than (6.5)).
First, f(·)+G(w(·), ·) is differentiable. Also, that w′ ∈ C0 and Lemma 5.2 implies

that L[w′] ∈ C1/2 so that w′ = f − G(w, ·) − L[w′] ∈ C1/2. Repeating this process,
we then conclude that w ∈ C2.

Once we know that w is C2, we can differentiate the equation for w to obtain

(I + L)[w′′] + L(ξ)w′ = fξ −Gξ(w, ξ) − ψ,

where L(ξ) = Gw(w(ξ), ξ)) and ψ =
∫ 1

0
w(ξ)−w(ξ−2z)

2z

√
−ξe ξz

√
πz

{
1
ξ + z

}
dz = O(ξ−2)

since w′ = −1 + O(|ξ|−1).
Using the estimate (6.4) and the definition of G in (4.1) we see that L(ξ) =

Gw(w, ξ) = −2ξ − 1 − 2ξ−1 + O(|ξ|−2) and Gξ = −2ξ − 1 − ξ−1 + O(ξ−2). Since
(I + L)[u′′

0 ] = O(|ξ|−3) we have (I + L)[(w − u0)
′′] + L(ξ)(w − u0)

′ = fξ −Gξ − ψ −
L(ξ)u′

0 + O(|ξ|−3) = O(ξ−2) by the assumption on fξ.
Now we can use the maximum principle (Lemma 6.3) to estimate (u − u0)

′ and
(u − u0)

′′. For large constant M to be determined, set W± = −Mξ−3 ± (u − u0)
′.

Then (I+L)[W ′]+L(ξ)W = 2Mξ−2+O(1)|ξ|−2+O(|ξ|−3), where O(1) depends only
on C0. Hence, taking M large (depending only on C0) such that M + O(1) = 1 and
then taking Ξ(C0) large enough negative, we have, when ξ0 ≤ Ξ(C0), that W± > 0 in
(−∞, ξ0], i.e., |(w − u0)

′| ≤ M |ξ|−3. (Note the improvement over (6.5).) In addition,
from (I − L)[(w − u0)

′′] = O(|ξ|−2) − L(w − u0)
′ = O(|ξ|−2) and the boundedness of

(I + L)−1 we conclude that (w− u0)
′′ = O(ξ−2). This completes the proof of Lemma

4.3 and also of Theorem 4.1.
Remark 6.1. Using the same argument as in problem (P1)j (the Picard iteration),

one can extend the solution u of (4.3) to ξ ∈ (−∞,∞).
Remark 6.2. With the preceding argument for the C2 differentiability of w, one

can actually show that solution u to (4.3) is C∞. To do this, one writes the equation
as

u′ + L[u′] + Lu
1 [u′] = (F [u] + Lu

1 [u′]) −G(u, ·),
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where Lu
1 [φ′] =

∫ 1

0
φ′(η)f3 dz is the part of F [u] involving the integral of u′(η)f3.

Then the right-hand side of the equation is always 1/2 more differentiable than that
of u′. As the operator norm from C0((∞, ξ]) to C0((−∞, ξ]) of Lu

1 is of order |ξ|−1,
one sees that (I + L + Lu

1 )−1 is bounded from C0 to C0. It then follows from a boot
strap argument that u ∈ C∞. See also Remark 2.2.

6.5. Higher order expansions.
Theorem 6.5. There exist constants c1, c2, c3, . . . such that as ξ → −∞, the

unique solution to (P1) has the asymptotic expansion u ∼ −ξ +
∑∞

i=1 ciξ
−i; in par-

ticular, (1.2) holds (with α(t) replaced by u(ξ)).
Proof.
Construction of the asymptotic expansion. First, we can replace G(u, ξ)

defined in (4.1) by 2u(1 − e−u−ξ) since the terms dropped are of order O(|ξ|eξ).
Similarly, we can drop the exponentially small terms in b defined in (4.2). (These are

equivalent to replacing the fundamental solution Γ(x, t) in (3.2) by 1
2
√
πt
e−x2/(4t).)

Writing (4.6) as G(u, ξ) = F [u] − (I + L)[u] and solving for u we obtain

u(ξ) = −ξ − log

{
1 +

(I + L)[u′] − F [u]

2u(ξ)

}
.

Starting with u = ξ +O(1) and successively replacing u on the right-hand side by its
previous expansion, we then obtain expansions of all order. The key here is that the
right-hand side produces a unique n+ 1th order expansion, if an nth order expansion
of u is given, because of the denominator 2u(ξ).

With the help of Mathematica’s symbolic package, we obtain, in particular, the
expansion (1.2); see www.math.pitt.edu/˜xfc.

Rigorous verification of the expansion.
For every n ≥ 2, set un = −ξ +

∑n
i=1 ciξ

−i and define

Xn =
{
w ∈ C1((−∞, ξn])

∣∣∣ |(w − un)(ξ)| + 1
|ξ| |(w − un)′(ξ)| ≤ Mn|ξ|−n−1 ∀ ξ ≤ ξn

}
.

We shall use mathematical induction to show that for every integer n ≥ 2, u ∈ Xn

provided that we take ξn and Mn large enough.
Suppose u ∈ Xn. Then one can verify that F [u]−F [un] = O(|ξ|−n−1). In deriving

this, we need

u(ξ) − u(η) =

∫ η

ξ

u′(ξ̂) dξ̂ =

∫ η

ξ

(u′
n + O(|ξ|−n) dξ̂ = un(ξ) − un(η) + |ξ − η|O(|ξ|−n).

Now define w± = un+1 ± M |ξ|−n−2, where M is to be determined. We can
calculate N[w±] := (I + L)[w′

±] + G(w±, ξ) = N[un+1] ± 2M |ξ|−n−1 + O(|ξ|−n−2)
since L(ξ) := Gw(u, ξ) = 2|ξ| + O(1).

From the construction of un+1, we have N[un+1] = F [un] + O(|ξ|−n−1), and we
then conclude that N[w±] − N[u] = F [un] − F [u] ± 2M |ξ|−n−1 + O(1)|ξ|−n−1 =
2 ± M |ξ|−n−1 + O(1)|ξ|−n−1, where O(1) is independent of M if ξ is large enough.
Hence, there exist a large constant Mn+1 and large negative constant ξn+1 such that
for M = Mn+1, ±(N[u] − N[w±]) > 0 in (−∞, ξn+1)]. Therefore, by comparison,
w− < u < w+, i.e., |u − un+1| ≤ Mn+1|ξ|−n−2 for all ξ ≤ ξn+1. We take M large
enough. With this estimate, we also obtain (I+L)[(u−un+1)

′] = {N[u]−N[un+1]}−
{G(u, ξ)−G(un+1, ξ)} = O(|ξ|−n−1). Consequently, by the boundedness of (I+L)−1,
|u′ − un+1| = O(|ξ|−n−1). Thus, u ∈ Xn+1. This completes the proof.
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Remark 6.3. We did not include the second order derivative of u in the definition
of Xn since we do not intend to establish the estimate for u′′. On the other hand, we
do need to include the second order derivative of u in X in the proof of Theorem 4.1
to make the set D compact in X.

7. Approximations of the early exercise boundary. In applications, one
needs to find quickly the early exercise boundary

Sf (T ) = Ees(t), s(t) = −2
√

t α(t), α(t) = u(ξ),

ξ = log
√

4πk2t, k = 2rσ−2, t = 1
2σ

2(TF − T )

of the American put option. As mentioned in the introduction, there have been a
number of theoretical approximations; see, for example, [25], [18], [5], and [2, 3, 14].
In this section we derive our new approximations mentioned in section 1 as well as
provide numerical comparisons. In what follows, σ2 and r are measured in annualized
units, i.e., have units 1/year.

7.1. An explicit approximation near expiry. One notices that expansions
such as (1.2) cannot be used for ξ ≥ 0 (equivalent to t ≥ 1/(4πk2) or TF − T >
σ2/(8πr2)). Indeed, our numerical evidence [8] shows that approximations based
on the truncations of (1.2) break down much earlier, and higher order expansions
approximate s(t) better than the second order only if TF − T is shorter than a few
minutes and, therefore, are of no practical use. In this aspect, the best choice for
practical estimation of Sf (T ) near expiry is the second order approximation u(ξ) ≈
−ξ − 1

2ξ . It is good for TF − T less than a week when σ = 0.25/
√

year, r = 0.1/year.

Nevertheless, we still want to use (1.2) to obtain better approximations.
We recall that the particular choice of the constant 4πk2 in the definition of

ξ = log
√
t + log

√
4πk2 is to eliminate the constant term in the expansion of u(ξ).

If we use another variable such as ξ̂ = log
√
Bt and expand u in terms of 1/ξ̂, then

the corresponding expansions make sense for all t < 1/B. Based on this idea, for

any a > 0, we expand u(ξ) as u = −ξ − 1
2(ξ−a) + 1/8+a/2

(ξ−a)2 + 17/24−a/4−a2/2
(ξ−a)3 + · · · .

Being equivalent to (1.2) as ξ → −∞, this new expansion, however, can be evaluated
for all t < ea/(4πk2). In particular, taking a = 0.96621 to be the positive root to
17/24 − a/4 − a2/2 = 0 and truncating the expansion at the fourth order, we obtain
(expl) in section 1. Numerical evidence shows that this new approximation (expl)
is better than any of the straightforward truncations of (1.2), both in accuracy and
in the length of the interval of validity. For σ = 0.25/

√
year and r = 0.1/year, the

approximation is very accurate for TF − T less than 1 month.

7.2. An implicit/series approximation. We can extend further the above
idea. We seek approximations which meet two requirements: (i) they are valid asymp-
totic expansions as ξ → −∞, and (ii) they are analytic for all ξ ∈ R. We find that
such approximations can be easily obtained if we regard ξ as function of u, i.e., the
inverse function of ξ = ξ(u).

For every a > 0, we convert (1.2) into its equivalent form ξ = −u − log{1 −
1

2(u+a) −
a

2(u+a)2 + 1−a2

2(u+a)2 + · · · }. Hence, taking a = 1 and truncating the expansion

at the fourth order, we obtain the implicit formula (imp1) in section 1. As a special
advantage, this expansion is meaningful for all time since for every ξ ∈ R, there is a
unique u solving (imp1) and ξ → ∞ as u → 0, which is compatible with the fact that

u = s(t)2

4t → 0 as ξ = log
√

4πk2t → ∞. Our numerical experiments in [8] show that
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Fig. 7.1. Error (in log10) of approximations for r = 0.1 and σ = 0.25.

(imp1) is much better than (expl). It is reasonably good for TF − T as long as one
year when σ = 0.25 and r = 0.1. See Figure 7.1.

7.3. Implicit/interpolation approximation. The approximation (imp1) is
based on the asymptotic expansion (1.2) which concerns only the behavior of s(t) near
expiry. We now derive an approximation which incorporates as well the asymptotic
behavior of u for large t = e2ξ/(4πk2).

Using (3.6) and the change of variable τ → z via z = (s(t) − s(t− τ))/(2
√
τ) we

obtain

e−u−ξ =
2√
π

∫ √
u

0

e−z2

θ1(t, z)θ2(t, z) dz =:
2θ(t)√

π

∫ √
u

0

e−z2

dz,(7.1)

where

θ1(t, z) =
{

2 − s(t) − s(t− τ)

τ s′(t− τ)

}−1

, θ2(t, z) = exp{ (k−1)s(t−τ)
2 + (k+1)2(t−τ)

4 }.

Note that θ1(t, 0) = 1 and θ(t,
√
u) = 1/2. Also, limt→0 θ2(t, z) = 1 uniformly in z

and limt→0 θ1(t, z) = 1 for any fixed finite z. Hence limt→0 θ(t) = 1; cf. Remark 3.3.
Now we consider θ(t) for large t. From Theorem 2.3, we obtain u = s2(t)/(4t) ≈

log2[1 + 1/k]/(4t), and 1/θ(t) = 2√
π
eu+ξ

∫√
u

0
e−z2

dz ≈ 2k log[1 + 1/k] for large t (or

ξ). Once we know the behavior of θ(t) for small and large t, we can approximate θ(t)
for any t by interpolation. Without considering any more detailed behavior of θ for
intermediate sizes of t, we choose, for simplicity, the approximation

1

θ(t)
≈ θ(0)eu + θ(∞)e1/u

eu + e1/u
=

eu + 2k log(1 + 1/k)e1/u

eu + e1/u
.

Substituting this approximation into (7.1) and taking the log of both sides, we then
obtain (imp2) in section 1. Figure 7.1 shows that (imp2) is better than (imp1) when
TF − T is larger than 1 month (for r = 0.1 and σ = 0.25). When TF − T is less
than a month, (imp1) is better than (imp2) since for small t, (imp1) is a fourth order
approximation whereas (imp2) is only first order.

We remark that (imp1) can be revised to provide approximations which have
higher order (as t → 0) than (imp2), yet still capture the asymptotic behavior s(t) ∼
s∞ for large t.
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7.4. An ODE approximation. The ODE approximation in section 1 is ob-
tained by neglecting the integral in (3.10). In the (u, ξ) variable, it can be written
as ⎧⎪⎨

⎪⎩
1

2u

du

dξ
= exp

{
− u− ξ + (k−1)

√
ueξ

2k
√
π

− (k+1)2e2ξ

16k2π e2ξ
}
− 1 for ξ ∈ R

1,

limξ→−∞{u(ξ) + ξ} = 0.

(7.2)

In numerically solving this ODE problem, the initial condition can be taken as
u|ξ=ξ0 = −ξ0 − 1

2ξ0
for large negative ξ0, say, ξ0 = −7. This initial value prob-

lem is extremely stable with respect to the initial condition. Indeed, solutions with
initial conditions u|ξ=−7 = 1, 7, 10 are indistinguishable when ξ = −6, since the initial
difference decays with a speed e−(ξ−ξ0)Gw(u0,ξ) ≈ e−2|ξ0|(ξ−ξ0). Also, the computing
time is almost instantaneous. Our numerical simulations indicate that this ODE ap-
proximation is better than any of the previous three algebraic approximations and is
very accurate for a variety of parameter ranges of σ and r and almost all time t > 0.

7.5. An ODE iterative scheme. For the purpose of numerical comparison
of the accuracy of theoretical approximations, highly accurate solutions for s(t) are
needed. Such solutions can be obtain by an iteration based on (3.10). We write (3.10)
as (1.3). Asymptotic expansion gives for small t, m(t) = 0 + 0ξ−1 + 0 ξ−2 + 1

4 ξ
−3 +

O(ξ−4) ≈ 1
4ξ

−3, and for large t,

m(t) ≈ m(∞) = k

∫ ∞

0

{
1 − 2s(τ)

s(∞)

}
exp

{
(k − 1)

2
s(τ) +

(k + 1)2

4
τ

}
ṡ(τ) dτ.

We remark that the integral is finite since letting t in (3.6) approach ∞ gives the
identity

1 = −k

∫ ∞

0

exp

{
(k − 1)

2
s(τ) +

(k + 1)2

4
τ

}
ṡ(τ) dτ.

Hence, |m(∞)| < 1. Our numerical simulation shows that m(t) changes sign exactly
once, and this occurs near ξ = 0; for r = 0.1 and σ = 0.25, the minimum of m(t) is
−0.003 . . . , which occurs near ξ = −5, and the maximum is 0.17 . . . , which is attained
at ξ = ∞. From here, we can see why the ODE approximation (approximating m by
0) is very accurate for all t > 0.

The ODE iterative scheme that we propose is as follows: update s by solving
(1.3) for s with m(t) evaluated at a previous s; more precisely, m(0)(t) ≡ 0, and for

n = 0, 1, . . . , s(n)(t) = −2
√

t u(n)(t), where

(7.3)⎧⎪⎪⎨
⎪⎪⎩

du(n)

d log
√

4πk2t
= 2u(n)

{
1+m(n)
√

4πk2t
exp

[
k−1
2

√
t u(n) − u(n) − (k+1)2

4 t
]
− 1

}
, t ≥ δ,

u(n)(δ) = − 1
2 log[4πk2δ] − 1

2 log−1[4πk2δ]),

m(n+1)(t) =⎧⎨
⎩
ks(n)(δ) +

∫ t

δ

{
s(n)(t)−s(n)(τ)

t−τ
2t

s(n)(t)
− 1

}
kΓ(s(n)(t)−s(n)(τ),t−τ)

Γ(s(n)(t),t)
ṡ(n)(τ) dτ, t ≥ δ1,

1
4 log−3

√
4πk2t, t ∈ [δ, δ1],
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where δ and δ1 are small numbers, say, δ = e−27 and δ1 = e−18. The ODE for u is
solved in the ξ = log

√
4πk2t variable, and a change of variable τ = tη2 is used in

evaluating the integral for m. For t ∈ [δ1, tmax] (tmax = e5 will make s(tmax) within
0.1% of s∞), an increasing number, say, 32, 48, 72, 108, . . . , of points evenly distributed
on the log t scale can be used to interpolate the function m(1)(t),m(2)(t),m(3)(t), . . . .
In general, three iterations will provide a solution of relative error less than 10−5, for
all t, and five iterations will produce a numerical fixed point, which costs a total of
less than 10 minutes of computing time on a Sparc server.

7.6. An approximation for large time. Although options with very long
expiry rarely exist in practice, it is still useful to find the long time behavior (more
precise than Sf ≈ Ek/(1 + k)) of the optimal exercise boundary since the scaling

t = σ2

2 (TF − T ) = r
k (TF − T ) tells us that short time expiration can be considered as

long if r or σ is large. For this reason, we provide an approximation for large time, so
that when incorporated with our ODE and/or implicit approximations, it will provide
instantaneously a reliable approximation valid for all t and consequently for all ranges
of σ and r.

Approximating Γ(s(t), t){1 + m(t)} on the right-hand side of (1.3) by 1+m(∞)

2
√
πt

e−
(1−k)

2 s(∞)− (k+1)2

4 t and integrating the resulting approximation from t to ∞ we obtain
(long) in section 1. As the ODE solution is a good approximation, m̂ in (long) can be
approximately calculated by using the ODE approximation for s(0)(τ) in the integral;
the computing time for this approximation is almost instantaneous since we can do
so for s(0).

7.7. A numerical example. To give the reader an idea of the accuracy of
our approximations, we provide in Figure 7.1 the results of a numerical simulation
with typical parameters E = 1 (dollar), r = 0.1 (1/year), σ = 0.25 (1/

√
year), and

k = 2r/σ2 = 3.2.
In Figure 7.1, the vertical axis is log10 (errors) (with labeling being the actual

size of the errors) of the various approximations for the optimal exercise boundary
Sf (T ), whereas the horizontal axis is the time to expiry ((TF −T )) in the log scale. In
calculating the errors, the “exact” solution to which all the approximations are com-
pared is actually the fifth iteration of (7.3), which is a numerical fixed point to (3.9).
The labels stand for the binomial tree method (Bino), the front tracking (FT) and
extrapolation methods (www.math.pitt.edu/˜xfc), the explicit approximation (expl),
the implicit/series approximation (imp1), the implicit/interpolation approximation
(imp2), the ODE approximation (ODE), the iterative ODE approximation (7.3) of
the first, second, and third iterations, and the large time approximation (long). All the
cusps (except those near the right and lower edges of the figure) are the points where
errors change sign (since log10(error) = −∞ at these points). The nonsmoothness of
the curve marked imp2 near the right edge of the figure is due to the inefficiency of
our Newton method in finding the roots u of (imp2) for large t. The bumps of ode2
and ode3 at the lower edge of the figure are numerical round-off errors.

The classical binomial and/or trinomial tree methods are typically used in the
literature to find solutions to serve as the exact solutions with which approximations
are to be compared. In calculating the optimal boundary Sf (T ), the point where the
functions P (S, T ) and E−S depart (tangentially), these tree methods are computing-
time extensive. Depending on the initial guess of Sf , for each given T , it takes, with
the number of division points n = 1000, about 5 to 20 minutes to find Sf (T ). The

complexity of the method is O(n2) and the error is of order O( logn
n ). The solution
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used in the figure contains 50 different sample T s so that it takes about 10 hours of
computing time.

The front tracking method that one of the authors designed has the same com-
plexity O(n2) and error O( lnn

n ) as that of the binomial tree method. However, one
can use solutions obtained with divisions n, n/2, and n/4, respectively, to extrapolate
a much more accurate solution, as one can see from the significant difference between
the curves marked Bino and FT. Given a fixed time Tmax, it takes, with n = 2000,
about 15 minutes to find Sf (T ) for all (TF − T ) ≤ Tmax. The solution used in the
figure is actually the union of solutions for TF − T in the interval (1

2Tmax, Tmax] with
Tmax = 10/2i (year) for i = 0, 1, . . . , 25, and therefore, it takes a total of 10 computing
hours.

As mentioned earlier, the ODE approximation is almost instantaneous. From the
figure, one can see that the ODE approximation has already surpassed that obtained
from the binomial method (with 1000 division). For the ODE iterative scheme, the
computing time for the first iteration takes about 1 minute. To finish the fifth iteration
takes a total of about 10 minutes.
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referees for their valuable comments and suggestions.
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YOUNG MEASURES AND ORDER-DISORDER TRANSITION IN
STATIONARY FLOW OF LIQUID CRYSTALS∗
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Abstract. We study a system of nonlinear second order ordinary differential equations modeling
Poiseuille flow of liquid crystals with variable degree of orientation, at the limit of large Ericksen
number. The system is singularly perturbed and degenerate, and as a result the solutions are highly
oscillatory. We obtain the relations satisfied by the Young measures generated by sequences of weak
solutions, and show that the persistent oscillations are encoded in the Young measure generated by
the molecular alignment variable. The effective equations correspond to the macroscopic isotropic
Newtonian flow with a liquid crystalline microstructure indicating a remnant alignment.

Key words. Nematic liquid crystals, Young measures, non-Newtonian flows, singular pertur-
bations, effective viscosity
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1. Introduction. In this article we study stationary flow of nematic liquid crys-
tals with large Ericksen number, E , in terms of the Young measures generated by
sequences of weak solutions of the governing equations. It is experimentally well
known that liquid crystal flows with large Ericksen number present a high density of
defects and texture which increases with increasing values of E (cf. [19], [11], [16],
[13], and [18]).

The system that we analyze consists of ordinary differential equations for the
variable fields s(x), φ(x), and v(x), with x ∈ [−1, 1] with R2 × (−1, 1), representing
the domain of the flow. The governing system is highly nonlinear, nonautonomous
and singularly perturbed with respect to the small parameter μ = E−1. Its principal
part as well as the boundary conditions become degenerate at s = 0. These combined
features result in a highly oscillatory behavior of weak solutions. The goal of the
present analysis is to encode oscillations persistent at the limit μ → 0 into Young
measures.

We study a plane Poiseuille flow, which is driven by a prescribed pressure gra-
dient, with vanishing velocity field at the boundary. The variable φ corresponds to
the angle between the unit molecular director, n= (sinφ, 0, cosφ), and the velocity,
v = (0, 0, v(x)), of the flow. The variable degree of orientation, s ∈ (− 1

2 , 1), gives the
quality of alignment of the molecules with the director field, with s = 1 corresponding
to perfect alignment, and s= − 1

2 describing the case with molecules placed on a plane
perpendicular to n. Especially relevant to the present study is the isotropic case, s= 0,
with randomly oriented molecules. Points, lines or planes in the flow region with s= 0
correspond to nematic liquid crystal defects, with undefined φ. Moreover, φ becomes
discontinuous across defect lines and planes. The variables s and n correspond to an
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eigenvalue and eigenvector, respectively, of the optically uniaxial and traceless order
tensor Q. The latter represents a second order moment of the molecular orientation
field of a rigid polymer.

The equations that we analyze follow from those derived by Ericksen to model flow
of liquid crystals with variable degree of orientation [8]. They yield the Leslie–Ericksen
equations when the order parameter s is taken to be a nonzero constant. Relevant
features of the model include the Helmholtz free energy and the viscous, anisotropic,
stress tensor. The latter is characterized by a set of anisotropic viscosity functions,
αi(s), 1 ≤ i ≤ 6, known as Leslie coefficients (in particular, 1

2α4(0) represents the
Newtonian viscosity). The free energy density is of the form a1|∇s|2 + a2s

2|∇n|2 +
J−1f(s), with a1, a2 and J denoting positive, dimensionless material parameters.
The scalar function f(s) represents a multiwell potential, favoring special directions
of alignment at equilibrium. As a result of the elastic and viscous contributions to
the model, the nature of the flow is fully non-Newtonian.

The flow behavior is determined mostly by three nondimensional parameter groups,
the Reynolds number R, the Interface number I, and the Ericksen number E . The
latter measures the ratio of the viscous torque of the flow with respect to the elastic
one. The condition of E being large corresponds to flow with large pressure gradient,
and also to the case of viscous torque dominating the elastic one. The parameter
I is associated with the free energy required to maintain defects in the flow, and it
corresponds to the quotient of the bulk elastic energy and the gradient part of the
Helmholtz free energy. The quantity J−1 = IE−1 appears as a coefficient in the free
energy, as previously indicated. The derivation of the model studied in this article,
the physical and nondimensional parameter groups, can be found in [3], [4], and [5].

We observe that s identically zero is not a solution of the problem. For an arbi-
trary flow domain, the bulk isotropic state, s ≡ 0, can only be realized at equilibrium,
if permitted by the boundary conditions. In the case of Poiseuille flow, prescribing a
nonzero pressure gradient excludes s = 0 from being an equilibrium solution. Con-
sequently, one of the main outcomes of our study is to show that the isotropic state
can be nearly realized in an effective sense.

Intuitively, one expects that for large Ericksen number, viscosity effects are domi-
nant and therefore, the molecular alignment (associated with s �= 0) is destroyed. The
absence of alignment is indicated by s = 0. In this sense, the limit of large Ericksen
number should represent the transition from order to disorder. In section 5, we show
(Theorem 5.1) that there is indeed a sequence of generalized solutions such that in
the limit μ → 0, s tends to zero uniformly and v becomes the Newtonian velocity field
of Poiseuille flow. This alone would indicate a perfect isotropic limit. However, the
Young measure generated by φ satisfies the additional moment relations, indicating a
residual molecular alignment. Although at a macroscopic scale the flow is isotropic,
a liquid crystalline microstructure is present. The oscillatory behavior of solutions
at the limit of large Ericksen number was numerically detected by the simulations
performed in [14]. This provided the motivation for the present study.

In addition to the governing system being singularly perturbed as μ → 0, it
becomes degenerate at s = 0. One mathematical difficulty is that standard methods
of analysis of singular perturbations [7] cannot be readily applied here. On the other
hand, owing to the singularly perturbed nature of the system, a priori bounds for
the derivatives are not uniform in μ and therefore, embedding theorems cannot be
applied to obtain compactness of s. We overcome these difficulties by constructing
tight bounds in terms of supersolutions and subsolutions. They are both solutions of a
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classical variational problem for particle motion in a central force field [1]. The upper
and lower bounds on s so obtained tend to 0 as μ → 0, which entails compactness.
This leads to partial stability in the sense that s converges to zero uniformly as μ → 0,
while φ oscillates with increasing frequency.

Another interesting aspect of the system being driven to degeneracy at the limit
μ → 0 manifests itself in the prescription of boundary conditions. Since the system is
of second order with respect to s and φ, one expects that both s(±1) and φ′(±1) (or
φ(±1)) should be prescribed. We choose s(±1) = μ. However, in passing to the limit
μ → 0, we find that the boundary conditions φ′(±1) cannot be freely chosen, but
depend on s(±1). In addition, |φ′(±1)| → ∞ as μ → 0, in agreement with the fact
that our limiting process amounts to creating a boundary defect. The unboundedness
of φ′ causes φ to be undefined at the defect location as expected. So, boundary values
for the angular variable become redundant at the limit. The choice of s(±1) = μ does
not detract from generality. Our purpose is to study the oscillatory phenomenon on
the bulk and avoid boundary layer contributions that would appear in the case that
s is not driven to zero at the boundary. These contributions could be incorporated in
the current analysis using the techniques previously developed in [3], [4], and [5], but
we do not attempt such an analysis here.

The article is organized as follows. Following section 1, the statement of the prob-
lem is presented in section 2. We developed a priori bounds and necessary conditions
for Young measures in section 3. The main technical result of the paper is stated in
section 4, with Theorem 4.3 being the focus of the work. A discussion of the effective
equations is presented in section 5, with Theorem 5.1 stating the physical conclusions.

2. Formulation of the problem. We study the following system of differential
equations on the interval I = (−1, 1):

μ
(
a1s

′′ − a2s(φ
′)2

)
= G1(s, φ, x),(2.1)

μa2(s
2φ′)′ = G2(s, φ, x),(2.2)

where

G1(s, φ, x) =
1

2
β1(s)g

−1(s, φ)x sin 2φ +
1

J
df

ds
(s),(2.3)

G2(s, φ, x) =
1

2
(γ1(s) + γ2(s) cos 2φ)g−1(s, φ)x.(2.4)

Equations (2.1)–(2.4) model plane Poiseuille flow of nematic liquid crystals with vari-
able degree of orientation. The previously introduced functions s(x) and φ(x) are the
unknown fields of the problem. In (2.1)–(2.4), ′ denotes derivative with respect to the
independent variable x ∈ I. The boundary conditions are prescribed as follows:

s(−1) = μ, s(1) = μ,(2.5)

φ′(−1) = A(μ), φ′(1) = B(μ).(2.6)

As mentioned in section 1, A(μ) and B(μ) cannot be arbitrarily prescribed for suf-
ficiently small μ > 0. The system (2.1)–(2.4) contains positive scalar parameters μ,
J , a1, and a2 discussed in section 1. For more details on these quantities, see [3], [4],
and [5].

Let τ > 0 be a given material parameter. We suppose that β1, γ1, and γ2 are
smooth functions of s on the interval (− 1

2 , 1), and that g(s, φ) is also smooth. We



ORDER-DISORDER TRANSITION IN LIQUID CRYSTALS 1645

assume that the following hypotheses hold:

β1 < 0, γ1 > 0,(2.7)

γ1(s) = O(s2), γ2(s) = O(s) for s close to 0,(2.8)

g(s, φ) ≥ τ > 0.(2.9)

It follows from assumptions (2.8) and (2.9) that 1
sG2(s) is a smooth function of s and

satisfies

1

s
G2(s) = O(1),(2.10)

for |s| small. Equations (2.1)–(2.9) completely describe the problem studied in the
paper. The key observation that enables us to overcome the lack of uniform bounds
mentioned in section 1 is as follows. If the right-hand sides of (2.1) and (2.2) are
replaced with 1

J df/ds and zero, respectively, and, in addition, a1 = a2, one obtains
the classical system modeling motion of a particle in a central force field with potential
− 1

J f(s) (see, e.g., [1]). In that case, the variable x is time and s(x), φ(x) are the radial
and angular particle coordinates, respectively. This system has two first integrals:
the angular momentum and the total mechanical energy, which make the problem
completely integrable. In this paper, this classical system (with different potentials) is
used to construct sub- and supersolutions of (2.1), (2.2) (see the proof of Theorem 4.3).

In the remainder of this section we outline the derivation of the governing sys-
tem from the Leslie–Ericksen equations studied previously in [3], [4], and [5]). The
equations considered in these papers are as follows:

μ
(
a1s

′′ − a2s(φ
′)2

)
= β1(s)v

′ sinφ cosφ +
1

J
df

ds
(s)(2.11)

μa2(s
2φ′)′ = (γ1(s) + γ2(s) cos 2φ) v′(2.12)

1

R (g(s, φ)v′)′ = 1,(2.13)

Equation (2.13) corresponds to the balance of linear momentum. Its right-hand side
represents the prescribed pressure gradient and R is the Reynolds number. Since we
are interested in the behavior of solutions when E is large and the Reynolds number R
is moderate, there is no loss of generality in assuming R = 1. The function β1(s) is a
Leslie coefficient, and γ1(s), γ2(s), and g(s, φ) are given in terms of αi(s), i = 1, . . . , 5,
as follows:

γ1 := α3 − α2, γ2 := α2 + α3,(2.14)

g(s, φ) =
1

2
α4(s) + α1(s) sin2 φ cos2 φ(2.15)

+
1

2
(α5 − α2)(s) sin2 φ +

1

2
α3(s) cos2 φ.

In section 5, we shall make use of the fact (see, e.g., [3], [4], and [5]) that αj(0) = 0
for j �= 4. This implies

g(0, φ) =
1

2
α4(0) > 0,(2.16)
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where 1
2α4(0) is the Newtonian viscosity. The second law of thermodynamics requires

that the system be dissipative. This imposes inequality restrictions on the Leslie
coefficients β1(s) and αi(s) (see [12]). As a consequence, we have that β1 < 0, γ1 > 0
and

g(s, φ) ≥ 0, s ∈
[
−1

2
, 1

]
, φ ∈ R.(2.17)

For the forthcoming analysis, we will impose a stronger assumption (2.9), where τ > 0
is a material parameter related to the Newtonian viscosity. Such a strict inequality is
an immediate consequence of E �= 0 [3]. Additional assumptions on Leslie coefficients
consistent with kinetic theory of polymers are discussed in [3] and [4].

Next, we solve (2.13) for the velocity v, obtaining

v′(x) = (x + C)g−1(s(x), φ(x)),(2.18)

where C is a constant of integration. The boundary conditions v(±1) = 0 imply that

v(x) =

∫ x

−1

tg−1(s(t), φ(t)) dt + C

∫ x

−1

g−1(s(t), φ(t)) dt,

and

C = −
(∫ 1

−1

g−1(s(t), φ(t)) dt

)−1 ∫ 1

−1

tg−1(s(t), φ(t)) dt.(2.19)

It should be noted that C is a functional of s, φ taking constant values for a given flow.
A calculation using the positivity of g yields −1 < C ≤ 1. Postulating translational
invariance of the equations, it is not difficult to show that there exists an interval
J (which may be different for different μ) such that C = 0 when the equations are
considered on J . Calculations involving C are analogous to those with the remaining
terms. So, without loss of generality, we will set C = 0 in the equations. We also
point out that this does not change the qualitative behavior of solutions because of the
translational invariance. Combining (2.11), (2.12), and (2.18), we obtain the reduced
system (2.1)–(2.4).

3. A priori bounds and necessary conditions for Young measures. In
this section we introduce the concept of Young measures generated by sequences of
weak solutions of the problem. We derive integral identities and a priori estimates
satisfied by weak solutions. Passing to the limit μ → 0 in the weak formulation of the
equations yields algebraic momentum relations satisfied by the Young measures. Such
relations can be appropriately interpreted as the effective equations of the system.

A weak solution of the system (2.1)–(2.2) is a pair of functions (s, φ) such that
s ∈ W 1,2(I), sφ ∈ W 1,2(I), and for all test functions h ∈ C1

0 (I), the integral identities

−μa1

∫
I

s′h′dx− μa2

∫
I

s(φ′)2hdx =

∫
I

G1hdx,(3.1)

−μa2

∫
I

s2φ′h′dx =

∫
I

G2hdx(3.2)

hold, where the right-hand sides G1 and G2 are given by (2.3) and (2.4), respectively.
For each μ > 0, existence of weak solutions satisfying s ∈ (− 1

2 , 1), |φ| ≤ π
2 together

with the boundary conditions (2.5), (2.6) can obtained using the existence theorem
in [2].
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3.1. L2-bounds. The L2-estimates will be obtained from the following propo-
sition.

Proposition 3.1. Let s, φ be a sufficiently smooth solution of (2.1) and (2.2).
Then the following identities hold:

−μa1

∫
I

|s′|2 dx + μa1(s
′s(1) − s′s(−1)) − μa2

∫
I

s2(φ′)2 dx(3.3)

=

∫
I

G1(x, s, φ)s dx,

−μa2

∫
I

s2(φ′)2dx + μa2((s
2φ′φ)(1) − (s2φ′φ)(−1))(3.4)

=

∫
I

G2(x, s, φ)φdx.

Proof. Multiplying (2.1) by s and integrating by parts yields

μa1

∫
I

(s′)2dx + μa1(s
′s(1) − s′s(−1)) + μa2

∫
I

s2|φ′|2dx =

∫
I

G1(x, s, φ)sdx.

Likewise, multiplication of (2.2) by φ and integration by parts yields (3.4).
The uniform boundedness of G1 and G2 with respect to μ follows from the analo-

gous property of s and φ. If, in addition, the boundary terms b1(μ) ≡ μa1(s(1)s′(1)−
s(−1)s′(−1)) and b2(μ) ≡ μa2((s

2φ′φ)(1)− (s2φ′φ)(−1)) are also uniformly bounded,
then the identities (3.3) and (3.4) yield the following uniform a priori bounds:

μ
1
2 ‖s′‖L2(I) ≤ C,

μ
1
2 ‖sφ′‖L2(I) ≤ C,(3.5)

where C > 0 is independent of μ.
Note that b1(μ) and b2(μ) vanish when s(±1) = 0. Otherwise, if s′(±1) and

φ′(±1) do not grow too fast as μ → 0, and s and φ are uniformly bounded, then b1(μ)
and b2(μ) are also uniformly bounded. Such a statement follows from the estimates
on the boundary layer terms valid for a large class of boundary conditions. Indeed,
near the boundary x = ±1, s can be well approximated by a boundary layer term S,

satisfying S(x) = O(e
−|x−1|
μ1/2 ), for μ close to 0 (cf. [3] and [4]). Moreover,

|s′(±1)| ≤ C

μ1/2
,(3.6)

where C is independent of μ. A related property of the solutions of the governing
equations for small μ is the oscillatory behavior of s about s = 0 on the interval I;
an estimate on the number of oscillations gives N = O(μ− 1

2 ). Moreover, the first and
the last zeroes of s in I approach the boundary as μ → 0 [2]. Numerical simulations
of such a behavior are presented in [14].

3.2. Momentum relations for Young measures. The estimates (3.5) allow
for some control of the oscillations and yield existence of the microscopic length scale
l ∼ μ1/2|I|. Unfortunately, the bounds on the derivatives are not uniform in μ, so
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it is not possible to extract subsequences convergent weakly in W 1,2(I) as μ → 0.
Since s, φ are bounded pointwise, we can extract subsequences weak-*convergent in
L∞(I), and hence weakly convergent in L2(I). However, this convergence cannot be
improved to strong convergence due to high oscillatory behavior of s and φ. Such
behavior is appropriately encoded in the Young measure generated by sequences of
weak solutions [20]. In [17] this measure is defined as follows.

Definition 1. A Young (parameterized) measure is a family of probability mea-
sures λ = {λx}x∈Ω associated with a sequence of functions fj : Ω ⊂ RN → Rm such
that

(i) supp(λx) ⊂ Rm;
(ii) λx depend measurably on x ∈ Ω, which means that for any continuous func-

tion φ : RN → R, the function

φ̄(x) =

∫
φ(y)dλx(y) = 〈φ(y), λx(y)〉

is (Lebesgue) measurable;

(iii) if the sequence φ(fj) converges weakly in Lp(Ω), 1≤ p<∞ (weak-� in L∞(Ω)),
then the weak limit is the function

φ̄(x) =

∫
φ(ξ)dλx(ξ).

In what follows, we use the following facts about Young measures. The first [17,
Theorem 6.2] is the existence theorem.

Theorem 3.2. Let Ω ⊂ RN be a (Lebesgue) measurable set and let zj : Ω → Rm

be measurable functions such that

sup
j

∫
Ω

g(|zj |)dx < ∞,

where g : [0,∞] is a continuous, nondecreasing function such that limt→∞ g(t) = ∞.
Then there exists a subsequence, not relabeled, and a family of probability mea-

sures, λ = {λx}x∈Ω (the associated Young measure) with the property that whenever
the sequence {ψ(x, zj(x))} is weakly convergent in L1(Ω) for any Caratheodory func-
tion ψ(x, ξ) : Ω × Rm → [−∞,∞], the weak limit is the function

ψ̄(x) =

∫
Rm

ψ(x, ξ)dλx(ξ).

The second fact concerns Young measures generated by sequences of vector func-
tions, for which strong convergence holds for some of the components, but not for all
of them [17, Proposition 6.13].

Theorem 3.3. Let zj = (uj , vj) : Ω → Rd × Rm be a bounded sequence in
Lp(Ω) such that {uj} converges strongly to u in Lp(Ω). If λ = {λx}x∈Ω is the Young
measure associated with zj, then λx = δu(x) ⊗ νx for (Lebesgue) almost all x ∈ Ω,
where {νx}x∈Ω is the Young measure corresponding to {vj}.

Young measures provide a description of the weak limits of the nonweakly con-
tinuous functions G1 and G2 in (2.1) and (2.2). We denote by λx the Young mea-
sure associated with the sequences of weak solutions (sμ, φμ). By definition, for any
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continuous function H on [−1/2, 1] × [−π/2, π/2], the sequence H(sμ, φμ) converges
weakly-* to

H̄(x) =

∫ 1

−1/2

∫ π/2

−π/2

H(s, φ)dλx(s, φ).

It is a well known fact [17] that Young measures are in general difficult to compute.
In particular, there is no general method for derivation of conditions imposed on Young
measures by the nonlinear differential constraints on generating sequences. Available
results concern sequences generated by gradients [10]. A generalization of [10] to
sequences solving certain constant-coefficient linear partial differential equations is
obtained in [9].

In the present case it is possible to derive some necessary conditions for Young
measures passing to the limit in the integral identities (3.1) and (3.2). In the next
proposition we use notation a = (a2/a1)

1/2.
Proposition 3.4. Let λx be the Young measure generated by a sequence of weak

solutions (sμ, φμ) satisfying the estimates (3.5). Then for any test function h ∈ C1
0 (I),

the following relations hold:∫ (
G1(x, y, z) sin az +

1

ay
G2(x, y, z) cos az

)
dλx(y, z)h(x)dx = 0,(3.7)

∫ (
G1(x, y, z) cos az − 1

ay
G2(x, y, z) sin az

)
dλx(y, z)h(x)dx = 0.(3.8)

Proof. Let w(x) be a test function. In the integral identities (3.1), we first replace
h with the test function sin(aφ)w. Next, we formally substitute 1

sa cos(aφ)w for h in
(3.2) and add the resulting identities. This yields,

−μa1

∫
(s sin aφ)′w′dx =

∫ (
G1 sin aφ +

1

as
G2 cos aφ

)
wdx.(3.9)

To justify the use of 1
sa cos(aφ)w as a test function, we point out that 1

sG2 is a smooth
function of s and satisfies (2.10). Thus, the right-hand side of the previous equation
is well defined. This allows us to approximate 1

s by a sequence of test functions and
then pass to the limit in the resulting integral identities.

The estimates (3.5) on derivatives yield

‖ μ1/2(s sin aφ)′ ‖L2(I)≤ C

with C independent of μ. Hence the integral on the left tends to zero as μ → 0. Using
the definition of Young measures to pass to the limit in the right-hand side we obtain
the first equation in (3.7).

Next, using cos aφw as a test function in (3.1) and −A
s sin aφw in (3.2) and

summing up, we have

−μa1

∫
(s cos aφ)′w′ dx =

∫ (
G1 cos aφ− 1

as
G2 sin aφ

)
w dx.(3.10)

Again, the limit of the integral on the left is zero. Passing to the limit in (3.10) yields
the second equation in (3.7).
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Remark 3.1. The method of proof is based on the following formal procedure.
Consider the original system (2.1)–(2.2):

μ(a1s
′′ − a2s(φ

′)2) = G1(x, s, φ),

μa2(s
2φ′)′ = G2(x, s, φ).

If we multiply the first equation of the system by sin aφ, the second equation by
1/s cos aφ, and add the resulting equations, we obtain

μa1(s sin aφ)′′ = G1 sin aφ +
G2

s
cos aφ.(3.11)

Similarly, multiplying the first equation by cos aφ, the second one by −1/s sin aφ, and
adding the results, we get

μa1(s cos aφ)′′ = G1 cos aφ− G2

s
sin aφ.(3.12)

The momentum relations from the proposition are obtained by passing to the limit
(in the sense of distributions) in the integral identities corresponding to the system
(3.11), (3.12), and thus they are the effective equations for this new system. Moreover,
relations (3.7), (3.8) are also effective equations for the original system, since their
solutions satisfy the differential equations almost everywhere, and, for each μ > 0,
the zero sets of the functions cos aφ, sin aφ, and s can be shown to be countable by
standard Sturm–Liouville results as in [2].

Remark 3.2. It is interesting to ask to what extent the relations from the propo-
sition characterize Young measures generated by sequences of weak solutions of (2.1)
and (2.2). The measures in question satisfy (3.7) and (3.8), but these conditions are
far from being sufficient, since they can be obtained for Young measures generated
by different equations. These equations may contain, for instance, terms with linear
combinations of higher-order derivatives of s and sφ′ multiplied by sufficiently large
powers of μ.

4. Generalized solutions and isotropic defects. In this section, we con-
struct generalized solutions sμ, φμ from a special class of weak solutions. Generalized
solutions are such that sμ approaches 0, uniformly on I, and φμ is bounded and
presents multiple jump discontinuities. Such jump discontinuities may correspond to
isotropic (plane) defects in stationary three dimensional flow.

The numerical experiments carried out in [14] indicate partial stability, which
means that sμ → 0 as μ → 0, and φμ oscillates with a frequency of the order of μ−1/2.
In this subsection, we obtain sufficient conditions for such type of behavior. For this,
we appeal to results from the theory of ordinary differential equations; the main
technical tool is Nagumo’s theorem [15], (stated as Theorem 4.1). This theorem
provides sufficient conditions for existence of solutions satisfying pointwise upper and
lower bounds, constructed from sub- and supersolutions. This result allows us to
prove Theorem 4.3 on existence of partially stable solutions.

The strategy of the proof of Theorem 4.3 is as follows. First, we consider ar-
bitrary solutions satisfying boundary conditions that depend on μ (see Theorem 4.3
for the precise formulation). Then, we show that among these, there is a large class
of boundary conditions for which sμ is bounded by a multiple of μ. Nagumo’s theo-
rem guarantees existence of such solutions. To apply the theorem, we first show that
sub- and supersolutions of the system can be constructed from solutions of a classi-
cal variational problem that models the motion of a particle in a central force field.
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The solutions of the variational systems depend on the first integral parameters. By
appropriate choice of the parameters, we find sub- and supersolutions satisfying the
desired bounds. An additional difficulty that we encounter is that Nagumo’s theorem
concerns classical solutions, while the present system may have singularities near the
points where s = 0. We deal with this problem by examining solutions only on the set
where the absolute value of sμ is larger than μ, and then use upper and lower bounds
to demonstrate that, on this set, |sμ| ≤ 2μ.

Nagumo’s theorem concerns solutions of the Dirichlet problem on the interval
[a, b] for a single second order equation

u′′ = F (x, u, u′),(4.1)

u(a) = u0, u(b) = u1.

Assume that F is a continuous function of its arguments satisfying the condition

F (x, u, z) = O(|z|2) as |z| → ∞(4.2)

for all (x, u) in a rectangle [a, b] × [α, β]. The following theorem is due to Nagumo
[15].

Theorem 4.1. Suppose that F satisfies (4.2), and there exist functions α(x), β(x)
with the properties

(i) α, β ∈ C2([a, b]);
(ii) α(x) ≤ β(x);
(iii) α′′ ≥ F (x, α, α′), β′′ ≤ F (x, β, β′);
(iv) α(a) ≤ u0 ≤ β(a), α(b) ≤ u1 ≤ β(b). Then the problem (4.1) has a solution

u(x) ∈ C2([a, b]) such that

α(x) ≤ u(x) ≤ β(x)(4.3)

on [a, b].
This theorem has been used by Howes and Chang [7] to study stability of singu-

larly perturbed ODE. We note that condition (4.2) is not the most general one (see
[7] for other types of conditions), but it is sufficient for our purpose. We point out
that stability conditions for systems studied in [7] do not apply to the present case,
since the vector solution (s, φ) is not expected to be stable.

According to this theorem, to show that sμ → 0, it is enough to construct se-
quences of bounds αμ(x), βμ(x) for solutions sμ of (2.1) which converge to zero uni-
formly on I. Since we are dealing with a system, the bounds for s must be uniform
in φ. First, we consider the case when 1

J tends to infinity as μ approaches zero.
Theorem 4.2. We assume that hypotheses (2.7)–(2.9) are satisfied. Let

1

J (μ)
→ ∞ as μ → 0.

Suppose that f ∈ C1(− 1
2 , 1) has an isolated local minimum at s = 0 and φ is an

arbitrary differentiable function on I.
Then, there exist a decreasing sequence {μn} ⊂ (0, 1], μn → 0 as n → ∞ and

sequences of real numbers Ln and Mn, such that for every n, there exists a solution
sn to the scalar boundary value problem

μna1s
′′ = μna2s(φ

′)2 − 1

2
β1(s)x

sin 2φ

g(s, cos 2φ)
+

1

J (μn)

df

ds
(s),(4.4)
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s(−1) = Ln, s(1) = Mn,

with the property that sn → 0, as n → ∞, uniformly on I. Moreover, the rate of
convergence is independent of φ.

Proof. By the assumptions on f , there exists a fixed interval E, containing zero,
such that df

ds > 0 for s > 0, and df
ds < 0 for s < 0. Let us choose a strictly decreasing

sequence {σn} ⊂ E, σn > 0, and such that limn→∞ σn = 0. Likewise, we select an
increasing sequence {αn} ⊂ E, αn < 0, and such that limn→∞ αn = 0. For each
positive integer n, we can find a real number μn > 0 such that

μa2σn(φ′)2 +
1

J (μ)
df

ds
(σn) − 1

2
β1(σn)x

sin 2φ

g(s, cos 2φ)
≥ 0 and

μa2αn(φ′)2 +
1

J (μ)
df

ds
(αn) − 1

2
β1(αn)x

sin 2φ

g(s, cos 2φ)
≤ 0

for all 0 < μ ≤ μn. Indeed, by assumptions (2.7)–(2.9), the last term on the left-hand
side of the previous expressions is bounded by a constant 1

2
m
τ , where m > 0 is a bound

on xβ1. For each n > 0, we now choose αn < Ln,Mn < σn. The conclusion follows
from Theorem 4.1, if we use the constant functions σn and αn as, respectively, upper
and lower bounds.

Remark 4.1. We point out that the condition J → 0 (i.e., 1
J → ∞) as μ → 0

represents the Leslie–Ericksen limit of the theory, that is the case when the liquid
crystal is described by the director n, with the order parameter taking a constant
value corresponding to a critical point of the bulk energy f(s).

Next, we consider the more subtle case of 1
J bounded. We assume that 1

J and f
satisfy the following conditions:

(i) 1
J (μ) is bounded by a constant M for all μ ≤ 1,

(ii) f(s) ∈ C2(− 1
2 , 1),

(iii) there exist a, b ∈ (− 1
2 , 1) such that | dfds (s)| ≤ M for s ∈ [a, b], df

ds (s) > 0 on

(b, 1) and df
ds (s) < 0 on (− 1

2 , a).
We observe that the last condition on f may allow several potential wells between

s = − 1
2 and s = 1. This may include pure nematic liquid crystals as well as compounds

(see [6, chapter 1]).
Theorem 4.3. We assume that hypotheses (2.7)–(2.9) are satisfied. Suppose

that conditions (i), (ii), and (iii) are fulfilled. Consider sequences {sμ, φμ} of weak
solutions of (2.1)–(2.2) such that

s(−1) = s(1) = μ(4.5)

hold. Then there exist A(μ), B(μ) ∈ R such that sequences {sμ, φμ} additionally
satisfying

(φμ)′(−1) = A(μ), (φμ)′(1) = B(μ),(4.6)

have the property that sμ → 0 as μ → 0, uniformly on I.
Proof. Fix μ > 0 and consider solutions (s, φ) of the problem

μa1s
′′ = μa2s(φ

′)2 − β1x sin 2φ

2g(s, φ)
+

1

J
df

ds
(s),(4.7)

μa2(s
2φ′)′ =

x

g
(γ1(s) + γ2(s) cos 2φ),(4.8)
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satisfying boundary conditions (4.5) and (4.6), with the values A(μ) and B(μ) to be
specified later. Although this solution is weak, the estimates (3.5) imply continuity
of s.

First, we integrate (4.8) to obtain

s2(x)φ′(x) =
1

μa2
(μ2A + p(x)),(4.9)

where

p(x) =

∫ x

−1

y

g(s(y), φ(y))
(γ1(s(y)) + γ2(s(y)) cos 2φ(y)) dy.(4.10)

Next, we represent I as the union of the sets E+ = {x ∈ I : s > μ}, E− = {x ∈ I :
s < μ} and E0 = {x ∈ I : |s| ≤ μ}, and define s+ and s− to be restrictions of s to
E+, E−, respectively. Since E+ is open, it can be represented as E+ = ∪∞

j=1Ij , where
Ij = (aj , bj) are open intervals, and s(aj) = s(bj) = μ. Let us consider the system
(4.7), (4.8) on some interval Ij . Since s ≥ μ on Ij , we can obtain s from (4.9) and
substitute it into (4.7):

μa1s
′′ =

1

μa2s3

(
μ2A + p(x)

)2
+

β1(s)x sin 2φ

2g(s, φ)
+

1

J
df

ds
(s).(4.11)

From now on, the strategy of the proof is as follows.
1. Use Nagumo’s theorem to construct, for each choice of φ, a solution u of (4.11)

on Ij , satisfying the boundary conditions (4.5), and such that −2μ ≤ u ≤ 2μ
on Ij . To obtain existence of u, we shall choose A,B sufficiently large. The
same choice of A,B works for all Ij , which provides u on E+. The analogous
argument yields existence of u on E−.

2. Once the choice of A,B is made, the boundary conditions (4.5), (4.6) are
specified, and we obtain a particular solution (S,Φ) of (4.7) and (4.8).

3. We prove that u, corresponding to the choice φ = Φ in (4.11), coincides with
S on the intervals where |S| > μ. This gives an upper bound on S.

4. For each μ, define sμ = S, φμ = Φ.
Now we begin implementing the previously described strategy. First, note that

the right-hand side of (4.11) is a continuous function of s when x∈ Ij , and the Nagumo
condition (4.2) is satisfied, since the right-hand side is independent of s′. The bounds
on u must be independent of the choice of φ, which would allow us to adjust φ later
on when A = φ′(−1) is chosen. We begin with the construction of the upper bound.
To construct the bound, we use the comparison variational system

μa1q
′′ = μa2q(ψ

′)2 − dh

dq
(q),(4.12)

μa2(q
2ψ′)′ = 0.(4.13)

This system is classical (see [1]), at least when a1 = a2. It describes the motion of a
particle in a central force field with the potential h. In that case, x denotes time and
q, ψ represent the radial and angular particle coordinates, respectively. The following
properties of (4.12) and (4.13) are well known. The system has two first integrals, the
angular momentum and the total energy, respectively:

M = q2ψ′,

E =
1

2
μa1(q

′)2 +
1

2
μa2q

2(ψ′)2 + h(q).
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Combining these two equations allows us to rewrite

E =
1

2
μa1(q

′)2 + V (q), where

V (q) =
1

2
μa2

M2

q2
+ h(q)

is the effective potential energy. The evolution of q is described by the autonomous
differential equation

μa1q
′′ = μa2

M2

q3
− dh

dq
(q).(4.14)

We point out that it is possible to choose E, M , and h (nonuniquely) so that V (q)
has a minimum at q0 = 3/2μ, and such that the solution, q(x) remains close to q0 for
all x ∈ Ij ; in such a case, there are positive constants c1, c2, with the property that
c1μ ≤ q ≤ c2μ and c1 > 1, c2 < 2. The function q is an upper bound for u provided
the inequality

μa2
M2

q3
− h′(q) ≤ 1

μa2q3

(
μ2A− C1

)2 − C2

τ
+

1

J
df

ds
(q)(4.15)

holds. Here the constant C1 denotes an upper bound of |p(x)| and C2 an upper bound
of |β1(q)x|. Since q > 0, the right-hand side of (4.15) is dominated by that of (4.11).
We point out that C1 and C2 are independent of s, φ, and μ. We also note that,
since q ∈ (c1μ, c2μ), the second and third terms in the right-hand side of (4.15) are
bounded independent of μ. So, in order to satisfy inequality (4.15), it is sufficient to
choose A(μ) large enough so that

(μ2A− C1)
2 − (μa2)

2M2 ≥ K,(4.16)

where K > 0 is independent of μ. Then, for μ ∈ (0, 1], the first term in the right-hand
side is dominant. We observe that the condition (4.16) is independent of the choice of
the interval Ij , so it will remain the same when we consider different intervals. This
completes the construction of the upper bound.

The construction of the lower bound is similar. We only need to choose q to
be negative with the absolute value on the order of μ. Since the power of q in the
dominant term is odd, we obtain a lower bound q ≥ −2μ. Now by Nagumo’s theorem,
for each choice of φ, there exists u such that the pair u, φ solves the (4.11) and such
that |u| ≤ 2μ holds on each Ij , which means that we have u defined on E+.

Next, a slight modification of the preceding argument provides existence of the
solution u on E−. Since A has already been determined, we can now determine B
using (4.5) and (4.9). Specifically, set

B =
1

μ3a2
(μ2A + C1).(4.17)

So the boundary conditions A and B of φ′ are now specified. Thus, solving the system
(4.7), (4.8) subject to boundary conditions (4.5) and (4.6) yields a solution (S,Φ).

We observe from relations (4.16) and (4.17) that the quantities A and B are
independent of the particular choice of s used in the definition of the level sets E±.

We now consider the sets E± corresponding to the fields (S,Φ). Arguing as above,
we construct the solution u, on the new sets E±, and denote the restrictions of S to
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E+ (E−) by S+ (S−). Next, we show that u and S+ are equal on Ij . Suppose,
otherwise, that S+ ≥ u on some interval L ⊂ Ij and S+ = u at the endpoints of L.
Consider the function v = S+ − u. Substituting u, S+ into (4.7) and subtracting the
resulting equations we find that

μa1v
′′ = μa2v(Φ

′)2 − 1

2

(
β1(S

+)

g(S+,Φ)
− β1(u)

g(u,Φ)

)
x sin 2Φ(4.18)

+
1

J

(
df

ds
(S+) − df

ds
(u)

)
.

Since β1

g(s,Φ) is Lipschitz in s, we note that |
( β1(S

+)
g(S+,Φ) − β1(u)

g(u,Φ)

)
x sin 2Φ|≤ Cg|v|, holds,

where Cg is independent of the choice of Ij . Furthermore, for μ sufficiently close to

zero, because of condition (iii), df
ds (u) belongs to the interval on which df

ds and d2f
ds2 are

bounded. Now if S+ is also in that interval, then using condition (ii), we can write
| dfds (S+) − df

ds (u)| ≤ Cfv, where Cf is independent of Ij . Otherwise, if S+ is large,
df
ds (S

+) > | dfds (u)|, by condition (iii). Hence, the right-hand side of (4.18) is positive,
for all nonnegative v. Then (4.18) implies that v′′ ≥ 0 on L. Hence, v is a convex
function on L which is nonnegative and satisfies zero boundary conditions. Thus, v
must be identically zero on L.

Similarly, we prove that if u ≥ S+ on some interval, then in fact u = S+. From
this and the continuity of S+, we conclude that u = S+ on Ij and the original solution
S satisfies the inequalities

μ ≤ S ≤ 2μ(4.19)

on Ij . Since the analogous arguments apply to all intervals in E+, we obtain that S
satisfies the inequality (4.19) in E+. Moreover, |S| ≤ μ in E0. It remains to prove
that −2μ ≤ S ≤ −μ on E−. The proof is analogous to that in the case of E+.

Finally, for each μ ∈ (0, 1], define sμ = S, φμ = Φ, since |sμ| ≤ 2μ on I and the
sequence sμ converges to zero uniformly as μ → 0.

Remark 4.2. Equations (4.16) and (4.17) suggest that A = O(μ−2), B = O(μ−3)
as μ → 0.

Remark 4.3. The second part of the proof provides a partial uniqueness argument
for solutions of the system (2.1)–(2.4), with the boundary conditions satisfying (4.16),
(4.17). It seems that such an argument can be used to prove uniqueness for each fixed
μ > 0. This will be the subject of future research.

The proof of the previous theorem brings out some relevant physical aspects of
the problem as well as related mathematical issues. The former arguments strongly
reflect the interplay between the mechanisms responsible for the oscillatory behavior
of solutions and the degenerate nature of the boundary conditions for s close to 0. (Let
us recall that φ is undefined when s = 0.) In order to illustrate such features, let us
consider the boundary value problem with prescribed nonzero boundary conditions
on s, and also prescribed values of φ′. If we now allow the boundary values of s
to approach 0, it is natural to expect that the boundary values of φ′ cannot be
independently chosen. This is indeed the nature of Theorem 4.3. Specifically, the
restriction on φ′(±1) imposed by s(±1) = μ with μ small is contained in inequality
(4.16).

A consequence of the fact that φ′(±1) is large, as indicated by (4.16), is that φ′

is positive on I, so φ is increasing on the intervals of continuity. Consequently, φ
may be large in such intervals. In order to ensure boundedness of φ, we will make
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use of the shift invariance of the system (2.1)–(2.2). Indeed, if s, φ is a solution, then
s, φ + kπ is also a solution for any integer k. Starting with an increasing φ̃, we can
split the interval I into subintervals on which kπ ≤ φ̃ ≤ (k+1)π and, then define φ by
shifting appropriately on each subinterval. The function φ obtained in such a fashion
will be bounded, rapidly oscillating and discontinuous. We will refer to solutions with
rapidly oscillating discontinuous φ as generalized to distinguish them from the weak
solutions. The discontinuities of φ are associated with liquid crystal defects.

Corollary 4.4. Let s̃μ, φ̃μ be a sequence of weak solutions constructed in The-
orem 4.3. Then there exists a sequence of generalized solutions sμ, φμ such that

(i) sμ → 0 uniformly on I;
(ii) |φμ| ≤ π

2 ;

(iii) for each μ > 0, the support of the distribution (φ̃μ)′ − (φμ)′ is a finite set of
points;

(iv) for any h ∈ C1
0 (I), sμ, φμ satisfies the integral identities

μa1

∫
I

(sμ)′h′ dx− μa2

∫
I

sμ((φμ)′)2h dx =

∫
I

G1(s
μ, φμ)h dx,(4.20)

μa2

∫
I

(sμ)2(φ̃μ)′h′ dx =

∫
I

G2(s
μ, φμ)h dx.

Proof. Let J be the largest integer such that φ(−1) ≥ Jπ − π
2 . The interval I

can be represented as a union of Nμ disjoint intervals Ik, k = 0, 1, 2, . . . Nμ, such that
x ∈ Ik when

π(J + k) − π

2
≤ φ(x) < π(J + k) +

π

2
,

holds. Starting with s̃μ, φ̃μ, we define sμ, φμ as follows:

sμ = s̃μ,

φμ = φ̃μ − π(J + k)

for x ∈ Ik. Note that the distributional derivative of φμ is not locally integrable.
However, we have

(φμ)′ = (φ̃μ)′

when both are restricted to the complement of the set of the endpoints of Ik.
Next, we observe that Gl(s, φ) = Gl(s, φ + mπ), where l = 1, 2 and m is an

integer. Hence, replacing φ̃μ by φμ in the right-hand sides of the integral identities
for the weak solutions which yields (4.20).

Remark 4.4. Note that, in general, it is not possible to replace (φ̃μ)′ by (φμ)′ in
the left-hand side of the second identity.

5. Effective configurations. The limiting process yields effective governing
equations and configurations of Newtonian Poiseuille flow, with constant viscosity.
However, additional equations associated to microstructural phenomena also arise at
the limit. They may be related to the occurrence of remnant ordered states on a
microscopic scale.

Let us first recall (2.11)–(2.13) and the definition of g:

g(s, φ) =
1

2
α4(s) + α1(s) sin2 φ cos2 φ(5.1)

+
1

2
(α5 − α2)(s) sin2 φ +

1

2
α3(s) cos2 φ.
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If {sμ, φμ} is a sequence of functions such that sμ → 0 uniformly, then by (2.16)

g(sμ, φμ) → 1

2
α4(0),

uniformly on I, as μ approaches zero. Up to a subsequence, the solution vμ of (2.13)
tends to a limit v0 strongly in L2(I), and weakly in W 1,2(I). Hence, the product
g(sμ, φμ)v′μ converges to 1

2α4(0)v′0 weakly in L2(I). This implies that v0 satisfies the
effective equation

ηeffv
′′
0 = 1,(5.2)

which is the Newtonian Poiseuille flow with constant effective viscosity ηeff = 1
2α4(0).

When the Ericksen number is large and the Reynolds number is of order 1, the typical
viscosity is much larger than the typical elasticity. It is natural to expect that align-
ment of the molecules will be destroyed by the diffusion, so that liquid crystal flow is
that of an isotropic liquid with a constant viscosity. If that were the case, (5.2) would
be the only effective equation of the limiting flow. Rigorous analysis suggests, how-
ever, that one should also consider the Young measure νx generated by the sequence
φμ. In Remark 5.1, following the proof of Theorem 5.1, we explain that νx is nontriv-
ial, which means that it cannot have the form δ(z− φ̄(x)) for any function φ̄(x). Since
localization of νx at φ̄ signals strong convergence, this implies that the sequence φμ

cannot converge strongly. Therefore, νx must describe “possible disordered states”
compatible with the boundary conditions and macroscopic flow.

Combining Theorem 3.3 and Proposition 3.4 with the partial stability Theo-
rem 4.3, we obtain the following theorem.

Theorem 5.1. Let s̃μ, φ̃μ be a sequence of weak solutions from Theorem 4.3
satisfying the a priori estimates

‖ s̃′ ‖L2(I) ≤ C,

‖ s̃φ̃′ ‖L2(I) ≤ C,

with C independent of μ. Let (sμ, φμ) be a corresponding sequence of generalized
solutions. Then, up to a subsequence,

(i) sμ → 0 uniformly on I;
(ii) the sequence φμ generates a Young measure νx satisfying moment relations

∫ 1

−1

∫ π/2

−π/2

(
G1(0, z, x) sin az − 1

a

G2

z
(0, z, x) cos az

)
dνx(z)h(x) dx = 0,(5.3)

∫ 1

−1

∫ π/2

−π/2

(
G1(0, z, x) cos az +

1

a

G2

z
(0, z, x) sin az

)
dνx(z)h(x) dx = 0,

for each h ∈ C1
0 (I). In (5.3), a = (a2/a1)

1/2;
(iii) the sequence s((φ̃μ)′)2 converges to a measure ρ in the sense of distributions.

Moreover,

ρ =

∫ π/2

−π/2

G1(0, z, x)dνx(z).(5.4)
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Proof. Part (i) follows directly from Theorem 4.3. Since sμ converges to zero in L2,
the corresponding Young measure is δ(y). Hence, part (ii) follows from Theorem 3.3
and momentum relations in Proposition 3.4.

Next, consider the integral identity

−μa1

∫
I

s′h′dx + μa2

∫
I

s(φ′)2h dx =

∫
I

G1(x, s, φ)h dx.

Since ‖s′‖L2(I) ≤ Cμ−1/2 with C independent of μ, the first integral on the left
converges to zero as μ → 0. The integral in the right-hand side converges to

∫
I

∫ π/2

−π/2

G1(0, z, x)dνx(z)h(x)dx.

This yields,

lim
μ→0

∫
I

s(φ′)2h dx =

∫
I

∫ π/2

−π/2

G1(0, z, x)dνx(z)h(x) dx

for all h ∈ C1
0 (I). Since this space is dense in C0(I), the equality above holds for all

h ∈ C0(I). Hence, the distributional limit of s(φ′)2 is a Radon measure ρ such that

∫
I

hdρ =

∫
I

h

∫ π/2

−π/2

G1(0, z, x)dνx(z)dx

for all h ∈ C0(I).
Remark 5.1. Strong convergence of φμ is incompatible with the moment relations

(5.3). If strong convergence takes place, then νx(z) = δ(x − φ̄(x)) for some function
φ̄ (the strong limit). If that were the case, then from (5.3) we would obtain

G1(0, φ̄, x) sin aφ̄− 1

a

(
G2

s

)
(0, φ̄, x) cos aφ̄ = 0,(5.5)

G1(0, φ̄, x) cos aφ̄ +
1

a

(
G2

s

)
(0, φ̄, x) sin aφ̄ = 0,(5.6)

and thus

G1(0, φ̄, x) = 0,(5.7) (
G2

s

)
(0, φ̄, x) = 0.(5.8)

This means that s = 0, φ = φ̄ is an equilibrium solution of (2.1, 2.2). Direct compu-
tation shows that s = 0 cannot be an equilibrium solution for any φ̄.

6. Conclusions. We study the oscillatory behavior of the solutions of the gov-
erning equations modeling Poiseuille flow of liquid crystals with variable degree of
orientation, at the limit of large Ericksen number E . The governing equations are
singularly perturbed and highly degenerate. The oscillations of s occur about the
isotropic value s = 0, and at points where s vanishes the angle of alignment φ is dis-
continuous and φ′ becomes unbounded. This situation corresponds to the presence of
defects in the flow. We obtain necessary condition for the Young measures generated
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by sequences of solutions and show that the persistent oscillatory behavior is encoded
in the Young measure generated by φ. We prove a partial stability result establishing
uniform convergence of s to 0 as μ = E−1 → 0 and the increasingly oscillatory be-
havior of φ. Compactness of s allows us to pass to the limit in the governing system
and obtain the effective equations. The latter consist of the Newtonian flow equation
together with the algebraic relations for the Young measure generated by φ. This
suggest that macroscopically the flow is isotropic and Newtonian with a remaining
liquid crystalline microstructure.
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STABILITY OF COMPRESSIBLE VORTEX SHEETS IN STEADY
SUPERSONIC EULER FLOWS OVER LIPSCHITZ WALLS∗
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Abstract. We are concerned with the stability of compressible vortex sheets in two-dimensional
steady supersonic Euler flows over Lipschitz walls under a BV boundary perturbation, since steady
supersonic Euler flows are important in many physical situations. It is proved that steady compress-
ible vortex sheets in supersonic flow are stable in structure globally, even under the BV perturbation
of the Lipschitz walls. In order to achieve this, we develop a modified Glimm difference scheme and
identify a Glimm-type functional to obtain the required BV estimates by incorporating the Lipschitz
boundary and the strong vortex sheets naturally and by tracing the interaction not only between the
boundary and weak waves but also between the strong vortex sheets and weak waves. Then these
estimates are employed to establish the convergence of the approximate solutions to a global entropy
solution and the corresponding approximate strong vortex sheets to a strong compressible vortex
sheet of the entropy solution. The asymptotic stability of entropy solutions in the flow direction is
also established.

Key words. compressible vortex sheets, stability, BV perturbation, supersonic Euler flows,
Riemann solutions, Glimm scheme, nonlinear interaction, global existence, adiabatic Euler equations,
isentropic Euler equations
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1. Introduction. We are concerned with the stability of compressible vortex
sheets in steady supersonic Euler flows over Lipschitz walls under a BV boundary
perturbation. The two-dimensional steady supersonic Euler flows are generally gov-
erned by ⎧⎪⎪⎨

⎪⎪⎩
(ρu)x + (ρv)y = 0,
(ρu2 + p)x + (ρuv)y = 0,
(ρuv)x + (ρv2 + p)y = 0,
(ρu(E + p/ρ))x + (ρv(E + p/ρ))y = 0,

(1.1)

where (u, v) is the velocity, ρ the density, p the scalar pressure, and

E =
1

2
(u2 + v2) + e(ρ, p)
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the total energy with internal energy e, a given function of (ρ, p) defined through ther-
modynamical relations. The other two thermodynamic variables are the temperature
T and the entropy S. If (ρ, S) are chosen as the independent variables, then we have
the constitutive relations

(e, p, T ) = (e(ρ, S), p(ρ, S), T (ρ, S)),(1.2)

governed by

TdS = de− p

ρ2
dρ.(1.3)

For an ideal gas,

p = RρT, e = cvT, γ = 1 +
R

cv
> 1,(1.4)

and

p = p(ρ, S) = κργ exp(S/cv), e =
κ

γ − 1
ργ−1 exp(S/cv) =

RT

γ − 1
,(1.5)

where R, κ, and cv are all positive constants.
If the flow is isentropic (i.e., S = const.), then the pressure p is a function of

density ρ, p = p(ρ), and the flow is governed by the following simpler isentropic Euler
equations: ⎧⎨

⎩
(ρu)x + (ρv)y = 0,
(ρu2 + p)x + (ρuv)y = 0,
(ρuv)x + (ρv2 + p)y = 0.

(1.6)

For polytropic isentropic gases, by scaling, the pressure-density relation can be ex-
pressed as

p(ρ) = ργ/γ, γ > 1.(1.7)

For the isothermal flow, γ = 1. The quantity

c =
√
pρ(ρ, S)

is defined as the sonic speed and, for polytropic gases, c =
√
γp/ρ.

System (1.1) or (1.6) governing a supersonic flow (i.e., u2 + v2 > c2) has all
real eigenvalues and is hyperbolic in the flow direction, while system (1.1) or (1.6)
governing a subsonic flow (i.e., u2 + v2 < c2) has complex eigenvalues and is elliptic-
hyperbolic mixed and composite (cf. [4, 5]).

We are interested in whether steady compressible vortex sheets in supersonic
flow are always stable in supersonic flow under the BV perturbation of the Lipschitz
walls. Multidimensional steady supersonic Euler flows are important in many physical
situations (cf. Courant and Friedrichs [8]). In particular, when the upstream flow is a
uniform steady flow above the plane wall in x < 0 all the time, the flow downstream
above a Lipschitz wall in x > 0 is governed by a steady Euler flow after a sufficiently
long time. Furthermore, since steady Euler flows are asymptotic states and may be
global attractors of the corresponding unsteady Euler flows, it is important to establish
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Vortex sheet

0

*

Fig. 1. Stability of the compressible vortex sheet in supersonic flow.

the existence of steady Euler flows and understand their qualitative behavior to shed
light on the long-time asymptotic behavior of the unsteady compressible Euler flows,
one of the most fundamental problems in mathematical fluid dynamics which is still
widely open. In this paper we focus on the existence and behavior of such global
supersonic Euler flows, especially the nonlinear stability of strong compressible vortex
sheets in the supersonic Euler flows, under the BV perturbation of the Lipschitz walls.

For concreteness, we will analyze the problem in the region over the Lipschitz
wall for the supersonic Euler flows governed by system (1.1) for U = (u, v, p, ρ) and
by (1.6) for U = (u, v, ρ), respectively. Then we have the following:

(i) There exists a Lipschitz function g ∈ Lip(R+; R) with g(0) = 0, g′(0+) = 0,
g′∞ = lim

x→∞
g′(x+), and g′ ∈ BV (R+; R) such that

TV (g′(·)) < ε for some constant ε > 0,(1.8)

Ω = {(x, y) : y > g(x), x ≥ 0}, Γ = {(x, y) : y = g(x), x ≥ 0},

and n(x±) = (−g′(x±),1)√
(g′(x±))2+1

are the outer normal vectors to Γ at the points

x±, respectively (see Figure 1).
(ii) The upstream flow consists of one straight vortex sheet y = y∗0 > 0 and two

constant vectors U1 when 0 < y < y∗0 and U2 when y > y∗0 > 0 satisfying

v1 = v2 = 0, ui > ci > 0, i = 1, 2,

where ci =
√
γpi/ρi is the sonic speed of state Ui, i = 1, 2.

With this setup, the vortex sheet problem can be formulated into the following
problem of initial-boundary value type for system (1.1).

Cauchy condition:

U |x=0 =

{
U1, 0 < y < y∗0 ,
U2, y > y∗0 .

(1.9)

Boundary condition:

(u, v) · n = 0 on Γ.(1.10)

The main theorem of this paper is the following.
Main Theorem (existence and stability). There exist ε0 > 0 and C > 0 such

that if (1.8) holds for ε ≤ ε0, then there exists a pair of functions

U ∈ BVloc(Ω) ∩ L∞(Ω), χ ∈ Lip(R+; R+)
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with χ(0) = y∗0 such that the following hold:
(i) U is a global entropy solution of system (1.1), or (1.6), in Ω with the initial-

boundary data (1.9)–(1.10) that is satisfied in the trace sense and

TV {U(x, ·) : [g(x),∞)} ≤ C TV (g′(·)) for every x ∈ [0,∞).(1.11)

(ii) The curve {y = χ(x)} is a strong vortex sheet with χ(x) > g(x) for any x > 0,

sup
g(x)<y<χ(x)

|U(x, y) − U1| ≤ Cε, sup
y>χ(x)

|U(x, y) − U2| ≤ Cε,(1.12)

and

lim
x→∞

sup{|v(x, y)/u(x, y) − g′∞| : y > g(x)} + lim
x→∞

|χ′(x) − g′∞| = 0.(1.13)

(iii) There exists a constant p∞ > 0 such that

lim
x→∞

sup{|p(x, y) − p∞| : y > g(x)} = 0.(1.14)

This theorem indicates that the strong vortex sheets in supersonic flow are non-
linearly stable globally in structure.

In order to establish this theorem, we first develop a modified Glimm scheme
whose mesh grids are designed to follow the slope of the Lipschitz boundary, which
is different from the standard case with rectangular mesh grids, so that the lateral
Riemann building blocks contain only one wave emanating from the mesh points on the
boundary. For the adiabatic Euler flow determined by (1.1), the essential estimate is
on the strength δ1 of the reflected 1-wave when the weak 4-wave with strength α4 hits
the strong vortex sheet from below. We obtain that the key bound on the reflection
coefficient in front of α4 in the estimate of δ1 is strictly less than one, i.e.,

δ1 = β1 + K11α4 + O(1)|β1|(|α2| + |α3|), |K11| < 1.

The estimate on the interaction between the boundary and weak waves is also crucial.
Based on the construction of the modified Glimm scheme and the new interac-

tion estimates, we successfully identify a Glimm-type functional by incorporating the
Lipschitz wall and the strong vortex sheet naturally and by tracing the interactions
not only between the boundary and weak waves but also between the strong vortex
sheet and weak waves, so that the Glimm-type functional monotonically decreases
in the flow direction. Another essential estimate is to trace the approximate strong
vortex sheets in order to establish the nonlinear stability and asymptotic behavior of
the strong vortex sheet in supersonic flow in the downstream direction under the BV
boundary perturbation. Condition (1.8) may be relaxed so that the total variation of
g′(x) is allowed to be relatively larger than the small L∞ norm of g′(x) by combining
the analysis in this paper with the arguments in [21, 22].

We observe that the stability of contact discontinuities for the Cauchy prob-
lem for strictly hyperbolic systems under a BV perturbation has been studied by
Sablé-Tougeron [18] and Corli and Sablé-Tougeron [9]. In particular, the reflection
coefficients, such as K11 here, are required to be less than one, which is the sta-
bility condition for the mixed problem in the strip (0, 1) in the earlier works; see,
e.g., Sablé-Tougeron [18]. The essential difference between system (1.1) as analyzed
in sections 2–5 here and strictly hyperbolic systems as considered in [9, 18] is that
two of the four characteristic eigenvalues coincide and have two linearly independent
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eigenvectors which determine the compressible vortex sheets so that two independent
parameters are required to describe precisely these vortex sheets. Furthermore, our
physical boundary condition for the initial-boundary value problem is the slip-wall
boundary condition on the nonflat boundary whose slope function is allowed to be
discontinuous, i.e., the characteristic boundary condition on the nonflat, nonsmooth
boundary, which is different from the initial-boundary value problem over the flat
boundary considered in [18]. For our case, additional nonlinear waves are produced
by the boundary vertices, Ak, so that careful estimates on boundary reflection and
interaction for nonlinear waves are required to match the slip-wall boundary condition
and to be incorporated into the functional naturally.

We further remark that our Glimm-type functional has additional ingredients, in
comparison with that used in Corli and Sablé-Tougeron [9] and Sablé-Tougeron [18].
More precisely, in this paper, the linear part of the functional has a new term, L0(J),
to control the new waves produced by the flow moving around the boundary vertices,
Ak. The linear part of the functional is shown to be decreasing near the vortex sheet
and the boundary, in addition to controlling the quadratic part. The proof of the
decreasing of the linear part makes full use of the following facts:

(i) L0(J) is strictly decreasing along the boundary.
(ii) If a 1-wave interacts with the boundary or the vortex sheet, it disappears and

a new wave is produced, which implies the strict decreasing of Li
1 near the

boundary and vortex sheet. The same is true when a 2-wave interacts with
the vortex sheet.

Then, combining these two facts with the estimates on the coefficients Kij and Kbi in
the wave interactions and reflections, we succeed in assigning different weights to the
strengths of the waves so that the linear part is strictly decreasing. With the careful
design of the linear part, which is different from that in [18, 9], we simply use the same
quadratic part as that used in Glimm [11] (see also [14, 15, 19]) in our Glimm-type
functional, which sufficiently controls the linear part in the regions (1) and (2). For
more details, see section 4.

It would be interesting and important to clarify the connections between the
stability of steady compressible vortex sheets and long-time asymptotic stability of
unsteady compressible vortex sheets in supersonic flow, since the nonlinear instabilities
of compressible vortex sheets may develop in a short-time or some intermediate-time
regime under certain situations. For this, we refer the reader to Miles [17], Artola and
Majda [1, 2, 3], Woodward [24], and the references cited therein.

In this paper we first focus on the adiabatic Euler flows in sections 2–5 and then
study the isentropic Euler flows in section 6. In section 2, we study the lateral and
classical Riemann problems and analyze the properties of the Riemann solutions to
the adiabatic Euler equations (1.1), which are essential for the interaction estimates
among the nonlinear waves and the wall in section 3 and for the existence and behavior
of entropy solutions of the problem in sections 4–5. In section 3, we make estimates
on the wave interactions and reflections on the boundary and the strong vortex sheet,
respectively. In section 4, we develop a modified Glimm scheme to construct the
approximate solutions and establish necessary estimates for them in the approximate
domains. In section 5, we establish the convergence of approximate solutions to a
global entropy solution and prove the nonlinear stability and asymptotic behavior of
the strong vortex sheet over the Lipschitz wall. In section 6, we extend the analysis and
approach to establish the existence and behavior of two-dimensional steady supersonic
flows governed by the isentropic Euler equations.
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2. Riemann problems and Riemann solutions. In this section, we study the
lateral and classical Riemann problems and analyze the properties of the Riemann
solutions to the adiabatic Euler system (1.1), which are essential not only for the
interaction estimates among the nonlinear waves and the Lipschitz wall but also for
the existence and behavior of solutions of our problem in sections 3–5.

2.1. Euler equations. The Euler system can be written in the following con-
servation form:

W (U)x + H(U)y = 0,(2.1)

where U = (u, v, p, ρ), W (U) = (ρu, ρu2 + p, ρuv, ρu(h + u2+v2

2 )), and H(U) =

(ρv, ρuv, ρv2 + p, ρv(h + u2+v2

2 )) with h = γp
(γ−1)ρ . For a smooth solution U(x, y),

system (2.1) is equivalent to

∇UW (U)Ux + ∇UH(U)Uy = 0.(2.2)

Then the eigenvalues of (2.1) are the roots of the fourth order polynomial,

det(λ∇UW (U) −∇UH(U)),(2.3)

that is, the solutions of the equation

(v − λu)2
(
(v − λu)2 − c2(1 + λ2)

)
= 0,

where c =
√
γp/ρ is the sonic speed. If the flow is supersonic (i.e., u2 + v2 > c2),

system (1.1) is hyperbolic. In particular, when u > c, system (1.1) has four eigenvalues
in the x-direction,

λj =
uv + (−1)jc

√
u2 + v2 − c2

u2 − c2
, j = 1, 4; λi = v/u, i = 2, 3,(2.4)

and the four corresponding linearly independent eigenvectors:

rj = κj(−λj , 1, ρ(λju− v), ρ(λju− v)/c2)�, j = 1, 4,(2.5)

r2 = (u, v, 0, 0)�, r3 = (0, 0, 0, ρ)�,

where κj are chosen so that rj ·∇λj = 1 since the jth-characteristic fields are genuinely
nonlinear, j = 1, 4. Note that the second and third characteristic fields are always
linearly degenerate: rj ·∇λj = 0, j = 2, 3. We also point out that, at the unperturbed
states Ui = (ui, 0, pi, ρi) for i = 1, 2,

λ2(Ui) = λ3(Ui) = 0, λ1(Ui) = −ci/
√
u2
i − c2i = −λ4(Ui) < 0 for i = 1, 2.

Definition 2.1 (entropy solutions). A BV function U = U(x, y) is called an
entropy solution of problem (1.1) and (1.9)–(1.10) provided that

(i) U is a weak solution of (1.1) and satisfies (1.9)–(1.10) in the trace sense;
(ii) U satisfies the entropy inequality

(ρuS)x + (ρvS)y ≥ 0(2.6)

in the sense of distributions in Ω including the boundary.
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Remark 2.1. The entropy inequality (2.6) for our steady case directly follows
from the Clausius inequality in the time-dependent case,

(ρS)t + (ρuS)x + (ρvS)y ≥ 0,

under the assumption that the solution (u, v, p, ρ) is independent of time t. Further-
more, by a direct but tedious calculation, when u > c, the function η = −ρuS as an
entropy function of system (1.1) is a strictly convex function of the conserved variables

w = (w1, w2, w3, w4) = (ρu, ρu2 + p, ρuv, ρu(E + p/ρ)).

2.2. Wave curves in the phase space. In this subsection, we analyze some
basic properties of nonlinear waves. We consider the problem for u > c in the state
space, especially in the neighborhoods of U1 and U2. We first seek the self-similar
solutions to (1.1),

(u, v, p, ρ)(x, y) = (u, v, p, ρ)(ξ), ξ = y/x,

which connect to a state U0 = (u0, v0, p0, ρ0). Then we have

det (ξ∇UW (U) −∇UH(U)) = 0,(2.7)

which implies

ξ = λi = v/u, i = 2, 3, or ξ = λj =
uv + (−1)jc

√
u2 + v2 − c2

u2 − c2
, j = 1, 4.

Plugging ξ = λi into (2.7), we obtain

dp = 0, vdu− udv = 0,

which yields the vortex sheet curves Ci(U0) in the phase space:

Ci(U0) : p = p0, w = v/u = v0/u0, i = 2, 3,(2.8)

which describe compressible vortex sheets. More precisely, we have

C2(U0) : U = (u0e
σ2 , v0e

σ2 , p0, ρ0)
�(2.9)

with strength σ2 and slope v0/u0, which is determined by{
dU
dσ2

= r2(U),

U |σ2=0 = U0,

and

C3(U0) : U = (u0, v0, p0, ρ0e
σ3)�(2.10)

with strength σ3 and slope v0/u0, which is determined by{
dU
dσ3

= r3(U),

U |σ3=0 = U0.

Remark 2.2. The full Euler system (1.1) has two contact discontinuities that
coincide as a single vortex sheet in the physical xy-plane. However, in the phase space
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U = (u, v, p, ρ), to describe this vortex sheet precisely, it requires two independent
parameters, since there are two linearly independent eigenvectors corresponding to
the repeated eigenvalues λ2 = λ3 = v/u of the two linearly degenerate fields.

Plugging ξ = λj into (2.7), we get the jth-rarefaction wave curve Rj(U0), j = 1, 4,
in the phase space through U0:

Rj(U0) : dp = c2dρ, du = −λjdv, ρ(λju− v)dv = dp for ρ < ρ0, u > c, j = 1, 4.

(2.11)

Similarly, the Rankine–Hugoniot conditions for (1.1) are

s[ρu] = [ρv],(2.12)

s[ρu2 + p] = [ρuv],(2.13)

s[ρuv] = [ρv2 + p],(2.14)

s

[
ρu

(
h +

u2 + v2

2

)]
=

[
ρv

(
h +

u2 + v2

2

)]
,(2.15)

where the jump symbol [·] stands for the value of the quantity of the front state minus
that of the back state.

Then we have

(v0 − su0)
2
(
(v0 − su0)

2 − c2(1 + s2)
)

= 0,

where c2 =
c20
b

ρ
ρ0

and b = γ+1
2 − γ−1

2
ρ
ρ0

. This implies

s = si = v0/u0, i = 2, 3,(2.16)

or

s = sj =
u0v0 + (−1)jc

√
u2

0 + v2
0 − c2

u2
0 − c2

, j = 1, 4,(2.17)

where u0 > c for small shocks.
Plugging si, i = 2, 3, into (2.12)–(2.15), we get the same Ci(U0), i = 2, 3, as

defined in (2.9)–(2.10); while plugging sj , j = 1, 4, into (2.12)–(2.15), we obtain the
jth-shock wave curve Sj(U0), j = 1, 4, through U0:

Sj(U0) : [p] =
c20
b

[ρ], [u] = −sj [v], ρ0(sju0 − v0)[v] = [p] for ρ > ρ0, u > c, j = 1, 4,

where ρ0 < ρ is equivalent to the entropy condition (2.6) on the shock wave.
Note that Sj(U0) contacts with Rj(U0) at U0 up to second order.

2.3. Lateral Riemann problem. It has been shown in [8] that when the angle
between the flow direction of the front state and the wall at a boundary vertex is
smaller than π and larger than the extreme angle determined by the incoming flow
state and γ ≥ 1, then a unique 4-shock forms, which separates the front state from
the supersonic back state; when the angle between the flow direction of the front
state and the wall at a boundary vertex is larger than π and less than an extreme
angle, then a 4-rarefaction wave forms, which emanates from the vertex (see Figure
2). This indicates that when the angle between the flow direction of the front state
and the wall at a boundary vertex is near π, the lateral Riemann problem is always
uniquely solvable. For the detail, see Figure 3 and Proposition 3.3; also see Courant
and Friedrichs [8].



1668 GUI-QIANG CHEN, YONGQIAN ZHANG, AND DIANWEN ZHU
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Fig. 2. Lateral Riemann solutions.
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Fig. 3. Wave curves in the (u, v)-plane for the lateral Riemann problem.

2.4. Riemann problem involving only weak waves. Consider the Riemann
problem for (2.1):

U |x=x0 =

{
Ua, y > y0,
Ub, y < y0,

(2.18)

where Ua and Ub are the constant states which are regarded as the above state and
below state with respect to the line y = y0, respectively.

Following Lax [13], we can parameterize any physically admissible wave curve in
a neighborhood of any constant state U0, Oε(U0), by αj 	→ Φj(αj ;Ub), with Φj ∈ C2

and Φj |αj=0 = Ub and ∂αjΦj |αj=0 = rj(Ub). For j = 1, 4, the case αj > 0 corresponds
to a rarefaction wave, while the case αj < 0 corresponds to a shock wave. Notice
that, for system (1.1), we have the explicit formulas for Φ2 and Φ3 to describe the
vortex sheets by two independent parameters (σ2, σ3):

Φ2(σ2, Ub) = (ube
σ2 , vbe

σ2 , pb, ρb), Φ3(σ3, Ub) = (ub, vb, pb, ρbe
σ3).

For simplicity, we set Φ(α4, α3, α2, α1;Ub) := Φ4(α4; Φ3(α3; Φ2(α2; Φ1(α1;Ub)))).
We also denote by Oε(W ) a universal neighborhood that is a ball with radius Mε > 0
and center W , where M > 0 is a universal constant depending only on the parameters
in the system and possibly the boundary function g(x) (starting section 4.2), which
may be different at each occurrence. Then we have the following lemma.

Lemma 2.2. There exists ε > 0 such that, for any states Ua, Ub ∈ Oε(U0),
the Riemann problem (2.18) admits a unique admissible solution consisting of four
elementary waves. In addition, the state Ua can be represented by

Ua = Φ(α4, α3, α2, α1;Ub)

with Φ|α1=α2=α3=α4=0 = Ub and ∂αi
Φ|α1=α2=α3=α4=0 = ri(Ub), i = 1, 2, 3, 4.
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Furthermore, we find that the renormalization factors κj(U), j = 1, 4, in (2.5)
are positive in a neighborhood Oε(U0) of any state U0 = (u0, 0, p0, ρ0) with u0 > c0,
which is either U1 or U2 below.

Lemma 2.3. At any state U0 = (u0, 0, p0, ρ0) with u0 > c0,

κ1(U0) = κ4(U0) = 1/
(
∇Uλj · (−λj , 1, ρuλj , ρuλj/c

2)|U=U0

)
> 0,

which implies κj(U) > 0 for any U ∈ Oε(U0) with small ε > 0 since κj(U) are
continuous for j = 1, 4.

In fact, at the state U0 = (u0, 0, p0, ρ0), it is straightforward to see that

∇Uλj · (−λj , 1, ρuλj , ρuλj/c
2)|U=U0

> 0, j = 1, 4.

Therefore, we have κ1(U0) = κ4(U0) > 0, which implies that κj(U) > 0, j = 1, 4, for
any state U ∈ Oε(U0) with small ε > 0.

2.5. Riemann problem involving the strong vortex sheets. For simplicity,
we use the notation {Ub, Ua} = (α1, α2, α3, α4) to denote Ua = Φ(α4, α3, α2, α1;Ub)
throughout the paper. For any Ub ∈ Oε(U1) and Ua ∈ Oε(U2), we also use {Ub, Ua} =
(0, σ2, σ3, 0) to denote the strong vortex sheet that connects Ub and Ua with strength
(σ2, σ3). That is,

Um = Φ2(σ2;Ub) := (ube
σ2 , vbe

σ2 , pb, ρb)
�, Ua = Φ3(σ3;Um) := (um, vm, pm, ρmeσ3)�.

In particular, we note that

U2 = (u2, 0, p2, ρ2)
� = (u1e

σ20 , 0, p1, ρ1e
σ30)�.

We write G(σ3, σ2;Ub) = Φ3(σ3; Φ2(σ2;Ub)) for short for any Ub ∈ Oε(U1). Then we
have the following.

Lemma 2.4. The vector function G(σ3, σ2;Ub) satisfies

Gσ2(σ3, σ2;Ub) = (ube
σ2 , vbe

σ2 , 0, 0)�, Gσ3(σ3, σ2;Ub) = (0, 0, 0, ρbe
σ3)�,

and

∇UG(σ3, σ2;Ub) = diag(eσ2 , eσ2 , 1, eσ3).

These can be easily obtained from direct calculations and are thus omitted.
The following lemma is essential to estimate the strengths of reflected weak waves

in the interaction between the strong vortex sheet and weak waves (see the proofs for
Propositions 3.4–3.5).

Lemma 2.5. For the plane vortex sheet with the lower state U1 = (u1, 0, p1, ρ1),
upper state U2 = (u2, 0, p1, ρ2), and strength (σ20, σ30),

det(r4(U2), Gσ3(σ30, σ20;U1), Gσ2(σ30, σ20;U1),∇UG(σ30, σ20;U1) · r1(U1)) > 0.

This can be obtained by the following direct calculations:

det(r4(U2), Gσ3(σ30, σ20;U1), Gσ2(σ30, σ20;U1),∇UG(σ30, σ20;U1) · r1(U1))

= κ1(U1)κ4(U2)

∣∣∣∣∣∣∣∣
−λ4(U2) 0 u1e

σ20 eσ20(−λ1(U1))
1 0 0 eσ20

ρ2u2λ4(U2) 0 0 ρ1u1λ1(U1)
ρ2u2λ4(U2)

c22
ρ1e

σ30 0 eσ30 ρ1u1λ1(U1)
c21

∣∣∣∣∣∣∣∣
= κ1(U1)κ4(U2)ρ

2
1u

2
1e

σ20+σ30(λ4(U2)e
2σ20+σ30 + λ4(U1)) > 0.
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Fig. 4. Weak wave interactions.

3. Estimates on wave interactions and reflections. We now make estimates
on wave interactions, especially near the strong vortex sheet, and wave reflections on
the wall.

3.1. Estimates on weak wave interactions. We first estimate the interac-
tions among weak waves. We will use the following elementary identity, whose proof
is straightforward.

Lemma 3.1. If f ∈ C2(R2), then, for any (x, y) ∈ R
2,

f(x, y) − f(x, 0) − f(0, y) + f(0, 0) = xy

∫ 1

0

∫ 1

0

fxy(rx, sy)drds.(3.1)

Proposition 3.2. Suppose that Ub, Um, and Ua are three states in a small
neighborhood of U0 with {Ub, Um} = (α1, α2, α3, α4), {Um, Ua} = (β1, β2, β3, β4), and
{Ub, Ua} = (γ1, γ2, γ3, γ4) (cf. Figure 4). Then

γi = αi + βi + O(1)�(α, β),(3.2)

where �(α, β) = |α4||β1| + |α3||β1| + |α2||β1| + |α4||β2| + |α4||β3| +
∑

j=1,4 �j(α, β)
with

�j(α, β) =

{
0, αj ≥ 0, βj ≥ 0;
|αj ||βj |, otherwise.

The proof of this proposition is standard, whose simple proof can be found in
Temple [20] or Chen, Zhang, and Zhu [7]; also see Dafermos [10].

3.2. Estimates on the weak wave reflections on the boundary. Denote by
{Ck}∞k=0 the points {(ak, bk)}∞k=0 in the xy-plane with ak+1 > ak > 0 (cf. Figure 5).
Set

ωk,k+1 = arctan

(
bk+1 − bk
ak+1 − ak

)
, ωk = ωk,k+1 − ωk−1,k, ω−1,0 = 0,

Ωk+1 = {(x, y) : x ∈ [ak, ak+1], y > bk + (x− ak) tan(ωk,k+1)},(3.3)

Γk+1 = {(x, y) : x ∈ (ak, ak+1), y = bk + (x− ak) tan(ωk,k+1)},
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Ua
Ua

Um

Uk
Uk+1

Fig. 5. Weak wave reflections on the boundary.

and the outer normal vector to Γk:

nk+1 =
(bk+1 − bk, ak − ak+1)√

(bk+1 − bk)2 + (ak+1 − ak)2
= (sin(ωk,k+1),− cos(ωk,k+1)).(3.4)

We consider the initial-boundary value problem⎧⎨
⎩

(2.1) in Ωk+1,
U |x=ak

= Ua,
(u, v) · nk+1 = 0 on Γk+1,

(3.5)

where Ua is a constant state.
Proposition 3.3. Let {Um, Ua} = (β1, β2, β3, 0) and {Uk, Um} = (0, 0, 0, α4)

with

(uk, vk) · nk = 0.

Then there exists a unique solution Uk+1 of problem (3.5) such that

{Uk+1, Ua} = (0, 0, 0, δ4)

and Uk+1 · (nk+1, 0, 0) = 0. Furthermore,

δ4 = α4 + Kb1β1 + Kb2β2 + Kb3β3 + Kb0ωk,

where Kb1, Kb2, Kb3, and Kb0 are C2-functions of β3, β2, β1, α4, ωk+1, and Ua

satisfying

Kb1|{ωk=α4=β1=β2=β3=0,Ua=U1} = 1, Kbi|{ωk=α4=β1=α2=β3=0,Ua=U1} = 0, i = 2, 3,

and Kb0 is bounded. In particular, Kb0 < 0 at the origin.
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Proof. First, by the implicit function theorem, similar to Lemma 2.2, we have
Uk = Ψ(α1, α2, α3, α4;Ua) for the C2-function Ψ = Φ−1 and Ψαj |α1=α2=α3=α4=0 =
−rj(Ua), j = 1, 2, 3, 4. Then it suffices to find the solution to

Ψ(0, 0, 0, α4; Ψ(β1, β2, β3, 0;Ua)) · (nk, 0, 0) = Ψ(0, 0, 0, δ4;Ua) · (nk+1, 0, 0).(3.6)

Since

∂δ4(Ψ(0, 0, 0, δ4;Ua) · (nk+1, 0, 0))|{δ4=0,Ua=U1,ωk,k+1=0}

= −κ1(U1)(−λ1(U1), 1, ρ1λ1(U1)u1, ρ1λ1(U1)u1/c
2
1) · (0, 1, 0, 0) < 0,

we know from the implicit function theorem that δ4 can be solved as a C2-function
of β3, β2, β1, α4, ωk, ωk,k+1, and Ua. Since ωk,k+1 and Ua are constant here, we
write δ4 = δ4(ωk, β3, β2, β1, α4) without specific indication of the dependence on Ua

and ωk,k+1.
Again, from (3.1), we can obtain

δ4(ωk, β3, β2, β1, α4)

= δ4(ωk, β3, β2, β1, α4) − δ4(0, β3, β2, β1, α4) + δ4(0, β3, β2, β1, α4)

− δ4(0, 0, β2, β1, α4) + δ4(0, 0, β2, β1, α4) − δ4(0, 0, 0, β1, α4)

+ δ4(0, 0, 0, β1, α4) − δ4(0, 0, 0, 0, α4) + δ4(0, 0, 0, 0, α4)

= Kb0ωk + Kb3β3 + Kb2β2 + Kb1β1 + α4.

Differentiating (3.6) with respect to β1, β2, and β3, respectively, and letting
ωk = β3 = β2 = β1 = α4 = 0 and Ua = U1, we have

r1(U1) · (0, 1, 0, 0) = ∂β1δ4 r4(U1) · (0, 1, 0, 0),

r2(U1) · (0, 1, 0, 0) = ∂β2δ4 r4(U1) · (0, 1, 0, 0),

and

r3(U1) · (0, 1, 0, 0) = ∂β3δ4 r4(U1) · (0, 1, 0, 0).

Hence we have

Kb1|{ωk=β3=β2=β1=α4=0, Ua=U1} = 1, Kb2|{ωk=β3=β2=β1=α4=0, Ua=U1} = 0,

and Kb3|{ωk=β3=β2=β1=α4=0, Ua=U1} = 0. It is clear that Kb0 = ∂ωk
δ4 is bounded.

Differentiating (3.6) with respect to ωk, we find that, at the origin, Kb0 = ∂ωk
δ4| =

−u1/κ4(U1) < 0. This completes the proof.

3.3. Estimates on the interaction between the strong vortex sheet and
weak waves. There are two cases depending on how the strong vortex sheet and
the weak waves interact. The first case is when the weak waves approach the strong
vortex sheet from below, as in Figure 6. Then we have the following.

Proposition 3.4. Let Ub, Um ∈ Oε(U1) and Ua ∈ Oε(U2) with

{Ub, Um} = (0, α2, α3, α4), {Um, Ua} = (β1, σ2, σ3, 0).
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Fig. 6. Weak waves approach the strong vortex sheet from below.

Then there exists a unique (δ1, σ
′
2, σ

′
3, δ4) such that the Riemann problem (2.18) admits

an admissible solution that consists of a weak 1-wave of strength δ1, a strong vortex
sheet of strength (σ′

2, σ
′
3), and a weak 4-wave of strength δ4:

{Ub, Ua} = (δ1, σ
′
2, σ

′
3, δ4).

Moreover,

δ1 = β1 + K11α4 + O(1)Δ′, δ4 = K14α4 + O(1)Δ′,

σ′
2 = σ2 + α2 + K12α4 + O(1)Δ′, σ′

3 = σ3 + α3 + K13α4 + O(1)Δ′,

where Δ′ = |β1|(|α2| + |α3|), |K11|{α4=α3=α2=0,σ′
2=σ20,σ′

3=σ30} < 1, and
∑4

j=2 |K1j | is
bounded.

Proof. We need to find the solution (δ1, σ
′
2, σ

′
3, δ4) as a function of α2, α3, α4, β1,

σ2, σ3, and Ub to

Φ4(δ4;G(σ′
3, σ

′
2; Φ1(δ1;Ub))) = G(σ3, σ2; Φ1(β1,Φ(α4, α3, α2, 0;Ub))).(3.7)

Lemma 2.5 implies

det

(
∂Φ4(δ4;G(σ′

3, σ
′
2; Φ1(δ1;Ub)))

∂(δ4, σ′
3, σ

′
2, δ1)

) ∣∣∣∣
{δ4=δ1=0,σ′

2=σ20,σ′
3=σ30}

= det(r4(U2), Gσ3(σ30, σ20;U1), Gσ2(σ30, σ20;U1),∇UG(σ30, σ20;U1) · r1(U1)) > 0.

Therefore, (δ1, σ
′
2, σ

′
3, δ4) can be solved as a C2-function of (α2, α3, α4, β1, σ2, σ3;Ub)

uniquely. That is,

σ′
i = σ′

i(α2, α3, α4, β1, σ2, σ3), i = 2, 3; δj = δj(α2, α3, α4, β1, σ2, σ3), j = 1, 4,

where we have omitted Ub for simplicity. Using Lemma 3.1(i), we have

δ1 = δ1(α2, α3, α4, β1, σ2, σ3) − δ1(α2, α3, 0, β1, σ2, σ3) + δ1(α2, α3, 0, β1, σ2, σ3)

= K11α4 + β1 + O(1)(|β1||α2| + |β1||α3|),
δ4 = δ4(α2, α3, α4, β1, σ2, σ3) − δ4(α2, α3, 0, β1, σ2, σ3) + δ4(α2, α3, 0, β1, σ2, σ3)

= K14α4 + O(1)(|β1||α2| + |β1||α3|),
σ′
i = σ′

i(α2, α3, α4, β1, σ2, σ3) − σ′
i(α2, α3, 0, β1, σ2, σ3) + σ′

i(α2, α3, 0, β1, σ2, σ3)

= K1iα4 + αi + σi + O(1)(|β1||α2| + |β1||α3|), i = 2, 3,
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where

K1i =

∫ 1

0

∂α4σ
′
i(α2, α3, θα4, β1, σ2, σ3)dθ, i = 2, 3,

K1j =

∫ 1

0

∂α4δj(α2, α3, θα4, β1, σ2, σ3)dθ, j = 1, 4.

When β1 = α4 = α3 = α2 = 0, σ2 = σ20, and σ3 = σ30, it is clear that |∂α4
(δ1, δ4)|

and |∂α4
(σ′

2, σ
′
3)| are bounded. We can further claim that |∂α4

δ1| < 1 , which can be
seen as follows:

Differentiate (3.7) with respect to α4 and let β1 = α4 = α3 = α2 = 0, σ2 = σ20,
and σ3 = σ30. We obtain

∇UG(σ30, σ20;U1) · r4(U1)

= ∂α4δ4 r4(U2) + ∂α4σ
′
3 Gσ3(σ30, σ20;U1)

+ ∂α4
σ′

2 Gσ2
(σ30, σ20;U1) + ∂α4

δ1 ∇UG(σ30, σ20;U1) · r1(U1).

By Lemma 2.5, we have

|∂α4δ1|

=

∣∣∣∣det(r4(U2), Gσ3(σ30, σ20;U1), Gσ2(σ30, σ20;U1),∇UG(σ30, σ20;U1) · r4(U1))

det(r4(U2), Gσ3(σ30, σ20;U1), Gσ2(σ30, σ20;U1),∇UG(σ30, σ20;U1) · r1(U1))

∣∣∣∣
=

∣∣∣∣κ4(U2)κ4(U1)ρ
2
1u

2
1e

σ20+σ30(λ4(U2)e
2σ20+σ30 − λ4(U1))

κ4(U2)κ1(U1)ρ2
1u

2
1e

σ20+σ30(λ4(U2)e2σ20+σ30 − λ1(U1))

∣∣∣∣
=

∣∣∣∣λ4(U2)e
2σ20+σ30 − λ4(U1)

λ4(U2)e2σ20+σ30 + λ4(U1)

∣∣∣∣ < 1.

This completes the proof.
Remark 3.1. The essential feature of system (1.1) is that the reflection coefficient

K11 is less than one, which also appears as the stability condition in [9, 18] for the
strictly hyperbolic case.

The second case is when the weak waves approach the strong vortex sheet from
above, as in Figure 7. By symmetry, we can easily obtain the following.

Proposition 3.5. Let Ub ∈ Oε(U1) and Um, Ua ∈ Oε(U2) with

{Ub, Um} = (0, σ2, σ3, α4), {Um, Ua} = (β1, β2, β3, 0).

Then there exists a unique (δ1, σ
′
2, σ

′
3, δ4) such that the Riemann problem (2.18) admits

an admissible solution that consists of a weak 1-wave of strength δ1, a strong vortex
sheet of strength (σ′

2, σ
′
3), and a weak 4-wave of strength δ4, that is,

{Ub, Ua} = (δ1, σ
′
2, σ

′
3, δ4).

Moreover,

δ1 = K21β1 + O(1)Δ′′, σ′
2 = σ2 + β2 + K22β1 + O(1)Δ′′,

σ′
3 = σ3 + β3 + K23β1 + O(1)Δ′′, δ4 = α4 + K24β1 + O(1)Δ′′,

where
∑4

j=1 |K2j | is bounded and Δ′′ = |α4|(|β2| + |β3|).
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Fig. 7. Weak waves approach the vortex sheet from above.

4. Approximate solutions. In this section, we develop a modified Glimm dif-
ference scheme to construct a family of approximate solutions and establish their
necessary estimates for the initial-boundary value problem (1.1) and (1.9)–(1.10) in
the corresponding approximate domains ΩΔx.

4.1. A modified Glimm scheme. To define the scheme more clearly, we first
use the fact that the boundary is a perturbation of the straight wall, that is,

sup
x≥0

|g′(x)| < ε for sufficiently small ε > 0.

For any Δx ≥ 0, set ak := kΔx and bk := yk = g(kΔx) in (3.3) and (3.4), and follow
the notation in subsection 3.2 (also see Figure 5). Then

m := sup
k>0

{
yk − yk−1

Δx

}
< ε.(4.1)

Define

ΩΔx =
⋃
k≥1

ΩΔx,k,

where ΩΔx,k = {(x, y) : (k−1)Δx < x ≤ kΔx, y > yk−1+(x−(k−1)Δx) tan(ωk−1,k)}.
Choose Δy > 0 such that the Courant–Friedrichs–Lewy-type condition holds:

Δy −mΔx

Δx
< max

j=1,4

(
sup

U∈Oε(U1)∪Oε(U2)

|λj(U)|
)
.

Define

bk,n = (2n + 1 + θk)Δy + yk,

where θk is randomly chosen in (−1, 1). Then we choose

Pk,n = (kΔx, bk,n), k ≥ 0, n = 0, 1, 2, . . . ,

to be the mesh points and define the approximate solutions UΔx,θ in ΩΔx for any
θ = (θ0, θ1, θ2, . . . ) in an inductive way:
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Fig. 8. Diamond Tk,n.

For k = 0, we define UΔx,θ in {0 ≤ x < Δx} ∩ ΩΔx starting from

UΔx,θ|x=0,y>0 =

{
U1, 0 < y < y∗0 ,
U2, y > y∗0 .

Assume that UΔx,θ has been constructed in {0 ≤ x < kΔx}. Denoting, for n ≥ 1,

U0
k,n(y) := UΔx,θ(kΔx−, bk,n) if y ∈ (yk + 2nΔy, yk + (2n + 2)Δy),

then we define UΔx,θ in {kΔx ≤ x < (k+1)Δx} as follows: We first solve the following
lateral Riemann problem in the diamond Tk,0, whose vertices are ((k + 1)Δx, yk+1),
((k + 1)Δx, yk+1 + Δy), (kΔx, yk), and (kΔx, yk + Δy):⎧⎨

⎩
W (Uk)x + H(Uk)y = 0 in Tk,0,
Uk|x=kΔx = U0

k,n,

(uk, vk) · nk = 0 on Γk.

We thus obtain the lateral Riemann solution Uk in Tk,0 as constructed in section 2.3
and define

UΔx,θ = Uk in Tk,0.

Then we solve the following Riemann problem in each diamond Tk,n for n ≥ 1, whose
vertices are ((k+1)Δx, yk+1+(2n−1)Δy), ((k+1)Δx, yk+1+(2n+1)Δy), (kΔx, yk+
(2n− 1)Δy), and (kΔx, yk + (2n + 1)Δy) (see Figure 8):

{
W (Uk)x + H(Uk)y = 0 in Tk,n,
Uk|x=kΔx = U0

k,n.

We obtain the Riemann solution Uk(x, y) in Tk,n as constructed in sections 2.4–2.5
and define

UΔx,θ = Uk in Tk,n, n ≥ 1.

In this way, we have constructed the approximate solutions UΔx,θ(x, y) globally
provided that we can obtain a uniform bound of the approximate solutions.
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4.2. Glimm-type functional and its bounds. In this section, we prove that
the approximate solutions can be well defined in ΩΔx indeed via the steps in section
4.1 by providing a uniform bound for them. First, we introduce the following lemma.

Lemma 4.1.

(i) If {Ub, Ua} = (α1, α2, α3, α4) with Ub, Ua ∈ Oε(Ui) for fixed i = 1 or 2, then

|Ub − Ua| ≤ B1(|α1| + |α2| + |α3| + |α4|)

with B1 = maxi=1,2,1≤j≤4

(
supU∈Oε(Ui) |∂αj

Φ(α4, α3, α2, α1;U)|
)
.

(ii) For any σj ∈ Oε̂(σj0) so that G(σ3, σ2, Ub) ⊂ Oε(U2) when Ub ∈ Oε(U1) for
some ε̂ = ε̂(ε) → 0 as ε → 0,

|G(σ3, σ2, Ub) −G(σ30, σ20, Ub)| ≤ B̃(|σ3 − σ30| + |σ2 − σ20|)

with B̃ = maxj=2,3

(
supσj∈Oε̂(σj0) |G′

σj
(σ3, σ2, Ub)|

)
.

Next, we show that UΔx,θ can be globally defined. Assume that UΔx,θ has been
defined in {x < kΔx}∩ΩΔx by the steps in section 4.1 and assume that the following
conditions are satisfied:

C1(k − 1) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

In each ΩΔx,j for 0 ≤ j ≤ k−1, there is a strong vortex sheet χ(j)

in UΔx,θ with strength (σ
(j)
2 , σ

(j)
3 ) so that σ

(j)
i ∈ Oε̂(σi0), which

divides ΩΔx,j into two parts: Ω
(1)
Δx,j and Ω

(2)
Δx,j , where Ω

(1)
Δx,j is

the part bounded by χ(j) and Γj , where ΩΔx,j and Γj are defined
by (3.3);

C2(k − 1) : UΔx,θ|Ω(1)
Δx,j

∈ Oε(U1) and UΔx,θ|Ω(2)
Δx,j

∈ Oε(U2), 0 ≤ j ≤ k − 1;

C3(k − 1) :

{
{χ(j)}k−1

j=0 forms χΔx,θ : y = χΔx,θ(x), called an approximate
vortex sheet, emanating from point (0, y∗0).

Here and in what follows, we always denote by χ(j) the strong vortex sheet front

with strength (σ
(j)
2 , σ

(j)
3 ). Then we prove that UΔx,θ can be defined in ΩΔx,k and

satisfies C1(k), C2(k), and C3(k).
From the construction steps in section 4.1, we first define UΔx,θ and the strong

vortex sheet χ(k) in ΩΔx,k so that there exists a diamond Λk,n(k) such that χ(k−1)

enters Λk,n(k) and χ(k) emanates from the center of Λk,n(k). We extend χΔx,θ to ΩΔx,k

such that χΔx,θ = χ(k) in ΩΔx,k and define Ω
(1)
Δx,j and Ω

(2)
Δx,j in the same way as in

C1(k − 1). Then it suffices to impose some conditions so that C2(k − 1) holds and

σ
(k)
i ∈ Oε̂(σi0), i = 2, 3.

To achieve this, we will establish the bound on the total variation of UΔx,θ on a
class of space-like curves. Denote

N(θk+1, n) =

{
Pk+1,n if θk+1 ≤ 0,
Pk+1,n−1 if θk+1 > 0,

S(θk, n) =

{
Pk−1,n−1 if θk ≤ 0,
Pk−1,n if θk > 0.

Then we introduce the following.
Definition 4.2. A j-mesh curve J is defined to be an unbounded space-like curve

lying in the strip {(j − 1)Δx ≤ x ≤ (j + 1)Δx} and consisting of the segments of the
form Pk,n−1N(θk+1, n), Pk,n−1S(θk, n), S(θk, n)Pk,n, and N(θk+1, n)Pk,n.

This means that we connect the mesh point Pk,n by two line segments to the two
mesh points Pk−1,n−1 and Pk−1,n if θk ≤ 0, or we connect the mesh point Pk,n by two
line segments to the two mesh points Pk−1,n and Pk−1,n+1 if θk > 0 (see Figure 9).
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Fig. 9. Interaction diamond Λk,n and orientation of the segments.

Clearly, for any k > 0, each k-mesh curve I divides the plane R
2 into part I+ and

part I−, where I− is the one containing the set {x < 0}. As in Glimm [11], we also
partially order these mesh curves by saying J > I if every point of the mesh curve J
is either on I or contained in I+, and we call J an immediate successor to I if J > I
and every mesh point of J except one is on I.

With such mesh curves J , we associate the Glimm-type functional Fs(J) on J .
Definition 4.3. We define

Fs(J) = C∗(|σJ
2 − σ20| + |σJ

3 − σ30|) + F (J)

with

F (J) = L(J) + KQ(J),

L(J) = L1(J) + L2(J),

L1(J) = K∗
1L0(J) + K∗

11L
1
1(J) + K∗

12L
1
2(J) + K∗

13L
1
3(J) + L1

4(J),

L2(J) = K∗
21L

2
1(J) + K∗

22L
2
2(J) + K∗

23L
2
3(J) + K∗

24L
2
4(J),

Q(J) =
∑

{|αi||βj | : both αi and βj cross J and approach},

and L0(J) =
∑

{|ω(Ck)| : Ck ∈ ΩJ},

Li
j(J) =

∑
{|αj | : αj crosses J in region (i)}, i = 1, 2, j = 1, 2, 3, 4,

where K and C∗ will be defined later, while ΩJ is the set of the corner points Ck lying
in J+, i.e.,

ΩJ = {Ck ∈ J+ ∩ ∂ΩΔx : k ≥ 0},

(σJ
2 , σ

J
3 ) stands for the strength of the strong vortex sheet crossing J , and K∗

1 ,K
∗
11,K

∗
12,

and K∗
13 for the constants associated with region (1), and K∗

21,K
∗
22,K

∗
23, and K∗

24 for
the constants associated with region (2) which satisfy the following conditions:

K∗
1 > |Kb0|, K∗

1j > |Kbj |, j = 1, 2, 3,

and

K∗
24 <

1 − |K11|K∗
11

|K14|
, K∗

21 > |K21|K∗
11 + |K24|K∗

24,

while K∗
12, K

∗
13, K

∗
22, and K∗

23 are arbitrarily large positive constants. These condi-
tions can be achieved from our discussions of the properties of Kbj, K1j, and K2j,
j = 1, 2, 3, 4, as in Propositions 3.3–3.5 in section 3.
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From now on, we denote by M > 0 a universal constant, depending only on the
parameters in the system and the boundary function g(x), which may be different at
each occurrence, and O(1) is the quantity that is bounded by M . Now we prove the
decreasing property of our functional Fs. We first have the following.

Proposition 4.4. Suppose that the boundary function g(x) satisfies (4.1), and
I and J are two k-mesh curves such that J is an immediate successor of I. Suppose
that∣∣∣UΔx,θ|I ∩ ( Ω

(i)

Δx,k−1
∪ Ω

(i)

Δx,k
)
− Ui

∣∣∣ < ε, i = 1, 2; |σI
j − σj0| < ε̂(ε), j = 2, 3,

for some ε̂(ε) > 0 determined in Lemma 4.1. Then there exist constants ε̃ > 0,K > 0,
and C∗ > 1, depending only on the parameters in system (1.6) and states U1 and U2,
such that if Fs(I) ≤ ε̃, then

Fs(J) ≤ Fs(I),

and hence∣∣∣UΔx,θ|J ∩ ( Ω
(i)

Δx,k−1
∪ Ω

(i)

Δx,k
)
− Ui

∣∣∣ < ε, i = 1, 2; |σJ
j − σj0| < ε̂(ε), j = 2, 3.

Proof. Let Λ be the diamond that is formed by I and J . We can always assume
that I = I0 ∪ I ′ and J = J0 ∪ J ′ such that ∂Λ = I ′ ∪ J ′. We divide our proof into
four cases depending on the location of the diamond.

Case 1 (interior weak-weak interaction). Λ lies in the interior of ΩΔx and does
not touch χΔx,θ so that only weak waves enter Λ. We prove only the case when Λ is
in between ∂ΩΔx and χΔx,θ since the proof is similar when Λ is above χΔx,θ. Denote
Q(Λ) = Δ(α, β), where Δ(α, β) is as defined in Proposition 3.2.

Then

L1(J) − L1(I) ≤ (1 + K∗
11 + K∗

12 + K∗
13)MQ(Λ),

and

Q(J) −Q(I)

=

(
Q(I0) +

4∑
i=2

Q(γi, I0)

)
−
(
Q(I0) + Q(Λ) +

4∑
i=2

Q(αi, I0) +

4∑
i=2

Q(βi, I0)

)

= Q(O(1)Q(Λ), I0) −Q(Λ) = (O(1)L(I0) − 1)Q(Λ) ≤ −1

2
Q(Λ),

since L(I0) � 1. Hence

F (J) − F (I) = L(J) − L(I) + K(Q(J) −Q(I))

≤
(

(1 + K∗
11 + K∗

12 + K∗
13)M − K

2

)
Q(Λ)

≤ −1

4
Q(Λ)

by choosing suitably large K.
Case 2 (near the boundary). The diamond Λ touches the approximate boundary

∂ΩΔx, but not the strong vortex sheet χΔx,θ. Then ΩJ = ΩI\{Ck} for certain k and
σI
j = σJ

j , j = 2, 3.
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Fig. 10. Case 2: near the boundary.

Let δ4 be the weak 4-wave going out of Λ through J ′, and let α4, β1, β2, and β3

be the weak waves entering Λ through I ′, as shown in Figure 10. Then

L0(J) − L0(I) = −|ωk|,

L1
i (J) − L1

i (I) =
∑

γi crosses I0

|γi| −

⎛
⎝|βi| +

∑
γi crosses I0

|γi|

⎞
⎠ = −|βi|, i = 1, 2, 3,

L1
4(J) − L1

4(I) =

⎛
⎝|δ4| +

∑
γ4 crosses I0

|γ4|

⎞
⎠−

⎛
⎝|α4| +

∑
γ4 crosses I0

|γ4|

⎞
⎠

= |δ4| − |β4| ≤ |Kb1||β1| + |Kb2||β2| + |Kb3||β3| + |Kb0||ωk+1|,

where the last step is from Proposition 3.3. Therefore, we have

L(J)−L(I) ≤ (|Kb0|−K∗
1 )|ωk+1|+(|Kb1|−K∗

11)|β1|+(|Kb2|−K∗
12)|β2|+(|Kb3|−K∗

13)|β3|.

Then, from our requirement in Definition 4.3, we have

L(J) ≤ L(I).

Notice that Fs(I) ≤ ε′ implies L(I) ≤ ε′. Hence, the higher order term Q(I) can
always be bounded by the linear term L(I), and we can easily conclude F (J) ≤ F (I).

Case 3. The diamond Λ covers a part of ∂ΩΔx, and S∗(σ(k−1)) emanates from
Ck−1 and enters Λ.

Case 3.1 (near the strong vortex sheet I). We first investigate the situation when Λ
lies in region (1) and the strong vortex sheet χ(k−1) enters Λ. Then χ(k) is generated

from the inside of Λ, σI
j = σ

(k−1)
j , and σJ

j = σ
(k)
j , j = 2, 3.
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(1)

Fig. 11. Case 3.1: near the strong vortex sheet (I).

Let δ4 and δ1 be the weak waves going out of Λ through J ′, and let β1, α4, α3,
and α2 be the weak waves entering Λ through I ′, as shown in Figure 11. Then

L2
4(J) − L2

4(I) =

⎛
⎝|δ4| +

∑
γ4 crosses I0

|γ4|

⎞
⎠−

∑
γ4 crosses I0

|γ4|

= |δ4| ≤ |K14||α4| + O(1)|β1|(|α2| + |α3|),

L1
1(J) − L1

1(I) =

⎛
⎝|δ1| +

∑
γ1 crosses I0

|γ1|

⎞
⎠−

⎛
⎝|β1| +

∑
γ1 crosses I0

|γ1|

⎞
⎠

= |δ1| − |β1| ≤ |K11||α4| + O(1)|β1|(|α2| + |α3|),

L1
j (J) − L1

j (I) =
∑

γj crosses I0

|γj | −

⎛
⎝|αj | +

∑
γj crosses I0

|γj |

⎞
⎠ = −|αj |, j = 2, 3, 4.

The above inequalities are from Propositions 3.4–3.5. Hence,

L(J)−L(I) ≤ (|K14|K∗
14+|K11|K∗

11−1)|α4|−(K∗
12+O(1)|β1|)|α2|−(K∗

13+O(1)|β1|)|α3|

with |K14|K∗
24 + |K11|K∗

11 − 1 < 0 by our appropriate choice of the constants.
Furthermore, since the higher order term Q(I) can always be bounded by the

linear term L(I) and

|σJ
2 − σI

2 | + |σJ
3 − σI

3 | ≤ (|K12| + |K13|)|α4| + (1 + O(1)|β1|)|α2| + (1 + O(1)|β1|)|α3|

with |K12| and |K13| bounded, we can choose C∗ suitably small such that

Fs(J) − Fs(I) ≤ C∗(|σJ
2 − σI

2 | + |σJ
3 − σI

3 |) + F (J) − F (I) ≤ 0.

Therefore, we have Fs(J) ≤ Fs(I).
Case 3.2 (near the strong vortex sheet II). Now, we investigate the second situa-

tion when Λ lies in region (2) and the strong vortex sheet χ(k−1) enters Λ. Then χ(k)

is generated from the interior of Λ, σI
j = σ

(k−1)
j , and σJ

j = σ
(k)
j .
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(2)

Fig. 12. Case 3.2: near the strong vortex sheet (II).

Let δ4 and δ1 be the weak waves going out of Λ through J ′, and let β1, β2, and
β3 be the weak waves entering Λ through I ′, as shown in Figure 12. Then

L1
1(J) − L1

1(I) =

⎛
⎝|δ1| +

∑
γ1 crosses I0

|γ1|

⎞
⎠−

∑
γ1 crosses I0

|γ1|

= |δ1| ≤ |K21||β1| + O(1)(|α4||β2| + |α4||β3|),

L2
4(J) − L2

4(I) =

⎛
⎝|δ4| +

∑
γ4 crosses I0

|γ4|

⎞
⎠−

⎛
⎝|α4| +

∑
γ4 crosses I0

|γ4|

⎞
⎠

= |δ4| − |α4| ≤ |K24||β1| + O(1)(|α4||β2| + |α4||β3|),

L2
j (J) − L2

j (I) =
∑

γj crosses I0

|γj | −

⎛
⎝|βj | +

∑
γj crosses I0

|γj |

⎞
⎠ = −|βj |, j = 1, 2, 3.

The above inequalities are from Propositions 3.4–3.5. Hence

L(J)−L(I) ≤ (|K21|K∗
11+|K24|K∗

24−K∗
21)|β1|−(K∗

22+O(1)|α4|)|β2|−(K∗
23+O(1)|α4|)|β3|

with |K21|K∗
11 + |K24|K∗

24 −K∗
21 < 0 by our appropriate choice of the constants.

Similar to the analysis for Case 3.1, we again have Fs(J) ≤ Fs(I).
Then, from Lemma 4.1, there exists ε̃ > 0 such that, when F (I) < ε̃, we have

|U − U1| < ε, or |U − U2| < ε.
Let Ik be the k-mesh curve lying in {(j − 1)Δx ≤ x ≤ jΔx}. From Proposition

4.4, we obtain the following theorem for any k ≥ 1.
Theorem 4.5. Suppose that the boundary function g(x) satisfies (4.1). Let ε,

ε̃, ε̂(ε), K, and C∗ be the constants specified in Proposition 4.4. If the induction
hypotheses C1(k − 1), C2(k − 1), and C3(k − 1) hold and if Fs(Ik−1) ≤ ε̃, then∣∣∣UΔx,θ|Ω(i)

Δx,k

− Ui

∣∣∣ < ε, i = 1, 2; UΔx,θ|x<0 =

{
U1, y < y∗0 ,
U2, y > y∗0 ,

|σ(k)
j − σj0| < ε̂(ε), j = 2, 3,
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and

Fs(Ik) ≤ Fs(Ik−1).(4.2)

Moreover, we obtain the following.

Theorem 4.6. There exists ε > 0 such that if TV (g′(·)) < ε, then, for any
θ ∈

∏∞
k=0(−1, 1) and every Δx > 0, the modified Glimm scheme defines a family of

global approximate solutions UΔx,θ and the corresponding approximate strong vortex
sheet fronts χΔx,θ in ΩΔx,θ which satisfy C1(k − 1), C2(k − 1), C3(k − 1), and (4.2)
for any k ≥ 1. In addition,

TV {UΔx,θ(kΔx−, ·) : [yk,∞)} < M TV (g′(·))

for any k ≥ 0 and

|χΔx,θ(x + h) − χΔx,θ(x)| ≤ M |h| + 2Δx

for any x ≥ 0 and h > 0.

4.3. Estimates on the approximate vortex sheets. We use the notation
and estimates in the previous section and define

sΔx,θ(x) =
vΔx,θ

uΔx,θ

∣∣∣∣
{y=χΔx,θ}

= s(k)|{y=χΔx,θ} if x ∈ (kΔx, (k + 1)Δx],

EΔx,θ(Λ)

⎧⎪⎪⎨
⎪⎪⎩

Q(Λ) for Case 1,
|ωk| + |β1| + |β2| + |β3| for Case 2,
|α4| for Case 3.1,
|β1| for Case 3.2.

Let LΔx,θ(Γb) be the sum of the strengths of 4-waves leaving Γb, and let L2
Δx,θ and

L1
Δx,θ be the sum of the strengths of all 4-waves and all 1-waves, respectively, leaving

the vortex sheet χΔx,θ. Then, by Proposition 4.4, we have the following lemma.

Lemma 4.7. There exists a constant M1, independent of Δx, θ, and UΔx,θ, such
that ∑

Λ

EΔx,θ(Λ) ≤ M1,

where the summation is over all the diamonds.

Then we have the following lemma.

Lemma 4.8. There exist constants M2 and M3, independent of Δx, θ, and UΔx,θ,
such that

L2
Δx,θ + L1

Δx,θ ≤ M2, TV (sΔx,θ) ≤ M3.

5. Global entropy solutions. In this section we establish the convergence of
the approximate solutions to a global entropy solution and prove the nonlinear stabil-
ity and asymptotic behavior of the strong vortex sheet under the BV perturbation.
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5.1. Convergence of the approximate solutions. Let the line x = a > 0
intersect ∂ΩΔx = ∪k≥1{Ck−1Ck} at point (a, pΔx

a ). Similarly to [26], by Theorem
4.6, we have the following lemma.

Lemma 5.1. For any h > 0 and x ≥ 0, there exists a constant M independent of
Δx, θ, and h such that∫ ∞

0

|UΔx,θ(x + h, y + pΔx
x+h) − UΔx,θ(x, y + pΔx

x )|dy ≤ M |h|.

Denote

J(θ,Δx, φ) =
∞∑
k=1

∫ ∞

0

φ(kΔx, y+yk)·(UΔx,θ(kΔx+, y+yk)−UΔx,θ(kΔx−, y+yk))dy,

where φ ∈ C∞
0 (R2; R4). Following the steps in [11], we have the following.

Lemma 5.2. There exist a null set N ⊂ Π∞
k=0(−1, 1) and a subsequence {Δxj}∞j=1

⊂ {Δx}, which tends to 0, such that

J(θ,Δxj , φ)−→ 0 when Δxj → 0

for any θ ∈ Π∞
k=0(−1, 1)\N and φ ∈ C∞

0 (R2; R4).
To establish the main theorem, we need to estimate the slope of the approximate

strong vortex sheet fronts. Let

d̃k =
s(k−1)Δx− (yk − yk−1)

Δy
and dk =

{
d̃k − 1 if d̃k > 0,

d̃k + 1 if d̃k < 0.

Then, by the choice of Δx and {yk} and by Lemma 4.8, we find that dk ∈ (−1, 1),
which depends only on {θl}k−1

l=1 . Thus we define

I(x,Δx, θ) =

[x/Δx]∑
k=1

Ik(Δx, θ),

where Ik(Δx, θ) = 1(−1,dk)(θk)(dk − 1)Δy + 1(dk,1)(θk)(dk + 1)Δy, 1A denotes the
characteristic function of the set A, and [x/Δx] denotes the largest integer less than or
equal to x/Δx. Notice that Ik(Δx, θ) is the jump of the function y = χΔx,θ(x) at x =
kΔx and is a measurable function of (Δx, θ), which depends only on UΔx,θ|{0≤x≤kΔx}
and {θl}kl=0.

Lemma 5.3.

(i) For any x ≥ 0, Δx > 0, and θ ∈ Π∞
k=0(−1, 1), we have

χΔx,θ(x) = −I(x,Δx, θ) +

∫ x

0

sΔx,θ(s)ds.

(ii) There is a null set N1 and a subsequence {Δl}∞l=1 ⊂ {Δxj}∞j=1 such that

∫ ∞

0

e−x|I(x,Δl, θ)|2dx−→ 0 when Δl → 0

for any θ ∈ Π∞
k=0(−1, 1)\N1.
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Proof. Part (i) can be obtained by a direct calculation. We will focus only on
part (ii). As in [11], let dθ = Π∞

k=0(dθk/2). Then, for any l > j, we have

∫
IlIjdθ =

∫ (
Ij

∫
Ildθl

)
Πl−1

i=1dθi = 0.

Therefore, we can deduce

∫
|I(x,Δx, θ)|2dθ =

[x/Δx]∑
k=1

∫
|Ik(Δx, θ)|2dθ ≤ 4

∣∣∣∣Δy

Δx

∣∣∣∣
2

xΔx.

Then, by choosing a subsequence {Δl}∞l=1 ⊂ {Δxj}∞j=1 with
∑∞

l=0 Δl < ∞ as in
Lemma 5.2, we arrive at (ii).

Then, by Theorem 4.6 and Lemmas 5.1–5.2, we have the following theorem.
Theorem 5.4 (existence and stability). There exist ε > 0 and C > 0 such that if

(1.8) holds, then, for each θ ∈ (Π∞
k=0(−1, 1))\(N∪N1), there exists a subsequence {Δl}

of mesh sizes with Δl → 0 as l → ∞ and a pair of functions Uθ ∈ BV (Ω;Oε(U1) ∪
Oε(U2)) and χθ ∈ Lip(R+; R+) with χθ(0) = y∗0 such that

(i) UΔl,θ(x, ·) converges to Uθ(x, ·) in L1(g(x),∞) for every x > 0, and Uθ is a
global entropy solution of problem (1.6) and (1.9)–(1.10) in Ω and satisfies
(1.11) and the initial-boundary data (1.9)–(1.10) in the trace sense;

(ii) χΔl,θ converges to χθ uniformly in any bounded x-interval such that (1.12)
holds;

(iii) sΔl,θ converges to sθ ∈ BV ([0,∞)) a.e. with |sθ| ≤ ε̂ ≤ ε and

χ′
θ(x) = sθ(x).

In addition, if θ is equidistributed, then χθ(x) > g(x) for any x > 0 and the Rankine–
Hugoniot conditions hold a.e. along the curve {y = χθ(x)}.

The proofs of (i) and (ii) and the convergence proof of sΔl,θ in (iii) can be carried
out in the same way as in the standard cases (see [6, 11, 12, 25]) by using the structure
of the approximate solutions. In particular, for any ϕ ∈ C∞

0 (R2; R),∫
ΩΔx,θ

(ρΔx,θuΔx,θϕx + ρΔx,θvΔx,θϕy)dxdy

=

∫
Ω

χΩΔx,θ
(ρΔx,θuΔx,θϕx + ρΔx,θvΔx,θϕy)dxdy

weak-star converges, and hence the initial condition is satisfied by the trace theorem
for BV functions (cf. [23]). Similarly, the boundary condition can be shown to be
satisfied. The equality in (iii) can be deduced from section 4.3 and the result on the
convergence of {χΔl,θ} and {sΔl,θ}.

5.2. Asymptotic behavior of the strong vortex sheet in the flow direc-
tion. As in Theorem 5.4, let θ ∈ (Π∞

k=0(−1, 1))\(N ∪ N1) be equidistributed, and
let Uθ be the solution and χθ its vortex sheet, respectively. By Theorem 5.4, we
conclude that the solution Uθ contains at most countable vortex sheets, shocks, and
points of wave interactions. Moreover, we can modify the solution Uθ such that Uθ is
continuous except on the vortex sheets, shocks, and points of wave interactions (see
[10, 12, 16]). Then we have the following lemma.
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Lemma 5.5. The total variation of (pθ, vθ/uθ) is sufficiently small above the
Lipschitz wall and

lim
x→∞

TV {(pθ(x, ·), vθ(x, ·)/uθ(x, ·)) : (g(x),∞)} = 0.

Proof. Let {Δl} be the sequence given as in Theorem 5.4, and let EΔl,θ(Λ) and
QΔl,θ(Λ) be the quantities defined in Lemma 4.8. As in [12], we denote by dEΔl,θ the
measures assigning to EΔl,θ(Λ) to the center of Λ.

The boundedness of EΔl,θ(Λ) in Lemma 4.7 implies the compactness of {dEΔl,θ}.
Then we can select its subsequence (still denoted by itself) so that, when Δl → 0, the
limit

dEΔl,θ → dEθ

exists in the weak-star topology in the measure space and is finite on Ω. Therefore,
for any δ > 0, we can choose xδ > 0 independent of {UΔl,θ} and {Δl} such that, for
any l > 0, ∑

k≥[xδ/Δl]

Eλ,θ(Λk,n) < δ.

Moreover, let X1
δ = (xδ, y

1
δ ) (orX4

δ = (xδ, y
4
δ )) be the point lying in χΔl,θ (or ∂ΩΔk

,
respectively). Let χ4

Δl,θ
be the minimum approximate 4-characteristics in UΔl,θ em-

anating from the point X1
δ , and χ1

Δl,θ
the maximum approximate 1-characteristics in

UΔl,θ emanating from the point X4
δ . From the construction of approximate solutions,

we have

|χj
Δl,θ

(x + h) − χj
Δl,θ

(x)| ≤ B(|h| + Δl), j = 1, 4,

for some constant B independent of Δx and θ. Then, for θ ∈
∏∞

k=0[−1, 1]\N , we can
select a subsequence (still denoted by) {Δl} such that

χj
Δl,θ

→ χj
θ uniformly on every bounded interval as Δl → 0

for some χj
θ ∈ Lip with (χj

θ)
′ bounded.

Let the characteristics y = χ4
θ(x) and y = χ1

θ(x) intersect ∂Ω and y = χθ(x),
respectively, at (t4δ , χθ(t

4
δ)) and (t1δ , χθ(t

1
δ)) for some t4δ and t1δ . Then, since the velocity

ratio v/u and the pressure p are invariant across the vortex sheet, by the approximate
conservation laws for the weak 1-waves and 4-waves, we can deduce in the same way
as in [12] that

TV {vΔl,θ(x−, ·)/uΔl,θ(x−, ·) : (gl(x), χΔl,θ(x))} < M δ

and

TV {pΔl,θ(x−, ·) : (gl(x), χΔl,θ(x))} < M δ

for x > 2(t1δ + t4δ), where M is independent of δ, x, UΔl,θ, and Δl.
Thus, taking the limit as Δl → 0 and using Theorem 5.4 and the regularity of Uθ

yields that, for x > 2(t1δ + t4δ),

TV {vθ(x−, ·)/uθ(x−, ·) : (g(x), χθ(x))} < M δ,
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TV {pθ(x−, ·) : (g(x), χθ(x))} < M δ.

The corresponding estimates above the strong vortex sheet can be obtained similarly.
This completes the proof.

Theorem 5.6.

(i) Let g′∞ = lim
x→∞

g′(x+). Then

lim
x→∞

sup{|vθ(x, y)/uθ(x, y) − g′∞| : y > g(x)} + lim
x→∞

|χ′
θ(x) − g′∞| = 0.

(ii) There exists a constant p∞ such that

lim
x→∞

sup{|pθ(x, y) − p∞| : y > g(x)} = 0.

Proof. Let Ul,θ = UΔl,θ, σl,θ = σΔl,θ, and χl,θ = χΔl,θ, where Δl is chosen as
in the proof of Lemma 5.5. Following the construction of approximate solutions, we
conclude that, for every x > 0,

vl,θ/ul,θ|Γk
= (yk+1 − yk)/Δx = g′(ηk)

for some ηk ∈ (kΔx, (k + 1)Δx). Then, choosing xδ so that |g′(x+) − g′(∞)| < δ for
x > xδ, we have

sup{|vl,θ(x, y)/ul,θ(x, y) − g′∞| : g(x) < y < χθ(x)}
≤ TV {vl,θ(x, ·)/ul,θ(x, ·) : (g(x), χθ(x))} + Mδ for x > 2xδ.

Therefore, taking the limit as Δl → 0, by Theorem 5.4 and Lemma 5.5, and by the
regularity of Uθ, we can deduce part (i) for g(x) < y < χθ(x). The case y > χθ(x)
can be proved similarly.

Part (ii) can be obtained similarly by using Lemma 5.5.

6. Isentropic Euler flows over Lipschitz walls. In this section, we study the
isentropic Euler equations (1.6) for steady supersonic flows, which can be written in
the following conservation form:

W (U)x + H(U)y = 0, U = (u, v, ρ),(6.1)

with

W (U) = (ρu, ρu2 + p, ρuv), H(U) = (ρv, ρuv, ρv2 + p).

As in section 1, the problem of supersonic Euler flows governed by (6.1) over Lipschitz
walls can be formulated as problem (1.9)–(1.10) for system (6.1) in the region above
the wall.

Definition 6.1 (entropy solutions). A BV function U = U(x, y) is called an
entropy solution of problem (6.1) and (1.9)–(1.10) provided that

(i) U is a weak solution of (6.1) and satisfies (1.9)–(1.10) in the trace sense;
(ii) U satisfies the entropy inequality

(ρu(E + p(ρ)/ρ))x + (ρv(E + p(ρ)/ρ))y ≤ 0(6.2)

in the sense of distributions in Ω including the boundary.
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Remark 6.1. The entropy inequality (6.2) for the steady case directly follows
from the energy inequality in the time-dependent isentropic case,

(ρE)t + (ρu(E + p(ρ)/ρ))x + (ρv(E + p(ρ)/ρ))y ≤ 0,

under the assumption that the solution (u, v, p, ρ) is independent of time t. Fur-
thermore, by a straightforward calculation, the function η = ρu(E + p(ρ)/ρ) as an
entropy function of system (6.1) is a strictly convex function of the conserved variables
W = (w1, w2, w3) = (ρu, ρu2 + p, ρuv) when u > c.

6.1. Riemann problems and Riemann solutions. When u > c, the eigen-
values of system (6.1) are

λj =
uv + (−1)

j+1
2 c

√
u2 + v2 − c2

u2 − c2
, j = 1, 3; λ2 = v/u,(6.3)

where c2 =
√
p′(ρ).

When the flow is supersonic (i.e., u2 + v2 > c2), system (6.1) is hyperbolic and,
when u > c, the corresponding eigenvectors are

r2 = (u, v, 0)�, rj = κj(−λj , 1, ρ(λju− v)/c2)�, j = 1, 3,

where κj are chosen so that rj · ∇λj = 1 since the j-characteristic fields are gen-
uinely nonlinear, j = 1, 3. Note that the second characteristic field is always linearly
degenerate: r2 · ∇λ2 = 0.

6.1.1. Wave curves in the phase space. Similarly as in section 2, the vortex
sheet curve C2(U0) through U0 with strength σ2 is

C2(U0) : U = (u, v, ρ)� = (u0e
σ2 , v0e

σ2 , ρ0)
�,(6.4)

determined by {
dU
dσ2

= r2(U),

U |σ2=0 = U0,

which describes a compressible vortex sheet. Moreover, the jth-rarefaction wave curve
Rj(U0) in the phase space through U0 is

Rj(U0) : du = −λjdv, ρ(λju− v)dv = dp for ρ < ρ0, u > c, j = 1, 3.
(6.5)

It is easy to check that
dλj

dρ along Rj(U0), j = 1, 3, satisfy

dλ1

dρ

∣∣∣∣R1(U0) < 0,
dλ3

dρ

∣∣∣∣
R3(U0)

> 0.

Similarly, the Rankine–Hugoniot conditions for (6.1) are

s[ρu] = [ρv],(6.6)

s[ρu2 + p] = [ρuv],(6.7)

s[ρuv] = [ρv2 + p].(6.8)
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Then we have

s = s2 = v0/u0, s = sj =
u0v0 + (−1)

j+1
2 c

√
u2

0 + v2
0 − c2

u2
0 − c2

, j = 1, 3,

where c2 = ρ
ρ0

[p]
[ρ] .

Plugging s2 into (6.6)–(6.8), we get the same C2(U0), as defined in (6.4); while
plugging sj , j = 1, 3, into (6.6)–(6.8), we get the jth-shock wave curve Sj(U0) through
U0:

Sj(U0) : [u] = −sj [v], ρ0(sju0 − v0)[v] = [p] for ρ > ρ0, u > c, j = 1, 3.

Notice that Sj(U0) contacts with Rj(U0) at U0 up to second order and

ds1

dρ

∣∣∣∣S1(U0) < 0,
ds3

dρ

∣∣∣∣
S3(U0)

> 0.

Lemma 6.2. At the state U0 = (u0, 0, ρ0) with u0 > c0, κ1(U0) = κ3(U0) > 0,
which implies κj(U) > 0 for any state U ∈ Oε(U0) with small ε > 0, since κj are
continuous for j = 1, 3.

6.1.2. Riemann problem involving strong vortex sheets. For any Ub ∈
Oε(U1) and Ua ∈ Oε(U2), we also use {Ub, Ua} = (0, σ2, 0) to denote the strong
vortex sheet that connects Ub with Ua with strength σ2. Then

Ua = Φ2(σ2;Ub) = (ube
σ2 , vbe

σ2 , ρb)
�.

Lemma 6.3. The vector function Φ2(σ2;Ub) satisfies

∂σ2Φ2(σ2;Ub) = (ube
σ2 , vbe

σ2 , 0)� and ∇UΦ2(σ2;Ub) = diag(eσ2 , eσ2 , 1).

Furthermore, we have the following essential lemma for any 2-straight vortex sheet
with below state U1 = (u1, 0, ρ1), above state U2 = (u2, 0, ρ1), and strength σ20.

Lemma 6.4. det(r3(U2), ∂σ2Φ2(σ20;U1),∇UΦ2(σ20;U1) · r1(U1)) > 0.

This can be seen as follows:

det(r3(U2), ∂σ2Φ2(σ20;U1),∇UΦ2(σ20;U1) · r1(U1))

= κ1(U1)κ3(U2)

∣∣∣∣∣∣∣
−λ3(U2) u1e

σ20 eσ20(−λ1(U1))
1 0 eσ20

ρ1u2λ3(U2)
c22

0 ρ1u1λ1(U1)
c21

∣∣∣∣∣∣∣
=

1

c21
ρ1u

2
1e

σ20κ1(U1)κ3(U2)(λ3(U2)e
2σ20 + λ3(U1)) > 0.

6.2. Estimates on wave interactions and reflections. Now we make essen-
tial estimates as in section 3. The interaction estimates are similar and the corre-
sponding Figures 5–7 are the same except that the 2, 3-vortex sheets and 4-wave in
section 3 are now replaced by a 2-vortex sheet and 3-wave, respectively.
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6.2.1. Estimates on the weak wave reflections on the boundary. We use
the same notation as in section 3.2 for Ck(ak, bk) with ak+1 > ak > 0, ωk,k+1, ωk,
Ωk, Γk, and the outer normal vector nk to Γk (cf. Figure 5). Then we consider the
initial-boundary value problem with constant state Ua:⎧⎨

⎩
(6.1) in Ωk+1,
U |x=ak

= Ua,
(u, v) · nk+1 = 0 on Γk+1.

Proposition 6.5. Let {Ua, Um} = (α3, α2, 0) and {Um, Uk} = (0, 0, β1) with

(uk, vk) · nk = 0.

Then there exists Uk+1 such that

{Ua, Uk+1} = (0, 0, δ3) and (uk+1, vk+1) · nk+1 = 0.

Furthermore,

δ3 = β1 + Kb3α3 + Kb2α2 + Kb0ωk,

where Kb3, Kb2, and Kb0 are C2-functions of (α3, α2, β1, ωk;Ua) satisfying

Kb3|{ωk=α3=α2=β1=0,Ua=U1} = 1, Kb2|{ωk=α3=α2=β1=0,Ua=U1} = 0,

and Kb0 is bounded.

6.2.2. Estimates on the interaction between the strong vortex sheet
and weak waves. Again, we have to consider the two cases depending on how the
vortex sheet and the weak waves interact. See Figures 6 and 7.

The first case is when the weak waves approach the vortex sheet from below. We
have the following proposition.

Proposition 6.6. Let Ub, Um ∈ Oε(U1) and Ua ∈ Oε(U2) with

{Ub, Um} = (0, α2, α3), {Um, Ua} = (β1, σ2, 0).

Then there exists a unique (δ1, σ
′
2, δ3) such that the Riemann problem (2.18) admits

an admissible solution that consists of a weak 1-wave of strength δ1, a strong vortex
sheet of strength σ′

2, and a weak 3-wave of strength δ3, that is,

{Ub, Ua} = (δ1, σ
′
2, δ3).

Moreover,

δ1 = β1 + K11α3 + O(1)|β1||α2|, δ3 = K13α3 + O(1)|β1||α2|,
σ′

2 = σ2 + α2 + K12α3 + O(1)|β1||α2|,

where

|K11|{α3=α2=0,σ′
2=σ20} =

∣∣∣∣λ3(U2)e
σ20 − λ3(U1)

λ3(U2)eσ20 + λ3(U1)

∣∣∣∣ < 1, K12 and K13 are bounded.

We need to find the solution (δ1, σ
′
2, δ3) as a function of (α2, α3, β1, σ2;Ub) to

Φ2(σ2; Φ1(β1; Φ3(α3, α2, 0;Ub))) = Φ3(δ3; Φ2(σ
′
2; Φ1(δ1;Ub))).(6.9)
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Lemma 6.4 implies

det

(
∂Φ3(δ3,Φ2(σ

′
2; Φ1(δ1, Ub)))

∂(δ3, σ′
2, δ1)

) ∣∣∣∣∣
{δ1=0,σ′

2=σ20}

= det(r3(U2), ∂σ2
Φ2(σ20;U1),∇UΦ2(σ20;U1) · r1(U0)) > 0.

Therefore, (δ3, σ
′
2, δ1) can be solved as a C2-function of (α2, α3, β1, σ2;Ub) uniquely,

i.e., δi = δi(α2, α3, β1, σ2;Ub), i = 1, 3, and σ′
2 = σ′

2(α2, α3, β1, σ2;Ub). Then we can
follow the proof of Proposition 3.3 to obtain our desired result.

The second case is when the weak waves approach the vortex sheet from above.
By symmetry, we can easily obtain the following.

Proposition 6.7. Let Ub ∈ Oε(U1) and Ua, Um ∈ Oε(U2) with

{Ub, Um} = (0, σ2, α3), {Um, Ua} = (β1, β2, 0).

Then there exists a unique (δ1, σ
′
2, δ3) such that the Riemann problem (2.18) admits

an admissible solution that consists of a weak 1-wave of strength δ1, a vortex sheet of
strength σ′

2, and a weak 3-wave of strength δ3, that is,

{Ub, Ua} = (δ1, σ
′
2, δ3).

Moreover,

δ1 = K21β1 + O(1)|α3||β2|, δ3 = α3 + K23β1 + O(1)|α3||β2|,
σ′

2 = σ2 + β2 + K22β1 + O(1)|α3||β2|,

where
∑3

j=1 |K2j | is bounded.

6.3. Approximate solutions. Similarly to section 4, we can construct globally
defined, modified Glimm approximate solutions UΔx,θ in the approximate domains
(see Figure 8). We need to estimate UΔx,θ on a class of space-like curves, i.e., j-
mesh curves J as introduced in Definition 4.2. To achieve this, we now define the
Glimm-type functional.

Definition 6.8. We define

Fs(J) = C∗|σJ
2 − σ20| + F (J)

with

F (J) = L(J) + KQ(J),

L(J) = L1(J) + L2(J),

L1(J) = K∗
1L0(J) + K∗

11L
1
1(J) + K∗

12L
1
2(J) + L1

3(J),

L2(J) = K∗
21L

2
1(J) + K∗

22L
2
2(J) + K∗

23L
2
3(J),

Q(J) =
∑

{|αi||βj | : both αi and βj cross J and approach},

and L0(J) =
∑

{|ω(Ck)| : Ck ∈ ΩJ},

Li
j(J) =

∑
{|αj | : αj crosses J in region (i)}, i = 1, 2; j = 1, 2, 3,

where K and C∗ are chosen later, while ΩJ is the set of the corner points Ck lying in
J+, that is,

ΩJ = {Ck ∈ J+ ∩ ∂ΩΔx : k ≥ 0},
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σJ
2 stands for the strength of the strong vortex sheet crossing J , K∗

1 ,K
∗
11, and K∗

12

are the constants associated with region (1), K∗
21,K

∗
22, and K∗

23 are the constants
associated with region (2), which satisfy the conditions

K∗
1 > |Kb0|, K∗

1i > |Kbi|, i = 1, 2,

and

K∗
23 <

1 − |K11|K∗
11

|K13|
, K∗

21 > |K21|K∗
11 + |K23|K∗

23,

while K∗
12 and K∗

22 are arbitrarily large positive constants. These conditions can
be achieved from our discussions of the properties of Kbj and Ksj, j = 1, 2, as in
Propositions 6.5–6.7 in section 6.2.

The rest can be done in the same way as in the previous sections by choosing
suitable K and C∗, so we omit the details here.

Acknowledgment. The second author thanks the Department of Mathematics
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Abstract. A system of nonlinear partial differential equations modeling haptotaxis is investi-
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unique global classical solutions is proved.
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1. Introduction. Models of complex dynamic biological processes frequently
involve systems of nonlinear partial differential equations for production, growth,
decay, interaction, and spatial movement. For models that include spatial movement
the equations typically contain both diffusion and taxis terms. Our goal in this paper
is to examine the issues of global existence and uniqueness for a model involving spatial
movement and haptotaxis. The term haptotaxis originated with S. B. Carter in 1965:
“. . . the movement of a cell is controlled by the relative strengths of its peripheral
adhesions, and that movements directed in this way, together with the influence of
patterns of adhesion on cell shape are responsible for the arrangement of cells into
complex and ordered tissues” [8]. Cell movement in morphogenesis, inflammation,
wound healing, tumor invasion, and other migrations are the result of haptotactic
responses of cells to differential adhesion strengths [8, 9].

The haptotaxis model we investigate here is a simplified version of a model pro-
posed by Anderson [5] in 2005 to describe tumor invasion into surrounding tissue
(see also [6]). The model involves four key components of the process: tumor cells,
surrounding tissue macromolecules, degradative enzymes, and oxygen. The model in
[5] hybridizes continuum partial differential equations and cellular automata formu-
lations to incorporate cell cycle elements, and a similar model in [7] uses continuum
cell age structure for the same purpose. Both of these investigations model other
features of tumor invasion, including the role of quiescent cells and the evolution
of mutated cell lines of increasingly invasive aggressiveness. Our objective is to in-
vestigate the simplified system of four nonlinear partial differential equations which
underlie the models in [5] and [7]. The mathematical formulation of haptotaxis is
similar to that of more familiar chemotaxis processes for which we refer to the survey
article [16] and the extensive list of references therein. Haptotaxis in tumor growth,
however, possesses unique features in that the movement of tumor cells is directed
to the bound (i.e., nondiffusible) extracellular environment, which supplies essential
oxygen and available space, as it is degraded by the tumor-produced degradative en-
zyme. The mathematical difficulty in treating haptotaxis in this context is that the
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haptotaxis term is nonlinearly dependent on the tumor cells through the diffusion of
the degradative enzyme produced by these cells.

We make the following assumptions: The tumor is contained in a region of tissue
Ω. The dependent variables of the model are as follows: p(x, t) is the density of tumor
cells at x ∈ Ω at time t, m(x, t) is the concentration of matrix degradative enzyme
(MDE) at x ∈ Ω at time t, f(x, t) is the density of extracellular matrix macromolecules
at x ∈ Ω at time t, and w(x, t) is the concentration of oxygen at x ∈ Ω at time t. The
equations of the model are as follows:

∂tf = − a(x)mf︸ ︷︷ ︸
degradation

,(H1)

∂tm = αΔm︸ ︷︷ ︸
diffusion

+ d(x) p︸ ︷︷ ︸
production

− b(x)m︸ ︷︷ ︸
decay

,(H2)

∂tp = β Δp︸ ︷︷ ︸
cell motility

− ∇ · (pχ(f)∇f)︸ ︷︷ ︸
haptotaxis

− θ(x,w) p︸ ︷︷ ︸
cell death

+ �(x,w) p︸ ︷︷ ︸
cell division

,(H3)

∂tw = γ Δw︸ ︷︷ ︸
diffusion

+ g(x) f︸ ︷︷ ︸
production

− ω(x, p)w︸ ︷︷ ︸
uptake

− e(x)w︸ ︷︷ ︸
decay

(H4)

for (t, x) ∈ (0,∞) × Ω supplemented with Neumann boundary conditions

∂νm = ∂νp − pχ(f)∂νf = ∂νw = 0 on ∂Ω(H5)

and initial conditions

f(0) = f0 , m(0) = m0 , p(0) = p0 , w(0) = w0 .(H6)

It seems that (H1)–(H6) have not been considered analytically thus far, but rather
related equations of the form

∂tf = h(p, f),(1)

∂tp = β Δp − ∇ ·
(
pχ(f)∇f

)
(2)

have attracted attention, in particular the case

h(p, f) = σ p fr with σ = ±1 and r > 0 .(3)

We refer to [13] for the case of general functions h satisfying suitable hypotheses. As
for (1), (2) with h of the form (3), we refer to [10, 11, 12, 17, 19, 20, 21, 23], where
existence of solutions and phenomena such as blowup or stability of steady states are
investigated depending on the sign of σ, on r, and on the sensitivity χ.

We point out that our model differs from (1), (2), (3) with σ = −1, in that
the ordinary differential equation in (H1) is coupled to (H3) via the “intermediate”
equation (H2).

Solving (H3) or (2) classically requires that f have second order derivatives (with
respect to x) in some Lq-space. In our model the regularity of f is determined by m
for which one has a smoothing effect due to (H2). This induces the regularity that
allows us to derive an Lq-bound on p, which is sufficient to deduce global existence
for n ≤ 3 and without smallness assumptions on the initial data. As for (1)–(3), the
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regularity of f is determined by p. Thus, the second order derivatives of p should also
be in Lq. Local existence and uniqueness of “smooth” solutions for (1)–(3) can be
obtained using maximal regularity for the p-equation (2). However, global existence
then requires estimates on p that are stronger than Lq-estimates and which are far
from obvious.

In order to state our main result regarding the solvability of (H1)–(H6) we as-
sume that Ω is a bounded and smooth domain in R

n, n ≤ 3, and that the diffusion
coefficients α , β , and γ are positive constants. Concerning the data in (H1)–(H4) we
assume throughout that there exists some s > 0 such that{

a ∈ W 2
∞(Ω) , ∂νa = 0 on ∂Ω ,

b , d ∈ Cs(Ω̄) , g , e ∈ L∞(Ω) ,
(4)

and that all functions are nonnegative. We also assume that

χ ∈ C1(R+) , χ ≥ 0 , χ and χ′ are globally Lipschitz continuous.(5)

Furthermore, regarding � , θ , ω ∈ C(Ω̄ × R,R+) we suppose that, for some c0 > 0,

|φ(x, η) − φ(x, η̄)| ≤ c0 |η − η̄| , x ∈ Ω , η , η̄ ∈ R , φ ∈ {�, θ, ω} .(6)

Note that this implies, for some c > 0,

|φ(x, η)| ≤ c (1 + |η|) , x ∈ Ω , η ∈ R , φ ∈ {�, θ, ω} .(7)

To simplify the notation we put ϑ := �− θ.
For brevity of notation we set Lq := Lq(Ω) and W τ

q := W τ
q (Ω) for 1 ≤ q ≤ ∞

and τ ≥ 0. Moreover, we denote by W τ
q,B := W τ

q,B(Ω) the Sobolev–Slobodeckii spaces
including the Neumann boundary conditions, that is,

W τ
q,B :=

{{
u ∈ W τ

q ; ∂νu = 0
}
, τ > 1 + 1/q ,

W τ
q , 0 ≤ τ < 1 + 1/q .

If J ⊂ R
+ is an interval containing 0, we set J̇ := J \ {0}.

We shall prove then the following result.
Theorem 1.1. Let assumptions (4)–(6) be satisfied, and let (1 ∨ n/2) < q < ∞

and 2δ ∈ (0, 2) \ {1 + 1/q}. Given any nonnegative initial value

(f0,m0, p0, w0) ∈ W 2
q,B ×W 2δ

q,B × Lq × Lq

there exists a global nonnegative solution (f,m, p, w) to (H1)–(H6) such that

f ∈ C(R+,W 2
q,B) ∩ C1(Ṙ+,W 2

q,B) ,

m ∈ C(R+,W 2δ
q,B) ∩ C(Ṙ+,W 2

q,B) ∩ C1(Ṙ+, Lq) ,

p ∈ C(R+, Lq) ∩ C(Ṙ+,W 2
q,B) ∩ C1(Ṙ+, Lq) ,

w ∈ C(R+, Lq) ∩ C(Ṙ+,W 2
q,B) ∩ C1(Ṙ+, Lq) .

This solution satisfies

tη ‖p(t)‖W 2η
q

→ 0 and tλ ‖m(t)‖W 2
q
→ 0 as t → 0+(8)
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for all (η, λ) such that

n/q < 2η < 2 , 2η ≥ 1 , (1 − δ) ∨ η ≤ λ < 1 ,(9)

and it is the only solution satisfying (8) for some (η, λ) as in (9).
Remarks 1.2. (a) Except for (H1), which lacks a smoothing effect due to diffusion,

the regularity assumptions on the initial values and the restriction on the integrability
index q seem to be fairly weak. In particular, we do not impose bounded initial values
or assume that q > n, and also the Sobolev regularity on m0 can be arbitrary low.

(b) The no-flux boundary condition on p in (H5) is correct from a modeling point
of view, since neither diffusion nor haptotaxis should change the tumor mass. Notice
that it reduces to a Neumann boundary condition ∂νp(t) = 0 provided that ∂νf(t) = 0.
The latter is guaranteed due to the imposed Neumann boundary conditions on f0 and
a. Thus, these assumptions decouple p and f on the boundary.

(c) The solution depends continuously on the initial value in the sense stated in
Proposition 3.1.

(d) The local existence and uniqueness statement of the theorem above is also
true for space dimensions n > 3 as it follows from the proof given below.

We state the following simplified version of the above theorem for the particular
case q > n.

Corollary 1.3. Let a, b, d, e, g be nonnegative constants and suppose (5), (6).
If q > n, then problem (H1)–(H6) has, for any nonnegative initial value

(f0,m0, p0, w0) ∈ X := W 2
q ×W 1

q ×W 1
q × Lq

such that ∂νf
0 = 0, a unique global nonnegative classical solution (f,m, p, w) in the

space C(R+, X).
A proof of Corollary 1.3 could be obtained by applying the general semigroup the-

ory for semilinear parabolic problems. However, we shall point out that Theorem 1.1
actually ensures existence and uniqueness of classical solutions under considerably
weaker assumptions on the integrability index q but also on the regularity of the ini-
tial values p0 and m0. Also note that any classical solution belonging to C(R+, X)
satisfies (8) for some (η, λ) as in (9). In this sense, the uniqueness (and existence)
result stated in Theorem 1.1 is more general than in Corollary 1.3.

The outline of this paper is as follows: In section 2 we collect some auxiliary
results which are used in the proof of local existence and uniqueness of solutions in
section 3. Section 4 is devoted to positivity of solutions, and in section 5 we prove
global existence. In section 6 some numerical examples are given in order to illustrate
the role of haptotaxis in spatial movement. In section 7 we summarize our results.

2. Preliminaries. In what follows, we denote for 1 < q < ∞ by Δ := Δq the
Laplace operator defined on W 2

q,B and observe that it generates a positive, strongly

continuous analytic semigroup {etΔ ; t ≥ 0} of contractions on Lq [1, 22]. Moreover,
we will use the inequality

‖etΔ‖L(W 2σ
q,B,W 2τ

q,B) ≤ c(T ) tσ−τ , 0 < t ≤ T ,(10)

which is true provided that 0 ≤ 2σ ≤ 2τ ≤ 2 with 2σ, 2τ �= 1 + 1/q, where c(T )
depends on the involved parameters. We also use the inequality

‖etΔ‖L(Lq,Lp) ≤ c(T ) t−(1/q−1/p)n/2 , t ∈ (0, T ] ,(11)
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for 1 < q ≤ p ≤ ∞. Given ξ > 0 we then put Uξ(t) := etξΔ. Furthermore, for any

measurable function u : J̇ → Lq we set

Uξ � u(t) :=

∫ t

0

Uξ(t− s)u(s) ds , t ∈ J̇ ,

whenever these integrals exist. If E is a Banach space and μ ∈ R, we denote by
BCμ(J̇ , E) the Banach space of all functions u : J̇ → E such that

(
t → tμu(t)

)
is

bounded and continuous from J̇ into E, equipped with the norm

u → ‖u‖Cμ(J̇,E) := sup
t∈J̇

tμ ‖u(t)‖E .

We write Cμ(J̇ , E) for the closed linear subspace consisting of all u satisfying tμu(t) →
0 in E as t → 0+. Note that Cν((0, T ], E) ↪→ Cμ((0, T ], E) for ν ≤ μ and T > 0.

For later use we state the following auxiliary result on pointwise multiplication.
Lemma 2.1. Suppose that n/q < 2η with 2η ≥ 1 and let 0 < 2r < (s∧ 2η). Then

pointwise multiplication is a continuous mapping
(i) W 2η

q × Lq → Lq ,

(ii) W 2η−1
q ×W 1

q → Lq ,

(iii) Cs(Ω̄) ×W 2η
q → W 2r

q .
Proof. (i) follows from the embedding W 2η

q ↪→ L∞, while statements (ii) and (iii)
are easy consequences of [2, Thm. 4.1].

Evidently, given suitable functions f0 = f0(x) and m = m(x, t), the solution to
(H1) is

F1(m) := F1[f
0](m) :=

[
t → exp

(
−
∫ t

0

am(s)ds

)
f0

]
.

Note then that the gradient and the Laplacian take the form

∇F1(m)(t) = exp

(
−
∫ t

0

am(s)ds

) [
∇f0 −

∫ t

0

∇(am)(s)ds f0

]
(12)

and

ΔF1(m)(t) = exp

(
−
∫ t

0

am(s)ds

) [
Δf0 −

∫ t

0

Δ(am)(s)ds f0

+
∣∣∣ ∫ t

0

∇(am)(s)ds
∣∣∣2 f0 − 2

∫ t

0

∇(am)(s)ds · ∇f0

]
.

(13)

In particular, (12) warrants that ∂νF1(m)(t) = 0 provided ∂νf
0 = ∂νm(t) = 0 for all

t since a ∈ W 2
∞,B. Furthermore, F1 has the following properties.

Lemma 2.2. For 0 < T ≤ T0 put I := [0, T ]. If (1∨n/2) < q < ∞ and f0 ∈ W 2
q,B,

there holds
(i) F1(m) ∈ C1(I,W 2

q,B) for m ∈ C(I,W 2
q,B);

(ii) F1(m) ∈ C(I,W 2
q,B) for m ∈ Cμ(İ ,W 2

q,B) and μ < 1, and for R0 > 0 there
exists a constant k := k(T0, R0) > 0 such that

‖F1(m) − F1(m̄)‖C(I,W 2
q,B) ≤ k ‖f0‖W 2

q
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B)

provided ‖m‖Cμ(İ,W 2
q,B) , ‖m̄‖Cμ(İ,W 2

q,B) ≤ R0.



GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1699

Proof. (i) Fix m ∈ C(I,W 2
q,B) ↪→ C(I, L∞) and temporarily set F1 := F1(m).

Owing to Lemma 2.1, (4), and (13) we deduce (1 + Δ)F1 ∈ C(I, Lq), from which it
follows that F1 ∈ C(I,W 2

q,B) since ∂νF1 = 0. Clearly, this implies F1 ∈ C1(I,W 2
q,B)

owing to ∂tF1 = −amF1 and the fact that pointwise multiplication is a continuous
mapping from W 2

q,B ×W 2
q,B into W 2

q,B.

(ii) Given m, m̄ ∈ Cμ(İ ,W 2
q,B) with norm less than R0 > 0, we have

∫ t

0

‖m(s)‖∞ ds ≤ c

∫ t

0

‖m(s)‖W 2
q

ds ≤ c(R0) t
1−μ , t ∈ I .

This yields for 0 ≤ t ≤ T

‖F1(m)(t) − F1(m̄)(t)‖Lq
≤ c(T0, R0)

∫ t

0

‖m(s) − m̄(s)‖∞ ds ‖f0‖Lq

≤ c(T0, R0) ‖f0‖Lq
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B) .

Similarly, Lemma 2.1 and (13) entail

‖ΔF1(m)(t) − ΔF1(m̄)(t)‖Lq
≤ c(T0, R0) ‖f0‖W 2

q
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B)

for 0 ≤ t ≤ T , and the assertion follows.
Lemma 2.3. Let 1 < q < ∞ , 2σ ∈ (0, 2) \ {1 + 1/q} and T, ξ > 0. Then
(i) Uξu := [t → Uξ(t)u] ∈ Cσ

(
(0, T ],W 2σ

q,B
)

for u ∈ Lq;

(ii) Uξu = [t → Uξ(t)u] ∈ C1−σ

(
(0, T ],W 2

q,B
)

for u ∈ W 2σ
q,B.

Proof. The proof of [4, Prop. 6] is easily adapted to the case (i). In much the
same way one shows (ii).

3. Local existence and uniqueness. In the following we use the abbreviations

S(m, p) := d p − bm ,

Q(f, p, w) := −∇ ·
(
pχ(f)∇f

)
+ ϑ(w) p ,

R(f, p, w) := − ew − ω(p)w + g f .

Here and below we denote by ϑ(w) and ω(p) the Nemitskii operators of ϑ(·, w) and
ω(·, p), respectively; that is, we set φ(u) := [x → φ(x, u(x))] for φ ∈ {ϑ, ω} and u :
Ω → R.

The proof of the existence and uniqueness statement of Theorem 1.1 is based on
the next result.

Proposition 3.1. Let 1 < q < ∞ and n/q < 2η ≤ 2ξ ≤ 2μ < 2 with 2η ≥ 1.
Given B ≥ 1 there exists T := T (B) > 0 such that, for any

u0 :=
(
f0,m0, p0, w0

)
∈ E := W 2

q,B ×W
2(1−μ)
q,B × Lq × Lq

with ‖u0‖E ≤ B, the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(t) = exp
(
−
∫ t

0
am(s)ds

)
f0 , t ∈ I ,

m(t) = Uα(t)m0 + Uα � S(m, p)(t) , t ∈ I ,

p(t) = Uβ(t) p0 + Uβ � Q(f, p, w)(t) , t ∈ I ,

w(t) = Uγ(t)w0 + Uγ � R(f, p, w)(t) , t ∈ I ,

(M)
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has a unique solution

u := (f,m, p, w) ∈ VT := C(I,W 2
q,B) × Cμ(İ ,W 2

q,B) × Cξ(İ ,W
2η
q,B) × C(I, Lq) ,

where I := [0, T ]. Moreover, the solution depends continuously on the initial value in
the sense that if ū ∈ VT denotes the solution corresponding to ū0 ∈ E with ‖ū0‖E ≤ B,
then ū → u in VT as ū0 → u0 in E.

Proof. Given T ∈ (0, 1] we put

WT := C
(
[0, T ],W 2

q,B
)
, XT := Cμ

(
(0, T ],W 2

q,B
)
,

YT := Cξ

(
(0, T ],W 2η

q,B
)
, ZT := C

(
[0, T ], Lq

)
,

so that VT = WT ×XT ×YT ×ZT . For u0 =
(
f0,m0, p0, w0

)
∈ E it then follows from

Lemma 2.3 that

V 0 :=
(
f0, Uαm

0, Uβp
0, Uγw

0
)
∈ VT .

Defining

F2(m, p) := Uαm
0 + Uα � S(m, p) ,

F3(f, p, w) := Uβp
0 + Uβ � Q(f, p, w) ,

F4(f, p, w) := Uγw
0 + Uγ � R(f, p, w) ,

and

F (u) := F (f,m, p, w) :=
(
F1(m), F2(m, p), F3(f, p, w), F4(f, p, w)

)
,

problem (M) can be recast as a fixed point problem of the form F (u) = u ∈ VT . In
order to solve this problem, we first recall that Lemma 2.2(ii) implies that there exists
for any given R0 > 0 a constant c(R0) > 0 with

‖F1(m) − F1(m̄)‖WT
≤ c(R0)T

1−μ ‖m− m̄‖XT
(14)

provided m, m̄ ∈ XT with ‖m‖XT
, ‖m̄‖XT

≤ R0 and ‖f0‖W 2
q,B

≤ R0. We fix r such

that 0 < 2r < (s ∧ 2η ∧ (1 + 1/q)), where s > 0 is given in (4). For m ∈ XT and
p ∈ YT we derive from Lemma 2.1(iii), (10), and (4)

‖Uα � S(m, p)(t)‖W 2
q
≤ c

∫ t

0

‖Uα(t− s)‖L(W 2r
q,B,W 2

q,B)

(
‖p(s)‖W 2η

q
+ ‖m(s)‖W 2

q

)
ds

≤ c tr−ξ B(r, 1 − ξ) ‖p‖YT
+ c tr−μ B(r, 1 − μ) ‖m‖XT

,

(15)

where B denotes the beta function. Therefore,

‖F2(m, p) − F2(m̄, p̄)‖XT
≤ c T r (‖p− p̄‖YT

+ ‖m− m̄‖XT
)(16)

for m, m̄ ∈ XT and p, p̄ ∈ YT . Next observe that

∇ ·
(
pχ(f)∇f

)
= pχ(f) Δf + χ(f)∇p · ∇f + pχ′(f) |∇f |2;
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hence

‖∇ ·
(
pχ(f)∇f

)
‖Lq ≤ c ‖p‖W 2η

q
(1 + ‖f‖3

W 2
q
) , p ∈ W 2η

q,B , f ∈ W 2
q,B ,

by Lemma 2.1 and (5). Given f ∈ WT , p ∈ YT , and w ∈ ZT we thus compute,
using (10) and (7),

‖Uβ � Q(f, p, w)(t)‖W 2η
q

≤ c

∫ t

0

‖Uβ(t− s)‖L(Lq,W
2η
q,B)

{
‖p(s)‖W 2η

q

(
1 + ‖f(s)‖3

W 2
q

)
+

(
1 + ‖w(s)‖Lq

)
‖p(s)‖W 2η

q

}
ds

≤ c t1−η−ξ B(1 − η, 1 − ξ) ‖p‖YT

(
1 + ‖f‖3

WT
+ ‖w‖ZT

)
.

(17)

Similarly, for f, f̄ ∈ WT , p, p̄ ∈ YT , and w, w̄ ∈ ZT we obtain

‖F3(f, p, w) − F3(f̄ , p̄, w̄)‖YT
≤ c T 1−η ‖p‖YT

(
1 + ‖f‖WT

+ ‖f̄‖WT

)2 ‖f − f̄‖WT

+ c T 1−η
(
1 + ‖f̄‖3

WT
+ ‖w‖ZT

)
‖p− p̄‖YT

+ c T 1−η ‖p‖YT
‖w − w̄‖ZT

.

(18)

Given f, f̄ ∈ WT , p, p̄ ∈ YT , and w, w̄ ∈ ZT analogous computations show that

‖F4(f, p, w) − F4(f̄ , p̄, w̄)‖ZT
≤ c T 1−ξ

(
1 + ‖p̄‖YT

)
‖w − w̄‖ZT

+ c T 1−ξ ‖w‖ZT
‖p− p̄‖YT

+ c T ‖f − f̄‖WT
.

(19)

Combining (14), (16), (18), (19), and defining λ := (1− μ)∧ r ∧ (1− ξ) > 0 we find a
constant κ(R0) > 0 such that

‖F (u) − F (ū)‖VT
≤ κ(R0)T

λ
(
1 + ‖u‖VT

+ ‖ū‖VT

)
‖u− ū‖VT

,(20a)

‖F (u) − V 0‖VT
≤ κ(R0)T

λ
(
1 + ‖u‖VT

)
‖u‖VT

,(20b)

provided u = (f,m, p, w) , ū = (f̄ , m̄, p̄, w̄) ∈ VT are such that ‖m‖XT
, ‖m̄‖XT

≤ R0

and ‖f0‖W 2
q
≤ R0, where R0 > 0 and T ∈ (0, 1] are arbitrary. Put

K := 1 + sup
0<t≤1

(
tμ ‖Uα(t)‖L(W

2(1−μ)
q,B ,W 2

q,B)
+ tξ ‖Uβ(t)‖L(Lq,W

2η
q,B)

)
,

which is a finite constant according to (10), and let R0 := (1 + K)B for B ≥ 1 given.
Choose then T := T (B) ∈ (0, 1] such that

κ(R0) (1 + R0)R0 T
λ ≤ 1

2
and k(1, R0)B T 1−μ ≤ 1

4
,(21)

the constant k(1, R0) > 0 stemming from Lemma 2.2(ii). Notice that, in particular,
for u0 =

(
f0,m0, p0, w0

)
∈ E with ‖u0‖E ≤ B, there holds

‖V 0‖VT
≤ KB , V 0 =

(
f0, Uαm

0, Uβp
0, Uγw

0
)
.
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Denoting by BT the closed ball in VT with center V 0 and radius B, we hence have

‖u‖VT
≤ (1 + K)B = R0 , u ∈ BT .

Therefore, in view of (20a), (20b), and (21), the mapping F : BT → BT is a con-
traction (with contraction constant less than 1/2), which implies the existence of a
unique solution to problem (M) for any u0 =

(
f0,m0, p0, w0

)
∈ E with ‖u0‖E ≤ B.

If ū0 =
(
f̄0, m̄0, p̄0, w̄0

)
∈ E with ‖ū0‖E ≤ B is another initial value, there exists a

corresponding unique solution ū =
(
f̄ , m̄, p̄, w̄

)
∈ VT satisfying ‖ū‖VT

≤ R0. Defining

F̃ := (F2, F3, F4) and V̄ 0 :=
(
f̄0, Uαm̄

0, Uβ p̄
0, Uγw̄

0
)

we derive from (20a), (20b), and Lemma 2.2(ii) that

‖u− ū‖VT
≤ ‖F1[f

0](m) − F1[f̄
0](m̄)‖WT

+ ‖F̃ (u) − F̃ (ū)‖XT×YT×ZT

+ ‖Uα(m0 − m̄0)‖XT
+ ‖Uβ(p0 − p̄0)‖YT

+ ‖Uγ(w0 − w̄0)‖ZT

≤ k(1, R0)‖f0‖W 2
q,B

T 1−μ ‖m− m̄‖XT
+ k(1, R0) ‖m̄‖XT

‖f0 − f̄0‖W 2
q,B

+
1

2
‖u− ū‖VT

+ ‖V 0 − V̄ 0‖VT
.

But then, due to (21),

‖u− ū‖VT
≤ c(R0) ‖V 0 − V̄ 0‖VT

≤ c(R0)K‖u0 − ū0‖E ,

whence ū → u in VT as ū0 → u0 in E. This proves the proposition.
We now focus on the existence of a unique maximal solution to (H1)–(H6) enjoying

the regularity properties stated in Theorem 1.1.
Let (1∨n/2) < q < ∞ and 2δ ∈ (0, 2)\{1+1/q} be given. Fix η and λ such that

n/q < 2η < 2 with 2η ≥ 1 and (1 − δ) ∨ η ≤ λ < 1 and put (ξ, μ) := (η, λ). Then,
for

(
f0,m0, p0, w0

)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq, Proposition 3.1 ensures the existence

of T > 0 and a unique solution

u = (f,m, p, w) ∈ C([0, T ],W 2
q,B)×Cμ((0, T ],W 2

q,B)×Cξ((0, T ],W 2η
q,B)×C([0, T ], Lq)

to problem (M). As in (17),

‖Uβ � Q(f, p, w)(t)‖Lq ≤ c(T ) t1−ξ → 0 as t → 0+ ,

and therefore

p = Uβ p
0 + Uβ � Q(f, p, w) ∈ C([0, T ], Lq)

is a mild Lq-solution to (H3). From this and the identity

m = Uα m0 + Uα � S(m, p)

we obtain that m ∈ C([0, T ],W 2δ
q,B) is a mild Lq-solution to (H2). Clearly, w ∈

C([0, T ], Lq) is a mild Lq-solution to (H4).
Next we show that these mild solutions are actually classical solutions. First, we

fix ε ∈ (0, T ] and set I := [0, T − ε]. Then

fε := f(· + ε) ∈ C(I,W 2
q,B) , mε := m(· + ε) ∈ C(I,W 2

q,B) ,

pε := p(· + ε) ∈ C(I,W 2η
q,B) , wε := w(· + ε) ∈ C(I, Lq) .
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Furthermore, Lemma 2.2(i) warrants fε ∈ C1(I,W 2
q,B) and thus, letting ε → 0+, we

obtain f ∈ C1((0, T ],W 2
q,B). Next, hε := S(mε, pε) ∈ C(I,W 2r

q,B) with r > 0 suffi-

ciently small by Lemma 2.1(iii). Therefore, observing that W 2r
q,B is a (real) interpola-

tion space between Lq and W 2
q,B (cf. [24]) and taking into account that mε is a mild

Lq-solution to the linear problem

Ṁ − αΔM = hε(t) , t ∈ İ , M(0) = mε(0) ∈ W 2
q,B ,

we conclude that mε ∈ C1(İ , Lq)∩C(I,W 2
q,B) since mild solutions to linear problems

are unique; see [3, II.Thm. 1.2.2]. Letting ε → 0+ we deduce that m is a classical
solution to (H2) possessing the same regularity properties as mε on (0, T ]. Next,
define jε := Q(fε, pε, wε) ∈ C(I, Lq) and notice that pε is a mild Lq-solution to the
linear problem

Ṗ − βΔP = jε(t) , t ∈ İ , P (0) = pε(0) ∈ W 2η
q,B .(22)

Thus, pε ∈ C(I,W 2σ
q,B) with 2η > 2σ > n/q and 2σ ≥ 1, where � := η − σ > 0 owing

to [3, II.Thm. 5.3.1]. Clearly, due to kε := R(fε, pε, wε) ∈ C(I, Lq) and (10) we have

wε = Uγ wε(0) + Uγ � kε ∈ C(I,W 2ν
q,B) , ν < 1 .

Applying again [3, II.Thm. 5.3.1] we obtain wε ∈ C(I, Lq). From (6) and the fact
that fε ∈ C1(I,W 2

q,B) and pε ∈ C(I,W 2σ
q,B) it follows that kε ∈ C(I, Lq); hence, as

above, wε ∈ C1(İ , Lq) ∩ C(İ ,W 2
q,B) by [3, II.Thm. 1.2.2], which ensures that w is

a classical solution to (H4) with the corresponding regularity properties. Moreover,
recalling that 2σ > n/q with 2σ ≥ 1 and invoking Lemma 2.1, we deduce jε ∈
C(I, Lq) thanks to (5). Due to [3, II.Thm. 1.2.2] and (22) this implies that pε
belongs to C1(İ , Lq) ∩ C(İ ,W 2

q,B), whence p ∈ C1((0, T ], Lq) ∩ C((0, T ],W 2
q,B) is a

classical solution to (H3).

Let us now prove that this solution is unique in the sense stated in Theorem 1.1.
Suppose therefore that there exist two solutions (f̃ , m̃, p̃, w̃) and (f̄ , m̄, p̄, w̄) to (H1)–
(H6) on some interval [0, T ] satisfying

f̃ , f̄ ∈ C
(
[0, T ],W 2

q,B
)
, w̃ , w̄ ∈ C

(
[0, T ], Lq

)
,

m̃ ∈ Cλ̃

(
(0, T ],W 2

q,B
)
, m̄ ∈ Cλ̄

(
(0, T ],W 2

q,B
)
,

p̃ ∈ Cη̃

(
(0, T ],W 2η̃

q,B
)
, p̄ ∈ Cη̄

(
(0, T ],W 2η̄

q,B
)

for some n/q < 2η̃ , 2η̄ < 2 with 2η̃ , 2η̄ ≥ 1 and λ̃ , λ̄ < 1. Defining

η := η̃ ∧ η̄ , ξ := η̃ ∨ η̄ , μ := λ̃ ∨ λ̄ ∨ ξ ∨ (1 − δ)

we obtain two solutions to (M) such that both m̃, m̄ belong to Cμ((0, T ],W 2
q,B) and

both p̃, p̄ belong to Cξ((0, T ],W 2η
q,B), where n/q < 2η ≤ 2ξ ≤ 2μ < 2 with 2η ≥ 1.

Making T smaller if necessary, Proposition 3.1 guarantees that (f̃ , m̃, p̃, w̃) coincides
with (f̄ , m̄, p̄, w̄) on [0, T ].
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Evidently, local uniqueness warrants that we may extend the solution (f,m, p, w)
constructed above to a maximal solution on an interval J := [0, t+). Since, according
to Proposition 3.1, the local existence time T > 0 can be chosen uniformly with
respect to initial values that are bounded in W 2

q,B ×W 2δ
q,B × Lq × Lq, we surely have

lim sup
t↗t+

∥∥(f(t),m(t), p(t), w(t)
)∥∥

W 2
q ×W 2δ

q ×Lq×Lq
= ∞(23)

in the case that t+ < ∞.
Summing up, we have shown thus far that problem (H1)–(H6) admits a maximal

solution being unique and possessing the regularity properties in the sense stated in
Theorem 1.1. Moreover, this solution satisfies (8) and, if t+ < ∞, then (23) also
holds.

Remark 3.2. Given p0 ∈ W 2η
q,B with n/q < 2η < 2 and 2η ≥ 1 there holds

p ∈ C(J,W 2η
q,B). In particular, one may choose 2η = 1 if q > n; see Corollary 1.3. This

readily follows by taking C([0, T ],W 2η
q,B) as state space for p instead of the weighted

space Cξ((0, T ],W 2η
q,B) in the above proof.

4. Positivity. Using ideas as in [18] we now show positivity of the solution
corresponding to positive initial values. Given(

f0,m0, p0, w0
)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq

such that f0 ≥ 0, m0 ≥ 0, p0 ≥ 0, and w0 ≥ 0 (a.e. on Ω) let (f,m, p, w) denote the
maximal solution on J constructed in the previous section. Then obviously f(t) ≥ 0
on Ω for t ∈ J .

First suppose that q > (n ∨ 2) and p0, w0 ∈ W 2
q,B. Fix T ∈ J̇ and n/q < 2σ < 1.

Then choose η ∈
(
1/2, 1 − σ

)
and observe that p ∈ Cη(J̇ ,W

2η
q,B) in view of (8).

Analogously to (17) it follows from Lemma 2.1 that

‖Uβ � Q(f, p, w)(t)‖W 2σ
q

≤ c(T ) t1−σ−η −→ 0 as t → 0+ ,

and consequently

p = Uβ p
0 + Uβ � Q(f, p, w) ∈ C([0, T ],W 2σ

q,B) ↪→ C([0, T ] × Ω̄) .

Similarly, there holds

w = Uγ w
0 + Uγ � R(f, p, w) ∈ C([0, T ],W 2σ

q,B) ↪→ C([0, T ] × Ω̄) ,

and thus, in particular,

ϑ(w) ∈ C([0, T ] × Ω̄) .(24)

According to [18, p. 451] there exist a function H ∈ C2(R) and a constant c0 > 0
such that H(z) = 0 for z ≥ 0 and H(z) > 0 for z < 0 and such that

0 ≤ H ′′(z) z2 ≤ c0 H(z) , z ∈ R ,

and

0 ≤ H ′(z) z ≤ c0 H(z) , z ∈ R .
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Define M ∈ C1((0, T ]) ∩ C([0, T ]) as

M(t) :=

∫
Ω

H
(
p(t, x)

)
dx , t ∈ [0, T ] .

Owing to ∂νp(t) = ∂νf(t) = 0 we deduce from (H3) that

d

dt
M(t) =

∫
Ω

H ′(p)
(
βΔp−∇ ·

(
pχ(f)∇f

)
+ ϑ(w) p

)
dx

= −β

∫
Ω

H ′′(p) |∇p|2 dx +

∫
Ω

H ′′(p) pχ(f)∇p · ∇f dx

+

∫
Ω

H ′(p)ϑ(w) p dx.

Therefore, since

|pχ(f)∇p · ∇f | ≤ β

2
|∇p|2 +

1

2β
p2 χ(f)2 |∇f |2

we infer from (7) and the fact that both f and ∇f belong to C([0, T ]× Ω̄), from (24),
and the properties of the function H that

d

dt
M(t) ≤ c(T )M(t) , t ∈ (0, T ] .

Thus M(0) = 0 ensures M(t) = 0 for t ∈ [0, T ], that is, p(t) ≥ 0 on Ω for t ∈ [0, T ]. It
is then straightforward to prove that m(t) ≥ 0 and w(t) ≥ 0 on Ω for t ∈ [0, T ]. But
T > 0 was arbitrary, so the desired positivity follows.

Finally, to show positivity in the general case q > (1 ∨ n/2) we approximate
p0, w0 ∈ Lq by nonnegative smooth functions and use the continuous dependence of
the solution on the initial value provided by Proposition 3.1.

5. Global existence. It remains only to prove global existence. We denote by
(f,m, p, w) the maximal nonnegative solution on J = [0, t+) corresponding to the
nonnegative initial value(

f0,m0, p0, w0
)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq .

We first claim that it suffices to prove

sup
t∈J∩[0,T ]

‖p(t)‖Lq < ∞ , T > 0 ,(25)

in order to conclude that t+ = ∞. Indeed, suppose that (25) holds for any T > 0
and set JT := J ∩ [0, T ]. Replacing the solution by the shifted solution (fε,mε, pε, wε)
introduced in the existence proof in section 3, we may assume without loss of gener-
ality that all m, p,w belong to C(J,W 2

q,B) ∩ C1(J, Lq), in particular that m0 ∈ W 2
q,B.

Observe then that w ∈ L∞(JT , L∞) as it follows from (H4) since w(t) ≥ 0 and
‖f(t)‖∞ ≤ ‖f0‖∞. Next, since b ∈ L∞, we may choose λ > 0 sufficiently large
such that −(λ + b − αΔ) has bounded imaginary powers with angle strictly less
than π/2 (for instance, see [3, III.Ex. 4.7.3(d), III.Thm. 4.8.7]). Therefore, defining
n(t) := e−λtm(t) and noticing that

ṅ + (λ + b− αΔ)n = d e−λt p(t) =: z(t) , n(0) = m0 ∈ W 2
q,B ,
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it follows from [3, III.Thm. 4.10.7] that n ∈ Lq(JT ,W
2
q,B) since z ∈ L∞(JT , Lq) by

(25) and n(0) ∈ W 2
q,B. But then

∫ t

0

‖m(s)‖W 2
q

ds ≤ c(T ) , t ∈ JT ,

and we deduce from (13) that f ∈ L∞(JT ,W
2
q,B). Finally, owing to p ∈ L∞(JT , Lq),

(10), and Gronwall’s inequality we conclude from (H2) that m ∈ L∞(JT ,W
2δ
q,B). Con-

sequently, combining all the estimates on f,m, p, and w we see that the blowup
criterion (23) implies t+ = ∞ since T > 0 was arbitrary. Therefore, (25) is indeed
sufficient to conclude global existence.

To derive the desired Lq-bound on p we employ a change of variable of the form
p → p

φ(f) , where φ solves

φ′(z) =
χ(z)

β
φ(z) , z > 0 , φ(0) = 1 .

This device has been used in [11, 12, 14] for equations of the form (1), (2), (3) and
leads in our case to the equation in divergence form

d

dt

p

φ(f)
=

β

φ(f)
∇ ·

(
φ(f)∇ p

φ(f)

)
+ ϑ(w)

p

φ(f)
+

a

β
χ(f) f m

p

φ(f)
.(26)

Global existence is then an easy consequence of the following proposition, where the
basic idea of its proof is adapted from [11]. We point out here again that in our case,
the coupling of (H1) and (H3) via (H2) allows us to derive the a priori estimate for p
(which does not seem to be possible without a smallness condition on the initial value
in the case of (1), (2), (3) with σ = −1; see [11]).

Proposition 5.1. Suppose that ‖p(t)‖Lρ
≤ c(T ), t ∈ JT := J ∩ [0, T ], for some

ρ ∈ [1, q) and suppose there exists � ∈ (ρ, 2ρ ∧ q] such that

�

(
n

ρ
− 2

)
< 2

(
ρ− 1 +

2ρ

n

)
.(27)

Then ‖p(t)‖L� ≤ c(T ) for t ∈ JT .

Proof. We first observe that (27) allows to fix r > 1 such that

n�

n� + 2ρ
<

1

r
< 1 +

2

n
− 1

ρ
.(28)

If � ≥ 2, we set μ := 0; otherwise we fix μ ∈ (0, 1). Then we put pμ := p+ μ ≥ μ and
note that

∇
(

pμ
φ(f)

)/2

=
�

2

(
pμ
φ(f)

)/2−1

∇ pμ
φ(f)

by the chain rule. Hence
( pμ

φ(f)

)/2 ∈ W 1
2 since W 1

q ↪→ L2 due to q > n/2. Moreover,

∂ν
pμ

φ(f) = 0 owing to ∂νp = ∂νf = 0. Thus, given any Λ ∈ C2
(
(0,∞)

)
we derive
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from (26)

d

dt

∫
Ω

φ(f) Λ

(
pμ
φ(f)

)
dx

= β

∫
Ω

Λ′
(

pμ
φ(f)

)
∇ ·

(
φ(f)∇ pμ

φ(f)

)
dx +

∫
Ω

Λ′
(

pμ
φ(f)

)
ϑ(w) p dx

+
1

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f p dx − 1

β

∫
Ω

Λ

(
pμ
φ(f)

)
amχ(f) f φ(f) dx

+ μ

∫
Ω

Λ′
(

pμ
φ(f)

)
∇ ·

(
χ(f)∇f

)
dx +

μ

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f dx

= −β

∫
Ω

Λ′′
(

pμ
φ(f)

)
φ(f)

∣∣∣∣∇ pμ
φ(f)

∣∣∣∣
2

dx

+
1

β

∫
Ω

amχ(f) f

[
pΛ′

(
pμ
φ(f)

)
− φ(f) Λ

(
pμ
φ(f)

)]
dx

+

∫
Ω

Λ′
(

pμ
φ(f)

)
ϑ(w) p dx − μ

∫
Ω

Λ′′
(

pμ
φ(f)

)
χ(f)∇ pμ

φ(f)
· ∇f dx

+
μ

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f dx

for t ∈ J . In particular, taking Λ(z) = z we have

d

dt

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx ≤ − 4β
�− 1

�

∫
Ω

φ(f)

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx

+ S0

∫
Ω

m

(
pμ
φ(f)

)

dx

+ � ‖ϑ(w)‖∞
∫

Ω

φ(f)

(
pμ
φ(f)

)

dx

+ μ� (�− 1)‖χ(f)‖∞
∫

Ω

(
pμ
φ(f)

)−2 ∣∣∣∇ pμ
φ(f)

· ∇f
∣∣∣ dx

+ μS0

∫
Ω

m

(
pμ
φ(f)

)−1

dx

(29)

for t ∈ J , where

S0 :=
�− 1

β
‖a‖∞ sup

0<z<‖f0‖∞

(
z χ(z)φ(z)

)
< ∞

since ‖f(t)‖∞ ≤ ‖f0‖∞ and ‖ϑ(w)‖∞ < ∞ on JT due to w ∈ L∞(JT , L∞). Next,
we use the second inequality of (28), (11), the given Lρ-bound on p, and Gronwall’s
inequality to derive from (H2) that

‖m(t)‖Lr′ ≤ c(T ) , t ∈ JT ,
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where r′ denotes the dual exponent of r. Hence, taking into account that the first
inequality of (28) warrants the following version of the Gagliardo–Nirenberg inequality
(see [15, p. 37])

‖ · ‖2r
L2r

≤ c0 ‖ · ‖2(r−1)
L2ρ/�

‖ · ‖2
W 1

2
,

applying Young’s inequality, and using once again the given Lρ-bound on p, it follows
for ε > 0 that

S0

∫
Ω

m

(
pμ
φ(f)

)

dx ≤ c(ε)

∫
Ω

mr′ dx + ε

∫
Ω

(
pμ
φ(f)

)r

dx

≤ c(T, ε) + ε

∥∥∥∥∥
(

pμ
φ(f)

)/2
∥∥∥∥∥

2r

L2r

≤ c(T, ε) + ε c0

∥∥∥∥ pμ
φ(f)

∥∥∥∥
(r−1)

Lρ

∥∥∥∥∥
(

pμ
φ(f)

)/2
∥∥∥∥∥

2

W 1
2

≤ c(T, ε) + c(T, ε)

∫
Ω

(
pμ
φ(f)

)

dx

+ ε c(T )

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx .

We can estimate the last term in (29) similarly, since

μS0

∫
Ω

m

(
pμ
φ(f)

)−1

dx ≤ μ c(T, ε) + μ c(T, ε)

∫
Ω

(
pμ
φ(f)

)

dx

+ μ ε c(T )

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx .

In the case that � < 2 we have by Young’s inequality for δ > 0

μ� (�− 1)‖χ(f)‖∞
∫

Ω

(
pμ
φ(f)

)−2 ∣∣∣∇ pμ
φ(f)

· ∇f
∣∣∣ dx

≤ δ μ
�2

4

∫
Ω

(
pμ
φ(f)

)−2 ∣∣∣∣∇ pμ
φ(f)

∣∣∣∣
2

dx

+ μ c(δ)

∫
Ω

(
pμ
φ(f)

)−2

|∇f |2 dx

≤ μ δ

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx + μ−1 c(δ)

∫
Ω

φ(f)−2|∇f |2 dx .

Therefore, due to φ(f) ≥ 1 and μ < 1, we infer from (29) by combining the above
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estimates that for all t ∈ JT

d

dt

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx ≤ c(T, ε) + c(T, ε)

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx

+

(
ε c(T ) + δ − 4β

�− 1

�

) ∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx

+ μ−1 c(δ)

∫
Ω

φ(f)2− |∇f |2 dx .

(30)

We then choose ε > 0 and δ > 0 sufficiently small so that the term involving the
gradient of

pμ

φ(f) becomes negative. Recalling that ‖φ(f)‖∞ ≤ c
(
‖f0‖∞

)
on JT , that

∇f(t) ∈ L2, and that p ∈ C1(J, Lq) we may then let μ → 0+ and use Lebesgue’s
theorem to obtain

d

dt

∫
Ω

φ(f)

(
p

φ(f)

)

dx ≤ c(T ) + c(T )

∫
Ω

φ(f)

(
p

φ(f)

)

dx

for all t ∈ JT since 1 < � ≤ q. Thus, we conclude ‖p(t)‖L� ≤ c(T ) for t ∈ JT .
We are now in a position to prove that indeed J = R

+. Since p is nonneg-
ative, ‖ϑ(w(t))‖∞ ≤ c(T ), and ∂νp(t) = ∂νf(t) = 0 for t ∈ JT it follows that
‖p(t)‖L1 ≤ c(T ), t ∈ JT , by integrating (H3). Therefore, we may apply Proposi-
tion 5.1 successively to derive ‖p(t)‖Lq

≤ c(T ) for t ∈ JT ; hence J = R
+ according to

(25). Consequently, the proof of Theorem 1.1 is complete.

6. Numerical examples. We illustrate the theoretical results above with nu-
merical examples (a numerical treatment of a more general model is given in [7]). The
parameters for the example are chosen for illustrative purposes.

The region Ω is [0, 6] × [0, 6] ⊂ R
2, the parameters are a(x) ≡ 5.0, α = .01,

d(x) ≡ 1.0, b(x) ≡ 1.0, β = .01, χ(f) ≡ 0.0, or χ(f) ≡ 0.4, θ(x,w) ≡ 0.1, �(x,w) =
2.0w/(1.0 + w), γ = 0.1, e(x) ≡ 1.0, ω(x, p) = 2.0 p/(1.0 + p), g(x) ≡ 5.0, and the
initial conditions are

f0(x) = 0.05 cos
(
(10.0π/36.0)x2

1

)
sin

(
(13.0π/72.0)x2

2

)
+ 0.3 ,

p0(x) = 5.0 max
{
0.3 − (x1 − 3.0)2 − (x2 − 3.0)2 , 0.0

}
,

m0(x) = p0(x), and w0(x) = 4.0 f0(x), where x = (x1, x2). The normalized tumor
density is initially distributed symmetrically in a circle. The normalized extracellular
matrix density is immobile and heterogeneous above a uniform background value.
The haptotactic parameter χ is an indicator of the relative strength of cell-matrix
adhesion, and the value of χ increases through successive mutations of the tumor cell
lines, as tumor cells gain greater capacity to invade the surrounding bound substrate
[5]. We provide two choices for the haptotaxis parameter χ to demonstrate this
increase in χ. In Figures 1, 2, 3 the value of χ is 0.0, so that all movement of cells is
due only to cell motility. In Figures 4, 5, 6 the value of χ is 0.4, so that movement of
cells is due to both cell motility and haptotactic directed attraction. The simulations
demonstrate that haptotaxis produces a profound distinction in the spatial behavior
in the two cases. Without haptotaxis the tumor expands slowly and symmetrically
(Figures 1 and 2) as the total population declines (Figure 3). With haptotaxis the
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Fig. 1. The normalized tumor cell density for various times in the case without haptotaxis
(χ = 0.0). The tumor slowly expands nearly symmetrically as it decreases in total mass. The
interior of the tumor becomes necrotic as tumor cells consume and exhaust the supply of oxygen
furnished by the extracellular matrix.
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Fig. 2. The density plots in the (x1, x2)-coordinate system of the tumor cell distributions in
Figure 1 (χ = 0.0).
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Fig. 3. The total populations in the case without haptotaxis (χ = 0.0):
∫
Ω p(x, t)dx,∫

Ω f(x, t)dx,
∫
Ω m(x, t)dx,

∫
Ω w(x, t)dx as functions of time. The total tumor mass eventually

shrinks to a very low value.
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Fig. 4. The normalized tumor cell density for various times in the case with haptotaxis (χ =
0.4). The tumor expands more rapidly and asymmetrically as it increases in total mass.

tumor spreads much more rapidly and asymmetrically (Figures 4 and 5) as the total
tumor cell population increases (Figure 6) for a time. The distinction of the two
cases demonstrates the importance of haptotaxis in the ability of tumors to invade
surrounding tissue.

7. Summary. In Theorem 1.1 we have proven the existence of unique classi-
cal global solutions to the model of tumor growth (H1)–(H6). The model describes
the spatial invasion of a tumor mass into its surrounding extracellular matrix. A
key feature of the model is that the migration of tumor cells is due primarily to
haptotaxis-directed movement. The interpretation of haptotaxis in tumor growth
is that cell movement is controlled by the differential strengths of cell-cell adhesion
gradients. Haptotaxis differs from chemotaxis in that the directed migration of the
tumor cells toward concentrations of the extracellular macromolecules is mediated by
a diffusive enzyme produced by the tumor cells. This enzyme degrades the matrix
macromolecules, which produce the oxygen essential for tumor growth, and thus alters
patterns of tumor movement and proliferation. The haptotaxis process in the model
produces technical complications, but also yields the regularity of solutions essential
in the analysis. We have demonstrated the role of haptotaxis in two numerical exam-
ples. In the first example, without haptotaxis, the only spatial movement of tumor
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Fig. 5. The density plots in the (x1, x2)-coordinate system of the tumor cell distributions in
Figure 4 (χ = 0.4).
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Fig. 6. The total populations in the case with haptotaxis (χ = 0.4):
∫
Ω p(x, t)dx,

∫
Ω f(x, t)dx,∫

Ω m(x, t)dx,
∫
Ω w(x, t)dx as functions of time. The total tumor mass grows for an interval of time.

cells is due to cell motility modeled by diffusion. In this example the tumor invades
slowly and decreases in total tumor mass. In the second example, with all parame-
ters the same as in the first example, but with the addition of haptotaxis, the tumor
invades more rapidly and with increasing total tumor mass. Both examples show the
characteristic interior necrosis of tumor cells due to exhaustion of the oxygen supply,
but the effect is much more pronounced with haptotaxis. The utilization of oxygen by
the tumor cell population is critical in understanding the distinction of the two exam-
ples. If the oxygen concentration is constant in time, then the evolution of the total
tumor mass is independent of haptotaxis. If the oxygen concentration evolves in time
due to tumor consumption and degradation of its source, then haptotaxis-directed
spatial migration enables a more efficient utilization of the environmental resources
and results in a more aggressive invasion of the tumor into the surrounding tissue.
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THE DISTRIBUTION OF SURFACE SUPERCONDUCTIVITY
ALONG THE BOUNDARY: ON A CONJECTURE OF X. B. PAN∗

YANIV ALMOG† AND BERNARD HELFFER‡

Abstract. We consider the Ginzburg–Landau model of superconductivity in two dimensions in
the large κ limit. For applied magnetic fields weaker than the onset field HC3 but greater than HC2

it is well known that the superconductivity order parameter decays exponentially fast away from
the boundary. It has been conjectured by X. B. Pan that this surface superconductivity solution
converges pointwise to a constant along the boundary. For applied fields that are in some sense
between HC2 and HC3 , we prove that the solution indeed converges to a constant but in a much
weaker sense.
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1. Introduction. The Ginzburg–Landau energy functional of superconductivity
is given in the form

J (Ψ, A) =

∫
Ω

(
−|Ψ|2 +

|Ψ|4
2

+ |h− hex|2 +

∣∣∣∣
(
i

κ
∇ + A

)
Ψ

∣∣∣∣
2
)

dx1dx2,(1.1)

in which Ω ⊂⊂ R
2 is smooth, and Ψ is the (complex) superconducting order pa-

rameter, such that |Ψ| varies from |Ψ| = 0 (when the material is at a normal state)
to |Ψ| = 1 (for the purely superconducting state). The magnetic vector potential is
denoted by A (the magnetic field is, then, given by h = ∇× A), hex is the constant
applied magnetic field, and κ is the Ginzburg–Landau parameter which is a property
of the material. The functional J is invariant under the gauge transformation

Ψ → eiκηΨ, A → A + ∇η,(1.2)

where η is a smooth function. We focus here on the properties, for a given hex, of the
global minimizers1 (Ψκ, Aκ) of J in H1(Ω,C)×H1(Ω,R2) for type II superconductors
(for which κ > 1/

√
2). Note that every global minimizer actually represents an orbit

of minimizers associated to the group of transformations (1.2).

1.1. The onset of superconductivity. It is known both from experiments
[18] and rigorous analysis [13] that for a sufficiently strong magnetic field the normal
state (Ψ ≡ 0, h = hex) would prevail. If the field is then decreased, there is a
critical field, depending on the sample’s geometry, where the material would enter the
superconducting state. For samples with boundaries, this field is known as the onset
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‡Laboratoire de Mathématiques, Université de Paris XI (Paris-Sud), 91405 Orsay, France (ber-

nard.helffer@math.u-psud.fr).
1We could have actually written more precisely (Ψκ,hex , Aκ,hex ) but will omit the reference to
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critical field (or nucleation field) and is called HC3
. This leads to the definition (cf.

[19, 15, 10], for instance)

HC3(κ) = inf{hex > 0 : (0, Â) is the unique global minimizer of J },(1.3)

where Â : Ω → R
2 satisfies ∇ × Â = hex. The minimizer (0, Â) is unique in the

sense that any other minimizer is gauge equivalent to it, i.e., it should be in the form
(0, Â + ∇η). We note that for our choice of scaling in (1.1) we have HC3 ∼ κ

β0
as

κ → ∞ for smooth Ω [17], where β0 is approximately 0.59.
The simplest case in which the bifurcation from the normal state (0, Â) to the

superconducting one was described is the case of a half-plane [20]. The analysis in
this case is one dimensional: the linearized Ginzburg–Landau equations were solved
on R+. A similar situation occurs in two dimensions: it was proved in [17] and [7] that
the bifurcating mode in R

2
+ is one dimensional and that the value of HC3 is exactly

the same as in the one-dimensional case.
In addition, Saint-James and de Gennes [20] found that superconductivity ap-

pears first near the boundary for a half-plane, i.e., the order parameter Ψκ decays
exponentially fast away from the boundary. This phenomenon, which appears only in
the presence of boundaries, is therefore called surface superconductivity. It was later
proved for general two-dimensional domains with smooth boundaries [17, 7], that as
the domain’s scale tends to infinity the onset field tends to de Gennes’ value, and that
Ψκ decays exponentially fast away from the boundary.

Another related problem that has been considered in the literature is the distri-
bution of |Ψκ| along the boundary near the critical field. In [4], this distribution was
formally obtained. This led to the conjecture that |Ψκ| should be maximal at the
point of maximal curvature along the boundary. This was indeed proved a few years
later [15, 16, 11, 12]. Furthermore, it was shown that Ψκ decays exponentially fast
away from the points of maximal curvature along the boundary.

1.2. Weakly nonlinear analysis. Suppose now that hex is further decreased
below HC3 . While the minimizer Ψκ still decays exponentially fast away from the
boundary much after the nucleation in the highly nonlinear regime when κ < hex <
HC3 [1, 19, 2], the exponential decay along the boundary disappears quite rapidly as
hex decreases. More precisely, if we introduce the distance to the nucleation field ρ by

ρ(κ) = HC3(κ) − hex,

then exponential rate of decay along the boundary (far from the points of maximal
curvature) is guaranteed only when

ρ(κ) −−−→
κ→∞

0.

Furthermore, it was proved in [10] that if ρ satisfies

lim
κ→∞

ρ(κ) = ∞; lim
κ→∞

ρ(κ)

κ1/2
= 0,

then there exists u ∈ S(R+) such that∫
Ω

∣∣∣∣|Ψκ(x)|2 − ρ

κ
u

(
κ√
λ
t(x)

)∣∣∣∣
2

dx = o(ρκ−3),(1.4)

where t = d(x, ∂Ω), λ = κ/hex.
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This leaves open the situation when ρ(κ)/κ
1
2 does not tend to 0 as κ → ∞ and

in particular becomes of the order of κ
1
2 . It is this last case which will be considered

in this article.

1.3. Highly nonlinear analysis: Pan’s conjecture. Given some λ ∈]β0, 1[,
let (κn, h

n
ex)n∈N denote a pair of sequences satisfying

lim
n→+∞

κn = ∞; lim
n→+∞

κn

hn
ex

= λ.

In the above β0 = limκ→∞ κ/HC3(κ) (we provide a better definition of β0 in the
next section). In [19, Conjecture 1], Pan conjectures the existence of a function
]β0, 1[
 λ �→ C(λ) ∈ R

+ such that, for any sequence as above,

|Ψκn
(x)| → C(λ) ∀x ∈ ∂Ω.(1.5)

While the conjecture appears to be correct in its essence—any minimizer, as the
results in [10] and in the present contribution suggest, does tend in some weak sense
to a constant along the boundary—we believe that either the convergence assumed
in (1.5) cannot be uniform, or else that the global minimizer must be discontinuous
in hex and κ. Let us sketch the heuristic arguments supporting this belief. We first
write the Euler–Lagrange equations associated with (1.1) (or the Ginzburg–Landau
equations): (

i

κ
∇ + Aκ

)2

Ψκ = Ψκ

(
1 − |Ψκ|2

)
,(1.6a)

−∇×∇×Aκ =
i

2κ
(Ψ∗

κ∇Ψκ − Ψκ∇Ψ∗
κ) + |Ψκ|2Aκ.(1.6b)

If |Ψκ| > 0 for all x ∈ ∂Ω (and this is indeed the case if we assume uniform convergence
in (1.5)), then we can divide (1.6b) by |Ψκ|2 and integrate over ∂Ω (the measure on
∂Ω being denoted by ds), to obtain the existence of an integer N(Ψκ) such that∫

∂Ω

∇× (hκ − hex)

|Ψ|2 ds +

∫
Ω

hκ dx =
2π

κ
N(Ψκ),

where hκ = ∇ × Aκ is the induced magnetic field. The integer N(Ψκ) ∈ Z is the
winding number (or the degree) of Ψκ around ∂Ω, which is invariant under the trans-
formation (1.2) since η must be smooth.

In [9] it is proved that Ψκ vanishes at isolated points or curves which should end
on ∂Ω. If |Ψκ| does not vanish on the boundary, as implied by (1.5), then it is clear
that Ψκ can vanish only at isolated points. Thus, we can conclude that N(Ψκ) is the
number of vortices of Ψκ, including multiplicities, in Ω.

In [16], it is proved (see [19] for an extension to the case which is considered here)
that, for any ε0 > 0, there exist C > 0 and κ0, such that, if κ/hex ∈ [β0 + ε0, 1 − ε0]
and κ ≥ κ0, then

‖h− hex‖L∞(Ω) + ‖∇(hκ − hext)‖L∞(Ω) ≤ C.

Hence there exists a constant C such that∣∣∣∣N(Ψκ) − κhex
|Ω|
2π

∣∣∣∣ ≤ Cκ.(1.7)
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Suppose now that the minimizer is unique when varying hex and κ as above. It
is in this case reasonable to think that (Ψκ, Aκ) varies continuously. If there exist κ0,
ε1 > 0 and C > 0 such that

|Ψκ| ≥
1

C
on ∂Ω ∀κ ≥ κ0 s. t.

κ

hex
∈ [λ− ε1, λ + ε1]

(which would be a consequence of a uniform version of (1.5)), then N(Ψκ) must be
fixed, by continuity, for all κ ≥ κ0 such that κ/hex ∈ [λ − ε1, λ + ε1], and this is in
contradiction with (1.7).

The above argument works not only for (ψκ, Aκ) but for any solution of (1.6). If
indeed critical points of (1.1) are continuous functions of κ and hex in this regime,
then (1.7) would contradict another conjecture of Pan (Conjecture 2 in [19]), implying
that any solution of (1.6) converges to a constant along the boundary when κ → ∞
and κ/hex ∈ (β0, 1). While the existence of continuous branches of critical points
appears to be reasonable, two counterexamples come to mind while discussing the
continuity of the global minimizer.

1. Serfaty [21] proves, for much lower external fields, that a large number of local
minimizers of (1.1) in a disc, characterized by different winding numbers, exist
for sufficiently large κ whenever 1

Cκ−1 ≤ hex ≤ Cκα−1 for some 0 < α < 1. In
this regime of applied magnetic field values the magnetic field is nonuniform
inside the domain, and hence the vortices are kept near the disc’s center,
which minimizes the magnetic field term in (1.1).
While in the present case hex and κ have the same order, if we allow for an
O(1) change in the applied magnetic field we might still encounter a global
minimizer which turns into a local minimizer (or a critical point) and vice
versa. Thus, this result suggests that the contradiction between (1.7) and the
convergence to a uniform constant along the boundary might be explained by
arguing that the global minimizer is discontinuous. However, unlike the case
discussed in [21], no equivalent mechanism which keeps the vortices away from
the boundary is presently known as the magnetic field uniformly converges
to hex in Ω [2].

2. Bauman, Phillips, and Tang [3] found radially symmetric solutions of the
linearized version of (1.6). These solutions are characterized by a “fat” vortex
at the disc’s center. The degree of the vortex is determined, to leading order
in the large κ limit, by the magnetic flux through the disc. Thus, there
is a sequence of critical flux values where the bifurcating mode changes its
winding number. It is shown in [3] that the bifurcating mode is locally stable
near the bifurcation for κ large enough.
Based on the results in [3] one can argue that the minimizer undergoes an
abrupt change when the flux varies around one of the above critical val-
ues (and when κ is appropriately tuned to guarantee that weakly nonlinear
analysis still holds). However, this result seems to follow from the special
geometry, and, in general, for different geometries or away from the linear
regime, nothing would hold the vortices in the center.

1.4. Statement of the main result. In the present contribution we focus on
the case

lim
κ→∞

hex(κ)

κ
=

1

λ
,
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with λ close to β0. We prove the following theorem.
Theorem 1.1. Let δ > 0 be sufficiently small, so that t = d(x, ∂Ω) is a smooth

function of x for 0 ≤ t ≤ δ, and let

Ωδ =
{
x ∈ Ω̄ : d(x, ∂Ω) ≤ δ

}
.

Then there exist ε > 0, a function

[0,+∞[×]β0, β0 + ε[
 (τ, λ) �→ U(τ, λ) ∈ R
+,

a constant C > 0, and κ0, such that, for κ ≥ κ0 and hex = κ
λ with λ ∈]β0, β0 + ε[,

∫
Ωδ

[
|Ψκ(x)|2 − U

(
κ√
λ
t(x), λ

)]2
dx1dx2 ≤ C

κ2
,(1.8a)

∫
∂Ω

[ ∣∣Ψκ

/
∂Ω

∣∣2 − U(0, λ)
]2

ds ≤ C

κ1/2
.(1.8b)

The function U(τ, λ) is defined for τ ∈ R+ by

U(τ, λ) = |fζ(λ)(τ ;λ)|2,

where fz(τ ;λ) and ζ(λ) are associated to minimizers of a family of one-dimensional
problems, which will be analyzed in section 2. The second statement in the theorem
gives the L2(∂Ω) convergence of |Ψκ|2 to a constant and is consequently a weak form
of Pan’s conjecture.

The rest of the contribution is arranged as follows.
In section 2 we consider a one-dimensional differential operator and prove that it

is positive for β0 < λ < β0 + ε. In section 3 we use the results of section 2 to analyze
a simplified two-dimensional minimization problem, which was proved in [19] to be
a good approximation of the full Ginzburg–Landau model for β0 < λ < 1. The last
section gives the proof of Theorem 1.1.

2. A one-dimensional problem. Let

β(z) = inf
φ∈H1

mag(]0,∞[)\{0}

∫∞
0

|φ′(τ)|2 + (τ + z)2|φ(τ)|2 dτ∫∞
0

|φ(τ)|2 dτ
.(2.1)

Here

H1
mag (]0,+∞[) = {u ∈ L2 (]0,+∞[) , u′ ∈ L2 (]0,+∞[) and τu ∈ L2 (]0,+∞[)}.

It is well known (see [5]) that β(z) has a unique local minimum at z0 < 0, where

β(z0) = β0 = z2
0 .

Furthermore, β(z) −−−→
z→∞

∞ and β(z) −−−−→
z→−∞

1. Clearly, for β0 < λ < 1 there exist

z1(λ) < z0 < z2(λ), such that

]z1(λ), z2(λ)[ = β−1([β0, λ[).

It is also easy to show [6] that

β′′(z0) = −2z0φ
2(0) > 0,(2.2)

where φ is the minimizer of (2.1) whose L2(R+) norm is unity.
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Let fz(τ ;λ) denote the minimizer of

Ez,λ(φ) =

∫ ∞

0

|φ′(τ)|2 + (τ + z)2|φ(τ)|2 +
λ

2
|φ(τ)|4 − λ|φ(τ)|2 dτ(2.3)

in H1
mag(]0,∞[). The Euler–Lagrange equation associated with (2.3) is

−f ′′
z (τ ;λ) + (τ + z)2fz(τ ;λ) = λfz(τ ;λ)(1 − fz(τ ;λ)2).(2.4)

It has been proved in [19, Theorems 3.1 and 3.3] that whenever z1(λ) < z < z2(λ),
there exists a unique positive global minimizer to (2.3). Furthermore, let

b(z, λ) = inf
ϕ∈H1

mag(]0,∞[)
Ez,λ(ϕ).(2.5)

Then there exists ζ(λ) ∈ ]z1(λ), z2(λ)[, where z �→ b(z, λ) attains its minimum over R,

b(ζ(λ), λ) = inf
z
b(z, λ).

Moreover, ∫ ∞

0

(τ + ζ(λ))|fζ(λ)(τ ;λ)|2 dτ = 0.(2.6)

Remark 2.1. Note that when z �∈ ]z1(λ), z2(λ)[, then b(z, λ) = 0, and the mini-
mizer of Ez,λ is the 0-function. In particular,

b(ζ(λ), λ) < 0 if λ > β0.

The following lemma will play a crucial role in the analysis of the two-dimensional
problem in section 3.

Lemma 2.2. Let

γ(α, λ) = inf
φ∈H1

mag(]0,∞[)

∫∞
0

|φ′(τ)|2 + (τ + ζ + α)2|φ(τ)|2 − λ(1 − fζ(τ ;λ)2)|φ(τ)|2 dτ∫∞
0

|φ(τ)|2 dτ
,

(2.7)

with ζ = ζ(λ).
Then there exists ε > 0 such that, for λ ∈ [β0, β0 + ε[,

min
α∈R

γ(α, λ) = 0.(2.8)

Proof. We divide the proof into three steps.
Step 1. γ(0, λ) = γα(0, λ) = 0.
Let R+ 
 τ �→ u(τ ;α, λ) denote the positive minimizer of (2.7), whose L2(R+)

norm is one. Then u satisfies

−u′′(τ ;α, λ) + (τ + α + ζ)2u(τ ;α, λ)

− λ(1 − fζ(τ ;λ)2)u(τ ;α, λ) = γ(α, λ)u(τ ;α, λ),(2.9a)

u′(0;α, λ) = 0.(2.9b)
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For α = 0, we multiply (2.9a) by fζ and integrate over R+ to obtain

γ(0, λ)

∫ ∞

0

fζ(τ ;λ)u(τ ;α, λ) dτ = 0.

Since both u and fζ are positive, we have using (2.4),

γ(0, λ) = 0, u(τ, 0, λ) =
fζ(τ ;λ)

‖fζ‖2
,(2.10)

where, for p ∈ [1,+∞], ‖ · ‖p = ‖ · ‖Lp(R+). Next, we differentiate (2.9) with respect
to α to obtain, having in mind (2.4),

− u′′
α + (τ + α + ζ)2uα − λ(1 − f2

ζ )uα = γuα + γαu− 2(τ + α + ζ)u,(2.11a)

u′
α(0) = 0,(2.11b)

where uα(τ ;α, λ) = ( ∂u
∂α )(τ ;α, λ) and γα(α, λ) = ∂γ

∂α (α, λ). Multiplying (2.11a) by u
and integrating by parts, we obtain

γα(α, λ) = 2

∫ ∞

0

(τ + α + ζ(λ))|u(τ ;α, λ)|2 dτ.(2.12)

In view of (2.6) and (2.10), we thus have

γα(0, λ) = 0.(2.13)

Step 2.

∃ε1 > 0 : λ < β0 + ε1 ⇒ γαα(0, λ) >
1

2
β′′(z0) > 0.(2.14)

To prove the above statement we notice that z1(λ) ↑ z0 and z2(λ) ↓ z0 as λ → β0.
Hence, since z1(λ) < ζ(λ) < z2(λ), we have

ζ(λ) −−−−→
λ→β0

z0.(2.15)

Moreover, one gets from the fact that fz is a minimizer the property that

Ez,λ(fz) ≤ 0.

From this inequality and (2.1) we easily obtain

1

2
||fz||44 ≤ (λ− β0)

λ
||fz||22,

||(τ + z)fz||22 ≤ λ||fz||22,(2.16)

and

||fz||2H1 ≤ (λ + 1)||fz||22.

Let z = ζ(λ). Since |ζ(λ)| is bounded in some right semineighborhood of β0, it follows
immediately from (2.16) that for R large enough we get

||fζ ||22 ≤ 2||fζ ||2L2(]0,R[).
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We now observe that

||fζ ||44 ≤ C(λ− β0)||fζ ||2L2(]0,R[) ≤ C(λ− β0)R
1
2 ||fζ ||24.

This first gives that

||fζ ||4 ≤ C̃(λ− β0)
1
2 ,

and hence that

||fζ ||2 ≤ Ĉ(λ− β0)
1
2 .

By interpolation, we obtain

||fζ ||∞ ≤ C||fζ ||
1
2
2 ||f ′

ζ ||
1
2
2 ≤ C ′(λ− β0)

1
4 ,(2.17)

which implies that

lim
λ→β0

‖fζ(λ)( · ;λ)‖∞ = 0.

Substituting the above and (2.15) into (2.7) yields

γ(α, λ) −−−−→
λ→β0

β(α + z0),

where the convergence is uniform on every compact set in R. Since γ is holomorphic
in α, its derivatives must uniformly converge as well, and hence

γαα(α, λ) −−−−→
λ→β0

β′′(α + z0),(2.18)

from which (2.14) easily follows. We note that a tedious calculation shows that

γαα(0, λ) = −2ζ
f2
ζ (0;λ)

‖fζ‖2
2

+
6λ2

‖fζ‖2
2

∫ ∞

0

f6
ζ (τ ;λ) dτ − 2λ

3

∫ ∞

0

f4
ζ (τ ;λ)[λ− (τ + ζ)2]dτ,

with ζ = ζ(λ), from which one can easily prove (2.14) as well.

From (2.14) we obtain that

∃α0 > 0 : λ < β0 + ε1 ⇒ γ(α, λ) ≥ 0 ∀|α| ≤ α0.

The last step would thus be to prove the above statement for |α| > α0.

Step 3. Proof of (2.8).

From the definition of γ (2.7), it follows that

γ(α, λ) ≥ β(ζ + α) − λ.

Clearly, for any α1 > 0, there exists ε2 > 0, such that, if λ ≤ β0 + ε2, then
[z1(λ), z2(λ)] ⊂ [z0−α1, z0 +α1]. We now take α1 = α0. This gives that β(ζ +α) ≥ λ
for all |α| ≥ α0, and (2.8) follows.
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3. On two-dimensional models on half cylinders. We can now prove the
following theorem.

Theorem 3.1. For ω ∈]0,+∞[ and λ ∈ [β0,+∞[, let us consider the functional

Hω 
 ψ �→ Eω(ψ, λ) =

∫ π/ω

−π/ω

∫ ∞

0

[
|(i∇ + ξ1î2)ψ|2 +

1

2
λ|ψ|4 − λ|ψ|2

]
dξ1dξ2,(3.1)

where

|(i∇ + ξ1î2)ψ|2 = |i∂ξ1ψ|2 + |(i∂ξ2 + ξ1)ψ|2,

and

Hω =
{
ψ ∈ H1

mag

(
R+×] − L,L[,C

)
∀L > 0

∣∣
∃z ∈ R : ψ(ξ1, ξ2 + 2π/ω) = e−iz 2π

ω ψ(ξ1, ξ2)
}
.

Let ψλ be the function

(R+ × R) 
 (ξ1, ξ2) �→ ψλ(ξ1, ξ2) := e−iζ(λ)ξ2fζ(λ)(ξ1;λ).(3.2)

Then there exists ε > 0 such that

Eω(ψ, λ) ≥ Eω(ψλ, λ) ∀λ ∈]β0, β0 + ε[, ∀ω > 0, and ∀ψ ∈ Hω.(3.3)

Remark 3.2. Clearly ψλ is in Hω (take z = ζ(λ)). Hence, the theorem states that
ψλ is the global minimizer of Eω in Hω.

Proof. Consider first functions in Hω which are given in the form

(ξ1, ξ2) �→ ψ(ξ1, ξ2) := fζ(ξ1;λ)e−iζξ2v,(3.4)

with v periodic,

v(ξ1, ξ2) = v(ξ1, ξ2 + 2π/ω),(3.5)

and

ζ = ζ(λ).

Then

Eω(ψ, λ) =

∫ π/ω

−π/ω

∫ ∞

0

[
|(i∇ + (ξ1 + ζ )̂i2)fζv|2 +

1

2
λ|fζv|4 − λ|fζv|2

]
dξ1dξ2.

Clearly,

∫ π/ω

−π/ω

∫ ∞

0

|(i∇ + (ξ1 + ζ )̂i2)fζv|2 dξ1dξ2

=

∫ π/ω

−π/ω

∫ ∞

0

[
|v|2
[
|f ′

ζ |2 + (ξ1 + ζ)2|fζ |2
]
+ f2

ζ |∇v|2 +
1

2
(f2

ζ )′
∂

∂ξ1
(|v|2)

+ i(ξ1 + ζ)f2
ζ

(
v̄
∂v

∂ξ2
− v

∂v̄

∂ξ2

)]
dξ1dξ2.
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Furthermore, integration by parts and (2.4) yield

(3.6)

∫ π/ω

−π/ω

∫ ∞

0

[
|v|2
[
|f ′

ζ |2 + (ξ1 + ζ)2|fζ |2
]
+

1

2
(f2

ζ )′
∂

∂ξ1
(|v|2)

]
dξ1dξ2

= λ

∫ π/ω

−π/ω

∫ ∞

0

|v|2f2
ζ (1 − f2

ζ ) dξ1dξ2.

Hence,

ΔEω = Eω(ψ, λ) − Eω(fζe
−iζξ2 , λ)

=

∫ π/ω

−π/ω

∫ ∞

0

f2
ζ

[
|∇v|2 + i(ξ1 + ζ)

(
v̄
∂v

∂ξ2
− v

∂v̄

∂ξ2

)]
dξ1dξ2

+
1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)4(1 − |v(ξ1, ξ2)|2)2 dξ1dξ2.

Using (3.5), we can write

v(ξ1, ξ2) =

∞∑
n=−∞

vn(ξ1)e
inωξ2 .

Then

(3.7) ΔEω =

∞∑
n=−∞

∫ ∞

0

fζ(ξ1;λ)2
[
|v′n(ξ1)|2 + (n2ω2 + 2nωξ1)|vn(ξ1)|2

]
dξ1

+
1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)4(1 − |v(ξ1, ξ2)|2)2 dξ1dξ2.

Consider now the functional

u �→ J(u, α) =

∫ ∞

0

|fζ(ξ1;λ)|2
[
|u′(ξ1)|2 + [α2 + 2α(ξ1 + ζ)]|u(ξ1)|2

]
dξ1.

Substituting w(ξ1) = fζ(ξ1;λ)u(ξ1) and utilizing (2.4), we obtain∫ ∞

0

|fζ(ξ1)|2|u′(ξ1)|2 dξ1 =

∫ ∞

0

[
−
(
w2

f ′
ζ

fζ

)′

+ w2
f ′′
ζ

fζ
+ |w′|2

]
dξ1

=

∫ ∞

0

[
|w′|2 + [(ξ1 + ζ)2 − λ(1 − f2

ζ )]|w|2
]
dξ1.

Consequently,

J(w/fζ , α) =

∫ ∞

0

(
|w′|2 + [(ξ1 + ζ + α)2 − λ(1 − f2

ζ )]|w|2
)
dξ1 ≥ γ(α, λ)

∫ ∞

0

|w|2 dξ1.

Combining the above with (3.7), we obtain

ΔEω ≥
∞∑

n=−∞
γ(nω, λ)

∫ ∞

0

f2
ζ |vn|2 dξ1 +

1

2

∫ π/ω

−π/ω

∫ ∞

0

f4
ζ (1 − |v|2)2 dξ1dξ2 ≥ 0,

which proves, using (2.8), inequality (3.3) for every function in Hω satisfying (3.4).
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Note for later use that this implies

|Eω(ψ, λ) − Eω(fζ e
−iζξ2 , λ)| ≥ 1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)4(1 − |v(ξ1, ξ2)|2)2 dξ1dξ2.

(3.8)

To prove (3.3) for all ψ ∈ Hω, we consider now functions of the form

(ξ1, ξ2) �→ ψ0(ξ1, ξ2) = fζ(ξ1;λ)e−izξ2v, with v(ξ1, ξ2) = v(ξ1, ξ2 + 2π/ω).(3.9)

Consider first the case when ω ∈ R+ satisfies

ζ − z

ω
=

p

q
for some pair (p, q) ∈ Z × N.(3.10)

Clearly, if ψ0 satisfies (3.9) for some ω ∈ R+, then it also satisfies (3.9) for ω/q̂, for
every q̂ ∈ (N \ {0}). Moreover, it is easy to show that

Eω/q̂(ψ0) = q̂Eω(ψ0), Eω/q̂(ψλ) = q̂Eω(ψλ).(3.11)

We now choose q̂ = q, and observe that, according to (3.10), ω̂ = ω/q satisfies

ζ − z

ω̂
∈ Z.(3.12)

But in this case, ψ0 admits the representation (3.4), and hence

Eω̂(ψ0) ≥ Eω̂(ψλ).

Coming back to ω and using (3.11), we have the proof of (3.3) when ω satisfies (3.10)
(with the additional condition that z is fixed).

The proof of (3.3) in the general case follows immediately from the density of the
rational numbers in R.

4. Surface superconductivity. Let J be given by (1.1). Let (Ψκ, Aκ) denote
a minimizer of J in H1(Ω,C) × H1(Ω,R2). We prove in this section that |Ψκ|2 is
nearly a constant along the boundary, in L2(∂Ω) sense, as κ → ∞, and for

β0 < λ =
κ

hex
< β0 + ε,

where ε is defined in (2.8).
To this end we need to adapt the results in [19]. Then let

x = F(t, s)(4.1)

denote a diffeomorphism from

D(δ) = {(s, t) : |s| ≤ |∂Ω|/2, 0 ≤ t ≤ δ}

to

Ωδ =
{
x ∈ Ω̄ : d(x, ∂Ω) ≤ δ

}
.

In the previous equation t = d(x, ∂Ω) and s denotes the arclength along ∂Ω.
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In order to formulate and prove the results of this section it is necessary to fix a
specific gauge for (ψκ, Aκ). To this end we first define the magnetic potential Pκ to
be the solution of ⎧⎪⎨

⎪⎩
∇× Pκ = ∇×Aκ − hex in Ω,

∇ · Pκ = 0 in Ω,

Pκ · ν̂ = 0 in ∂Ω

(4.2)

(see, for example, [8] for the proof of existence of a unique solution for (4.2)). More-
over, the map associating the solution Pκ of (4.2) to the field (hκ − hex) is linear
continuous from Lp(Ω) into W 1,p(Ω) for any p ∈ [1,+∞[, and, using the Sobolev
injection theorem, one can show that

||Pκ||L∞(Ω) ≤ CΩ ||∇ ×Aκ − hex||L∞(Ω).(4.3)

Then let e1 = −ν̂ denote an inward unit normal vector on ∂Ω and let e2 denote a
unit tangential vector. Further, let

g = Det(DF) = 1 − tκr(s),

where κr denotes the local curvature on ∂Ω. Let (see [19]) F be any vector potential
such that ∇× F = hex and let a be defined by

a = a1e1 + a2e2 = [F · e1]e1 + [gF · e2]e2.(4.4)

By [14], or the appendix in [12], there exists Âκ such that if we substitute F = Âκ in
(4.4), we obtain

a1(s, t) = 0; a2(s, t) = hex[c2 + t− t2κr(s)],

where

c2 =
|Ω|
|∂Ω| .

The gauge in (1.2) is now fixed by the condition that the Âκ has in the new coordinates
the normal form given above and that Aκ satisfies

Aκ − Âκ = Pκ.

We now introduce the change of variables

(ξ1, ξ2) =

(
κ√
λ
t,

κ√
λ
s

)
(4.5)

and prove the following lemma.
Lemma 4.1. Let

Ψ̃κ(ξ1, ξ2) =

⎧⎨
⎩

Ψκ(
√
λ
κ ξ1,

√
λ
κ ξ2)e

−ic2ξ2 for 0 ≤ ξ1 ≤ κ√
λ
δ,

Ψκ(κδ/
√
λ, ξ2)e

−ic2ξ2e−(ξ1−κδ/
√
λ) for ξ1 ≥ κ√

λ
δ,

where c2 = c2(Ω), and let

ωκ =
2π

√
λ

κ|∂Ω| .
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Then, as κ tends to +∞,

J (Ψκ, Aκ) ≥ 1

κ2
Eωκ(Ψ̃κ, λ) + O(1/κ2).(4.6)

We will later prove (see (4.18)), that
∣∣Eωκ(Ψ̃κ, λ)

∣∣ ≥ Cκ, and hence the correction
term on the right-hand side of (4.6) is much smaller than the first term as κ → ∞.

Proof. In [2] (see also [16]) it was proved that for λ < 1, there exists μ > 0 such
that

|∇(∇×Aκ)| ≤ Ce−μκd(x,∂Ω).(4.7)

Consequently, for x ∈ Ωδ, we have

|∇ ×Aκ − hex| (x) ≤
∫ d(x,∂Ω)

0

|∇(∇×Aκ)(t, s(x))|dt ≤ C

∫ ∞

0

e−μκtdt.

Hence, there exists C1 > 0 such that

‖∇ ×Aκ − hex‖L∞(Ωδ) ≤
C1

κ
.

In view of (4.7) we can state the above inequality for the L∞(Ω) norm of ∇×Aκ−hex,
and thus (4.3) gives that, for some C2 > 0,

‖Aκ − Âκ‖L∞(Ω) ≤
C2

κ
.

Hence, for some C3 > 0, ∫
Ω

|∇ ×Aκ − hex|2 dx1dx2 ≤ C3

κ2
,(4.8)

and

∫
Ω

∣∣∣∣
(
i

κ
∇ + Aκ

)
Ψκ

∣∣∣∣
2

dx =

∫
Ω

∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣
2

dx

+

∫
Ω

|Ψκ|2|Aκ − Âκ|2 dx +

∫
Ω

(Aκ − Âκ) ·
[
i

κ
(Ψκ∇Ψκ − Ψκ∇Ψκ) + 2Âκ

]
dx

≥
∫

Ω

∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣
2

dx −2||Aκ−Âκ||L∞(Ω) ||Ψκ||L∞

∫
Ω

∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣ dx.
In [2] it is shown that

|Ψκ| +
∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣ ≤ Ce−μκd(x,∂Ω)(4.9)

for some μ > 0 when λ < 1. Hence,

∫
Ω

∣∣∣∣
(
i

κ
∇ + Aκ

)
Ψκ

∣∣∣∣
2

dx ≥
∫

Ω

∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣
2

dx − C

κ2
.(4.10)
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Combining (4.8) and (4.10) we obtain

J (Ψκ, Aκ) ≥
∫

Ω

(∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣
2

+
1

2
|Ψκ|4 − |Ψκ|2

)
dx − C

κ2
.(4.11)

Using the coordinates (4.1) we obtain

∫
Ωδ

(∣∣∣∣
(
i

κ
∇ + Âκ

)
Ψκ

∣∣∣∣
2

+
1

2
|Ψκ|4 − |Ψκ|2

)
dx1dx2

=

∫
D(δ)

{
1

κ2

∣∣∣∣∂Ψκ

∂t

∣∣∣∣
2

+
1

g2

∣∣∣∣
(
i

κ

∂

∂s
+ a2

)
Ψκ

∣∣∣∣
2

+
1

2
|Ψκ|4 − |Ψκ|2

}
g dsdt.

Applying the transformation (4.5), we obtain∫ κδ√
λ

0

dξ1

∫ κ
2
√

λ|∂Ω|

−κ|∂Ω|
2
√

λ

dξ2
g̃

κ2

×

⎧⎨
⎩
∣∣∣∣∣∂Ψ̃κ

∂ξ1

∣∣∣∣∣
2

+
1

g̃2

∣∣∣∣∣
(
i
∂

∂ξ2
+ ξ1 − κr(s)

√
λ

κ
ξ2
1

)
Ψ̃κ

∣∣∣∣∣
2

+
1

2
λ|Ψ̃κ|4 − λ|Ψ̃κ|2

⎫⎬
⎭ ,

where g̃ is defined by

g̃(ξ1, ξ2) = 1 −
√
λ

κ
ξ1κr(

√
λξ2/κ).

Since by (4.9), there exist μ̃ > 0 and C̃ such that on [ 0, κδ√
λ

[ × ] − κ|∂Ω|
2
√
λ
, +κ|∂Ω|

2
√
λ

[,∣∣∣∣∣
(
i
∂

∂ξ2
+ ξ1 − κr(

√
λξ2/κ)

√
λ

κ
ξ2
1

)
Ψ̃κ

∣∣∣∣∣
2

+ |ξ1|2|Ψ̃κ|2 ≤ C̃ e−μ̃ξ1 ,

there exist μ > 0 and C such that∣∣∣∣
(
i
∂

∂ξ2
+ ξ1

)
Ψ̃κ

∣∣∣∣
2

≤ Ce−μξ1 .

We thus obtain

∫ κ√
λ
δ

0

dξ1

∫ κ
2
√

λ
|∂Ω|

− κ
2
√

λ
|∂Ω|

dξ2
1

g̃

∣∣∣∣∣
(
i
∂

∂ξ2
+ ξ1 − κr(

√
λξ2/κ)

√
λ

κ
ξ2
1

)
Ψ̃κ

∣∣∣∣∣
2

=

∫ ∞

0

dξ1

∫ κ
2
√

λ
|∂Ω|

− κ
2
√

λ
|∂Ω|

dξ2

∣∣∣∣
(
i
∂

∂ξ2
+ ξ1

)
Ψ̃κ

∣∣∣∣
2

+ O(1).

Using the above arguments for the remaining terms yields

J (Ψκ, Âκ) =
1

κ2

∫ κ√
λ
δ

0

dξ1

∫ κ
2
√

λ
|∂Ω|

− κ
2
√

λ
|∂Ω|

dξ2

×

⎛
⎝
∣∣∣∣∣∂Ψ̃κ

∂ξ1

∣∣∣∣∣
2

+

∣∣∣∣
(
i
∂

∂ξ2
+ ξ1

)
Ψ̃κ

∣∣∣∣
2

+
1

2
λ|Ψκ|4 − λ|Ψκ|2

⎞
⎠+ O(κ−2),
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so

J (Ψκ, Âκ) =
1

κ2
Eωκ(Ψ̃κ, λ) + O(κ−2).(4.12)

Combining (4.12) with (4.11) yields (4.6).
We can now prove the main result of this work.
Proof of Theorem 1.1. Let ψ̂λ,κ : Ωδ → C be given by

ψ̂λ,κ(x) = ψλ

(
κ√
λ
t(x)

)
exp

{
−ic2

(
κ√
λ
s(x)

)}
.

Further, let χ : R+ → [0, 1] denote a smooth cutoff function satisfying

χ(t) =

{
1 t ≤ 1

2 ,

0 t ≥ 1.

Then χ
(
t(x)/δ

)
ψ̂λ,κ(x) is in H1(Ω,C), and it is not difficult to show that

J (Ψκ, Aκ) ≤ J (ψ̂λ,κ, Âκ) = −Cλ|∂Ω|
κ
√
λ

+ O(κ−2),(4.13a)

where

Cλ = − ω

2π
Eω(ψλ, λ).(4.13b)

By Theorem 3.1 there exists ε > 0 such that, for β0 < λ < β0 + ε, we have, for all ω,

Cλ = − ω

2π
inf

ψ∈Hω

Eω(ψ, λ).(4.14)

Note that this implies, in particular,

Cλ = − lim
ω→0

ω

2π
inf

ψ∈Hω

Eω(ψ, λ).(4.15)

Combining (4.6) and (4.13) we obtain

J (Ψκ, Aκ) = −Cλ|∂Ω|
κ
√
λ

+ O(κ−2),(4.16)

In [19, Lemma 7.3], Pan proves (4.16), for any fixed β0 < λ < 1, by using as a
test functions the unknown minimizer of Eωκ in Hωκ instead of ψλ, and (4.15) as the
definition of Cλ. He also proves (4.16) when λ(κ) → λ (with λ(κ) = κ

hex(κ) ) but with

an additional O([λ(κ) − λ]/κ) error. Note that when λ = β0, this result is no more
useful since Cβ0 = 0 , and hence the leading order term of J is unknown in this case
(see [10] for results in this case).

By (2.5) and (3.3), we have

Cλ = −b(ζ(λ), λ),

which shows that Cλ > 0 for every β0 < λ < 1. Consequently, we have by (4.6) and
(4.16),

Eωκ(Ψ̃κ, λ) ≤ Eωκ(ψλ, λ) + C.(4.17)
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Thus, by (4.13b)

Eωκ(Ψ̃κ, λ) ≤ −Cλ
|∂Ω|√

λ
κ + C,

which proves that indeed ∣∣Eωκ(Ψ̃κ, λ)
∣∣ ≥ Cκ,(4.18)

and that the correction term on the right-hand side of (4.6) is much smaller than the
leading order term.

Let wκ be defined by

Ψ̃κ(ξ1, ξ2) = fζ(ξ1;λ)wκ(ξ1, ξ2) e
−ic2ξ2 .

Clearly, wκ is periodic in ξ2. Thus, by (3.8), we get

∣∣∣Eωκ
(Ψ̃κ, λ) − Eωκ

(ψλ, λ)
∣∣∣ ≥ 1

2

∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1 |fζ |4(1 − |wκ|2)2.

Consequently, there exists C0 > 0 such that∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1|fζ |4(1 − |wκ|2)2 ≤ C0,

and hence, for suitable constants C1 and C2,∫
Ωδ

[|Ψκ|2 − |ψ̂λ,κ|2]2 dx ≤ C1

κ2

∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1 |fζ |4(1 − |wκ|2)2 ≤ C2

κ2
,

which proves (1.8a).
To prove (1.8b), we first notice that it is proved in [2] that

|Ψκ| +
1

κ
|∇Ψκ| ≤ C,

and using the explicit form of ψ̂λ,κ, we obtain∣∣∇(|Ψκ|2 − |ψ̂λ,κ|2)
∣∣ ≤ Cκ.(4.19)

Evidently, as a consequence of the mean value formula, there exist C > 0 and δ0 > 0,
such that, for every 0 < δ′ ≤ δ0, there exists 0 ≤ δ′′ ≤ δ′ such that∫

t=δ′′

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

δ′

∫
Ωδ′

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
dx1dx2.

Furthermore, by (4.19), we have∫
∂Ω

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

∫
t=δ′′

[|Ψκ|2 − |ψ̂λ,κ|2]2 ds + Cκδ′′.

Consequently, there exists C > 0 such that∫
∂Ω

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

δ′
1

κ2
+ Cκδ′.

Choosing δ′ = κ−3/2 proves (1.8b).
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Finally, we compare Theorem 1.1 with the results in [10, Remark 1.5]. As was
already stated in the introduction, when ρ(κ) = o(κ1/2) and tends to ∞ as κ → +∞,
(1.4) holds. The function u in (1.4) is given by

u(τ) = β0
|u0(τ)|2
‖u0‖4

4

,

u0 denoting the minimizer of (2.1).
We first note that, since as λ → β0, we have

f2
ζλ

(τ) ∼ λ− β0

β2
0

u(τ),

and since

λ− β0

β2
0

∼ ρ

κ
as κ → ∞,

(1.4) and (1.8a) match. The error in (1.4) is substantially smaller than in (1.8a). The
difference is explained by the fact that ψκ itself is small on ∂Ω when λ → β0. Thus, if
we extrapolate the error term in (1.4) to external fields for which ρ/κ ≈ 1, it becomes
O(κ−2) exactly as in (1.8a).
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[17] K. Lu and X. B. Pan, Gauge invariant eigenvalue problems in R
2 and R

2
+, Trans. Amer.

Math. Soc., 352 (2000), pp. 1247–1276.
[18] W. Meissner and R. Ochsenfeld, Naturwissenschaften, 21 (1933), p. 787.
[19] X. B. Pan, Surface superconductivity in applied magnetic fields above Hc2 , Comm. Math.

Phys., 228 (2002), pp. 327–370.
[20] D. Saint-James and P. G. de Gennes, Onset of superconductivity in decreasing fields, Phys.

Lett., 7 (1963), pp. 306–308.
[21] S. Serfaty, Stable configurations in superconductivity: Uniqueness, multiplicity, and vortex-

nucleation, Arch. Ration. Mech. Anal., 149 (1999), pp. 329–365.



SIAM J. MATH. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 38, No. 6, pp. 1733–1759

QUASI-LINEAR THERMOELASTICITY SYSTEM ARISING IN
SHAPE MEMORY MATERIALS∗
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Abstract. In this paper we establish the global existence and uniqueness of a solution for the
three-dimensional and two-dimensional forms of the quasi-linear thermoelasticity system which arises
as a mathematical model of shape memory alloys. The system represents a multidimensional version
with viscosity and capillarity of the well-known Falk model for one-dimensional martensitic phase
transitions. In the setup considered by Paw�low and Zaja̧czkowski [Math. Methods Appl. Sci., 28
(2005), pp. 407–442; 551–592], some conditions have been required for the nonlinear term. In the
present paper we improve the result by imposing less restrictive assumptions.
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1. Introduction. We consider the following initial-boundary value problem in
quasi-linear thermoelasticity:

(TE)d

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
utt + κQQu− νQut = ∇ · F,ε(ε, θ),

[cv − F,θθ(ε, θ)θ]θt − kΔθ = θF,θε(ε, θ) : εt + ν(Aεt) : εt in ΩT ,

u = Qu = ∇θ · n = 0 on ST ,

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x) ≥ 0 in Ω,

where Ω ⊂ R
d (d = 2, 3) is a bounded domain with a smooth boundary ∂Ω, ΩT =

(0, T ] × Ω, and ST = [0, T ] × ∂Ω. Let u = (ui) ∈ R
d denote the displacement

vector, ε = (εij) with εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) the linearized strain tensor, θ the

absolute temperature, and F ∈ R the elastic energy density. The capillarity term
QQu with constant coefficient κ > 0 corresponds to interaction effects on phase
interfaces. The coefficients ν, cv, and k are positive constants corresponding to the
viscosity coefficient, caloric specific heat, and the heat conductivity, respectively.

We use the notation F,ε = ( ∂F
∂εij

), F,θ = ∂F
∂θ , and ε̃ : ε =

∑d
i,j=1 ε̃ijεij . We define

the linearized elasticity operator Q by the following second order differential operator:

Qu = μΔu + (λ + μ)∇(∇ · u),

where λ and μ are the Lamé constants such that

μ > 0 and dλ + 2μ > 0.(1.1)
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The fourth order tensor A represents linear isotropic Hooke’s law, defined by

Aijkl := λδijδkl + μ(δikδjl + δilδjk).

We note that the tensor has the following symmetry properties:

Aijkl = Aklij , Aijkl = Ajikl, Aijkl = Aijlk,

and the relation Qu = ∇·ε(u)A holds. Assumption (1.1) ensures the strong ellipticity
of the operator Q and the following inequality:

a∗|ε|2 ≤ (Aε) : ε ≤ a∗|ε|2,

where a∗ = min{dλ+2μ, 2μ} and a∗ = max{dλ+2μ, 2μ}. In this article, we consider
the following structure of the elastic energy density:
(A) F (ε, θ) = G(θ)H(ε) + H(ε) such that

(i) G ∈ C3(R,R) is as follows:

G(θ) =

⎧⎪⎨
⎪⎩
C1θ if θ ∈ [0, θ1],

ϕ(θ) if θ ∈ [θ1, θ2],

C2θ
r if θ ∈ [θ2,∞),

where ϕ ∈ C3(R,R), ϕ′′ ≤ 0, and C1 and C2 are positive constants for some
fixed θ1, θ2 satisfying 0 < θ1 < θ2 < ∞. We extend G defined on R as an
odd function.

(ii) H ∈ C3(S2,R) satisfies the condition H(ε) ≥ 0, where S
2 denotes the set of

symmetric second order tensors in R
d.

(iii) H ∈ C3(S2,R) satisfies H(ε) ≥ −C3, where C3 is some real number.
(iv) H(ε) and H(ε) satisfy the following growth conditions:

|H,ε(ε)| ≤ C|ε|K1−1, |H,εε(ε)| ≤ C|ε|K1−2, |H,εεε(ε)| ≤ C|ε|K1−3,

|H ,ε(ε)| ≤ C|ε|K2−1, |H ,εε(ε)| ≤ C|ε|K2−2, |H ,εεε(ε)| ≤ C|ε|K2−3

for large |ε|.
Here we note that the regularity assumption for H(ε) and H(ε) ensures that there
exists a positive constant M such that

|H,ε(ε)| + |H,εε(ε)| + |H,εεε(ε)| + |H ,ε(ε)| + |H ,εε(ε)| + |H ,εεε(ε)| ≤ M

for small |ε|. Under the above structure of nonlinearity the system (TE)d can be
rewritten as follows:

utt + κQQu− νQut = ∇ · [G(θ)H,ε(ε) + H ,ε(ε)],(1.2)

cvθt − kΔθ = θG′′(θ)θtH(ε) + θG′(θ)∂tH(ε) + ν(Aεt) : εt in ΩT ,(1.3)

u = Qu = ∇θ · n = 0 on ST ,(1.4)

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x) ≥ 0 in Ω.(1.5)

In this paper we show the unique global existence of a solution for (1.2)–(1.5)
under the following power of nonlinearity:

0 ≤ r <
5

6
, 0 ≤ K1,K2 < 6, 6r + K1 < 6(1.6)
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in the 3-D case, and

0 ≤ r < 1, 0 ≤ K1,K2 < ∞(1.7)

in the 2-D case.
Before discussing the result of this paper more precisely we shall explain the

related results and the physical background of this model. In [10], Falk presents the
Landau–Ginzburg type theory using the shear strain ε := ∂xu as an order parameter to
describe the martensitic-austenitic phase transitions occurring in 1-D shape memory
allows (SMAs). There are many papers related to 1-D SMAs (e.g., [2], [3], [6], [12],
[16], [17], and [24]). The system (TE)d is a generalization of the 1-D Falk model
with internal viscosity to the 3-D case. The Helmholtz free energy density takes the
following form:

F̃ (ε,∇ε, θ) = F0(θ) + F (ε, θ) + |Qu|2,
F0(θ) = −cvθ log(θ/θ3) + cvθ + c̃,

and the stress tensor is given by

σ =
δF̃

δε
+ νAεt,

where c̃ and θ3 denote the positive physical constants. System (TE)d can be derived
by an argument similar to that in the 1-D case (see [5]). For more details on the
derivation of this system, we refer to [19]. In [11], Falk and Konopka give the form of
the elastic energy density F as follows:

F (ε, θ) =

3∑
i=1

α2
i (θ − θc)J

2
i (ε) +

5∑
i=1

α4
i (θ − θc)J

4
i (ε) +

2∑
i=1

α6
i J

6
i (ε),(1.8)

where αk
i , θc are constants and Jk

i denote certain kth order monomials with respect
to (εij). Here we remark that in the 1-D case the elastic energy density takes the
following form:

F1D(ε, θ) = α1ε
2(θ − θc) − α2ε

4 + α3ε
6,(1.9)

where ε := ∂xu and αi, θc are positive constants. Comparing (1.8) with the 1-D
form (1.9), we see that in the 3-D case, H(ε) must be fourth order with respect
to ε. This causes some difficulties in the mathematical treatment of system (1.2)–
(1.5). Moreover, the difficulties arise also from the fact that the useful embedding
H1 ↪→ L∞ does not hold in the multidimensional case. There had been no papers
on the solvability of this system with the Falk–Konopka elastic energy density (1.8),
r = 1, K1 = 4, and K2 = 6. Then Paw�low and Żochowski [20] studied the energy
density F under several stronger assumptions than (1.8), namely, lower order powers
of nonlinearity. Moreover, for the simplification of treatments, they first considered
the semilinearized equations of the quasi-linear system (TE)d:

(SLTE)d

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
utt + κQQu− νQut = ∇ · F,ε(ε, θ),

cvθt − kΔθ = θF,θε(ε, θ) : εt + ν(Aεt) : εt in ΩT ,

u = Qu = ∇θ · n = 0 on ST ,

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x) ≥ 0 in Ω,
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which is the model (TE)d with removed quasi-linear term θG′′(θ)θtH(ε). They showed
the unique global existence of a sufficiently smooth solution for (SLTE)d under the
following assumptions on the nonlinearity:

0 ≤ r <
1

2
, 0 ≤ K1 ≤

(
1

2
− r

)
K2 + 1, 0 ≤ K2 ≤ 7

2
(1.10)

in the 3-D case, and

0 ≤ r <
1

2
, 0 ≤ K1 ≤

(
1

2
− r

)
K2 + 1, 0 ≤ K2 < ∞(1.11)

in the 2-D case. In addition, due to the applied parabolic decomposition of the
elasticity system, they assumed the condition 0 < 2

√
κ ≤ ν between viscosity and

capillarity. Such an assumption, however, does not seem realistic for SMA viscosity
effects which are negligibly small. In [25] the unique global existence of the solution to
(SLTE)3 in a larger class is proved by using the contraction mapping principle. The
result is proved without conditions between κ and ν, and the class of nonlinearities
is generalized to K2 < 6. The first two assumptions in (1.10) are present due to
the semilinearization which causes the absence of energy conservation law (Lemma
4.1 below). Recently, Paw�low and Zaja̧czkowski [21] have proved the unique global
existence for the quasi-linear system (1.2)–(1.5) under the assumptions

0 < r <
2

3
, 0 < K1 <

15

4
and 15r + 4K1 = 15 if K1 > 1,

0 < K2 ≤ 9

2
, 0 < 2

√
κ ≤ ν.

(1.12)

The latter, restrictive condition between viscosity and capillarity has been re-
moved by the above mentioned authors in [23]. The aim of the present paper is to
prove the unique global existence of a solution to system (1.2)–(1.5) under weaker
assumptions than (1.12). More precisely, we admit the nonlinearity specified in (1.6),
(1.7) and arbitrary positive coefficients of capillarity κ > 0 and viscosity ν > 0.
Unfortunately, our result still does not cover the physically realistic case (1.8).

Here we add some remarks on the 2-D case. The results of [20] include the 2-D
case of the semilinearized problem (SLTE)2. The unique global existence for the 2-D
quasilinear system (TE)2 is established in [22] under the assumption

0 ≤ r <
7

8
, 0 ≤ K1 < ∞, 0 ≤ K2 < ∞.(1.13)

In [26] the unique global existence for r = 1 is proved under other strong assumptions.
Roughly speaking, the restrictions in [26] are such that K1 = 0 and that the energy
of initial data ‖u0‖H2 + ‖u1‖L2 + ‖θ0‖L1 is sufficiently small. We note that if we
take r = 1, then the quasi-linear term θG′′(θ)H(ε)θt of (1.3) does not appear. We
also describe the result for the 2-D case in section 5 of this paper. We show that the
system (TE)2 has a unique global solution under assumptions (1.7). Comparing these
assumptions with (1.13), we see that the restriction for r is weaker; nevertheless we
cannot admit r = 1.

We now introduce some notation and function spaces. Throughout this paper
C and Λ are positive constants independent of time T and depending on time T ,
respectively. In particular, we may use Λ instead of Λ(‖(u0, u1, θ0)‖X) for some X if
there is no danger of confusion.
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• Lp(ΩT ) = Lp
TL

p = Lp(0, T ;Lp(Ω)) is the standard Lebesgue space. We often
use the notation Lp(ΩI) = Lp

IL
p for some interval I.

• W 2l,l
p (ΩT ) is the Sobolev space equipped with the norm

‖u‖W 2l,l
p (ΩT ) :=

2l∑
j=0

∑
2r+|α|=j

‖Dr
tD

α
xu‖Lp(ΩT ),

where Dt := i ∂
∂t , D

α
x =

∏
α=α1+α2+α3

Dαk

k , and Dk := i ∂
∂xk

for multi-index

α = (αi)
n
i=1.

• Hj(Ω) := W j
2 (Ω), where W j

p is the Sobolev space equipped with the norm
‖u‖W j

p (Ω) :=
∑

|α|≤j ‖Dα
xu‖Lp(Ω).

• Bs
p,q = Bs

p,q(Ω) is the Besov space. Namely, Bs
p,q := [Lp(Ω),W j

p (Ω)]s/j,q,
where [X,Y ]s/j,q is the real interpolation space. For more details we refer to
[1] by Adams and Fournier.

• Cα,α/2(ΩT ) is the Hölder space: the set of all continuous functions in ΩT

satisfying the Hölder condition in x with exponent α, and in t with exponent
α/2.

We now state the main result of this paper.
Theorem 1.1. Let the positive physical constants κ, ν, cv, and k be fixed arbi-

trarily. Assume that minΩ θ0 ≥ 0 and (1.6) holds. Then, given 5 < p ≤ q < ∞, for

any T > 0 and (u0, u1, θ0) ∈ B
4−2/p
p,p ×B

2−2/p
p,p ×B

2−2/q
q,q =: U(p, q), there exists at

least one solution (u, θ) to (1.2)–(1.5) satisfying

(u, θ) ∈ W 4,2
p (ΩT ) ×W 2,1

q (ΩT ) =: VT (p, q).

Moreover, if we assume minΩ θ0 = θ∗ > 0, then there exists a positive constant ω
such that

θ ≥ θ∗ exp(−ωt) in ΩT .

For completeness we recall also the uniqueness result which follows by repeating
the arguments of the corresponding result in [22, section 6].

Theorem 1.2. In addition to the assumptions of Theorem 1.1, suppose that
F (ε, θ) ∈ C4(S2×R

+,R). Then the solution (u, θ) ∈ VT (p, q) to (1.2)–(1.5) constructed
above is unique.

We prove Theorem 1.1 by using the Leray–Schauder fixed point principle. The
key estimates are the maximal regularity estimate for (1.2), and the classical energy
estimate and the parabolic De Giorgi method for (1.3). In general, the derivative
of a solution is less regular than the right-hand side of the corresponding equation.
However, for parabolic equations such a loss of regularity does not occur, as in the
case of elliptic equations. The estimate ensuring this regularity is called the maximal
regularity. For more precise information on the maximal regularity we refer to [4], and
for more recent topics of the maximal Lp-regularity we refer to [9]. Since the maximal
regularity theory is limited to linear parabolic equations, we cannot use it directly
for the quasi-linear equation (1.3). To obtain the higher order a priori estimates we
apply the classical energy methods and the parabolic De Giorgi method (see [14],
[15]). Using these methods we can show the Hölder continuity of θ. By virtue of such
regularity, we arrive at the estimate in a higher Sobolev norm.

In section 2 we list several preliminary results which are used in the paper. In
section 3 we prove the unique global existence of the solution for certain truncated
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version of problem (1.2)–(1.5). To this purpose we use the Leray–Schauder fixed point
principle. In section 4 we show that the solution of (TE)3 coincides with the solution
of the truncated problem constructed in section 3 for a sufficiently large truncation
level L. In section 5 we consider the 2-D system (TE)2.

2. Preliminaries. In this section, we present some auxiliary results which will
be used in the subsequent sections.

Lemma 2.1 (maximal regularity).
(i) Let p ∈ (1,∞). Denote by u the solution of the linear problem⎧⎪⎨

⎪⎩
utt + κQQu− νQut = ∇ · f in ΩT ,

u = Qu = 0 on ST ,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω.

Then the following estimates hold:

‖u‖W 4,2
p (ΩT ) ≤ C

(
‖u0‖

B
4− 2

p
p,p

+ ‖u1‖
B

2− 2
p

p,p

+ ‖∇ · f‖Lp(ΩT )

)
(2.1)

for any (u0, u1) ∈ B
4−2/p
p,p ×B

2−2/p
p,p and ∇ · f ∈ Lp(ΩT ), and

‖∇u‖W 2,1
p (ΩT ) ≤ C

(
‖u0‖

B
3− 2

p
p,p

+ ‖u1‖
B

1− 2
p

p,p

+ ‖f‖Lp(ΩT )

)
(2.2)

for any (u0, u1) ∈ B
3−2/p
p,p ×B

1−2/p
p,p and f ∈ Lp(ΩT ).

(ii) Let q ∈ (1,∞). Assume that ρ(x) is Hölder continuous in Ω such that infΩ ρ >
0. Denote by θ the solution of the linear problem⎧⎪⎨

⎪⎩
θt − ρΔθ = g in ΩT ,

n · ∇θ = 0 on ST ,

θ(0, x) = θ0(x) in Ω.

Then the following estimate holds:

‖θ‖W 2,1
q (ΩT ) ≤ C

(
‖θ0‖

B
2− 2

q
q,q

+ ‖g‖Lq(Ω)

)
(2.3)

for any θ0 ∈ B
2−2/q
q,q , where C depends on infΩ ρ.

For the proof of (i) we refer to [25, Lemma 2.1, Proposition 2.4], and (ii) is the
particular case of [13, Examples 3.2, A), 2)]. Next, we recall the useful space-time
embedding lemma.

Lemma 2.2 (embedding [14, Lemma II.3.3]). Let f ∈ W 2l,l
p (ΩT ). Then, for

l ∈ Z
+ and multi-index α, it follows that

‖Dr
tD

α
xf‖Lq(ΩT ) ≤ Cδl−ψ‖f‖W 2l,l

p (ΩT ) + Cδ−ψ‖f‖Lp(ΩT ),(2.4)

provided q ≥ p and ψ := r + |α|
2 + d+2

2 ( 1
p − 1

q ) ≤ l. If ϕ := r + |α|
2 + d+2

2p < l, then

‖Dr
tD

α
xf‖L∞(ΩT ) ≤ Cδl−ϕ‖f‖W 2l,l

p (ΩT ) + Cδ−ϕ‖f‖Lp(ΩT );(2.5)

moreover, Dr
tD

α
xf is Hölder continuous. Here, δ ∈ (0,min(T, ζ2)], ζ is the altitude of

the cone in the statement of the cone condition satisfied by Ω.
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Lemma 2.3. Let ϕ be given as in (A)(i). Then the function ϕ(s) satisfies

ϕ(s) − sϕ′(s) ≥ 0(2.6)

for any s ∈ [θ1, θ2].
Proof. Putting f(s) = ϕ(s)−sϕ′(s), we have f ′(s) = −sϕ′′(s) ≥ 0 and f(θ1) = 0.

Then f(s) = ϕ(s) − sϕ′(s) ≥ 0 in [θ1, θ2].
To show Theorem 1.1 we apply the Leray–Schauder fixed point principle. We

recall it here in one of its equivalent formulations for the reader’s convenience .
Theorem 2.4 (Leray–Schauder fixed point principle [8]). Let X be a Banach

space. Assume that Φ : [0, 1] ×X → X is a map with the following properties:
(L1) For any fixed τ ∈ [0, 1] the map Φ(τ, ·) : X → X is compact.
(L2) For every bounded subset B of X, the family of maps Φ(·, ξ) : [0, 1] → X,

ξ ∈ B, is uniformly equicontinuous.
(L3) Φ(0, ·) has precisely one fixed point in X.
(L4) There is a bounded subset B of X such that any fixed point in X of Φ(τ, ·) is

contained in B for every 0 ≤ τ ≤ 1.
Then Φ(1, ·) has at least one fixed point in X.

3. Truncated problem. To prove the existence theorem we first consider the
following truncated problem (TE)

L
3 :

utt + κQQu− νQut = ΓL

(
∇ · [G(θ)H,ε(ε) + H ,ε(ε)]

)
,(3.1)

cvθt − kΔθ = θG′′(θ)θtH(ε) + θG′(θ)∂tH(ε) + ν(Aεt) : εt in ΩT ,(3.2)

u = Qu = ∇θ · n = 0 on ST ,

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x) ≥ 0 in Ω,

where

ΓL(x) =

{
x if |x| ≤ L,

L x
|x| if |x| ≥ L.

Theorem 3.1. Fix L and 5 < p ≤ q < ∞. Assume that θ0 ≥ 0, (1.6) holds, and
F (ε, θ) ∈ C4(S2 × R

+,R). Then for any T > 0 and (u0, u1, θ0) ∈ U(p, q), there exists

a unique solution (uL, θL) to (TE)
L
3 satisfying (uL, θL) ∈ VT (p, q).

Proof of Theorem 3.1. We apply Theorem 2.4 to the map ΦL
τ from VT (p, q) into

VT (p, q),

ΦL
τ : (ū, θ̄) �→ (u, θ), τ ∈ [0, 1],

defined by means of the following initial-boundary value problems:

utt + κQQu− νQut = τΓL

(
∇ · [G(θ̄)H,ε(ε̄) + H ,ε(ε̄)]

)
,

cvθt − kΔθ = τ
{
θ̄G′′(θ̄)θtH(ε) + θ̄G′(θ̄)∂tH(ε) + ν(Aεt) : εt

}
in ΩT ,

u = Qu = ∇θ · n = 0 onST ,

u(0, x) = τu0(x), ut(0, x) = τu1(x), θ(0, x) = τθ0(x) in Ω,

where ε̄ = ε(ū). A fixed point of ΦL
τ (1, ·) in VT (p, q) is the desired solution of the

system (TE)
L
3 . Therefore to prove the existence statement it is sufficient to check
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that the map ΦL
τ satisfies assumptions (L1)–(L4) of Theorem 2.4. Noting that ΓL

is Lipschitz continuous, we can check assumptions (L1), (L2), and (L3) in the same
way as that in [21, section 3]. Then it is sufficient to check assumption (L4), namely,
to derive a priori bounds for a fixed point of the solution map ΦL

τ . Without loss
of generality we may set τ = 1. Hence, from now on our purpose is to obtain a priori
bounds for (TE)

L
3 . To this end we prepare several lemmas. If there is no danger of

confusion, we write for simplicity (u, θ) instead of (uL, θL).

Lemma 3.2 (maximum principle). Let (u0, u1, θ0) ∈ B
4−2/p
p,p × B

2−2/p
p,p × L2 for

p > 5. Assume that minΩ θ0 ≥ 0. Then the solution θ to (TE)L3 is nonnegative almost
everywhere in ΩT .

Proof. It follows from the maximal regularity (2.1) for (3.1) that

‖u‖W 4,2
p (ΩT )

≤ C
(
‖u0‖B4−2/p

p,p
+ ‖u1‖B2−2/p

p,p
+ ‖ΓL

{
∇ · [G(θ̄)H,ε(ε̄) + H ,ε(ε̄)]

}
‖Lp(ΩT )

)
≤ C(‖u0‖B4−2/p

p,p
+ ‖u1‖B2−2/p

p,p
+ L|ΩT |

1
p )

≤ Λ(L).

(3.3)

Then taking p > 5, by Lemma 2.2 we have

‖ε‖L∞(ΩT ) + ‖εt‖L∞(ΩT ) ≤ Λ(L) < ∞.(3.4)

Therefore it holds that

‖∂tH(ε)‖L∞(ΩT ) ≤ ‖εt‖L∞(ΩT )‖ε‖K1−1
L∞(ΩT ) ≤ Λ(L)

for K1 > 1. Since supε∈S
|H,ε(ε)| ≤ M for K1 ≤ 1, we conclude that

‖∂tH(ε)‖L∞(ΩT ) ≤ Λ(L)(3.5)

for every K1 ≥ 0. From now on, throughout this section we shall write Λ = Λ(L).
Multiplying (3.2) by θ− := min{θ, 0} and integrating over Ω, we have

cv
2

d

dt

∫
Ω

θ2
−dx + k

∫
Ω

|∇θ−|2dx

=

∫
Ω

[θ−θG
′′(θ)θtH(ε) + θ−θG

′(θ)∂tH(ε) + νθ−Aεt : εt] dx

=
d

dt

∫
Ω

H(ε)G2(θ−)dx +

∫
Ω

G2(θ−)∂tH(ε)dx +

∫
Ω

νθ−Aεt : εtdx,

where G2(θ) = θ2G′(θ) −G2(θ) and G2(θ) = 2
∫ θ

0
sG′(s)ds. We have G2(0) = 0 and

G′
2(y) = y2G′′(y) ≥ 0 for y ≤ 0, because G′′ is the odd function such that G′′(y) ≤ 0

for y ≥ 0. Then G2(y) ≤ 0 for y ≥ 0. Hence, we have

−
∫

Ω

H(ε)G2(θ−)dx ≥ 0.

It follows from (1.1) that∫
Ω

νθ−Aεt : εtdx ≤ νa∗

∫
Ω

θ−|εt|2dx ≤ 0.
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Noting that G2(θ) = 1
2C1θ

2 for θ ∈ [−θ1, θ1], we have sups∈R

|G2(s)|
s2 ≤ C. Therefore

we conclude that∫
Ω

G2(θ−)∂tH(ε)dx ≤
∫

Ω

|θ−|2
|G2(θ−)|
|θ−|2

|∂tH(ε)|dx

≤ Λ‖θ−‖2
L2 .

Consequently, we have

d

dt

(
cv‖θ−(t)‖2

L2 −
∫

Ω

H(ε)G2(θ−)dx

)
≤ Λ

(
cv‖θ−(t)‖2

L2 −
∫

Ω

H(ε)G2(θ−)dx

)
.

Using the Gronwall inequality we obtain

‖θ−(t)‖2
L2 ≤ ‖θ−(t)‖2

L2 −
∫

Ω

H(ε)G2(θ−)dx

≤ ΛeΛt

(
‖θ−(0)‖2

L2 −
∫

Ω

H(ε(0))G2(θ−(0))dx

)
= 0,

which completes the proof.
Lemma 3.3. Let l > 2 be an arbitrary integer. Assume that r ≤ 1. Then for any

(u0, u1, θ0) ∈ B
4−2/p
p,p ×B

2−2/p
p,p × Ll =: U1(l), the solution (u, θ) to (TE)

L
3 satisfies

‖θ‖L∞
T Ll ≤ Λ,

where Λ = Λ(T, ‖(u1, u2, θ0)‖U1(l)). Moreover, if (u0, u1, θ0) ∈ U1(∞), then we have

‖θ‖L∞(ΩT ) ≤ Λ,

where Λ = Λ(T, ‖(u1, u2, θ0)‖U1(∞)).

Proof. Multiplying (3.2) by θl−1 and integrating over Ω, we have

cv
l

d

dt
‖θ‖lLl + k(l − 1)

∫
Ω

θl−2|∇θ|2dx

=

∫
Ω

(
θlG′′(θ)θtH(ε) + θlG′(θ)∂tH(ε) + νθl−1Aεt : εt

)
dx

=
d

dt

∫
Ω

Gl(θ)H(ε)dx +

∫
Ω

Gl(θ)∂tH(ε)dx + ν

∫
Ω

θl−1Aεt : εtdx,

(3.6)

where Gl(θ) = θlG′(θ) −Gl(θ) and Gl(θ) = l
∫ θ

0
sl−1G′(s)ds. Since

θlG′′(θ) =

⎧⎪⎨
⎪⎩
C2r(r − 1)θl+r−2 ≤ 0 for θ ≥ θ2,

θlϕ′′(θ) ≤ 0 for θ1 ≤ θ ≤ θ2,

0 for θ ≤ θ1,

(3.7)

we have G′
l(θ) = θlG′′(θ) ≤ 0 for θ ≥ 0 and G′

l(0) = 0. Thereby, we obtain

Gl(θ) ≤ 0 for θ ≥ 0.(3.8)
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We put

θ̂ = θ

(
1 − lGl(θ)H(ε)

cvθl

)1/l

.

We note that θ̂ ≥ θ due to (3.8). Since sups∈[0,∞) |G′(s)| =: M < ∞, we have

|Gl(θ)| =

∣∣∣∣∣l
∫ θ

0

sl−1G′(s)ds

∣∣∣∣∣ ≤ Cθl

and

|Gl(θ)| ≤ Mθl + |Gl(θ)| ≤ Cθl.

In view of (3.4) and (3.5) we obtain∣∣∣∣
∫

Ω

Gl(θ)∂tH(ε)dx

∣∣∣∣ ≤ C‖θl‖L1(Ω)‖∂tH(ε)‖L∞(Ω) ≤ Λ‖θ‖lLl(Ω)

and ∫
Ω

θl−1Aεt : εt ≤ C‖εt‖2
L∞(Ω)‖θ‖l−1

Ll−1(Ω)
≤ Λ‖θ‖l−1

Ll(Ω)
.

Since 1
l ∂t‖θ̂‖lLl = ‖θ̂‖l−1

Ll ∂t‖θ̂‖Ll , it follows from (3.6) that

d

dt
‖θ̂‖Ll(Ω) ≤ Λ‖θ‖Ll(Ω) + Λ

≤ Λ‖θ̂‖Ll(Ω) + Λ.

Thus by the Gronwall inequality we have

‖θ̂‖L∞
T Ll ≤ Λ‖θ̂0‖Ll + Λ.(3.9)

Since

θ̂0 = θ0

(
1 − lGl(θ0)H(ε0)

cvθl0

)1/l

≤ θ0

(
1 +

lMΛ

cv

)1/l

,

we can obtain the first assertion. Here we note that the constant Λ in (3.9) is inde-
pendent of l. Therefore taking a limit as l → ∞ we can obtain the second assertion.
This completes the proof.

Lemma 3.4. Let T be arbitrarily fixed. Assume that r ≤ 1. Then for any

(u0, u1, θ0) ∈ B
4−2/p
p,p ×B

2−2/p
p,p ×H1 =: U2, the solution (u, θ) to (TE)

L
3 satisfies

‖θ‖W 2,1
2 (ΩT ) ≤ Λ,

where Λ depends on T and ‖(u0, u1, θ0)‖U2
.

Proof. By using Lemma 3.3, thanks to θ0 ∈ H1 ↪→ L2, we have

‖θ‖L∞
T L2 ≤ Λ.(3.10)
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Since θG′′(θ) ≤ 0 from (3.7) for l = 1, the following estimate holds true:

∫∫
ΩT

θ2
t θG

′′(θ)H(ε)dxdt ≤ 0.(3.11)

Multiplying (3.2) by θt and integrating over ΩT , we have

cv‖θt‖2
L2(ΩT ) +

k

2
‖∇θ‖2

L∞
T L2

≤ k

2
‖θ0‖2

H1 +

∫∫
ΩT

θ2
t θG

′′(θ)H(ε)dxdt

+

∫∫
ΩT

θtθG
′(θ)∂tH(ε)dxdt +

∫∫
ΩT

νθtAεt : εtdxdt

≤ k

2
‖θ0‖2

H1 + Λ‖θt‖L2(ΩT )‖θ‖rL∞
T L2‖∂tH(ε)‖L∞(ΩT )

+ Λ‖θt‖L∞
T L2‖εt‖2

L∞(ΩT )

≤ k

2
‖θ0‖2

H1 +
cv
2
‖θt‖2

L2(ΩT ) + Λ,

thanks to (3.4), (3.5), (3.10), and (3.11). Therefore we arrive at

‖θt‖L2(ΩT ) + ‖∇θ‖L∞
T L2 ≤ Λ(‖(u0, u1, θ0)‖U2).

Next, multiplying (3.2) by −Δθ
cv−θG′′(θ)H(ε) and integrating over Ω, we get

1

2

d

dt
‖∇θ(t)‖2

L2 +

∫
Ω

k(Δθ)2

cv − θG′′(θ)H(ε)
dx

= −
∫

Ω

Δθ

cv − θG′′(θ)H(ε)
(θG′(θ)∂tH(ε) + νAεt : εt) dx.

Here we remark that

cv ≤ cv − θG′′(θ)H(ε) ≤ cv + MΛ,

where 0 ≤ supθ≥0(−θG′′(θ)) =: M < ∞. Then integrating over [0, t] for t ≤ T , we
conclude with the estimate

‖∇θ(t)‖2
L2 +

2k

cv + ΛM
‖Δθ‖2

L2(ΩT )

≤ ‖∇θ0‖2
L2 + 2‖Δθ‖L2(ΩT ) ‖θG′(θ)∂tH(ε) + νAεt : εt‖L2(ΩT )

≤ ‖∇θ0‖2
L2 +

k

(cv + ΛM)
‖Δθ‖2

L2(ΩT )

+
cv + ΛM

k

(
Λ‖θ‖L∞

T L2‖∂tH(ε)‖L∞(ΩT ) + Λ‖εt‖L∞(ΩT )

)2

≤ k

(cv + ΛM)
‖Δθ‖2

L2(ΩT ) + Λ.

Consequently, we arrive at the desired result.
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The same procedure as in [21, Lemma 6.1] allows us to conclude that
θ ∈ Cα,α/2(ΩT ) for some Hölder exponent 0 < α < 1 depending on T , supΩ θ0, and
‖θ‖L∞(ΩT ). The proof relies on the classical parabolic De Giorgi method. For more
precise information on this method we refer to [14, Chapter II, section 7] and [15,
Chapter VI, section 12]. Here we note that ε is Hölder continuous due to Lemma 2.2.

Lemma 3.5 (see [21, Lemma 6.1]). Assume that k = supΩ θ0 < ∞. Suppose that

‖ε‖W 2,1
s (ΩT ) + ‖θ‖W 2,1

2 (ΩT ) + ‖θ‖L∞(ΩT ) ≤ Λ(3.12)

holds for any s ∈ (1,∞). Then θ ∈ Cα,α/2(ΩT ) with Hölder exponent α ∈ (0, 1)
depending on Λ and k.

Lemma 3.6. Assume that (3.12) holds. Then for any (u0, u1, θ0) ∈ U(p, q) and
5 < p, q < ∞ we have

‖(u, θ)‖VT (p,q) = ‖u‖W 4,2
p (ΩT ) + ‖θ‖W 2,1

q (ΩT ) ≤ Λ,

where Λ depends on ‖(u0, u1, θ0)‖U(p,q) and T .
Proof. We can construct a unique timelocal solution (u, θ) ∈ W 4,2

p (ΩT̃ )×W 2,1
q (ΩT̃ )

of (TE)
L
3 for sufficiently small T̃ < T , using the result of Clément and Li [7] (see also

[27, Lemma 3.3.7]). Then from the embedding we have θ ∈ C([0, T̃ ] × Ω). By com-
bining this regularity result with Lemma 3.5, we obtain θ ∈ Cα,α/2([0, T ] × Ω).

For brevity of notation we denote cv−θG′′(θ)H(ε) by c0(ε, θ), and θG′(θ)∂tH(ε)+
ν(Aεt) : εt by R(ε, θ). Then (1.3) can be rewritten as

c0(ε0, θ0)θt − Δθ = (c0(ε0, θ0) − c0(ε, θ))θt + R(ε, θ).

By the assumptions we have

‖R(ε, θ)‖Lq(ΩT ) ≤ C‖θ‖rL∞(ΩT )‖H,ε(ε)‖L∞(ΩT )‖εt‖Lq(ΩT ) + C‖εt‖2
L2q(ΩT )

≤ Λ.

From the Hölder continuity it follows that

‖c0(ε0, θ0) − c0(ε, θ)‖L∞(ΩT1
) ≤ KT1

α
2 ,

where K is the Hölder constant independent of T1. Here T1 � T will be determined
later.

Next, we show that 1/c0(ε, θ)(x, T2) is Hölder continuous with respect to the space
variable for T2 fixed in [0, T ]. We remark that

G(y) := yG′′(y) ≤ M
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and G ∈ C1 is Lipschitz continuous. Then we have∣∣∣∣ 1

c0
(x, T2) −

1

c0
(x′, T2)

∣∣∣∣
=

∣∣∣∣ G(θ(x′, T2))H(ε(x′, T2)) − G(θ(x, T2))H(ε(x, T2))

{cv − G(θ(x, T2))H(ε(x, T2))}{cv − G(θ(x′, T2))H(ε(x′, T2))}

∣∣∣∣
≤ 1

c2v
|{G(θ(x′, T2))H(ε(x′, T2)) − G(θ(x, T2))H(ε(x′, T2))}

+ {G(θ(x, T2))H(ε(x′, T2)) − G(θ(x, T2))H(ε(x, T2))}|

≤ 1

c2v
|H(ε(x′, T2))| |G(θ(x′, T2)) − G(θ(x, T2))|

+
1

c2v
|G(θ(x, T2))| |H(ε(x′, T2)) −H(ε(x, T2))|

≤ ΛK|x− x′|α + CM |x− x′|α

≤ Λ|x− x′|α,

where Λ is independent of T2. Therefore [1/c0(ε, θ)](x, T2) is Hölder continuous for
any T2 ∈ [0, T ]. Moreover, we have supΩT

[1/c0(ε, θ)] ≥ 1/(cv+MΛ). These conditions
ensure that 1

c0(ε(T2),θ(T2))
Δ has the maximal regularity property according to (2.3).

Hence, taking T1 = ( 1
2Λ(K,M,T )K )

1
α , we have

‖θ‖W 2,1
q (ΩT1

) ≤ Λ(K,M, T )
(
‖c0(ε0, θ0) − c0(ε, θ)‖L∞(ΩT1

)‖θt‖Lq(ΩT1
)

+‖R(ε, θ)‖Lq(ΩT1
) + ‖θ0‖B2−2/q

q,q (Ω)

)
≤ 1

2
‖θt‖Lq(ΩT1

) + Λ + Λ‖θ0‖B2−2/q
q,q (Ω)

,

which yields

‖θ‖W 2,1
q (ΩT1

) ≤ Λ + Λ‖θ0‖B2−2/q
q,q (Ω)

.

Here we remark that

‖θ(T1)‖B2−2/q
q,q

≤ C(T1)‖θ‖W 2,1
q (ΩT1

) ≤ C(T1)
(
Λ + Λ‖u0‖B2−2/q

q,q

)

thanks to the embedding W 2,1
q (ΩT1

) ↪→ BUC([0, T1], B
2− 2

q
q,q ) (see [4], [18]). Then

similarly for the interval [T1, 2T1] we have

‖θ‖W 2,1
q (Ω[T1,2T1])

≤ Λ + Λ‖u(T1)‖B2−2/q
q,q

≤ Λ + Λ‖u0‖B2−2/q
q,q

≤ Λ.

Repeating the same operation yields

‖θ‖W 2,1
q (Ω[kT1,(k+1)T1])

≤ Λ.

Summing the inequalities from k = 0 to k = m satisfying (m+1)T1 > T and mT1 ≤ T ,
we conclude that

‖θ‖W 2,1
q (ΩT ) ≤ Λ.
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Next we estimate the norm ‖u‖W 4,2
p (ΩT ). From Lemma 2.2 it follows that

‖∇θ‖L∞(ΩT ) + ‖∇ε‖L∞(ΩT ) ≤ Λ

for q > 5. Therefore, by virtue of the maximal regularity (2.1), we have

‖u‖W 4,2
p (ΩT )

≤ C‖(u0, u1, 0)‖U(p,q) + ‖∇ · (G(θ)H,ε(ε))‖Lp(ΩT ) + ‖∇ ·H ,ε(ε)‖Lp(ΩT )

≤ C‖(u0, u1, 0)‖U(p,q) + Λ‖∇θ‖L∞(ΩT )‖G′(θ)‖L∞(ΩT )‖H,ε(ε)‖L∞(ΩT )

+ Λ‖θ‖rL∞(ΩT )‖∇ε‖L∞(ΩT )‖H,εε(ε)‖L∞(ΩT ) + Λ‖∇ε‖L∞(ΩT )‖H ,εε(ε)‖L∞(ΩT )

≤ Λ(‖(u0, u1, 0)‖U(p,q)),

which completes the proof.
Proof of Theorem 3.1 (continuation). The assumption (L4) is satisfied thanks to

Lemma 3.6 and estimate (3.3). Then the existence of a solution to problem (TE)
L
3

results from Theorem 2.4. Noting that ΓL is Lipschitz continuous, we can obtain
the uniqueness result by repeating the arguments of [22, section 6]. We remark also
that the assumption p ≤ q is required to show (L1); see [21]. Thereby the proof of
Theorem 3.1 is completed.

4. Proof of Theorem 1.1 (existence). The idea of the proof consists of show-

ing that the solution (uL, θL) to (TE)
L
3 constructed in section 3 satisfies also the

original system (1.2)–(1.5) for sufficiently large truncation size L. To this purpose,
assuming that there exists a sufficiently smooth solution of problem (1.2)–(1.5) such
that θ ≥ 0, we derive for it a sequence of a priori estimates which are independent of
L.

Lemma 4.1 (energy inequality). Assume that θ ≥ 0 a.e. in ΩT , K2 ≤ 6, and
6r + K1 ≤ 6. Then for any t ∈ [0, T ] a smooth solution of (1.2)–(1.5) satisfies

‖θ(t)‖L1(Ω) + ‖ut(t)‖L2(Ω) + ‖Qu(t)‖L2(Ω) ≤ C(‖(u0, u1, θ0)‖H2×L2×L1).(4.1)

Proof. Multiplying (1.2) by ut and integrating the resulting equation with respect
to the space variable, we have

d

dt

(
1

2
‖ut‖2

L2 +
κ

2
‖Qu‖2

L2 +

∫
Ω

H(ε)dx

)
+ ν

∫
Ω

(Aεt) : εtdx = −
∫

Ω

G(θ)
∂

∂t
H(ε)dx.

Integrating (1.3) over Ω, we obtain

cv
d

dt

∫
Ω

θdx = ν

∫
Ω

(Aεt) : εtdx +

∫
Ω

θG′(θ)
∂

∂t
H(ε)dx +

∫
Ω

θG′′(θ)θtH(ε)dx.

Combining these equalities, we deduce

d

dt

(
1

2
‖ut‖2

L2 +
κ

2
‖Qu‖2

L2 + cv

∫
Ω

θdx +

∫
Ω

H(ε)dx

)

=

∫
Ω

(
θG′(θ)

∂

∂t
H(ε) + θG′′(θ)θtH(ε) −G(θ)

∂

∂t
H(ε)

)
dx

= − d

dt

∫
Ω

G(θ)H(ε)dx,
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where G(θ) = G(θ) − θG′(θ). Consequently,

d

dt

(
1

2
‖ut‖2

L2 +
κ

2
‖Qu‖2

L2 + cv

∫
Ω

θdx +

∫
Ω

H(ε)dx +

∫
Ω

G(θ)H(ε)dx

)
= 0.

Here we recall that θ ≥ 0 and H(ε) ≥ 0. By the structure of G(θ), the function G(θ)
is as follows:

G(r) =

⎧⎪⎨
⎪⎩

0 if θ ∈ [0, θ1],

ϕ(θ) − θϕ′(θ) if θ ∈ [θ1, θ2],

C2(1 − r)θr if θ ∈ [θ2,∞).

According to Lemma 2.3 we have G(θ) ≥ 0. Consequently, it follows from (A)(iii)
that

1

2
‖ut(t)‖2

L2 +
κ

2
‖u(t)‖2

H2 + cv‖θ(t)‖L1

≤ 1

2
‖u0‖2

H2 +
κ

2
‖u1‖2

L2 + cv‖θ0‖L1 +

∫
Ω

|H(ε0)|dx + C3|Ω|

+

∫
{θ2≥θ0≥θ1}∩Ω

[ϕ(θ0) − θ0ϕ
′(θ0)]H(ε0)dx + C2(1 − r)

∫
{θ0>θ2}∩Ω

θr0H(ε0)dx,

where ε0 = ε(u0). Since the smooth function ϕ(s)− sϕ′(s) is bounded for s ∈ [θ1, θ2],
it follows that∫

{θ2≥θ0≥θ1}∩Ω

[ϕ(θ0) − θ0ϕ
′(θ0)]H(ε0)dx ≤ C

∫
Ω

|ε0|K1dx

≤ C‖u0‖K1

H2

for K1 ≤ 6, ∫
{θ0>θ2}∩Ω

θr0H(ε0)dx ≤ C‖θ0‖rL1‖ε0‖K1

L
K1
1−r

≤ C‖θ0‖rL1‖u0‖K1

H2

for 6r + K1 ≤ 6, and ∫
Ω

|H(ε0)|dx ≤ ‖u0‖K2

H2

for K2 ≤ 6. Hence, we conclude the assertion.
Lemma 4.2. Let T be fixed. Assume that θ ≥ 0 a.e. in ΩT and (1.6) holds.

Then for any (u0, u1, θ0) ∈ B
19/8
16/5,16/5 × B

3/8
16/5,16/5 × L2 =: U3, the solution (u, θ) to

(1.2)–(1.5) satisfies

‖ε‖W 2,1
16/5(ΩT ) + ‖∇θ‖L2(ΩT ) + ‖θ‖L∞

T L2 ≤ Λ,(4.2)

where Λ depends on T and ‖(u0, u1, θ0)‖U3 . Moreover,

‖ε‖L∞(ΩT ) + ‖θ‖L10/3(ΩT ) ≤ Λ.(4.3)
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Proof. We remark that ‖(u0, u1, θ0)‖H2×L2×L1 ≤ C‖(u0, u1, θ0)‖U3
(see [1]).

From the Gagliardo–Nirenberg inequality and Lemma 4.1 it follows that

‖ε‖L5p(ΩT ) ≤ C
∥∥∥‖ε‖ 4

5

L6(Ω)‖ε‖
1
5

W 2
p (Ω)

∥∥∥
L5p

T

≤ C‖ε‖
4
5

L∞
T L6‖ε‖

1
5

W 2,1
p (ΩT )

≤ C‖u‖
4
5

L∞
T H2‖ε‖

1
5

W 2,1
p (ΩT )

≤ C‖ε‖
1
5

W 2,1
p (ΩT )

(4.4)

and

‖θ‖
L

8
3 (ΩT )

≤ C
∥∥∥‖θ‖ 1

4

L1(Ω)‖θ‖
3
4

H1(Ω)

∥∥∥
L∞

T

≤ C‖θ‖
1
4

L∞
T L1‖θ‖

3
4

L2
TH1

≤ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

3
4 .

(4.5)

It follows from (4.4) that

‖H ,ε(ε)‖
L

16
5 (ΩT )

≤ C‖ε‖K2−1
L16(ΩT ) ≤ Λ‖ε‖

K2−1
5

W 2,1
16
5

(ΩT )
≤ 1

4
‖ε‖W 2,1

16
5

(ΩT ) + Λ

for K2 ∈ [1, 6), and

‖H ,ε(ε)‖
L

16
5 (ΩT )

≤ M |ΩT |
5
16 ≤ Λ

for K2 ∈ [0, 1).
We first consider the case of K1 ≥ 1. Applying the growth condition and the

Young inequality, we have

‖G(θ)H,ε(ε)‖
L

16
5 (ΩT )

≤ ‖θ‖r
L

8
3 (ΩT )

‖ε‖K1−1

L
16(K1−1)

5−6r (ΩT )

+ sup
θ∈[0,θ2]

|G(θ)|‖ε‖K1−1

L
16(K1−1)

5 (ΩT )

≤ Λ‖θ‖r
L

8
3 (ΩT )

‖ε‖K1−1
L16(ΩT ) + Λ‖ε‖K1−1

L16(ΩT )

for 6r + K1 ≤ 6 (and K1 ≤ 6). Then

‖θ‖rL8/3(ΩT )‖ε‖
K1−1
L16(ΩT ) + ‖ε‖K1−1

L16(ΩT )

≤ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2

)3r/4‖ε‖(K1−1)/5

W 2,1
16/5(ΩT )

+ Λ‖ε‖(K1−1)/5

W 2,1
16/5(ΩT )

≤ 1

4
‖ε‖W 2,1

16/5(ΩT ) + Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

15r/4(6−K1) + Λ

for 6r + K1 < 6 (and K1 < 6). From the maximal regularity (2.2) it follows that

‖ε‖W 2,1
16/5(ΩT )

≤ C‖(u0, u1, θ0)‖U3 + ‖G(θ)H,ε(ε)‖L16/5(ΩT ) + ‖H ,ε(ε)‖L16/5(ΩT )

≤ C‖(u0, u1, θ0)‖U3 + Λ + Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

15r/4(6−K1).

(4.6)
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Next, multiplying (1.3) by θ and integrating over Ω, we have

cv
2

d

dt
‖θ(t)‖2

L2 + k‖∇θ‖2
L2

=

∫
Ω

θ2G′′(θ)θtH(ε)dx +

∫
Ω

θ2G′(θ)∂tH(ε)dx + ν

∫
Ω

θAεt : εtdx

=

∫
Ω

G′
2(θ)θtH(ε)dx +

∫
Ω

G2(θ)∂tH(ε)dx + 2

∫
Ω

G2(θ)∂tH(ε)dx

+ ν

∫
Ω

θAεt : εtdx

=
d

dt

∫
Ω

G2(θ)H(ε)dx + 2

∫
Ω

G2(θ)∂tH(ε)dx + ν

∫
Ω

θAεt : εtdx,

(4.7)

where G2(θ) and G2(θ) are given in the proof of Lemma 3.2. Recall that

G2(θ) =
C2r(r − 1)

r + 1
θr+1 ≤ 0 and G2(θ) =

2C2r

r + 1
θr+1 for θ ≥ θ2,

and

sup
θ∈[0,θ2]

|G2(θ)| + sup
θ∈[0,θ2]

|G2(θ)| =: M < ∞.

Then we have

−
∫

Ω

G2(θ)H(ε)dx

= −
∫

Ω∩{θ≥θ2}
G2(θ)H(ε)dx−

∫
Ω∩{θ1≤θ≤θ2}

G2(θ)H(ε)dx

≥ −M

∫
Ω

|H(ε)|dx.

Hence, integrating (4.7) with respect to the time variable, we obtain

cv
2
‖θ‖2

L∞
T L2 + k‖∇θ‖2

L2(ΩT )

≤ cv
2
‖θ0‖2

L2 + ‖G2(θ)∂tH(ε)‖L1(ΩT ) + ν‖θAεt : εt‖L1(ΩT )

+ M sup
t∈[0,T ]

∫
Ω

|H(ε(t))|dx +

∫
Ω

|G2(θ0)H(ε0)|dx.

By (4.4), (4.5), and the assumptions we infer that

‖θr+1∂tH(ε)‖L1(ΩT ) ≤ Λ‖θ‖r+1
L8/3(ΩT )

‖u‖W 2,1
16/5(ΩT )‖ε‖

K1−1
L16(ΩT )

≤ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2

)
3(r+1)

4 ‖u‖1+(K1−1)/5

W 2,1
16/5(ΩT )

,

‖θAεt : εt‖L1(ΩT ) ≤ C‖θ‖
L

8
3 (ΩT )

‖εt‖2

L
16
5 (ΩT )

≤ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

3
4 ‖εt‖2

16
5 (ΩT ),

∫
Ω

|H(ε(t))|dx ≤ C‖u(t)‖K1

H2 ≤ Λ,
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and

‖θr+1
0 H(ε0)‖L1(Ω) ≤ C‖θ0‖r+1

L2(Ω)‖ε0‖K1

L
2K1
1−r (Ω)

≤ C‖θ0‖r+1
L2(Ω)‖u0‖K1

H2(Ω).

Consequently, we arrive at

‖θ‖2
L∞

T L2 + ‖∇θ‖2
L2(ΩT )

≤ Λ(‖(u0, u1, θ0)‖U3) + Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

3(r+1)
4 ‖ε‖

4
5+

K1
5

W 2,1
16
5

(ΩT )

+ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2

)
3
4 ‖εt‖2

L
16
5 (ΩT )

.

(4.8)

Substituting (4.6) into (4.8) yields

‖θ‖2
L∞

T L2 + ‖∇θ‖2
L2(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U3)

+ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

3(r+1)
4

(
‖(u0, u1, θ0)‖U3

+ ‖∇θ‖
15r

4(6−K1)

L2(ΩT )

) 4
5+

K1
5

+ Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞
T L2)

3
4

(
‖(u0, u1, θ0)‖U3 + ‖∇θ‖

15r
4(6−K1)

L2(ΩT )

)2

.

Here from the assumption 6r + K1 < 6 it follows that

3(r + 1)

4
+

15r

4(6 −K1)

(
4

5
+

K1

5

)
=

30r + 3(6 −K1)

4(6 −K1)
<

5(6 −K1) + 3(6 −K1)

4(6 −K1)
= 2,

3

4
+

30r

4(6 −K1)
<

3

4
+

5

4
= 2.

Thus we conclude that

‖θ‖L∞
T L2 + ‖∇θ‖L2(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U3) + Λ‖∇θ‖1−

L2(ΩT ).

Here we use p− to denote a number less than p. Hence, by the Young inequality, we
have

‖θ‖L∞
T L2 +

1

2
‖θ‖L2(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U3).

Substituting the above inequality into (4.6), we deduce also the following:

‖ε‖W 2,1
16/5(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U3).

Next, we consider the case when 0 ≤ K1 ≤ 1 and 0 ≤ r < 5/6. In this case it
follows that

|H,ε(ε)| ≤ C < ∞.

By an argument similar to the one presented above we have

‖ε‖W 2,1
16/5(ΩT ) ≤ ‖(u0, u1, 0)‖U3 + ‖G(θ)H,ε(ε)‖L16/5(ΩT )

≤ ‖(u0, u1, 0)‖U3 + C‖θ‖r
L

16r
5 (ΩT )

+ C sup
θ∈[0,θ2]

G(θ)

≤ ‖(u0, u1, 0)‖U3 + Λ‖θ‖r
L

8
3 (ΩT )

+ C.

(4.9)
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Noting that

‖θr+1∂tH(ε)‖L1(ΩT ) ≤ Λ‖θ‖r+1
L8/3(ΩT )

‖u‖W 2,1
16/5(ΩT ),

we obtain

‖θ‖2
L∞

T L2 + ‖∇θ‖2
L2(ΩT )

≤ ‖θ0‖2
L2 + ‖θr+1∂tH(ε)‖L1(ΩT ) + ‖θAεt : εt‖L1(ΩT )

+ M sup
t∈[0,T ]

∫
Ω

|H(ε(t))|dx +

∫
Ω

|G2(θ0)H(ε0)|dx

≤ Λ(‖(u0, u1, θ0)‖U3) + Λ‖θ‖r+1
L8/3(ΩT )

‖u‖W 2,1
16/5(ΩT )

+ C‖θ‖L8/3(ΩT )‖u‖2
W 2,1

16/5(ΩT )

≤ Λ(‖(u0, u1, θ0)‖U3
) + Λ(‖∇θ‖L2(ΩT ) + ‖θ‖L∞

T L2)3(2r+1)/4.

Since 3(2r + 1)/4 < 2, we arrive at the desired estimate (4.2).
The estimate (4.3) follows with the help of the embeddings

‖ε‖L∞(ΩT ) ≤ Λ‖ε‖W 2,1
16/5(ΩT )

and the inequality

‖θ‖L10/3(ΩT ) ≤ C
∥∥∥‖θ‖2/5

L2(Ω)‖θ‖
3/5
H1(Ω)

∥∥∥
L

10/3
T

≤ C‖θ‖2/5
L∞

T L2‖θ‖3/5
L2H1 .

This completes the proof.
Lemma 4.3. Let T be any fixed. Assume that θ ≥ 0 a.e. in ΩT and (1.6) holds.

Then for any (u0, u1, θ0) ∈ B
5/2
4,4 ×B

1/2
4,4 ×H1 = U4 the following estimate holds:

‖ε‖W 2,1
4 (ΩT ) + ‖∇θ‖L∞

T L2 + ‖θ‖W 2,1
2 (ΩT ) ≤ Λ,

where the constant Λ depends on T and ‖(u0, u1, θ0)‖U4 . Moreover, we have

‖∇θ‖L10/3(ΩT ) + ‖θ‖L10(ΩT ) + ‖∇ε‖L20(ΩT ) ≤ Λ.

Proof. Remark that U4 ↪→ U3. Using (4.3) we have

‖G(θ)H,ε(ε)‖L4(ΩT ) ≤
{

Λ‖θ‖r
L10/3(ΩT )

‖ε‖K1−1
L∞(ΩT ) ≤ Λ if K1 ≥ 1,

Λ sup |H,ε|‖θ‖rL10/3(ΩT )
≤ Λ if K1 ≤ 1

(4.10)

for r ≤ 5/6. Then from the maximal regularity (2.2) it follows that

‖ε‖W 2,1
4

≤ ‖(u0, u1, θ0)‖U4 + ‖G(θ)H,ε(ε)‖L4 ≤ Λ.(4.11)
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Multiplying (1.3) by θt and integrating over ΩT , we get

cv‖θt‖2
L2(ΩT ) +

k

2
‖∇θ‖2

L∞
T L2

≤ k

2
‖θ0‖2

H1 +

∫∫
ΩT

θ2
t θG

′′(θ)H(ε)dxdt

+

∫∫
ΩT

θtθG
′(θ)∂tH(ε)dxdt +

∫∫
ΩT

θtAεt : εtdxdt

≤ k

2
‖θ0‖2

H1 + C‖θt‖L2(ΩT )‖θrH,ε(ε)‖L4‖εt‖L4 + C‖θt‖L2‖εt‖2
L4

≤ k

2
‖θ0‖2

H1 + Λ(‖(u0, u1, θ0)‖U4
)‖θt‖L2(ΩT )

≤ Λ(‖(u0, u1, θ0)‖U4) +
1

2
‖θt‖2

L2(ΩT ),

where we applied (3.11), (4.10), and (4.11). Therefore we arrive at

‖ε‖W 2,1
4 (ΩT ) + ‖θt‖L2(ΩT ) + ‖∇θ‖L∞

T L2 ≤ Λ(‖(u0, u1, θ0)‖U4).(4.12)

Next, multiplying (1.3) by −Δθ
cv−θG′′(θ)H(ε) and integrating over Ω, we obtain

1

2

d

dt
‖∇θ(t)‖2

L2 +

∫
Ω

k|Δθ|2
cv − θG′′(θ)H(ε)

dx

≤
∫

Ω

Δθ

cv − θG′′(θ)H(ε)
(θG′(θ)∂tH(ε) + νAεt : εt) dx.

Here we recall that

cv ≤ cv − θG′′(θ)H(ε) ≤ cv + MΛ,

where 0 ≤ supθ≥0(−θG′′(θ)) =: M < ∞. Then integrating the above inequality with
respect to the time variable, we conclude that

‖∇θ(t)‖2
L2 +

2k

cv + ΛM
‖Δθ‖2

L2(ΩT )

≤ ‖∇θ0‖2
L2 +

k

cv + ΛM
‖Δθ‖2

L2(ΩT )

+
cv + ΛM

k
‖θG′(θ)∂tH(ε) + Aεt : εt‖2

L2(ΩT )

≤ Λ +
k

cv + ΛM
‖Δθ‖2

L2(ΩT ) + Λ(M)‖θrH,ε(ε)‖L4(ΩT )‖εt‖L4(ΩT )

+ Λ(M)‖εt‖2
L4(ΩT )

≤ Λ +
k

2(1 + ΛM)
‖Δθ‖2

L2(ΩT )

due to (4.10) and (4.11). Consequently, we obtain the first assertion.
With the help of Lemma 2.2, we also obtain estimate

‖∇θ‖L10/3(ΩT ) + ‖θ‖L10(ΩT ) + ‖∇ε‖L20(ΩT ) ≤ Λ
(
‖θ‖W 2,1

2 (ΩT ) + ‖ε‖W 2,1
4 (ΩT )

)
≤ Λ,

which completes the proof.
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Lemma 4.4. Let T be arbitrary fixed and p ∈ [20/9, 10/3] fixed. Assume that θ ≥ 0

a.e. in ΩT and (1.6) holds. Then for any (u0, u1, θ0) ∈ B
4−2/p
p,p ×B

2−2/p
p,p ×H1 =: U5(p),

the solution (u, θ) to (1.2)–(1.5) satisfies

‖u‖W 4,2
p (ΩT ) ≤ Λ,

where Λ depends on T and ‖(u0, u1, θ0)‖U5(p).

Proof. Since the embedding B
4− 2

p
p,p ↪→ B

5
2
4,4 holds for any 20

9 ≤ p, by Lemma 4.3
we find that

‖ε‖W 2,1
4 (ΩT ) + ‖θ‖W 2,1

2 (ΩT ) ≤ Λ
(
‖(u0, u1, θ0)‖B5/2

4,4 ×B
1/2
4,4 ×H1

)
≤ Λ

(
‖(u0, u1, θ0)‖B4−2/p

p,p ×B
2−2/p
p,p ×H1

)
.

For any p ≤ 10
3 we have

‖∇ · (G(θ)H,ε(ε))‖Lp(ΩT ) ≤ Λ‖∇θ‖L10/3(ΩT )‖G′(θ)‖L∞(ΩT )‖H,ε(ε)‖L∞(ΩT )

+ Λ‖θ‖rL10(ΩT )‖∇ε‖L20(ΩT )‖H,εε(ε)‖L∞(ΩT )

≤ Λ

and

‖∇ ·H ,ε(ε)‖Lp(ΩT ) ≤ Λ‖∇ε‖L20(ΩT )‖H ,εε(ε)‖L∞(ΩT ) ≤ Λ,

thanks to Lemmas 4.2 and 4.3. Then from the maximal regularity (2.1) it follows that

‖u‖W 4,2
p (ΩT ) ≤ C‖(u0, u1, 0)‖U5(p)

+ C(‖∇ · (G(θ)H,ε(ε))‖Lp(ΩT ) + ‖∇ ·H ,ε(ε)‖Lp(ΩT ))

≤ Λ.

This completes the proof.
Lemma 4.5. Let T be arbitrary fixed, l > 2 integer, and p ∈ (1,∞). Assume that

θ ≥ 0 a.e. in ΩT and (1.6) holds. Then for any (u0, u1, θ0) ∈ B
17/5
10/3,10/3×B

7/5
10/3,10/3×

(Ll ∩H1) =: U6(l), the solution (u, θ) to (1.2)–(1.5) satisfies

‖θ‖L∞
T Ll

x
≤ Λ,

where Λ = Λ(T, ‖(u0, u1, θ0)‖U6(l)). Moreover, if (u0, u1, θ0) ∈ U6(∞), then

‖θ‖L∞(ΩT ) ≤ Λ,

where Λ = Λ(T, ‖(u0, u1, θ0)‖U6(∞)), and for (u0, u1, θ0) ∈ (B
3−2/p
p,p ∩ B

17/5
10/3,10/3) ×

(B
1−2/p
p,p ∩B

7/5
10/3,10/3) × (L∞ ∩H1) =: U7(p), it holds that

‖ε‖W 2,1
p (ΩT ) ≤ Λ,

where Λ = Λ(T, ‖(u0, u1, θ0)‖U7(p)).
Proof. The same operation as in the proof of Lemma 3.3 yields

cv
l

d

dt
‖θ̂‖lLl + k(l − 1)

∫
Ω

θl−2|∇θ|2dx

=

∫
Ω

Gl(θ)∂tH(ε)dx + ν

∫
θl−1Aεt : εtdx.

(4.13)
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Here we recall that Gl(θ) = θlG′(θ) −Gl(θ), Gl(t) = l
∫ θ

0
sl−1G′(s)ds and

θ̂ = θ

(
1 − lGl(θ)H(ε)

cvθl

)1/l

≥ θ.(4.14)

Since ‖H,ε(ε)‖L∞(ΩT ) = Λ < ∞ from (4.3), we have∣∣∣∣
∫

Ω

Gl(θ)∂tH(ε)dx

∣∣∣∣ ≤ C‖θl−1‖L1(Ω)‖θ‖L∞(Ω)‖εt‖L∞(Ω)‖H,ε(ε)‖L∞(Ω)

≤ Λ‖θ‖l−1
Ll(Ω)

‖θ‖H2(Ω)‖εt‖L∞(Ω).

Therefore we conclude from (4.13) that

cv
l

d

dt
‖θ̂‖lLl(Ω) ≤ Λ‖εt‖L∞(Ω)‖θ‖H2(Ω)‖θ‖l−1

Ll(Ω)
+ C‖εt‖2

L∞(Ω)‖θ‖l−1
Ll(Ω)

.(4.15)

Here note that the equality ∂t‖θ̂‖lLl(Ω) = l‖θ̂‖l−1
Ll(Ω)

∂t‖θ̂‖Ll(Ω), the Sobolev embedding,

and Lemma 4.4 yield estimates

‖εt‖L2
TL∞ ≤ Λ‖εt‖L2

TW 1
10/3

≤ Λ‖u‖W 4,2
10/3(ΩT ) ≤ Λ,

‖θ‖L2
TH2 ≤ ‖θ‖W 2,1

2 (ΩT ) ≤ Λ,

where Λ is independent of l. Thus, integrating (4.15) with respect to the time variable
gives

‖θ̂‖L∞
T Ll ≤ ‖θ̂0‖Ll + Λ‖εt‖L2

TL∞‖θ‖L2
TH2 + Λ‖εt‖2

L2
TL∞

≤ Λ + ‖θ̂0‖Ll .

In view of the inequality θ̂0 ≤ θ0 (1 + lMΛ/cv)
1/l

, the desired result can be obtained.
For the W 2,1

p -norm of ε, we find that

‖ε‖W 2,1
p

≤ C‖(u0, u1, 0)‖U7(p) + Λ‖θ‖rL∞(ΩT )‖H,ε(ε)‖L∞(ΩT ) + Λ‖Hε(ε)‖L∞(ΩT )

≤ Λ

for p ∈ (1,∞), by virtue of the maximal regularity (2.2). This completes the proof.
Using again Lemma 3.4, we can also prove the Hölder continuity of θ. The Hölder

continuity of ε is ensured on account of Lemma 2.2. Hence from Lemma 3.6 we can
obtain the bounds in higher Sobolev norms; i.e., for 5 < p, q < ∞,

‖(u, θ)‖VT (p,q) = ‖u‖W 4,2
p (ΩT ) + ‖θ‖W 2,1

q (ΩT ) ≤ Λ =: Λ̂,(4.16)

where Λ̂ is independent of L.
This a priori estimate says that if there exists a solution to problem (TE)3 such

that θ ≥ 0, then this solution satisfies estimate (4.16). Let us consider now problem

(TE)
L
3 from section 3, assuming that the truncation size L is sufficiently large such

that ∣∣∇ · [G(θ)H,ε(ε) + H ,ε(ε)]
∣∣ ≤ Λ̂K1+r−1 + Λ̂K2−1 � L.

In this case we may regard ΓL as the identity operator because the internal part of ΓL

in (3.1) is smaller than L. Therefore the unique solution (uL, θL) to (TE)
L
3 satisfies

(4.16) for large L. In other words, the VT (p, q)-norm bound for (uL, θL) does not
depend on L. Hence (uL, θL) satisfies also the original system (TE)3.

The positivity of θ follows by the same argument as the proof of Lemma 3.1 in
[22]. This completes the proof of Theorem 1.1.
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5. 2-D case. In this section we consider the solvability of 2-D system (TE)2.
We prove the following theorem.

Theorem 5.1. Fix 4 < p ≤ q < ∞. Assume that minΩ θ0 ≥ 0, ν > 0, and (A)
with (1.7). Then for any T > 0 and (u0, u1, θ0) ∈ U(p, q), there exists at least one
solution (u, θ) to (TE)2 satisfying (u, θ) ∈ VT (p, q).

Moreover, if we assume minΩ θ0 = θ∗ > 0, then there exists a positive constant ω
such that

θ ≥ θ∗ exp(−ωt) in ΩT .

Theorem 5.2. In addition to the assumptions of Theorem 1.1, suppose that
F (ε, θ) ∈ C4(S2 × R

+,R). Then the solution (u, θ) ∈ VT (p, q) to (TE)2 constructed
above is unique.

Proof of Theorem 5.1. With the exception of a priori bounds, the result follows
by the same procedure as in the proof of the 3-D case. Thus it remains to check the
bounds corresponding to Lemmas 4.1, 4.2, and 4.3 under assumption (A) with (1.7).

Lemma 5.3 (energy inequality). Assume that θ ≥ 0 a.e. in ΩT and (1.7) holds.
Then for any t ∈ [0, T ] the smooth solution of (TE)2 satisfies

‖θ(t)‖L1(Ω) + ‖ut(t)‖L2(Ω) + ‖Qu(t)‖L2(Ω) ≤ C(‖(u0, u1, θ0)‖H2×L2×L1).

Proof. The same operation as in the proof of Lemma 4.1 yields

d

dt

(
1

2
‖ut‖2

L2 +
κ

2
‖Qu‖2

L2 + cv

∫
Ω

θdx +

∫
Ω

H(ε)dx +

∫
Ω

G(θ)H(ε)dx

)
= 0,

where G(θ) = G(θ) − θG′(θ). Here we recall that θ ≥ 0, H(ε) ≥ 0, and G(θ) ≥ 0.
Consequently, it follows from (A)(iii) that

1

2
‖ut‖2

L∞
T L2 +

κ

2
‖u‖2

L∞
T H2 + cv‖θ‖L∞

T L1

≤ κ

2
‖u0‖2

H2 +
1

2
‖u1‖2

L2 + cv‖θ0‖L1 +

∫
Ω

{
|H(ε0)| + |G(θ0)H(ε0)|

}
dx + C3|Ω|,

where ε0 = ε(u0). From the Sobolev embedding it holds that

‖ε0‖Ls(Ω) ≤ C‖u0‖H2(Ω)(5.1)

for any s ∈ [1,∞). Then we have∫
Ω

|G(θ0)H(ε0)|dx ≤ C‖θ0‖rL1(Ω)‖ε0‖K1

L
K1
1−r (Ω)

≤ C‖θ0‖rL1(Ω)‖u0‖K1

H2

for r < 1 and K1 < ∞, and ∫
Ω

H(ε0)dx ≤ ‖ε0‖K2

LK2

≤ C‖u0‖K2

H2

for K2 < ∞. This completes the proof.
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Lemma 5.4. Let T and p ∈ [2, 4) be fixed. Assume that (1.7) holds. Then for any

(u0, u1, θ0) ∈ B
3−2/p
p,p ×B

1−2/p
p,p × L2 =: U ′

3(p), the solution (u, θ) to (TE)2 satisfies

‖ε‖W 2,1
p (ΩT ) + ‖∇θ‖L2(ΩT ) + ‖θ‖L∞

T L2 ≤ Λ,(5.2)

where Λ depends on T and ‖(u0, u1, θ0)‖U ′
3(p)

. Moreover, we have

‖ε‖L∞(ΩT ) + ‖θ‖Lp(ΩT ) ≤ Λ.(5.3)

Proof. We first show (5.2) for p such that p < 3. From the Sobolev inequality
(5.1) and Lemma 5.3, it follows that

‖ε‖Ls(ΩT ) ≤ Λ‖u‖L∞
T H2 ≤ Λ

for every s < ∞, and hence we obtain

‖H,ε‖Ls(ΩT ) + ‖H ,ε‖Ls(ΩT ) ≤ Λ(5.4)

for any K1, K2 < ∞. Moreover, by using the Hölder inequality, we have

‖θ‖Lp(ΩT ) ≤ C
∥∥∥‖θ‖1−2/p

L1 ‖θ‖2/p

L2/(3−p)

∥∥∥
Lp

T

≤ C‖θ‖1−2/p
L∞

T L1‖θ‖2/p

L2
TH1 ≤ Λ‖θ‖2/p

L2
TH1(5.5)

for p ∈ [2, 3).
We fix p̄ such that r + 2 < p̄ < 3. From (5.4), (5.5), and the maximal regularity

(2.2) it follows that

‖ε‖W 2,1
p̄ (ΩT )

≤ C‖(u0, u1, θ0)‖U ′
3(p̄)

+ C‖G(θ)H,ε(ε)‖Lp̄(ΩT ) + C‖H ,ε(ε)‖Lp̄(ΩT )

≤ Λ + C‖θ‖rLp̄(ΩT )‖H,ε(ε)‖
L

p̄
(1−r) (ΩT )

+ C‖H ,ε(ε)‖Lp̄(ΩT )

≤ Λ + Λ‖θ‖
2r
p̄

L2
TH1 .

(5.6)

Next, the same operation as in the proof of Lemma 4.2 yields

cv
2
‖θ‖2

L∞
T L2 + k‖∇θ‖2

L2(ΩT )

≤ cv
2
‖θ0‖2

L2 + ‖G2(θ)∂tH(ε)‖L1(ΩT ) + ν‖θAεt : εt‖L1(ΩT )

+ M sup
t∈[0,T ]

∫
ΩT

|H(ε(t))|dx +

∫
Ω

|G2(θ0)H(ε0)|dx.

By (5.4), (5.5), and (5.6) we have

‖θr+1∂tH(ε)‖L1(ΩT ) ≤ Λ‖θ‖r+1
Lp̄(ΩT )‖ε‖W 2,1

p̄ (ΩT )‖H,ε(ε)‖
L

p̄
p̄−(r+2) (ΩT )

≤ Λ‖θ‖
2(r+1)

p̄

L2
TH1

(
Λ + ‖θ‖

2r
p̄

L2
TH1

)
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for p̄ > r + 2,

‖θAεt : εt‖L1(ΩT ) ≤ Λ‖θ‖Lp̄(ΩT )‖εt‖2

L
2p̄

p̄−1 (ΩT )

≤ Λ‖θ‖
2
p̄

L2
TH1

(
Λ + ‖θ‖

4r
p̄

L2
TH1

)
,

∫
Ω

|H(ε(t))|dx ≤ C‖u(t)‖K1

H2 ≤ Λ,

and

‖θr+1
0 H(ε0)‖L1(Ω) ≤ C‖θ0‖r+1

L2(Ω)‖ε0‖K1

L
2K1
1−r (Ω)

≤ C‖θ0‖r+1
L2(Ω)‖u0‖K1

H2(Ω).

Consequently, we arrive at

‖θ‖2
L∞

T L2 + ‖∇θ‖2
L2(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U ′

3(p)
) + Λ‖θ‖

2(2r+1)
p̄

L2
TH1 .

Since 2r + 1 < r + 2 < p̄, by using the Young inequality we have

‖θ‖L∞
T L2 + ‖∇θ‖L2(ΩT ) ≤ Λ(‖(u0, u1, θ0)‖U ′

3(p)
).(5.7)

Substituting (5.7) into (5.6), we obtain (5.2) for p < 3.
We shall show the rest of the proof. Taking p ∈ [2, 4), by the same operation as

(5.5) we have

‖θ‖Lp(ΩT ) ≤ C‖θ‖1−2/p
L∞

T L2‖θ‖2/p

L2
TH1 ≤ Λ

for p < 4 thanks to (5.7). Then from (2.2) we conclude that

‖ε‖W 2,1
p

≤ Λ + ‖θ‖rLp‖H,ε(ε)‖
L

p
(1−r)

+ ‖H ,ε(ε)‖Lp

≤ Λ.

This completes the proof.
Lemma 5.5. Let T be any fixed. Assume that (1.7) holds. Then for any

(u0, u1, θ0) ∈ B
5/2
4,4 ×B

1/2
4,4 ×H1 = U ′

4 the following estimate holds:

‖ε‖W 2,1
4 (ΩT ) + ‖∇θ‖L∞

T L2 + ‖θ‖W 2,1
2 (ΩT ) ≤ Λ,

where constant Λ depends on T and ‖(u0, u1, θ0)‖U ′
4
. Moreover, we have

‖∇θ‖L4(ΩT ) + ‖θ‖Ls(ΩT ) + ‖∇ε‖Ls(ΩT ) ≤ Λ

for any s < ∞.
Proof. It follows from Lemma 5.4 and (2.2) that

‖ε‖W 2,1
4 (ΩT ) ≤ C‖(u0, u1, θ0)‖U ′

4
+ C‖θ‖rL4r‖H,ε(ε)‖L∞(ΩT )

+ C‖H ,ε(ε)‖L∞(ΩT )

≤ Λ

(5.8)
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thanks to r < 1. The same operation as in the proof of Lemma 4.3 yields

cv‖θt‖2
L2(ΩT ) +

k

2
‖∇θ‖2

L∞
T L2 ≤ k

2
‖θ0‖2

H1 + C‖θt‖L2(ΩT )‖θrH,ε(ε)‖L4(ΩT )‖εt‖L4(ΩT )

+ C‖θt‖L2(ΩT )‖εt‖2
L4(ΩT )

≤ Λ +
cv
2
‖θt‖2

L2(ΩT )

on account of (5.3) and (5.8). Therefore, we arrive at the estimate

‖ε‖W 2,1
4 (ΩT ) + ‖θt‖L2(ΩT ) + ‖∇θ‖L∞

T L2 ≤ Λ(‖(u0, u1, θ0)‖U ′
4
).

Moreover, applying the same argument as in the proof of Lemma 4.3, we get

‖Δθ‖L2(ΩT ) ≤ Λ.

This completes the proof of the first assertion. With the help of Lemma 2.2 we obtain
the second assertion. This completes the proof of Lemma 5.5.

From a modification similar to that presented in section 4 we can derive the
estimate

‖(u, θ)‖VT (p,q) = ‖u‖W 4,2
p (ΩT ) + ‖θ‖W 2,1

q (ΩT ) ≤ Λ.

Hence the proof of Theorem 5.1 are completed.
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Abstract. We use renormalization group (RG) techniques to prove the nonlinear asymptotic
stability for the semistrong regime of two-pulse interactions in a regularized Gierer–Meinhardt sys-
tem. In the semistrong limit the localized activator pulses interact strongly through the slowly
varying inhibitor. The interaction is not tail-tail as in the weak interaction limit, and the pulse
amplitudes and speeds change as the pulse separation evolves on algebraically slow time scales. In
addition the point spectrum of the associated linearized operator evolves with the pulse dynamics.
The RG approach employed here validates the interaction laws of quasi-steady two-pulse patterns
obtained formally in the literature, and establishes that the pulse dynamics reduce to a closed sys-
tem of ordinary differential equations for the activator pulse locations. Moreover, we fully justify the
reduction to the nonlocal eigenvalue problem (NLEP) showing that the large difference between the
quasi-steady NLEP operator and the operator arising from linearization about the pulse is controlled
by the resolvent.
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1. Introduction. Pulse solutions are the building blocks for the analysis of
complex patterns in reaction-diffusion equations. Within the proper scaling limit,
the dynamics exhibited by many reaction-diffusion systems is governed by the in-
teractions of localized solutions of pulse type. A prototypical example is given by
the spatio-temporal chaotic dynamics of the one-dimensional Gray–Scott system for
which numerical simulations indicate that the chaotic dynamics originate from the
interactions and bifurcations of pulse solutions [13].

In the context of singularly perturbed equations in one spatial dimension, there is
a well-developed literature addressing the existence and stability of stationary pulse
solutions based on the geometric singular perturbation theory and the Evans function
methods (see [15, 5] and the references therein). There is no such general theory for
pulse interactions. In fact, strong pulse interactions, and especially the phenomena
of pulse-replication and annihilation, have been studied computationally, but are not
yet understood mathematically. On the other hand, there are methods to study
the behavior of pulses in the weak interaction limit where the pulses are so greatly
separated that they can be considered at leading order as copies of a solitary pulse. In
this regime the exponentially weak interactions affect only the position of the pulses
and have no leading order influence on their shape or stability (see [8, 9, 14, 15] and
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Fig. 1.1. The two-pulse solution of the Gierer–Meinhardt equation, shown at t = 500 and
t = 5000, in the slow spatial variable. The figures are obtained from numerical simulation of (2.1)
with ε2 = 0.01 and μ = 5.

the references therein).
Recently, an intermediate concept has been introduced in the context of singularly

perturbed equations, the semistrong interaction case (see [6, 16] and the references
therein). The semistrong regime exists in systems whose components decay at asymp-
totically distinct rates, so that some of the components of the system approach the
trivial background state between pulses, while others do not. Moreover, the pulse
positions, amplitudes, and shapes change at rates that are algebraically small in the
perturbation parameter (see Figure 1.1) and may bifurcate due to the interactions
[6, 16].

Up to now the semistrong pulse interaction has only been studied formally (see
Remark 1.3). In this paper we show that the semistrong interaction fits naturally into
the framework of the renormalization group (RG) methods developed to study the
stability of slowly evolving patterns [14, 12]. For the Gierer–Meinhardt equations, the
geometric singular perturbation theory shows that the activator-inhibitor interaction
reduces the highly diffusive inhibitor to a local constant within each activator pulse.
The value of this constant determines the activator pulse interactions, in particular
causing the pulse amplitudes to depend upon the pulse positions, which evolve on an
O( 1

ε4 ) time scale. The RG analysis makes these statements rigorous, in particular fully
justifying the reductions made in the nonlocal eigenvalue problem (NLEP) analysis
which arises in the linear stability analysis of the pulses.

The singular perturbation theory typically constructs a family of pulse type pat-
terns which are approximate solutions of a given system of equations [2, 3, 6, 11, 16].
The solutions are characterized by parameters �p ∈ R

k, which are often—but not
exclusively—pulse locations. The linearizing about the global manifold of slowly
evolving pulse patterns for a particular choice of parameters �p allows one to de-
compose the phase space into tangential (or active) and normal (or decaying) modes.
In the RG approach, rather than using the exact linearization, reduced linearized
operators are identified at a discrete family of base points on the manifold. These
form a loose covering of approximate tangent planes, much like the scales of a fish
form a piecewise linear envelope of the underlying body. In the current setting this
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gives two specific advantages: first, in a neighborhood of each base point we identify
a temporally constant linearized operator and associated phase space decomposition,
and second, we are free to modify the governing linear operator in ways that simplify
the analysis. For the Gierer–Meinhardt equations, the singularly perturbed structure
of the linearized operators makes them strongly contractive on certain regions of the
phase space. This permits a nontrivial replacement of spatially varying potentials
with delta functions, affording dramatic simplification to the analysis of the principle
linear operator. Indeed we replace the exact linearization with a putatively O(ε−2)
“perturbation.” This reduced linear operator gives rise to exactly the NLEP operators
introduced previously in the formal linear stability analysis, [2, 6, 16], and justifies
the observation that, at the linear level, the inhibitor equation averages perturbations
into a mean-field.

The RG method shows that the NLEP operators control the flow in a neighbor-
hood of the pulse configurations, generating a thin absorbing set in the phase space.
Moreover, we recover the leading order pulse evolution by projecting the flow onto
the tangent plane of the manifold of two-pulse solutions. In this paper we consider
only two-pulse solutions. Although there are no new conceptual features, the gener-
alization to N -pulses is technical. In particular, determining the amplitudes of each
pulse within an N -pulse configuration requires a nontrivial nonlinear computation,
and the stability of the underlying pattern will depend sensitively upon the pulse
amplitudes and separations. These issues have been studied numerically in [11] and
the construction and interaction of N -pulses on bounded domains has been considered
in [16]. However, the nonlinear aspects of the stability approach we developed here
generalizes directly from the two-pulse to the N -pulse case. Our methods can also
be applied to the weak and semistrong N -pulse interactions in classes of singularly
perturbed reaction-diffusion equations as considered in [6] and in [17] on bounded
domains. Nevertheless, interesting additional issues may emerge in specific settings,
such as the semistrong evolution of pulses in the Gray–Scott equation (see [4]) in
which the essential spectrum is asymptotically close to the origin.

The main result of this paper addresses the semistrong evolution of two-pulse
solutions Φ, given in (2.5), of the regularized Geirer–Meinhardt equation (2.3). The
solutions are parameterized by pulse positions Γ = (Γ1,Γ2)

t, with pulse separation
ΔΓ = |Γ1 − Γ2|. In the application at hand the RG approach models the impact of
transient initial perturbations on the semistrong pulse evolution, and after the decay of
the transients, recovers the formal pattern evolution at leading order. For the Gierer–
Meinhardt equation the semistrong regime is comprised of pulses whose separations
satisfy ΔΓ > ΔΓ∗(μ), where ΔΓ∗ = O(ε−2) is defined in (3.37) of Proposition 3.4.
For ΔΓ < ΔΓ∗ one enters the strong interaction regime, where the two-pulse solution
has quasi-stationary eigenvalues which are incompatible with the two-pulse manifold,
and pulse splitting bifurcations are observed. Our approach works uniformly for the
weak, ΔΓ � ε−2, and semistrong interactions, recovering prior results [8, 9, 14, 15],
for the weak interaction limit.

We introduce the norm ‖ · ‖X on H1 ×H1 defined by

‖G‖X = ε‖G1‖L2 + ε−1‖∂ξG1‖L2 + ‖G2‖H1 ,(1.1)

and remark that it controls the L∞ norm uniformly,

‖G1‖L∞ ≤ (2‖G1‖L2‖∂ξG1‖L2)
1
2 ≤ ε‖G1‖L2 + ε−1‖∂ξG1‖L2 ≤ ‖G‖X .(1.2)

We next state our main theorem for the pulses in the semistrong interaction regime.
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Theorem 1.1. Let ε be sufficiently small, let μ > μHopf , and let the pulse
separation satisfy ΔΓ > ΔΓ∗(μ), where μHopf and ΔΓ∗(μ) are given in Proposition
3.4. The manifold M of two-pulse solutions (2.6) of the regularized Gierer–Meinhardt
equation (2.3) is asymptotically exponentially stable up to O(ε3). That is, there exists

M and ν > 0, independent of ε, such that for all initial data �U0 sufficiently close to
the M, the corresponding solution �U = (U, V )t of the regularized Gierer–Meinhardt
equations can be decomposed as

�U(ξ, t) = ΦΓ + W (ξ, t),(1.3)

where the parameters Γ(t) of the two-pulse solution Φ evolve at leading order according
to (4.17). Moreover, the remainder W satisfies

‖W‖X ≤ M(e−νt‖W0‖X + ε3).(1.4)

In particular, after the perturbation W has decayed to O(ε3), the pulse evolution is
given by the ordinary differential equations (4.75) which are equivalent at leading order
to

d

dt
ΔΓ = ε2√μ

e−ε2ΔΓ
√
μ

1 + e−ε2ΔΓ
√
μ
.(1.5)

Since the pulses are repelling, Theorem 1.1 governs the evolution of all two-pulse
solutions in the semistrong or the weak interaction regime. That is, any two-pulse
solutions with ΔΓ(0) > ΔΓ∗(μ) will evolve according to (1.5) for all subsequent time.

Remark 1.2. The pulse dynamics (1.5) were obtained formally in [6].
Remark 1.3. In [2, 3], slowly-modulated two-pulse solutions were constructed for

the Gray–Scott model on the infinite line, along with ODEs for the pulse positions,
using the method of multiple scales. Various bifurcations, including the bifurcation
to self-replicating two-pulse solutions, were identified. Moreover, the NLEP method,
which was initially developed for studying the stability of stationary, one-pulse solu-
tions (see [5] and the references therein) was (formally) extended in [2] to the stability
analysis of two-pulse solutions. For the generalized Gierer–Meinhardt equations on
bounded domains, [11] presents ODEs for N -spike quasi-equilibrium solutions in the
semistrong and weak interaction regimes. Also, the NLEP method is employed to
formally derive explicitly computable stability criterions. Further formal study of
the instabilities (competition and oscillatory) for two-pulse solutions of the Gierer–
Meinhardt equations has been reported in [16]. The analysis is primarily on a bounded
domain, and results for the infinite line—some of which extend those reported in
[2, 3]—are obtained by taking the domain to be large. Semistrong pulse interactions
have also been studied in [6] for a large class of reaction-diffusion equations, including
for the generalized Gierer–Meinhardt equations the Gray–Scott model, the Thomas
equations, the Schnakenberg model, and others. Conditions were derived to deter-
mine formally whether adjacent pulses attract or repel, and the interactions between
stationary and dynamically-evolving N -pulse solutions were studied.

2. The two-pulse solutions of the Gierer–Meinhardt equations. As pro-
posed the Gierer–Meinhardt model, [10], has an artificial singularity in its nonlinear
term, which suggests infinite production of the activator, V , in the absence of the
inhibitor, U . While the singular model can be studied by working with exponen-
tially weighted norms which preserve positivity of the inhibitor, the behavior of the
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model for small concentrations bears little resemblance to chemical reality. Moreover,
the singularity has an exponentially small impact on both the two-pulse construction
and their evolution. To avoid clouding the analysis, we truncate the superfluous sin-
gularity of the Gierer–Meinhardt reaction term, replacing it with a variation of the
classic Rice–Hertzfeld mechanism typical of complex reactions with inhibition steps;
see chapter 26 of [1]. In the slow spatial variable x, the regularized Gierer–Meinhardt
equation is given by

{
Ut = 1

ε2Uxx − μU + 1
ε2V

2,

Vt = ε2Vxx − V + V 2

κ(U) ,
(2.1)

where U(x, t), V (x, t) : R × R
+ → R, μ > 0 is the main (bifurcation) parameter, and

ε > 0 is asymptotically small, 0 < ε � 1. The regularizing function κ takes the form

κ(s) =

{
s if s > 2δ,
δ if 0 < s < δ,

(2.2)

and is smooth for s ∈ (δ, 2δ), with derivative uniformly less than two. In the absence
of the inhibitor, U , the production rate of the activator V reduces to V 2/δ, where δ

is a small parameter. The regularization introduces an O(e−ε−2| ln δ|) perturbation to
the pulse dynamics. The fast spatial scale is defined by ξ = x

ε , so that (2.1) transforms
into {

Ut = 1
ε4Uξξ − μU + 1

ε2V
2,

Vt = Vξξ − V + V 2

κ(U) .
(2.3)

We denote the right-hand side of (2.3) by F (U, V ). Since the regularizing term has only
an exponentially small impact on the pulse construction we carry over the asymptotic
results for the singular Gierer–Meinhardt equation without modification.

Proposition 2.1. The construction and spectral analysis of pulse solutions for
the classical GM model given in [5] and the construction and formal dynamics of
semistrong two-pulses given in [6] hold up to exponentially small terms for the regu-
larized models (2.1)–(2.3).

2.1. Notation. We write f = g + O(ε) in norm ‖ · ‖ if

‖f − g‖ ≤ cε,(2.4)

and assume the ‖ · ‖X norm if no norm is specified. The solution (U, V ) of the

Gierer–Meinhardt equation is denoted �U . The two-pulse solutions are denoted by
ΦΓ = (U0+ε2U2+· · · , V0+ε2V2+· · · )t, while the initial data of the Gierer–Meinhardt

equation is given by �U0. We denote by ‖f‖L̂p and ‖f‖
Ĥ2 the Lp and H2 norms

of the Fourier transform of f . We remark that ‖f‖L∞ ≤ c‖f‖L̂1 and, conversely,

‖f‖L̂∞ ≤ c‖f‖L1 , and, in particular, that the delta function resides in L̂∞ but is
not in L1. Also the norm ‖〈x〉f‖L1 with 〈x〉 ≡ 1 + |x| controls the L∞ norm of the
derivative of the Fourier transform of f . We denote the mass of a function f by
f =

∫∞
−∞ f dξ. The quantity [�F ]k will denote the kth component of the vector �F when

less cumbersome notation is not available.
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2.2. Asymptotic pulse solutions. Within the semistrong pulse regime the two
pulses interact strongly through the inhibitor component, U , and weakly through the
activator, V . The asymptotic family of semistrong two-pulse solutions is parameter-

ized by the pulse location Γ ∈ K = {(Γ1,Γ2)
∣∣∣Γ1 < Γ2, |Γ1 − Γ2| ≥ ΔΓ∗(μ)}, where

ΔΓ∗(μ) is defined in Proposition 3.4. We denote the two-pulse solution by ΦΓ(ξ)
which we expand as

ΦΓ(ξ) =

(
ΦΓ,1

ΦΓ,2

)
=

(
U0(ξ; Γ) + ε2U2(ξ; Γ) + ε4U4(ξ; Γ)

V0(ξ; Γ) + ε2V2(ξ; Γ)

)
,(2.5)

and define the manifold M ⊂ H1 ×H1 of two-pulse solutions by

M = {ΦΓ

∣∣Γ ∈ K}.(2.6)

We first describe the leading order terms (U0, V0)
t which were derived in [6]. Full

resolution of the pulse dynamics of the renormalization procedure of section 4 requires
a more accurate description of the two-pulse solution which requires the construction
of the higher order corrections, outlined in Lemma 2.1.

The V -components of the two-pulse solutions are centered around the pulse-
positions ξ = Γk(t), where

Γ1(t) = Γ0 − ε2

∫ t

0

ĉ(s)ds, Γ2(t) = Γ0 + ε2

∫ t

0

ĉ(s)ds.(2.7)

In the two-pulse configuration each pulse moves away from their mutual center Γ0

with equal and opposite speed given by

ĉ =
1

2

√
μ

e−ε2ΔΓ
√
μ

1 + e−ε2ΔΓ
√
μ
,(2.8)

where ΔΓ = ΔΓ(t) = |Γ1 − Γ2|; see (1.5).
The leader order term, V0, of the V component of ΦΓ is given by the sum of two

one-pulses

V0(ξ; Γ(t)) = φ1 + φ2,(2.9)

where for k = 1, 2 the one-pulse solution is

φk(ξ) =
3

2
A(Γ) sech2 1

2
(ξ − Γk(t)).(2.10)

A key distinction between the semistrong interaction depicted here and the weak
pulse interaction is that the pulse amplitude, A(Γ), depends nontrivially upon the
pulse separation, ΔΓ = |Γ1 − Γ2|, via

A(Γ) =

√
μ

3

1

1 + e−2ε2ΔΓ
√
μ
.(2.11)

The pulse regions Ik = Ik(t), k = 1, 2, are defined as regions outside which V0 is
exponentially small, and such that U0 remains constant at leading order over a pulse
region. We set the width of the pulse regions to be O(1/

√
ε), i.e., we define

Ik =

(
Γk(t) −

1√
ε
,Γk(t) +

1√
ε

)
, k = 1, 2.(2.12)
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The choice of pulse region width is somewhat arbitrary but standard. Another dis-
tinguishing feature of the semistrong pulse interaction is that the slowly varying U -
component of ΦΓ is not the sum of two one-pulses. To the left of I1 and to the right
of I2, U0(x, t) decays slowly, while in the region between I1 and I2 it is cosh-like, but
again on the slow, spatial scale,

U0(ξ; Γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aeε
2√μ(ξ−Γ1) for ξ < Γ1 − ε−

1
2 ,

A
cosh ε2√μ (ξ − (Γ1 + Γ2)/2)

cosh ε2√μΔΓ/2
for Γ1 + ε−

1
2 < ξ < Γ2 − ε−

1
2 ,

Ae−ε2
√
μ(ξ−Γ2) for Γ2 + ε−

1
2 < ξ.

(2.13)

As defined above, U0 would be nonsmooth if extended into the pulse regions Ik.
Rather we define the U -component of the two-pulse solution inside Ik as U0+ε2U2(ξ),
where U0 ≡ A, and U2(ξ) is a solution of Uξξ + φ2

k = 0; see (2.3). Using (2.13) as
boundary or matching conditions and the pulse amplitude (2.11), we find

U0 + ε2U2(ξ; Γ) = A + ε2

⎧⎪⎨
⎪⎩
A[

√
μ− 3A](ξ − Γ1) −

∫ ξ

Γ1

∫ ξ1
Γ1

φ2
1(ξ2) dξ2 dξ1 for ξ ∈ I1,

A[
√
μ− 3A](ξ − Γ2) −

∫ ξ

Γ2

∫ ξ1
Γ2

φ2
2(ξ2) dξ2 dξ1 for ξ ∈ I2,

(2.14)

which gives that U0 + ε2U2(ξ) ∈ C1 ∩ H2. The C1-smoothness of U0 + ε2U2(ξ) is
equivalent to the amplitude-pulse separation relation (2.11), i.e. U0 + ε2U2(ξ) can be
smooth only for A(Γ) given by (2.11).

Relations (2.7), (2.8), (2.9), (2.10), (2.11), (2.13), and (2.14) give a leading order
description of the two-pulse solution ΦΓ(ξ). The corrections U4(ξ) and V2(ξ) can be
obtained by a straightforward regular asymptotic expansion and are both defined only
in the pulse regions I1,2 (see (2.23) in the proof of Lemma 2.1 below). The residual
of ΦΓ,

R = F(ΦΓ) =

(
F1(ΦΓ)
F2(ΦΓ)

)
,(2.15)

is determined by the right-hand side of (2.3), denoted by (F1, F2)
t, evaluated at

ΦΓ. Obtaining L1- and L2-estimates on the residual is a key step to controlling the
remainder in the renormalization process.

Lemma 2.1. For the residual R = F(ΦΓ) defined in (2.15) we have

sup
R

|F2(ΦΓ)| = O(ε2), sup
R\I1∪I2

|F1(ΦΓ)| = O(ε4), sup
I1∪I2

|F1(ΦΓ)| = O(ε
√
ε).(2.16)

More specifically

R2(Γ) = ε2ĉ (φ′
1 − φ′

2) + O(ε4) in L2(R),(2.17)

while

‖R1(Γ)‖L1 = O(ε).(2.18)
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The O(ε
√
ε) bound on F1 in (2.16) and the O(ε) bound on R1 in (2.18) deteriorate to

O(ε−
1
2 ) bounds, if we do not introduce the leading order corrections ε4U4 and ε2V2 in

(2.5). Moreover, (2.17) no longer holds in that case. On the other hand, the bounds
on R2(Γ) given in the lemma are sharp. The bounds on R1(Γ) may be sharpened, but
this does not lead to any improvements in the renormalization analysis of section 4.

Proof. In [6], ΦΓ is constructed as the solution of the classical Gierer–Meinhardt
system {−ε6ĉkUξ = Uξξ − ε4μU + ε2V 2,

−ε2ĉkVξ = Vξξ − V + V 2

U

(2.19)

with ĉ1 = −ĉ < 0 for ξ < Γ0 and ĉ2 = ĉ > 0 for ξ < Γ0, and ĉ = ĉ(t) as in (2.8). Note
the factor ε4 difference between the right-hand sides of the U -equation here and in
(2.3). We may employ a regular perturbation expansion, writing

U(ξ, t) = U0(ξ; Γ) + ε2U2(ξ; Γ) + ε4U4(ξ; Γ) + ε6Ur(ξ, t; ε
2),

V (ξ, t) = V0(ξ; Γ) + ε2V2(ξ; Γ) + ε4Vr(ξ, t; ε
2),

(2.20)

where A, U2, and V0 are given in (2.9), (2.10), (2.11), (2.13), (2.14), and U4 and V2

have already been introduced in (2.5). Likewise, we expand F1 and F2 (Proposition
2.1),

F1(ΦΓ) =
1

ε2

[
U2,ξξ + V 2

0

]
+ [U4,ξξ − μU0 + 2V0V2]

+ ε2
[
Ur,ξξ − ε4μUr − F inh

1,r (U2, V0,2,r; ε
2)
]
,

F2(ΦΓ) =

[
V0,ξξ − V0 +

V 2
0

U0

]
+ ε2

[
L22V2 −

V 2
0 U2

U2
0

]
+ ε4

[
L22Vr − F inh

2,r (U0,2,4, ε
2Ur, V0,2, ε

2Vr; ε
2)
]
,

(2.21)

where

L22V = Vξξ − V +
V 2

0

U0
V,(2.22)

and the expressions for F inh
1,r (U2, V0,2,r; ε

2) and F inh
2,r (U0,2,4, ε

2Ur, V0,2, ε
2Vr; ε

2) follow
directly by substitution of (2.20) in (2.3). We obtain by (2.19) the following equations
for U4 and V2:

U4,ξξ = μU0 − 2V0V2, L22V2 =
V 2

0 U2

U2
0

− ĉkV0,ξ,(2.23)

for ξ ∈ I1,2. These equations can be solved uniquely by application of the natural
boundary/matching conditions. Note that U4(ξ) grows as (ξ−Γ1,2)

2 for |ξ−Γ1,2| � 1
and that V2 decays exponentially to 0 as |ξ−Γ1,2| � 1 (see (2.9)). The equations for
the remainders Ur(ξ, t; ε

2) and Vr(ξ, t; ε
2) are given by

Ur,ξξ − ε4μUr = F inh
1,r (U2, V0,2,r; ε

2) − ĉkU0,ξ − ε2ĉkU2,ξ − ε4ĉkU4,ξ − ε6ĉkUr,ξ,

L22Vr = F inh
2,r (U0,2,4, ε

2Ur, V0,2, ε
2Vr; ε

2) − ĉkV2,ξ − ε2ĉkVr,ξ,

(2.24)
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for ξ ∈ R. It is a straightforward procedure to check that |Vr| and |F inh
2,r | are uni-

formly bounded for ξ ∈R; in fact, both Vr and F inh
2,r decay exponentially to 0 as

|ξ − Γ1,2(t)|� 1. Together with the definitions of V0 and V2 ((2.9) and (2.23)), sub-
stitution of this result in the second equation of (2.21) yields (2.17). This also implies
the results on F2(ΦΓ) in (2.16).

Outside the pulse regions Ik, all V0,2,r components are exponentially small, and
U0 is constructed as a solution of the equation Uξξ − ε4μU = 0; see (2.13). Therefore,
the correction Ur to U0 in the U -component of the two-pulse solution also varies like
ε2ξ, and U2 and U4 may be taken to be identically zero outside Ik. This implies by
(2.21) and (2.24) that outside Ik

F1(ΦΓ) = −ε2ĉkU0,ξ = O(ε4).

Since Ur decays for ξ → ±∞ with the same slow rate as U0, we find∫
R\I1∪I2

|F1(ΦΓ)| dξ =
1

ε2
×O(ε4) = O(ε2).

Inside Ik, we conclude from (2.24) and the fact that U2 grows linearly with (ξ−Γi) (see
(2.14)) that Ur may grow as (ξ−Γi)

3. Nevertheless, both Ur,ξξ and F inh
1,r (U2, V0,2,r; ε

2)
only grow linearly in (ξ−Γi). Since the width of the Ik interval is O(1/

√
ε) (see (2.12))

we deduce from (2.21) and (2.24) that supI1∪I2
|F1(ΦΓ)| = O(ε

√
ε) (2.16). Hence, by

(2.12), ∫
Ik

|F1(ΦΓ)| dξ =
1√
ε
×O(ε

√
ε) = O(ε),

which yields the L1-bound (2.18).

3. Linearization and the reduced operators. In a neighborhood of the two-
pulse manifold M we decompose the solutions of (2.3) as(

U
V

)
= ΦΓ + W (ξ, t),(3.1)

where the remainder W = (W1,W2)
t and Γ is taken as a function of time. In terms

of the remainder introduced in (3.1), the GM equation (2.3) can then be written as

Wt +
∂Φ

∂Γ
Γ̇ = R + LΓW + N (W ),(3.2)

where R is the residual (2.15) and LΓ is the linearization of F about ΦΓ, given by

LΓ =

⎛
⎜⎝ ε−4∂2

ξ − μ 2ε−2ΦΓ,2

−
Φ2

Γ,2κ
′(ΦΓ,1)

κ(ΦΓ,1)
2 ∂2

ξ − 1 + 2
ΦΓ,2

κ(ΦΓ,1)

⎞
⎟⎠ .(3.3)

In the linear operator above κ(ΦΓ,1) = ΦΓ,1 except for those ξ for which ΦΓ,2(ξ) =

O(e−ε−2| ln δ|). Thus the perturbation to the linearization introduced by the regular-
ization is compact and exponentially small. The final term, N (W ), representing the
nonlinearity is given at leading order by

N (W ) =

⎛
⎝ ε−2W 2

2

O(W 2
2 ) + O(V0W1W2) + O(V 2

0 W
2
1 )

⎞
⎠ .(3.4)
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From the asymptotic form of the pulse solution given in (2.9), (2.11), and (2.13), we
calculate that

ε2
∥∥∥∂U0

∂Γk

∥∥∥
L1

+ ε
∥∥∥∂U0

∂Γk

∥∥∥
L2

+
∥∥∥∂U0

∂Γk

∥∥∥
L∞

= O(ε2),(3.5)

while

∂V0

∂Γk
= −φ′

k + O(ε2),(3.6)

in L2.

3.1. The reduced linearization. A key step in the RG treatment is the re-
placement of the exact linear operator with a reduced operator whose spectral and
semigroup properties are easier to analyze, yet such that the difference between the
exact and the reduced operator, the secularity, does not lead to growth of the remain-
der W . Due to the contractivity of the L11 component of LΓ, the two-pulse potential
which comprises the L12 component can be replaced with δ functions located at each
pulse position. The mass of the delta function is chosen to equal the mass of the
product of the original potential and the function it operates upon. We also replace
the exact two-pulse solution ΦΓ with its leading order approximation (U0, V0)

t. With
these reductions the linearized operator becomes

L̃Γ =

⎛
⎝ε−4∂2

ξ − μ 2ε−2
(
δΓ1 ⊗ φ1 + δΓ2 ⊗ φ2

)
−V 2

0

A2 ∂2
ξ − 1 + 2V0

A

⎞
⎠ ,(3.7)

where the tensor product of f1 and f2 is defined by

(f1 ⊗ f2)W = (f2,W )L2f1.(3.8)

In particular, δΓk
⊗ φk represents the tensor product of the δ function centered at

ξ = Γk with φk. In the analysis below we use the notation

αk(W ) = (φk,W )L2 ,(3.9)

for k = 1, 2. The scalar operators that appear in the upper left entry, respectively
lower right, of the matrix L̃ (3.7) will be denoted by L11, respectively L22; see (2.22).
The reduced operator is ostensibly an O(ε−2) perturbation of the original operator.
However, it is immediately clear that they share the same essential spectrum

σess = {λ ∈ R : λ ≤ max (−1,−μ)}.(3.10)

3.2. The point spectrum. The two-pulse profiles which comprise the manifold
M are not stationary solutions, and as such it is not self-consistent to determine their
linear stability in terms of the spectrum of the associated linearized operator. We say
that the two-pulse solution ΦΓ is spectrally compatible with the manifold M if the
spectrum of the associated linear operator can be decomposed into a part contained
within the left-half complex plane and a finite-dimensional part whose associated
eigenspace approximates the tangent plane of M at Γ.

To determine the point spectrum of L̃ we invert the U component of the eigen-
value equation, and eliminate the inhibitor from the activator equation, reducing the
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eigenvalue problem to a scalar equation for the activator component of the eigen-
function. We call this the NLEP equation (see (3.23)) and denote the corresponding
linear operator by L(λ,ΔΓ). The NLEP operator controls the point spectrum of L̃ to
leading order.

Proposition 3.1. Up to multiplicity we have σp(L̃) = {λ
∣∣Ker(L(λ)) �= 0}(1 +

O(ε2)). That is, for each eigenvalue λ ∈ σp(L̃) with corresponding eigenvector Ψ =
(Ψ1,Ψ2)

t, there is a λL and corresponding ψ such that L(λL)ψ = λLψ, |λ − λL| =
O(ε2) with Ψ2 = ψ(1 + O(ε2)) and Ψ1 given by (3.12) up to O(ε2). Moreover, the
small eigenvalues of L̃ and L are both exponentially small.

Proof. The eigenvalue problem for the reduced operator is written as

L̃Ψ = λΨ,(3.11)

where Ψ = (Ψ1,Ψ2)
t is a possibly complex two-vector. Since L11 − λ is invertible for

λ /∈ (−∞,−μ], we may solve for Ψ1 as

Ψ1 = −2ε−2
(
α1(L11 − λ)−1δΓ1

+ α2(L11 − λ)−1δΓ2

)
,(3.12)

where the αk = (φk,Ψ2)L2 are as yet undetermined. From the Fourier transform we
find

Ψ̂1(k) =
2√
2π

ε2
(
α1e

ikΓ1 + α2e
ikΓ2

)
k2 + ε4(μ + λ)

.(3.13)

From the integral relation

1√
2π

∫ ∞

−∞
e−ikξ ε2eikΓ

k2 + ε4(μ + λ)
=

√
π

2(μ + λ)
e−ε2

√
μ+λ|ξ−Γ|,(3.14)

we may invert the Fourier transform of Ψ1 explicitly,

Ψ1(ξ, t) = α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2),(3.15)

where

H(λ, x) =
1√

μ + λ
e−ε2|x|

√
μ+λ.(3.16)

Eliminating Ψ1, the equation for Ψ2 reduces to

(L22 − λ)Ψ2 =
V 2

0

A2 Ψ1;(3.17)

see also (2.22). Since Ψ1 is a slowly varying function of ξ, while each term in V0

decays exponentially to zero at an O(1) rate in ξ, we may reduce the equation for Ψ2

to

(L22 − λ)Ψ2 =
V 2

0

A2 (α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2))(3.18)

=
φ2

1 + φ2
2

A2 (α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2)) + O(e−ΔΓ)(3.19)

=
1

A2
√
μ + λ

[
φ2

1 (α1 + α2E) + φ2
2 (α1E + α2)

]
+ O(ε2),(3.20)



SEMISTRONG PULSE DYNAMICS 1771

where

E = E(ΔΓ;λ) = e−ε2
√
μ+λΔΓ.(3.21)

In the tensor product notation this is written as

(L22 − λ)Ψ2 =
1

A2
√
μ + λ

[
φ2

1 ⊗ (φ1 + Eφ2) + φ2
2 ⊗ (Eφ1 + φ2)

]
Ψ2.(3.22)

We define the NLEP operator as

L(λ,ΔΓ) = L22 −
1

A2
√
μ + λ

[
φ2

1 ⊗ (φ1 + Eφ2) + φ2
2 ⊗ (Eφ1 + φ2)

]
.(3.23)

This is a compact perturbation of L22 and thus is Fredholm, with the same essential
spectrum, but is no longer self-adjoint. Indeed its adjoint exchanges the roles of the
potentials in each tensor product.

Proposition 3.2. Except for the exponentially small eigenvalues, the point spec-
trum of the NLEP operator L is given, up to multiplicity, by the zeros of the equation

R(λ) − 3

√
μ + λ
√
μ

1 + e−ε2
√
μΔΓ

1 ± e−ε2
√
μ+λΔΓ

= 0,(3.24)

where R is an explicitly known meromorphic function on C\(−∞,−1] given by (3.33).
Proof. The spectrum of the NLEP operator L can be determined explicitly as the

zeros of an analytic equation using the methods developed in [5], which we outline
below. We introduce wh(ξ) ≥ 0 as the scaled homoclinic solution of

wξξ − w + w2 = 0(3.25)

with its maximum at ξ = 0. For k = 1, 2 we introduce the translates wh,k(ξ) =
wh(ξ − Γk). Since φk(ξ) = Awh,k(ξ), (2.10) and (3.22) can be written as

d2Ψ2

dξ2
− [(1 + λ) − 2(wh,1 + wh,2)] Ψ2 =

1√
μ + λ

[
w2

h,1 (α1 + α2E) + w2
h,2 (α1E + α2)

]
,

(3.26)

where αk = αk(Ψ2) (3.9). Since the potential of both the Schrödinger operator on
the left-hand side of the equation and the inhomogeneous term on the right-hand side
consists of disjoint parts localized about Γ1 and Γ2, it is natural to decompose Ψ2

into

Ψ2 = ψ1(ξ) + ψ2(ξ),(3.27)

where ψk is localized about Γk and decays exponentially as ξ moves away from Γk.
Equation (3.26) is equivalent, up to exponentially small terms, to the coupled system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2ψ1

dξ2
− [(1 + λ) − 2wh,1]ψ1 =

w2
h,1√

μ + λ
(α1 + α2E) ,

d2ψ2

dξ2
− [(1 + λ) − 2wh,2]ψ2 =

w2
h,2√

μ + λ
(α1E + α2) .

(3.28)
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We define ψ̄ = ψ̄(ξ;λ) as the uniquely determined bounded solution of

d2ψ

dξ2
− [(1 + λ) − 2wh]ψ = w2

h,(3.29)

and its translates ψ̄k(ξ) are defined by ψ̄k(ξ) = ψ̄(ξ − Γk). The functions ψ̄ can be
determined explicitly; see [5].

We first consider the solution of (3.29) for λ /∈ σred = { 5
4 , 0,−

3
4} ∪ (−∞,−1], the

spectrum of the operator

Lred =
d2

dξ2
− (1 − 2wh(ξ)).(3.30)

Clearly,

ψ1(ξ) = C1ψ̄1(ξ), ψ2(ξ) = C2ψ̄2(ξ)(3.31)

for some constants Ck that depend on λ and ΔΓ. Recalling that here αk = (φk,Ψ2)L2

and using (3.27), we find

αk =

∫ ∞

−∞
φk(ψ1 + ψ2)dξ =

∫ ∞

−∞
Awh,k(C1ψ̄1 + C2ψ̄2)dξ

= ACk

∫ ∞

−∞
wh,kψ̄kdξ = ACk

∫ ∞

−∞
whψ̄dξ(3.32)

up to asymptotically small corrections. The quantity

R(λ) ≡
∫ ∞

−∞
whψ̄dξ(3.33)

is meromorphic for λ ∈ C\(−∞,−1], with poles at λ = 5
4 and λ = − 3

4 ; see [5]. Note
that in [5] a more general function, R(λ;β1, β2), has been defined and studied; (3.33)
is related to [5] by R(λ) = 216R(λ; 2, 2). The system (3.28) can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2ψ1

dξ2
− [(1 + λ) − 2wh,1]ψ1 =

Aw2
h,1R√

μ + λ
(C1 + C2E) ,

d2ψ2

dξ2
− [(1 + λ) − 2wh,2]ψ2 =

Aw2
h,2R√

μ + λ
(C1E + C2) .

(3.34)

Comparing the equations for ψ1,2(ξ) to (3.29), we obtain the following relations for
C1 and C2:

C1 =
AR√
μ + λ

(C1 + C2E) , C2 =
AR√
μ + λ

(C1E + C2) ,(3.35)

or, equivalently, ⎛
⎜⎝

AR√
μ + λ

− 1 AER√
μ + λ

AER√
μ + λ

AR√
μ + λ

− 1

⎞
⎟⎠(

C1

C2

)
=

(
0
0

)
.(3.36)

For (3.26) to have nontrivial solutions the determinant of the matrix on the left-hand
side of (3.36) must be zero. Isolating R(λ) from the resulting expression and using
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(2.11) and (3.21), we obtain (3.24) whose zeros are the eigenvalues of the NLEP
equation (3.22), up to multiplicity, outside of σred. These eigenvalues lie on curves
λ(ΔΓ), parametrized by the pulse separation.

For λ ∈ σred we analyze the eigenvalue equation case by case. For λ = − 3
4 or 5

4 ,
(3.29) does not have a bounded solution since the right-hand side is not orthogonal
to the kernel of the Lred, and so these values cannot be eigenvalues. However, the
eigenfunction d

dξwh of Lred at λ = 0 is L2 orthogonal to wh. Equation (3.32) implies

that α1 = α2 = 0 and the system (3.28) has a double eigenvalue at λ = 0 with a
two-dimensional eigenspace spanned by { d

dξwh(ξ − Γ1),
d
dξwh(ξ − Γ2)}. These eigen-

values do not occur as solutions of (3.24), rather they correspond to exponentially
small eigenvalues of the original NLEP system (3.22), whose corresponding eigen-
functions, derived in Lemma 3.7, form the key spectral projection onto the active
tangent plane.

Remark 3.3. Proposition 3.2 is equivalent to Principle Result 5.3 of [16].
We identify conditions on μ and Γ such that the reduced linearized operator, L̃Γ,

is spectrally compatible with the manifold M of two-pulse solutions.
Proposition 3.4. For each ΔΓ ∈ (0,∞), the NLEP eigenvalue problem (3.22)

has two exponentially small eigenvalues, denoted λ±, and 4 or 6 eigenvalues λ
j+
+ (ΔΓ)

and λ
j−
− (ΔΓ), j± = 1, . . . , J±, J± = J±(μ) = 2 or 3. There exists a unique μHopf > 0

such that for all μ > μHopf , there is a ΔΓ∗(μ) and a ν > 0 such that

Re[λ
j±
± (ΔΓ)] < −ν < 0 for all ΔΓ ≥ ΔΓ∗(μ), j± = 1, . . . , J±.

For all μ > μTP ≈ 0.62 (the tangent point), ΔΓ∗ takes the exact form

ΔΓ∗(μ) =
1

ε2√μ
log 3,(3.37)

while for μ ∈ (μHopf , μTP), ΔΓ∗(μ) increases with decreasing μ, with ΔΓ∗(μ) → ∞
as μ ↓ μHopf .

Since the two pulses of ΦΓ(ξ) move away from each other (see (2.7), (2.8)), this
result implies that the spectrum of the NLEP operator L remains in the stable half-
plane for all t ≥ 0 if ΔΓ(0) > ΔΓ∗.

Proof. We can distinguish two limits, ΔΓ → ∞ and ΔΓ ↓ 0. The first case
represents the situation in which the two pulses of ΦΓ(ξ) are so far apart that the
two-pulse solution can be considered as two one-pulse solutions, i.e., the two-pulse
solution is in the weak interaction limit. In this limit, (3.24) reduces to

R(λ) = 3

√
μ + λ
√
μ

,(3.38)

for both λ±(ΔΓ). This is the relation that determines the point spectrum of the
solitary one-pulse solution of (2.1), independent of the regularization. It was shown in
Theorem 5.11 of [5] that there exists a unique μHopf > 0 such that all solutions of (3.38)
have Re(λ) < 0 for μ > μHopf and that (3.22) always has incompatible eigenvalues
if μ < μHopf . Numerical evaluation shows that μHopf ≈ 0.36. Moreover, (3.38) has
2 or 3 nontrivial eigenvalues, i.e., λ �= 0, depending on μ; the third (compatible)
eigenvalue is created in an edge bifurcation as μ increases through μedge ≈ 0.77 [5].

There also are 2 or 3 curves λ
j+
+ (ΔΓ) and λ

j−
− (ΔΓ), i.e., j± = 1, . . . , J±, J±(μ) = 2,

respectively 3, for μ < μedge, respectively > μedge. The eigenvalues λ3
±(ΔΓ) are real

and λ3
±(ΔΓ) < − 3

4 .
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Fig. 3.1. (a) The orbits of the zeroes λ(ΔΓ) of (3.24) plotted parametrically in the complex

plane as a function of ΔΓ for μ = 1. The eigenvalues λ1,2
+ (ΔΓ) are closed loops attached to the

homoclinic limit λ ≈ −0.48 + 1.20i; the curves λ1,2
− (ΔΓ) approach the homoclinic point in the

limit ΔΓ → ∞, but λ1,2
− (ΔΓ) collide on the real axis, becoming real as ΔΓ decreases approaching

the limits λ1,2
− (ΔΓ) → − 3

4
, 5
4

as ΔΓ → 0. The third pair of eigenvalues satisfies λ3
±(ΔΓ) < − 3

4

with λ3
−(ΔΓ) disappearing into the essential spectrum of (3.22) as ΔΓ decreases through a critical

value. All eigenvalues λ1,2,j
± (ΔΓ) have negative real part for ΔΓ > ΔΓ∗(1) given by (3.37). (b)

The closed λ1
+(ΔΓ)-loops for five values of μ: μ = 0.7 > μTP, μ = 0.6, 0.5, 0.4 ∈ (μHopf , μTP),

and μ = 0.3 < μHopf . The ΔΓ-region (ΔΓ1,∗
+ (μ),ΔΓ2,∗

+ (μ)) in which Re[λ1
+(ΔΓ)] > 0 grows as

μ ∈ (μHopf , μTP) decreases, so that ΔΓ∗(μ) = ΔΓ2,∗
+ (μ) for μ < μ∗ ∈ (μHopf , μTP).

For small values of ΔΓ there are two mechanisms to generate incompatible point
spectrum, one which occurs for μ > μTP and the other for μ ∈ (μHopf , μTP). The first
occurs when the eigenvalues λ1

− and λ2
− collide and become real. Indeed, in the limit

ΔΓ ↓ 0, it follows from Proposition 3.2 that λ1,2
+ (ΔΓ) again approaches a solution of

(3.38), i.e., the λ1,2
+ (ΔΓ)-branches are closed curves. On the other hand, |R(λ1,2

− (ΔΓ))|
becomes unbounded in this limit. By evaluation of (3.24), we see that R(λ) becomes
unbounded as λ1

−(ΔΓ) → − 3
4 , the stable pole of R(λ), and as λ2

−(ΔΓ) → + 5
4 , the

other, unstable pole of R(λ). The passage of the real eigenvalue λ2
−(ΔΓ) through zero

corresponds to ΔΓ given by (3.37) since R(0) = 6 [5]. In particular, the eigenvalue
problem (3.22) has incompatible eigenvalues for all ΔΓ < log 3/(ε2√μ), for μ > μTP.

In the second case, the λ1,2
+ (ΔΓ)-branches may cross through the imaginary axis.

For the tangent point value, μ = μTP, the λ1,2
+ curves are tangent to the imaginary

axis. For μ ∈ (μHopf , μTP), a part of the closed, complex conjugate λ1,2
+ (ΔΓ)-curves

lies in the unstable half-plane, while the endpoints of the curve, i.e., the eigenvalues
associated to the stationary homoclinic one-pulse limit, lie in the stable half-plane;
see Figure 3.1(b). More specifically, Re[λ1,2

+ (ΔΓ)] > 0 for ΔΓ ∈ (ΔΓ1,∗
+ (μ),ΔΓ2,∗

+ (μ)),
where

lim
μ→μHopf

ΔΓ1,∗
+ (μ) = 0, lim

μ→μHopf

ΔΓ2,∗
+ (μ) = ∞,

lim
μ→μTP

ΔΓ1,∗
+ (μ) = lim

μ→μTP

ΔΓ2,∗
+ (μ) ≈ 1.32

ε2
,

so that ΔΓ∗(μ) = ΔΓ2,∗
+ (μ) > log 3/(ε2√μ) for μ ∈ (μHopf , μ

∗
+) for a certain μ∗

+ ∈
(μHopf , μTP).
The orbits of the eigenvalues λ of (3.22) as function of ΔΓ can be determined by a
direct evaluation of R(λ) [5]; see Figure 3.1.

Remark 3.5. Competition instabilities and synchronous oscillatory instabilities
were identified for the Gierer–Meinhardt equations in [17, 16]; see, especially, section
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5.2 of [16]. The presence of these two instabilities is related to the two multipliers in
the NLEP, as also found here.

Remark 3.6. Proposition 3.4 implies that ΦΓ(ξ) is not spectrally compatible with
the manifold M if ΔΓ(0) < ΔΓ∗(μ). However, this lower bound on the admissible
pulse separation distance does not limit the semistrong character of the pulse interac-
tion in ΦΓ(ξ), since the U -component of ΦΓ(ξ) evolves on the slow ε2ξ space scale. To
quantify the lower bound on pulse separation we determine the corresponding maxi-
mum value of the minimum Umin(t) of the inhibitor U between the two pulses Γ1,2;
see also Figure 1.1. Since Umin(t;μ) decreases monotonically in time (by (2.11) and
(2.13)), we find that a spectrally compatible two-pulse solution must satisfy

Umin(0) < U∗
min(μ) =

A(ΔΓ∗)

cosh ε2√μΔΓ∗/2
=

3

16

√
3μ,

if μ > μTP (3.37). In the context of Figure 1.1, in which μ = 5, it follows that Umin(0)
must be less than 0.72 . . . . The evolution shown there is thus governed by Theorem
1.1.

Remark 3.7. The lower bound (3.37) on the pulse separation distance does not
contradict the pulse-splitting behavior observed in the Gierer–Meinhardt equation
[7], in which a stable two-pulse solution is observed with an O(1) pulse separation
distance at the onset of splitting. It is shown in [7] that pulse splitting only occurs
for μ = O(1/ε4). For these values of μ, ΔΓ∗(μ) = O(1) (3.37), which implies that
the two V -pulses of ΦΓ(ξ) are no longer well separated. Thus, the lower bound (3.37)
agrees with the analysis of [7], since it implies that μ must be O(1/ε4) in order to
have two-pulse solutions that are not well separated.

3.3. The resolvent estimates and the semigroup. To establish estimates
on the semigroup generated by the reduced linearization L̃ we begin with preliminary
bounds on the resolvents of L11 and L in the norms defined in section 2.1. A key
point is that the resolvent of L11 is strongly contractive on zero-mass functions.

Lemma 3.1. Let λ ∈ C be an O(1) distance from σ(L11) and set g = (L11−λ)−1f .
Then the following estimates hold uniformly in λ:

ε‖g‖L2 + ε−1‖∂ξg‖L2 ≤ cε2 ‖f‖L̂∞ .(3.39)

Moreover, for small total mass, f we have the improved estimate,

ε‖g‖L2 + ε−1‖∂ξg‖L2 ≤ c
(
ε2|f | + ε4

∥∥<x>f∥∥
L1

)
.(3.40)

Proof. We take the Fourier transform of the equation (L11 − λ)g = f , obtaining

ĝ(k) =
1√
2π

ε4f̂(k)

k2 + ε4(λ + μ)
.(3.41)

Assuming that f ∈ L̂∞, the bound

(∫ ∞

−∞

∣∣∣∣ ε4

k2 + ε4(λ + μ)

∣∣∣∣
2

dk

) 1
2

≤ cε,(3.42)

for some c > 0, shows that ‖g‖L2 ≤ cε‖f‖L̂∞ . Replacing f̂ with ikf̂ in (3.41) and
calculating an integral similar to (3.42) gives ‖∂ξg‖L2 ≤ cε3‖f‖L̂∞ . Together these
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results yield (3.39). In the case that f has small mass, the identify f̂(0) = f and the
fact that the norm ‖〈x〉f‖L1 controls the L∞ norm of the k-derivative of the Fourier

transform of f imply that f̂ is uniformly Lipschitz and small at zero, and so we have
the estimate

|f̂(k)| ≤ c
|f | + |k|
1 + |k| ‖〈x〉f‖L1 .(3.43)

This inequality, used in (3.41), leads to the bound (3.40).
We define V to be the eigenspace associated to the two exponentially small eigen-

values λ∗
± of L†, the adjoint of L.

Lemma 3.2. Assume that λ ∈ C is an O(1) distance from σ(L)\{λ+, λ−}. Then
we have the following estimate, uniformly in λ, and for Γ ∈ K:

‖(L − λ)−1f‖H1 ≤ c‖f‖L2(3.44)

for all f ⊥ V.
Proof. The NLEP operator L is a finite rank perturbation of L22, a self-adjoint

Schrödinger operator, and hence is Fredholm. Moreover, away from its point spec-
trum, L− λ is boundedly invertible with O(1) inverse, uniformly in ΔΓ for Γ ∈ K. If
f ⊥ V, then L − λ is uniformly invertible for λ in a neighborhood of λ±. To obtain
uniformity in λ for large |λ| we observe that the resolvent of L can be explicitly con-
structed in terms of the resolvent of the selfadjoint operator L22 and that this later
quantity decays like (dist(λ, σ(L22)))

−2. That the resolvent of L maps into H1 follows
from a classic argument by contradiction.

To study the resolvent of L̃ we project off the eigenspace {Ψ+,Ψ−} associated to

its small eigenvalues, λ±. We introduce the space XΓ = {�U | ‖�U‖X < ∞ and πΓ
�U =

0}, where the spectral projection is given in terms of the adjoint eigenfunctions Ψ†
±

by

πΓ
�U =

(�U,Ψ†
−)

(Ψ−,Ψ
†
−)

Ψ− +
(�U,Ψ†

+)

(Ψ+,Ψ
†
+)

Ψ+.(3.45)

The complimentary projection is π̃Γ = I − πΓ. Assuming the spectral compatibility
of ΦΓ, the space XΓ is associated to temporally decaying solutions of the semigroup
generated by L̃Γ, while X̃Γ = RπΓ is the eigenspace associated to the two exponen-
tially small eigenvalues λ±. To characterize the projections we need asymptotics for
these eigenfunctions.

Lemma 3.3. The small eigenvalue eigenfunctions have the following asymptotic
form:

Ψ± =

(
0

φ′
1 ± φ′

2

)
+ exponentially small,(3.46)

Ψ†
± =

(
0

φ′
1 ± φ′

2

)
+ O

(
ε4
)
,(3.47)

in the X-norm.
Proof. The expansion for the eigenfunctions follows from classical results. For

the adjoint eigenfunctions we present the case for a single pulse; the generalization to
two-pulses is straightforward. The adjoint operator is given by

L̃†
Γ =

⎛
⎝ L11 − φ2

1

A2

2ε−2φ1 ⊗ δΓ1 L22

⎞
⎠ ,(3.48)
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where L11 and L22 are given in (3.7). Writing Ψ† = (Ψ†
1,Ψ

†
2)

t and taking λ∗
+ expo-

nentially small, we solve for the second component of Ψ†, noting that φ1 is in the
range of L22 since it is orthogonal to its kernel, φ′

1,

Ψ†
2 = βφ′

1 − 2ε−2Ψ†
1(Γ1)L

−1
22 φ1,(3.49)

where β is a free parameter. Solving for Ψ†
1 we have

Ψ†
1 =

β

A2L
−1
11 φ

2
1φ

′
1 −

2Ψ†
1(Γ1)

ε2A2 L−1
11

(
φ2

1L
−1
22 φ1

)
.(3.50)

The function φ2
1φ

′
1 has zero mass, so from (3.40) we have

‖L−1
11 φ

2
1φ

′
1‖L∞ ≤ cε4.(3.51)

It can be verified that φ2
1L

−1
22 φ1 is a positive O(1) function, and thus we know L−1

11(
φ2

1L
−1
22 φ1

) ∣∣
ξ=Γ1

is nonzero and O(1). Evaluating (3.50) at ξ = Γ1 and solving for

Ψ†
1(Γ1) shows that Ψ†

1(Γ1) = O(ε6). Substituting this back into (3.50) and choosing
β = 1 yields the equivalent of (3.47) in the one-pulse case.

With these results we may estimate the resolvent of L̃Γ restricted to XΓ.
Proposition 3.8. Let λ be an O(1) distance from σ(L̃)\{λ+, λ−} and denote

G = (L̃−λ)−1F . For F ∈ XΓ, we have the following estimates on the resolvent of L̃,
holding uniformly in λ, and in Γ ∈ K:

‖G‖X ≤ c
(
ε2‖F1‖L1 + ‖F2‖L2

)
.(3.52)

If, in addition, the mass of F1 is small, then we have the improved estimate

‖G‖X ≤ c
(
ε2|F 1| + ε4‖ <x>F1‖L1 + ‖F2‖L2

)
.(3.53)

Proof. By analogy with the eigenvalue problem we solve for G1:

G1 = (L11 − λ)−1F1 + α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2),(3.54)

where H is given by (3.16), and αk = (G2, φk)L2 , for k = 1, 2. The second component
of G satisfies

(L22 − λ)G2 = F2 +
V 2

0

A2

(
(L11 − λ)−1F1 + α1H(ξ − Γ1) + α2H(ξ − Γ2)

)
.(3.55)

Approximating the product V 2
0 H as in the eigenvalue problem, we find the equation

(L − λ)G2 = F2 +
V 2

0

A2 (L11 − λ)−1F1,(3.56)

where the NLEP operator L is defined in (3.23).

From the asymptotics on Ψ†
± the condition F ∈ XΓ is equivalent to the right-

hand side of (3.56) being orthogonal to V. From Proposition 3.1 the point spectrum
of L̃, less its exponentially small eigenvalues, agrees with the point spectrum of L,
less its exponentially small eigenvalues, up to O(ε2). So λ is an O(1) distance from
σ(L)\{λ±} and the estimate (3.44) applied to (3.56) yields

‖G2‖H1 ≤ c
(
‖F2‖L2 + ‖V 2

0 (L11 − λ)−1F1‖L2

)
≤ c

(
‖F2‖L2 + ‖(L11 − λ)−1F1‖L∞

)
.(3.57)
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From (3.39) and (1.2) we find that

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2‖F1‖L1

)
.(3.58)

If F1 has small mass, then by applying (3.40) we have the improved estimate

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2|F 1| + ε4

∥∥<x>F1

∥∥
L1

)
.(3.59)

From (3.54) and (3.39) we find that

‖G1‖L2 ≤ c (ε‖F1‖L1 + ‖G2‖L2‖H(λ)‖L2) ,(3.60)

but since

|Ĥ(k, λ)| ≤ c

∣∣∣∣ ε2

k2 + ε4(λ + μ)

∣∣∣∣ ,(3.61)

we have ‖H(λ)‖L2 ≤ cε−1 and we obtain

‖G1‖L2 ≤ c
(
ε‖F1‖L1 + ε−1‖F2‖L2

)
.(3.62)

A similar argument yields

‖∂ξG1‖L2 ≤ c
(
ε3‖F1‖L1 + ε‖F2‖L2

)
,(3.63)

which verifies (3.52).
If F1 has small mass, then applying (3.40) to (3.57) yields the improved estimate

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2|F 1| + ε4

∥∥<x>F1

∥∥
L1

)
.(3.64)

Following the arguments laid out in (3.60)–(3.63) yields (3.53).
Since L̃ is an analytic operator we can generate its semigroup from the Laplace

transform of the resolvent. We fix the contour C in the complex plane as depicted in
Figure 3.3 and generate the semigroup S associated to L̃|XΓ via the contour integral

S(t)F =
1

2πi

∫
C

eλt(λ− L̃)−1F dλ,(3.65)

where we assume that F ∈ XΓ. The semigroup inherits the following properties from
the resolvent.

Proposition 3.9. Let μ > μHopf and ΔΓ > ΔΓ∗(μ) be given and let ν > 0 be as

given by Proposition 3.4. The solution �U of �U = S(t)F , where F ∈ XΓ, satisfies

‖�U‖X ≤ Me−νt
(
ε2‖F1‖L1 + ‖F2‖L2

)
,(3.66)

for some M > 0 independent of ΔΓ > ΔΓ∗(μ). If, in addition, F1 has small mass,
then we have the improved estimate

‖�U‖X ≤ Me−νt
(
ε2|F 1| + ε4‖ <x>F1‖L1 + ‖F2‖L2

)
.(3.67)

Proof. By Proposition 3.4, the conditions on μ and Γ imply that σ(L̃)\{λ+, λ−}
is contained within the interior of the contour C, and dist(σ(L̃), C) = O(1). The esti-
mates on the semigroup follow directly from the contour integral representation (3.65)
of S(t), the resolvent estimates (3.52)–(3.53), and the uniformity of these estimates
over the contour C.
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Fig. 3.2. The spectrum σ(L̃) of the reduced operator as determined by Proposition 3.3, and the
contour C used to generate the semigroup S. Depiction is for the case μ > μHopf and ΔΓ > ΔΓ∗(μ)

for which λ1,2
± are within the left-half plane and J± = 2; see Proposition 3.4. The eigenspace

corresponding to the small point spectrum {λ±} is projected away and is not contained within the
contour.

4. Nonlinear stability via the RG method. We adapt the RG method de-
veloped in [14] to the singular perturbation setting of the Gierer–Meinhardt equations.

We assume at time t0 that our initial data �U0 satisfies

‖ΦΓ∗ − �U0‖ ≤ δ,(4.1)

for some Γ∗ ∈ K. The following proposition, adapted from Proposition 2.2 of [14],
permits us to choose our base point Γ0 about which we develop our local coordinate
system.

Proposition 4.1. Fix δ � 1. Given �U0 and Γ∗ ∈ K satisfying ‖W∗‖X ≤ δ, for

W∗ ≡ ΦΓ∗ − �U0, there exists M > 0, independent of �U0 and Γ∗, and a smooth function
H : X �→ K such that Γ = Γ∗ + H(W∗) satisfies

W0 ≡ �U0 − ΦΓ ∈ XΓ.(4.2)

Moreover, if W∗ ∈ XΓ̃ for some Γ̃ ∈ K, then

|Γ − Γ∗| ≤ M0‖W∗‖X |Γ∗ − Γ̃|.(4.3)

Proof. Since

W0 = W∗ + ΦΓ − ΦΓ∗ ,(4.4)

the condition (4.2) is equivalent to

0 = πΓW0 = πΓ (W∗ + ΦΓ − ΦΓ∗) .(4.5)

Since Ψ†
±, are approximately spanned by (0, φ′

1)
t and (0, φ′

2)
t, and ΦΓ,2 = V0 +O(ε2),

our equations Λ = (Λ1,Λ2)
t are equivalent, up to O(ε2), to

Λ1(Γ,W∗) ≡
(
W2,∗ + V0(Γ) − V0(Γ∗), φ

′
1(·,Γ1)

)
L2

= 0,(4.6)

Λ2(Γ,W∗) ≡
(
W2,∗ + V0(Γ) − V0(Γ∗), φ

′
2(·,Γ2)

)
L2

= 0.(4.7)
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Since Λ(Γ∗, 0) = 0 and the Γ gradient of Λ given by

∇ΓΛ
∣∣∣
(Γ=Γ∗,W∗=0)

=

(
−‖φ′

1‖L2 0
0 −‖φ′

1‖L2

)
+ O(ε2)(4.8)

is uniformly invertible, the implicit function theorem guarantees the existence of a
smooth function H which provides the solution of (4.2) and in a neighborhood about
the manifold M defined in (2.6). The interval of existence of H may be chosen
uniformly in Γ since the solution of (4.2) behaves smoothly as ΔΓ → ∞.

If, in addition, we have W∗ ∈ XΓ̃, then (W2,∗, φ
′
k(Γ̃k))L2 = O(ε4) for k = 1, 2. We

see that

∣∣∣(W2,∗, φ
′
k(Γk)

)
L2

∣∣∣ ≤ ∣∣∣(W2,∗, φ
′
k(Γ̃k) − φ′

k(Γk)
)
L2

∣∣∣ ≤ M0‖W∗‖L2 |Γ̃ − Γ|.
(4.9)

4.1. The projected equations. To begin the RG procedure we freeze Γ = Γ0

in XΓ0 , where Γ0 is the base point provided by Proposition 4.1, and change variables
as

�U(t) = ΦΓ + W,(4.10)

where W ∈ XΓ0 and Γ = Γ(t). Comparing to (3.2), we write the evolution for the
remainder W as

Wt +
∂Φ

∂Γ
Γ̇ = R + L̃Γ0

W +
(
LΓ − L̃Γ0

)
W + N (W ),(4.11)

W (ξ, 0) = W0,(4.12)

where W0 = W∗ + ΦΓ0
− ΦΓ∗ . The terms ΔL ≡ LΓ − L̃Γ0

include both the approxi-
mations made to the linear operator and the secular growth implicit in the sliding of
Γ away from Γ0.

To enforce W ∈ XΓ0 we impose the nondegeneracy condition ∂
∂tπ0W = 0, where

π0 = πΓ0 is given by (3.45). Since π0 is independent of time, the nondegeneracy
condition is equivalent to π0Wt = 0, and, moreover, as π0 commutes with L̃Γ0

it
follows that π0L̃Γ0

W = L̃Γ0
π0W = 0. The nondegeneracy condition is thus equivalent

to the pair of equations obtained by projecting onto Ψ†
+ and Ψ†

−,(
∂Φ

∂Γ
Γ̇,Ψ†

±

)
L2

=
(
R + ΔL W + N (W ),Ψ†

±

)
L2

.(4.13)

From the form of the semistrong pulse solutions, and assuming momentarily that
Γ̇ = O(ε2), we calculate

∂ΦΓ

∂Γ
Γ̇ =

(
0

φ′
1Γ̇1 + φ′

2Γ̇2

)
+

(
O(ε3)
O(ε4)

)
(4.14)

componentwise in the L2 norm. Using the form of the adjoint eigenvector (3.47) and
(3.6), (4.13) may be written as

(
‖φ′

1‖2
L2 + O(ε4) ‖φ′

2‖2
L2 + O(ε4)

‖φ′
1‖2

L2 + O(ε4) −‖φ′
2‖2

L2 + O(ε4)

)
Γ̇ =

⎛
⎝
(
R + ΔL W + N (W ),Ψ†

+

)
L2(

R + ΔL W + N (W ),Ψ†
−

)
L2

⎞
⎠ .

(4.15)
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Again using the asymptotic form of the adjoint eigenfunctions Ψ†
± we may neglect

the contribution from Ψ†
±,1 in the inner products on the right-hand side of (4.15). In

particular, from the L1 bounds on R1 from (2.18), we have

(R1,Ψ
†
±,1)L2 ≤ ‖R1‖L1‖Ψ†

±,1‖L∞ = O(ε5).(4.16)

Inverting the matrix on the left-hand side and using the expansions for Ψ†
±,2, we

arrive at the equations of motion for Γ which show explicitly the coupling between
the remainder W and the pulse evolution,

Γ̇k = − (R2 + [ΔL W ]2 + N2, φ
′
k(·; Γ0))L2

(φ′
k, φ

′
k)L2

+ O(ε5, ε4‖W‖X).(4.17)

To simplify the equation for the evolution of the remainder W , we introduce the
reduced residual

R̃ = π̃Γ

(
R − ∂ΦΓ

∂Γ
Γ̇

)
,(4.18)

and observe from the asymptotic description (2.17) of R2 that the projection removes
the leading order term from the second component of the residual. By Lemma 2.1,
the reduced residual enjoys the estimates

‖R̃1‖L1 ≤ O(ε),(4.19)

‖R̃2‖L2 ≤ O(ε4).(4.20)

The evolution for the remainder W is now given by

Wt = R̃ + L̃0W + π̃0 (ΔL W + N ) ,(4.21)

W (ξ, t0) = W0,(4.22)

where L̃0 = L̃Γ0
and π̃0 = I−πΓ0

. The point of the reduction of the Gierer–Meinhardt
equation (2.3) to the projected residual equation (4.21), in the case of two-pulse
dynamics, is that the asymptotically relevant and the asymptotically negligible terms
are now evident. The evolution for W is controlled by the first two terms on the
right-hand side of (4.21); we will show that the last two terms are asymptotically
irrelevant, until Γ− Γ0 is so large that the secularity implicit in ΔL forces an update
of Γ0.

4.2. Decay of the remainder. We identify the duration of each renormaliza-
tion interval and quantify the decay of the remainder W over this interval. To control
the dynamics we introduce the quantities

T0(t) = sup
t0<s<t

eν(s−t0)‖W (s)‖X ,(4.23)

T1(t) = sup
t0<s<t

|Γ(s) − Γ0|.(4.24)

The first enforces the decay of the remainder W , and the second measures the distance
the pulse positions have moved from their frozen base point. The variation of constants
formula applied to (4.21) yields the solution

W (ξ, t) = S(Δt)W0 +

∫ t

t0

S(t− s)(R̃ + π̃0 (ΔL W + N )) ds,(4.25)
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where we have introduced Δt = t− t0.
To estimate the distance that the pulse locations Γ have moved from the base

point Γ0 we examine the equations (4.17). We break ΔL into secular and reductive
parts ΔL = ΔLs + ΔLr, where ΔLs = LΓ − LΓ0 and ΔLr = LΓ0 − L̃Γ0 , and remark
that

‖[ΔL W ]2‖L2 ≤ ‖ [ΔLs W ]2 ‖L2 + ‖ [ΔLr W ]2 ‖L2(4.26)

≤ c
(
|Γ − Γ0| + ε2

)
‖W‖L2(4.27)

≤ c(T1(t) + ε2)e−ν(t−t0)T0(t),(4.28)

where the estimates on ΔLs and ΔLr are described in more detail below. From the
form (3.4) of the regularized nonlinearity it is straightforward to obtain the estimate

|(N2, φ
′
k)L2 | ≤ c‖W‖2

X .(4.29)

With these bounds in hand, the drift of the pulses is controlled by their speed,

T1(t) ≤
∫ t0+Δt

t0

|Γ̇(s)|ds

≤
∫ t0+Δt

t0

c
(
‖R2‖L2 + (ε2 + T1(t))e

−ν(s−t0)T0(t) + e−2ν(s−t0)T 2
0 (t)

)
ds(4.30)

≤ c(ε2Δt + (ε2 + T1)T0 + T 2
0 ).(4.31)

For T0 small enough we can eliminate T1 from the right-hand side, and neglecting T0

in the sum T0 + Δt, we obtain

T1 ≤ c(ε2Δt + T 2
0 ).(4.32)

Turning to bounds on the remainder, we estimate the irrelevant terms first. The
secular term takes the form

ΔLs =

⎛
⎝ 0 2ε−2

(
V0(·; Γ) − V0(·; Γ0)

)
V12(·; Γ) − V12(·,Γ0) V22(·; Γ) − V22(·; Γ0)

⎞
⎠ ,(4.33)

where V12 and V22 denote the potentials in the L̃12 and L̃22 components of L̃. Since
each potential, V0, V12, and V22, decays rapidly away from the pulse locations, the
difference between the potential centered at pulse locations Γ0 and at Γ scales like
Γ − Γ0 in any reasonable norm. In particular,

‖V0(·,Γ) − V0(·,Γ0)‖H1 + ‖V0(·,Γ) − V0(·,Γ0)‖L1 ≤ c|Γ − Γ0|,(4.34)

and similarly for V12 and V22. Using these estimates it follows directly that

‖[ΔLs W ]1‖L1 ≤ cε−2‖V0(·,Γ) − V0(·,Γ0)‖L1‖W2‖L∞(4.35)

≤ cε−2T1‖W‖X .(4.36)

Similarly

‖[ΔLs W ]2‖L2 ≤ c‖V12(·,Γ) − V12(·,Γ0)‖H1‖W1‖X

+ ‖V22(·,Γ) − V22(·,Γ0)‖H1‖W2‖X(4.37)

≤ cT1‖W‖X .(4.38)
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Combining these estimates with the unweighted semigroup estimate (3.66) we find
that

‖S(t− s)π̃0(ΔLs W (s))‖X ≤ Me−ν(t−s)T1(s)‖W‖X .(4.39)

The small mass version of the semigroup estimate plays a key role in controlling
the reductive term ΔLr W given by

ΔLr =

⎛
⎝ 0 2ε−2

(
V0 − δΓ1 ⊗ φ1(Γ0) − δΓ2

⊗ φ2(Γ0)
)

+ O(1)

O(ε2V 2
0 ) O(ε2V0)

⎞
⎠ ,(4.40)

where here the O indicates pointwise estimates. The first component of the reductive
term can be decomposed as

[ΔLr W ]1 = ε−2 (Σ1 + Σ2) ,(4.41)

where

Σk = φk − δΓ1 ⊗ φk + O(ε2φk).(4.42)

That is, each Σk decays at an O(1) exponential rate away from x = Γk, and, moreover,
at leading order each component ΣkW2 is mass-free for k = 1, 2. In particular, the
total mass of the 1 component of ΔLr W arises only from the higher order corrections,

|[ΔLr W ]1| ≤ c‖W2‖X .(4.43)

In the weighted norms we estimate

‖<x− Γk>ΣkW2‖L2 ≤ ε−2(‖〈x− Γk〉δΓk
‖L2 + ‖〈x− Γk〉φk‖L2)‖W2‖L∞

≤ cε−2‖W‖X ,(4.44)

for k = 1, 2. For the second component we observe that

‖[ΔLrW ]2‖H1 ≤ cε2‖W‖H1 ,(4.45)

so from the weighted semigroup estimate (3.67) we find

‖S(t− s)π̃0(ΔLr W (s))‖X ≤ Me−ν(t−s)ε2‖W‖X(4.46)

independent of the pulse spacing ΔΓ.
Finally, for the nonlinear term given by (3.4), it is easy to verify

‖S(t− s)π̃0N‖X ≤ Me−ν(t−s)(‖W 2
2 ‖L1 + ‖W 2

2 ‖L2 + ‖W 2
1 ‖L2)(4.47)

≤ Me−ν(t−s)‖W‖2
X .(4.48)

From the bounds on the reduced residual (4.19)–(4.20) and the semigroup estimate
we obtain

‖S(t− s)R̃‖X ≤ Mε3e−ν(t−s).(4.49)
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Taking the X-norm of variation of constants solution for W , (4.25), and using the
estimates outlined above we obtain

(4.50)

‖W (t)‖X

≤ M

(
e−νΔt‖W (t0)‖X +

∫ t

t0

e−ν(t−s)
[
ε3 +

(
ε2 + T1(s)

)
‖W (s)‖X + ‖W (s)‖2

X

]
ds

)
.

To estimate the decay of ‖W (t′)‖X for t′ ∈ (t0, t) we evaluate (4.50) at t = t′,
multiply by eν(t′−t0), and take the sup over t′ ∈ (t0, t) obtaining

T0(t) ≤ M

(
T (t0) +

∫ t

t0

[
ε3eν(s−t0) +

(
ε2 + T1(t)

)
T0(t) + e−νsT0(t)

2
]
ds

)
(4.51)

≤ M(T0(t0) + ε3eνΔt +
(
ε2 + T1(t)

)
Δt T0(t) + T0(t)

2).(4.52)

From (4.32) we may eliminate T1 from the T0 estimate,

T0(t) ≤ M(T0(t0) + ε3eνΔt + ε2(Δt + (Δt)2)T0(t) + T0(t)
2 + Δt T 3

0 ).(4.53)

For Δt � min
{
ε−1, T−1

0

}
the term Mε2((Δt)2 + Δt) < 1

2 , and we may eliminate the
linear term in T0 from the right-hand side. In addition we may absorb the cubic term
in T0 into the quadratic one. With these reductions (4.53) becomes

T0 ≤ 2M(T0(t0) + ε3eνΔt + T 2
0 ).(4.54)

The quadratic equation in T0,

0 = T0(t0) + ε3eνΔt − 1

2M
T0 + T 2

0 ,(4.55)

has two positive real roots so long as T0(t0) + ε3eνΔt � 1. The smaller of these roots,
r0, takes the form

r0 = 2M(T0(t0) + ε3eνΔt) + O(T0(t0) + ε3eνΔt)2,(4.56)

while the larger is

r1 =
1

2M
+ O(T0(t0) + ε3eνΔt).(4.57)

Thus if T0(t0) � 1 and ε3eνΔt � 1, then there is an excluded region, either 0 < T0 < r0
or r1 < T0 < ∞. Since T0(t0) < r0 and T0 is continuous in t, we see that

T0(t) ≤ r0 ≤ M(T0(t0) + ε3eνΔt)(4.58)

so long as

Δt ≤ 3β| log ε|
ν

(4.59)

for any fixed β < 1. This condition on Δt prevents the secularity from dominating
the linear operator; in particular, it is a stronger condition on Δt than that imposed
after (4.53). This implies that

‖W (t)‖X ≤ M(e−ν(t−t0)‖W (t0)‖X + ε3), for t ∈
(
t0, t0 +

3β| log ε|
ν

)
(4.60)

and, in particular, for t1 = t0 + Δt we have

‖W (t1)‖X ≤ M(ε3β‖W (t0)‖X + ε3).(4.61)
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4.3. The RG iteration. We break the time evolution into a series of initial
value problems, tracking the decay of the remainder over the long-time scale of many

RG iterations. We fix β < 1 and Δt = 3β| log ε|
ν . The renormalization times are defined

sequentially,

tn = tn−1 + Δt.(4.62)

We break the evolution of W into disjoint intervals In = [tn, tn+1). On each interval
In we solve the initial value problem (4.21) with initial data W (tn) ∈ XΓn

, with the
quantities T0,n and T1,n corresponding to (4.23)–(4.24) over In. The renormalization
map, G, takes the initial data Wn−1 = W (tn−1) for the initial value problem on
interval In−1 and returns the initial data Wn = W (tn) for the initial value problem
on the interval In,

GWn−1 = Wn.(4.63)

Arguing inductively, the initial data and the new base point Γn are obtained from
W (t−n ), the end-value of the evolution of W over In−1, by applying Proposition 4.1.
Indeed, we know that W (t−n ) ∈ XΓn−1 and so from (4.3) we have

|Γn − Γ(t−n )| ≤ M0‖W (t−n )‖X |Γ(t−n ) − Γ(tn−1)| ≤ M0‖W (t−n )‖XT1,n−1(t).(4.64)

From the estimates on Δt and T1,n−1, we bound the jump in Γ at renormalization by

|Γn − Γ(t−n )| ≤ M0

(
| log ε|ε2 + T 2

0,n−1

)
‖W (t−n )‖X .(4.65)

The solution at time t = tn is independent of the decomposition,

�U(tn) = ΦΓ(t−n ) + W (t−n ) = ΦΓn + Wn,(4.66)

and we may bound the jump in W at each renormalization

‖W (t−n ) −W (tn)‖X = ‖ΦΓ(t−n ) − ΦΓn
‖X ≤ c|Γn − Γ(t−n )|

≤ M0

(
| log ε|ε2 + T 2

0,n−1

)
‖W (t−n )‖X ,(4.67)

where we used the fact that U0 is O(1) X-Lipschitz in Γ, as follows from (3.5) and
(1.2). From (4.58), using the equality T0,n−1(tn−1) = ‖Wn−1‖X , we have the estimate

T0,n−1 ≤ M1(‖Wn−1‖X + ε3(1−β)).(4.68)

Combining the estimates (4.67) and (4.68) with (4.61), we obtain a bound on GWn−1 =
Wn,

‖GWn−1‖X ≤ (1 + M0[| log ε|ε2 + M2
1 (‖W (tn−1)‖X + ε3(1−β))2])

×M(ε3β‖W (tn−1)‖X + ε3).(4.69)

Neglecting the terms involving positive powers of ε within the first parenthesis on the
left-hand side, we may bound ‖W (tn)‖X by ηn, the solution of the map

ηn = M(1 + M2η
2)(ε3βηn−1 + ε3),(4.70)

with η0 = ‖W (·, t0)‖X , and M2 = M0M
2
1 . It is easy to see for η0 = O(1) and ε

sufficiently small that

ηn → M

1 − ε3βM
ε3,(4.71)

as n → ∞. Since ‖W (·, tn)‖X ≤ ηn, the estimate (4.61) yields the result (1.4) in
Theorem 1.1.



1786 ARJEN DOELMAN, TASSO J. KAPER, AND KEITH PROMISLOW

4.4. Long-time asymptotics. To recover the asymptotic pulse motion, we con-
sider the situation where t is sufficiently large so that ‖W‖X ≤ Mε3. In this regime
we see from (4.32) that T1 ≤ cε2| log ε|, and hence from (4.27) that

‖ΔL W‖L2 ≤ cε2| log ε|‖W‖L2 ≤ cε5| log ε|.(4.72)

Moreover, from the form (3.4) of the nonlinearity we readily verify that

‖N2(W )‖ ≤ c‖W‖2
X = O(ε6).(4.73)

In this regime the estimates (4.72) and (4.73) on the secularity and the nonlinear-
ity show that the remainder W has an asymptotically small influence on the pulse
evolution equations (4.17), which reduce to

Γ̇k(t) = − (R2, φ
′
k(·; Γ(t)))L2

‖φ′
k‖2

L2

+ O(| log ε|ε5).(4.74)

Furthermore, the asymptotic form (2.17) for the second component of the remainder
shows that

Γ̇k(t) = ε2ĉ(Γ)
(φ′

1 − φ′
2, φ

′
k)L2

‖φ′
k‖2

L2

+ O(ε4) = (−1)k+1ε2ĉ(Γ) + O(ε4),(4.75)

where ĉ(Γ) is, by construction, the position-dependent formal pulse speed given by
(2.8). In particular, the pulse separation ΔΓ = Γ1 − Γ2 grows as given by (1.5) while
the amplitudes increase according to (2.11).
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Abstract. The paper deals with the diffusion limit of the initial-boundary value problem
for the multidimensional semiconductor Boltzmann–Poisson system. Here, we generalize the one-
dimensional results obtained in [5] to the case of several dimensions using global renormalized solu-
tions. The method of moments and a velocity averaging lemma are used to prove the convergence of
the renormalized solutions to the semiconductor Boltzmann–Poisson system towards a global weak
solution of the drift-diffusion-Poisson model.
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1. Introduction and main results. In this paper, we study the diffusion limit
of the initial-boundary value problem for the semiconductor Boltzmann–Poisson sys-
tem (see [24, 27]). The model we consider here is associated with a linear low density
approximation of the electron-phonon collisions. In other words it is a low density
approximation of the physically correct Fermi–Dirac system. When the potential is
given and is smooth enough, Poupaud [27] has proved the convergence of the rescaled
Boltzmann equation towards a linear drift-diffusion model. Let us recall that the
drift-diffusion equation is a standard model for semiconductors physics and suited for
numerical computations since it does not involve the kinetic variable v. We refer to
[9, 14, 15, 24] for a discussion about drift-diffusion models.

In the one-dimensional case, the convergence results of [27] are extended in [5]
to the semiconductor Boltzmann system with a Poisson coupling. In [5] the solu-
tions considered are defined in a weak sense [1, 4, 5]. The entropy inequality and a
hybrid-Hilbert expansion are used to approximate the entropy production term due
to the boundary and allow the proof of the convergence of the rescaled Boltzmann
equation towards the drift-diffusion for self-consistent potential. The method is based
essentially on the fact that solutions to the limit system are smooth, which gives
useful uniform bounds on all terms of the Hilbert expansion and then allows one to
obtain a strong convergence and also to exhibit a convergence rate. The multidimen-
sional case is different. Indeed, if we want to work with global solutions, we can only
deal with solutions to the semiconductor Boltzmann–Poisson which are defined in the
renormalized sense (see [11, 25]). Indeed, due to the presence of the Poisson term
and the Boltzmann collision term in the equation for the density, we cannot prove
global uniform bounds in any Lp space for p > 1. On one hand, we can see that if
we remove the collision term, then we can easily get a priori estimates for f in any
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L∞((0, T );Lp(dxdv)), 1 ≤ p ≤ ∞. On the other hand, if we remove the Poisson
term, then we can get a priori estimates for f in any L∞((0, T );Lp(dxM1−pdv)),
1 ≤ p < ∞. Hence, we can see that, mathematically, these two terms cannot be
treated in the same spaces. This is one of the major mathematical difficulties of this
model.

Before recalling the Boltzmann–Poisson system, let us mention that drift-diffusion
models can also be derived from other singular limits. We refer, for instance, to [28]
where the drift-diffusion model is derived from a Vlasov–Fokker–Planck system.

1.1. Formulation of the problem. In this paper we study the parabolic limit
of the rescaled Boltzmann–Poisson system. Hence, the rescaled system, defined on
the phase space Ω = ω × R

d where d ≥ 1, reads as follows:

(1) ∂tf
ε +

1

ε

(
v.∇xf

ε −∇x(φε + φ̃b).∇vf
ε
)
− Q(fε)

ε2
= 0, (x, v) ∈ Ω,

where ε is a small parameter related to the mean free path and fε(t, x, v) denotes
the electron distribution function. The time variable t is nonnegative. The position x
belongs to an open set ω of R

d, assumed to be smooth and bounded and the velocity
v belongs to R

d. This equation has to be complemented with initial and boundary
conditions which take into account how particles are injected in the semiconductor
device. We assume that the boundary ∂ω is sufficiently smooth. We denote by n(x)
the outward unit normal vector at the position x ∈ ∂ω and dσx the Lebesgue measure
on ∂ω. The outgoing and incoming parts are defined as

Γ± = {(x, v) ∈ ∂Ω; ± v.n(x) > 0}.

The initial data is assumed to be known and depend on the mean free path ε:

(2) fε(0, x, v) = fε
0 (x, v), (x, v) ∈ Ω.

The incoming boundary data is assumed to be a well-prepared function [4, 5, 27], in
the sense that

(3) fε(t, x, v) = fb(t, x, v) := ρb(t, x)M(v), (x, v) ∈ Γ−,

where M is the normalized Maxwellian

M(v) =
e−|v|2/2

(2π)d/2

and ρb(t, x) is a boundary data. The precise assumptions we choose on the initial
and boundary conditions will be detailed later on. The linear operator Q describes
physical conservation properties during collisions. Here, we only assume that the
charge is conserved during the collision [2, 24]. A typical model for such a situation
is the linear approximation of the electron-phonon interaction, given by

(4) Q(f)(v) =

∫
Rd

σ(v, v′)(M(v)f(v′) −M(v′)f(v))dv′.

The cross section σ is assumed to be symmetric (micro-reversibility principle) and
bounded from above and below:

(5)

{
σ(v, v′) = σ(v′, v), (v, v′) ∈ R

2d,
∃ σ1, σ2 > 0 / 0 < σ1 ≤ σ ≤ σ2.
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Here, we are making another approximation by assuming that σ is bounded from
below and above instead of taking delta measures concentrated on balls of constant
kinetic energies (see, [3, 6]).

The mean free path is defined to be an average of the collision frequency λ(v)
given by

λ(v) =

∫
Rd

σ(v, v′)M(v′)dv′.

Here, for all v, we have σ1 ≤ λ(v) ≤ σ2. Hence, the mean free path in (1) is of order
1/ε. We refer to [4, 5, 27] for the detailed properties of these kinds of collision kernels.
We assume that the potential φε is self consistent:⎧⎨

⎩
−Δxφ

ε =

∫
Rd

fεdv,

φε
|∂ω = 0.

(6)

The potential φ̃b is given in ω. It takes into account the distribution of positive
background charges.

We define the charge density ρε and the current density jε associated to the
distribution fε by

ρε(t, x) =

∫
Rd

fε(t, x, v)dv, jε(t, x) =
1

ε

∫
Rd

vfε(t, x, v)dv.

1.2. Assumptions and preliminaries. Throughout the paper we shall make
the following assumptions and notations:

A1: fε
0 ≥ 0,

∫
Ω

fε
0 (1 + |v|2 + |logfε

0 |) ≤ C and φε(t = 0) is bounded in H1(ω).

A2: (
√
ρb, ∂tρb) ∈ L∞

loc(R
+; H1/2(∂ω) × L∞(∂ω)) and the density is bounded from

above and below; there exist c and c such that 0 < c ≤ ρb(., x) ≤ c̄, for x ∈ ∂ω.
A3: φ̃b ≥ 0 and (φ̃b, ∂tφ̃b) ∈ L∞

loc(R
+; W 1,∞(ω) × L∞(ω)).

We define the total charge (or mass), the kinetic energy, and two distances to the
local equilibrium by

(7)

Mε(t) =

∫
Ω

fε(t, x, v)dxdv, Kε(t) =

∫
Ω

|v|2
2

fε(t, x, v)dxdv,

Rε(t) =
1

2

∫ t

0

∫
Ω

(√
fε −

√
ρεM

)2

dxdvds

R1
ε(t) =

1

2

∫ t

0

∫
Ω

(fε − ρεM ) (logfε − log(ρεM) ) dxdvds.

The entropy and entropy fluxes through the inflow and outflow boundaries are defined
by

(8)

Eε(t) =
1

2
‖∇xφ

ε(t)‖2
L2(ω) +

∫
Ω

fε

(
log fε +

|v|2
2

+ φ̃b

)
(t),

I±ε (t) =

∫ t

0

∫
Γ±

fε

(
log fε +

|v|2
2

+ φb

)
|v.n(x)| dσxdvds.
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We also define the quasi-Fermi level (defined on the boundary ∂ω)

(9) EF (t, x) = log

(
ρb(t, x)

(2π)d/2

)
+ φ̃b(t, x).

Let us recall two lemmas about the collision kernel (see [27]).
Lemma 1.1 (H-theorem). Assume that (5) holds, then the operator Q is bounded

in L1(dv) and satisfies for all f ∈ L1(dv), f ≥ 0, and f(|logf | + |v|2) ∈ L1(dv)∫
Rd

Q(f) = 0 and H(f) =

∫
Rd

Q(f) log

(
f

M

)
≤ −σ1

2

∫
Rd

(√
f −

√
ρM

)2

,

where ρ =
∫
f(v)dv. Moreover,

H(f) = 0 ⇔ Q(f) = 0 ⇔ f(v) = ρM(v).

Lemma 1.2. Assume that (5) holds, then
1. −Q is a bounded, symmetric, nonnegative operator on L2(Rd; M−1dv),
2. KerQ = RM,
3. −Q is coercive on R(Q) = KerQ⊥.

1.3. Statement of the result. Our motivation in this work is to prove the
convergence of renormalized solutions (fε, φε) to (1–6) towards (ρM, φ), where (ρ, φ)
satisfies the following drift-diffusion-Poisson (DD-P) system [14, 18, 27]:

(DD-P)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇x.J(ρ, φ) = 0,

J(ρ, φ) = −D[∇xρ + ρ∇x(φ + φ̃b)],

D = −
∫

Rd

v ⊗ Q−1(vM)dv > 0,

−Δxφ = ρ,
ρ(t = 0) = ρ0, (ρ, φ) |∂ω = (ρb, 0).

Definition 1.3. We say that (ρ, φ) is a weak solution to the drift-diffusion-
Poisson system (DD-P) if

ρ ∈ L∞(0, T ; LlogL(ω)) ∩ L2(0, T ; L2(ω)),
√
ρ ∈ L2(0, T ; H1(ω)),

∂tρ ∈ L1(0, T ; W−1,1(ω)),

φ ∈ L2(0, T ; H1
0 (ω)).

and (ρ, φ) satisfies (DD-P) in the weak sense.
We recall here the definition of the space LlogL(ω),

(10) LlogL(ω) = {f |f ≥ 0 and

∫
ω

[ f (1 + |logf |)] is finite},

and that ρ ∈ L∞(0, T ; LlogL(ω)) if and only if
∫
ω
ρ(t) (1 + |log ρ(t)|) dx ≤ C, where

C is independent of t ∈ (0, T ).
We also point out that due to the fact that ∂tρ ∈ L1(0, T ; W−1,1(ω)), we deduce

that ρ is continuous in time with values in W−1,1(ω) and hence the initial data for ρ
makes sense. The main result of this paper is the following theorem.
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Theorem 1.4. Assume that assumptions A1, A2, and A3 hold. Let (fε, φε) be
a renormalized solution of (1–6) (in the sense of Theorem 2.2). Then,

(11)
fε → ρM in L1((0, T ) × Ω),
φε → φ in L2((0, T );W 1,p(ω)) ∀ p < 2,

where (ρ, φ) is a weak solution of the (DD-P). Moreover,

φ ∈ L∞(0, T ; H1
0 (ω)) ∩ L2(0, T ; H2(ω)).

The proof of this theorem is as follows. In section 2, we prove the existence of
renormalized solutions to the semiconductor Boltzmann–Poisson system. In section 3,
we establish some a priori uniform estimates. These estimates generalize the estimates
obtained in [5]. To get the convergence we argue in a different manner as in [5]. Indeed,
in the one-dimensional case the energy estimate of section 3 and the convergence are
deduced from a hybrid-Hilbert expansion which is based on the regularity of the
limiting system. In the present case, the solution to the (DD-P) is not regular enough
and the solutions of the initial system are only renormalized. Instead, the method of
moment and velocity averaging are used to pass to the limit (ε → 0). In section 4,
we use a velocity averaging lemma to prove the compactness of the charge density ρ.
In section 5, we pass to the limit weakly in the equation. In section 6, we recover the
boundary condition for ρ. Finally, section 7 is devoted to the proof of the regularity
estimates on (ρ, φ) and that the limit solution (ρ, φ) is a weak solution of (DD-P).

2. Existence of renormalized solutions. For the existence of renormalized
solutions to the full Boltzmann–Poisson system we refer to [11, 25]. It is noteworthy
that even though the Boltzmann kernel we are considering here is linear, the com-
bination of the Boltzmann term and the Poisson term makes the existence of weak
solutions to (1–6) with uniform bounds a difficult problem and we were not able to
construct such kinds of solutions. This is coming from the fact that the Poisson term
can be well treated in Lp(dv) type of spaces whereas the linear Boltzmann term can
be well treated in Lp(M1−pdv). This incompatibility is responsible for the lack of
estimates. We notice then that the entropy bound given in (15) is not enough to give
a sense to ∇xφ

εfε.
Before stating an existence theorem for (1–6) let us give a definition for renor-

malized solution or more precisely the definition we are going to use.
Definition 2.1. We say that (fε, φε) is a renormalized solution to the semicon-

ductor Boltzmann–Poisson system if it satisfies the following:
1. ∀ β ∈ C1(R+), |β(t)| ≤ C(

√
t + 1) and |β′(t)| ≤ C, β(fε) is a weak solution

of ⎧⎨
⎩

ε∂tβ(fε) + v.∇xβ(fε) −∇v.(∇x(φε + φ̃b)β(fε)) = β′(fε)Q(fε)
ε

β(fε)|Γ− = β(fε
b ),

β(fε)(t = 0) = β(fε
0 ).

(12)

2. ∀ λ > 0, θε,λ =
√
fε + λM satisfies

(13) ε∂tθε,λ+v.∇xθε,λ−∇v.[∇x(φε+φ̃b)θε,λ] =
Q(fε)

2εθε,λ
+

λM

2θε,λ
v.∇x(φε+φ̃b).

Theorem 2.2. The semiconductor Boltzmann–Poisson system (1–6) has a renor-
malized solution in the sense of Definition 2.1 which satisfies, in addition,
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1. The continuity equation

(14) ∂tρ
ε + ∇x.j

ε = 0

2. The entropy inequality
(15)[∫

Ω

fε

(
φ̃b +

|v|2
2

+ log fε

)
+

1

2
‖∇φε‖2

L2

]t
0

− 1

ε2

∫ t

0

∫
Ω

Q(fε)log

(
fε

M

)

≤
∫ t

0

∫
Ω

∂tφ̃bf
ε − 1

ε

∫ t

0

∫
Γ+∪Γ−

fε

(
φb +

|v|2
2

+ log fε

)
(v.n(x)).

Proof. For the convenience of the reader, we give an idea of the proof in Appendix
A. We also refer to [25] for more details.

3. Uniform energy estimates.
Lemma 3.1. Assume that assumptions A1, A2, and A3 are satisfied. Then, any

renormalized solution (fε, φε) of the semiconductor Boltzmann–Poisson system (1–6)
satisfies

(16) Mε(t) + Kε(t) + ‖∇φε(t)‖2
L2 +

Rε
1(t)

ε2
+

∫ t

0

‖jε(s)‖L1ds ≤ CT

uniformly in ε, where Mε, Kε, and Rε
1 are defined in (7).

Proof. Starting from the entropy inequality (15), one can write the entropy dis-
sipation in the following form:∫

Rd

Q(fε)log

(
fε

M

)
dv

= −1

2

∫
R2d

σMM ′
(

log
fε(v′)

M(v′)
− log

fε(v)

M(v)

)(
fε(v′)

M(v′)
− fε(v)

M(v)

)
dvdv′.

Using the Jensen inequality,∫
Rd

Q(fε)log

(
fε

M

)
≤ −σ1

2

∫
Rd

M

(
log ρε − log

fε(v)

M(v)

)(
ρε − fε(v)

M(v)

)
.

Applying the relation

(17) (a− b)log(a/b) ≥
(√

a−
√
b
)2

we obtain

(18) −
∫ t

0

∫
Ω

Q(fε)

(
log fε +

|v|2
2

)
≥ σ1Rε

1(t) ≥ σ1Rε(t).

Moreover, we also have to approximate the entropy production term by the boundary
(I+

ε − I−ε )(t), defined in (7). We write this quantity as follows:

(I+
ε − I−ε )=

∫ t

0

∫
Γ+

|v.n|
[
fε(v) log

(
fε(v)

fε(−v)

)
+ (fε(v) − fε(−v)) EF (s, x)

]
.

Using the inequality alog(a/b) ≥ a− b for a, b > 0, we obtain

(19) (I+
ε − I−ε )(t) ≥

∫ t

0

∫
Γ+

|v.n(x)|[fε(v) − fε(−v)] (1 + EF (t, x))dσx dv ds.
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Then, we can replace (15) according to (18) and (19) and obtain
(20)

[Eε(t)]t0 +
σ1

ε2
Rε

1(t) ≤
∫ t

0

∫
Ω

∂tφ̃bf
ε − 1

ε

∫ t

0

∫
Γ+

|v.n(x)|[fε(v) − fε(−v)](1 + EF ),

where

Eε(t) =
1

2
‖∇xφ

ε(t)‖2
L2(ω) +

∫
Ω

fε

(
log fε +

|v|2
2

+ φ̃b

)
(t)

and

EF (t, x) = log

(
ρb(t, x)

(2π)d/2

)
+ φ̃b(t, x).

We extend the quasi-Fermi level on ω̄ (denoted by ẼF ) and replace ρb by its harmonic
extension (in ω̄) ρ̃b. According to assumptions A2 and A3, ∇xẼF and ∂tẼF defined
on ω by

∂tẼF = (∂tρ̃b + ρ̃b ∂tφ̃b)/ρ̃b,

∇xẼF = (∇xρ̃b + ρ̃b ∇xφ̃b)/ρ̃b

are bounded. By multiplying (14) by (1+ẼF (t, x)) and integrating by parts, we obtain
(21)

1

ε

∫ t

0

∫
Γ+

(1 + EF )(fε(v) − fε(−v))|v.n(x)| =

∫ t

0

∫
ω

∂tẼF ρε +

∫ t

0

∫
ω

∇xẼF .jε

−
[∫

ω

(1 + ẼF )ρε
]t
0

and then (20) is equivalent to

[Eε(t)]t0 +
σ1

ε2
Rε

1(t) ≤
[∫

ω

(1 + ẼF )ρε
]t
0

−
∫ t

0

∫
ω

∇xẼF .jε −
∫ t

0

∫
ω

∂tρ̃b
ρ̃b

ρε

which implies, according to A1, A2, and A3, that

Eε(t) +
Rε

1(t)

ε2
≤ CT

(
1 + Mε(t) +

∫ t

0

Mε(s)ds +

∫ t

0

‖jε(s)‖L1ds

)
,

where CT depends only on T. Let us estimate the current density in the following
way: ∫ t

0

‖jε(s)‖L1ds =
1

ε

∫ t

0

∫
ω

∣∣∣∣
∫

Rd

v
(√

fε −
√
ρεM

)(√
fε +

√
ρεM

)∣∣∣∣
≤ 1

ε

√
Rε(t)

(∫ t

0

∫
Ω

|v|2
(√

fε +
√
ρεM

)2
)1/2

.

The Young’s inequality (αa2 + 1
4αb

2 ≥ ab ∀α > 0), gives

(22)

∫ t

0

‖jε(s)‖L1 ds ≤ α

ε2
Rε(t) +

CT

4α

∫ t

0

(Mε(s) + Kε(s))ds,
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where α does not depend on ε (for example, α = 1/2). Then, one can deduce that

(23) Eε(t) +
Rε

1(t)

2ε2
≤ CT

(
1 + Mε(t) +

∫ t

0

Mε(s)ds +

∫ t

0

Kε(s)ds

)

and bound Mε and Kε in terms of Eε using

(24)

∫
Ω

fεlog

(
fε

e2CT e−|v|2/4

)
≥ Mε − |ω|e

∫ e2CT

Rd

e−|v|2/4.

Hence, we deduce that

Mε(t) + Kε(t) + ‖∇xφ
ε(t)‖2

L2 +
Rε

1(t)

ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds +

∫ t

0

Kε(s)ds

)
.

The Gronwall inequality leads to a uniform bound of Mε, Kε, ε−2 Rε
1, and ‖∇xφ

ε‖L2 .
Then we get the L1-bound on jε using (22).

Corollary 3.2. The renormalized solution satisfies∫
Ω

fε(1 + |v|2 + |logfε|) +

∫ t

0

∫
Γ+

fε(1 + |v|2 + |logfε|)|v.n(x)| ≤ CT .

Moreover, fε and its trace fε
|Γ+

are weakly, relatively compact in L1((0, T ) × Ω) and

L1((0, T ) × Γ+, |v.n(x)|dtdσxdv), respectively.
Proof. Let us remark that

(25)

∫
fε|log fε| =

∫
fε≥1

fε log fε −
∫
fε≤1

fε log fε.

Estimates (16), (23), and (24) imply that

|Eε(t)| ≤ CT ,∫
fε≤1

fε|log fε| = −
∫
fε≤1

fε log(fε/e−|v|2) +

∫
|v|2fε

≤
∫

|v|2fεdxdv + |ω|
∫

e−|v|2dv ≤ CT ,

and ∫
fε≥1

fε log fε ≤ |Eε(t)| +
∫
fε≤1

fε|log fε| ≤ CT .

The Dunford–Pettis theorem [13] implies the weak compactness of fε in the mentioned
space. We obtain the bound and the weak compactness of fε

|Γ+
by a similar argument.

Indeed, from the entropy bound we can deduce that

(26)

∫ t

0

∫
Γ+

|v.n(x)|
[
fε(v)

ρbM
log

(
fε(v)

ρbM

)]
ρbM(v)dvdσdt ≤ Cε

and then we can argue as previously.
Corollary 3.2 will be used to approximate uniformly fε by bounded function.

Indeed, let βδ be an approximation of the identity, namely βδ(s) = 1
δβ(δs), where β
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is a C∞
0 function satisfying β(s) = s for s ≤ 1, 0 ≤ β′(s) ≤ 1 for all s and β(s) = 2 for

s ≥ 3. As a consequence of the equi-integrability of fε, we deduce that (βδ(f
ε))δ,ε is

weakly relatively compact in L1((0, T ) × Ω). Indeed, we have∫ T

0

∫
Ω

|βδ(f
ε) − fε| ≤ C

∫
fε≥1/δ

fε → 0 as δ → 0

and∫ T

0

∫
Γ+

|βδ(f
ε) − fε|(v.n(x)) ≤

∫ T

0

∫
Γ+∩{fε≥1/δ}

|fε|(v.n(x)) → 0 as δ → 0

uniformly in ε. Up to extraction of a subsequence, we also have

βδ(f
ε) − fε → 0 a. e. as δ → 0,

β′
δ(f

ε) → 1 a. e. as δ → 0.

More precisely,

(27) sup
ε<1

‖βδ(f
ε) − fε‖L1

t,x,v
→ 0 as δ → 0.

Proposition 3.3. The renormalized solution (fε, φε) satisfies the following:
1. ρε is weakly, relatively compact in L1((0, T ) × ω).

2. Q(fε)
ε is weakly, relatively compact in L1((0, T ) × Ω).

3. ∇φε is relatively compact in L2(0, T ; Lp(ω)) for all 1 ≤ p < 2.
Proof. Let log+s = max(0, log s). Applying the Jensen inequality we get

ρεlog+ρε =

∫ (
fε

M
Mdv

)(
log+

∫
fε

M
Mdv

)
≤

∫
fεlog+ fε

M
dv.

The uniform energy bound (16) and Corollary 3.2 lead to∫ t

0

∫
ω

ρε(1 + log+ρε) ≤ CT

which implies the L1((0, T ) × ω) weak compactness of the sequence ρε. Let us define

rε :=

√
fε −

√
ρε M

ε
√
M

.

Hence, from the energy bound (16), we deduce that rε is bounded in L2((0, T ) ×
Ω, Mdtdxdv). Extracting a subsequence if necessary, we denote by r its weak limit.
Using rε, we can rewrite

fε = ρε M + 2εM
√
ρε rε + ε2r2

εM

and

Q(fε)

ε
= 2

√
ρε Q(rε M) + εQ(r2

εM),

where r2
εM and rε M are, respectively, bounded in L1 and L2(M−1dv). The operator

Q is bounded in L1 and L2(M−1dv). This implies that Q(fε)
ε is bounded in L1

t,x,v and

Q(fε)

ε
= 2

√
ρε Q(rε M) + O(ε)L1(0,T )×Ω.



DIFFUSION LIMIT OF BOLTZMANN–POISSON 1797

Moreover, let α > 0, then∫
A

|
√
ρε Q(rε M)| ≤ C

∫
A

ρε M +
1

4C

∫
A

Q2(rε M)

M

and choose C such that 1
4C ‖Q2(rε M)

M ‖L1
t,x,v

≤ α/2. For such fixed α and C the equi-

integrability of ρεM implies

∃ δ > 0,∀A ⊂ (0, T ) × Ω, |A| < δ ⇒ C

∫
A

ρεM ≤ α/2.

So,
√
ρε Q(rε M) is equi-integrable. Besides, if ΩR := ω ×B(0, R), then

∫ T

0

∫
Ωc

R

|
√
ρε Q(rε M)| ≤ ‖ρε‖1/2

L1
t,x

(∫
B(O,R)c

Mdv

)1/2(∫ T

0

∫
Ωc

R

Q(rε M)2M−1

)1/2

→ 0

as R goes to infinity uniformly in ε. This proves the weak compactness of Q(fε)
ε in

L1((0, T ) × Ω).
The third assertion of the proposition is a consequence of the Lions–Aubin the-

orem (see [22, Lemma 5.1]). Indeed, using that ∇xφ
ε is bounded in L2(0, T ; L2(ω))

and Δxφ
ε is bounded in L2(0, T, L1(ω)) we deduce that ∇xφ

ε is bounded in L2(0, T ;
L2(ω) ∩W r,q(ω)) for some q > 1 and 0 < r < 1 such that 1−r

d > 1 − 1
q . And, using

that ∂t∇xφ
ε = ∇x(Δx)−1∇x.(j

ε) we see that ∂t∇xφ
ε is bounded in L1(W−s,p

loc (ω))
for some p > 1 and s > d − d

p . Hence, ∇xφ
ε is compact in L2(0, T ; Lq

loc(ω)) for

some 1 < q < 2. And using that ∇xφ
ε is bounded in L2(0, T ; L2(ω)) we deduce the

compactness in L2(0, T ; Lp(ω)) for all p < 2.
Proposition 3.4. rε is such that ε|rε|2|v|2M is bounded in L1((0, T ) × Ω) and√

ε|rε|2|v|M is bounded in L1((0, T ) × Ω).
Proof. The proof uses Young’s inequality (see [7] and [23] where a similar ar-

gument is used to control the distance to the Maxwellian). Let us denote r(z) =
zlog(1 + z) and

r∗(p) = sup
z>−1

(pz − r(z))

its Legendre transform. Hence r∗(p) behaves like ep when p goes to +∞. Moreover,
r∗(p) has a superquadratic homogeneity, namely for 0 < α < 1 and p > 0, we have

r∗(αp) ≤ α2r∗(p). We also denote zε = fε

ρεM
− 1 and zε = 0 if ρε = 0. Hence

(28) ε|rε|2|v|2 ≤ 1

ε
ρε|zε||v|2.

By the Young inequality, we have

1

ε
ρε|v|2|zε| ≤

4ρε
ε2

[
r∗

(ε
4
|v|2

)
+ r(|zε|)

]
≤ 4ρε

ε2

[
ε2r∗

(
|v|2
4

)
+ r(zε)

]
which is clearly bounded in L1((0, T )×Ω, dtdxMdv) by using the growth of r∗ and the
entropy dissipation bound Rε

1(t) ≤ Cε2. This proves the first assertion. Interpolating
with the fact that rε is bounded in L2((0, T ) × Ω, dtdxMdv), we deduce the second
bound. This ends the proof of the proposition.
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4. Compactness by velocity averaging.
Proposition 4.1. The density ρε is relatively compact in L1((0, T ) × ω): there

exists ρ ∈ L1((0, T ) × ω) such that, up to extraction of a subsequence if necessary,

ρε → ρ in L1and a.e.

Using (27), it suffices to show the compactness of (βδ(f
ε))ε for all (fixed) δ >

0. This is a consequence of the averaging lemma (see [17, 12]) and the continuity
equation.

Let us recall the following averaging lemma.
Lemma 4.2. Assume that hε is bounded in L2((0, T ) × Ω), that hε

0 and hε
1 are

bounded in L1((0, T ) × Ω), and that

(29) ε ∂th
ε + v.∇xh

ε = hε
0 + ∇v . h

ε
1.

Then, for all ψ ∈ C∞
0 (Rd),

(30)

∥∥∥∥
∫

Rd

(hε(t, x + y, v) − hε(t, x, v) )ψ(v)dv

∥∥∥∥
L1

t,x

→ 0when y → 0 uniformly in ε

where hε(t, x, v) has been prolonged by 0 for x �∈ ω.
Remark 4.1. The above lemma only gives the compactness in the x variable of

the averages in v of hε(t, x, v). This is due to the presence of an ε in front of the time
derivative in (29). We also refer to [18] and [7] for similar averaging lemmas where
there is only gain of regularity in the x variable.

This lemma can be deduced from the proof of Theorem 1.8 of [8] or from the proof
of Theorem 6 of [12] (see also the proof of Theorem 3 of [12]). The only difference
here is the presence of the time derivative which comes with the factor ε in front and
hence does not imply regularity in time as in Theorem 6 of [12]. Actually, following
the proof of Theorem 3 of [12] with q = m = 1, p = 2, τ = 0, and writing the problem
in the whole space Rt × R

d
x, we can prove that

∫
Rd ψ(v)hε(t, x, v)dv is in the Besov

space Lr,∞((0, T );Bs,r
∞,∞), where r = 5

3 and s = 1
5 . For the definition of the Besov

space Bs,r
∞,∞, we refer to [12]. A sketch of the proof will be given in Appendix B. This,

of course, yields the compactness stated in (30).
Proof of Proposition 4.1. Let δ be a (fixed) nonnegative parameter. Let us

verify that the rescaled Boltzmann equation (in the renormalized sense) satisfies the
assumptions of Lemma 4.2. Indeed, βδ(f

ε) is a weak solution of

ε ∂tβδ(f
ε) + v.∇xβδ(f

ε) = hε
0 + ∇v. h

ε
1,

where

hε
0 =

Q(fε)

ε
β′
δ(f

ε) and hε
1 = ∇(φε + φ̃b)βδ(f

ε).

The sequences (βδ(f
ε))ε is bounded in L∞∩L1((0, T )×Ω) and hence in L2((0, T )×

Ω). Moreover, hε
0 is weakly, relatively compact in L1

t,x,v and by applying Holder’s
inequality and using the uniform bound of βδ(f

ε) in L2 (for fixed δ), we obtain

‖hε
1‖L1((0,T )×ω;L2(Rd)) ≤

C√
δ

sup
t≤T

‖∇(φε + φ̃b)(t)‖L2
x
.
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Since we are using a compactly supported function to localize in space, the L2 bound
in v also yields an L1 bound.

Assumptions of Lemma 4.2 are satisfied and hence we get the L1-compactness in
x of

∫
Rd ψ(v)βδ(f

ε)dv, namely (30) holds with hε replaced by βδ(f
ε).

Next, using that (βδ(f
ε))ε is bounded in L∞(0, T ; L1((1 + |v|2)dxdv)), we see

that we can take ψ(v) to be constant equal to 1 in (30) and hence we deduce that,
after also sending δ to 0 and using the equi-integrability of fε, that

‖ρε(t, x + y) − ρε(t, x)‖L1
t,x

→ 0 when y → 0 uniformly in ε.

Finally, using that ∂tρ
ε = −∇x .j

ε is bounded in L1((0, T );W−1,1(w)), we deduce
that ρε is relatively compact in L1((0, T ) × ω) and Proposition 4.1 is proved.

5. Passing to the limit. Using the previous section, there exists ρ ∈ L1((0, T )×
ω) such that

ρε → ρ in L1
t,x and a. e.

The inequality
(√

a−
√
b
)2

≤ |a− b| leads to

√
ρε → √

ρ in L2
t,x and a. e.

The entropy dissipation given by (15) leads to

(31) fε → ρM in L1
t,x,v and a. e.

Moreover, we have

Q(fε)

ε
=

(
2
√
ρε Q(rε M) + εQ(r2

εM)
)

⇀ 2
√
ρ Q(rM) in L1,

where r is the weak limit of rε in L2((0, T ) × Ω, M(v)dtdxdv). So, one can pass to
the limit in (13) for λ > 0, up to extraction of a subsequence, and get

(32)

v.∇x

√
(ρ + λ)M −∇v.(∇x(φ + φ̃b)

√
(ρ + λ)M) =

√
ρ Q(rM)√
(ρ + λ)M

+
λM v.∇x(φ + φ̃b)

2
√

(ρ + λ)M
,

where ∇xφ is the L2
t,x-weak limit of ∇xφ

ε. Sending λ to 0, we infer that(
∇x

√
ρ +

1

2

√
ρ∇x(φ + φ̃b)

)
.vM = Q(rM).

Using that Q(rM) is bounded in L2((0, T ) × Ω, M−1(v)dtdxdv), we deduce that
∇x

√
ρ+ 1

2

√
ρ∇x(φ+ φ̃b) is bounded in L2((0, T )×ω). Besides, the current density is

given by

jε = 2
√
ρ
ε
∫

Rd

rε vMdv + ε

∫
r2
εvMdv.

Using Proposition 3.4, we deduce that

jε = 2
√
ρ
ε
∫

Rd

rε vMdv + O(
√
ε)L1((0,T )×Ω) ⇀ 2

√
ρ

∫
Rd

r vMdv in L1
t,x.
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The function vM ∈ R(Q) := KerQ⊥, therefore∫
r vM dv =

∫
Q(rM)Q−1(vM)

dv

M

and

jε ⇀ J(ρ, φ) := 2
√
ρ

[∫
Rd

(v ⊗Q−1(vM))dv

](
∇x

√
ρ +

1

2

√
ρ∇x(φ + φ̃b)

)
.

Passing to the limit (ε → 0) in (14) and the Poisson equation −Δφε = ρε, we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ + ∇xJ(ρ, φ) = 0,

J(ρ, φ) = 2
√
ρ
[
−D

(
∇x

√
ρ + 1

2

√
ρ∇x(φ + φ̃b)

)]
,

D = −
∫

Rd

(v ⊗Q−1(vM))dv and − Δxφ = ρ.

6. The limit boundary condition. In this section, we want to pass to the
limit in the boundary condition and prove that ρ = ρb on ∂ω. First notice that from
the fact that ∇x

√
ρ + 1

2

√
ρ∇x(φ + φ̃b) is bounded in L2((0, T ) × ω), we deduce that

∇x
√
ρ is bounded in L1((0, T ) × ω) and hence the trace of

√
ρ makes sense on ∂ω.

For each sequence (gε)ε, gε will denote the weak limit of (gε)ε when ε goes to
zero, extracting a subsequence if necessary. In particular, fε

|Γ denotes the weak limit

of fε
|Γ in L1((0, T ) × Γ+, |v.n(x)|dtdσxdv). We recall that βδ(f

ε) is a weak solution
of the renormalized semiconductor Boltzmann equation

(33) ε∂tβδ(f
ε) + v .∇xβδ(f

ε) −∇x(φε + φ̃b).∇vβδ(f
ε) =

Q(fε)

ε
β′
δ(f

ε)

with the following boundary condition and initial data

βδ(f
ε)|Γ− = βδ(ρbM) and βδ(f

ε)|t=0
= βδ(f

ε
0 ).

Passing to the limit in (33), we infer that

(34) v .∇xβδ(ρM) −∇x(φ + φ̃b).∇vβδ(ρM) = 2
√
ρ Q(rM)β′

δ(ρM).

On one hand, by using ξ(t, x, v) ∈ C∞([0, T ] × Ω̄) as a test function in (34) we get

−
∫ T

0

∫
Ω

βδ(ρM)v.∇xξ +

∫ T

0

∫
Ω

βδ(ρM)∇x(φ + φ̃b).∇vξ

−
∫ T

0

∫
Ω

2
√
ρ Q(rM)β′

δ(ρM)ξ +

∫ T

0

∫
∂Ω

ξβδ(ρM)(v.n(x)) = 0.

On the other hand, using ξ(t, x, v) as a test function in (33) and passing to the limit,
we deduce that

(35) βδ(ρM)|∂Ω = βδ(fε)|∂Ω.

From Corollary 3.2, we deduce that fε
|∂Ω ∈ L∞(0, T ; LlogL(|v.n(x)|dσxdv)) and hence

βδ(f
ε)|∂Ω = βδ(f

ε
|∂Ω) ∈ L∞(0, T ; LlogL(|v.n(x)|dσxdv)) uniformly in ε, δ. Hence,
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βδ(ρM)|∂Ω is uniformly bounded in L∞(0, T ; LlogL(|v.n(x)|dσxdv)) and converges to
(ρM)|∂Ω when δ goes to 0.

Using ψ(t, x) ∈ C∞([0, T ]× ω̄) as a test function in (33) and passing to the limit,
we get ∫ T

0

∫
Ω

βδ(ρM)v.∇xψ +

∫ T

0

∫
Ω

2
√
ρ Q(rM)β′

δ(ρM)ψ

=

∫ T

0

∫
Γ+

ψ
(
βδ(fε)|Γ+ − βδ(ρbM)

)
(v.n(x)).

Sending δ to 0 and using that∫ T

0

∫
Ω

ρMv.∇xψ +

∫ T

0

∫
Ω

2
√
ρ Q(rM)ψ = 0,

we deduce that

(36) lim
δ→0

∫ T

0

∫
Γ+

[
βδ(fε)|Γ+ − βδ(ρbM)

]
(v.n(x))ψ = 0.

Using (35) and the fact that∫
Rd∩{v.n(x)≥0}

M(v.n(x))dv =
1

2π

we infer that

(37)

∫ T

0

∫
∂ω

[ρ|∂ω − ρb]ψ = 0

and hence ρ = ρb on ∂ω.

7. Regularity of the density. In this section we shall prove that the limit
ρ ∈ L∞(0, T ; L2(ω)) and that

√
ρ ∈ L2(0, T ; H1(ω)).

We assume that ρb(t, x) is defined in the whole domain ω. We can, for instance,
extend

√
ρb(t, x) in ω as a harmonic function. Hence, ρb(t, x) satisfies

ρb ∈ L∞((0, T ) × ω) and
√
ρb ∈ L2(0, T ; H1(ω)).

Lemma 7.1. Let ω be a regular and bounded open subset of R
d and ρ a positive

function of L∞(0, T ; L1(ω)) satisfying

(38)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇x
√
ρ + 1

2∇xφ
√
ρ = G ∈ L2(0, T ; L2(ω)),

−Δxφ = ρ,

∇xφ ∈ L∞(0, T ; L2),
ρ = ρb on ∂ω.

Then

ρ ∈ L2(0, T ; L2(ω)),
√
ρ ∈ L2(0, T ; H1(ω)),

and

∇φ
√
ρ ∈ L2(0, T ; L2(ω)).
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Proof. The first and third equations of (38) imply that ∇x
√
ρ ∈ L1 and hence

the boundary condition ρ = ρb on ∂ω makes sense. Let us take βδ as in the proof of
Corollary 3.2. But since we will deal with possibly negative values, we take βδ(s) =
1
δβ(δs), where β is a C∞ function satisfying β(s) = s for −1 ≤ s ≤ 1, 0 ≤ β′(s) ≤ 1
for all s and β(s) = 2 for |s| ≥ 3.

We denote ψ =
√
ρ−√

ρb. Hence

∇xβδ(ψ) = ∇xψ β′
δ(ψ).

Hence, after subtracting
√
ρb from

√
ρ, we can renormalize the first equation appearing

in (38), it gives

(39) ∇xβδ(ψ) +
1

2
∇xφβ

′
δ(ψ)ψ = G̃β′

δ(ψ),

where G̃ = G − ∇x
√
ρb − 1

2∇xφ
√
ρb is also in L2(0, T ; L2(ω)). Then using that for

fixed δ > 0

|∇xφβ
′
δ(ψ)ψ| ≤ 1

2δ
|∇φ| ∈ L2,

we deduce that ∇xβδ(ψ) ∈ L2 for fixed δ. Taking the L2 norm of (39), we get

(40) ‖∇xβδ(ψ)‖2
L2 +

1

4
‖∇xφβ

′
δ(ψ)ψ‖2

L2 +

∫ T

0

∫
ω

∇xφ∇xβδ(ψ)β′
δ(ψ)ψ ≤ ‖G̃‖2

L2 .

Let β̃ be given by β̃(s) =
∫ s

0
τβ′(τ)2dτ and β̃δ(s) = 1

δ2 β̃(δs). Hence, β̃δ(s) goes to s2

2
when δ goes to 0.

Computing the third term in (40), we get∫
ω

∇xφ.∇xβδ(ψ)β′
δ(ψ)ψ =

∫
ω

∇xφ.∇xβ̃δ(ψ) =

∫
ω

ρβ̃δ(ψ).

Hence, we deduce that for all δ > 0,

‖∇xβδ(ψ)‖2
L2 +

1

4
‖∇xφβ

′
δ(ψ)ψ‖2

L2 +

∫ T

0

∫
ω

ρβ̃δ(ψ) ≤ ‖G̃‖2
L2 .

Letting δ go to zero, we get that

‖∇x(
√
ρ−√

ρb)‖2
L2 +

1

4
‖∇xφ(

√
ρ−√

ρb) ‖2
L2 +

1

2

∫ T

0

∫
ω

ρ(
√
ρ−√

ρb)
2 ≤ ‖G̃‖2

L2 .

Using that
√
ρb is bounded, we conclude the proof of the lemma.

Now, using the lemma, we can see easily that we can rewrite the current

J(ρ, φ) = 2
√
ρ

[
−D

(
∇x

√
ρ +

1

2

√
ρ∇x(φ + φ̃b)

)]
= −D[∇xρ + ρ∇x(φ + φ̃b)].

Finally, the regularity of φ can be easily deduced from that of ρ and this ends the
proof of Theorem 1.4.

Appendix A. Existence of renormalized solution. We present here a proof
of the existence of renormalized solution to (1–6) satisfying the conditions of Theorem
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2.2. We refer to [25] for the existence of renormalized solution to the Vlasov–Poisson–
Boltzmann system with a nonlinear Boltzmann kernel.

To simplify the notations we take ε = 1. We begin by regularizing the collision
operator and both Boltzmann and Poisson equations. Let us define

(41) QR(f) =

∫
Rd

σR(v, v′)(Mf ′ −M ′f)dv′,

where

(42) σR(v, v′) = σ(v, v′)1|v|≤R(v)1|v′|≤R(v′).

The regularized semiconductor Boltzmann–Poisson system reads

(V BP )α,R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfα,R +
(
v.∇xfα,R −∇x(φα,R + φ̃b).∇vfα,R

)
= QR(fα,R),

−(1 − αΔx)2mΔxφα,R = ρα,R =

∫
|v|≤R

fα,Rdv,

fα,R(0, x, v) = f0(x, v), (x, v) ∈ Ω,
fα,R(t, x, v) = fb(t, x, v), (x, v) ∈ Γ−,
φα,R = Δxφα,R = · · · = Δ2m

x φα,R = 0, x ∈ ∂ω,

where α is a nonnegative parameter and m ∈ IN∗. We refer to [1, 5, 29] for further
details about this approximation.

A simple computation gives the following H-theorem:
Lemma A.1. The collision operator QR is bounded in L1 and L∞ and satisfies∫

|v|<R

QR(f)dv =

∫
Rd

QR(f)dv = 0

and

∫
|v|<R

QR(f)log
f

M
=

∫
Rd

QR(f)log
f

M
≤ −σ1

2

∫ (√
f −

√
M

∫
fdv

)2

.

As a consequence of these conservation properties, one can prove, by a fixed
point procedure and by using the characteristic method, that the modified system
(V BP )α,R has a weak solution (fα,R, φα,R). More precisely, multiplying the semicon-
ductor Boltzmann equation by (1+ |v|2/2+ log fα,R), and integrating with respect to
dtdxdv, we get

[
1

2

∫
ω

|(1 − αΔ)m∇xφα,R|2(s) +

∫
Ω

fα,R

(
log fα,R +

|v|2
2

+ φ̃b

)
(s)

]t
0∫ t

0

∫
Γ+

fα,R

(
log fα,R +

|v|2
2

+ φ̃b

)
|v.n(x)| + σ1

2

∫ t

0

∫
Ω

(√
fα,R −

√
ρα,RM

)2

≤
∫ t

0

∫
Γ−

fb

(
log fb +

|v|2
2

+ φb

)
|v.n(x)|.

For fixed α, the solution is weak. One can pass to the limit R → ∞ and show that
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there exists a weak solution (fα, ρα, φα) of

(V BP )α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfα + v.∇xfα −∇x(φα + φ̃b).∇vfα = Q(fα),

−(1 − αΔx)2mΔxφα = ρα =

∫
Rd

fαdv,

fα(0, x, v) = f0(x, v), (x, v) ∈ Ω,
fα(t, x, v) = fb(t, x, v) (x, v) ∈ Γ−,
φα = Δxφα = · · · = Δ2m

x φα = 0, x ∈ ∂ω.

Moreover, this weak solution satisfies (12), (13), and (14) and

[
1

2

∫
ω

|(1 − αΔ)m∇xφα|2(t) +

∫
Ω

fα

(
log fα +

|v|2
2

+ φ̃b

)
(s)

]t
0∫ t

0

∫
Γ+

fα

(
log fα +

|v|2
2

+ φb

)
|v.n(x)| + σ1

2

∫ t

0

∫
Ω

(√
fα −

√
ραM

)2

≤
∫ t

0

∫
Γ−

fb

(
log fb +

|v|2
2

+ φb

)
|v.n(x)| ≤ CT .

As a consequence of this identity we get the following proposition.
Proposition A.2.

1. fα and fα|Γ+
are, respectively, weakly, relatively compact in L1((0, T ) × Ω)

and L1((0, T ) × Γ+, |v.n(x)|dtdσxdv).
2. ‖∇xφα‖L2 ≤ ‖(1 − Δx)m∇xφα‖L2 ≤ CT and ∇xφα is relatively compact in

Lp((0, T ) × ω) for all p < 2.
3. ρα is relatively compact in L1((0, T ) × ω).

The proof of this proposition follows the same lines as the proofs of compactness
given in the paper (see the proofs of Corollary 3.2 and Propositions 3.3 and 4.1).
Notice, however, that we do not immediately get the compactness of fα as in (31).

Using this proposition, we can end the proof of Theorem 2.2.
Let f, ρ, φ, and j be the weak limits of subsequences of fα, ρα, φα, and jα =∫

vfαdv. To prove that (f, φ) satisfies (12) and (13), we argue as in [21] (see also
[25]). The method is based on a double renormalization. First, we write the equation
satisfied by βδ(fα), where βδ was defined in section 3 and then weakly pass to the
limit when α goes to zero. Then, we renormalize the resulting limit equation using
the function β or the function

√
s + λM . Finally, we let α go to zero and recover (12)

and (13). The continuity equation (14) can be easily deduced from the continuity
equation for ρα and the entropy inequality (15) can be deduced from a classical
convexity argument (see also [25]). This ends the proof of Theorem 2.2.

Appendix B. Sketch of the proof of Lemma 4.2. Here we would like to
prove Lemma 4.2.

Step 1: First, we rewrite the problem in the whole space in t and x. This step
only uses the equi-integrability of hε. Indeed, for α small enough, we can find C∞

cut-off functions χ1(t) and χ2(x) such that χ1 = 1 on (α, T −α) has compact support
in (0, T ), and χ2 = 1 on {x ∈ ω, |,dist(x, ∂ω) > α and has compact support in ω.
Denoting χ(t, x) = χ1(t)χ2(x) and h̃ε = χ(t, x)hε, we get

(43) ε ∂th̃
ε + v.∇xh̃

ε = χhε
0 + ∇v . (χh

ε
1) + (ε∂t + v.∇x)χhε.
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Moreover, due to the uniform bound of hε in L2, we have∥∥∥∥
∫

Rd

(
hε(t, x, v) − h̃ε(t, x, v)

)
ψ(v)dv

∥∥∥∥
L1((0,T )×ω)

→ 0

when α goes to zero, uniformly in ε.
Step 2: From step 1, we see that it is enough to prove the lemma when we replace

(0, T ) × ω by Rt × R
d
x since the extra term on the right-hand side of (43) is in L2.

Notice also that since we localize in the v variable by integrating against ψ(v), the L2

norm controls the L1 norm. More precisely, we can prove that under the conditions
of the lemma,

∫
Rd ψ(v)hε(t, x, v)dv ∈ Lr,∞((0, T );Bs,r

∞,∞), where r = 5
3 and s = 1

5 (see
[12] for the definition of the Besov space built on the Lorentz space Lr,∞). One way of
proving the bound in the Besov space is to use the Littlewood–Paley decomposition
and follow the proof of Theorem 3 of [12]. The only difference is that ξ.v should
be replaced by ετ + ξ.v and that we take the Fourier transform in t and x (see also
Theorem 1.8 of [8]).

Here, we would like to sketch a proof which follows the idea used in [19]. Adding
λhε to both sides of (29), we get

λhε + ε ∂th
ε + v.∇xh

ε = hε
0 + ∇v . h

ε
1 + λhε.

Hence,

(44)

∫
Rd

hε(t, x, v)ψ(v)dv = Tλ(hε
0 + ∇v . h

ε
1 + λhε),

where

(45) Tλg(t, x) =

∫ ∞

0

∫
Rd

g(t− εs, x− sv, v)e−λsφ(v)dv ds.

Applying Proposition 3.1 of [19], we deduce that

(46) ‖Tλ(g)‖
L2

tH
1/2
x

≤ Cλ−1/2‖g‖L2(R×Rd×Rd),

(47) ‖Tλ(g)‖λ−2L1
tW

−1,1
x +λ−1L1

tL
1
x
≤ C‖g‖L1(Rt×Rd

x;W−1,1(Rd)).

Hence,

(48)

∫
Rd

hε(t, x, v)ψ(v)dv = ρ = ρ1 + ρ2,

where

‖ρ1‖
L2

tH
1/2
x

≤ Cλ1/2‖hε‖L2 ,(49)

‖ρ2‖λ−2L1
tW

−1,1
x +λ−1L1

tL
1
x
≤ C(‖hε

0‖L1 + ‖hε
1‖L1).(50)

This can also be written as ρ2 = ρ2
1 + ρ2

2, where

‖ρ2
1‖L1

tW
−1,1
x

≤ Cλ−2(‖hε
0‖L1 + ‖hε

1‖L1),(51)

‖ρ2
2‖L1

tL
1
x
≤ Cλ−1(‖hε

0‖L1 + ‖hε
1‖L1).(52)
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We would like to deduce that ρ ∈ [L2H1/2, L1W−1,1](1/5,∞), the real interpolation

of order (1/5,∞) of the couple (L2H1/2, L1W−1,1). For all t ∈ R+, we define the
function

(53) K(t) = inf
a1+a2=ρ

‖a1‖L2H1/2 + t‖a2‖L1W−1,1 .

To conclude, it is enough to prove that K(t) ≤ Ct1/5. For t > 0, we take λ such that
t = λ5/2.

If 0 < t < 1, then ρ2
2 also satisfies ‖ρ2

2‖L1
tW

−1,1
x

≤ Cλ−2, and hence taking a1 = ρ1

and a2 = ρ2, we deduce that K(t) ≤ Ct1/5.
If t > 1, then we write ρ2

2 as the sum of two terms ρ2
2 = ρ2

3 + ρ2
4 such that

ρ2
3 ∈ λ−2L1W−1,1 and ρ2

4 ∈ λ1/2L1W 3/2,1. Hence, if we define

(54) K1(t) = inf
a1+a2=ρ

‖a1‖L2H1/2+L1W 3/2,1 + t‖a2‖L1W−1,1

we get that K1(t) ≤ Ct1/5 by taking a1 = ρ1 + ρ2
4 and a2 = ρ2

1 + ρ2
3.

This proves that ρ ∈ [L2H1/2 + L1W 3/2,1, L1W−1,1](1/5,∞). This is, of course,
enough to get the compactness stated in the lemma.

Acknowledgments. The second author would like to thank N. Ben Abdallah
for interesting discussions and encouragements. The authors would like to thank the
referee for many constructive remarks.

REFERENCES

[1] N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson
system, Math. Methods Appl. Sci., 17 (1994), pp. 451–476.

[2] N. Ben Abdallah and P. Degond, On hierarchy of macroscopic models for semiconductors,
J. Math. Phys., 37 (1996), pp. 3306–3333.

[3] N. Ben Abdallah and J. Dolbeault, Relative entropies for kinetic equations in bounded
domains (irreversibility, stationary solutions, uniqueness), Arch. Ration. Mech. Anal.,
168 (2003), pp. 253–298.

[4] N. Ben Abdallah and M. L. Tayeb, Asymptotique de diffusion pour le système de Boltzmann-
Poisson uni-dimensionnel, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), pp. 735–740.

[5] N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional
Boltzmann-Poisson system, Discrete Contin. Dynamical Syst. Ser. B, 4 (2004), pp. 1129–
1142.

[6] N. Ben Abdallah and M. L. Tayeb, Diffusion limit of the Boltzman-Poisson system for
elastic collison, manuscript.

[7] C. Bardos, F. Golse, and C.-D. Levermore, Fluid dynamic limits of kinetic equations.
II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993),
pp. 667–753.

[8] F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Series
in Applied Mathematics 4, 2000.

[9] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960.
[10] R. DeVore and G. Petrova, The averaging lemma, J. Amer. Math. Soc., 14 (2001), pp. 279–

296.
[11] R. J. Diperna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global

existence and weak stability, Ann. of Math., 130 (1989), pp. 321–366.
[12] R. J. Diperna, P.-L. Lions, and Y. Meyer, Lp regularity of velocity averages, Ann. Inst. H.
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ON THE CONVERGENCE OF THE NO RESPONSE TEST∗

ROLAND POTTHAST†

Abstract. The no response test is a new scheme in inverse problems for partial differential
equations which was recently proposed in [D. R. Luke and R. Potthast, SIAM J. Appl. Math., 63
(2003), pp. 1292–1312] in the framework of inverse acoustic scattering problems. The main idea of
the scheme is to construct special probing waves which are small on some test domain. Then the
response for these waves is constructed. If the response is small, the unknown object is assumed to
be a subset of the test domain. The response is constructed from one, several , or many particular
solutions of the problem under consideration. In this paper, we investigate the convergence of the
no response test for the reconstruction information about inclusions D from the Cauchy values of
solutions to the Helmholtz equation on an outer surface ∂Ω with D ⊂ Ω. We show that the one-wave
no response test provides a criterion to test the analytic extensibility of a field. In particular, we
investigate the construction of approximations for the set of singular points N(u) of the total fields
u from one given pair of Cauchy data. Thus, the no response test solves a particular version of the
classical Cauchy problem. Also, if an infinite number of fields is given, we prove that a multifield
version of the no response test reconstructs the unknown inclusion D. This is the first convergence
analysis which could be achieved for the no response test.

Key words. inverse problems, inverse scattering, shape reconstruction, sampling method, no
response test
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DOI. 10.1137/S0036141004441003

1. Introduction. We will study the no response test for the treatment of the
following basic model problems from the theory of inverse boundary value problems.

Let Ω and D be bounded domains with boundary of class C2, D ⊂ Ω and Ω \D
connected. For Ω we consider the simple situation where it is simply connected. We
assume that the interior homogeneous Dirichlet problem for the Helmholtz equation
in Ω does have only the trivial solution, i.e., κ is not an interior Dirichlet eigenvalue
of Ω. In this case the interior Dirichlet problem for Ω can be solved with arbitrary
continuous or L2 boundary data and the solutions depend continuously on these data
with respect to any Cμ-norm on compact subsets of Ω. Also, we assume that the same
condition is satisfied for Ω\D. In this case the following boundary value problem has
a unique solution; cf. [3].

Boundary value problem. We consider a function u ∈ C2(Ω \D) ∩ C(Ω \D)
which satisfies the Helmholtz equation

�u + κ2u = 0 in Ω \D(1.1)

with boundary values

u = 0 on ∂D.(1.2)

For the forward problem, the function

u|∂Ω = f(1.3)
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is given, and we look for the solution u to (1.1)–(1.3) and its normal derivative

∂u

∂ν
= g(1.4)

on ∂Ω. Here, the unit normal vector ν is assumed to point into the exterior of Ω \D.

Inverse boundary value problem. For the inverse problem we assume that
the Cauchy data

u|∂Ω = f,
∂u

∂ν

∣∣∣∣
∂Ω

= g(1.5)

are given. The problem is to reconstruct D or to gain information about D by
reconstructing a subset of D without knowledge of the boundary condition on ∂D.

The no response test. We assume that Cauchy data (1.5) of some solution u
to (1.1)–(1.5) are given. For some test domain G ⊂ Ω the no response test calculates
a response by probing the unknown scatterer D with special waves, for example, with
single-layer potentials

v[ϕ](y) :=

∫
∂Ω

Φ(x, y)ϕ(x)ds(x), y ∈ Ω, ϕ ∈ L2(∂Ω),(1.6)

where the functions v[ϕ] are chosen such that

‖v[ϕ]‖C1(G) ≤ ε(1.7)

on G with some constant ε > 0. We define

J(x) :=
1

2
u(x) −

∫
∂Ω

(
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y), x ∈ ∂Ω,(1.8)

and calculate the response of the domain D with respect to the probing function v[ϕ]
by

I(ϕ) :=

∫
∂Ω

J(x)ϕ(x)ds(x).(1.9)

The construction of the response is described in more detail in section 2.

The no response test uses a set G of sampling or test domains G, respectively. For
each domain G the maximal response is defined as the supremum over all responses for
special functions v[ϕ] with (1.7). All test domains G with maximal response smaller
than c0 with some constant c0 are called positive (= no response), otherwise negative.
To obtain a reconstruction, we build the intersections

Mrec :=
⋂

G positive

G(1.10)

of all positive test domains. The extension of the response functional to the multiwave
case is described in section 2.
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Convergence analysis for the no response test in different cases. For our
convergence analysis we will work with admissible test domains.

Definition 1.1 (admissible test domains). Let G ⊂ Ω be some domain such that
there is a homotopy [0, 1] � λ 	→ Gλ with G0 = Ω and G1 = G such that Gλ is a
simply connected domain with boundary of class C2 and Gλ2 ⊂ Gλ1 for λ2 > λ1. In
this case G is called an admissible test domain.

The results of our subsequent convergence analysis can be summarized as follows.
Let G be some admissible test domain.

1. One-wave case. If the field u can be analytically continued into Ω \G, then
for an arbitrary constant c0 > 0 and sufficiently small ε > 0 the domain
G is positive. If u cannot be analytically continued into Ω \ G, then G is
negative/not positive.

2. Multiwave case. The intersection of all positive test domains is exactly the
unknown domain D.

For the one-wave case we will show that the no response functional is bounded
from below by a constant times the derivatives of the field u in the exterior of G.
This is obtained by further developing techniques introduced in the framework of the
point-source method ; cf. [10], [12]. The point-source method reconstructs the total
field u or its derivatives and then uses the boundary condition to find the unknown
inclusion D from the knowledge of u and the boundary condition. However, the basic
difference between the point-source method and the no response test is that the point-
source method does calculate the field or one particular derivative, whereas the no
response test estimates the behavior of the full set of Taylor coefficients.

The results show that the no response test and the range test [13] in principle
reconstruct the same set, even though these methods use a different indicator function
for the test domains. The idea of the range test is to solve the single-layer integral
equation ∫

∂G

e−iκx̂·yϕ(y)ds(y) = u∞(x̂), x̂ ∈ S,(1.11)

with ϕ ∈ L2(∂G) to test whether the field u∞ can be analytically extended up to ∂G.
Both methods test for analytic extensibility.

For the convergence analysis in the multiwave case we will bound the no response
functional by a factor times the indicator function of the singular sources method
as introduced in [11] and [12] to obtain convergence. The singular sources scheme
reconstructs the scattered field Ψs(z, z) for an incident singular field Ψ(·, z) in its
source point z and uses the behavior |Ψs(z, z)| → ∞ for z → ∂D.

The idea to use singular incident fields for uniqueness results has been employed in
the work of Isakov [6] and Kirsch and Kress [7]. Corresponding stability results using
singular sources have been derived in [11]. Also, these ideas have been transformed
into a constructive singular sources method by the author [11], [12]. Independently,
Ikehata proposed using singular waves for shape reconstruction by the probe method ;
see [5]. More recently, the probe method has been numerically realized by Erhard
and Potthast [2], and the numerical behavior in the case of an impedance boundary
condition was carefully investigated by Cheng, Liu, and Nakamura [1]. The conver-
gence properties of different sampling methods have been compared and investigated
by Honda et al. in [4].

2. The no response test for the boundary value problem. The goal of this
section is to develop a formulation of the no response test for the inverse boundary
value problem (1.1)–(1.5).
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Preparations. By Green’s formula the total field u can be calculated by

u(x) =

∫
∂Ω

(
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y)

+

∫
∂D

∂u

∂ν
(y)Φ(x, y)ds(y), x ∈ Ω \D,(2.1)

where we already used the boundary condition on ∂D to simplify the second integral
over ∂D. Using the classical jump relations we can calculate the limit of u(x) for
x → ∂Ω. We obtain

u−(x) =
1

2
u(x) +

∫
∂Ω

(
∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y)

+

∫
∂D

∂u

∂ν
(y)Φ(x, y)ds(y), x ∈ ∂Ω.(2.2)

For the inverse boundary value problem the functions u|∂Ω and ∂u
∂ν |∂Ω are known.

Thus, the function J defined in (1.8) can be calculated from the given data. In
particular, from (2.2) we derive∫

∂D

∂u

∂ν
(y)Φ(x, y)ds(y) = J(x), x ∈ ∂Ω.(2.3)

Now, consider the single-layer potential (1.6) with density ϕ ∈ L2(∂Ω) or C(∂Ω).
We multiply (2.3) by ϕ, integrate over ∂Ω, and exchange the order of integration to
obtain ∫

∂Ω

ϕ(x)J(x)ds(x) =

∫
∂Ω

ϕ(x)

(∫
∂D

∂u

∂ν
(y)Φ(x, y)ds(y)

)
ds(x)

=

∫
∂D

∂u

∂ν
(y)

(∫
∂Ω

Φ(x, y)ϕ(x)ds(x)

)
ds(y)

=

∫
∂D

∂u

∂ν
(y)v(y)ds(y).(2.4)

Thus, the value of the last integral can be calculated from the given data f and g as
defined in (1.5).

No response test, one-wave case. First, we consider the case where only one
pair of Cauchy data f = u|∂Ω, g = ∂u

∂ν |∂Ω is given on ∂Ω. Let G ⊂ Ω be a test domain.
The idea of the no response test is to construct v[ϕ] given in (1.6) such that it is small
on G and large outside of G.

Definition 2.1. Given some ε > 0 let M(G, ε) be the set of all ϕ ∈ L2(∂Ω) such
that the test functions v[ϕ] satisfy the impulse size condition

‖v[ϕ]|G‖C1(G) ≤ ε.(2.5)

We call this testing with impulses of maximal size ε on G.
In detail, the following test is carried out.
Definition 2.2 (no response test, one-wave case). Choose ε > 0 and some

constant c0 > 0, and consider admissible test domains G ⊂ Ω. For all ϕ ∈ M(G, ε)
calculate the functional

I(ϕ) :=

∫
∂Ω

J(x)ϕ(x)ds(x)(2.6)
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and

Iε(G) := sup
ϕ∈M(G,ε)

I(ϕ).(2.7)

If Iε(G) < c0, we call the domain G positive and we say that we have no response.
Otherwise, G is denoted as negative, since the response is larger than c0.

We define

I0(G) := lim
ε→0

Iε(G).(2.8)

We will show that if u can be analytically extended into Ω \ G, then I0(G) = 0,
and, conversely, the condition I0(G) = 0 implies analytic extensibility into Ω\G. The
closure G of each test domain G with I0(G) = 0 does contain the singular points N(u)
of the field u. Taking the intersections of the sets G for all possible test domains G
with I0(G) = 0 we obtain some upper estimate for this set of singular points N(u)
of u. The next sections will give a precise analysis of this situation. For practical
reconstructions we will choose ε > 0 and c0 > 0 and obtain an approximation for
N(u) by the intersection of all positive test domains.

No response test, multiwave case. Now, we assume that more than one pair
of Cauchy data f, g is given. Let f(ξ), g(ξ) for ξ = 1, . . . , N be a finite (for N ∈ N) or
infinite (for N = ∞) number of linearly independent Cauchy data. We assume that
the set {

f(ξ) := u(·, ξ)
∣∣∣
∂Ω

: ξ ∈ N

}
(2.9)

is dense (and thus complete) in L2(∂Ω). Now, the functional J depends on ξ =
1, 2, . . . , N ; i.e., we have

J(x, ξ) :=
1

2
u(x, ξ) −

∫
∂Ω

(
∂u(y, ξ)

∂ν(y)
Φ(x, y) − u(y, ξ)

∂Φ(x, y)

∂ν(y)

)
ds(y)(2.10)

for x ∈ ∂Ω and ξ = 1, . . . , N . Then we formulate the following no response test for
the multiwave case.

Definition 2.3 (no response test, multiwave case). Let G be some test domain.
Choose ε1 > 0 and some constant c0 > 0. For all ϕ ∈ M(G, ε1) calculate the boundary
values v[ϕ]|∂Ω. With the given data f(ξ), ξ = 1, . . . , N , find an approximation

q[α] :=
N∑
ξ=1

αξf(ξ)(2.11)

to v[ϕ]|∂Ω with

‖v[ϕ]|∂Ω − q[α]‖L2(∂Ω) ≤ ε2.(2.12)

Here, we use α = (α1, α2, . . . ) and define Q(ε2, ϕ) as the set of α such that (2.12) is
satisfied. The size of ε2 depends on the number of boundary data which are available.
For N = ∞ the value ε2 can be chosen arbitrarily small. Then, with the functional

I(ϕ, α) :=

N∑
ξ=1

αξ

∫
∂Ω

J(x, ξ)ϕ(x)ds(x),(2.13)
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we calculate

Iε1,ε2(G) := sup
ϕ∈M(ε1),α∈Q(ε2,ϕ)

I(ϕ, α).(2.14)

If Iε1,ε2(G) < c0, we call the domain G positive and we say that we have no response.
Otherwise, G is denoted as negative, since the response is (relatively) large.

Later, we will carry out the convergence analysis for the case where N = ∞.
Then, analogously to the one-dimensional case, we define

I0,0(G) := lim
ε1→0

lim
ε2→0

Iε1,ε2(G).(2.15)

We will show that I0,0(G) is zero if and only if D ⊂ G. If D �⊂ G, we obtain
I0,0(G) = ∞. Then in the multiwave case the no response test will denote exactly
those domains G as positive which contain the unknown scatterer D in its interior.

3. On the extensibility and singular points of a solution to the bound-
ary value problem. Let u be a solution to the boundary value problem (1.1)–(1.5).
If the domain D has analytic boundary, it is well known (see 5.7.1 in [9]) that the
field u can be analytically extended into the interior of D. The convergence of the no
response test is strongly linked to the extensibility of the field u. Thus, for a proper
analysis of the convergence of the no response test we need to study the extensibility
of u into the interior of D.

We would like to define some type of “minimal” set M such that u can be extended
into the exterior Ω \M of M but not into any Ω \N for N ⊂ M , N �= M . However,
due to the possible existence of Riemannian surfaces and the possible nonuniqueness
of this extension, in general, the set M will not be well defined as a single set.

A different idea would be to test for some kind of “singular” points on a Rieman-
nian surface. However, there are a number of different types of “singular points.” One
possible definition would be to consider points to be singular where one of the deriva-
tives of the field u becomes singular. However, even if all derivatives are bounded,
there might not be an analytic extension into the particular point. Further, a point
z might be singular in the sense that one extension of u does have a singular deriva-
tive and there might still be some analytic extension of u into the point z along some
different and complicated path. Here, we have chosen to use some kind of minimal def-
inition. We call a point singular only if there does not exist any analytic continuation
into this point.

Definition 3.1 (singular points of u). Consider an analytic function in Ω \D.
We call a point z ∈ Ω a singular point of the field u if there is no analytic continuation
of the field u into a neighborhood of z.

Remark. The set of singular points might be empty. If it is not empty, it is
a subset of the scattering domain D, since by assumption u is analytic in Ω \ D.
Due to the existence of different analytic extensions on Riemannian surfaces there
might be many singularities of these extended fields in different points of Ω. But in
singular points the field u is singular on any branch of the Riemannian surface or is
not contained in these branches at all.

In this work, we will restrict our attention to the problem of testing extensibility
into the exterior of some admissible test domain G. Then all points into which no
analytic extension exists will be a subset of this test domain; i.e., we obtain some
upper estimate for the set of singular points of the field u.

The rest of this section is used to formulate some preparations. One basic tool
for the investigation of analytic extensions is Taylor’s expansion of the field u.
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Lemma 3.2. We assume that Ae := Ω \A is the open interior of the complement
of some simply connected open set A with boundary of class C2. If u is analytic in
Ae and for some ρ > 0 the set{

aμ(z) := sup|h|=1 ρ
μ |(h·∇)μu(z)|

μ! : μ ∈ N

}
(3.1)

of Taylor coefficients of u is uniformly bounded by a constant C for all z ∈ Ae with
d(z, ∂Ω) > ρ, then u is extensible into an open neighborhood of Ae; i.e., there is a set
A′ with A′ ⊂ A such that u is extensible into A′

e = Ω \A′.
Proof. Consider some boundary point z0. Due to our assumption for some ρ > 0

the modulus of aμ(z) is bounded for z in a neighborhood of z0 by a constant C. Then
the Taylor series

∞∑
μ=0

1

μ!
((x− z) · ∇)μu(z)(3.2)

can be estimated by

∣∣∣ ∞∑
μ=0

1

μ!
((x− z) · ∇)μu(z)

∣∣∣ ≤
∞∑

μ=0

aμ

(
|x− z|

ρ

)μ

.(3.3)

For |x − z| < ρ, the series (3.3) is absolutely convergent. In this case we apply
Lemma 7.2 to see that u can be analytically extended into the ball Bρ(z) of z0. This
is the case for every boundary point z.

At this point, we still might obtain different extensions of u for different boundary
points z0. However, since ∂A is of class C2 we can choose τ > 0 sufficiently small such
that for each two balls Bτ (z1) and Bτ (z2) with z1, z2 ∈ ∂A with Bτ (z1)∩Bτ (z2) �= ∅
the intersection Bτ (z1) ∩ Bτ (z2) ∩ Ae is not empty and thus the extensions into the
simply connected set Bτ (z1) ∩Bτ (z2) are identical.

4. Convergence in the one-wave case. The goal of this section is to prove
the first of our two main theorems—the convergence for the one-wave case.

Theorem 4.1. Let G with G ⊂ Ω be an admissible test domain. We have
I0(G) = 0 if u can be analytically extended into Ω \ G. If u cannot be analytically
extended into Ω \G, then we have Iε(G) = ∞ for all ε > 0 and thus I0(G) = ∞.

Proof. First, we show that if D ⊂ G, i.e., if the true inclusion D is a subset of
the test domain G, then we obtain I0(G) = 0. For D ⊂ G and v[ϕ] defined by (1.6)
we have

|v[ϕ](y)| ≤ ε, y ∈ ∂D ⊂ G.(4.1)

Thus, from (2.4) we obtain

|I(ϕ)| ≤
∣∣∣ ∫

∂D

∂u

∂ν
(y)v[ϕ](y)ds(y)

∣∣∣
≤ ε

∫
∂D

∣∣∣∂u
∂ν

(y)
∣∣∣ds(y)

≤ εc(4.2)

with some constant c. Passing to the limit ε → 0 we obtain I0(G) = 0.



ON THE CONVERGENCE OF THE NO RESPONSE TEST 1815

In the next step, we assume that the field u can be analytically extended up to
R

m \G; i.e., u and ∂u
∂ν are well defined and continuous on ∂G (cf. Figure 4.1). If we

are not in the first case, then

D∗ := D ∩ (Rm \G)(4.3)

is not empty. We define

Γ := ∂(G ∩D).

Γ

D

G

Fig. 4.1. Domains D and G. The arrows indicate how the integration over ∂D\G is transformed
into an integration over Γ.

In this case we can use u|∂D = 0 and apply Green’s second theorem to v and u
in D∗ to calculate ∫

∂D

∂u

∂ν
(y)v[ϕ](y)ds(y)

=

∫
∂D

(
∂u

∂ν
(y)v[ϕ](y) − ∂v[ϕ]

∂ν
(y)u(y)

)
ds(y)

=

∫
Γ

(
∂u

∂ν
(y)v[ϕ](y) − ∂v[ϕ]

∂ν
(y)u(y)

)
ds(y).(4.4)

Since u and ∂u
∂ν are well defined and bounded on Γ, and since

‖v[ϕ]‖C1(G) → 0, ε → 0,(4.5)

the integral in (4.4) tends to zero for ε → 0. This proves that for u extensible into
Ω \G the no response test yields I0(G) = 0.

In the third and final step we will show that if u cannot be analytically extended
into Ω \G, we have I0(G) = ∞.

First, if u cannot be analytically extended into Ω \ G, then there must be some
maximal parameter λ0 ∈ (0, 1) such that u can be analytically extended into Ω \Gλ

for all λ < λ0, but not into any Ω\Gλ for any λ > λ0. Then, for all ρ > 0, the set (3.1)
cannot be uniformly bounded for all z ∈ Ω\Gλ0 , since in this case we could construct
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an analytic extension of u into the interior of Gλ0
and λ0 would not be maximal.

Thus, given some ρ > 0 there must be a point z0 ∈ Ω \Gλ0 (with d(z0, ∂Ω) > ρ) such
that (3.1) is not uniformly bounded in any neighborhood of z0. The point z0 has a
positive distance

ρ0 := inf
y∈G

|y − z0|(4.6)

to the set G. Given h ∈ R
m with |h| = 1 we define

β(z, μ) := sup
y∈G

{
(h · ∇z)

μΦ(y, z), ∇y(h · ∇z)
μΦ(y, z)

}
(4.7)

for z in a neighborhood of z0 and μ ∈ N. Then the C1(G)-norm of the function

Ψ(·, z) :=
ε

4β(z, μ)
(h · ∇z)

μΦ(·, z)(4.8)

is bounded by ε/2 for z in a neighborhood V of z0. For later use we assume that
V ⊂ Bρ0/2(z0).

G

z

D

γ

γ

M[z]

++
z0

Fig. 4.2. Domains D, G, and M [z]. The arrows indicate how the integration over ∂D \ M [z]
is transformed into an integration over γ.

For z ∈ V \ Gλ0 we can find a domain M [z] with (1) boundary of class C2 such
that (2) the homogeneous interior Dirichlet problem for M [z] has only the trivial
solution, (3) u can be analytically extended into the exterior of M [z], (4) z �∈ M [z],
and (5) M [z] ⊃ G (cf. Figure 4.2). Then the extension of u into the exterior of M [z]
implies that u|∂M [z] and ∂u

∂ν |∂M [z] are well defined.

Now, on M [z] we approximate the function Ψ(·, z) by a sequence vn[z] := v[ϕn]
of single-layer potentials with density ϕn ∈ L2(∂Ω) as defined in (1.6), i.e., we have

‖vn[z] − Ψ(·, z)‖C1(M [z]) ≤
1

n
.(4.9)
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Since G ⊂ M [z], we obtain the estimate

‖vn[z]‖C1(G) ≤ ‖vn[z] − Ψ(·, z)‖C1(G) + ‖Ψ(·, z)‖C1(G)

≤ 1

n
+

ε

2
(4.10)

for z ∈ V \N(u). For n sufficiently large, we have ‖vn[z]‖C1(G) ≤ ε. In this case we
derive from Green’s second theorem∫

∂D

∂u

∂ν
(y)vn[z](y)ds(y)

=

∫
∂D

(
∂u

∂ν
(y)vn[z](y) − ∂vn[z](y)

∂ν
u(y)

)
ds(y)

=

∫
γ

(
∂u

∂ν
(y)vn[z](y) − ∂vn[z](y)

∂ν
u(y)

)
ds(y),(4.11)

where we define γ := ∂(M [z] ∩ D) and where the normal on γ is oriented into the
exterior of the closed curve. Since we have γ ⊂ M [z] in the limit n → ∞ we obtain
the convergence of ∫

∂Ω

J(x)ϕn(x)ds(x)

=

∫
∂D

∂u

∂ν
(y)vn[z](y)ds(y)

=

∫
γ

{
∂u

∂ν
(y)vn[z](y) − ∂vn[z](y)

∂ν
u(y)

}
ds(y)

towards the term∫
γ

{
∂u

∂ν
(y)Ψ(y, z) − ∂Ψ(y, z)

∂ν(y)
u(y)

}
ds(y)

=
ε

4β(z, μ)

∫
γ

{
∂u

∂ν
(y)(h · ∇z)

μΦ(y, z)(4.12)

− ∂

∂ν(y)
((h · ∇z)

μΦ(y, z))u(y)

}
ds(y)

=
ε

4β(z, μ)
(h · ∇z)

μu(z) − ε

4β(z, μ)
(h · ∇z)

μuext(z)(4.13)

with

uext(z) :=

∫
∂Ω

{
∂u

∂ν
(y)Φ(y, z) − ∂Φ(y, z)

∂ν(y)
u(y)

}
ds(y).(4.14)

As shown above for any fixed ρ the μth derivatives of u multiplied by ρ|μ|/μ! cannot
be uniformly bounded for all μ ∈ N in the neighborhood V of z0, i.e.,

∀C > 0 ∃μ ∈ N and z ∈ V \Gλ0
such that

∣∣∣ρμ
μ!

· (h · ∇z0
)μu(z)

∣∣∣ ≥ C.(4.15)

For an analytic function u(y) in a set V we know that for each z ∈ V there is a
neighborhood Bρ(z) such that

∞∑
μ=0

((y − z) · ∇z)
μ

μ!
f(z)(4.16)
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is absolutely convergent towards f on Bρ(z). This yields

∣∣∣(h · ∇z)
μf(z)

∣∣∣ ≤ c
μ!

|y − z|μ(4.17)

with h := (y−z)
|y−z| for some constant c. So due to the analyticity of the fundamental

solution in z uniformly for y ∈ G, the constant β = β(z, μ) is seen to be bounded by

|β(z, μ)| ≤ c
μ!

ρμ1
, z ∈ V \Gλ0 , μ ≥ 1,(4.18)

with some constants ρ1 and c. Further, we remark that the exterior term (4.14) is
analytic, and for ρ1 sufficiently small the second term of (4.13) can be estimated by a
constant c̃. Altogether, we can find sequences (μl)l∈N ⊂ N, (zl)l∈N ⊂ V and densities
ϕl ∈ L2(∂Ω), l ∈ N, which satisfy the impulse size condition (2.5) such that the
indicator functional I(ϕn) can be estimated from below by

I(ϕl) =

∫
∂D

∂u

∂ν
(y)v[ϕl](y)ds(y)

≥ 1

c

∣∣∣ ε
4

ρμl

1

μl!
(h · ∇z)

μlu(zl)
∣∣∣− c̃

→ ∞, l → ∞.(4.19)

Thus, Iε(G) defined in (2.7) is unbounded and we have shown

Iε(G) = ∞, I0(G) = ∞,(4.20)

which completes the proof of the theorem.

5. Decompositions of the field u into u = w + v. This section contains
several preparations which are needed to prove the convergence of the multiwave
version of the no response test in the following section.

I. For the analysis of the multiwave case of the no response test we need the
following decomposition of the field u into the sum of an incident field v and some
scattered field w. Given the boundary data f ∈ C(∂Ω) we define v ∈ C2(Ω) ∩ C(Ω)
to be the solution of the interior Dirichlet problem to the Helmholtz equation with
boundary values f . Now, given a solution u to the boundary value problem (1.1)–
(1.5), i.e., u|∂Ω = f and u|∂D = 0, we define

w := u− v(5.1)

with the function v defined by its Dirichlet boundary data f := u|∂Ω. The function v
is considered to be some type of incident field, and the function w satisfies

w|∂Ω = 0, w|∂D = −v|∂D(5.2)

and is called a scattered field.
II. Let G be some test domain with D ⊂ G and z ∈ Ω\G and consider a sequence

(vn), n ∈ N, of single-layer potentials,

vn := v[ϕn],(5.3)



ON THE CONVERGENCE OF THE NO RESPONSE TEST 1819

with boundary data fn := v[ϕn], such that

‖v[ϕn] − βΦ(·, z)‖C1(G) → 0, n → ∞.(5.4)

In particular, we obtain the convergence

‖v[ϕn] − βΦ(·, z)‖C1(∂D) → 0, n → ∞.(5.5)

Let un be the solution of (1.1)–(1.5) with boundary data f̃n such that

‖f̃n − fn‖L2(∂Ω) → 0(5.6)

for n → ∞. We define

wn := un − vn.(5.7)

Then we have

wn|∂Ω → 0, n → ∞ in L2(∂Ω),(5.8)

wn|∂D → −βΦ(·, z), n → ∞, in C(∂D),(5.9)

where the second equation is obtained via

‖wn + βΦ(·, z)‖C(∂D) ≤ ‖un‖C(∂D) + ‖ − vn + βΦ(·, z)‖C(∂D)

≤ ‖vn − βΦ(·, z)‖C(∂D).(5.10)

From (5.8) and (5.9) by the unique solvability of the interior Dirichlet problem in
Ω \D we obtain the convergence of wn towards some function w with

w|∂Ω = 0,(5.11)

w|∂D = −βΦ(·, z).(5.12)

We will denote this function by w(·, z) to indicate the dependence on the source
point z.

III. As a preparation for the next section now consider the response functional
(2.13) for the multiwave case. Here, we construct αξ,n in such a way that∥∥∥∥∑

ξ

αξ,nu(·, ξ) − fn

∥∥∥∥
L2(∂Ω)

→ 0, n → ∞,(5.13)

for the boundary data fn defined via (5.4). In this case using (2.4) we have

∑
ξ

αξ,n

∫
∂Ω

J(x, ξ)ϕn(x)ds(x)

=

∫
∂D

vn(y)
∑
ξ

αξ,n
∂u(y, ξ)

∂ν
ds(y)

=

∫
∂D

∑
ξ

αξ,n

⎧⎨
⎩vn(y)

∂u(y, ξ)

∂ν
− ∂vn(y)

∂ν
u(y, ξ)︸ ︷︷ ︸

=0

⎫⎬
⎭ ds(y).(5.14)
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Trivial identity yields∫
∂D

{
vn(y)

∂vn(y)

∂ν
− ∂vn(y)

∂ν
vn(y)

}
ds(y) = 0.(5.15)

We subtract (5.15) from (5.14) to obtain

∑
ξ

αξ,n

∫
∂Ω

J(x, ξ)ϕn(x)ds(x)(5.16)

=

∫
∂D

⎧⎨
⎩vn(y)

⎛
⎝∑

ξ

αξ,n
∂u(y, ξ)

∂ν
− ∂vn(y)

∂ν

⎞
⎠

− ∂vn(y)

∂ν

⎛
⎝∑

ξ

αξ,nu(y, ξ) − vn(y)

⎞
⎠
⎫⎬
⎭ ds(y).

We define

un :=
∑
ξ

αξ,nu(·, ξ), n = 1, 2, 3, . . . .(5.17)

By (5.13) this function un with f̃n := un|∂Ω satisfies the condition (5.6) with vn
defined by (5.3)–(5.4). Then

wn = un − vn =

N∑
ξ=1

αξ,nu(·, ξ) − vn(5.18)

converges towards w(·) on ∂D, which is the scattered field for an incident point source
with source point z. We remark that the function un is zero on ∂D and vn is analytic
and converges in C1(∂D) towards βΦ(·, z). By standard integral equation methods
we obtain convergence of the normal derivatives on ∂D; i.e., the term

∂wn

∂ν
=

∂

∂ν

(
un − vn

)
=

N∑
ξ=1

αξ,n
∂u(y, ξ)

∂ν
− ∂vn(y)

∂ν
(5.19)

converges towards ∂w
∂ν on ∂D. Thus, for the functional (5.16) we have the convergence

N∑
ξ=1

αξ,n

∫
∂Ω

J(x, ξ)ϕn(x)ds(x)

→ β

∫
∂D

{
Φ(y, z)

∂w(y, z)

∂ν(y)
− ∂Φ(y, z)

∂ν(y)
w(y, z)

}
ds(y)(5.20)

for n → ∞.

6. Convergence in the multiwave case. We are now prepared to prove the
second of our two main theorems.

Theorem 6.1. Consider the multiwave case of the no response test where the
condition (2.9) is satisfied. For some test domain G we obtain I0,0(G) = 0 if D ⊂ G
and I0,0(G) = ∞ if D �⊂ G. In particular, for D �⊂ G we have Iε1,ε2(G) = ∞ for all
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ε1, ε2 > 0. This proves in the limit ε1, ε2 → 0 the convergence of the no response test
for the multiwave case towards the true inclusion D.

Proof. First, consider the case D ⊂ G. In this case, as shown in (5.16) for
ϕ ∈ M(ε1) and α ∈ Q(ε2, ϕ), we obtain

N∑
ξ=1

αξ

∫
∂Ω

J(x, ξ)ϕ(x)ds(x)(6.1)

=

∫
∂D

⎧⎨
⎩v[ϕ](y)

⎛
⎝∑

ξ

αξ
∂u(y, ξ)

∂ν
− ∂v[ϕ](y)

∂ν

⎞
⎠

− ∂v[ϕ](y)

∂ν

⎛
⎝∑

ξ

αξu(y, ξ) − v[ϕ](y)

⎞
⎠
⎫⎬
⎭ ds(y).

For the multiwave version of the no response test according to (2.11) and (2.12) we
have chosen the coefficients αξ such that the L2-norm ‖w[ϕ]‖L2(∂Ω) of the scattered
field

w[ϕ] :=

N∑
ξ=1

αξu(·, ξ) − v[ϕ](6.2)

is bounded by ε2. By construction of the set M in (2.5) of Definition 2.1 and the
Dirichlet boundary condition for u we further have

‖w[ϕ]‖C(∂D) ≤ ε1, ‖v[ϕ]‖C(∂D) ≤ ε1,

∥∥∥∥∂v[ϕ]

∂ν

∥∥∥∥
C(∂D)

≤ ε1.(6.3)

By the continuity of the interior Dirichlet-to-Neumann map on ∂D in combination
with classical regularity results for the normal derivative on a C2-boundary ∂D, we
obtain the estimate∥∥∥∥∂w[ϕ]

∂ν

∥∥∥∥ =

∥∥∥∥∑
ξ

αξ
∂u(y, ξ)

∂ν
− ∂v[ϕ](y)

∂ν

∥∥∥∥
C(∂D)

≤ c1 · (ε1 + ε2)(6.4)

with some constant c1. Thus, the functional (6.1) is bounded by

c · ε1 · (ε1 + ε2)(6.5)

with some constant c. We have proven that the functional Iε1,ε2(G) of the multiwave
no response test (defined in (2.14)) is bounded. In the limit ε1, ε2 → 0 we obtain
convergence towards zero. This yields

I0,0(G) = 0.(6.6)

Next, we assume that D �⊂ G. Then there is a point z0 ∈ ∂D \G located in the
component of Ω \ (D ∪G) which is connected to ∂Ω and which satisfies

ρ := inf
y∈G

|y − z0| > 0.(6.7)

In this case for z ∈ Bρ/2(z0)∩(Ω\D) we use the construction worked out in section 5,
parts II and III, but now for some test domain M [z] which satisfies the conditions (1)
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to (4) of section 4 and (5) D ∪G ⊂ M [z]. This construction generates a sequence of
incident fields vn which approximate βΦ(·, z) in C1(D ∪ G). The scattered field wn

converges towards the function defined in (5.11) and (5.12). Thus, using (5.20) we
obtain ∣∣∣∣

N∑
ξ=1

αξ,n

∫
∂Ω

J(x, ξ)ϕn(x)ds(x)

∣∣∣∣
→ β

∣∣∣∣
∫
∂D

{
Φ(y, z)

∂w(y, z)

∂ν(y)
− ∂Φ(y, z)

∂ν(y)
w(y, z)

}
ds(y)

∣∣∣∣
= β

∣∣∣∣w(z, z) −
∫
∂Ω

Φ(y, z)
∂w(y, z)

∂ν(y)
ds(y)

∣∣∣∣.(6.8)

We remark that by Theorem 7.1 w(z, z) is unbounded for z → z0 ∈ ∂D, but ∂w(·,z)
∂ν is

bounded on ∂Ω. We estimate the integral for z ∈ Bρ/2(z0) by some constant c̃. For
sufficiently large n this yields

∣∣∣∣
N∑
ξ=1

αξ,n

∫
∂Ω

J(x, ξ)ϕn(x)ds(x)

∣∣∣∣
≥ β

2

( ∣∣∣w(z, z)
∣∣∣− c̃

)
→ ∞, z → z0.(6.9)

Thus, we have constructed a sequence ϕn ∈ M(ε1) and αn ∈ Q(ε2, ϕn) such that
I(ϕn, αn) defined in (2.13) is unbounded. For the indicator function (2.14) this proves

Iε1,ε2(G) = ∞(6.10)

for all ε1, ε2 > 0 and thus I0,0(G) = ∞. Hence, the proof is complete.

7. Appendix. Here, our first goal is to analyze the behavior of a solution to the
boundary value problem (5.11), (5.12) in the limit z → ∂D.

Theorem 7.1. The solution w(·, z) of the Helmholtz equation in Ω \ D with
boundary values given by (5.11), (5.12) has the behavior

|w(z, z)| → ∞, z → ∂D.(7.1)

Let M be a domain with M ⊂ Ω \D. Then we have

∥∥∥∂w(·, z)
∂ν

∥∥∥
C(∂Ω)

≤ C(7.2)

uniformly for z ∈ M with some constant C.
Proof. The proof is analogous to the case of obstacle scattering as worked out in

detail in [12, Theorem 2.1.15 and Lemma 2.1.10].
Second, for the convenience of the reader we add some material about Taylor’s

series and analyticity of multidimensional functions.
Lemma 7.2. Consider the directional Taylor expansion

u(x) =
∞∑

μ=0

1

μ!
((x− z) · ∇)μu(z).(7.3)
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If, for |x − z| < ρ, the series (3.3) is absolutely convergent, then the function u is
analytic in Bρ(z).

Proof. First, recall the general form of the multidimensional Taylor series of u,

u(x) =

∞∑
ξ=0

bξ(x− z)ξ,(7.4)

with the multi-index ξ = (ξ1, . . . , ξn), the coefficients

bξ =
1

ξ1! · · · ξn!
· ∂

ξ1+···+ξnu(z)

∂zξ11 · · · ∂zξnn
,(7.5)

and the multipower and multisum

zξ = zξ11 · . . . · zξnn ,

m∑
ξ=0

aξ :=

m1∑
ξ1=0

· · ·
mn∑
ξn=0

a(ξ1,...,ξn)(7.6)

for m = (m1, . . . ,mn). The form (7.4) is also the general local representation of an
analytic function. We employ the standard formula(

μ
k − 1

)
+

(
μ
k

)
=

μ!

(k − 1)!(μ− k + 1)!
+

μ!

k!(μ− k)!

=
μ!

k!(μ− k + 1)!
{k + (μ− k + 1)} =

μ!

k!(μ− k + 1)!
(μ + 1)

=
(μ + 1)!

k!(μ + 1 − k)!
=

(
μ + 1
k

)
.(7.7)

In the case of absolute convergence we are able to reorder the terms in (7.3) via the
binomial formula, which in the two-dimensional case is given by

(
(x1 − z1)∂1 + (x2 − z2)∂2

)μ

=

μ∑
k=0

(
μ
k

)
(x1 − z1)

k(x2 − z2)
μ−k∂k

1∂
μ−k
2 .(7.8)

We obtain

∞∑
μ=0

1

μ!
((x− z) · ∇)μu(z)

=

∞∑
μ=0

1

μ!

μ∑
k=0

(
μ
k

)
(x1 − z1)

k(x2 − z2)
μ−k∂k

1∂
μ−k
2 u(z)

=

∞∑
ξ1=0

∞∑
ξ2=0

1

ξ1!ξ2!
(x1 − z1)

ξ1(x2 − z2)
ξ2∂ξ1

1 ∂ξ2
2 u(z)

=

∞∑
ξ=0

bξ(x− z)ξ,(7.9)

where we replaced k = ξ1 and μ − k = ξ2 and observe that when μ = 0 to ∞ and
k = 0 to μ the variables ξ1 and ξ2 run through all numbers between 0 and ∞ such
that each point (ξ1, ξ2) ∈ N0 × N0 is hit once. This proves analyticity of the function
u. A proof for higher n is carried out analogously.



1824 ROLAND POTTHAST

Acknowledgments. For the completion of the proofs, discussions with Prof.
Dr. Gen Nakamura and Dr. Mourad Sini, Hokkaido University, Japan, have been very
important. The collaboration and interaction was a pleasure. Further, I would like to
thank Prof. Dr. Simon Chandler-Wilde, Reading University, UK, and Prof. Dr. Rainer
Kreß, University of Göttingen, for helpful discussions and remarks and Dr. Klaus Er-
hard and Dipl.-Phys. Jochen Schulz, Göttingen, for carefully reading the manuscript.

REFERENCES

[1] J. Cheng, J. Liu, and G. Nakamura, The numerical realization of the probe method for
the inverse scattering problems from the near-field data, Inverse Problems, 21 (2005), pp.
839–855.

[2] K. Erhard and R. Potthast, A numerical study of the probe method, SIAM J. Sci. Comput.,
28 (2006), pp. 1597–1612.

[3] K. Erhard and R. Potthast, The point source method for reconstructing an inclusion from
boundary measurements in electrical impedance tomography and acoustic scattering, In-
verse Problems, 19 (2003), pp. 1139–1157.

[4] N. Honda, G. Nakamura, M. Sini, and R. Potthast, The no-response approach and its
relation to non-iterative methods for the inverse scattering, Ann. Mat. Pura Appl. (4), to
appear.

[5] M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements, Comm.
Partial Differential Equations, 23 (1998), pp. 1459–1474.

[6] V. Isakov, On uniqueness in the inverse transmission scattering problem, Comm. Partial
Differential Equations, 15 (1990), pp. 1565–1587.

[7] A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering, Inverse Problems, 9
(1993), pp. 285–299.

[8] D. R. Luke and R. Potthast, The no response test—a sampling method for inverse scattering
problems, SIAM J. Appl. Math., 63 (2003), pp. 1292–1312.

[9] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss.
130, Springer-Verlag, New York, 1966.

[10] R. Potthast, A fast new method to solve inverse scattering problems, Inverse Problems, 12
(1996), pp. 731–742.

[11] R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using sin-
gular sources, J. Comput. Appl. Math., 114 (2000), pp. 247–274.

[12] R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory, Chapman &
Hall/CRC Res. Notes Math. 427, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[13] R. Potthast, J. Sylvester, and S. Kusiak, A “range test” for determining scatterers with
unknown physical properties, Inverse Problems, 19 (2003), pp. 533–547.



SIAM J. MATH. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 38, No. 6, pp. 1825–1846

GLOBAL WEAK SOLUTIONS TO EQUATIONS OF COMPRESSIBLE
MISCIBLE FLOWS IN POROUS MEDIA∗

Y. AMIRAT† AND V. SHELUKHIN‡

Abstract. We study the one-dimensional equations governing compressible flows of m miscible
components in a porous medium. The equations are reduced to a quasi-linear parabolic system
for the discharge function P and the concentrations ci. The equations of this system are strongly
coupled since the parabolic equation for ci contains both the second derivative cixx and the second
derivative Pxx. We prove global weak solvability of an initial boundary-value problem both in the
Eulerian and Lagrangian formulations.
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1. Introduction. We address the question of global solvability of the one-
dimensional equations which govern flows of m miscible components in porous media.
For the reader’s convenience, we restate the basic three-dimensional model [3], [10],
[17].

The seepage velocity u(x, t) obeys the Darcy law

u = −k

μ
(∇p− ρg∇z).(1.1)

Here, p is the mixture pressure, ρ is the mixture density, z is the vertical component
of the space-point vector x (we assume that z grows in the direction of the gravitation
acceleration vector g), μ is the viscosity, and k is the permeability.

When the fluid is slightly compressible, pressure and density are related by the
state equation

dρ

ρ
= νdp,

where ν is the compressibility constant. Given some reference conditions, one can
write the state equation as

ρ = ρr exp(ν(p− pr)), pr = const, ρr = const > 0,

or equivalently

p =
1

ν
ln

ρ

κ
with κ = ρre

−νpr .(1.2)
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The mixture mass conservation law is written as

∂Φρ

∂t
+ div(ρu) = 0, 0 ≤ Φ ≤ 1,(1.3)

where Φ is the porosity, the fraction of volume occupied by the fluid.
If chemical reactions do not occur, the change of volume concentration ci of the

ith component of the fluid mixture is described by the equation

∂Φρci
∂t

+ divqi = 0, (qi)j ≡ ρciuj − ρDjk
∂ci
∂xk

, i = 1, . . . ,m, j = 1, 2, 3.(1.4)

The diffusion-dispersion tensor D is given by the formula

Dij = Φdmδij + Φ|u|
(
de

uiuj

|u|2 + dt

(
1 − uiuj

|u|2

))
,

where dm is the diffusion, and de and dt are the dispersion coefficients.
Equations (1.1)–(1.3) cannot be solved independently of (1.4) because of the con-

stitutive law

μ = μ(c1, c2, . . . , cm).(1.5)

The parameters k, ν,Φ, dm, de, dt are normally assumed to be positive constants.
Due to the definition of ci, equations (1.4) are coupled by the restrictions

0 ≤ ci,

m∑
1

cj = 1.(1.6)

Note that because of equality (1.6), the equation for cm in (1.4) is a consequence of
(1.3) and of the first m− 1 equations in (1.4).

Equations (1.1)–(1.6) have many applications and serve as a basis for the com-
puter modeling of petroleum reservoir flows, underground contamination problems,
etc. [5, 6]. As for the incompressible flows, we refer the reader to the results in [4],
[8], [7], [15].

One-dimensional vertical flows equations in the domain |x| < 1 reduce to the
system

(Φρ)t + (ρu)x = 0, u = −λ(px − gρ), λ ≡ k

μ
, p =

1

ν
ln

ρ

κ
,(1.7)

(Φρci)t + (ρciu)x = (ρD(u)cix)x, D(u) ≡ Φ(dm + dp|u|), 1 ≤ i ≤ m− 1,(1.8)

with the restrictions

0 ≤ ci,

m−1∑
1

cj ≤ 1.(1.9)

Global existence of this system was studied in [2] under the Douglas–Roberts [5]
assumption that the term ρxciu in each equation of system (1.8) is negligible and the
derivative (ρciu)x can be substituted with the sum ρcixu+ρciux. Here, we perform the
analysis of system (1.7)–(1.9) without any smallness hypothesis. All the mathematical
difficulties to overcome stem from the fact that the vector

v := (P, c1, c2, . . . , cm−1)
T ,
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with P standing for the fluid discharge, solves the quasi-linear parabolic system (2.1)–
(2.2) in the form

vt = A(v,vx)vxx + f [x,v,vx],(1.10)

with a triangular m ×m-matrix A and with f being a nonlocal term containing the
integral

∫ x

−1
exp(νP (y, t))dy. Triangularity means that the parabolic equation for

P does not contain the second derivative ∂xxci, but the parabolic equation for ci
contains both the second derivatives ∂xxci and ∂xxP . For system (1.10), a global
existence theory is not yet developed. The theory of Ladyzhenskaya, Solonnikov, and
Ural’ceva [13] can be applied to system (1.10) provided that A is diagonal and A11 =
A22 = · · · = Amm. The results of Amann [1] concern the triangular matrix A, but
they are valid under the assumption that some a priori estimates hold. Interestingly,
triangular parabolic systems

vt = (B(v)vx)x + (f(v))x(1.11)

arise also in the theory of three-phase capillary immiscible flows in porous media [9].
But the results obtained for system (1.11) are not applicable here, since the matrix
B does not depend on vx.

We study system (1.7)–(1.9) in the domain

Q = Ω × (0, T ), Ω = {x : |x| < 1}.
The initial and boundary-value conditions are

p|t=0 = p0, ci|t=0 = c0i ,(1.12)

u||x|=1 = 0, ∂xci||x|=1 = 0, 1 ≤ i ≤ m− 1.(1.13)

We denote ρ0 = ρr exp(ν(p0 − pr)).
We assume that the mobility function λ(c), c := (c1, c2, . . . , cm−1)

T , is defined
not only in the domain (1.9) but in the whole space R

m−1 and

λ ∈ C2(Rm−1), 0 < λ0 ≤ λ(c) ≤ λ−1
0 .(1.14)

In what follows, we use the Sobolev spaces W k,p(Ω), W k,l
p (Q), the Orlicz and

Sobolev–Orlicz spaces LM (Ω), W 1
M (Ω) (associated with an admissible convex func-

tion M), and the Hölder spaces Hk+α,(k+α)/2(Q̄) [12], [11], [13]; the corresponding
definitions will be restated below.

We define a weak solution (u, p, ρ, c) of problem (1.7)–(1.9), (1.12), (1.13) as
follows:

(i) u ∈ L∞(0, T ;LM (Ω)) ∩ L3/2(0, T ;W 1,3/2(Ω)) ∩ L3(Q);

p, ρ ∈ L∞(0, T ;W 1
M (Ω)) ∩ L3/2(0, T ;W 2,3/2(Ω))

∩L3(0, T ;W 1,3(Ω)) ∩ L∞(Q); pt, ρt ∈ L3/2(Q);

c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω))

with M(s) = |s| ln(1 + |s|) − |s| + ln(1 + |s|);
(ii) the equations

(Φρ)t + (ρu)x = 0, u = −λ(c)(px − gρ), p =
1

ν
ln

ρ

κ
,

hold a.e. in Q;

(iii) equations (1.8) hold weakly in the following sense:∫∫
Q̄

ρc(Φψt + uψx) − ρD(u)cxψx dxdt = −
∫

Ω

Φρ0(x) c0(x)ψ(x, 0)dx

for any ψ ∈ C1(Q̄) such that ψ(x, T ) = 0.
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We formulate the main result.
Theorem 1.1. Assume that p0 ∈ W 2,2(Ω), c0 ∈ L2(Ω) and that the function

λ(c) satisfies restrictions (1.14). Then, problem (1.7)–(1.9), (1.12), (1.13) has a weak
solution such that infQ ρ > 0.

Observe that restrictions (1.9) are not included in the above definition. To justify
the notion of weak solution we establish the following claim.

Theorem 1.2. If the weak solution (u, p, ρ, c) is regular enough, it satisfies
restrictions (1.9), provided that they are valid for the initial data c0.

We comment on the proofs. The first step is the reduction of the basic equations
(1.7)–(1.8) to the parabolic system

ΦPt − λ(c)|Px|2 =

(
λ(c)

ν
Px

)
x,(1.15)

Φct − λ(c)Pxcx

= Φ[(dm + dp|λ(c)Px|)cx]x + Φ
(
dm + dp|λ(c)Px|

)
cxρxρ

−1,(1.16)

where P is the discharge function, related to the velocity u by the Darcy law u =
−λ(c)Px; the density ρ is given by the representation formula

ρ(x, t) = κeνP (x,t)
/(

1 − νκg

∫ x

−1

eνP (y,t)dy
)
.

This reduction has a twofold meaning. On the one hand, it enables us to derive a
number of a priori estimates like the maximum principles for P and ci. Particularly,
the claim of Theorem 1.2 follows immediately from (1.16). On the other hand, one
can see that the basic equations are as difficult as the strongly coupled parabolic
system (1.15)–(1.16), with (1.16) for c containing both the second derivative cxx and
the second derivative Pxx. Moreover, it becomes clear that it is impossible to obtain
a regular solution without an a priori estimate

‖u‖C0(Q)

?
≤ const(1.17)

according to the existing theory of parabolic equations (see, for a example, [13]).
The a priori estimates obtained are those which correspond to item (i) of the

definition of weak solution. They do not guarantee the bound (1.17); this is why our
results concern only the weak solutions.

Starting from system (1.15)–(1.16), we construct approximate solutions and study
their compactness.

As follows from a priori estimates, the last term in (1.16) belongs to only L1(Q).
Thus, one cannot substitute this equation by Galerkin approximation equations. In
this sense, (1.8) is better. But there is an obstacle in the study of the system

ΦPt − λ(c)|Px|2 =

(
λ(c)

ν
Px

)
x, (Φρc)t + (ρcu)x = (ρD(u)cx)x.(1.18)

Whatever approximation (Pn, cn), the functions cn should converge a.e. in Q in
order to pass to the limit in the equation un = −λ(cn)Pnx. With the estimate
‖cn‖L2(0,T ;W 1,2(Ω)) ≤ b at hand, one could prove the convergence of cn a.e. in Q by
the Aubin–Lions compactness theorem [14] if there were an estimate of cnt in some
weak norm. From (1.8), one can obtain such an estimate for the time derivative



COMPRESSIBLE MISCIBLE FLOWS IN POROUS MEDIA 1829

(Φρncn)t, but not for the time derivative cnt. Moreover, the presence of the density
ρ makes (1.8) a degenerate parabolic equation for c, and the problem of existence of
Galerkin approximations also becomes more complicated.

To avoid these technical difficulties, we propose another approach. Its main
ingredient is the passage to the Lagrangian variables (x, t) → (ξ, t) by the formulas
(2.6) and (2.7) below. In the new variables, system (1.18) reads

νPt = Φρ(λ(c)ρPξ)ξ, ct = Φ(ρ2Dcξ)ξ, ρ = κeνP+νg(1+ξ)/Φ.(1.19)

We define approximate solutions (Pn(ξ, t), cn(ξ, t)), by the semi-Galerkin method, in
the sense that Pn and cn solve the first equation in (1.19) exactly and solve the second
equation approximately (see section 4).

It is an advantage of system (1.19) that Pn and cn enjoy the same a priori
estimates (except (1.9)) as the solution (P (ξ, t), c(ξ, t)) itself, including the estimates
for the time derivatives of Pn and cn. One more advantage is the straightforward
estimate infQ ρ > 0.

Thus, we first prove global solvability of system (1.19) (Theorem 5.1), equipped
with the corresponding initial and boundary conditions. Then, the same result for
system (1.18) (Theorem 5.2) is obtained by the inverse change of variables (ξ, t) →
(x, t). Theorem 1.1 is an easy consequence of Theorem 5.2.

Though any regular solution of (1.19) satisfies the restrictions (1.9), it is not true
for the approximate concentrations cn since they do not exactly solve the second
equation in (1.19). Due to the technique developed in [16], there is a possibility of
deriving properties (1.9) for the weak solutions using only the weak formulation (see
item (iii) in the definition of weak solution). But to apply this technique one needs
estimate (1.17). Thus, the validity of properties (1.9) for the weak solution is an open
problem.

2. Different settings of the problem. First, we show that the basic flow
equations can be formulated as a quasi-linear parabolic system. We introduce the
fluid discharge function P as follows:

P := p− g(1 + ξ)

Φ
, ξ(x, t) := Φ

∫ x

−1

ρ(y, t)dy − 1.

Here, ξ is the mass Lagrange variable. For simplicity we assume that

Φ

∫ 1

−1

ρ0(x)dx = 2.

Due to the mass conservation law and the boundary condition u||x|=1 = 0, we have

Φ

∫ 1

−1

ρ(x, t)dx = 2.

Hence, ξ(·, t) maps Ω onto itself, and ξ(±1, t) = ±1.
By (1.7)–(1.8) and the formulas

u = −λPx, ρx = νρpx, px = Px + gρ, pt = Pt + Φ−1g λρPx,

one can verify that P and c solve the parabolic system

ΦPt − λ(c)P 2
x =

(
λ(c)

ν
Px

)
x,(2.1)

Φct + ucx = (D(u)cx)x + D(u)cxρxρ
−1,(2.2)
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with u, ρ, and D given by the representation formulas

u = −λ(c)Px, ρ(x, t) =
κeνP (x,t)

1 − νκg
∫ x

−1
eνP (y,t)dy

, D = Φ(dm + dp|u|).(2.3)

The boundary and initial conditions are

Px||x|=1 = 0, cx||x|=1 = 0,

P |t=0 = p0 − g

∫ x

−1

ρ0(y)dy, c|t=0 = c0(x).(2.4)

All the formulas (2.1)–(2.4) can be obtained by simple calculations. We comment only
on the derivation of the representation formula for the density which is the second
one in (2.3). Since ξx = Φρ, one can write the definition of P as

gκνeνP = νgρe−νg(ξ+1)/Φ = −e−νg/Φ ∂

∂x
e−νgξ/Φ.(2.5)

Then we integrate (2.5) with respect to the x variable to obtain

1 − gκν

∫ x

−1

eνP (y,t)dy = e−νg(ξ+1)/Φ.

Now the representation formula for density results from this relation and the first
equality in (2.5).

In what follows we use a Lagrange formulation of the problem. The change of
variables (x, t) → (ξ, t) maps the cylinder Q = Ω × (0, T ) onto itself and

ξx = Φρ, ξt = −ρu, ξ|x=±1 = ±1.(2.6)

Observe that the Jacobian of the transformation is equal to Φρ. The inverse trans-
formation (ξ, t) → (x, t) satisfies the equalities

Φρxξ = 1, Φxt = u, x|ξ=±1 = ±1.(2.7)

Let f̃(ξ, t) stand for the transformation of a given function f(x, t):

f̃(ξ, t) = f(x(ξ, t), t).

By formulas (2.6) and (2.7), we have

f̃t = ft + ufx/Φ, f̃ξ =
fx
ρΦ

, x(ξ, t) =

∫ ξ

−1

1

ρ̃(y, t)Φ
dy − 1.

Now, omitting “˜” one can write the flow equations in the Lagrange variables as

(ρ−1)t = uξ, u = −Φλ(c)ρPξ, P = p− g(1 + ξ)

Φ
, p =

1

ν
ln

ρ

κ
,

ct = Φ(ρ2Dcξ)ξ, D = Φ(dm + dp|u|), u||ξ|=1 = 0.

The parabolic system (2.1), (2.2) is written as

νPt = Φρ(λ(c)ρPξ)ξ, ct = Φ(ρ2D(u)cξ)ξ,(2.8)
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with

ρ = κeνP+νg(1+ξ)/Φ, D(u) = Φ(dm + dp|u|), u = −Φλ(c)ρPξ.(2.9)

The boundary and initial conditions are

Pξ||ξ|=1 = 0, cξ||ξ|=1 = 0,

P |t=0 = P0(x(ξ, 0)) ≡ P̃0(ξ), c|t=0 = c0(x(ξ, 0)) ≡ c̃0(ξ),(2.10)

where the function x(ξ, 0) can be calculated via the equality

ξ = Φ

∫ x(ξ,0)

−1

ρ0(y)dy − 1.

Observe that system (2.8) can be written in a conservative form:

vt = Φ

(
λ(c)vξ
ν v2

)
ξ +

(
gλ(c)

v

)
ξ, ct = Φ

(
Dcξ
v2

)
ξ(2.11)

by passing to the variables v and c, where v = 1/ρ is the specific volume.
Thus, starting from the flow equations, we have obtained three parabolic systems.

We claim that each of these systems is equivalent to the basic flow equations. Let
us verify that claim for system (2.1), (2.2). The verification for the other systems is
similar.

It is enough to show that, given a solution (P, c) of (2.1), (2.2), the functions ρ
and u, defined by (2.3), solve the equations

Φρt + (ρu)x = 0, u = −λ(px − gρ), p =
1

ν
ln

ρ

κ
.(2.12)

By definition (2.3) of u, it follows from (2.1) that

ΦPt + uPx + ux/ν = 0.(2.13)

Hence,

Φ(eνP )t + (ueνP )x = 0.

Denoting R =
∫ x

−1
eνP (y,t)dy, we see that R solves the transport equation

ΦRt + uRx = 0(2.14)

and is linked with ρ by the equality

ρ = − 1

gν

∂

∂x
ln(1 − κνgR).

Integrating the latter equation with respect to the x variable, we obtain that

1 − κνgR = e−νgz, z :=

∫ x

−1

ρ(y, t)dy.

Thus, we have proved that

P =
1

ν
ln

ρ

κ
− g

∫ x

−1

ρ(y, t)dy or ρ = κeνP+νgz.

We calculate

eνgz
(
Φρt + (ρu)x

)
= κνeνgz(ΦPt + uPx + ux/ν) + νgzeνgz(Φzt + uzx).

Observe that z, being a function of R, solves the transport equation (2.14). Hence,
the first equation in (2.12) results from (2.13).
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3. A priori estimates. In what follows, the norms in Lq(Ω) and Lr(0, T ;Lq(Ω))
are denoted by ‖ · ‖q and ‖ · ‖r,q,, respectively.

We assume that the solutions to the basic flow equations are regular enough. It
permits us to use any of the parabolic systems described above. If the change of
variables (x, t) → (ξ, t) is regular, the solvability of the problem in the Euler setting
(system (2.1)–(2.4)) implies the solvability of the problem in the Lagrange setting (sys-
tem (2.8)–(2.10)), and vice versa. But it does not mean that the study of one system
is as easy as the study of the other. Since the change of variables depends on the solu-
tion, systems (2.1)–(2.4) and (2.8)–(2.10) are completely different nonlinear systems.
In fact, we do not tackle system (2.1)–(2.4) directly. First, we prove the solvability of
system (2.8)–(2.10) and then we do it for system (2.1)–(2.4) via the change of vari-
ables. The main reason is that approximate solutions of the Eulerian system do not
enjoy as many estimates as those of the Lagrangian system.

First, we consider the problem in the Lagrange setting.
Lemma 3.1. The discharge function satisfies the maximum principle

P ≡ inf
Ω

P̃0(ξ) ≤ P (ξ, t) ≤ sup
Ω

P̃0(ξ) ≡ P ∀(ξ, t) ∈ Q.(3.1)

Proof. Given a function F (P ), F ∈ C2
loc(R), we multiply the first equation in (2.8)

by vF ′(P ), v := ρ−1, and integrate the result over the domain Ω × (0, τ), 0 < τ ≤ T ,
to arrive at the equality∫

Ω

v(ξ, τ)F (P (ξ, τ))dξ +
Φ

ν

∫ τ

0

∫
Ω

λρP 2
ξ (F ′′ − νF ′)dξdt =

∫
Ω

v0F (P0)dξ.(3.2)

Here, we have used the equation vt = uξ. The continuous function

F1(P ) =

{
0, P < P + ε,(
eν(P−P−ε) − 1

)
/ν, P ≥ P + ε,

solves the equation F ′′(P ) − νF ′(P ) = 0 everywhere except at the point P = P + ε.
For any δ > 0, let θδ(r) be a standard mollifier:

θδ(r) = θ(r/δ)/δ, θ ∈ C∞(R), θ ≥ 0, supp θ ⊂ [−1, 1],

∫
R

θ(r)dr = 1.

Clearly, the function F1δ = F1 ∗ θδ enjoys the properties

F1δ ∈ C∞(R),

F1δ → F1 in Cloc(R), and F ′′
1δ(P ) − νF ′

1δ(P ) → 0 if P = P + ε.

Let us take F (P ) = F1δ(P ) in (3.2) and send δ to 0. Observe that Pξ(ξ, t) = 0 a.e.
at the set where P (ξ, t) = P + ε. Hence, by the Lebesgue theorem,∫ τ

0

∫
Ω

λρP 2
ξ

(
F ′′

1δ(P ) − νF ′
1δ(P )

)
dξdt → 0 as δ → 0.

On the other hand, by the choice of F1,∫
Ω

v(ξ, τ)F1δ(P (ξ, τ))dξ →
∫

Ω

v(ξ, τ)F1(P (x, τ))dξ,

∫
Ω

v0F1δ(P0)dξ → 0,
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as δ → 0. Thus,
∫
Ω
v(ξ, τ)F1(P (ξ, τ))dξ = 0 for any τ ≥ 0. This implies that

P ≤ P + ε. Since ε is arbitrary, the estimate P ≤ P follows.
Next, we take the function F (P ) in (3.2) equal to F2(P ), with F2 such that

F2 ∈ C2
loc(R), F ′′

2 ≥ 0, F ′
2 ≤ 0, F2(P ) = 0 if P ≤ P .

Due to this choice, we obtain P ≥ P . Estimates (3.1) are established.
Consequence. It follows from the density representation formula (2.9) that

ρ ≡ κeνP ≤ ρ ≤ κeνP+2νg/Φ ≡ ρ.

Lemma 3.2. The function Pξ satisfies the estimate

sup
t≥0

∫
Ω

|Pξ|dξ ≤
∫

Ω

|P̃0ξ|dξ.(3.3)

Proof. Denoting z = Pξ, we obtain from (2.8) the following equation for z:

νzt = (Φρ(λρz)ξ)ξ.

Given δ > 0, we multiply this equation by M ′
1(λρz), where M1(s) = (s2 + δ2)1/2 is a

smooth approximation of |s|, and integrate the result over Ω × (0, t). We obtain∫ t

0

∫
Ω

νztλρz

((λρz)2 + δ2)1/2
+

δ2 Φρ|(λρz)ξ|2
((λρz)2 + δ2)3/2)

dξdτ = 0.

In the limit as δ → 0 we have∫ t

0

∫
Ω

zt sign(λρz) dξdτ =

∫ t

0

∫
Ω

zt sign(z) dξdτ =

∫ t

0

d

dτ

∫
Ω

|z| dξdτ ≤ 0,

from which follows (3.3).
Lemma 3.3. The function c satisfies the estimate

sup
t≥0

∫
Ω

|c|2dξ + Φ

∫ t

0

∫
Ω

ρ2D|cξ|2dξdτ ≤
∫

Ω

|c0|2dξ.

Proof. It follows immediately if one multiplies the second equation in (2.8) by c
and integrate the result over Ω × (0, t).

Let us now introduce the convex function

M(U) = |U | ln(1 + |U |) − |U | + ln(1 + |U |).(3.4)

One can easily verify that

M ′(U) = ln(1 + |U |) signU, M ′′(U) = (1 + |U |)−1.

Below, b (with or without a subscript) indicates a generic constant, depending only
on some bounds of the initial data, which will probably take on different values in
different occurrences.

We have the following result.
Lemma 3.4. The function

U = −ΦρPξ
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satisfies the estimates

‖U‖L∞(0,T ;LM (Ω)) ≤ b, ‖U‖3,3 ≤ b,

‖Uξ‖3/2,3/2 ≤ b, ‖U‖2,∞ ≤ b,

where LM (Ω) denotes the Orlicz space associated with the function M defined by (3.4),
and b is a constant depending only on Φ, ν, g, ρ, ρ, and the function λ.

Proof. By differentiation with respect to ξ, it follows from the first equation in
(2.8) that the function U solves the equation

Ut + ρU(λU)ξ = Φν−1ρ (ρ(λU)ξ)ξ.(3.5)

We multiply (3.5) by vM ′(U), where v = 1/ρ, and integrate the result over Ω using
the equalities vt = uξ and u = λU . This gives

d

dt

∫
Ω

vM(U) dξ =

∫
Ω

(λU)ξ (M(U) − UM ′(U)) dξ

−Φν−1

∫
Ω

M ′′(U)Uξρ(λU)ξ dξ.

The last equality can be written in the form

d

dt

∫
Ω

vM(U)dξ +

∫
Ω

Φν−1ρλU2
ξM

′′(U) dξ

= −
∫

Ω

Φν−1ρλξUUξM
′′(U) dξ +

∫
Ω

λU2UξM
′′(U) dξ.(3.6)

We denote

J1 =

∫
Ω

Φν−1ρλU2
ξM

′′(U) dξ, J2 = −
∫

Ω

Φν−1ρλξUUξM
′′(U) dξ,

J3 =

∫
Ω

λU2UξM
′′(U) dξ.

By the Young inequality, we have

|J2| ≤ J1/2 + b1

∫
Ω

U2|cξ|2
1 + |U | dξ ≤ J1/2 + b2

∫
Ω

ρ2D|cξ|2dξ.(3.7)

To estimate J3 we write it in the form

J3 =

∫
Ω

λF (U)ξdξ = −
∫

Ω

λξF (U)dξ,

where the function F is chosen in such a way that F (0) = 0, F ′(U) = M ′′(U)U2, and
|F (U)| ≤ U2/2. Then, by the Young inequality,

|J3| ≤ δ

∫
Ω

|U |3dξ + b1δ

∫
Ω

|U ||λξ|2 dξ,

≤ δ

∫
Ω

|U |3dξ + b2δ

∫
Ω

|U ||cξ|2 dξ

≤ δ

∫
Ω

|U |3dξ + b3δ

∫
Ω

ρ2D|cξ|2dξ for any δ > 0.
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On the other hand,

|U(ξ, t)|3 = |U(ξ, t)| |
∫ ξ

−1

Uξ(y, t)dy |2,

and then ∫
Ω

|U(ξ, t)|3 dξ ≤
∫

Ω

U2
ξ

1 + |U | dξ
(∫

Ω

|U(ξ, t)| dξ
)(∫

Ω

(1 + |U |) dξ
)
.(3.8)

Thus,

|J3| ≤ δ

∫
Ω

U2
ξ

1 + |U | dξ
(∫

Ω

|U(ξ, t)| dξ
)(∫

Ω

(1 + |U |) dξ
)

+ b3δ

∫
Ω

ρ2D|cξ|2dξ for any δ > 0.(3.9)

Choosing δ small enough and applying Lemma 3.2 we infer from (3.6), (3.7), and
(3.9) that

‖U‖L∞(0,T ;LM (Ω)) ≤ b,

∫∫
Q

U2
ξ

1 + |U | dξdt ≤ b.

From (3.8) and Lemma 3.2, we deduce that∫∫
Q

|U(ξ, t)|3 dξdt ≤ b.

Then, by the Young inequality we have∫∫
Q

|Uξ|3/2 dξdt =

∫∫
Q

|Uξ|3/2(1 + |U |)3/4
(1 + |U |)3/4 dξdt

≤
(∫∫

Q

|Uξ|2
(1 + |U |)dξdt

)3/4(∫∫
Q

(1 + |U |)3 dξdt
)1/4

≤ b.

By the same token,

U(ξ, t)2 = 2

∫ ξ

−1

UUξ(1 + |U |)1/2
(1 + |U |)1/2 dy.

Hence,

sup
ξ∈Ω

∫ T

0

|U(ξ, t|2 dt ≤
∫∫

Q

(
|U |2 + |U |3 +

|Uξ|2
(1 + |U |)

)
dξdt ≤ b.

Lemma 3.4 is proved.
Let us summarize the above estimates. From the above lemmas one may conclude

that any solution satisfies the estimates

b−1 ≤ P, ρ, v ≤ b, ‖|U |1/2cξ‖2,2 ≤ b,

‖c‖∞,2 ≤ b, ‖c‖L2(0,T ;W 1,2(Ω)) ≤ b,(3.10)

‖U‖L∞(0,T ;LM (Ω)) ≤ b, ‖U‖3,3 ≤ b,

‖Uξ‖3/2,3/2 ≤ b, ‖U‖2,∞ ≤ b,(3.11)
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where the constant b depends only on ‖c0‖2, ρ, ρ, and ‖ρ0ξ‖LM (Ω).
Finally, we remark that

0 ≤ ci,

m−1∑
1

cj ≤ 1(3.12)

if the functions c is regular and the initial data c0 satisfy the same conditions.
Estimates (3.12) are easily derived from the second equation in (2.8) by the max-
imum principle, and they imply that the functions ci (1 ≤ i ≤ m − 1) stand for
volume fractions.

Because of the estimates b−1 ≤ ρ ≤ b, one can conclude that estimates (3.10) and
(3.11) remain valid in the Euler setting for the solutions (P (x, t), c(x, t)) of problem
(2.1)–(2.4) in the following sense:

b−1 ≤ P, ρ ≤ b, ‖|U |1/2cx‖2,2 ≤ b,

‖c‖∞,2 ≤ b, ‖c‖L2(0,T ;W 1,2(Ω)) ≤ b,

‖U‖L∞(0,T ;LM (Ω)) ≤ b, ‖U‖3,3 ≤ b,

‖Ux‖3/2,3/2 ≤ b, ‖U‖2,∞ ≤ b,

where U = −Px.

4. Approximate solutions. We study problem (2.8)–(2.10), applying the semi-
Galerkin method. Given a smooth basis (wi)i≥1 in L2(Ω), we define an approximate
solution (Pn(ξ, t), cn(ξ, t)) by the following scheme. We look for each component cin,
(i = 1, . . . ,m− 1) of the concentration vector cn in the form

cin(ξ, t) =

n∑
j=1

αin
j (t)wj(ξ), αin = (αin

1 , . . . , αin
n ),

and we find cn, Pn, ρn, and Un from the equations

d

dt

∫
Ω

cinwj dξ +

∫
Ω

ρ2
nDncinξwjξ dξ = 0, j = 1, 2, . . . , n,(4.1)

cin|t=0 = c
(0)
in (ξ) ≡

n∑
j=1

αin
0jwj(ξ),(4.2)

Dn = Φ(dm + dp|un|), ρn = κeνPn+νg(1+ξ)/Φ, un = −Φλ(cn)ρnPnξ,(4.3)

νPnt = Φρn(λ(cn)ρnPnξ)ξ, Pnξ||ξ|=1 = 0, Pn|t=0 = P̃0(ξ).(4.4)

Here, c
(0)
n → c̃0 in L2(Ω) as n → ∞.

To simplify notation in this section, we omit the index n and we assume that the
function c stands for any component ci of cn and that the vector α = (α1, . . . , αn)
stands for (αin

1 , . . . , αin
n ).

First, we prove that the approximate solution (P (ξ, t), c(ξ, t)) exists locally in
time. To this end we consider the ball

B(T ) =

{
α(t) ∈ C([0, T ]; Rn) : max

0<t<T
|α(t) − α0| ≤ 1

}

in C([0, T ]; Rn), and we introduce the operator

A : B(T ) → C([0, T ]; Rn), Aα̂ = α,
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by the following scheme. Given α̂ ∈ B(T ), we first solve the parabolic problem (4.4)
for P̂ , with the components cin of the vector cn substituted by

ĉ =

n∑
j=1

α̂j(t)wj , λ̂ := λ(ĉ),

and with ρ̂ given by the second formula in (4.3). Then we take û = −Φλ̂ρ̂P̂ξ and
find α from the ODE which is (4.1) and (4.2) for c =

∑n
j=1 αj(t)wj , with ρ and u

substituted by ρ̂ and û.
We denote by W 1

M (Ω) the Sobolev–Orlicz space

W 1
M (Ω) = {f(x) : f ∈ LM (Ω), ∂xf ∈ LM (Ω)}

associated with an admissible convex function M : R → R.
The Hölder space H2k+β,k+β/2(Q) consists of continuous functions f(x, t) such

that ∂2lf(x, t)/∂x2l, ∂lf(x, t)/∂tl ∈ C(Q), 0 ≤ l ≤ k, and

sup
|xi|≤1, 0≤t≤T

|∂2kf/∂x2k(x1, t) − ∂2kf/∂x2k(x2, t)|
|x1 − x2|β

< ∞,

sup
0≤ti≤T, |x|≤1

|∂kf/∂tk(x, t1) − ∂kf/∂tk(x, t2)|
|t1 − t2|β/2

< ∞.

For more details on the above spaces we refer the reader to [13].
To justify the scheme (4.1)–(4.4), we prove the following.
Lemma 4.1. Assume that

λ0 ≤ λ̂ ≤ λ−1
0 , λ̂ξ ∈ L2(0, T ;W 1,2

0 (Ω)), P̃0 ∈ W 1
M (Ω),(4.5)

where W 1,2
0 (Ω) is the closure of D(Ω) in W 1,2(Ω) and the function M is given by

(3.4). Then, the problem

νPt = Φρ(λ̂ρPξ)ξ, ρ = κeνP+νg(1+ξ)/Φ,

Pξ||ξ|=1 = 0, P |t=0 = P̃0(ξ),(4.6)

has a unique solution with the properties

P ≤ P ≤ P , Pξ ∈ L∞(0, T ;LM (Ω)) ∩ L3(Q), Pξξ, Pt ∈ L3/2(Q).

Moreover,

‖Pξξ, Pt‖3/2,3/2 + ‖Pξ‖L∞(0,T ;LM (Ω)) + ‖Pξ‖3,3 ≤ b,

where the constant b depends only on λ0, P , P and on the norms ‖P̃0‖W 1
M (Ω) and

‖λ̂ξ‖L2(0,T ;W 1,2
0 (Ω)).

Proof. Let (λδ) be a sequence of functions from the set

λ0 ≤ λ ≤ λ−1
0 ; λ, λξ, λt, λtξ ∈ C(Q);

λξ||ξ|=1 = 0, λ, λξ ∈ H1+β,(1+β)/2(Q) (0 < β < 1),(4.7)
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and such that

λδ → λ̂ in L2(0, T ;W 2,2(Ω)) as δ → 0.

Let Pδ0(ξ) be a sequence from H3+β(Ω) such that

Pδ0 → P̃0 in W 1
M (Ω) as δ → 0.

We also assume that the compatibility conditions

∂

∂ξ

(
ρδ0

∂

∂ξ

(
λδ0ρδ0

∂

∂ξ
Pδ0

))
||ξ|=1 = 0(4.8)

are fulfilled.
Let us consider problem (4.6)δ, which is (4.6) with λ and P̃0 substituted by λδ

and Pδ0, respectively. By Theorem 7.4 of [13, Chapter V], there is a unique solution
Pδ ∈ H3+β,(3+β)/2(Q) of (4.6)δ. By the arguments applied in Lemmas 3.1 and 3.2,
one obtains the estimates

P ≤ Pδ ≤ P , ρ ≤ ρδ ≤ ρ, sup
t≥0

∫
Ω

|Pδξ| dξ ≤
∫

Ω

|Pδ0ξ| dξ.

It follows from Lemma 3.4 (see equality (3.6)) that the function Uδ = −ΦρδPδξ

satisfies the equality

d

dt

∫
Ω

vδM(Uδ) dξ +

∫
Ω

Φν−1ρδλδU
2
δξM

′′(Uδ) dξ

=

∫
Ω

Φν−1ρδλδξUδUδξM
′′(Uδ) dξ +

∫
Ω

(λδUδ)
2UδξM

′′(Uδ) dξ.(4.9)

We denote

Jδ
1 =

∫
Ω

Φν−1ρδλδU
2
δξM

′′(Uδ) dξ, Jδ
2 =

∫
Ω

Φν−1ρδλδξUδUδξM
′′(Uδ) dξ,

Jδ
3 =

∫
Ω

(λδUδ)
2UδξM

′′(Uδ).

We have

|Jδ
2 | ≤ Jδ

1/2 + b1

∫
Ω

λ2
δξ|Uδ|dξ,

|Jδ
3 | ≤ η

∫
Ω

|Uδ|3dξ + b1η

∫
Ω

|Uδ||λ2
δξ dξ for any η > 0.

Observe that ∫
Ω

λ2
δξ|Uδ|dξ ≤ 2

∫
Ω

λ2
δξξdξ

∫
Ω

|Uδ|dξ.

Then, as in the proof of Lemma 3.4, we obtain

‖Pδξ‖L∞(0,T ;LM (Ω)) + ‖P
δξξ‖3/2,3/2 + ‖P

δξ‖3,3 + ‖P
δξ‖2,∞ ≤ b,(4.10)

uniformly in δ.
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Observe also that ∫
Ω

|λξ|3dξ ≤ 2

∫
Ω

|λξ|dξ
∫

Ω

|λξξ|2dξ,(4.11)

for any function λ(ξ) such that λξ||ξ|=1 = 0. Hence, it follows from (4.6)δ that the
time derivative Pδt satisfies the estimate

‖Pδt‖3/2,3/2 ≤ b,

uniformly in δ.
By the compact imbedding of W 1,3/2(Q) into L3/2(Q), there is a subsequence

(Pδk) and a function P ∈ W 1,3/2(Q) such that Pδk → P in L3/2(Q). Since Pδk is
bounded in L∞(Q), Pδk → P in Lq(Q) for any 1 ≤ q < ∞, by interpolation. Clearly,
ρδk → ρ in Lq(Q) as well.

Let us consider the function Vδ := vδξ which solves (see (2.11)) the equation

Vδt = Φν−1(ρ2
δλδVδ)ξξ + (ρδgλδ)ξξ.

From the above estimates it follows that

‖Vδ‖L3/2(0,T ;W 1,3/2(Ω)) + ‖Vδt‖L3(0,T ;W−2,3(Ω)) ≤ b.

Hence, by the Aubin–Lions compactness theorem [14] one may assume that Pδkξ → Pξ

in L3/2(Q). Moreover, by estimates (4.10) and interpolation, Pδkξ → Pξ, ρδkξ → ρξ
in Lq(Q), for any 1 ≤ q < 3.

Let us show that the limit function P solves problem (4.6). Equation (4.6)δ is
written as

νPδt = Φρδ

(
λδξρδPδξ + λδρδξPδξ + λδρδPδξξ

)
.(4.12)

We claim that each term converges in D′(Q). Let us consider the last term. Denote
for simplicity Pδ = Pδk . We write the decomposition equality

λδρ
2
δPδξξ = λρ2Pδξξ + (ρδ − ρ)(ρδ + ρ)λδPδξξ + ρ2(λδ − λ)Pδξξ ≡

3∑
i=1

Jδ
i .

By (4.10), Pδξξ → Pξξ weakly in L3/2(Q). On the other hand, due to (4.11), λδξ → λξ

in L3(Q). Hence,∫
Q

Jδ
1ϕdξ →

∫
Q

λρ2Pξξϕdξ,

∫
Q

Jδ
2ϕdξ → 0,

∫
Q

Jδ
3ϕdξ → 0

for any ϕ ∈ D(Q).
One can study the convergence of the other terms of (4.12) similarly. Thus,

the limit function P solves problem (4.6). Observe that equality (4.6) is valid also
as equality of functions in L3/2(Q); hence the function v (v = 1/ρ) calculated via
formula (4.6)2 solves (2.11) in the same sense.

Let us prove uniqueness. Given two solutions v1 and v2 of equation (2.11), with
the boundary conditions viξ||ξ|=1 = 0, we denote v = v1 − v2, ρ = ρ1 − ρ2. The
function v solves the parabolic problem

vt = Φν−1(ρ2
1λ̂vξ)ξ + Φν−1(λ̂v2ξρ(ρ1 + ρ2))ξ + (gλ̂ρ)ξ, vξ||ξ|=1 = 0, v|t=0 = 0.
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We multiply this equation by the function M ′
1(v) = v/(v2 + δ2)1/2, a smooth approx-

imation of sign(v), and integrate the result over Ω × (0, t). It follows that∫
Ω

M1(v(t))dξ + Φν−1

∫ t

0

∫
Ω

M ′′
1 (v)ρ2

1λ̂v
2
ξ dξdτ︸ ︷︷ ︸

= −
∫ t

0

∫
Ω

M ′′
1 (v)ρλ̂vξ

(
Φν−1v2ξ(ρ1 + ρ2) + g

)
dξdτ

≤ · · ·︸︷︷︸ /2 + b

∫ t

0

∫
Ω

M ′′
1 (v)ρ2(1 + v2

2ξ) dξdτ.

Observe that 0 ≤ M ′′
1 (v)v2 ≤ δ, v2

2ξ ∈ L3/2(Q), ρ = −ρ1ρ2v. Hence, in the limit

δ → 0 we obtain that
∫
Ω
|v(t)| dξ ≤ 0. Lemma 4.1 is proved.

By the previous lemma, the operator A, defined by the right-hand side of the
equality

αj = α0j + (M−1)ij

∫ t

0

∫
Ω

ρ̂2D̂ĉξwiξdξdτ ≡ (Aα̂)j , Mij =

∫
Ω

wiwjdξ

is well defined. Moreover, it is compact since it maps B(T ) on a bounded set of
W 1(0, T ). Observe that all the norms in the n-dimensional space spanned by the
basis function wj , j = 1, . . . , n, are equivalent. Clearly, A maps B(Tn) into itself
provided Tn is small enough. Consequently, one can use the Schauder theorem to
conclude that there exists at least one fixed point α. Thus, problem (4.1)–(4.4) has a
local solution.

Now, this procedure can be iterated as many times as necessary to reach Tn = T
as long as there is a bound on α independent of Tn. The existence of such a bound
follows from the equality

d

dt

∫
Ω

c2indξ +

∫
Ω

ρ2
nDnc

2
inξdξ = 0,

which is valid for any fixed point α. Indeed, by integration we have

sup
t≥0

∫
Ω

c2in(t)dξ +

∫ t

0

∫
Ω

ρ2
nDnc

2
inξdξ ≤ lim sup

n→∞

∫
Ω

|c(0)in (ξ)|2dξ.

Hence, an approximate solution defined by (4.1)–(4.4) exists globally.
Let us show that the regularity of Pn(ξ, t) can be improved provided that the

initial datum P̃0(ξ) is more regular than in Lemma 4.1.
Lemma 4.2. Assume that P̃0(ξ) belongs to W 2,2(Ω). Then

Pn ∈ L∞(0, T ;W 2,2(Ω)) ∩ L2(0, T ;W 3,2(Ω)),
∂2Pn

∂t∂ξ
∈ L2(Q).

Moreover, the functions Un = −ΦρnPnξ and Vn = vnξ solve the parabolic problems

Unt + ρnUn(λ(cn)Un)ξ = Φν−1ρn( ρn(λ(cn)Un)ξ )ξ,

Un||ξ|=1 = 0, Un|t=0 = −Φρ̃0(ξ)P̃0(ξ),(4.13)

and

Vnt = Φν−1(ρ2
nλ(cn)Vn)ξξ + (ρngλ(cn))ξξ.

Vn||ξ|=1 = 0, Vn|t=0 = ṽ0ξ(ξ).(4.14)
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The differential equations (4.13) and (4.14) hold as equalities of functions from L2(Q).
Proof. Let (λδ) be a sequence satisfying conditions (4.7) and such that

λδ → λ(cn) in W 1(0, T ;C2(Ω)) as δ → 0.

Let Pδ0(ξ) be a sequence from H3+β(Ω) such that

Pδ0 → P̃0 in W 2,2(Ω) as δ → 0.

Assume that the compatibility conditions (4.8) are fulfilled. We consider the parabolic
problem (4.4)δ, which is problem (4.4) with λ(cn) and P̃0 substituted by λδ and
Pδ0, respectively. By Theorem 7.4 of [13, Chapter V], there is a unique solution
Pδ ∈ H3+β,(3+β)/2(Q) of (4.4)δ.

The function Uδ = −ΦρδPδξ solves the parabolic equation

Uδt + ρδUδ(λδUδ)ξ = Φν−1ρδ(ρδ(λδUδ)ξ)ξ.(4.15)

Due to the choice of λδ, one can obtain, by the same arguments as in Lemma 4.1, the
following estimates:

ρ ≤ ρδ ≤ ρ, ‖Pδt‖3/2,3/2 ≤ b,(4.16)

‖Uδ‖L∞(0,T ;LM (Ω)) + ‖Uδξ‖3/2,3/2 + ‖Uδ‖3,3 + ‖Uδ‖2,∞ ≤ b(4.17)

uniformly in δ.
The function Vδ := vδξ solves the equation

Vδt = Φν−1(ρ2
δλδVδ)ξξ + (ρδgλδ)ξξ.(4.18)

We multiply it by V 3
δ and integrate the result over Ω to obtain

1

4

d

dt

∫
Ω

V 4
δ dξ +

︷ ︸︸ ︷
3Φν−1

∫
Ω

ρ2
δλδV

2
δ V

2
δξ dξ = 6Φν−1

∫
Ω

ρ3
δλδV

4
δ Vδξ dξ

+ 3

∫
Ω

ρ2
δV

3
δ Vδξ(gλδ − Φν−1λδξ) dξ − 3g

∫
Ω

ρδλδξV
2
δ Vδξ dξ ≡

3∑
i=1

Ji.

We estimate

J1 + J2 ≤ ︷︸︸︷. . . /4 + b1(‖Uδ‖2
∞ + 1)

∫
Ω

V 4
δ dξ, J3 ≤ ︷︸︸︷. . . /4 + b2‖Uδ‖2

2.

Due to estimates (4.17), one concludes that

d

dt

∫
Ω

V 4
δ dξ ≤ f1(t)

∫
Ω

V 4
δ dξ + f2(t),

with the functions fi bounded in L1(0, T ) uniformly in δ. By Gronwall’s lemma it
follows that

‖Vδ, Uδ‖∞,4 ≤ b, ‖VδVδξ, UδUδξ‖2,2 ≤ b(4.19)

uniformly in δ. Observe that some constants b in this proof may depend on n.
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With such estimates at hand, we multiply (4.15) by Uδξξ and integrate the result
over Ω to obtain

1

2

d

dt

∫
Ω

U2
δξdξ + Φν−1

∫
Ω

ρ2
δλδU

2
δξξdξ︸ ︷︷ ︸

= −
∫

Ω

ρδUδξUδξξ

(
[Φν−1(ρδλδ)ξ + λδUδ] + [Φν−1(ρδξλδξ + ρδλδξξ) + λδξUδ]

)
dξ

≤ · · ·︸︷︷︸ /2 + b

∫
Ω

(1 + U4
δ + U2

δξU
2
δ ) dξ.

Hence,

‖Uδξ, Vδξ‖∞,2 ≤ b, ‖Uδξξ, Vδξξ, Uδt, Vδt‖2,2 ≤ b(4.20)

uniformly in δ.
Due to estimates (4.16), (4.17), (4.19), and (4.20), and the uniqueness of solutions

of problem (4.4), one can prove by the arguments of Lemma 4.1 that Pδ → Pn in the
same sense as in Lemma 4.1. Moreover,

Uδξ → Unξ, Uδξξ → Unξξ, Uδt → Unt weakly in L2(Q),

and

Uδ → Un strongly in Lq(Q) for any 1 ≤ q < 4.

The similar convergences are valid for the sequence Vδ:

Vδξ → Vnξ, Vδξξ → Vnξξ, Vδt → Vnt weakly in L2(Q),

and

Vδ → Vn strongly in Lq(Q) for any 1 ≤ q < 4.

The above claims of convergence enable us to pass to the limit, as δ → 0, in (4.15)
and (4.18). Lemma 4.2 is proved.

Consequence. It follows easily from the above lemma that the function zn = Pnξ

solves the equation

νznt = (Φρn(λ(cn)ρnzn)ξ)ξ(4.21)

in L2(Q).

5. Global solvability. We argue by a compactness method. To this end we use
estimates independent of n for the approximate solutions (Pn, cn), defined by (4.1)–
(4.4). It is an advantage of the semi-Galerkin method that all the a priori estimates
obtained in section 3 are also valid for (Pn, cn):

b−1 ≤ Pn, ρn ≤ b, ‖|un|1/2cnξ‖2,2 ≤ b,

‖cn‖∞,2 ≤ b, ‖cn‖L2(0,T ;W 1,2(Ω)) ≤ b,(5.1)

‖Pnξ‖L∞(0,T ;LM (Ω)) ≤ b, ‖Pnξ‖3,3 ≤ b,

‖Pnξ‖2,∞ ≤ b, ‖Pnξξ, Pnt‖3/2,3/2 ≤ b,(5.2)
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uniformly in n. By the Young inequality, one can derive from (5.1), (5.2) that

‖Dncnξ‖3/2,3/2 ≤ b,

uniformly in n. It follows from (4.21) that∥∥∥∥ ∂

∂t
Pnξ

∥∥∥∥
L3/2(0,T ;W−1,3/2(Ω))

≤ b,(5.3)

uniformly in n.
To derive the estimate

‖cnt‖L3/2(0,T ; (W 2,2(Ω))∗) ≤ b,(5.4)

we choose the basis (wj)j≥1, defined as

wjξξ = −λjwj , wjξ||ξ|=1 = 0.

Clearly, wj = cos(π(j − 1)ξ) and λj = π2(j − 1)2.
Denote by Pn the projection of L2(Ω) onto Xn, the subspace of L2(Ω), spanned

by w1, . . . , wn. Observe that

‖(Pnw)ξξ‖2
2 =

n∑
j=1

λ2
jβ

2
j ≤

∞∑
j=1

λ2
jβ

2
j = ‖wξξ‖2

2, w =

∞∑
j=1

βjwj ,

and the norm of w in W 2,2(Ω) is equivalent to (‖w‖2
2 + ‖wξξ‖2

2)
1/2.

One can write equality (4.1) as

d

dt

∫
Ω

cin(Pnw) dξ +

∫
Ω

ρ2
nDncinξ(Pnw)ξ dξ = 0 ∀w ∈ W 2,2(Ω).

Now it follows that

|〈cnt, w〉| ≤ ρ2‖Dncnξ‖3/2‖(Pnw)ξ‖3.

Observe that

‖(Pnw)ξ‖3 ≤ b1‖(Pnw)ξ‖W 1,2(Ω) ≤ b2‖Pnw‖W 2,2(Ω) ≤ b3(‖Pnw‖2
2 + ‖(Pnw)ξξ‖2

2)
1/2

≤ b3(‖w‖2
2 + ‖wξξ‖2

2)
1/2 ≤ b4‖w‖W 2,2(Ω).

Hence,

‖cnt(t)‖(W 2,2(Ω))∗ ≤ b‖Dn(t)cnξ(t)‖3/2.

Thus, estimate (5.4) is established.
Theorem 5.1. Assume that P̃0 ∈ W 2,2(Ω), c̃0 ∈ L2(Ω), and function λ(c)

satisfies restrictions (1.14). Then, problem (2.8)–(2.10) has a solution (P (ξ, t), c(ξ, t))
with the properties

ρ ≤ ρ ≤ ρ, Pt ∈ L3/2(Q),

P ∈ L∞(0, T ;W 1
M (Ω)) ∩ L3/2(0, T ;W 2,3/2(Ω)) ∩ L2(0, T ;W 1,∞(Ω))

∩ L3(0, T ;W 1,3(Ω)) ∩ L∞(Q), c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)),
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where the function M is given by (3.4). The first equation in (2.8) holds as an equality
of functions in L3/2(Q). The second equation in (2.8) holds weakly:∫∫

Q

(
cΨt − Φρ2DcξΨξ

)
dξdt = −

∫
Ω

c̃0Ψ(ξ, 0)dξ(5.5)

for any Ψ ∈ C1(Q̄) such that Ψ(ξ, T ) = 0.
Proof. The uniform bounds (5.1)4 and (5.4) imply by the Aubin–Lions theorem

that there are a subsequence, still denoted (c)n, and a function c, such that cn → c
a.e. in Q, and cn → c strongly in L2(Q) and weakly in L2(0, T ;W 1,2(Ω)). Hence
λ(cn) → λ(c) a.e. in Q and strongly in Lq(Q) for any q ∈ [1,∞).

The uniform bound ‖Pn‖W 1,3/2(Q) ≤ b and the compact imbedding of W 1,3/2(Q)

into L3/2(Q) imply that, up to a subsequence, there is a function P ∈ W 1,3/2(Q) such
that Pn → P , ρn → ρ strongly in Lq(Q), for any q ∈ [1, 3/2). Since P ≤ P ≤ P ,
one can also obtain by an interpolation argument that Pn → P , ρn → ρ strongly in
Lq(Q) for any q ∈ [1,∞).

It follows from (5.2) that

Pnξξ → Pξξ, Pnt → Pt, weakly in L3/2(Q).

Due to estimates (5.3) and (5.2)4, one concludes that Pnξ → Pξ in L3/2(Q). Since
‖Pnξ‖3,3 ≤ b, one has by interpolation that Pnξ → Pξ in Lq(Q), for any q ∈ [1, 3).

As for the function un = −Φρnλ(cn)Pnξ, one has by the above token that un → u
in Lq(Q), for any q ∈ [1, 3). Hence, |un| cnξ → |u| cξ in D′(Q).

The convergences described above enable us to pass to the limit, as n → ∞, in
(4.1)–(4.4). The proof of Theorem 5.1 is complete.

The next result concerns the problem in the Euler setting.
Theorem 5.2. Assume that P0 ∈ W 2,2(Ω), c0 ∈ L2(Ω), and the function λ(c)

satisfies restrictions (1.14). Then, problem (2.1)–(2.4) has a solution (P (x, t), c(x, t))
with the properties

ρ ≤ ρ ≤ ρ, Pt ∈ L3/2(Q),

P ∈ L∞(0, T ;W 1
M (Ω)) ∩ L3/2(0, T ;W 2,3/2(Ω)) ∩ L2(0, T ;W 1,∞(Ω))

∩ L3(0, T ;W 1,3(Ω)) ∩ L∞(Q), c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

where the function M is given by (3.4). Equation (2.1) holds as an equality of func-
tions from L3/2(Q). Equation (2.2) holds weakly:∫∫

Q

ρc(Φψt + uψx) − ρDcxψx dxdt = −
∫

Ω

Φρ0(x)c0(x)ψ(x, 0)dx,(5.6)

for any ψ ∈ C1(Q̄) such that ψ(x, T ) = 0.
Proof. Let (P̃ (ξ, t), c̃(ξ, t)) be a solution in the Lagrange setting given by Theo-

rem 5.1. The function ρ̃(ξ, t) enables us to define the Euler variables by the formulae

x(ξ, t) = Φ−1

∫ ξ

−1

ṽ(y, t)dy − 1, xξ = Φ−1ṽ, xt = Φ−1ũ.

Clearly,

x ∈ C(Q̄) ∩ L2(0, T ;W 2,3/2(Ω)), xt ∈ L3(Q) ∩ L3/2(0, T ;W 1,3/2(Ω)).
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The inverse function ξ(x, t) enjoys the same regularity as a function of the variables
x and t.

One can verify that the functions

P (x, t) = P̃ (ξ, t)|ξ=ξ(x,t), c(x, t) = c̃(ξ, t)|ξ=ξ(x,t)

solve the equations

ΦPt + uPx =

(
λ(c)

ν
Px

)
x, u = −λ(c)Px

a.e. in Q.
Let us verify that the functions P (x, t) and c(x, t) solve (5.6). First, we observe

that, by a continuity argument, the functions P̃ (ξ, t) and c̃(ξ, t) satisfy (5.5) for all
Ψ ∈ L2(Q) such that Ψt ∈ L2(Q), Ψξ ∈ L3(Q), and Ψ(ξ, T ) = 0. Observe that
because of the inclusion Ψt ∈ L2(Q), the function Ψ belongs to C([0, T ];L2(Ω)) and
Ψ has traces at t = const.

Given an arbitrary function ψ(x, t) such that ψ ∈ C1(Q̄), ψ(x, T ) = 0, let us
consider the sum of integrals

J =

∫∫
Q

(
ρc(Φψt + uψx) − ρDcxψx

)
dxdt +

∫
Ω

c0(x)ψ(x, 0) dx.

Denoting Ψ(ξ, t) = ψ(x, t)|x=x(ξ,t), and making the change of variables (x, t) → (ξ, t),
we have

J =

∫∫
Q

(
c̃Ψt − Φρ̃2D̃c̃ξΨξ

)
dξdt +

∫
Ω

c̃0Ψ(ξ, 0) dξ,

where

Ψt = Φ−1ψx(x(ξ, t), t)ũ(ξ, t) + ψt(x(ξ, t), t) ∈ L2(Q),

Ψξ = Φ−1ψx(x(ξ, t), t)ṽ(ξ, t) ∈ L3(Q),

and Ψ(ξ, 0) = ψ(x(ξ, 0), 0) ∈ L2(Ω). Clearly, Ψ belongs to C([0, T ];L2(Ω)). Thus,
J = 0 and the theorem is proved.
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A LOSING ESTIMATE FOR THE IDEAL MHD EQUATIONS WITH
APPLICATION TO BLOW-UP CRITERION∗
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Abstract. In this paper we study the blow-up criterion of smooth solution to the ideal MHD
equations in R

n. By means of the Fourier frequency localization and Bony paraproduct decomposi-
tion, we show a losing estimate for the ideal MHD equations and apply it to establish an improved
blow-up criterion of smooth solutions. As a special case, we recover a previous result of Planchon
for the incompressible Euler equations.
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1. Introduction. We are concerned with the blow-up phenomena of smooth
solutions to the ideal MHD equations in R

n:

(IMHD)

⎧⎪⎪⎨
⎪⎪⎩

ut + u · ∇u = −∇p− 1
2∇b2 + b · ∇b,

bt + u · ∇b = b · ∇u,
∇ · u = ∇ · b = 0,
u(0, x) = u0(x), b(0, x) = b0(x),

(1.1)

where x ∈ R
n, t ≥ 0, u, b describes the flow velocity vector and the magnetic field

vector, respectively, p is a scalar pressure, while u0 and b0 are the given initial velocity
and initial magnetic field with ∇ · u0 = ∇ · b0 = 0, b2 = |b|2.

By the standard energy method [12], it is known that for (u0, b0) ∈ Hs(R3), s ≥ 3,
there exists T > 0 such that the Cauchy problem (1.1) has a unique smooth solution
(u(t, x), b(t, x)) on [0, T ) satisfying

(u, b) ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1).

However, in contrast to the Euler equation (when b = 0), the global existence of
smooth solutions to the inviscid MHD equations is not known even in two dimen-
sions. Later on, Caflisch, Klapper and Steele [3] extended the well-known result of
Beale–Kato–Majda [2] for the incompressible Euler equations to the three dimensional
IMHD equations. They showed precisely that if the smooth solution (u, b) satisfies
the condition ∫ T

0

‖∇ × u‖L∞ + ‖∇ × b‖L∞dt < ∞,(1.2)
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then the solution (u, b) can be extended beyond t = T , namely, for some T <
T̃ , (u, b) ∈ C([0, T̃ );Hs) ∩ C1([0, T̃ );Hs−1). In other words, let [0, T ) be the max-
imal time interval to the smooth solution (u, b) for (IMHD); then (u, b) blows up at
T iff

lim
ε→0

∫ T−ε

ε0

‖∇ × u‖L∞ + ‖∇ × b‖L∞dt = ∞ ∀ 0 ≤ ε0 < T.(1.3)

Recently, Zhang and Liu [17] refined the blow-up condition (1.3) to

lim
ε→0

∫ T−ε

ε0

‖∇ × u‖Ḃ0
∞,∞

+ ‖∇ × b‖Ḃ0
∞,∞

dt = ∞ ∀ 0 ≤ ε0 < T.

Here and thereafter, Ḃs
p,q denotes the homogenous Besov space, whose definition will

be given in section 2.
Recently, for the incompressible Euler equations,

(IE)

⎧⎨
⎩

ut + u · ∇u + ∇p = 0,
∇ · u = 0,
u(0, x) = u0(x),

(1.4)

Planchon [14] was able to relax previous blow-up conditions such as

lim
ε→0

∫ T−ε

ε0

‖ω(t)‖∞dt = ∞ ∀ 0 ≤ ε0 < T (see, e.g., [2]),

lim
ε→0

∫ T−ε

ε0

‖ω(t)‖BMOdt = ∞ ∀ 0 ≤ ε0 < T (see, e.g., [10]),

lim
ε→0

∫ T−ε

ε0

‖ω(t)‖Ḃ0
∞,∞

dt = ∞ ∀ 0 ≤ ε0 < T (see, e.g., [11]),

and he established an improved blow-up criterion in the framework of mixed time-
space Besov spaces. His result is the following: there exists a positive constant M0

such that if

(1.5) lim
ε→0

sup
j∈Z

∫ T

T−ε

‖Δjω(t)‖∞dt ≥ M0,

then u cannot be continued beyond t = T . Here ω = ∇ × u is the vorticity and Δj

denotes a frequency localization operator at |ξ| ≈ 2j ; see section 2 for the definition.
Inspired by [14], we want to obtain the corresponding result for the IMHD equa-

tions. Unfortunately, the method of [16, 14] does not apply directly, since there is
not enough evidence to show if the solution u remains smooth past time T from the
deduced inequality (see the last inequality in [14]). More precisely, we cannot infer
that f(T ) can be dominated by f(T − ε) from the following inequality:

f(T ) ≤ f(T − ε) + δ(ε)f(T ) log(1 + f(T )),

where δ(ε) is a function such that δ(ε) → 0 when ε tends to zero.
To overcome this difficulty, we first obtain a losing estimate for the IMHD equa-

tions (1.1), which is motivated by [7, 8], and further establishes a blow-up criterion of
smooth solution for the IMHD equations (1.1). Let us point out that losing estimates
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might be of independent interest, as they can be used to establish improved blow-up
criteria of smooth solutions for the incompressible Navier–Stokes equations

(NS)

⎧⎨
⎩

ut − νΔu + u · ∇u + ∇p = 0,
∇ · u = 0,
u(0, x) = u0(x),

(1.6)

and MHD equations with dissipation and resistance

(MHD)

⎧⎪⎪⎨
⎪⎪⎩

ut − νΔu + u · ∇u = −∇p− 1
2∇b2 + b · ∇b,

bt − ηΔu + u · ∇b = b · ∇u,
∇ · u = ∇ · b = 0,
u(0, x) = u0(x), b(0, x) = b0(x).

(1.7)

We will prove the losing estimate for the IMHD equation (1.1) is the following theorem.
Theorem 1.1. Let (u, b) be a smooth solution to (1.1) with (u0, b0) ∈ Bs

p,q,
s > n

p + 1, 1 ≤ p, q < ∞. Then there exists a positive constant C0 > 0 such that for
λ ≥ C0,

M(u) + M(b) � ‖u0‖Ḃs
p,q

+ ‖b0‖Ḃs
p,q

,(1.8)

where

M(f) �
∥∥∥∥ sup

t∈[ 0,T )

2js−Ψλ(t)‖Δjf(t)‖p
∥∥∥∥
�q(Z)

with

Ψλ(t′, t) � λ

∫ t

t′
‖∇u(t′′)‖∞ + ‖∇b(t′′)‖∞dt′′ and Ψλ(t) = Ψλ(0, t).

As an application to Theorem 1.1, and inspired by [14], we obtain a similar blow-
up criterion for the IMHD equations (1.1).

Theorem 1.2. Let (u0, b0) ∈ Bs
p,q, s > n

p + 1, 1 ≤ p, q < ∞. Suppose that

(u, b) ∈ C([0, T );Bs
p,q)∩C1([0, T );Bs−1

p,q ) is the smooth solution to (1.1). There exists
an absolute constant M > 0 such that

(i) If

(1.9) lim
ε→0

sup
j∈Z

∫ T

T−ε

(‖Δj(∇× u)‖∞ + ‖Δj(∇× b)‖∞)dt = δ < M,

then δ = 0, and the solution (u, b) can be extended past time t = T .
(ii) If

(1.10) lim
ε→0

sup
j∈Z

∫ T

T−ε

(‖Δj(∇× u)‖∞ + ‖Δj(∇× b)‖∞)dt ≥ M,

then the solution blows up at t = T .
Remark 1.1. In Theorem 1.2, M can be viewed as a threshold of blow-up. Plan-

chon gave an exact explanation for the appearance of M ; see [14] for details.
Remark 1.2. Note that Bs−1

p,q is a Banach algebra for s > n
p + 1. One can

easily prove that there exists a unique smooth solution (u, b) ∈ C([0, T );Bs
p,q) ∩

C1([0, T );Bs−1
p,q ) to (1.1) by standard method; see [16] for details.
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Remark 1.3. (i) In the case of b = 0, (IMHD) can be read as the incompressible
Euler equations (IE), and what is proved in [14] is a straightforward consequence of
Theorem 1.2.

(ii) Making use of losing estimate techniques, we can establish an improved blow-
up criterion of smooth solution in the framework of mixed time-space Besov space for
the incompressible Navier–Stokes equations (NS) and MHD equations (MHD).

Notation. Throughout the paper, C stands for a “harmless” constant, and we will
use the notation A � B as an equivalent to A ≤ CB, A ≈ B as A � B and B � A.

2. Preliminaries. Let us recall the Littlewood–Paley decomposition (see also
[1, 15]) and then establish a certain kind of logarithmic Sobolev inequalities in the
framework of mixed time-space Besov space. Let S(R3) be the Schwartz class of

rapidly decreasing functions. Given f ∈ S(Rn), its Fourier transform Ff = f̂ is
defined by

f̂(ξ) = (2π)−
n
2

∫
Rn

e−ix·ξf(x)dx.

Choose two nonnegative radial functions χ, ϕ ∈ S(Rn), supported in B = {ξ ∈
R

n, |ξ| ≤ 4
3} and C = {ξ ∈ R

n, 3
4 ≤ |ξ| ≤ 8

3}, respectively, such that

χ(ξ) +
∑
j≥0

ϕ(2−jξ) = 1, ξ ∈ R
n,

∑
j∈Z

ϕ(2−jξ) = 1, ξ ∈ R
n\{0}.

Setting ϕj(ξ) = ϕ(2−jξ), one easily verifies that suppϕj ∩ suppϕj′ = ∅ if |j − j′| ≥ 2

and suppχ∩suppϕj = ∅ if j ≥ 1. Let h = F−1ϕ and h̃ = F−1χ; we define the dyadic
blocks as follows:

Δjf = ϕ(2−jD)f = 2jn
∫

Rn

h(2jy)f(x− y)dy,

Sjf =
∑

k≤j−1

Δkf = χ(2−jD)f = 2jn
∫

Rn

h̃(2jy)f(x− y)dy.

Informally, Δj = Sj − Sj−1 is a frequency projection to the annulus {|ξ| ≈ 2j}, while
Sj is a frequency projection to the ball {|ξ| � 2j}.

Making use of Littlewood–Paley’s decomposition, we give the definition of the
homogenous Besov space. Let s ∈ R, 1 ≤ p, q ≤ ∞; the homogenous Besov space Ḃs

p,q

is defined by

Ḃs
p,q = {f ∈ Z ′(Rn); ‖f‖Ḃs

p,q
< ∞},

where

‖f‖Ḃs
p,q

=

⎧⎪⎪⎨
⎪⎪⎩

( ∞∑
j=−∞

2jsq‖Δjf‖qp
) 1

q

for q < ∞,

sup
j∈Z

2js‖Δjf‖p for q = ∞,

and Z ′(Rn) denotes the dual space of Z(Rn) = {f ∈ S(Rn); ∂αf̂(0) = 0;∀α ∈
N

n multi-index} and can be identified by the quotient space of S ′/P with the poly-
nomials space P.
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For s > 0, we define the inhomogeneous Besov space as

Bs
p,q = {f ∈ S ′(Rn); ‖f‖Bs

p,q
< ∞},

where

‖f‖Bs
p,q

= ‖f‖p + ‖f‖Ḃs
p,q

.

For details, we refer to [1, 15].
In addition to normal time-space Besov space such as Lr(I;Bs

p,q) or Lr(I; Ḃs
p,q),

we also use another kind of mixed time-space Besov space, used previously in [6]; see

also [4]. Let s ∈ R, 1 ≤ r, p, q ≤ ∞, 0 < T ≤ +∞; the space L̃r
T (Ḃs

p,q) is defined by

L̃r
T (Ḃs

p,q) = {f ∈ D′((0, T );Z ′(Rn)); ‖f‖L̃r
T (Ḃs

p,q)
< ∞},

where

‖f‖L̃r
T (Ḃs

p,q)
=

∥∥∥∥∥2js
(∫ T

0

‖Δjf(t)‖rpdt
) 1

r

∥∥∥∥∥
�q

.

Before establishing logarithmic Sobolev inequality in the framework of mixed
time-space Besov space, we introduce two well-known lemmas which will be used
repeatedly in this paper.

Lemma 2.1 (Bernstein’s estimates). Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ Lp;
then there exist constants C independent of f , j such that

suppf̂ ⊂ {|ξ| � 2j} ⇒ ‖∂αf‖q ≤ C2j|α|+jn( 1
p−

1
q )‖f‖p,(2.1)

suppf̂ ⊂ {|ξ| ≈ 2j} ⇒ ‖f‖p ≤ C2−j|α| sup
|β|=|α|

‖∂βf‖p.(2.2)

This lemma is classic and for a proof, see [13].
Lemma 2.2 (commutator estimate). Let j ∈ Z, 1 ≤ p ≤ ∞. Assume that f ∈ Lp,

∇g ∈ L∞; then there exists a positive constant C independent of f , g, and j such that

‖[Δj , g]f‖p ≤ C2−j‖∇g‖∞‖f‖p.(2.3)

The proof is rather standard and can be found in [5, 7, 14].
Now we are in the position to prove a certain kind of logarithmic Sobolev inequal-

ities initiated in [14] in terms of mixed time-space Besov space, which will play an
important role in the proof of Theorem 1.1 as well.

Proposition 2.1. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and s > n
p + 1. Assume that

f ∈ L̃1
T (Ḃ0

∞,∞) ∩ L∞
T (Bs−1

p,q ). Then the following inequality holds:

(2.4)

∫ T

0

‖f(t)‖∞dt ≤ C

(
1 + sup

j

∫ T

0

‖Δjf‖∞dt(1 + log+(T‖f‖L∞
T (Bs−1

p,q )))

)
,

where log+ x = log x, for x > 1; log+ x = 0, for x ≤ 1; and C is an absolute constant
independent of f , T .

Proof. Using the Littlewood–Paley decomposition, we decompose f as follows:

f = S−Nf +

N∑
j=−N

Δjf +
∑
j>N

Δjf � f1 + f2 + f3,
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where N is a positive integer to be chosen later. We first estimate f1. It follows from
(2.1) that

(2.5)

∫ T

0

‖f1‖∞dt ≤
∫ T

0

2−N n
p ‖S−Nf‖pdt ≤ CT2−N n

p ‖f‖p.

Second, it is obvious that

(2.6)

∫ T

0

‖f2‖∞dt ≤ (2N + 1) sup
j

∫ T

0

‖Δjf‖∞dt.

Finally, we turn to f3. In view of (2.1) together with the definition of Besov space, it
follows that ∫ T

0

‖f3‖∞dt ≤
∫ T

0

∑
j>N

2j(
n
p −s+1)2j(s−1)‖Δjf‖pdt

≤ CT2−N(s−n
p −1)‖f‖L∞

T (Bs−1
p,q ),(2.7)

where we have used the Hölder inequality in the last inequality of (2.7).
Combining (2.5)–(2.7) and setting α = min(np , s−

n
p − 1), one easily verifies that

∫ T

0

‖f‖∞dt ≤ C

(
T2−αN‖f‖L∞

T (Bs−1
p,q ) + N sup

j

∫ T

0

‖Δjf‖∞dt

)
.(2.8)

Now we choose N such that T2−αN‖f‖L∞
T (Bs−1

p,q ) ≤ 1, i.e.,

N ≥
log(T‖f‖L∞

T (Bs−1
p,q ))

α log 2
.

Then our desired estimate (2.4) follows from the above inequality and (2.8).

3. A losing a priori estimate. Let us begin with the proof of Theorem 1.1.
Proof of Theorem 1.1. We first consider the symmetrized IMHD equations rewrit-

ten in terms of the classical Elsasser variables [9]. Denote{
z+ = u + b,
z− = u− b.

Then (IMHD) can be reduced to

(IMHD)∗

⎧⎪⎪⎨
⎪⎪⎩

∂tz
+ + (z− · ∇)z+ = −∇π,

∂tz
− + (z+ · ∇)z− = −∇π,

divz+ = divz− = 0,
z+(0) = z+

0 = u0 + b0, z−(0) = z−0 = u0 − b0,

(3.1)

where π = p + 1
2b

2.

Let (z+, z−) be a smooth solution to (IMHD)∗ with (z+
0 , z−0 ) ∈ Ḃs

p,q, s > n
p + 1,

1 ≤ p, q < ∞. Then the proof of Theorem 1.1 can be reduced to establish the following
estimate: for λ sufficient large, such as λ > C0, there holds

αq
T + βq

T � ‖z+
0 ‖q

Ḃs
p,q

+ ‖z−0 ‖q
Ḃs

p,q

,(3.2)
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where αT = ‖αj,T ‖�q , βT = ‖βj,T ‖�q and

αj,T = sup
t∈[ 0,T )

2js−Φλ(t)‖Δjz
+(t)‖p,

βj,T = sup
t∈[ 0,T )

2js−Φλ(t)‖Δjz
−(t)‖p with

Φλ(t′, t) � λ

∫ t

t′
‖∇z+(t′′)‖∞ + ‖∇z−(t′′)‖∞dt′′ and Φλ(t) = Φλ(0, t).

Denote P the matrix operator with entries (δij −RiRj); here δij is the Kronecker
symbol and Ri, Rj are Riesz transforms. As such P is the well-known projection onto
divergence-free vector fields. Applying P to two sides of (3.1) and taking the operation
Δj on both sides of the resulting equations, we get

{
∂tz

+
j + PΔj((z

− · ∇)z+) = 0,

∂tz
−
j + PΔj((z

+ · ∇)z−) = 0,
(3.3)

where

zj = Δjz.

Multiplying the first equation of (3.3) by |z+
j |p−2z+

j and the second one by |z−j |p−2z−j ,
integrating the resulting equations in R

n with respect to the space variable gives⎧⎪⎪⎨
⎪⎪⎩

1

p

d

dt
‖z+

j ‖pp = −
∫

Rn

PΔj((z
− · ∇)z+) |z+

j |p−2z+
j dx,

1

p

d

dt
‖z−j ‖pp = −

∫
Rn

PΔj((z
+ · ∇)z−) |z−j |p−2z−j dx.

In what follows, we need to estimate the convection terms∫
Rn

PΔj((z
− · ∇)z+) |z+

j |p−2z+
j dx and

∫
Rn

PΔj((z
+ · ∇)z−) |z−j |p−2z−j dx.(3.4)

We only deal with the first term appearing in (3.4), as the second one can be treated
in the same way. Now we decompose ((z− · ∇)z+) as a paraproduct

(z− · ∇)z+ =
∑
k

(Sk−1z
− · ∇)z+

k +
∑
k

(z−k · ∇)Sk−1z
+ +

∑
|k−k′|≤1

(z−k′ · ∇)z+
k

� I1 + I2 + I3.(3.5)

It is easy to see that we only need to preserve the vector structure for I1. For the
remaining two terms one can forget about vectors and think of them as scalar.

• I2 estimates. Applying the Hölder inequality in conjunction with the bounded-
ness of P on Lp (1 < p < ∞), we get∣∣∣∣

∫
Rn

PΔj(I2)|z+
j |p−2z+

j dx

∣∣∣∣ �
∑
k∼j

‖∇Sk−1z
+‖∞‖z−k ‖p‖z+

j ‖p−1
p ,(3.6)

where k ∼ j stands for |k − j| ≤ 1 owing to the support conditions.
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• I3 estimates. Noting that ∇ · z±j = 0, one easily shows that

∫
Rn

PΔj(I3)|z+
j |p−2z+

j dx =
∑

1≤�≤n

∫
Rn

Δj

( ∑
j�k∼k′

P∇ · (z−k′ ⊗ z+
k )

)(�)

|z+
j

(�)|p−2z+
j

(�)
dx.

If p ≥ 2, integrating by parts together with the Hölder inequality yields∣∣∣∣
∫

Rn

PΔj(I3)|z+
j |p−2z+

j dx

∣∣∣∣ � (p− 1)
∑

j�k∼k′

‖z−k′‖p‖z+
k ‖p‖z

+
j ‖p−2

p ‖∇z+
j ‖∞.(3.7)

If p < 2, it follows by the Hölder inequality∣∣∣∣
∫

Rn

PΔj(I3)|z+
j |p−2z+

j dx

∣∣∣∣ �
∑

j�k∼k′

‖∇z+
k ‖∞‖z−k′‖p‖z+

j ‖p−1
p .(3.8)

• I1 estimates. Observe that

PΔj

∑
k

(Sk−1z
− · ∇)z+

k = PΔj(Sj−1z
− · ∇)

∑
k∼j

z+
k + PΔj

∑
k∼k′∼j

(z−k′ · ∇)z+
k

� II1 + II2.

We have by the Hölder inequality∣∣∣∣
∫

Rn

II2|z+
j |p−2z+

j dx

∣∣∣∣ �
∑

k∼k′∼j

‖∇z+
k ‖∞‖z−k′‖p‖z+

j ‖p−1
p .(3.9)

Furthermore, we can rewrite II1 as

II1 =
∑

1≤�≤n

C�∂�
∑
k∼j

z+
k + (Sj−1z

− · ∇)PΔj

∑
k∼j

z+
k � III1 + III2,

where C� is the commutator denoted by

C� = [PΔj , Sj−1z
−(�)

Id].

It is easy to see
∑

k∼j PΔjz
+
k = z+

j . Making use of divz+
j = 0 and integrating by

parts, we have∫
Rn

III2|z+
j |p−2z+

j dx=
∑

1≤�≤n

∫
Rn

Sj−1z
−(�)

∂�z
+
j |z+

j |p−2z+
j dx

=
∑

1≤�≤n

∫
Rn

∂�(Sj−1z
−(�)

z+
j )|z+

j |p−2z+
j dx

= −(p− 1)
∑

1≤�≤n

∫
Rn

Sj−1z
−(�)

z+
j ∂�z

+
j |z+

j |p−2dx,

which implies that ∫
Rn

III2|z+
j |p−2z+

j dx = 0.(3.10)



A LOSING ESTIMATE FOR THE IDEAL MHD EQUATIONS 1855

On the other hand, from the commutator estimate (2.3), we obtain∣∣∣∣
∫

Rn

III1|z+
j |p−2z+

j dx

∣∣∣∣ � ‖∇Sj−1z
−‖∞‖z+

j ‖pp .(3.11)

Combining (3.6)–(3.7) and (3.9)–(3.11), we infer that

1

p

d

dt
‖z+

j ‖pp �
∑
k∼j

(
‖∇Sj−1z

+‖∞‖z−k ‖p‖z+
j ‖p−1

p + ‖∇Sj−1z
−‖∞‖z+

k ‖p‖z
+
j ‖p−1

p

)

+
∑

j�k′∼k

‖z+
k ‖p‖z

−
k′‖p‖z+

j ‖p−2
p ‖∇z+

j ‖∞

�
∑
k∼j

(
‖∇z+‖∞‖z−k ‖p‖z+

j ‖p−1
p + ‖∇z−‖∞‖z+

k ‖p‖z
+
j ‖p−1

p

)

+
∑

j�k′∼k

‖z+
k ‖p‖z

−
k′‖p‖z+

j ‖p−2
p ‖∇z+‖∞,

where use has been made of the inequalities ‖∇Sj−1z
+‖∞ ≤ ‖∇z+‖∞ and ‖∇z+

k ‖∞ ≤
‖∇z+‖∞ to derive the second estimate. Thus we deduce

d

dt
‖z+

j ‖2
p �

∑
k∼j

(
‖∇z+‖∞‖z−k ‖p + ‖∇z−‖∞‖z+

k ‖p
)
‖z+

j ‖p

+
∑

j�k′∼k

‖z+
k ‖p‖z

−
k′‖p‖∇z+‖∞,

which implies

d

dt
‖z+

j ‖qp � q

2

∑
k∼j

(
‖∇z+‖∞‖z−k ‖p + ‖∇z−‖∞‖z+

k ‖p
)
‖z+

j ‖q−1
p

+
q

2

∑
j�k′∼k

‖z+
k ‖p‖z

−
k′‖p‖∇z+‖∞‖z+

j ‖q−2
p .(3.12)

In the same way as leading to (3.12), we have for z−j

d

dt
‖z−j ‖qp � q

2

∑
k∼j

(
‖∇z−‖∞‖z+

k ‖p + ‖∇z+‖∞‖z−k ‖p
)
‖z−j ‖q−1

p

+
q

2

∑
j�k′∼k

‖z−k ‖p‖z+
k′‖p‖∇z−‖∞‖z−j ‖q−2

p .(3.13)

Integrating (3.13) over [0, t) with respect to time variable τ , and then multiplying by
2q(js−Φλ(t)) both sides of the resulting inequality, we get

2q(js−Φλ(t))‖z+
j ‖qp(t) � 2jqs‖z+

j ‖qp(0) +

∫ t

0

2−qΦλ(τ,t)(‖∇z+‖∞ + ‖∇z−‖∞)(τ)

×
(∑

k∼j

2q(js−Φλ(τ))‖z+
j (τ)‖q−1

p (‖z−k ‖p + ‖z+
k ‖p)(τ) +

∑
j�k′∼k

22(j−k)s

×2ks−Φλ(τ)‖z+
k ‖p2k

′s−Φλ(τ)‖z−k′‖p2(q−2)(js−Φλ(τ))‖z+
j ‖q−2

p

)
dτ.
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Taking the supremum over [0, T ) on both sides of the above inequality, we deduce
that

αq
j,T � αq

j,0 + sup
t∈[0,T )

∫ t

0

2−qΦλ(τ,t)(‖∇z+‖∞ + ‖∇z−‖∞)(τ)dτ

(
αq−1
j,T

∑
k∼j

(βk,T + αk,T )

+αq−2
j,T

∑
j�k′∼k

22(j−k)sαk,Tβk′,T

)
.(3.14)

Moreover, integrating by parts yields

∫ t

0

2−qΦλ(τ,t)(‖∇z+‖∞ + ‖∇z−‖∞)(τ)dτ ≤ 1

qλ log 2
.(3.15)

• When q ≥ 2. Taking the sum over j of (3.14); then using the above estimate
and Hölder inequality leads to

αq
T � ‖z+

0 ‖q
Ḃs

p,q

+
1

qλ log 2
(αq−1

T βT + αq
T ),(3.16)

where use has been made of the �1 → �
q
2 convolution to the second sum of the right

side of (3.14). Let us go back to (3.13); arguing similarly as in deriving (3.16), we
obtain

βq
T � ‖z−0 ‖q

Ḃs
p,q

+
1

qλ log 2
(βq−1

T αT + βq
T ).(3.17)

Summing up (3.16) and (3.17), together with the Hölder inequality, yields

αq
T + βq

T � ‖z+
0 ‖q

Ḃs
p,q

+ ‖z−0 ‖q
Ḃs

p,q

+
1

qλ log 2
(αq

T + βq
T ).(3.18)

Now if we choose λ large enough such that

λ � 2

q log 2
,(3.19)

then

αq
T + βq

T � ‖z+
0 ‖q

Ḃs
p,q

+ ‖z−0 ‖q
Ḃs

p,q

.(3.20)

• When q < 2. One may substitute (3.7) by (3.8) in the estimate of I3. It is not
hard to verify that

αq
j,T � αq

j,0 + sup
t∈[0,T )

∫ t

0

2−qΦλ(τ,t)(‖∇z+‖∞ + ‖∇z−‖∞)(τ)dτ

(
αq−1
j,T

∑
k∼j

(βk,T + αk,T )

+αq−1
j,T

∑
j�k′∼k

2(j−k)sβk′,T

)
.

By exactly the same procedure as the case of q ≥ 2, we can get the required estimate
(3.2). This completes the proof of Theorem 1.1.
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4. The blow-up criterion. In this section, we want to prove Theorem 1.2.
Proof of Theorem 1.2. Assume that

lim
ε→0

sup
j

∫ T

T−ε

(‖Δjω‖∞ + ‖ΔjJ‖∞)dt = δ < M.(4.1)

Then the solution (u, b) of (IMHD) can be extended past time t = T , where ω = ∇×u
and J = ∇ × b are the vorticity with respect to u and b, respectively. This fact is
equivalent to the blow-up criterion (1.9) in Theorem 1.2.

Let (u, b) ∈ CT (Bs
p,q), s >

n
p +1, 1 ≤ p, q < ∞ be the smooth solution to (IMHD);

then (z+, z−) is the smooth solution to (IMHD)∗ and (4.1) can be read as

lim
ε→0

sup
j

∫ T

T−ε

(‖Δj(∇× z+)‖∞ + ‖Δj(∇× z−)‖∞)dt = δ < 2M.(4.2)

Thanks to the Biot–Savard law,

∇u = (−Δ)−1∇∇× ω, ∇b = (−Δ)−1∇∇× J,

and ‖RkΔjf‖p ≤ C0‖Δjf‖p, (1 ≤ p ≤ ∞); it follows that (4.2) is equivalent to

lim
ε→0

sup
j

∫ T

T−ε

(‖Δj∇z+‖∞ + ‖Δj∇z−‖∞)dt = δ0 < 2C0M,(4.3)

where C0 is a constant from the boundedness of Riesz transform Rk, 1 ≤ k ≤ n.
We are now in position to set the blow-up criterion. In order to do this, let us

estimate

‖z+(t)‖p ≤ ‖z+
0 ‖p +

∫ t

0

‖∇z+(τ)‖∞‖z−(τ)‖pdτ.

Multiplying by 2−Φλ(t), both sides of the above inequality yield

2−Φλ(t)‖z+(t)‖p � ‖z+
0 ‖p +

∫ t

0

2−Φλ(τ,t)‖∇z+(τ)‖∞2−Φλ(τ)‖z−(τ)‖pdτ.

This along with (3.15) implies that

sup
t∈[0,T )

2−Φλ(t)‖z+(t)‖p � ‖z+
0 ‖p +

1

λ log 2
sup
[0,T )

2−Φλ(t)‖z−(t)‖p.

An analogous argument leading to the above estimate allows us to get

sup
t∈[0,T )

2−Φλ(t)‖z−(t)‖p � ‖z−0 ‖p +
1

λ log 2
sup
[0,T )

2−Φλ(t)‖z+(t)‖p.

If λ � 2
log 2 , then

sup
t∈[0,T )

2−Φλ(t)(‖z+(t)‖p + ‖z−(t)‖p) � ‖z+
0 ‖p + ‖z−0 ‖p.(4.4)

Let us define

γT � sup

(
(αq

T + βq
T )

1
q , sup

[0,T )

2−Φλ(t)(‖z+(t)‖p + ‖z−(t)‖p)
)
.
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This together with (3.2) and (4.4) implies that

γT � ‖z+
0 ‖Bs

p,q
+ ‖z−0 ‖Bs

p,q
.

In particular, we have

‖z+(t)‖Bs
p,q

+ ‖z−(t)‖Bs
p,q

� 2Φλ(t)(‖z+
0 ‖Bs

p,q
+ ‖z−0 ‖Bs

p,q
) ∀ t ∈ [0, T ),(4.5)

where

Φλ(t) = λ

∫ t

0

(‖∇z+‖∞ + ‖∇z−‖∞)(τ)dτ.

Applying Proposition 2.1 with f(t) = ∇z+ and f(t) = ∇z−, respectively, and collect-
ing the resulting inequalities, we have

∫ t

0

(‖∇z+‖∞ + ‖∇z−‖∞)(τ)dτ � 1 + sup
j

∫ t

0

(‖Δj∇z+‖∞ + ‖Δj∇z−‖∞)dτ

×
(

1 + log+(t‖z+‖L∞
t (Bs

p,q)
+ t‖z−‖L∞

t (Bs
p,q)

)

)
.(4.6)

For the sake of convenience, we denote that

ζ(T ) � sup
[0,T )

∥∥z+(t)
∥∥
Bs

p,q
+ sup

[0,T )

∥∥z−(t)
∥∥
Bs

p,q
.

Putting (4.6) into (4.5), then taking supremum over [0, T ) with respect to t, we have

ζ(T ) � 2
λ

(
1 + sup

j

∫ T

0

(‖Δj∇z+‖∞ + ‖Δj∇z−‖∞)dτ(1 + log+(Tζ(T )))

)
ζ(0).

We should point out that the above inequality still holds if the time interval [0, T ) is
replaced by [T − ε, T ). Thanks to condition (4.3), we deduce that

ζ(T ) � 2
λ sup

j

∫ T

T−ε

(‖Δj∇z+‖∞ + ‖Δj∇z−‖∞)dτ log+(εζ(T ))
ζ(T − ε).

Setting Z(T ) � log(e + ζ(T )), we finally have

Z(T ) ≤ Cλ sup
j

∫ T

T−ε

(‖Δj∇z+‖∞ + ‖Δj∇z−‖∞)dτZ(T ) + Z(T − ε).(4.7)

If we choose M = 1
2CC0λ

, the condition (4.3) ensures the term λ supj

∫ T

T−ε
(‖Δj∇z+‖∞+

‖Δj∇z−‖∞)dτ < 1
Cλ when ε → 0, which implies that

Z(T ) � Z(T − ε).

Hence we have the Bs
p,q regularity for the solution at t = T and the solution can be

continued after t = T . This completes the proof of Theorem 1.2.
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THE EFFECT OF INHIBITOR ON THE PLASMID-BEARING AND
PLASMID-FREE MODEL IN THE UNSTIRRED CHEMOSTAT∗

JIANHUA WU† , HUA NIE† , AND GAIL S. K. WOLKOWICZ‡

Abstract. This paper deals with a chemostat model with an inhibitor in the context of competi-
tion between plasmid-bearing and plasmid-free organisms. First, sufficient conditions for coexistence
of the steady-state are determined. Second, the effects of the inhibitor are considered. It turns out
that the parameter μ, which represents the effect of the inhibitor, plays a very important role in
deciding the number of the coexistence solutions. The results show that if μ is sufficiently large this
model has at least two coexistence solutions provided that the maximal growth rate a of u lies in
a certain range and has only one unique asymptotically stable coexistence solution when a belongs
to another range. Finally, extensive simulations are done to complement the analytic results. The
main tools used here include degree theory in cones, bifurcation theory, and perturbation technique.

Key words. chemostat, coexistence solution, perturbation theory, stability

AMS subject classifications. 35K55, 35K57,35J65, 92A17
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1. Introduction. The chemostat is a common model in microbial ecology. It is
used as an ecological model of a simple lake, as a model of waste treatment, and as a
model for commercial production of fermentation processes. It is important in ecology
because the parameters are readily measurable and, thus, the mathematical results are
readily testable. For a general discussion of competitive systems see [29], while a de-
tailed mathematical description of competition in the chemostat can be found in [30].

Our study focuses on a chemostat model in the context of competition between
plasmid-bearing and plasmid-free organisms. This issue has recently received consid-
erable attention. The theoretical literature on this model includes Ryder and DiBiaso
[25], Stephanopoulos and Lapidus [28], Hsu, Waltman, and Wolkowicz [17], Lu and
Hadeler [22], Levin [20], Luo and Hsu [18], and Macken, Levin, and Waldstätter
[23]. In industry, genetically altered organisms are frequently used to manufacture
a desired product, for instance, a pharmaceutical. The alteration is accomplished
by introducing a piece of DNA into the cell in the form of a plasmid. The burden
imposed on the cell by the task of production can result in the genetically altered (the
plasmid-bearing) organism being a less able competitor than the plasmid-free organ-
ism. Unfortunately, the plasmid can be lost in the reproductive process. Thus, it is
possible for the plasmid-free organism to take over the culture. To avoid “capture” of
the process by the plasmid-free organism, the obvious choice is to alter the medium
in such a way as to favor the plasmid-bearing organism. An example of this would be
to introduce an antibiotic into the feed bottle. See [10, 15, 16] for a detailed biological
and chemical background. Models in this direction have been studied in Lenski and
Hattingh [21], Hsu and Waltman [13, 15, 16], Hsu, Luo, and Waltman [12], Nie and
Wu [24], and the references therein.
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This paper is concerned with the competition model between plasmid-bearing
and plasmid-free organisms in the unstirred chemostat in the presence of an inhibitor.
Here the plasmid-bearing organism devotes a partition of its resource to produce an
inhibitor, which diminishes the growth rate of the plasmid-free organism but does not
reduce that of the plasmid-bearing organism. The pioneering work on this model is
that of Hsu and Waltman in [15]. They proposed an ODE model (see [15]) based on the
study of Chao and Levin [1] and Levin [20]. Moreover, they obtained some results on
the global asymptotic behavior. In our current paper, we allow a heterogeneous envi-
ronment and so we remove the well-stirred hypothesis and consider the corresponding
PDE system. Let s(x, t) be the nutrient concentration at time t; let u(x, t) and v(x, t)
be the concentrations of the plasmid-bearing and plasmid-free organisms in the culture
vessel, respectively, and let p(x, t) be the concentration of the inhibitor. Then using
similar arguments as in [6, 14, 34, 32, 24] the model in the unstirred case takes the form

st = dsxx − 1
rauf1(s) − 1

r bvf2(s)e
−μp, x ∈ (0, 1), t > 0,

ut = duxx + a(1 − q − k)uf1(s), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(s)e

−μp + aquf1(s), x ∈ (0, 1), t > 0,
pt = dpxx + akuf1(s), x ∈ (0, 1), t > 0

with boundary conditions and initial conditions

sx(0, t) = −s0, sx(1, t) + γs(1, t) = 0, t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
px(0, t) = px(1, t) + γp(1, t) = 0, t > 0

s(x, 0) = s0(x) ≥ 0, p(x, 0) = p0(x) ≥ 0, �≡ 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0,

where s0 > 0 is the input concentration of the nutrient, which is assumed to be
constant; d is the diffusion rate of the chemostat; r is the growth yield constant
and a, b are the maximal growth rates of the plasmid-bearing and plasmid-free or-
ganisms (without an inhibitor), respectively. The response functions are denoted by
fi(s) = s/(ki + s), i = 1, 2, where ki are the Michaelis–Menten constants. The term
e−μp used by Lenski and Hattingh in [21] represents the degree of inhibition of p
on the growth rate of v, where μ > 0 is a constant and represents the effect of the
inhibitor on v. The constant q is the fraction of plasmid lost, and k is the fraction
of consumption devoted to the production of the inhibitor. Hence, 0 < q, k < 1,
and 1 − q − k > 0. γ is a positive constant. In this model, the corresponding yield
constants are assumed to be equal, just as in [17, 15, 20].

For the sake of convenience, by nondimensionalizing the parameters, which are
indicated below with bars, s̄ = s/s0, ū = u/rs0, v̄ = v/rs0, p̄ = p/rs0, k̄i = ki/s

0, μ̄ =
rs0μ, fi(s̄) = fi(s

0s̄), we can rewrite this model in the form

st = dsxx − auf1(s) − bvf2(s)e
−μp, x ∈ (0, 1), t > 0,

ut = duxx + a(1 − q − k)uf1(s), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(s)e

−μp + aquf1(s), x ∈ (0, 1), t > 0,
pt = dpxx + akuf1(s), x ∈ (0, 1), t > 0,
sx(0, t) = −1, sx(1, t) + γs(1, t) = 0, t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
px(0, t) = px(1, t) + γp(1, t) = 0, t > 0,
s(x, 0) = s0(x) ≥ 0, p(x, 0) = p0(x) ≥ 0, �≡ 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0.

(1.1)

For simplicity, we drop the bars over the nondimensional quantities.



1862 JIANHUA WU, HUA NIE, AND GAIL S. K. WOLKOWICZ

Introduce the new variables Φ(x, t) = s + u + v + p and Ψ(x, t) = p − cu into
(1.1), where c = k/(1 − q − k). Then one can argue in exactly the same way as in
[24, 33, 34, 36] to conclude that the limiting system of (1.1) may be written as

(PP)

ut = duxx + a(1 − q − k)uf1(z − (1 + c)u− v), x ∈ (0, 1), t > 0,
vt = dvxx + bvf2(z − (1 + c)u− v)e−μcu

+aquf1(z − (1 + c)u− v), x ∈ (0, 1), t > 0,
ux(0, t) = ux(1, t) + γu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + γv(1, t) = 0, t > 0,
u(x, 0) = u0(x) ≥ 0, �≡ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0, x ∈ [0, 1],

where z(x) = (1 + γ)/γ − x, (1 + c)u0(x) + v0(x) ≤ z(x), �≡ z(x).
The purpose of the present paper is to investigate nonnegative steady-state so-

lutions of system (1.1) and the effect of the inhibitor on coexistence states of this
system. Thus we will concentrate on the simplified elliptic system:

(EP)
du

′′
+ a(1 − q − k)uf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − (1 + c)u− v)e−μcu + aquf1(z − (1 + c)u− v) = 0,
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

which is obtained from the steady-state system of (1.1) by introducing the variables
Φ(x) = s+ u+ v + p and Ψ(x) = p− cu. Since the proof is standard, we omit it here.
Interested readers can refer to [14, 24, 32, 33, 34] for details.

We are mainly interested in coexistence states of (EP), that is, the positive solu-
tions of (EP). Hence, we redefine the response functions as follows:

f̄i(s) =

{
fi(s), s ≥ 0,
tan−1(2s/ki + 1) − π/4, s < 0.

It is easily seen that f̄i ∈ C1(−∞,+∞). We will denote f̄i(s) by fi(s) for the sake of
simplicity.

This work is motivated by numerical simulations that seem to indicate that, when
the parameters sit in a certain range, there exists a coexistence solution of (EP). More
interestingly, it is possible that (EP) has exactly two coexistence solutions if v is a
better competitor than u and the parameter μ is suitably large. From the biological
standpoint, the numerical results mean that the inhibitor plays an important role
in determining the number of coexistence solutions of (EP). As mentioned before,
the main purpose of this paper is to determine when the numerical results hold and
confirm them rigorously.

Turning now to a description of the main results, we start by introducing some
notation and recalling some well-known facts. Let λ1, σ1 be, respectively, the principal
eigenvalues of the problems

dϕ
′′

1 + λ1f1(z)ϕ1 = 0 in (0, 1), ϕ′
1(0) = ϕ′

1(1) + γϕ1(1) = 0;

dψ
′′

1 + σ1f2(z)ψ1 = 0 in (0, 1), ψ′
1(0) = ψ′

1(1) + γψ1(1) = 0,

with the corresponding positive eigenfunctions uniquely determined by the normal-
ization max[0,1] ϕ1 = max[0,1] ψ1 = 1. It is well known (see [14, 33]) that, if a ≤
λ1/(1 − q − k), the boundary value problem

du
′′

+ a(1 − q − k)uf1(z − u) = 0, x ∈ (0, 1), u′(0) = u′(1) + γu(1) = 0(1.2)
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has zero as its unique nonnegative solution, and if a > λ1/(1 − q − k), then it has a
unique positive solution, which is denoted by ϑ and satisfies the following properties.

(A) 0 < ϑ < z.
(B) ϑ is continuously differentiable for a ∈ (λ1/(1− q− k),+∞) and is pointwise

increasing when a increases.
(C) lima→λ1/(1−q−k) ϑ = 0 uniformly for x ∈ (0, 1), and lima→∞ ϑ = z(x) for

almost every x ∈ (0, 1).

(D) Let La = d d2

dx2 + a(1 − q − k)(f1(z − ϑ) − ϑf ′
1(z − ϑ)) be the linear operator

of the above equation at ϑ. Then La is a differential operator in C2
B([0, 1]) = {u ∈

C2([0, 1]) : u′(0) = u′(1) + γu(1) = 0}, and all eigenvalues of La are strictly negative.
Remark 1. For the other steady-state one-species problem

dv
′′

+ bvf2(z − v) = 0, x ∈ (0, 1), v′(0) = v′(1) + γv(1) = 0,

we have the same outcomes. Since we will need this later, we denote the unique

positive solution by θ and the linear operator by Lb = d d2

dx2 +b(f2(z−θ)−θf ′
2(z−θ)).

Next, we introduce λ̂1 as the principal eigenvalue of

dϕ̂
′′

1 + λ̂1f1(z − θ)ϕ̂1 = 0 in (0, 1), ϕ̂′
1(0) = ϕ̂′

1(1) + γϕ̂1(1) = 0,

with the corresponding eigenfunction ϕ̂1 normalized by max[0,1] ϕ̂1 = 1.
Now we are ready to state the main results of this paper, which give analytic

confirmation of some of the numerical results.
Theorem 1.1. (EP) has a coexistence solution if either (i) a > λ1/(1−q−k), b <

σ1 or (ii) a > λ̂1/(1 − q − k), b > σ1.

Theorem 1.2. Suppose b > σ1. Then for any ε > 0 small and any A ≥ λ̂1

1−q−k ,

there exists M = M(ε, A) large such that for μ ≥ M,

(i) if a ∈ [λ1/(1 − q − k) + ε, λ̂1/(1 − q − k)), there exist at least two coexistence
solutions of (EP);

(ii) if a ∈ [λ̂1/(1 − q − k), A], there exists a unique coexistence solution of (EP),
and it is asymptotically stable.

Theorem 1.3. Suppose b > σ1. Then there exist ε0 > 0 small and M0 > 0
large, both independent of a, such that if a ∈ [λ̂1/(1− q− k)− ε0, λ̂1/(1− q− k)) and
μ ≥ M0, then (EP) has exactly two coexistence solutions, one asymptotically stable
and the other unstable.

The main tools in proving Theorems 1.1–1.3 include degree theory and bifurcation
theory. A crucial point of the proof for Theorems 1.2 and 1.3 is to make use of the
limiting equations of (EP) which are obtained by letting μ → ∞ formally in (EP). It
turns out that one of the limiting problems can be understood fully. For the other
limiting problem, we can also attain some properties. Finally, perturbation theory
leads to the main results of this paper.

The contents of the present paper are as follows: In section 2, some preliminary
results are given which are needed in the later sections. In section 3, we consider the
general case and prove Theorem 1.1. For the case μ large, the uniqueness and non-
uniqueness of the coexistence solutions to (EP) are obtained in section 4. The stability
is also obtained for some cases. Finally, in section 5, some numerical simulations are
given complementing the analytical results.

2. Preliminaries. We begin by providing the following well-known lemmas as
preliminaries without proofs. They are useful for obtaining the results in this paper.
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Lemma 2.1 (see [9, 19]). Suppose q(x) ∈ C(Ω) and q(x) > 0 on Ω in the
eigenvalue problem

	φ + λq(x)φ = 0, x ∈ Ω, ∂φ
∂n + γ(x)φ = 0, x ∈ ∂Ω,(2.1)

where γ(x) ∈ C(∂Ω) and γ(x) ≥ 0. Then all eigenvalues of (2.1) can be listed in order

0 < λ1(q(x)) < λ2(q(x)) ≤ · · · → ∞

with the corresponding eigenfunctions φ1, φ2, . . . , where φ1 > 0 on Ω, and the principal
eigenvalue

λ1(q) = inf
φ

∫
Ω
|∇φ|2dx +

∫
∂Ω

γ(x)φ2ds∫
Ω
q(x)φ2dx

is simple. Moreover, the comparison principle holds: λj(q1) ≤ λj(q2) for j ≥ 1 if
q1 ≥ q2 on Ω, and strict inequality holds if q1(x) �≡ q2(x).

Lemma 2.2 (see [27]). Suppose q∈C(Ω), γ(x)∈C(∂Ω), and γ(x)≥0. Let σ1(q)
be the first eigenvalue of the problem −	ω+qω = λω, x ∈ Ω, ∂ω

∂n +γ(x)ω = 0, x ∈ ∂Ω.
Then σ1(q) depends continuously on q, and q1 ≤ q2, q1 �≡ q2 imply σ1(q1) < σ1(q2).

Lemma 2.3 (see [31]). Let q(x) ∈ C(Ω) and q(x) + p > 0 on Ω with p > 0, and
let η1 be the first eigenvalue of the eigenvalue problem

−	ϕ− q(x)ϕ = ηϕ, x ∈ Ω,
∂ϕ

∂n
+ γ(x)ϕ = 0, x ∈ ∂Ω,

where γ(x) ∈ C(∂Ω) and γ(x) ≥ 0. If η1 > 0 (or η1 < 0), then the eigenvalue problem

−	ϕ + pϕ = t(q(x) + p)ϕ, x ∈ Ω,
∂ϕ

∂n
+ γ(x)ϕ = 0, x ∈ ∂Ω

has no eigenvalue less than or equal to 1 (or has eigenvalues less than 1).
Now, we introduce some more notation that will be used throughout this paper.

Let X be a real Banach space, and let W ⊂ X be a closed convex set. W is called
a wedge provided that αW ⊂ W for all α ≥ 0. A wedge W is said to be a cone if
W ∩ {−W} = 0. Let y ∈ W , and define a wedge

Wy := cl{x ∈ X|y + νx ∈ W for some ν > 0},

where “cl” means the closure of the set. Let Sy be the maximal linear subspace of X
contained in Wy. Assume that T is a compact and Fréchet differentiable operator on
X such that y ∈ W is a fixed point of T and T (W ) ⊆ W. Then the Fréchet derivative
T ′(y) of T at y leaves Wy and Sy invariant (see [4, 26]). If there exists a closed linear
subspace Xy of X such that X = Sy ⊕Xy and Wy is generating, then the index of T
at y can be found by analyzing certain eigenvalue problems in Xy and Sy as follows.
Let Q : X → Xy be the projection operator of Xy along Sy. In view of Theorems 2.1
and 2.2 of [26], indexW (T, y) exists if the Fréchet derivative T ′(y) of T at y has no
nonzero fixed point in Wy. Furthermore,

(1) indexW (T, y) = 0 if Q ◦ T ′(y) has an eigenvalue λ > 1;
(2) indexW (T, y) = indexSy (T ′(y), 0) if Q ◦ T ′(y) has no such eigenvalues.

Here indexSy
(T ′(y), 0) is the index of the linear operator T ′(y) at 0 in the space Sy.
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Next, we derive some a priori estimates for positive solutions of (EP). For an
accurate estimate for positive solutions of (EP), we first consider the boundary value
problem

dv
′′

+ bvf2(z − v) + aqϑ
1+cf1(z − v) = 0, x ∈ (0, 1),

v′(0) = v′(1) + γv(1) = 0.
(2.2)

Lemma 2.4. There exists a unique positive solution of (2.2), denoted by v̄(x),
which satisfies 0 < v̄(x) < z. In particular, θ < v̄(x) < z if b > σ1.

Proof. First, we claim that if v(x) is a positive solution of (2.2), then 0 < v(x) < z
and that, in addition, if b > σ1, then θ < v(x) < z. Indeed, let ω = z − v. Then

dω
′′−bvf2(ω)− aqϑ

1 + c
f1(ω) = 0, x ∈ (0, 1), ω′(0) = −1, ω′(1)+γω(1) = 0.

Suppose infx∈[0,1] ω(x) = ω(x0) < 0. Then x0 �∈ (0, 1). Otherwise, ω
′′
(x0) ≥ 0. By the

previous equation for ω, we have dω
′′
(x0) = bv(x0)f2(ω(x0)) + aqϑ(x0)

1+c f1(ω(x0)) < 0,
a contradiction. If x0 = 0, then ω′(x0) ≥ 0, contradicting the boundary condition
ω′(0) = −1. Similarly, we can see that x0 = 1 is also impossible. Hence, one must
have ω ≥ 0, �≡ 0 on [0, 1].

Assume ω(x0) = 0 for some point x0 ∈ [0, 1]. Then x0 = 0 or 1 by the strong
maximum principle. On the other hand, from the Hopf boundary lemma, it is easy
to see that both x = 0 and 1 are impossible, which implies ω > 0 on [0, 1]. That is,
v < z on [0, 1]. Moreover, since

dv
′′

+ bvf2(z − v) +
aqϑ

1 + c
f1(z − v) > dv

′′
+ bvf2(z − v),

it is easy to see that v > θ if b > σ1. Hence, our assertion holds.
On the other hand, for sufficiently small δ > 0, δϕ1, z are the sub- and super-

solutions of (2.2), respectively. It follows from the existence-comparison theorem for
elliptic systems that the minimal and maximal solutions v1, v2 to (2.2) exist and satisfy
the relation δϕ1 < v1 ≤ v2 < z. Next, we show that v1 ≡ v2, to obtain the uniqueness.
Since v1, v2 are the solutions of (2.2),

dv
′′

1 + bv1f2(z − v1) + aqϑ
1+cf1(z − v1) = 0,

dv
′′

2 + bv2f2(z − v2) + aqϑ
1+cf1(z − v2) = 0.

Multiplying the first equation by v2 and the second equation by v1 and considering

the integral I =
∫ 1

0
d(v

′′

1 v2 − v
′′

2 v1)dx, we have

∫ 1

0

bv1v2(f2(z − v1)− f2(z − v2))dx+
aq

1 + c

∫ 1

0

ϑ[v2f1(z − v1)− v1f1(z − v2)]dx = 0.

By the monotonity of fi(i = 1, 2) and since v1 ≤ v2, we have v1 ≡ v2.
The next lemma gives a priori estimates for positive solutions of (EP).
Lemma 2.5. Assume (u, v) is a nonnegative solution of (EP) with u �≡ 0 and

v �≡ 0. Then
1) 0 < u < ϑ

1+c < z
1+c , 0 < v ≤ v̄ < z on [0, 1], where v̄ defined by Lemma 2.4;

2) (1 + c)u + v < z on [0, 1];
3) a > λ1

1−q−k .
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Proof. Clearly, u > 0 on [0, 1] by the strong maximum principle and Hopf
boundary lemma. Since 0 = du

′′
+ a(1 − q − k)uf1(z − (1 + c)u − v) ≤ du

′′
+ a(1 −

q − k)uf1(z − (1 + c)u), it is easy to check that u ≤ ϑ
1+c and a > λ1

1−q−k . Moreover,

one can find that u < ϑ
1+c because v �≡ 0.

For v, we have

0 = dv
′′

+ bvf2(z − (1 + c)u− v)e−μcu + aquf1(z − (1 + c)u− v)

≤ dv
′′

+ bvf2(z − v) + aqϑ
1+cf1(z − v).

By Lemma 2.4 and the strong maximum principle, it follows that 0 < v ≤ v̄ < z. It
remains to show that (1 + c)u + v < z on [0, 1]. This proof is similar to the proof of
Lemma 4.2 in [33] and so is omitted here.

3. Existence of coexistence solutions. The goal of this section is to discuss
the existence of coexistence solutions of (EP) in the general case and to establish
Theorem 1.1.

In order to use the functional analytic framework of degree theory we introduce
the spaces

X = C([0, 1]) × C([0, 1]),
D = {(u, v) ∈ X|u ≤ ϑ

1+c , v ≤ max[0,1] v̄ + 1},
W = {(u, v) ∈ X|u ≥ 0, v ≥ 0 for x ∈ [0, 1]},
D′ = (intD) ∩W.

Then W is a cone of X and D′ is a bounded open set in W.
We consider the system

du
′′

+ τa(1 − q − k)uf1(z − (1 + c)u− v) = 0,

dv
′′

+ τbvf2(z − (1 + c)u− v)e−μcu + τaquf1(z − (1 + c)u− v) = 0,
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

(3.1)

where τ ∈ [0, 1]. Assume (uτ , vτ ) is a nonnegative solution of (3.1). Then it is not
hard to show that uτ < ϑ

1+c , vτ ≤ v̄ for all τ ∈ [0, 1].
Since f1(z − (1 + c)u − v) ≥ f1(z − (1 + c)u) − K1v for some positive constant

K1 > 0, we can define Aτ : X → X, τ ∈ [0, 1] as

Aτ (u, v) = (−d d2

dx2 + M)−1(τa(1 − q − k)ug1(u, v) + Mu,
τbvg2(u, v) + τaqug1(u, v) + Mv)

where (−d d2

dx2 +M)−1 is the inverse operator of −d d2

dx2 +M subject to the boundary
conditions u′(0) = u′(1) + γu(1) = 0, g1(u, v) = f1(z − (1 + c)u − v), g2(u, v) =
f2(z−(1+c)u−v)e−μcu, and M is large enough such that M+τa(1−q−k)g1(u, v) > 0
and M + τbg2(u, v) − τaquK1 > 0 for all (u, v) ∈ D′ and τ ∈ [0, 1]. Clearly, Aτ is
compact. Let A = A1. Then A : D′ → W is continuously differentiable. It follows
from Lemma 2.5 that (EP) has nonnegative solutions if and only if the operator A
has a fixed point in D′. Moreover, Aτ has no fixed point on ∂D′. By the homotopic
invariance of the degree, we obtain

index(A, D′,W ) = index(Aτ , D
′,W ) = index(A0, D

′,W ) = indexW (A0, (0, 0)).

By some standard calculations, we can obtain indexW (A0, (0, 0)) = 1. Hence, we have
the following.
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Lemma 3.1. index(A, D′,W ) = 1.
Lemma 3.2. (i) Suppose a �= λ1

1−q−k and b �= σ1. Then indexW (A, (0, 0)) = 1 if

a < λ1

1−q−k and b < σ1, and indexW (A, (0, 0)) = 0 if a > λ1

1−q−k or b > σ1.

(ii) indexW (A, (0, θ)) = 1 if a < λ̂1

1−q−k , and indexW (A, (0, θ)) = 0 if a > λ̂1

1−q−k .
Since the proof of this Lemma is very lengthy and quite standard, we include the

proof in Appendix A. Now, we turn to prove Theorem 1.1.
Proof of Theorem 1.1. (i) If a > λ1/(1 − q − k) and b < σ1, then (EP) has no

semitrivial nonnegative solution. In view of Lemmas 3.1 and 3.2, indexW (A, D′) = 1
and indexW (A, (0, 0)) = 0, which implies that A must have a positive fixed point in
D′. That is, (EP) has a positive solution in D′.

(ii) If a > λ̂1/(1− q−k), b > σ1, then (EP) has a semitrivial nonnegative solution
(0, θ). Suppose A has no positive fixed point in D′. Then by Lemma 3.1 and the
additivity of index,

indexW (A, (0, 0)) + indexW (A, (0, θ)) = indexW (A, D′) = 1.

However, by Lemma 3.2, indexW (A, (0, 0)) = 0, and indexW (A, (0, θ)) = 0 in this
case, a contradiction. Hence there must exist a positive solution of (EP) in D′. This
completes the proof.

4. The effect of inhibitor. The purpose of this section is to examine the effect
of the inhibitor on the multiple coexistence states. In view of the model, the effect
of the inhibitor increases as the parameter μ increases. Motivated by the numerical
simulations, we consider only the case of b > σ1 and μ large enough. Using a pertur-
bation technique, we show that the system has two positive solutions if μ is sufficiently
large and the other parameters sit in some suitable range.

First of all, we observe that if a is bounded away from λ1/(1−q−k) and μ is large,
positive solutions to (EP) are of two types. More precisely, let (u, v) be any positive
solution of (EP); then either (u, v) is close to a positive solution of the problem

du
′′

+ a(1 − q − k)uf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),

dv
′′

+ aquf1(z − (1 + c)u− v) = 0, x ∈ (0, 1),
u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0,

(4.1)

or (μu, v) is close to a positive solution of the problem

dω
′′

+ a(1 − q − k)ωf1(z − v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − v)e−cω = 0, x ∈ (0, 1),
ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.

(4.2)

Since the above two equations play an important role in determining the coexis-
tence solutions of (EP), we first study positive solutions of (4.1) and (4.2).

Lemma 4.1. Assume a > λ1/(1 − q − k). Then there exists a unique positive
solution ((1 − q − k)ϑ, qϑ) of (4.1), and it is linearly asymptotically stable.

Proof. Suppose that (u, v) > 0 solves (4.1). Let ω = qu− (1 − q − k)v. Then we
have

dω
′′

= 0, ω′(0) = ω′(1) + γω(1) = 0,

which implies ω ≡ 0. That is, v = q
1−q−ku. Substituting v = q

1−q−ku into the first
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equation of (4.1), we obtain that

du
′′

+ a(1 − q − k)uf1

(
z − u

1 − q − k

)
= 0, x ∈ (0, 1),

u′(0) = u′(1) + γu(1) = 0.

Then u = (1 − q − k)ϑ due to a > λ1/(1 − q − k), and v = qϑ. That is, (4.1) has a
unique positive solution ((1 − q − k)ϑ, qϑ). It remains to establish the stability. For
this purpose, noting that c = k/(1 − q − k), we consider the linearized eigenvalue
problem

dφ
′′

+ a(1 − q − k)[f1(z − ϑ) − (1 − q)ϑf ′
1(z − ϑ)]φ

−a(1 − q − k)2ϑf ′
1(z − ϑ)ψ = −ηφ,

dψ
′′

+ aq[f1(z − ϑ) − (1 − q)ϑf ′
1(z − ϑ)]φ− aq(1 − q − k)ϑf ′

1(z − ϑ)ψ = −ηψ,
φ′(0) = φ′(1) + γφ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

(4.3)

Let ω = qφ− (1 − q − k)ψ. Then

dω
′′

= −ηω, ω′(0) = ω′(1) + γω(1) = 0.

If ω �≡ 0, then η > 0. If ω ≡ 0, then ψ = qφ
1−q−k , which leads to

dφ
′′

+ a(1 − q − k)(f1(z − ϑ) − ϑf ′
1(z − ϑ))φ = −ηφ,

φ′(0) = φ′(1) + γφ(1) = 0.

From Lemma 2.2, σ1(a(1−q−k)(f1(z−ϑ)−ϑf ′
1(z−ϑ))) < σ1(a(1−q−k)f1(z−ϑ)) = 0.

Hence, we can claim that η > 0. Therefore, (4.3) has no eigenvalue η with Reη ≤ 0
and so the stability follows.

Lemma 4.2. Suppose b > σ1 fixed. Then (4.2) has a positive solution if and only

if λ1

1−q−k < a < λ̂1

1−q−k . Moreover, all positive solutions of (4.2) are unstable.

Proof. Suppose (ω, v) is a positive solution of (4.2). Then a(1−q−k) = λ1(f1(z−
v)) > λ1(f(z)) = λ1. On the other hand,

0 = dv
′′

+ bvf2(z − v)e−cω < dv
′′

+ bvf2(z − v),

which means v < θ. Thus, a(1 − q − k) = λ1(f1(z − v)) < λ1(f1(z − θ)) = λ̂1. Hence,

if (4.2) has a positive solution, then λ1

1−q−k < a < λ̂1

1−q−k .

Next, we show that (4.2) has a positive solution if λ1/(1 − q − k) < a < λ̂1/(1 −
q − k). To this end, we first prove that for any given A > λ̂1/(1− q − k), there exists
a constant C > 0 such that ‖ω‖∞ < C for any nonnegative solution of (4.2) with a ∈
(λ1/(1−q−k), A]. At first, one can find that (4.2) has only two nonnegative solutions

(0, 0) and (0, θ) if a ≥ λ̂1/(1−q−k). It remains to show that any positive solution (ω, v)

of (4.2) with λ1

1−q−k < a < λ̂1

1−q−k satisfies ‖ω‖∞ < C. Suppose this is not true. Then

we may assume that there exists ai → a ∈ [λ1/(1−q−k), λ̂1/(1−q−k)], (ωi, vi) positive
solutions of (4.2) with a = ai and ‖ωi‖∞ → ∞. Set ṽi = vi/‖vi‖∞, ω̃i = ωi/‖ωi‖∞.
Then

dω̃
′′

i + ai(1 − q − k)ω̃if1(z − ‖vi‖∞ṽi) = 0,

dṽ
′′

i + bṽif2(z − vi)e
−c‖ωi‖∞ω̃i = 0,

ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0, ṽ′i(0) = ṽ′i(1) + γṽi(1) = 0.
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By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡
0, ṽi → ṽ ≥ 0, �≡ 0 in C1([0, 1]), and ω̃ satisfies

dω̃
′′

+ a(1 − q − k)ω̃f1(z −Bṽ) = 0, ω̃′(0) = ω̃′(1) + γω̃(1) = 0,

where B = limi→∞ ‖vi‖∞ < ∞. (In view of the equation for vi and 0 < vi < θ, this
limit exists by passing to a subsequence.) Thus ω̃ > 0 on [0, 1] by the strong maximum
principle and Hopf boundary lemma. Hence e−cωi = e−c‖ωi‖∞ω̃i → 0 as i → ∞, which
implies vi → 0, and ṽ satisfies

dṽ
′′

= 0, ṽ′(0) = ṽ′(1) + γṽ(1) = 0.

Thus ṽ ≡ 0. This is a contradiction to ṽ �≡ 0 and ‖ṽ‖∞ = 1.
Let D̃ = {(ω, v) ∈ W : ‖ω‖∞ ≤ C + 1, ‖v‖∞ ≤ sup[0,1] z + 1},

Bτ (ω, v) =

(
−d

d2

dx2
+ M

)
−1

(
τ(1 − q − k)ωf1(z − v) + Mω, bvf2(z − v)e−cω + Mv

)
,

where W defined in section 3 is the positive cone of X and M is sufficiently large such
that M + τ(1 − q − k)f1(z − v) > 0 and M + bf2(z − v)e−cω > 0 for all (ω, v) ∈ D̃
and τ ∈ (λ1/(1 − q − k), A].

By virtue of our a priori estimates and the homotopic invariance property of the
fixed point index, we obtain indexW (Bτ , D̃) ≡ const for τ > λ1/(1 − q − k). On the

other hand, if a > λ̂1/(1− q− k), then (4.2) has only two nonnegative solutions (0, 0)

and (0, θ). Hence for τ ∈ (λ̂1/(1 − q − k), A], indexW (Bτ , D̃) = indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)). Next, we calculate the index of the two nonnegative solutions.

Let B′
τ (0, 0) be the Fréchet derivative of Bτ at (0, 0). Then

B′
τ (0, 0)(ω, v) =

(
−d

d2

dx2
+ M

)−1

(τ(1 − q − k)ωf1(z) + Mω, bvf2(z) + Mv)

for each (ω, v) ∈ X. Therefore, an eigenvector (ω, v) of B′
τ (0, 0) satisfies

−dω
′′

+ Mω = 1
λ (τ(1 − q − k)f1(z) + M)ω,

−dv
′′

+ Mv = 1
λ (bf2(z) + M)v,

ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.

Since b > σ1, τ > λ1/(1 − q − k), it is easy to check that I − B′
τ (0, 0) is invertible in

W(0,0) = {(ω, v) ∈ X : ω ≥ 0, v ≥ 0}. Moreover, a similar argument as in the proof
of Lemma 3.2 (see Appendix A) shows that B′

τ (0, 0) has eigenvalues larger than 1. It
follows from Theorem 2.2 of [26] that indexW (Bτ , (0, 0)) = 0 for τ > λ1/(1 − q − k).

Let B′
τ (0, θ) denote the Fréchet derivative of Bτ at (0, θ). Then B′

τ (0, θ)(ω, v) =

(−d d2

dx2 +M)−1(τ(1− q − k)ωf1(z − θ) +Mω, b(f2(z − θ)− θf ′
2(z − θ))v − bcθf2(z −

θ)ω + Mv) for each (ω, v) ∈ X. In order to apply Theorem 2.2 of [26], we introduce
the notation y = (0, θ),Wy = {(ω, v) ∈ X : ω ≥ 0}, Sy = {(0, v) : v ∈ CB([0, 1])}, and
Xy = {(ω, 0) ∈ X : ω ∈ CB([0, 1])}. Then X = Sy ⊕Xy with projection Q given by
(ω, v) → (ω, 0).

Suppose (ω, v) ∈ Wy is a fixed point of B′
τ (0, θ). Then (ω, v) satisfies

dω
′′

+ τ(1 − q − k)ωf1(z − θ) = 0,

dv
′′

+ b(f2(z − θ) − θf ′
2(z − θ))v − bcθf2(z − θ)ω = 0,

ω′(0) = ω′(1) + γω(1) = 0, v′(0) = v′(1) + γv(1) = 0.
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It is easy to check that I −B′
τ (0, θ) is invertible in Wy as long as τ �= λ̂1/(1− q − k).

Hence, indexW (Bτ , (0, θ)) is well defined if τ �= λ̂1/(1−q−k). Next, we determine the
index of Bτ at (0, θ). In view of the definition Q(ω, v) = (ω, 0), every eigenfunction of
Q ◦B′

τ (0, θ) has the form (ω, 0), where ω is a nonzero solution of the equation

−dω
′′

+ Mω =
1

λ
(τ(1 − q − k)f1(z − θ) + M)ω, ω′(0) = ω′(1) + γω(1) = 0.

We can proceed further as in the proof of Lemma 3.2 (see Appendix A) to show that

indexW (Bτ , (0, θ))=0 if τ >λ̂1/(1−q−k) and indexW (Bτ , (0, θ))=1 if τ<λ̂1/(1−q−k).

Hence, for any τ ∈ (λ̂1/(1 − q − k), A], indexW (Bτ , D̃) = indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)) = 0. Meanwhile, by the homotopic invariance property of the
fixed point index, we can claim that indexW (Bτ , D̃) ≡ 0 for any τ ∈ (λ1/(1 − q −
k), A]. However, for λ1/(1 − q − k) < τ < λ̂1/(1 − q − k), indexW (Bτ , (0, 0)) +
indexW (Bτ , (0, θ)) = 1 �= indexW (Bτ , D̃), which implies Bτ has at least a positive

fixed point in D̃ for λ1/(1 − q − k)<τ <λ̂1/(1 − q − k). Namely, (4.2) has a positive

solution when a ∈ (λ1/(1 − q − k), λ̂1/(1 − q − k)).
It remains to prove the instability of any positive solution (ω0, v0) of (4.2). To

this end, let us consider the eigenvalue problem

dϕ
′′

+ a(1 − q − k)f1(z − v0)ϕ− a(1 − q − k)ω0f
′
1(z − v0)ψ + ηϕ = 0,

dψ
′′

+ b[f2(z − v0) − v0f
′
2(z − v0)]e

−cω0ψ − cbv0f2(z − v0)e
−cω0ϕ + ηψ = 0,

ϕ′(0) = ϕ′(1) + γϕ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

(4.4)

It is well known (see, e.g., [11]) that one can put this eigenvalue problem in the context
of spectral theory of compact strongly positive operators with respect to the order
cone P = {(ϕ,ψ) ∈ X : ϕ ≥ 0, ψ ≤ 0}. In particular, by the Krein–Rutman theorem
[5, 11], one can show (4.4) has an eigenvalue η1, which has the following properties:
it is real, algebraically simple, and all other eigenvalues have their real part greater
than η1. Moreover, η1 corresponds to an eigenfunction (ϕ,ψ) in the interior of P , and
it is the only eigenvalue with an eigenfunction in P. Thus it is called the principal
eigenvalue of (4.4). The linearized stability criterion for (ω0, v0) can be expressed
in terms of the principal eigenvalue: (ω0, v0) is asymptotically stable if η1 > 0; it is
unstable if η1 < 0. On the other hand, multiplying the first equation of (4.4) by ω0

and integrating, we obtain

η1

∫ 1

0

ϕω0dx = a(1 − q − k)

∫ 1

0

ω2
0f

′
1(z − v0)ψdx.

Noting that (ϕ,ψ) belongs to the interior of P , we must have η1 < 0, which implies
the instability.

The rest of this section is devoted to the proof of Theorems 1.2 and 1.3, which are
important in understanding the effect of the inhibitor on the number of the coexistence
solutions. In order to establish Theorem 1.2, we need the following technical results.

Lemma 4.3. For any ε > 0 small, there exists M = M(ε) large such that if
a ≥ λ1/(1 − q − k) + ε, μ ≥ M, (EP) has a positive solution (ũ, ṽ) which satisfies

(1 − δ)(1 − q − k)ϑ ≤ ũ ≤ (1 − q − k)ϑ, (1 − δ)qϑ ≤ ṽ ≤ (q + δ)ϑ,(4.5)

where ϑ are the unique positive solutions of (1.2), and 0 < δ ≤ δ0, where δ0 > 0 is
small such that (1 + δ0)ϑ < z on [0, 1].
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Proof. Suppose that (u, v) solves (EP). Let χ = (1 − q − k)v − qu. Then (u, χ)
satisfies

du
′′

+ a(1 − q − k)uf1(z − u+χ
1−q−k ) = 0,

dχ
′′

+ b(χ + qu)f2(z − u+χ
1−q−k )e−μcu = 0,

(4.6)

with the usual boundary conditions. Since 0 < ϑ < z on [0, 1], we can claim that
there exists δ0 > 0 small such that (1 + δ0)ϑ < z on [0, 1]. Set

Σ = {(u, χ) ∈ X : (1 − δ0)(1 − q − k)ϑ ≤ u ≤ (1 − q − k)ϑ, 0 ≤ χ ≤ δ0(1 − q − k)ϑ}.

Next, we show (4.6) is quasi-monotone decreasing [35] on Σ provided that μ is large
enough. Clearly, h1(u, χ) = a(1− q− k)uf1(z− u+χ

1−q−k ) is quasi-monotone decreasing

on Σ. On the other hand, let h2(u, χ) = b(χ + qu)f2(z − u+χ
1−q−k )e−μcu. Then

∂h2(u,χ)
∂u = be−μcu[qf2(z − u+χ

1−q−k ) − χ+qu
1−q−kf

′
2(z − u+χ

1−q−k ) − μc(χ + qu)f2(z − u+χ
1−q−k )].

Recalling that (1+ δ0)ϑ < z on [0, 1], it is easy to see that ∂h2(u,χ)
∂u < 0 on Σ provided

that μ is large enough. That is, h2(u, χ) is quasi-monotone decreasing on Σ provided
that μ is large enough.

Let (ū, χ) = ((1− q−k)ϑ(a), 0) and (u, χ̄) = ((1− δ)(1− q−k)ϑ, δ(1− q−k)ϑ).
By the super- and subsolution method, it suffices to show that (ū, χ) and (u, χ̄) are
pairs of super-sub solutions of (4.6) for large μ. That is, we need to show that the
inequalities

dū
′′

+ a(1 − q − k)ūf1(z −
ū+χ

1−q−k ) ≤ 0,

dχ
′′

+ b(χ + qū)f2(z −
ū+χ

1−q−k )e−μcū ≥ 0

and

du
′′

+ a(1 − q − k)uf1(z − u+χ̄
1−q−k ) ≥ 0,

dχ̄
′′

+ b(χ̄ + qu)f2(z − u+χ̄
1−q−k )e−μcu ≤ 0

hold. It is trivial to check the inequalities for ū, χ, and u. For χ̄ to satisfy the above
inequality, it suffices to have

e−μc(1−δ)(1−q−k)ϑ ≤ δa(1 − q − k)(k2 + z − θ)

b((1 − q)δ + q)(k1 + z − θ)
.

It is well known that there exists B > 1 large enough such that Bk1 > k2. Hence,
k2+z−θ
k1+z−θ > k2

Bk1
. Since a ≥ λ1/(1 − q − k) + ε and ϑ = ϑ(a) ≥ ϑ( λ1

1−q−k + ε), we need
to have only

e−μc(1−δ)(1−q−k)ϑ(
λ1

1−q−k+ε) ≤ δ[λ1 + ε(1 − q − k)]k2

b((1 − q)δ + q)Bk1
,

where ϑ( λ1

1−q−k +ε) is the unique positive solution of (1.2) with a = λ1

1−q−k +ε. Clearly,
this inequality holds as long as μ is sufficiently large. Namely, as long as μ is large
enough, we have

dχ̄
′′

+ b(χ̄ + qu)f2

(
z − u + χ̄

1 − q − k

)
e−μcu ≤ 0.
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Thus (ū, χ) and (u, χ̄) are the order upper and lower solutions of (4.6). It follows
the existence-comparison theorem for elliptic systems that (4.6) has a solution (ũ, χ̃),
which satisfies

(1 − δ)(1 − q − k)ϑ ≤ ũ ≤ (1 − q − k)ϑ, 0 ≤ χ̃ ≤ δ(1 − q − k)ϑ.

Noting that v = χ+qu
1−q−k , we know that (EP) has a positive solution (ũ, ṽ), which

satisfies (4.5).
Lemma 4.4. For any ε > 0 small and any A > λ1/(1 − q − k), there exists

M = M(ε, A) > 0 large such that if a ∈ (λ1/(1 − q − k) + ε, A] and μ ≥ M, then any
positive solution of (EP) that satisfies (4.5) is nondegenerate and linearly stable.

Proof. If a ∈ (λ1/(1− q− k) + ε, A] and (u, v) satisfies (4.5), then it is easy to see
that (EP) is a regular perturbation of (4.1) when μ is large. Since (4.1) has a unique
positive solution ((1− q− k)ϑ, qϑ) which is linearly stable, this lemma follows from a
standard regular perturbation argument.

As noted before, the next lemma shows rigorously that the positive solutions to
(EP) are of two types.

Lemma 4.5. Suppose ai → a ∈ ( λ1

1−q−k ,+∞), μi → ∞, and (ui, vi) is a positive

solution of (EP) with (a, μ) = (ai, μi). Then for large i, either (ui, vi) is close to
((1− q− k)ϑ, qϑ) or (μiui, vi) is close to (ω, v) in C1([0, 1])×C1([0, 1]), where (ω, v)

is a positive solution of (4.2). Moreover, if ai ≥ λ̂1

1−q−k for all large i and ai → a,

then (ui, vi) converges to ((1 − q − k)ϑ, qϑ) in the C1 norm.
Proof. We argue by contradiction. Suppose we can find ai → a ∈ ( λ1

1−q−k ,+∞),

μi → ∞, and positive solution (ui, vi) bounded away from ((1− q − k)ϑ, qϑ) and any
positive solution of (4.2). First, by Lemma 2.5, 0 ≤ (1 + c)ui + vi < z(x). Hence, by
elliptic regularity and the Sobolev embedding theorems, we may assume the existence
of a subsequence (if necessary), such that ui → u and vi → v in C1([0, 1]) for some
u, v ∈ C1

B([0, 1]). Set ωi = μiui and χi = (1 − q − k)vi − qui. Then (ωi, χi) satisfies

dω
′′

i + ai(1 − q − k)ωif1(z − (1 + c)ui − vi) = 0,

dχ
′′

i + b(1 − q − k)vif2(z − (1 + c)ui − vi)e
−cωi = 0,

(4.7)

with the usual boundary conditions. By passing to a subsequence, we have two
possibilities.

Case a: μi‖ui‖∞ → ∞. In this case, one must have χi → 0. Indeed, it suffices to
show e−cωi → 0 almost everywhere in (0, 1) as i → ∞. Let ω̃i = ωi/‖ωi‖∞. Then ω̃i

satisfies

−dω̃
′′

i = ai(1 − q − k)ω̃if1(z − (1 + c)ui − vi), ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0.

By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡ 0
in C1([0, 1]), and ω̃ satisfies

−dω̃
′′

= a(1 − q − k)ω̃f1(z − (1 + c)u− v), ω̃′(0) = ω̃′(1) + γω̃(1) = 0.

Here 0 ≤ (1 + c)u + v ≤ z because 0 < (1 + c)ui + vi < z. Therefore, ω̃ > 0 on
[0, 1] by the strong maximum principle and Hopf boundary lemma. Thus e−cωi =
e−c‖ωi‖∞ω̃i → 0 as i → ∞, which implies χi → 0. Hence, (1 − q − k)v = qu, and

du
′′

+ a(1 − q − k)uf1

(
z − u

1 − q − k

)
= 0, u′(0) = u′(1) + γu(1) = 0.
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This implies u ≡ 0 or u = (1 − q − k)ϑ. If u ≡ 0, then v = q
1−q−ku ≡ 0. That is,

(ui, vi) → (0, 0) as i → ∞. Hence, ũi = ui/‖ui‖∞ satisfies

dũ
′′

i + ai(1 − q − k)ũif1(z − (1 + c)ui − vi) = 0, ũ′
i(0) = ũ′

i(1) + γũi(1) = 0.

Similarly, by Lp estimates and the Sobolev embedding theorem, we may assume that
ũi → ũ ≥ 0, �≡ 0 in C1, and in view of the strong maximum principle, ũ > 0 and
satisfies

dũ
′′

+ a(1 − q − k)ũf1(z) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,

which means a = λ1/(1− q− k), a contradiction. Hence u = (1− q− k)ϑ and v = qϑ,
which contradicts our assumption.

Case b: μi‖ui‖∞ is uniformly bounded, which implies ui → 0 as i → ∞. Hence,
χi = (1−q−k)vi−qui → (1−q−k)v. Since ωi is uniformly bounded, by the equation
for ωi, we may assume that ωi → ω in C1([0, 1]). It follows from (4.7) that (ω, v)
satisfies (4.2). If ω ≥ 0, �≡ 0, then the strong maximum principle tells us that ω > 0.
On the other hand, we claim that v > 0 on [0, 1]. Otherwise,

dω
′′

+ a(1 − q − k)ωf1(z) = 0, x ∈ (0, 1), ω′(0) = ω′(1) + γω(1) = 0,

which implies a = λ1/(1−q−k), a contradiction. Hence, (a, ω, v) is a positive solution
of (4.2), which contradicts our assumption that (ai, ωi, vi) is bounded away from any
positive solution of (4.2). Therefore, we must have ω ≡ 0. It follows that v ≡ 0 or
v = θ. Suppose v ≡ 0. Then vi → 0 and ω̃i = ωi/‖ωi‖∞ satisfies

dω̃
′′

i + ai(1 − q − k)ω̃if1(z − (1 + c)ui − vi) = 0, ω̃′
i(0) = ω̃′

i(1) + γω̃i(1) = 0.

By Lp estimates and the Sobolev embedding theorem, we may assume ω̃i → ω̃ ≥ 0, �≡ 0
in C1([0, 1]), and by virtue of the strong maximum principle, ω̃ > 0 satisfies

dω̃
′′

+ a(1 − q − k)ω̃f1(z) = 0, ω̃′(0) = ω̃′(1) + γω̃(1) = 0,

which means a = λ1/(1 − q − k), a contradiction. Thus (ωi, vi) → (0, θ), and hence

ai(1 − q − k) = λ1(f1(z − (1 + c)ui − vi)) → λ1(f1(z − θ)) = λ̂1. That is, ai →
λ̂1/(1 − q − k). On the other hand, we can show that (4.2) has a positive solution

branch bifurcating from (a, ω, v) = (λ̂1/(1 − q − k), 0, θ) (see Lemma 4.7). Hence, we

can find a = ãi → λ̂1/(1 − q − k) such that (4.2) with a = ãi has a positive solution
(ω̃i, ṽi) converging in L∞ to (0, θ). Thus (ai, μiui, vi) is close to (ãi, ω̃i, ṽi) for i large.
This again contradicts our assumption. This finishes the proof of the first part of this
lemma.

Now, we prove that if ai ≥ λ̂1/(1−q−k) for all large i and ai → a as i → ∞, then
(ui, vi) → ((1 − q − k)ϑ, qϑ). Again we use an indirect argument. We suppose that
this is not true. Then by the first part of this lemma and by choosing a subsequence
if necessary, we may assume that (μiui, vi) is close to a positive solution of (4.2). This

implies ui → 0 as i → ∞. We divide the arguments into two cases: (i) a > λ̂1/(1−q−k)

and (ii) a = λ̂1/(1 − q − k).
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In case (i), suppose for any ε > 0, there exists ai → a ≥ λ̂1/(1 − q − k) + ε such
that ui → 0 as μi → ∞. Then ωi = μiui, χi = (1−q−k)vi−qui satisfy (4.7). Passing
to a subsequence, we have two possibilities.

Case a: ‖ωi‖∞ = μi‖ui‖∞ → ∞. Noting Lemma 2.5, we claim that χi → 0 as
before, which means vi = χi+qui

1−q−k → 0. Let ũi = ui/‖ui‖∞. Then by Lp estimates and

the Sobolev embedding theorem, we may assume ũi → ũ in C1([0, 1]), and by the
strong maximum principle, ũ > 0. Moreover, ũ satisfies

dũ
′′

+ a(1 − q − k)ũf1(z) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,

which implies a = λ1/(1 − q − k), a contradiction.
Case b: ‖ωi‖∞ = μi‖ui‖∞ ≤ C. Then by using a priori estimates for vi (see

Lemma 2.5), we may assume that (ωi, vi) → (ω, v) in C1([0, 1]), where ω, v ≥ 0 on [0,
1]. Noting that χi = (1−q−k)vi−qui and ui → 0, one has χi → (1−q−k)v. It follows
from the equations in (4.7) that (ω, v) satisfies (4.2). Namely, (ω, v) is exactly the
nonnegative solution of (4.2). If ω ≥ 0, �≡ 0, then by the strong maximum principle,

ω > 0. Hence, (λ̂1 <)a(1 − q − k) = λ1(f1(z − v)), which implies v �≡ 0. It follows
from the strong maximum principle that v > 0. This contradicts Lemma 4.2; that is,
(4.2) has no positive solution provided that a > λ̂1/(1− q− k). Therefore, ω ≡ 0 and
v = θ (the possibility v ≡ 0 can be ruled out by similar arguments as in the proof
of the first part of this lemma). Set ũi = ui/‖ui‖∞. A similar argument shows that

a = λ̂1/(1 − q − k), a contradiction. Therefore, our assertion holds.

In case (ii), since ai → λ̂1/(1− q− k) and ui → 0, one can assert that vi → θ and
μiui → 0 in C1 norm. Indeed, let ũi = ui/‖ui‖∞. Then ũi satisfies

dũ
′′

i + ai(1 − q − k)ũif1(z − (1 + c)ui − vi) = 0, ũ′
i(0) = ũ′

i(1) + γũi(1) = 0.

Similarly, we may suppose ũi → ũ in C1([0, 1]) and ũ > 0 satisfies

dũ
′′

+ λ̂1ũf1(z − v) = 0, ũ′(0) = ũ′(1) + γũ(1) = 0,(4.8)

which implies v �≡ 0; otherwise, λ̂1 = λ1, a contradiction. Noting that ai → λ̂1/(1 −
q − k), ui → 0, vi → v �≡ 0, and

dv
′′

i + bvif2(z − (1 + c)ui − vi)e
−cμi‖ui‖∞ũi + aiquif1(z − (1 + c)ui − vi) = 0,

we can show that μi‖ui‖∞ is uniformly bounded. Hence we may assume that μiui → ω
in C1([0, 1]) for some ω ≥ 0. Letting i → ∞, we must have dv

′′
+ bvf2(z − v) ≥ 0,

which means v ≤ θ. Multiplying (4.8) by ϕ̂1, integrating over [0, 1], and applying
Green’s formula, we obtain

λ̂1

∫ 1

0

ũϕ̂1(f1(z − v) − f1(z − θ))dx = 0,

which implies v = θ since v ≤ θ. Moreover, ũ = ϕ̂1. That is, vi → θ. Next, we show
ω ≡ 0. If ω ≥ 0, �≡ 0, then ω > 0 by the strong maximum principle. Noting that
ai → λ̂1/(1 − q − k), ui → 0, vi → θ, μiui → ω, we have

dθ
′′

+ bθf2(z − θ)e−cω = 0, θ′(0) = θ′(1) + γθ(1) = 0.

This means b = λ1(f2(z − θ)e−cω) > λ1(f2(z − θ)) = b, a contradiction. Hence our
assertion holds. Next, we show (1 + c)ui + vi < θ for large i. Let Qi = (1 + c)ui + vi.
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Clearly, Qi → θ, and

dQ
′′

i + aiuif1(z −Qi) + bvif2(z −Qi)e
−cμiui = 0, Q′

i(0) = Q′
i(1) + γQi(1) = 0.

Hence

dQ
′′

i + bQif2(z −Qi)
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi)] + bvif2(z −Qi)[1 − e−cμiui ]
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi) + bvif2(z −Qi)cμi + O(μ2

iui)]
= ui[b(1 + c)f2(z −Qi) − aif1(z −Qi) + (bcvif2(z −Qi) + O(μiui))μi].

Since μiui → 0 and μi → ∞, we have dQ
′′

i + bQif2(z − Qi) > 0 for large i, which
implies Qi < θ for large i.

Now multiplying the equation for ui by ϕ̂1 and integrating over [0, 1], we obtain

∫ 1

0

[ai(1 − q − k)f1(z −Qi) − λ̂1f1(z − θ)]ϕ̂1uidx = 0.

Since ai(1 − q − k) ≥ λ̂1 and f1(z − Qi) > f1(z − θ) for large i,
∫ 1

0
[ai(1 − q −

k)f1(z−Qi)− λ̂1f1(z−θ)]ϕ̂1uidx > 0 for all large i, a contradiction. Hence (ui, vi) →
((1 − q − k)ϑ, qϑ) in the C1 norm when ai ≥ λ̂1

1−q−k for all large i, ai → a, and
μi → ∞.

Lemma 4.6. (i) For any A ≥ λ̂1

1−q−k , there exists M > 0 large such that if μ > M

and a ∈ [ λ̂1

1−q−k , A], then any positive solution (u, v) of (EP) is nondegenerate and

linearly asymptotically stable, and indexW (A, (u, v)) = 1.
(ii) For any ε, δ > 0 small, there exists Mε,δ > 0 large such that if a ∈ [ λ1

1−q−k +

ε, λ̂1

1−q−k ) and μ ≥ Mε,δ and if (u, v) is a positive solution of (EP), then either (a)

‖u− (1− q−k)ϑ‖C1 +‖v− qϑ‖C1 < δ or (b) ‖μu− ω̃‖C1 +‖v− ṽ‖C1 +‖a− ã‖C1 < δ,
where (ω̃, ṽ) is a positive solution of (4.2) with a = ã. Moreover, if (a) occurs, then
(u, v) is nondegenerate linearly asymptotically stable and indexW (A, (u, v)) = 1.

Proof. (i) We prove the nondegeneracy and linear stability first. For this purpose,
we consider the linearized eigenvalue problem

dφ
′′

+ a(1 − q − k)[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ

−a(1 − q − k)uf ′
1(z − (1 + c)u− v)ψ = −ηφ,

dψ
′′

+ [b(f2(z − (1 + c)u− v) − vf ′
2(z − (1 + c)u− v))e−μcu

−aquf ′
1(z − (1 + c)u− v)]ψ

−bv[f ′
2(z − (1 + c)u− v)(1 + c) + μcf2(z − (1 + c)u− v)]e−μcuφ

+aq[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ = −ηψ,

φ′(0) = φ′(1) + γφ(1) = 0, ψ′(0) = ψ′(1) + γψ(1) = 0.

By Lemma 4.5, (EP) has no positive solution with a small u component when a ∈
[ λ̂1

1−q−k , A] and μ is large. Therefore, we can establish this assertion by a simple
variant of the proof of Lemma 4.4.

Next, we prove the statement concerning the fixed point index. Since any positive
solution (u, v) to (EP) is nondegenerate, we have

indexW (A, (u, v)) = indexX(A, (u, v)) = indexX(A′(u, v), (0, 0)).
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Let Qt(φ, ψ) = (−d d2

dx2 + M)−1(f, g), where 0 ≤ t ≤ 1 and

f = a(1 − q − k)[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ + Mφ

−ta(1 − q − k)uf ′
1(z − (1 + c)u− v)ψ,

g = [b(f2(z − (1 + c)u− v) − vf ′
2(z − (1 + c)u− v))e−μcu

−taquf ′
1(z − (1 + c)u− v)]ψ + Mψ

−bv[(1 + c)f ′
2(z − (1 + c)u− v) + μcf2(z − (1 + c)u− v)]e−μcuφ

+aq[f1(z − (1 + c)u− v) − (1 + c)uf ′
1(z − (1 + c)u− v)]φ.

Then there exists a neighborhood Uδ ⊂ X of (0, 0) such that Qt has no fixed point on
∂Uδ provided μ is large enough. Moreover, we can choose Uδ such that A′(u, v)(φ, ψ) =
(φ, ψ) has only the solution (φ, ψ) = (0, 0) in Uδ. By similar arguments as in
Lemma 2.5 in [7] and Theorem 3.1 in [8], we can show indexX(A′(u, v), (0, 0)) =
indexX(A′(u, v), Uδ) = indexX(Q1, Uδ) = indexX(Q0, Uδ) = indexX(Q0, (0, 0)) = 1.
Hence indexW (A, (u, v)) = 1.

(ii) The statement on the location of the positive solutions follows directly from
Lemma 4.5. The other statements are proved in the same way as in (i) above.

Proof of Theorem 1.2. (i) For any ε > 0 small, let M = max{M(ε),M(ε, λ̂1/(1 −
q − k))}, where M(ε),M(ε, λ̂1/(1 − q − k)) are given by Lemmas 4.3 and 4.4, respec-

tively. Assume that for μ ≥ M and a ∈ [λ1/(1− q − k) + ε, λ̂1/(1− q − k)), (EP) has
only a unique positive solution (ũ, ṽ) as shown in Lemma 4.3. In view of Lemma 4.4,
I − A′(ũ, ṽ) is invertible in X and A′(ũ, ṽ) has no real eigenvalue greater than one,
where A′(ũ, ṽ) is the Fréchet derivative of A at (ũ, ṽ). We can argue in the same way
as in the proof of Theorem 3.1 in [8] to draw a conclusion that indexW (A, (ũ, ṽ)) = 1.
By virtue of Lemmas 3.1 and 3.2, it follows that

1 = indexW (A, D′) = indexW (A, (0, 0)) + indexW (A, (0, θ)) + indexW (A, (ũ, ṽ)) = 2.

This contradiction completes the proof.

(ii) It follows from Lemma 4.6 that for any A ≥ λ̂1

1−q−k , there exists M > 0

large such that any positive solution (u, v) of (EP) is nondegenerate and linearly

asymptotically stable for a ∈ [ λ̂1

1−q−k , A] and μ ≥ M . Hence, it suffices to show the

uniqueness. Set D1 = {(u, v) ∈ X : (1−q−k)
2 ϑ < u < ϑ

1+c ,
q
2ϑ < v < max[0,1] v̄ + 1},

and define Fτ : D1 → W by

Fτ (u, v) =

(
−d

d2

dx2
+ K

)−1

(a(1−q−k)ug1(u, v)+Ku, τbvg2(u, v)+aqug1(u, v)+Kv),

where τ ∈ [0, 1], g1(u, v) = f1(z−(1+c)u−v), g2(u, v) = f2(z−(1+c)u−v)e−μcu, and
K is large enough such that K+a(1−q−k)g1(u, v) > 0 and K+τbg2(u, v)−aquK1 > 0
(K1 is given in section 3) for all (u, v) ∈ D1 and τ ∈ [0, 1]. Clearly, Fτ is a compact
and continuously differentiable operator. Moreover, it follows from Lemma 4.5 that
there exists M > 0 large such that if μ ≥ M and a ∈ [λ̂1/(1 − q − k), A], then any
positive solution (u, v) of (EP) is close to ((1−q−k)ϑ, qϑ). Hence, (u, v) ∈ D1 for a ∈
[λ̂1/(1−q−k), A] and μ ≥ M. Namely, if a ∈ [λ̂1/(1−q−k), A] and μ ≥ M, then (u, v) is
a positive solution of (EP) if and only if it is a fixed point of F1 in D1. Again by Lemma

4.5, Fτ has no fixed point on ∂D1 for a ∈ [λ̂1/(1 − q − k), A] and μ ≥ M. Therefore,
indexW (Fτ , D1) ≡ const. In particular, indexW (F1, D1) = indexW (F0, D1). It is easy
to show that F0 has a unique fixed point ((1−q−k)ϑ, qϑ) in D1 and indexW (F0, D1) =
indexW (F0, ((1 − q − k)ϑ, qϑ)) = 1. Hence, indexW (F1, D1) = 1.
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As mentioned before, from Lemma 4.6, we know that, for μ > M and a ∈
[λ̂1/(1− q− k), A], all fixed points of F1 in D1 are nondegenerate and linearly stable.
Hence by a compactness argument it is easy to show that there are at most finitely
many fixed points of F1, which are denoted by {(ui, vi)}ni=1. By Lemma 4.6 again,
indexW (A, (ui, vi)) = 1. In view of the additivity property of the fixed point index,

we have for a ∈ [λ̂1/(1 − q − k), A]

n =
n∑

i=1

indexW (F1, (ui, vi)) = indexW (F1, D1) = 1.

Hence for μ ≥ M and a ∈ [λ̂1/(1−q−k), A], (EP) has only a unique positive solution
and it is stable. The proof of Theorem 1.2 is completed.

Next we wish to establish Theorem 1.3, but first we give the following lemma,
which is crucial in proving Theorem 1.3.

Lemma 4.7. There exists ε > 0 small such that if λ̂1/(1 − q − k) − ε ≤ a <

λ̂1/(1 − q − k), then (4.2) has a unique positive solution.
Proof. Here, we prove this lemma by the local bifurcation theorem of Crandall

and Rabinowitz [3]. We regard a as the bifurcation parameter and try to construct a
positive solution branch from the semitrivial nonnegative solution branch {(a, 0, θ) :
a ∈ R+}.

After some standard calculations, we obtain that (λ̂1/(1−q−k), 0, θ) is a bifurca-
tion point. Close to this bifurcation point, (4.2) has a positive solution (a(s), s(ϕ̂1 +

Φ(s)), θ+s(χ1 +Ψ(s))) (0 < s � 1), where a(0) = λ̂1/(1−q−k), χ1 = bcL−1
b (θf2(z−

θ)ϕ̂1) < 0,Φ(0) = Ψ(0) = 0. Putting this positive solution into the first equation of
(4.2), dividing by s, and differentiating with respect to s, it follows that the derivative
of a(s) with respect to s at s = 0 is less than 0. That is, a′(0) < 0, which implies
the positive solution bifurcation branch is to the left. Namely, there exists ε > 0
sufficiently small such that if λ̂1/(1− q− k)− ε ≤ a < λ̂1/(1− q− k), then (4.2) has a
positive solution with the form of (a(s), s(ϕ̂1 + Φ(s)), θ + s(χ1 + Ψ(s))) (0 < s � 1).
Furthermore, it is unique as long as ε is sufficiently small. In fact, it is also unstable.
We leave the proof of this assertion to the reader.

Proof of Theorem 1.3. First we show that for large μ (EP) has a unique asymp-
totically stable positive solution which is close to ((1 − q − k)ϑ, qϑ). In fact, if we
choose δ > 0 small enough in Lemma 4.6, then by Lemma 4.6 any positive solution
of (EP) close to ((1 − q − k)ϑ, qϑ) is nondegenerate and linearly stable. Next, by a
simple variant of the proof of part (ii) of Theorem 1.2, we can find that (EP) has only
one positive solution of type (a), and it is asymptotically stable.

On the other hand, we can show that (EP) has a unique unstable positive solution
of type (b). If this assertion holds, then by Lemma 4.6 our proof is completed. Hence,
our main task is to establish this assertion.

Suppose (u, v) is a positive solution of type (b) of (EP). It follows from Lemmas
4.6 and 4.7; (μu, v) is close to (ω, v), where (ω, v) is the unique positive solution of

(4.2). Hence to prove the uniqueness, it suffices to show that, for a ∈ [λ̂1/(1 − q −
k) − ε0, λ̂1/(1 − q − k)) and μ ≥ M0, there is a unique pair (μu, v) close to (ω, v) for
certain ε0 and M0.

Set û = μu, ε = 1
μ , and consider the following problem with the usual boundary

conditions

dû
′′

+ a(1 − q − k)ûf1(z − (1 + c)εû− v) = 0, x ∈ (0, 1),

dv
′′

+ bvf2(z − (1 + c)εû− v)e−cû + aqεûf1(z − (1 + c)εû− v) = 0.
(4.9)
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Clearly, (u, v) is a solution of (EP) if and only if (μu, v) is a solution of (4.9) with
ε = 1/μ. Thus it suffices to prove the uniqueness of (4.9). For fixed ε ≥ 0, regarding

a as a bifurcation parameter, we see that (λ̂1/(1− q− k), 0, θ) is a simple bifurcation
point of (4.9). By virtue of a variant of Theorem 1 in Crandall and Rabinowitz [2],
there exists δ1 > 0 and C1 curves

Γε = {(a(ε, s), û(ε, s), v(ε, s)) : 0 < s < δ1}, 0 ≤ ε ≤ δ1,

such that if 0 ≤ ε ≤ δ1, then all positive solutions of (4.9) close to (λ̂1/(1−q−k), 0, θ) =
(a(0, 0), û(0, 0), v(0, 0)) lie on the curve Γε. Hence, we need show only that for fixed

ε, Γε uniformly cover an a-range: a ∈ [λ̂1/(1 − q − k) − ε0, λ̂1/(1 − q − k)) only once
for suitably chosen ε0. It is easy to obtain

∂a

∂s
(0, 0) =

λ̂1

∫ 1

0
ϕ̂1f

′
1(z − θ)χ1

(1 − q − k)
∫ 1

0
ϕ̂2

1f1(z − θ)
< 0

based on χ1 = L−1
b (bcθf2(z − θ)ϕ̂1) < 0. By taking δ1 small, we may assume that

∂a
∂s (ε, s) < 0 for 0 ≤ ε, s ≤ δ1. Hence λ̂1/(1 − q − k) − a(0, δ1) = a(0, 0) − a(0, δ1) > 0.

Since a(ε, s) is continuous, there exists δ ∈ (0, δ1] such that ε0 = min0≤ε≤δ(λ̂1/(1 −
q − k) − a(ε, δ1)) > 0. Therefore, if a ≥ λ̂1/(1 − q − k) − ε0, then a(ε, δ1) ≤ a for

any ε ∈ [0, δ]. This shows that for each ε ∈ [0, δ], Γε covers the a-range [λ̂1/(1 −
q − k) − ε0, λ̂1/(1 − q − k)). Moreover, since ∂a

∂s (ε, s) < 0 for 0 ≤ ε, s ≤ δ1, each
curve covers the range only once. By taking M0 = 1/δ, we see that, for μ ≥ M0 and

λ̂1/(1 − q − k) − ε0 ≤ a < λ̂1/(1 − q − k), (EP) has exactly one positive solution of
type (b).

It remains to show the instability. A simple computation shows that η is an
eigenvalue of the linearization of (EP) at (u, v) with eigenfunction (φ, ψ) if and only if
it is an eigenvalue of that of (4.9) with ε = 1/μ at (μu, v) with eigenfunction (μφ, ψ).
Hence it suffices to show that the linearization of (4.9) has a negative eigenvalue at
any point on the bifurcation curves Γε. This follows from a simple application of a
variant of Theorem 1.16 in Crandall and Rabinowitz [3]. More precisely, by Lemma
1.3 in [3], we can obtain a variant of Corollary 1.13 there. That is, there exist τ > 0

and C1 functions γ : (λ̂1/(1 − q − k) − τ, λ̂1/(1 − q − k) + τ) × (−τ, τ) → R1 and
β : (−τ, τ)× (−τ, τ) → R1 such that γ(a, ε) is a simple eigenvalue of the linearization
of (4.9) at (a, 0, θ) and β(s, ε) is a simple eigenvalue of the linearization of (4.9) at

(a, u, v) = (a(ε, s), û(ε, s), v(ε, s)) with 0 ≤ ε, s ≤ τ. Moreover, γ(λ̂1/(1 − q − k), ε) =
β(0, ε) = 0. It is easy to check that, in fact, γ(a, ε) is a simple eigenvalue of

dφ
′′

+ a(1 − q − k)φf1(z − θ) = −γ(a, ε)φ

with the usual boundary conditions. Hence, ∂γ
∂a (λ̂1/(1 − q − k), ε) < 0 because of

the monotone property. Then it follows from Theorem 1.16 in [3] that β(s, 0) ∼
−s∂a

∂s (0, s)∂γ∂a (λ̂1/(1 − q − k), 0) for 0 < s � 1, which implies β(s, 0) < 0 and
the positive solution of type (b) of (EP) is unstable. This completes the proof of
Theorem 1.3.

5. Numerical simulation. In this section, we present some results of our nu-
merical simulations that complement the analytic results of the previous sections. All
computations in this section are performed with Matlab.
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Fig. 1. Effect of μ: (a) and (b) are the bifurcation diagrams of u and v, respectively, with
respect to μ with the parameters a = 4, b = 1.5. Here the two solid lines in (a) and (b) represent
the L1 norm of components u and v of the stable coexistence solution (u, v), respectively. The two
dashed lines in (a) and (b) represent the L1 norm of components 0 and θ of the unstable semitrivial
nonnegative solution (0, θ), respectively. Similarly, the pair of (c) and (d) and the pair of (e) and
(f) are the bifurcation diagrams of u and v, respectively, with respect to μ all with a = 2.5, b = 5.
Here solid lines denote the stable solutions and dashed lines represent the unstable solutions. Note
that μ ∈ [10, 15] in (c) and (d) and that μ ∈ [100, 500] in (e) and (f). The aim of plotting in the
above domain is to explicitly show the change tendency of u and v.

Several parameters are common for all simulations: the diffusion rate d = 1.0 and
parameters k1 = 1, k2 = 1.1, γ = 1, q = 0.1, and k = 0.2. The other parameters are
varied in order to illustrate different outcomes. In Figures 1 and 2, the vertical axis
is the L1 norm of u or v. In Figures 3 and 4, the coexistence solutions to (PP) are
plotted.
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Fig. 2. Bifurcation diagrams with respect to a: (a) and (b) with μ = 50, b = 5 and (c) and (d)
with μ = 100, b = 5 also represent the bifurcation graphs of u and v with respect to a, respectively.
Here solid lines denote the stable solutions and dashed lines represent the unstable solutions.
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Fig. 3. Two coexistence solutions of (PP) with μ = 1, a = 6.4, b = 5. This indicates (PP) also
has two coexistence solutions when μ is not large.

The simulations presented below illustrate the following major outcomes of the
plasmid-bearing and plasmid-free competition in the unstirred chemostat with an
internal inhibitor.

(1) If u is a better competitor than v, there exists only a unique globally stable
coexistence state of (PP) for any μ > 0 (see Figures 1(a) and 1(b)). That is, if u is a
better competitor, then it cannot eliminate its competitor but forces the existence of
a coexistence state. This reflects the difference between the plasmid model and the
standard competition model in the chemostat.
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Fig. 4. The difference between the plasmid model and the standard chemostat competition
model in the presence of inhibitor: (a) and (b) with q = 0, (c) and (d) with q = 0.01, (e) and (f)
with q = 0.1, and (g) and (h) with q = 0.2. Here a = 2.5, b = 5, μ = 50. The simulations suggest
that for large μ the plasmid model (q > 0) has two coexistence solutions; one asymptotically stable,
(c), (e), and (g) with q = 0.01, 0.1, 0.2, respectively, and the others unstable, (d), (f) and (h) with
q = 0.01, 0.1, 0.2, respectively. However, the basic chemostat model (q = 0) seems to have only one
unstable coexistence solution, (b). Moreover, when q → 0+, the stable coexistence solution of (PP)
goes to the semitrivial nonnegative solution (ϑ, 0), (a).
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(2) If u is a weaker competitor than v, then there exists a unique number μ∗ > 0
such that if μ < μ∗ there is no coexistence state of (PP) and the semitrivial non-
negative solution (0, θ) is globally stable; if μ > μ∗ there are exactly two coexistence
states of (PP) (see Figures 1(c)–(f)). One is asymptotically stable, and the theoretical
results and plenty of numerical analysis strongly suggest the other coexistence state
is the most possibly unstable. Namely, if v is the better competitor, then it will elim-
inate u unless the effect of the inhibitor is sufficiently large, reflected by the condition
μ > μ∗. This result exactly indicates that the inhibitor can help the genetically al-
tered (plasmid-bearing) organism to avoid capture of the process by the plasmid-free
organism.

(3) If μ is sufficiently large and b suitably large, then there exists a unique constant

aμ > λ1

1−q−k such that (PP) has exactly two coexistence states for aμ < a < λ̂1

(1−q−k) :

one asymptotically stable and the other (most possibly) unstable. Meanwhile, the

semitrivial nonnegative solution (0, θ) is stable as well. But for a ≥ λ̂1

(1−q−k) , (PP)

has only a unique coexistence state, and it is asymptotically stable (see Figure 2).
The simulations indicate that it is also globally stable, but we cannot give a rigorous
proof. Furthermore, aμ goes to λ1

1−q−k when μ → ∞, which is just consistent with our
analytic outcomes.

(4) In fact, (PP) may also have two coexistence states in the case that μ is not large
enough. For example, taking the parameters μ = 1, a = 6.4, and b = 5 and the same
parameters as above, (PP) has two positive solutions; see Figure 3. Moreover, the
simulations also suggest that the coexistence solution in Figure 3(a) is asymptotically
stable and the coexistence solution in Figure 3(b) is (most possibly) unstable.

(5) We discuss the difference between the plasmid model and the standard chemo-
stat competition model in the presence of inhibitor. In (1), we mention the difference
between the above two kinds of chemostat models when the plasmid-bearing organism
is a better competitor. Here, we mainly concentrate on the case that the plasmid-
bearing organism is a weaker competitor than the plasmid-free organism. It is easy to
see that the introduction of the plasmid-free organism destroys the competitive prop-
erty of the system. However, it is this property of the plasmid model that leads to the
complex dynamical behavior. Now, numerical simulations help us understand this; see
Figure 4. Take the parameters a = 2.5, b = 5, and μ = 50 and the same parameters
as before except that q = 0, 0.01, 0.1, 0.2 for Figures 4(a)–(h). Simulations convince
us that when the effect of the inhibitor is very large, represented by large μ, if q = 0,
that is, for the standard chemostat model with inhibitor, there is only one positive
coexistence solution (see Figure 4(b)). Moreover, both the analytic results and many
numerical simulations convince us that it is unstable. But once q > 0, the plasmid
model has one asymptotically stable coexistence solution (see Figures 4(c), 4(e), 4(g))
and one (most likely) unstable coexistence solution (see Figures 4(d), 4(f), 4(h)).

Appendix A. In this section, we give the proof of Lemma 3.2.
Proof. (i) Let y = (0, 0). By computation Wy = {(u, v) ∈ X : u ≥ 0, v ≥ 0},

Sy = (0, 0). Hence Xy = X, and Q = I (I is the identity operator in X). We first
examine the eigenvalues of A′(0, 0), where A′(0, 0) is the Fréchet derivative of A with
respect to (u, v) at (0, 0). By direct computation,

A′(0, 0)(u, v) =

(
−d

d2

dx2
+ M

)−1

× (a(1 − q − k)uf1(z) + Mu, bvf2(z) + Mv + aquf1(z))
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for each (u, v) ∈ X. Hence an eigenvector (u, v) of A′(0, 0) satisfies

−du
′′

+ Mu = 1
λ (a(1 − q − k)f1(z) + M)u,

−dv
′′

+ Mv = 1
λ ((bf2(z) + M)v + aquf1(z)),

u′(0) = u′(1) + γu(1) = 0, v′(0) = v′(1) + γv(1) = 0.

It is easy to see that I − A′(0, 0) is invertible in Wy since a �= λ1/(1 − q − k) and
b �= σ1.

If u ≡ 0, then λ is an eigenvalue of

−dv
′′

+ Mv =
1

λ
(bf2(z) + M)v, v′(0) = v′(1) + γv(1) = 0.(A.1)

Let η1 be the principal eigenvalue of

−dω
′′ − bf2(z)ω = η1ω, ω′(0) = ω′(1) + γω(1) = 0.

Then η1 > 0 if b < σ1, and η1 < 0 if b > σ1. It follows from Lemma 2.3 that
if b < σ1, then (A.1) has no eigenvalue larger than or equal to 1; if b > σ1, then
(A.1) has eigenvalues larger than 1. Namely, A′(0, 0) has no eigenvalue larger than
or equal to 1 with the corresponding eigenvector of the form (0, v) if b < σ1; A′(0, 0)
has eigenvalues larger than 1 with the corresponding eigenvector of the form (0, v) if
b > σ1.

If u �≡ 0, then λ is an eigenvalue of

−du
′′

+ Mu =
1

λ
(a(1 − q − k)f1(z) + M)u, u′(0) = u′(1) + γu(1) = 0.

By Lemma 2.3, we know that if a < λ1/(1 − q − k), then A′(0, 0) has no eigenvalue
larger than or equal to 1 with the associated eigenfunction (u, v), where u �≡ 0; if
a > λ1/(1 − q − k), then A′(0, 0) has eigenvalues larger than 1 with the associated
eigenfunction (u, v)(u �≡ 0). Hence, by Theorem 2.2 in [26], indexW (A, (0, 0)) = 1 if
a < λ1/(1 − q − k) and b < σ1, and indexW (A, (0, 0)) = 0 if a > λ1/(1 − q − k) or
b > σ1.

(ii) Let y = (0, θ). By computation,

Wy = {(u, v) ∈ X : u ≥ 0}, Sy = {(0, v) : v ∈ CB([0, 1])}.

Define Xy = {(u, 0) : u ∈ CB([0, 1])}. Then X = Sy ⊕ Xy with projection Q given
by (u, v) → (u, 0). We first determine the existence of indexW (A, (0, θ)). Let A′(0, θ)
denote the Fréchet derivative of A with respect to (u, v) at (0, θ). Then

A′(0, θ)(u, v) =

((
−d

d2

dx2
+ M

)−1

g(u, v),

(
−d

d2

dx2
+ M

)−1

(h1(u, v) + h2(u, v))

)

for (u, v) ∈ X, where

g(u, v) = (a(1 − q − k)f1(z − θ) + M)u,
h1(u, v) = (−b(1 + c)θf ′

2(z − θ) − bμcθf2(z − θ) + aqf1(z − θ))u,
h2(u, v) = (b(f2(z − θ) − θf ′

2(z − θ)) + M)v.

Let (u, v) ∈ Wy be a fixed point of A′(0, θ). Then (u, v) satisfies

du
′′

+ a(1 − q − k)uf1(z − θ) = 0,

dv
′′

+ b(f2(z − θ) − θf ′
2(z − θ))v

= (b(1 + c)θf ′
2(z − θ) + bμcθf2(z − θ) − aqf1(z − θ))u.
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Clearly, if a �= λ̂1/(1 − q − k), then u ≡ v ≡ 0. That is, I − A′(0, θ) is invertible
in Wy, and indexW (A, (0, θ)) is well defined. Next, we consider the eigenvalues of
Q ◦ A′(0, θ). By virtue of definition Q(u, v) = (u, 0), every eigenvector of Q ◦ A′(0, θ)
has the form (u, 0), where u is a nonzero solution of the equation

−du
′′

+ Mu =
1

λ
(a(1 − q − k)f1(z − θ) + M)u, u′(0) = u′(1) + γu(1) = 0.

Let η1 be the first eigenvalue of

−dω
′′ − a(1 − q − k)ωf1(z − θ) = η1ω, ω′(0) = ω′(1) + γω(1) = 0.

Then η1 > 0 if a < λ̂1/(1 − q − k); η1 < 0 if a > λ̂1/(1 − q − k). It follows from
Lemma 2.3 that Q ◦ A′(0, θ) has no eigenvalue larger than or equal to 1 if a <

λ̂1/(1 − q − k); Q ◦ A′(0, θ) has an eigenvalue larger than 1 if a > λ̂1/(1 − q −
k). In view of Theorem 2.2 in [26], indexW (A, (0, θ)) = 0 if a > λ̂1/(1 − q − k);

indexW (A, (0, θ)) = indexSy (A′(0, θ), (0, 0)) = (−1)σ if a < λ̂1/(1 − q − k). Here σ
is the sum of multiplicities of the eigenvalues λ of A′(0, θ) restricted in Sy such that
λ > 1.

It remains to prove that indexW (A, (0, θ)) = 1 for a < λ̂1/(1 − q − k). It suffices
to show σ = 0. Suppose λ is an eigenvalue of A′(0, θ) in Sy with the corresponding
eigenvector (u, v). Then u = 0 and v is a nonzero solution of the equation

−dv
′′
+Mv =

1

λ
(b(f2(z−θ)−θf ′

2(z−θ))+M)v, v′(0) = v′(1)+γv(1) = 0.(A.2)

It follows from Lemma 2.3 that (A.2) has no eigenvalue larger than or equal to 1,
which implies σ = 0 and indexW (A, (0, θ)) = indexSy (A′(0, θ), (0, 0)) = 1. The proof
of this lemma is completed.
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Abstract. For the sharp interface problem arising in the singular limit of some elliptic systems,
we prove the existence and the nondegeneracy of solutions whose interface is a distorted circle in a
two-dimensional bounded domain without any assumption on the symmetry of the domain.
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1. Introduction. We consider⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δv = 1Ω+ −m in Ω,

∂v

∂n
= 0 on ∂Ω,

βv + κ = 0 on Γ,

(1.1)

where Ω ⊂ R
2 is a bounded domain with the smooth boundary ∂Ω, ∂/∂n is the normal

derivative on ∂Ω, Ω+ is an open set in Ω, Γ = ∂Ω+ ⊂ Ω is a C2-curve embedded in
Ω, κ is the curvature of Γ, β > 0 is a parameter, m ∈ (0, 1) is a constant, and 1Ω+

denotes the characteristic function of Ω+.
This problem comes from the following reaction-diffusion systems:

uτ = ε2Δu + f(u) − μv, vτ = Δv + g(u, v),(1.2)

where u = u(y, τ) and v = v(y, τ) are real-valued functions on (y, τ) ∈ R
2 × R

+;
ε, μ > 0 are positive constants; f ∈ C1(R) is a function satisfying f(i) = 0, f ′(i) < 0
(i = 0, 1), f(a) = 0, f ′(a) > 0 with a ∈ (0, 1), and f(s) = −W ′(s) with W ∈ C2(R)
being a double-equal-well potential satisfying

W (0) = W (1) = 0 < W (s) ∀s ∈ R\{0, 1},
W ′′(0)W ′′(1) > 0;

and g ∈ C1(R2) is a function such that g(1, 0) = 1 −m > 0, g(−1, 0) = −m < 0. It

follows
∫ 1

0
f(s) ds = 0.

A typical example of (f, g) is the FitzHugh–Nagumo type: f(s) = s(s−a)(1− s),
g(u, v) = u− γv −m (γ ≥ 0 is a nonnegative constant). The general case is referred
to as the activator-inhibitor system.

The system (1.2) describes the reaction and the diffusion phenomena of sub-
stances. When the ratio of the diffusion constants, ε2, is extremely small, very inter-
esting stationary patterns, such as stripes or spots, often appear. As a mathematical
approach to understanding this pattern formation, we consider the limit ε → 0. Then
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usually the domain is divided into two regions, and the remaining part becomes a
thin layer. In some cases, the width of the internal transition layer approaches 0 in
the limit, and the discontinuity surface inside the domain, which is called the sharp
interface, appears. Recently very fine layered patterns of (1.2) have attracted a great
deal of attention. See [4, 13, 14]. We consider this fine pattern which has the space
scale of ε1/3 order. This is the unique scale that the order of the two driving forces of
the sharp interface, the inhibitor v and the curvature of the sharp interface, balances.
See [11]. This scale also appeared in [4]. After rescaling

x =
y

ε1/3
, t = ε4/3τ, ε = ε2/3,

we obtain ⎧⎨
⎩

ut = Δu +
1

ε2
(f(u) − μv),

ε3vt = Δv + εg(u, v).

(1.3)

We consider the stationary solutions of (1.3) subject to the homogeneous Neu-
mann boundary condition:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ε2Δu = f(u) − μv in Ω,

−Δv = εg(u, v) in Ω,

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω,

(1.4)

where Ω ⊂ R
2 is a bounded domain with the smooth boundary ∂Ω.

The reduced equation in the singular limit ε → 0 becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δv1 = 1Ω+ −m in Ω,

∂v1

∂n
= 0 on ∂Ω,

μ
σv1 + κ = 0 on Γ,

(RP)

where Ω+ is an open set in Ω such that Γ = ∂Ω+ is a curve embedded in Ω and 1Ω+

denotes the characteristic function of Ω+. Here u → 1Ω+ , v/ε → v1 as ε → 0. See
Appendix A of this paper or [12].

The associated functional becomes

J [Γ] = σ|Γ| + μ

2

∫
Ω

|∇v1|2 dx,

where |Γ| is the length of Γ and v1 is a solution to⎧⎨
⎩

−Δv1 = 1Ω+ −m in Ω,

∂v1

∂n
= 0 on ∂Ω.

See Lemma 3.4 in section 3.
Essentially the same equation as (RP) was obtained in [12] by using the matched

expansion method. Once you have a “nondegenerate” solution of (RP) in some
sense, you can find a layered solution for the singular perturbation problem (1.4)
with g(u, v) = u−m and μ = 1. See Appendix B.
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For the reduction from the parabolic system to the sharp interface model, see [17].
In the case of the FitzHugh–Nagumo type, the functional J [Γ] can also be obtained
mathematically by using the notion of the Gamma convergence. See [14].

The direct method of calculus of variations implies the existence of global min-
imizers of J [Γ]. This gives a solution of (RP). However, it is usually difficult to
know the profile and the nondegeneracy of the global minimizers. Here we consider
the problem of finding a solution of (RP) that does not necessarily correspond to
the global minimizers. The radially symmetric case for related problems is studied in
[5, 6, 12, 15, 16, 18]. We do not assume any symmetry of the domain.

In order to state the result, we define the Green’s function and its harmonic part.
Definition 1.1. For each y ∈ Ω, let G(x, y) be the solution to⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ΔxG(x, y) = δ(x− y) − 1

|Ω| , x ∈ Ω,

∂G

∂nx
(x, y) = 0, x ∈ ∂Ω,∫

Ω

G(x, y) dx = 0.

Set

G(x, y) = − 1

2π
log |x− y| + |x− y|2

4|Ω| + H(x, y), x, y ∈ Ω.

Then it is known that H(x, y) is symmetric and harmonic in both x and y. Let
H(x) = H(x, x).

We define the following two conditions.
(A1) 0 ∈ Ω is a strict local minimum point of H. More precisely, there exists a

neighborhood U of 0 in Ω such that H(0) < H(x) for all x ∈ U\{0}.
(A2) 0 ∈ Ω is a nondegenerate critical point of H.

Remark. When Ω = {x ∈ R
2 ; |x| < 1}, x = 0 is a unique minimum point of H,

and both (A1) and (A2) are satisfied. Indeed, we have H(x) = − 1
2π log(1 − |x|2) +

|x|2
2π + H(0), and hence ∂2H

∂xi∂xj
(0) = 2

π δij .

The regular part of Green’s function subject to the homogeneous Dirichlet bound-
ary condition has a unique nondegenerate minimum point when Ω ⊂ R

2 is convex
(see [2]). The regular part of Green’s function subject to the homogeneous Neumann
boundary condition is considered in [7].

We denote by dH the Hausdorff metric

dH(K1,K2) = max[sup{dist(x,K2) ; x ∈ K1}, sup{dist(y,K1) ; y ∈ K2}],
Sr(0) = {x ∈ R ; |x| = r}, and Br(0) = {x ∈ R ; |x| < r}.

Theorem 1.1. Assume that (A1) or (A2) holds. If

r0 :=

√
m|Ω|
π

< dist(0, ∂Ω),

then there exists a constant β0 > 0 such that (1.1) has a solution⎧⎪⎨
⎪⎩

Γ = Γβ ,

v = vβ ,

Ω+ = Ω+
β

for all β < β0 satisfying dH(Γβ , Sr0(0)) → 0 as β → 0.
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This paper is organized as follows. In section 2, we prepare some preliminaries
and notations. In section 3, we prove Theorem 1.1, and in section 4, we consider the
linearized nondegeneracy of the problem.

2. Notation. We identify 2π-periodic functions on R with the functions on S1 =
{x ∈ R

2 ; |x| = 1} ∼= R/2πZ. For q ∈ C2(S1), we use the following notation:

q̇(ω) =
dq

dω
(ω) =

d

dθ
q(cos θ, sin θ), ω = (cos θ, sin θ) ∈ S1

and

q̈(ω) =
d2q

dω2
(ω) =

d2

dθ2
q(cos θ, sin θ), ω = (cos θ, sin θ) ∈ S1.

We set X = C2(S1),

‖q‖X = max
ω∈S1

|q(ω)| + max
ω∈S1

|q̇(ω)| + max
ω∈S1

|q̈(ω)|,

Y = C(S1), and

‖q‖Y = max
ω∈S1

|q(ω)|.

For q1, q2 ∈ L2(S1), denote

〈q1, q2〉 =

∫
S1

q1(ω)q2(ω) dω =

∫ 2π

0

q1(cos θ, sin θ)q2(cos θ, sin θ) dθ

and ‖q1‖2 = 〈q1, q1〉.
Let Πn2 : L2(S1) → L2(S1) denote the projections with respect to 〈·, ·〉 onto

span{cos iθ, sin iθ ; i = 0, 1, . . . , n} for n = 0, 1, . . . . Let Π⊥
n2 = Id − Πn2 .

Define Φ0(ω) = 1/
√

2π, Φ1(ω) = ω1/
√
π, and Φ2(ω) = ω2/

√
π for ω = (ω1, ω2) ∈

S1. Then Π⊥
0 ,Π

⊥
1 are the projections onto the orthogonal complements of span{Φ0}

and span{Φi ; i = 0, 1, 2}, respectively.

3. Proof of Theorem 1.1. For brevity’s sake, we assume that r0 = 1 <
dist(0, ∂Ω).

For � > 0, define

X� = {q ∈ X ; ‖q‖X ≤ �}.

We can choose a constant δ ∈ (0, 1/2) such that B1+δ(0) ⊂ Ω by the assumption.
For q ∈ Xδ/2, define

Γ(q) = {
√

1 + q(ω)ω ; ω ∈ S1},

Ω+(q) = {rω ; 0 ≤ r ≤
√

1 + q(ω), ω ∈ S1}.

Let q ∈ Xδ/2 ∩ Π⊥
0 X. Then Γ(q) ⊂ Ω, and |Ω+(q)| = π. Indeed since

√
1 + q ≤

1 + 1
2q ≤ 1 + δ

4 , we have Γ(q) ⊂ B1+δ/2(0) ⊂ Ω. In addition, since 〈q, 1〉 = 0, we have

|Ω+(q)| =

∫
S1

∫ √
1+q(ω)

0

r drdω =

∫
S1

1 + q(ω)

2
dω = π.
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Let Mβ be the map from Xδ/2 to Y defined by

Mβ(q)(ω) = K(q)(ω) + β

∫
Ω+(q)

G(
√

1 + q(ω)ω, y) dy, ω ∈ S1

for q ∈ Xδ/2, where

K(q) =
1 + q + 3q̇2

4(1+q) −
1
2 q̈[

1 + q + q̇2

4(1+q)

]3/2

is the curvature of Γ(q). Indeed, set x1(θ) = r(θ) cos θ, x2(θ) = r(θ) sin θ with

r(θ) =
√

1 + q(cos θ, sin θ).

Then the curvature of Γ(q) can be computed as follows.

ẋ1ẍ2 − ẍ2ẋ1

(ẋ2
1 + ẋ2

2)
3/2

=
r2 + 2ṙ2 − rr̈

(r2 + ṙ2)3/2
=

1 + q + 3q̇2

4(1+q) −
1
2 q̈[

1 + q + q̇2

4(1+q)

]3/2
.

In order to solve (1.1), we need prove only the following.
Proposition 3.1. Suppose either (A1) or (A2) holds. If 1 =

√
m|Ω|/π <

dist(0, ∂Ω), then there exists a constant β0 > 0 such that Π⊥
0 Mβ(q) = 0 has a solution

q = qβ ∈ Xδ/2 ∩ Π⊥
0 X for all β ∈ (0, β0) satisfying qβ → 0 in X as β → 0.

Indeed, if q ∈ Xδ/2 ∩ Π⊥
0 X is a solution of Π⊥

0 Mβ(q) = 0, then there exists a
constant C1 such that

Mβ(q) ≡ C1.

Now set

v(x) =

∫
Ω+(q)

G(x, y) dy − 1

β
C1, x ∈ Ω.

Then v satisfies ⎧⎪⎨
⎪⎩

−Δv = 1Ω+(q) −m in Ω,

∂v

∂n
= 0 on ∂Ω.

Hence we see that

Γ = Γ(q), v(x) =

∫
Ω+(q)

G(x, y) dy − 1

β
C1, Ω+ = Ω+(q)

solves our (1.1) and completes the proof of Theorem 1.1.

3.1. Proof of Proposition 3.1. First we construct approximate solutions and
prepare some lemmas. Next we find a solution by decomposing the equation Π⊥

0 Mβ(q)
= 0 into the system of equations:

1. Π⊥
1 Mβ(q) = 0,

2. (Π1 − Π0)Mβ(q) = 0.



SINGULAR LIMIT PROBLEM FOR SOME ELLIPTIC SYSTEMS 1891

Approximate solutions. We shall construct approximate solutions. Fix η = (η1, η2)
∈ R

2 (|η| < 1). For ω ∈ S1, r = η · ω +
√

1 + (η · ω)2 − |η|2 is the solution of
|rω − η| = 1, r > 0. Now set

q(ω; η) := 2(η · ω)2 − |η|2 + 2(η · ω)
√

1 + (η · ω)2 − |η|2 for ω ∈ S1.

Then Γ(q(·; η)) is a circle of radius 1 with center at η. Also it is easy to see that
〈q(·; η),Φ0〉 = 0. Set

ξi = 〈q(·; η),Φi〉, i = 1, 2.(3.1)

Noting that q(ω; η) + |η|2 − 2(η · ω)
√

1 + q(ω; η) = 0, it follows that

ξi = 2
√
π

2∑
j=1

ηj〈
√

1 + q(ω; η)Φj ,Φi〉, i = 1, 2.

Then we have 〈q(·; 0),Φi〉 = 0, i = 1, 2, and ∂ξi/∂ηj(0) = 2
√
π〈Φj ,Φi〉 = 2

√
πδij .

From the inverse mapping theorem, we conclude that there exists a neighborhood
U1 ⊂ R

2 of 0 and a smooth map P = (P1, P2) on U1 such that ξi = 〈q(·;P (ξ)),Φi〉
for ξ = (ξ1, ξ2) ∈ U1. Set ψξ = q(·;P (ξ)) for ξ ∈ U1. Taking a smaller U1 if necessary,
we may assume the following.

Lemma 3.1. For any ξ = (ξ1, ξ2) ∈ U1, there holds ψξ ∈ Xδ/4 ∩ Π⊥
0 X,

Π1ψξ = ξ1Φ1 + ξ2Φ2,

and Γ(ψξ) = {ω
√

1 + ψξ(ω) ; ω ∈ S1} is a circle of radius 1 with center at P (ξ) ∈ R
2.

Moreover P is smooth, P (0) = 0, and ∂Pi/∂ξj(0) = (2
√
π)−1δij.

Since K(ψξ) ≡ 1, we have Mβ(ψξ) = 1 + O(β), and hence Π0Mβ(ψξ) = 〈1 +
O(β),Φ0〉Φ0 = 1 + O(β). Thus we have the following.

Proposition 3.2. Π⊥
0 Mβ(ψξ) = O(β) as β → 0 uniformly in ξ ∈ U1.

Linearization. For t > −1, p ∈ R, and s ∈ R, set

L(t, p, s) =
1 + t + 3p2

4(1+t) −
1
2s[

1 + t + p2

4(1+t)

]3/2
.(3.2)

Then K is C1 on Xδ/2, and there hold

K ′(q)ζ = Ls(q, q̇, q̈)ζ̈ + Lp(q, q̇, q̈)ζ̇ + Lt(q, q̇, q̈)ζ for ζ ∈ X.(3.3)

Moreover since

Mβ(q)(ω) = K(q)(ω) + β

∫
S1

∫ q(ω̂)

−1

G(
√

1 + q(ω)ω,
√

1 + q̂ω̂)
dq̂

2
dω̂, ω ∈ S1
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for q ∈ Xδ/2, we see that Mβ is also C1 and

[M ′
β(q)ζ](ω) = [K ′(q)ζ](ω) +

β

2

∫
S1

G(
√

1 + q(ω)ω,
√

1 + q(ω̂)ω̂)ζ(ω̂) dω̂

+ βζ(ω)

∫
S1

∫ q(ω̂)

−1

∇xG(
√

1 + q(ω)ω,
√

1 + q̂ω̂) · ω
2
√

1 + q(ω)

dq̂

2
dω̂

=
d

dω
[Ls(q, q̇, q̈)ζ̇] + Lt(q, q̇, q̈)ζ

+
β

2

∫
S1

G(
√

1 + q(ω)ω,
√

1 + q(ω̂)ω̂)ζ(ω̂) dω̂(3.4)

+
βζ(ω)

2
√

1 + q(ω)

∫
Ω+(q)

ω · ∇xG(
√

1 + q(ω)ω, y) dy, ω ∈ S1

for q ∈ Xδ/2 and ζ ∈ X.
Lemma 3.2. 〈K ′(q)ζ1, ζ2〉 = 〈ζ1,K ′(q)ζ2〉, and 〈M ′

β(q)ζ1, ζ2〉 = 〈ζ1,M ′
β(q)ζ2〉 for

all ζ1, ζ2 ∈ X.
Proof. Since

Ls(q, q̇, q̈) = −1

2

[
1 + q +

q̇2

4(1 + q)

]−3/2

,

Lp(q, q̇, q̈) =
3q̇

16

{
4 − q̇2

(1 + q)2
+

2q̈

1 + q

}[
1 + q +

q̇2

4(1 + q)

]−5/2

,

we have d
dωLs(q, q̇, q̈) = Lp(q, q̇, q̈). Hence it follows that for ζ ∈ X

K ′(q)ζ = Ls(q, q̇, q̈)ζ̈ + Lp(q, q̇, q̈)ζ̇ + Lt(q, q̇, q̈)ζ

=
d

dω
[Ls(q, q̇, q̈)ζ̇] + Lt(q, q̇, q̈)ζ.(3.5)

The assertion of the Lemma follows from (3.5) and (3.4).
Proposition 3.3. There exists a constant C > 0, independent of small β, such

that

‖M ′
β(q) −M ′

β(ψξ)‖L(X,Y ) ≤ Ca1/3

for any q in {q ∈ Xδ/2 ; ‖q − ψξ‖X ≤ a}, a ≤ δ/4, and ξ ∈ U1.
Proof. We shall show that there exists a constant C > 0, independent of small β,

such that

‖M ′
β(q)ζ −M ′

β(ψξ)ζ‖Y ≤ Ca1/3‖ζ‖X

for any q in {q ∈ Xδ/2 ; ‖q − ψξ‖X ≤ a}, a ≤ δ/4, ξ ∈ U1, and ζ ∈ X.
Let q ∈ Xδ/2, ‖q − ψξ‖X ≤ a, a ≤ δ/4, ξ ∈ U1, and ζ ∈ X. In this proof, for the

sake of notational simplicity, we will use the same letters C to denote some positive
constants, independent of q, ξ, a, ζ, whose values may vary from line to line.

From the expression (3.3) and the fact that L is smooth in (−1,∞) × R × R, we
easily see that

‖K ′(q)ζ −K ′(ψξ)ζ‖X ≤ Ca‖ζ‖Y .(3.6)
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Next let

v(x) =

∫
Ω+(q)

G(x, y) dy,

vξ(x) =

∫
Ω+(ψξ)

G(x, y) dy.

Then since ‖1Ω+(q)−1Ω+(ψξ)‖L3(Ω) ≤ C‖q−ψξ‖1/3
L∞(S1) ≤ Ca1/3, it follows from elliptic

estimates and the Sobolev embedding theorem that v, vξ ∈ W 2,3(Ω) ⊂ C1,1/3(Ω̄),
‖v − vξ‖C1(Ω̄) ≤ Ca1/3, and ‖v‖C1,1/3(Ω̄) < ∞. Then since

ω · ∇v(
√

1 + q(ω)ω)√
1 + q(ω)

− ω · ∇vξ(
√

1 + ψξ(ω)ω)√
1 + ψξ(ω)

=
ω · ∇v(

√
1 + ψξ(ω)ω) − ω · ∇vξ(

√
1 + ψξ(ω)ω)√

1 + ψξ(ω)

+
ω · ∇v(

√
1 + ψξ(ω)ω)√

1 + q(ω)
− ω · ∇v(

√
1 + ψξ(ω)ω)√
1 + ψξ

+
ω · ∇v(

√
1 + q(ω)ω) − ω · ∇v(

√
1 + ψξ(ω)ω)

|
√
|1 + q(ω) −

√
1 + ψξ(ω)|1/3

|
√
|1 + q(ω) −

√
1 + ψξ(ω)|1/3√

1 + q(ω)
,

we have

sup
ω∈S1

∣∣∣∣∣ω · ∇v(
√

1 + q(ω)ω)√
1 + q(ω)

− ω · ∇vξ(
√

1 + ψξ(ω)ω)√
1 + ψξ(ω)

∣∣∣∣∣ ≤ Ca1/3.(3.7)

On the other hand let

wξ(x) =

∫
S1

G

(
x,

√
1 + ψξ(ω̂)ω̂

)
ζ(ω̂) dω̂.

Then wξ is the solution to∫
Ω

∇wξ · ∇ϕdx = Aψξ
ϕ :=

∫
S1

ζ(ω̂)ϕ

(√
1 + ψξ(ω̂)ω̂

)
dω̂ − 1

|Ω|

∫
S1

ζ

∫
Ω

ϕ

for all ϕ ∈ W 1,3/2(Ω). Here

Aψξ
: ϕ �→

∫
S1

ζ(ω̂)ϕ

(√
1 + ψξ(ω̂)ω̂

)
dω̂ − 1

|Ω|

∫
S1

ζ

∫
Ω

ϕ

is a bounded linear functional on W 1,3/2(Ω). Indeed for ϕ ∈ W 1,3/2(Ω), we have∣∣∣∣
∫
S1

ζ(ω̂)ϕ

(√
1 + ψξ(ω̂)ω̂

)
dω̂

∣∣∣∣
≤

(∫
S1

∣∣∣∣ϕ
(√

1 + ψξ(ω̂)ω̂

)∣∣∣∣
3/2

dω̂

)2/3 (∫
S1

|ζ(ω̂)|3 dω̂
)1/3

≤ (2π)1/3‖ζ‖Y ‖ϕ̃‖L3/2(S1)

≤ C‖ζ‖Y ‖ϕ̃‖W 1,3/2(B1(0)) ≤ C‖ζ‖Y ‖ϕ‖W 1,3/2(Ω),
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where ϕ̃(x) = ϕ
(√

1 + ψξ(x/|x|)x
)

and hence Aψξ
∈ W−1,3(Ω) and ‖Aψξ

‖W−1,3(Ω) ≤
C‖ζ‖Y . Then by elliptic estimates, we see that wξ ∈ W 1,3(Ω), and there exists a
positive constant C, independent of ξ ∈ U1, such that ‖wξ‖W 1,3(Ω) ≤ C‖ζ‖Y .

Let

w(x) =

∫
S1

G
(
x,

√
1 + q(ω̂)ω̂

)
ζ(ω̂) dω̂,

Aq : ϕ �→
∫
S1

ζ(ω̂)ϕ
(√

1 + q(ω̂)ω̂
)
dω̂.

Then similarly we have w ∈ W 1,3(Ω) and Aq ∈ W−1,3(Ω).
In addition, we estimate for ϕ ∈ W 1,3/2(Ω),

|Aqϕ−Aψξ
ϕ| =

∣∣∣∣
∫
S1

ζ(ω̂)ϕ
(√

1 + q(ω̂)ω̂
)
− ζ(ω̂)ϕ

(√
1 + ψξ(ω̂)ω̂

)
dω̂

∣∣∣∣
=

∣∣∣∣∣
∫
S1

∫ √
1+q(ω̂)

√
1+ψξ(ω̂)

ϕr(rω̂)ζ(ω̂) dr dω̂

∣∣∣∣∣
≤ ‖ζ‖Y√

1 − δ/2

∫
D

|ϕr| dx

≤ ‖ζ‖Y√
1 − δ/2

(∫
D

|ϕr|3/2 dx
)2/3 (∫

D

dx

)1/3

≤ (πa)1/3√
1 − δ/2

‖ζ‖Y ‖ϕ‖W 1,3/2(Ω),

where

D =

{
rω ∈ Ω ;

min

(√
1 + ψξ(ω),

√
1 + q(ω)

)
≤ r ≤ max

(√
1 + ψξ(ω),

√
1 + q(ω)

)
, ω ∈ S1

}

and ϕr(rω) = ω · ∇ϕ(rω). We then have ‖Aq −Aψξ
‖W−1,3(Ω) ≤ Ca1/3‖ζ‖Y , and thus

by elliptic estimates, ‖w − wξ‖L∞(Ω) ≤ Ca1/3‖ζ‖Y .
Therefore we have∣∣∣∣w (√

1 + q(ω)ω
)
− wξ

(√
1 + ψξ(ω)ω

) ∣∣∣∣
≤

∣∣∣wξ

(√
1 + ψξ(ω)ω

)
− wξ

(√
1 + q(ω)ω

)∣∣∣
+

∣∣∣wξ

(√
1 + q(ω)ω

)
− w

(√
1 + q(ω)ω

)∣∣∣
≤ Ca1/3‖ζ‖Y

and hence

sup
ω∈S1

∣∣∣∣w (√
1 + q(ω)ω

)
− wξ

(√
1 + ψξ(ω)ω

) ∣∣∣∣ ≤ Ca1/3‖ζ‖Y .(3.8)

Our assertion follows from (3.4), (3.6), (3.7), and (3.8).
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Lemma 3.3. For ζ ∈ X,

K ′(0)ζ = −1

2

{
ζ̈ + ζ

}
.

Proof. From a simple computation, we have Lt(0, 0, 0) = Ls(0, 0, 0) = − 1
2 ,

Lp(0, 0, 0) = 0, and thus

K ′(0)ζ = Ls(0, 0, 0)ζ̈ + Lp(0, 0, 0)ζ̇ + Lt(0, 0, 0)ζ = −1

2

{
ζ̈ + ζ

}
for ζ ∈ X.

Note that (i) { 1
2 (n2 − 1)}n=0,1,2,... are the set of all the eigenvalues of K ′(0), (ii)

the eigenspace associated with the eigenvalue 1
2 (n2 − 1) is span{cosnθ, sinnθ}, and

(iii) K ′(0) maps Π⊥
1 X onto Π⊥

1 Y .
Proposition 3.4. There exists a constant C and a neighborhood U2 ⊂ U1 of 0,

independent of small β, such that for all ζ ∈ Π⊥
1 X and ξ ∈ U2,

‖Π⊥
1 M

′
β(ψξ)ζ‖Y ≥ C‖ζ‖X .

Proof. Assume by contrary that there exist βn > 0, ζn ∈ Π⊥
1 X, and ξn ∈ U1 such

that ‖ζn‖X = 1, limn→∞ βn = 0, limn→∞ ξn = 0, and

lim
n→∞

‖Π⊥
1 M

′
βn

(ψξn)ζn‖Y = 0.

We write ψn instead of ψξn for simplicity. Taking a subsequence if necessary, we may
assume that ζn → ζ in C1 and ψn → 0 in X. By Proposition 3.3,

‖M ′
βn

(ψn) −M ′
βn

(0)‖ ≤ C‖ψn‖1/3
X

for n large. Hence

‖M ′
βn

(ψn)ζn −M ′
βn

(0)ζn‖Y ≤ C‖ψn‖1/3
X .

Since

Π⊥
1 M

′
βn

(0)ζn = Π⊥
1 M

′
βn

(ψn)ζn − Π⊥
1 (M ′

βn
(ψn)ζn −M ′

βn
(0)ζn)

and

M ′
β(0)ζ = K ′(0)ζ + O(β)ζ,

we have

lim
n→∞

‖Π⊥
1 K

′(0)ζn‖Y = lim
n→∞

‖Π⊥
1 M

′
βn

(ψξn)ζn‖Y = 0.

Then we have, for any ϕ ∈ Π⊥
1 X,

0 = lim
n→∞

∫
S1

ϕΠ⊥
1 K

′(0)ζn = lim
n→∞

∫
S1

ζnΠ⊥
1 K

′(0)ϕ =

∫
S1

ζΠ⊥
1 K

′(0)ϕ

since ζn → ζ in C1. Since K ′(0)ϕ ∈ Π⊥
1 Y and K ′(0)Π⊥

1 X = Π⊥
1 Y , we then have

ζ = 0. Thus we conclude that ζn → 0 in C1, and it follows from ‖ζn‖X ≤ ‖ζ̈n +
ζn‖Y + ‖ζ̇n‖Y + 2‖ζn‖Y that

1

2
=

1

2
lim
n→∞

‖ζn‖X ≤ lim
n→∞

‖K ′(0)ζn‖Y = lim
n→∞

‖Π⊥
1 K

′(0)ζn‖Y = 0.

This is a contradiction and completes the proof.
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Energy functional.
Definition 3.1. For q ∈ Xδ/2, define

Eβ [q] :=
1

β
|Γ(q)| + 1

2

∫
Ω

|∇v|2 dx,

where

v(x) =

∫
Ω+(q)

G(x, y) dy, x ∈ Ω.

Note that ∫
Ω

|∇v|2 dx = −
∫

Ω

vΔv dx =

∫
Ω

v(1Ω+(q) −m) dx

=

∫
Ω+(q)

∫
Ω+(q)

G(x, y) dxdy.(3.9)

Lemma 3.4. Let T : I → Xδ/2 be a C1-map from an open interval I ⊂ R to Xδ/2.
Then

d

dt
Eβ [T (t)] =

1

2β
〈Mβ(q), T ′(t)〉,(3.10)

d

dt
|Γ(T (t))| =

1

2
〈K(T (t)), T ′(t)〉.(3.11)

Proof. We write q = T (t), ζ = T ′(t), R =
√

1 + T (t), and ∂R/∂t = ζ/(2R).
Then

|Γ(q)| =

∫
S1

√
R2 + Ṙ2 dω.

Since

R√
R2 + Ṙ2

− d

dω

Ṙ√
R2 + Ṙ2

= R
R2 + 2Ṙ2 −RR̈[
R2 + Ṙ2

]3/2
= RK(q),

we have

d

dt
|Γ(q)| =

∫
S1

RK(q)
∂R

∂t
dω

=
1

2
〈K(q), ζ〉.(3.12)

Next let

v(x) =

∫
Ω+(q)

G(x, y) dy, x ∈ Ω.

Then from (3.9), we have

∫
Ω

|∇v|2 dx =

∫
S1

∫
S1

∫ R(ϕ)

0

∫ R(ω)

0

G(rω, sϕ)rs drdsdωdϕ,
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and thus

d

dt

∫
Ω

|∇v|2 dx =

∫
S1

∫
S1

{
R(ϕ)

∂R

∂t
(ϕ)

∫ R(ω)

0

G(rω, ϕR(ϕ))r dr

+ R(ω)
∂R

∂t
(ω)

∫ R(ϕ)

0

G(ωR(ω), sϕ)s ds

}
dωdϕ

=

∫
S1

v(R(ω)ω)ζ dω.(3.13)

Here we used the identities G(x, y) = G(y, x) and

d

dt

∫ a(t)

0

∫ b(t)

0

f(r, s) drds = a′(t)

∫ b(t)

0

f(r, a(t)) dr + b′(t)

∫ a(t)

0

f(b(t), s) ds.

Hence (3.10) follows from (3.12) and (3.13).
We apply the following Lemma used in [1, 8, 9, 10].
Lemma 3.5. Let X,Y be Banach spaces, a > 0, Ba = Ba(z) = {z ∈ X ; ‖z−z0‖ ≤

a}. Suppose that F is a C1-map of Ba into Y with F ′(z0) invertible and satisfying,
for some 0 < ϑ < 1,

‖F ′(z0)
−1F (z0)‖ ≤ (1 − ϑ)a,

‖F ′(z0)
−1‖ ‖F ′(z) − F ′(z0)‖ ≤ ϑ ∀z ∈ Ba.

Then there is a unique solution in Ba of F (z) = 0.
Completion of the proof. Define a map Fβ(·) = Π⊥

1 Mβ(ψξ + ·) from Xδ/4 ∩Π⊥
1 X

to Π⊥
1 Y . Then we can take a(β) > 0 such that a(β) = O(β) as β → 0 and

‖F ′
β(ψξ)

−1Fβ(ψξ)‖ ≤ a(β)
2 . Then we see that for sufficiently small β,

‖F ′
β(ψξ)

−1‖‖F ′
β(ψξ + v) − F ′

β(ψξ)‖ ≤ 1

2

for all v ∈ Xa(β) ∩ Π⊥
1 X. Then applying Lemma 3.5, we deduce that there exists a

function q⊥β,ξ ∈ Xa(β) ∩ Π⊥
1 X solving

0 = F (q⊥β,ξ) = Π⊥
1 Mβ(ψξ + q⊥β,ξ).(3.14)

Now Π⊥
0 Mβ(ψξ + q⊥β,ξ) = 0 if and only if 〈Mβ(ψξ + q⊥β,ξ),Φi〉 = 0 for i = 1, 2. It

follows from Lemma 3.4 and (3.14) that

∂

∂ξi
Eβ [ψξ + q⊥β,ξ] =

1

2β
〈Mβ(ψξ + q⊥β,ξ),Φi〉, i = 1, 2.(3.15)

We have the following.
Lemma 3.6. There hold

Eβ [ψξ + q⊥β,ξ] −
2π

β
=

π

16
+

π2

8|Ω| +
π2

2
H(P (ξ)) + o(1),(3.16)

and

∂

∂ξi
Eβ [ψξ + q⊥β,ξ] =

π2

2

2∑
j=1

∂H
∂xj

(P (ξ))
∂Pj

∂ξi
(ξ) + o(1), i = 1, 2,(3.17)

as β → 0 uniformly in ξ ∈ U2.
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Proof. First we prove (3.16). It follows from (3.12) that

|Γ(ψξ + q⊥β,ξ)| = |Γ(ψξ)| +
1

2
〈1, q⊥β,ξ〉 + o(‖q⊥β,ξ‖X) = 2π + o(β)(3.18)

as β → 0. In addition, we see that∫
Ω+(ψξ+q⊥β,ξ)

∫
Ω+(ψξ+q⊥β,ξ)

G(x, y) dxdy =

∫
Ω+(ψξ)

∫
Ω+(ψξ)

G(x, y) dxdy + o(1)

as β → 0. Hence we need prove only

Eβ [ψξ] =
2π

β
+

π

16
+

π2

8|Ω| +
π2

2
H(P (ξ)), ξ ∈ U2.(3.19)

By the translation invariance, we have∫
Ω+(ψξ)

∫
Ω+(ψξ)

log |x− y| dxdy =

∫
Ω+(0)

∫
Ω+(0)

log |x− y| dxdy = −1

4
π2.

Similarly using the translation invariance and the fact that there holds∫
Ω+(0)

x · y dx = 0

for any y ∈ R
2, we have∫

Ω+(ψξ)

∫
Ω+(ψξ)

|x− y|2 dxdy =

∫
Ω+(0)

∫
Ω+(0)

|x− y|2 dxdy

=

∫
Ω+(0)

∫
Ω+(0)

(|x|2 + |y|2) dxdy = π2.

In addition, by the mean value theorem for harmonic functions, we have∫
Ω+(ψξ)

∫
Ω+(ψξ)

H(x, y) dxdy = π2H(P (ξ)).

Hence (3.19) follows and so does (3.16).
Next we prove (3.17). By Lemma 3.4 and (3.14), we see that

1

β
〈Mβ(ψξ + q⊥β,ξ),Φi〉 =

1

β

〈
Mβ(ψξ + q⊥β,ξ),

∂ψξ

∂ξi

〉

=
1

β

〈
Mβ(ψξ),

∂ψξ

∂ξi

〉
+

1

β

〈
M ′

β(ψξ)q
⊥
β,ξ,

∂ψξ

∂ξi

〉
+ o(1)(3.20)

as β → 0. By Lemma 3.4, we have

1

β

〈
Mβ(ψξ),

∂ψξ

∂ξi

〉
= 2

∂

∂ξi
Eβ [ψξ].(3.21)

Noting that K ′(ψξ)
∂ψξ

∂ξi
≡ 0 since K(ψξ) ≡ 1, it follows from Lemma 3.2 that

1

β

〈
M ′

β(ψξ)q
⊥
β,ξ,

∂ψξ

∂ξi

〉
=

1

β

〈
K ′(ψξ)q

⊥
β,ξ,

∂ψξ

∂ξi

〉
+ O(β)

=
1

β

〈
q⊥β,ξ,K

′(ψξ)
∂ψξ

∂ξi

〉
+ O(β)

= O(β)(3.22)

as β → 0. Thus (3.17) follows from (3.15), (3.19), (3.20), (3.21), and (3.22).
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Since

∂

∂ξk

2∑
j=1

∂H
∂xj

(P (ξ))
∂Pj

∂ξi
(ξ)

∣∣∣∣
ξ=0

=

2∑
j,n=1

∂2H
∂xj∂xn

(0)
∂Pn

∂ξk
(0)

∂Pj

∂ξi
(0) +

2∑
j=1

∂H
∂xj

(0)
∂Pj

∂ξi∂ξk
(0)

=
1

4π

∂2H
∂xi∂xk

(0),

it follows from (3.15) and (3.17) that if ∂2H
∂xi∂xk

(0) is nondegenerate, then there exists

a ξβ ∈ U2 such that 〈Mβ(ψξβ + q⊥β,ξβ ),Φi〉 = 0 (i = 1, 2) and limβ→0 ξβ = 0. Thus

ψξβ + q⊥β,ξβ is a solution of Π⊥
0 Mβ(·) = 0.

If 0 is a strict local minimum point of H, it follows from (3.15) and (3.16) that
there exists a ξβ ∈ U2 such that 〈Mβ(ψξβ +q⊥β,ξβ ),Φi〉 = 0 (i = 1, 2) and limβ→0 ξβ = 0.
The proof is complete.

4. Linearized nondegeneracy. In this section, we continue to use the notation
defined in section 3. Throughout this section, we assume that there exists a compact
subset N ⊂ Ω satisfying dist(N , ∂Ω) > 1. We linearize the equation around P +
Γ(q) = {P +

√
1 + q(ω)ω ; ω ∈ S1} for P ∈ N . Set

Mβ(q ; P )(ω) := K(q)(ω) + β

∫
P+Ω+(q)

G(P +
√

1 + q(ω)ω, y) dy, ω ∈ S1

for q ∈ Xδ/2, where P + Ω+(q) is the region surrounded by P + Γ(q).
Theorem 4.1. Suppose that

(B1) for every small β > 0, there exist q̃β ∈ X and P ∈ N such that

(Π4 − Π1)Mβ(q̃β ; P ) = 0,

(B2) ‖q̃β‖X = O(β) as β → 0, and

(B3) the Hessian matrix
(

∂2H
∂xi∂xj

(P )
)
1≤i,j≤2

of H is nondegenerate for any P ∈ N .

Then for sufficiently small β, L = Π⊥
0 M

′
β(q̃β ; P ) is nondegenerate in the sense that

Lζ = 0,
∫
S1 ζ dω = 0 implies that ζ = 0.

Let qβ = ψξβ + q⊥β,ξβ be a solution obtained in Proposition 3.1. If you define q̃β

such as Γ(ψξβ + q⊥β,ξβ ) = P (ξβ) + Γ(q̃β), then (B1) with P = P (ξβ) and (B2) hold.
Thus we have the following.

Corollary 4.1. Suppose (A2). Then the solution obtained in Theorem 1.1 is
nondegenerate in the sense of Theorem 4.1.

Proof of Theorem 4.1. For brevity’s sake, we write q = q̃β . Set

B(ζ, ζ) =

∫
S1

[−Ls(q, q̇, q̈)ζ̇
2 + Lt(q, q̇, q̈)ζ

2] dω

+
β

2

∫
S1

∫
S1

ζ(ω)G(P +
√

1 + q(ω)ω,P +
√

1 + q(ω̂)ω̂)ζ(ω̂) dωdω̂

+
β

2

∫
S1

dω
ζ(ω)2√
1 + q(ω)

∫
P+Ω+(q)

ω · ∇xG(P +
√

1 + q(ω)ω, y) dy(4.1)
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for ζ ∈ H1(S1). We regard L as the operator on Π⊥
0 H

2(S1) satisfying B(ζ, ζ) =
〈Lζ, ζ〉 for all ζ ∈ Π⊥

0 H
2(S1).

Lemma 4.1. Suppose (B2). Let λ1 ≤ λ2 ≤ λ3 ≤ · · · be the eigenvalues of
L : Π⊥

0 H
2(S1) → Π⊥

0 L
2(S1) and ζi ∈ Π⊥

0 H
2(S1) be the normalized eigenfunctions

associated with λi. Then

λ1 = inf
ζ∈Π⊥

0 H1(S1),‖ζ‖=1
B(ζ, ζ) = B(ζ1, ζ1) = O(β),(4.2)

λ2 = inf
ζ∈Π⊥

0 H1(S1),‖ζ‖=1

ζ⊥ζ1

B(ζ, ζ) = B(ζ2, ζ2) = O(β),(4.3)

λ3 = inf
ζ∈Π⊥

0 H1(S1),‖ζ‖=1

ζ⊥span{ζ1,ζ2}

B(ζ, ζ) = B(ζ3, ζ3) =
3

2
+ O(β).(4.4)

Proof. The characterization of eigenvalues of L comes from the min-max principle
of eigenvalues:

λi = inf
Vi∈Si

max
ζ∈Vi
‖ζ‖=1

B(ζ, ζ), i = 1, 2, . . . ,(4.5)

where Si is the set of all i-dimensional subspace in Π⊥
0 H

1(S1). We need show only

that λi = 1
2 (

[
i+1
2

]2−1)+O(β) for i = 1, 2, . . . , where [ i+1
2 ] denotes the largest integer

which is less than or equal to i+1
2 .

We see that there exists a constant C such that B(ζ, ζ) ≥ 〈K ′(0)ζ, ζ〉−Cβ‖ζ‖2−
Cβ‖ζ̇‖2 ≥ 1

2 (‖ζ̇‖2 − ‖ζ‖2) − Cβ‖ζ‖2 − Cβ‖ζ̇‖2 for all ζ ∈ H1(S1) and all small β.
For any Vi ∈ Si, let Vi+1 = Vi ⊕ span{1} ∈ Ti+1. Note that there holds[

i + 1

2

]2

= inf
Wi+1∈Ti+1

max
ζ∈Wi+1
‖ζ‖=1

∥∥∥ζ̇∥∥∥2

,

where Ti+1 is the set of all (i + 1)-dimensional subspace in H1(S1). It follows that
maxζ∈Vi+1

‖ζ̇‖2/‖ζ‖2 ≥ [ i+1
2 ]2. This means that there exists a ζ∗ ∈ Vi+1 such that

‖ζ̇∗‖2 ≥ [ i+1
2 ]2 and ‖ζ∗‖ = 1. Setting ζ∗ = Π0ζ

∗ + ζ⊥, we have 0 < ‖ζ⊥‖ ≤ 1

since ‖ ˙ζ⊥‖2 = ‖ζ̇∗‖2 and ‖ζ∗‖2 = (Π0ζ
∗)2 + ‖ζ⊥‖2. Then ζ∗∗ = ζ⊥

‖ζ⊥‖ satisfies

ζ∗∗ ∈ Vi, ‖ζ∗∗‖ = 1, and ‖ ˙ζ∗∗‖2 ≥ [ i+1
2 ]2. Hence max ζ∈Vi

‖ζ‖=1

B(ζ, ζ) ≥ B(ζ∗∗, ζ∗∗) ≥

( 1
2 −Cβ)‖ ˙ζ∗∗‖2−( 1

2 +Cβ)‖ζ∗∗‖2 ≥ ([ i+1
2 ]2−1)/2−C([ i+1

2 ]2+1)β. Hence we conclude

that λi ≥ 1
2

(
[ i+1

2 ]2 − 1
)

+ O(β).
On the other hand, let V1 = span{cos θ} and

Vi =

{
span{cos jθ, sin jθ ; j = 1, . . . , n} if i = 2n

span{cos jθ, sin jθ, cos(n + 1)θ ; j = 1, . . . , n} if i = 2n + 1.

Then we see that Vi ∈ Si and

max
ζ∈Vi
‖ζ‖=1

∥∥∥ζ̇∥∥∥2

=

[
i + 1

2

]2

.

Therefore we have

λi ≤ max
ζ∈Vi
‖ζ‖=1

B(ζ, ζ) ≤ max
ζ∈Vi
‖ζ‖=1

{
1

2

(∥∥∥ζ̇∥∥∥2

− ‖ζ‖2

)
+ Cβ‖ζ‖2

}

≤ 1

2

([
i + 1

2

]2

− 1

)
+ O(β).

The proof is complete.
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Lemma 4.2.

1. There hold Lts(0, 0, 0) = Ltt(0, 0, 0) = Lpp(0, 0, 0) = 3
4 and Lss(0, 0, 0) =

Lps(0, 0, 0) = Ltp(0, 0, 0) = 0 (the definition of L(t, p, s) is (3.2)).
2. There hold∫

S1

dωΦj(ω)Φk(ω)ω · ∇xH(P + ω,P ) =
1

2

∂2H

∂xj∂xk
(x, y)

∣∣∣∣
x=y=P

(4.6)

and ∫
S1

∫
S1

Φj(ω)H(P + ω,P + ω̂)Φk(ω̂) dωdω̂ = π
∂2H

∂xj∂yk
(x, y)

∣∣∣∣
x=y=P

(4.7)

for each j, k = 1, 2.
3. Suppose (B1) and (B2) hold. Then

lim
β→0

1

β
〈q̇Φk, Φ̇j〉 = −π

3

∂2H

∂xj∂xk
(x, y)

∣∣∣∣
x=y=P

(4.8)

for each j, k = 1, 2.
Proof. Part 1 follows from a simple computation.
By Green’s theorem and the mean value theorem for harmonic functions,∫

Sr

dsx
∂H

∂xj
(P + x,P )xk = r

∫
Sr

dsx
∂H

∂xj
(P + x,P )

xk

r

= r

∫
Br

∂2H

∂xj∂xk
(P + x,P ) dx

= πr3 ∂2H

∂xj∂xk
(P ,P ),(4.9)

and hence ∫
B1

∂H

∂xj
(P + x,P )xk dx =

∫ 1

0

dr

∫
Sr

dsx
∂H

∂xj
(P + x,P )xk

=

∫ 1

0

πr3 dr
∂2H

∂xj∂xk
(P ,P )

=
π

4

∂2H

∂xj∂xk
(P ,P ).(4.10)

It then follows from Green’s theorem that

π

∫
S1

dωΦj(ω)Φk(ω)ω · ∇xH(P + ω,P )

=
2∑

i=1

∫
S1

ωiωjωk
∂H

∂xi
(P + ω,P ) dω

=

∫
B1

∂H

∂xj
(P + x,P )xk +

∂H

∂xk
(P + x,P )xj dx

=
π

2

∂2H

∂xj∂xk
(P ,P ),(4.11)

and thus (4.6) follows.
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By Green’s theorem and the mean value theorem, we have

π

∫
S1

∫
S1

Φj(ω)H(P + ω,P + ω̂)Φk(ω̂) dωdω̂

=

∫
S1

∫
S1

H(P + x,P + x̂)xj x̂k dsxdsx̂

=

∫
S1

∫
B1

∂H(P + x,P + x̂)

∂x̂k
xj dsxdx̂

= π

∫
S1

xj
∂H

∂x̂k
(P + x,P )dsx

= π

∫
B1

∂2H

∂xj∂x̂k
(P + x,P )dx

= π2 ∂2H

∂xj∂x̂k
(P ,P ).(4.12)

Thus (4.7) follows.
On the other hand,

〈q̇Φk, Φ̇j〉 = −〈q, Φ̇kΦ̇j〉 − 〈q,ΦkΦ̈j〉
= −〈q, Φ̇jΦ̇k〉 + 〈q,ΦjΦk〉

=

〈
q, 2ΦjΦk − δjk

π

〉
.(4.13)

Set Φjk = 2ΦjΦk − δjk
π . From Lemmas 3.3 and 3.2 we have

〈q,Φjk〉 =
2

3
〈q,K ′(0)Φjk〉 =

2

3
〈K ′(0)q,Φjk〉.(4.14)

Since 〈Mβ(q ; P ),Φjk〉 = 0 by (B1), we have 〈Mβ(0 ; P ),Φjk〉 + 〈M ′
β(0 ; P )q,Φjk〉 =

o(β). Noting (B2), we see that

lim
β→0

〈
K ′(0)q

β
,Φjk

〉
= −

∫
S1

∫
B1

G(P + ω,P + y) dyΦjk(ω) dω

= −π

∫
S1

G(P + ω,P )Φjk(ω) dω

= −π

∫
S1

H(P + ω,P )Φjk(ω) dω.(4.15)

On the other hand, it follows from (4.10) and Green’s theorem that

π

∫
S1

dωΦj(ω)Φk(ω)H(P + ω,P ) =

∫
S1

dωωjωkH(P + ω,P )

=

∫
B1

∂H

∂xj
(P + x,P )xk + δjkH(P + x,P ) dx

=
π

4

∂2H

∂xj∂xk
(P ,P ) + δjkπH(P ,P ).(4.16)
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Thus by (4.13), (4.15), (4.14), and (4.16), we conclude that

lim
β→0

1

β
〈q̇Φj , Φ̇k〉 = −2

3
π

∫
S1

H(P + ω,P )

(
2ΦjΦk − δjk

π

)
dω

= −π

3

∂2H

∂xj∂xk
(P ,P ).(4.17)

The proof of (4.8) is complete.
Lemma 4.3. Suppose (B1) and (B2) hold. Then there exists an orthogonal matrix

(cij)1≤i,j≤2 such that for i = 1, 2, ζRi = ζi − (c1iΦ1 + c2iΦ2) satisfies ‖ζRi ‖2 = O(β)
as β → 0. In addition, there holds

2∑
k=1

π

4

∂2H
∂xj∂xk

(P )cki = o(1) +
λi

β
cji(4.18)

for each i, j = 1, 2.
Proof. Set

Φ1 = d11ζ1 + d12ζ2 + ζ⊥1 ,(4.19)

Φ2 = d21ζ1 + d22ζ2 + ζ⊥2 ,(4.20)

where ζ⊥i ∈ Π⊥
0 H

2(S1) and ζ⊥i ⊥ span{ζ1, ζ2} for i = 1, 2. Then we have, for i = 1, 2,

O(β) = B(Φi,Φi)

= 〈LΦi,Φi〉
= d2

i1λ1 + d2
i2λ2 + 〈Lζ⊥i , ζ⊥i 〉

≥ O(β) + ‖ζ⊥i ‖2(4.21)

and thus ‖ζ⊥i ‖2 = O(β). On the other hand, we have 1 = d2
i1 + d2

i2 + ‖ζ⊥i ‖2 and
0 = d11d21 + d12d22 + 〈ζ⊥1 , ζ⊥2 〉. Hence we see that there exists an orthogonal matrix
(cij) such that dij = cij + O(

√
β). Then since(

ζ1
ζ2

)
−

(
c11 c21
c12 c22

)(
Φ1

Φ2

)
=

(
c11 c21
c12 c22

)(
c11 − d11 c12 − d12

c21 − d21 c22 − d22

)(
ζ1
ζ2

)

−
(
c11 c21
c12 c22

)(
d10ζ0 + ζ⊥1
d20ζ0 + ζ⊥2

)
,(4.22)

ζRi = ζi −
∑2

k=1 ckiΦk satisfies the desired estimate. This completes the proof of the
first part of Lemma 4.3.

Multiplying Φj to λiζi = Lζi and integrating over S1, we have λi〈ζi,Φj〉 =

〈Lζi,Φj〉. Substituting ζi =
∑2

k=1 ckiΦk + ζRi , we then have

λicji + λi〈ζRi ,Φj〉 =

2∑
k=1

cki〈LΦk,Φj〉 + 〈LζRi ,Φj〉

=

2∑
k=1

cki〈LΦk,Φj〉 + 〈ζRi ,LΦj〉,(4.23)
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and hence
∑2

k=1 cki〈LΦk,Φj〉 = λicji + o(β) by λi = O(β), LΦj = K ′(0)Φj +O(β) =
O(β), and ζRi = O(

√
β). We need prove only that

lim
β→0

1

β
〈LΦk,Φj〉 =

π

4

∂2H
∂xj∂xk

(P ).(4.24)

Since K ′′(0)(q1, q2) = 3
4 (q̈1q2 + q̇1q̇2 + q1q2 + q1q̈2) by Lemma 4.2 part 1 and

K ′(0)Φk = − 1
2{Φ̈k + Φk} = 0, integrating by parts yields

〈K ′(q)Φk,Φj〉 = 〈K ′(0)Φk,Φj〉 + 〈K ′′(0)(q,Φk),Φj〉 + o(β)

=
3

4
〈q̈Φk + q̇Φ̇k + qΦk + qΦ̈k,Φj〉 + o(β)

= −3

4
〈q̇Φk, Φ̇j〉 + o(β).(4.25)

Hence by (4.8), we have

lim
β→0

1

β
〈K ′(q)Φk,Φj〉 =

π

4

∂2H

∂xj∂xk
(P ,P ).(4.26)

On the other hand, we have

lim
β→0

∫
S1

∫
S1

Φj(ω)G(P +
√

1 + q(ω)ω,P +
√

1 + q(ω̂)ω̂)Φk(ω̂) dωdω̂

=

∫
S1

∫
S1

Φj(ω)G(P + ω,P + ω̂)Φk(ω̂) dωdω̂

=
1

2
δjk − π

2|Ω|δjk + π
∂2H

∂xj∂yk
(P ,P ).(4.27)

Here we used (4.7),

− 1

2π

∫
S1

log |ω − ω̂|Φj(ω̂) dω̂ =
1

2
Φj(ω),(4.28)

and ∫
S1

|ω − ω̂|2
4

Φj(ω̂) dω̂ =

∫
B1

yj − ωj

2
√
π

dy

= −π

2
Φj(ω).(4.29)

Moreover,

lim
β→0

∫
S1

Φj(ω)
Φk(ω)√
1 + q(ω)

∫
Ω+(q)

ω · ∇xG(P +
√

1 + q(ω)ω,P + y) dy

=

∫
S1

dωΦj(ω)Φk(ω)

∫
B1

ω · ∇xG(P + ω,P + y) dy

= −1

2
δjk +

π

2|Ω|δjk +
π

2

∂2H

∂xj∂xk
(P ,P ).(4.30)
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Here we used∫
S1

dωΦj(ω)Φk(ω)

∫
B1

ω · ∇xH(P + ω,P + y) dy

= π

∫
S1

dωΦj(ω)Φk(ω)ω · ∇xH(P + ω,P )

=
π

2

∂2H

∂xj∂xk
(P ,P ) by (4.6),

− 1

2π
∇x

∫
B1

log |x− y| dy = −x

2
,

and

∇x

∫
B1

|x− y|2
4

dy =
π

2
x.

Consequently by (4.26), (4.27), and (4.30), we have

lim
β→0

1

β
〈LΦk,Φj〉 =

π

2

∂2H

∂xj∂yk
(P ,P ) +

π

2

∂2H

∂xj∂xk
(P ,P ) =

π

4

∂2H
∂xj∂xk

(P ),(4.31)

and the proof is complete.
Completion of the proof of Theorem 4.1. Assume by contrary that there exists a

sequence ζβ such that Lζβ = 0, ‖ζβ‖ = 1, and
∫
S1 ζβ dω = 0. This means that ζβ is an

eigenfunction of L associated with the eigenvalue 0. We see that for sufficiently small
β, either λ1 or λ2 is equal to 0. Then by Lemma 4.3, we have ζβ = c1Φ1 + c2Φ2 + ζR

such that (c1, c2) ∈ S1 and ‖ζR‖2 = O(β), and

2∑
k=1

∂2H
∂xj∂xk

(P )ck = o(1) for j = 1, 2

as β → 0. Taking a subsequence if necessary, we may assume that (c1, c2) → (ĉ1, ĉ2) ∈
S1 and

2∑
k=1

∂2H
∂xj∂xk

(P )ĉk = 0 for j = 1, 2.

It follows from (B3) that ĉ1 = ĉ2 = 0. This is a contradiction and completes the
proof.

Appendix A. Formal derivation of reduced problem. We shall formally
deduce the reduced problem. If we assume u → u0 and v → v0 in the limit ε → 0, we
have

f(u0) = μv0, Δv0 = 0 in Ω,

∂v0

∂n
= 0 on ∂Ω.

Hence v0 is a constant. Now assume that v0 is close to 0 and

u0 = f−1
1 (μv0)1Ω+ + f−1

0 (μv0)1Ω− ,
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Fig. 1. Sharp interface Γ and the domain Ω.

where Ω+, Ω− are mutually disjoint open sets in Ω such that Γ = Ω\(Ω+ ∪ Ω−) is a
curve embedded in Ω, 1Ω± denote the characteristic functions of Ω±, and u = f−1

i (v)
are the inverse functions of v = f(u) near u = i (i = 0, 1), respectively. We call Γ the
sharp interface (see Figure 1). We shall identify the profile of u near Γ.

It is known that there exists a constant τ > 0, depending on f , such that for any
v ∈ (−τ, τ), the equation for u, ut = uxx + f(u) − v, has a traveling wave solution
u(x, t) = Q(x − ct ; v) with the speed c = c(v) and the profile Q = Q(ξ; v). More
precisely, c(v) and Q(ξ; v) for v ∈ (−τ, τ), ξ ∈ R satisfy⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q̈ + c(v)Q̇ + f(Q) − v = 0 in R,

lim
ξ→−∞

Q(ξ; v) = f−1
1 (v),

lim
ξ→+∞

Q(ξ; v) = f−1
0 (v),

c(0) = 0.

Here ˙ means d/dξ. See, for example, [3]. Near the sharp interface Γ, consider the
function

u(x) = Q

(
d(x)

ε
; v

)
,

where d = d(x) is the signed distance function from Γ such that d(x) > 0 if x ∈ Ω−

and d(x) < 0 if x ∈ Ω+. If the above function satisfies the first equation of (1.4) for
each prescribed v, noting that |∇d| = 1, there holds

Q̈ + ε(Δd)Q̇ + f(Q) − μv = 0.

Since Δd is equal to the curvature κ of Γ on the interface Γ (here we choose the sign
such that κ > 0 when Ω+ is a disk), it follows that

c(μv) = εκ on Γ.

Since c(0) = 0 by the assumption, we may assume that v0 = 0 and u0 = 1Ω+ .
Next we consider the higher order term. Assume

v = εv1 + O(ε2).
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Then we obtain the reduced problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δv1 = g(u0, 0) = 1Ω+ −m in Ω,

∂v1

∂n
= 0 on ∂Ω,

μc′(0)v1 = κ on Γ.

(A.1)

Since it is easily seen that c′(0) = − 1
σ < 0 with

σ =

∫ 1

0

√
2W (s) ds =

∫ ∞

−∞
[Q̇(ξ; 0)]2 dξ,

(A.1) becomes (RP) with β = μ/σ.

Appendix B. Layered solutions for elliptic systems. In this section, we
will show that (1.4) with g(u, v) = u−m, μ = 1 has a layered solution from Theorem
1.2 of [12].

The equation v = f(u) has three solutions f−1
0 (v) < f−1

a (v) < f−1
1 (v) for small

|v|, where u = f−1
i (v) is the inverse function of v = f(u) near u = i (i = 0, a, 1).

We then have fu(f−1
i (v)) < 0 (i = 0, 1), and J(0) = 0, J ′(0) = −1, where J(v) :=∫ f−1

1 (v)

f−1
0 (v)

[f(s) − v] ds. Thus the assumptions (A1)–(A3) of [12] are satisfied.

We use the notation in sections 2 and 3. Under the assumption (A2), we consider
the solution q ∈ Xδ/2 of Π⊥

0 Mβ(q) = 0 obtained in Proposition 3.1. For brevity’s

sake, we assume that (B1) holds with P = 0. Then, Π⊥
0 M

′
β(q)ζ = 0 and ζ ∈ Π⊥

0 X
implies that ζ = 0.

Let (Γ(q), v,Ω+(q)) be a corresponding solution of (1.1). We write Γ∗ = Γ(q),
Ω+ = Ω+(q), and Ω− = Ω\(Ω+ ∪ Γ∗).

Set r = r(θ) =
√

1 + q(θ). Let

e1 =

(
ṙ cos θ − r sin θ√

r2 + ṙ2
,
ṙ sin θ + r cos θ√

r2 + ṙ2

)
be a unit tangent vector on Γ∗ and

e2 =

(
− ṙ sin θ + r cos θ√

r2 + ṙ2
,
ṙ cos θ − r sin θ√

r2 + ṙ2

)

be the unit normal vector on Γ∗ which points the interior of Ω+.
Set V + = v|Ω+ and V − = v|Ω− . Then −ΔV + = 1 −m in Ω+, βV + + κ = 0 on

Γ∗, −ΔV − = −m in Ω−, βV − + κ = 0 on Γ∗, and ∂V −/∂n = 0 on ∂Ω. Moreover
∂V +/∂e2 = ∂V −/∂e2 on Γ∗ since v ∈ W 2,∞(Ω) ⊂ C1(Ω). Thus (A4) of [12] is
satisfied.

By a bootstrap argument, q is smooth and so is Γ∗. Fix α ∈ (0, 1). For any
I ∈ C2,α(Γ∗), let w± be the unique solution to{

Δw+ = 0 in Ω+,
w+ = I on Γ∗

and ⎧⎨
⎩

Δw− = 0 in Ω−,
∂w−

∂n = 0 on ∂Ω,
w− = I on Γ∗,

respectively.
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Let Z(x) = ∂w−

∂e2
(x) − ∂w+

∂e2
(x) for x ∈ Γ∗. Then it follows from Green’s the-

orem that w+(x) =
∫
Γ∗ G(x, y)Z(y) dsy + 1

|Ω| (
∫
Ω+ w+ dx +

∫
Ω− w− dx) for x ∈ Ω+,

w−(x) =
∫
Γ∗ G(x, y)Z(y) dsy + 1

|Ω| (
∫
Ω+ w+ dx +

∫
Ω− w− dx) for x ∈ Ω−, and I(x) =∫

Γ∗ G(x, y)Z(y) dsy + 1
|Ω| (

∫
Ω+ w+ dx +

∫
Ω− w− dx) for x ∈ Γ∗. Moreover we see that∫

Ω+ ∇w+ · ∇ϕdx +
∫
Ω− ∇w− · ∇ϕdx =

∫
Γ∗ Zϕds for all ϕ ∈ C∞(Ω̄). Let S :

C2,α(Γ∗) → C1,α(Γ∗) be the linear map defined by S(I) = Z. Then S has one dimen-
sional kernel which is spanned by I ≡ const, and Im(S) = {Z ∈ C1,α(Γ∗) ; P (Z) = 0},
where P is a projection defined by P (Z) = 1

|Γ∗|
∫
Γ∗ Z ds for Z ∈ Cα(Γ∗).

On the other hand, for Z ∈ C1,α(Γ∗), define w(x) =
∫
Γ∗ G(x, y)Z(y) dsy for x ∈ Ω.

Then we see that Δw(x) = 1
|Ω|

∫
Γ∗ Z ds for x ∈ Ω±. Moreover there holds

∫
Ω
∇w ·

∇ϕdx =
∫
Γ∗ Zϕds − 1

|Ω|
∫
Γ∗ Z ds

∫
Ω
ϕdx for all ϕ ∈ C∞(Ω̄). Let T : C1,α(Γ∗) →

C2,α(Γ∗) be the linear operator defined by T (Z) = w|Γ∗ . Then S(Id − P )T = Id on
{Z ∈ C1,α(Γ∗) ; P (Z) = 0}, and (Id − P )T S = Id on {I ∈ C2,α(Γ∗) ; P (I) = 0}.

Let

� =

∫ θ

0

√
r2 + ṙ2 dθ

be the arc-length parameter of Γ∗. We change the variable θ into � and regard
functions of � as functions on Γ∗.

Proposition B.1. For any ζ ∈ Π⊥
0 X,

M ′
β(q)ζ = L̃Z :=

d2Z

d�2
+ κ2Z + β(∇v · e2)Z − βT (Z),

where

Z(�) = − ζ(θ)

2
√
r2 + ṙ2

.

Proof. For small |τ |, set

Q(θ, τ) = q(θ) + τζ(θ), R(θ, τ) =
√

1 + q(θ) + τζ(θ).

Let Θ(τ) be the continuous function satisfying that R(Θ(τ), τ)(cos Θ(τ), sin Θ(τ)) is
on the normal line of Γ(q) at r(θ)(cos θ, sin θ), and that Θ(0) = θ. Then we have

d

dτ

∣∣∣∣
τ=0

R(Θ(τ), τ)(cos Θ(τ), sin Θ(τ)) · e1 = 0,

which implies that

dΘ

dτ
(0) =

ṙ

r
√
r2 + ṙ2

Z(�)

and

d

dτ

∣∣∣∣
τ=0

R(Θ(τ), τ)(cos Θ(τ), sin Θ(τ)) = Ze2.

Hence Z is the normal velocity of the evolution of curves τ �→ Γ(Q(·, τ)).
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We see that

M ′
β(q)ζ = Ls(q,q̇, q̈)ζ̈ + Lp(q, q̇, q̈)ζ̇

+ Lt(q, q̇, q̈)ζ +
β

2

∇v · ω
r

ζ

+
β

2

∫
S1

G(x, r(ω̂)ω̂)ζ(ω̂) dω̂

∣∣∣∣
x=r(cos θ,sin θ)

.

First we have

∇v · ω = (ω · e1)(∇v · e1) + (ω · e2)(∇v · e2)

=
ṙ√

r2 + ṙ2
(∇v · e1) −

r√
r2 + ṙ2

(∇v · e2),

∇v · e1 =
∂v

∂�
= − 1

β

dκ

d�
= − 1

β

dκ

dθ

1√
r2 + ṙ2

,

and thus

β

2

∇v · ω
r

ζ =
β

2

ṙ

r
√
r2 + ṙ2

(∇v · e1)ζ −
β

2

∇v · e2√
r2 + ṙ2

ζ

=
ṙ

r
√
r2 + ṙ2

dκ

dθ
Z − β

2

∇v · e2√
r2 + ṙ2

ζ

=
ṙ

r
√
r2 + ṙ2

dκ

dθ
Z + β(∇v · e2)Z.

Hence

M ′
β(q)ζ = I1 + I2 + I3,

where

I1 := Lsζ̈ + Lpζ̇ + Ltζ +
ṙ

r
√
r2 + ṙ2

dκ

dθ
Z,

I2 := β(∇v · e2)Z,

I3 :=
β

2

∫
S1

G(x, r(ω̂)ω̂)ζ(ω̂) dω̂

∣∣∣∣
x=r(cos θ,sin θ)

.

Then by change of variable, we have

β

2

∫
S1

G(x, r(ω̂)ω̂)ζ(ω̂) dω̂ = −β

∫
Γ∗

G(x, y)Z(y) dsy

for x ∈ Γ∗, and thus I3 = −βT (Z).
Next using

Lsζ̈ + Lpζ̇ + Ltζ =
∂

∂τ

∣∣∣∣
τ=0

L(q + τζ, q̇ + τ ζ̇, q̈ + τ ζ̈)

=
∂

∂τ

∣∣∣∣
τ=0

R2 + 2Ṙ2 −RR̈

(R2 + Ṙ2)3/2
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and

∂R

∂τ

∣∣∣∣
τ=0

= −
√
r2 + ṙ2

r
Z,

we obtain

I1 = Lsζ̈ + Lpζ̇ + Ltζ +
ṙ

r
√
r2 + ṙ2

dκ

dθ
Z =

d2Z

d�2
+ κ2Z(B.1)

after lengthy computations. The claim of Proposition B.1 now follows from (B.1) and
I3 = −βT (Z). Note that

d

dτ

∣∣∣∣
τ=0

L(q(Θ(τ)) + τζ(Θ(τ)), q̇(Θ(τ)) + τ ζ̇(Θ(τ)), q̈(Θ(τ)) + τ ζ̈(Θ(τ)))

= Lsζ̈ + Lpζ̇ + Ltζ + (Ls
...
q + Lpq̈ + Ltq̇)

dΘ

dτ
(0)

= Lsζ̈ + Lpζ̇ + Ltζ +
d

dθ
L(q(θ), q̇(θ), q̈(θ))

dΘ

dτ
(0)

= Lsζ̈ + Lpζ̇ + Ltζ +
ṙ

r
√
r2 + ṙ2

dκ

dθ
Z.

Hence the left-hand side of (B.1) is the derivative of the curvature at the point along
the normal direction.

Proposition B.2. There exists a constant C > 0 such that

‖(Id − P )L̃Z‖Cα ≥ C‖Z‖C2,α

for any Z ∈ C2,α(Γ∗) with
∫
Γ∗ Z ds = 0.

Proof. Suppose not. Then there exists a sequence Zn ∈ C2,α(Γ∗) with
∫
Γ∗ Zn ds =

0, ‖Zn‖C2,α = 1, and ‖(Id− P )L̃Z‖Cα → 0. Then taking a subsequence if necessary,
we may assume that Zn → Z in C1. Then

d2Zn

d�2
→ (Id − P )(−κ2Z − β(∇v · e2)Z + βT (Z))

in Cα and thus uniformly. Hence Zn → Z in C2,α and (Id − P )L̃Z = 0. Setting
ζ(θ) = −2

√
r2 + ṙ2Z(�), it follows from Proposition B.1 that Π⊥

0 M
′
β(q)ζ = 0. Then

by the nondegeneracy, we have ζ = 0 and thus Z = 0. It follows that 0 = ‖Z‖C2,α =
limn→∞ ‖Zn‖C2,α = 1. This is a contradiction, and the proof is complete.

It follows from Proposition B.2 that the linear operator (Id−P )L̃ has a bounded
inverse from {Z ∈ Cα(Γ∗) ; P (Z) = 0} to {Z ∈ C2,α(Γ∗) ; P (Z) = 0}. Therefore (A5)
of [12] is satisfied and Theorem 1.2 of [12] can be applied for (1.4) with g(u, v) = u−m
and μ = 1.
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STRONG INSTABILITY OF STANDING WAVES FOR THE
NONLINEAR KLEIN–GORDON EQUATION AND THE

KLEIN–GORDON–ZAKHAROV SYSTEM∗

MASAHITO OHTA† AND GROZDENA TODOROVA‡

Abstract. The orbital instability of ground state standing waves eiωtφω(x) for the nonlinear
Klein–Gordon equation has been known in the domain of all frequencies ω for the supercritical case
and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the
strong instability of ground state standing waves for the entire domain above. For the case when the
frequency is equal to the critical frequency ωc we prove strong instability for all radially symmetric
standing waves eiωctϕ(x). We prove similar strong instability results for the Klein–Gordon–Zakharov
system.

Key words. nonlinear Klein–Gordon equations, standing waves, instability, Klein–Gordon–
Zakharov system

AMS subject classifications. 35L70, 35B35, 35A15
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1. Introduction and main results. We study the strong instability of standing
wave solutions eiωtϕ(x) for the nonlinear Klein–Gordon equation of the form

∂2
t u− Δu + u = |u|p−1u, (t, x) ∈ R × R

N ,(1.1)

where N ≥ 2, 1 < p < 1 + 4/(N − 2), −1 < ω < 1, and ϕ ∈ H1(RN ) is a nontrivial
solution of

−Δϕ + (1 − ω2)ϕ− |ϕ|p−1ϕ = 0, x ∈ R
N .(1.2)

We also study the same problem for the Klein–Gordon–Zakharov (KGZ) system

∂2
t u− Δu + u + nu = 0, (t, x) ∈ R × R

N ,(1.3)

c−2
0 ∂2

t n− Δn = Δ(|u|2), (t, x) ∈ R × R
N ,(1.4)

where N = 2, 3, and c0 > 0 is a constant. The system (1.3)–(1.4) describes the
interaction of a Langumiur wave and an ion acoustic wave in a plasma. The complex
valued function u denotes the fast time scale component of an electric field raised
by electrons, and the real valued function n denotes the deviation of ion density (see
[34, 4, 8]).

From the result of Ginibre and Velo [10], the Cauchy problem for (1.1) is locally
well-posed in the energy space X := H1(RN ) × L2(RN ). Thus, for any (u0, u1) ∈ X
there exists a unique solution �u := (u, ∂tu) ∈ C([0, Tmax);X) of (1.1) with �u(0) =
(u0, u1) such that either Tmax = ∞ (global existence) or Tmax < ∞ and limt→Tmax
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‖�u(t)‖X = ∞ (finite time blowup). Moreover, the solution u(t) satisfies the conserva-
tion laws of energy and charge:

E(�u(t)) = E(u0, u1), Q(�u(t)) = Q(u0, u1), t ∈ [0, Tmax),

where

E(u, v) =
1

2
‖v‖2

2 +
1

2
‖∇u‖2

2 +
1

2
‖u‖2

2 −
1

p + 1
‖u‖p+1

p+1,(1.5)

Q(u, v) = Im

∫
RN

uv dx.(1.6)

Let φω ∈ H1(RN ) be the ground state (the least energy solution) of (1.2). We
refer to [2, 30] for the existence of φω, and to [13] for the uniqueness of φω. The
stability of standing waves eiωtφω for (1.1) has been studied by many authors. First,
we consider the orbital stability of eiωtφω. Shatah [27] proves that eiωtφω is orbitally
stable if p < 1 + 4/N and ωc < |ω| < 1, where

ωc =

√
p− 1

4 − (N − 1)(p− 1)
.(1.7)

Shatah and Strauss [29] prove that eiωtφω is orbitally unstable when p < 1 + 4/N
and |ω| < ωc or when p ≥ 1 + 4/N and |ω| < 1. Here, we say that a standing wave
solution eiωtϕ is orbitally stable for (1.1) if for any ε > 0 there exists δ > 0 such that
if (u0, u1) ∈ X satisfies ‖(u0, u1) − (ϕ, iωϕ)‖X < δ, then the solution u(t) of (1.1)
with �u(0) = (u0, u1) exists globally and satisfies

sup
t≥0

inf
θ∈R,y∈RN

‖�u(t) − eiθ(ϕ(· + y), iωϕ(· + y))‖X < ε.

Otherwise, eiωtϕ is said to be orbitally unstable.
Next, we consider instability of eiωtφω in a stronger sense. Berestycki and Cazenave

[1] prove that the ground state standing wave eiωtφω for (1.1) is very strongly un-
stable (see Definition 1 below) when the frequency ω = 0 (see also [14, 26]). Shatah
[28] proves that the ground state standing wave eiωtφω for nonlinear Klein–Gordon
equations with general nonlinearity is strongly unstable (see Definition 2 below) when
ω = 0 and N ≥ 3. Recently, the authors [23] proved that the ground state stand-
ing wave eiωtφω for (1.1) is very strongly unstable when |ω| ≤

√
(p− 1)/(p + 3) and

N ≥ 3. Here, we give the definitions of very strong instability and strong instability.
Definition 1 (very strong instability). We say that eiωtϕ is very strongly un-

stable for (1.1) if for any ε > 0 there exists (u0, u1) ∈ X such that ‖(u0, u1) −
(ϕ, iωϕ)‖X < ε and the solution u(t) of (1.1) with �u(0) = (u0, u1) blows up in finite
time.

Definition 2 (strong instability). We say that eiωtϕ is strongly unstable for
(1.1) if for any ε > 0 there exists (u0, u1) ∈ X such that ‖(u0, u1) − (ϕ, iωϕ)‖X < ε
and the solution u(t) of (1.1) with �u(0) = (u0, u1) either blows up in finite time or
exists globally and satisfies lim supt→∞ ‖�u(t)‖X = ∞.

Note that, by the definitions, if eiωtϕ is very strongly unstable, then it is strongly
unstable, and that if eiωtϕ is strongly unstable, then it is orbitally unstable.

Before stating our main results, we recall instability results for the nonlinear
Schrödinger equation

i∂tu + Δu + |u|p−1u = 0, (t, x) ∈ R × R
N .(1.8)
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Let ω > 0 and φω ∈ H1(RN ) be the ground state of

−Δϕ + ωϕ− |ϕ|p−1ϕ = 0, x ∈ R
N .(1.9)

It is known that for any ω > 0 the standing wave solution eiωtφω for (1.8) is orbitally
stable when 1 < p < 1 + 4/N , and it is very strongly unstable when 1 + 4/N < p <
1 + 4/(N − 2) (see [1, 7, 33]). Moreover, for the critical case p = 1 + 4/N , for any
ω > 0 and any nontrivial solution ϕ ∈ H1(RN ) of (1.9), it is known that the standing
wave eiωtϕ is very strongly unstable for (1.8) (see [32]). For general theory of orbital
stability and instability of solitary waves, we refer to Grillakis, Shatah, and Strauss
[11, 12]. We state our main results.

Theorem 1. Let N ≥ 2, 1 < p < 1+4/(N−2), ω ∈ (−1, 1), and φω be the ground
state of (1.2). Assume that |ω| ≤ ωc if p < 1 + 4/N , where the critical frequency ωc

is given by (1.7). Then, the standing wave eiωtφω for the nonlinear Klein–Gordon
equation (1.1) is strongly unstable in the sense of Definition 2.

Can we refine further this instability result? Namely, can we prove in certain
cases that the standing wave eiωtφω for (1.1) is very strongly unstable in the sense of
Definition 1? The result of Cazenave [5] answers this question for the restricted range
for the exponent p of nonlinearity 1 < p ≤ 5 for N = 2 and 1 < p ≤ N/(N − 2) for
N ≥ 3. Cazenave proves that any global solution u(t) of (1.1) is uniformly bounded
in X, i.e., supt≥0 ‖�u(t)‖X < ∞, if 1 < p ≤ 5 and N = 2, and if 1 < p ≤ N/(N − 2)
and N ≥ 3. Therefore, for this range of the exponent p, Theorem 1 together with the
result of Cazenave gives us a very strong instability result in the sense of Definition
1 for ground state standing waves eiωtφω of (1.1). Using an argument in Merle and
Zaag [18], we can extend the result of Cazenave and prove the uniform boundedness
of global solutions of (1.1) in X when 1 < p < 1+4/(N−1) and N ≥ 2. The following
lemma holds.

Lemma 2. Let N ≥ 2 and 1 < p < 1 + 4/(N − 1). If �u ∈ C([0,∞), X) is a global
solution of (1.1), then supt≥0 ‖�u(t)‖X < ∞.

Therefore, from Theorem 1 and Lemma 2, we deduce the following.

Corollary 3. In addition to the assumptions in Theorem 1, let 1 < p ≤ 1 +
4/(N−1) if N = 2, 3, and that 1 < p < 1+4/(N−1) if N ≥ 4. Then, the ground state
standing wave eiωtφω for (1.1) is very strongly unstable in the sense of Definition 1.

Remark. Let us mention that when the exponent p of nonlinearity is in the
range 1 + 4/(N − 1) < p < 1 + 4/(N − 2) we are unable to give better instability
results than those in Theorem 1 for ground state standing waves eiωtφω of (1.1) for
large frequencies |ω| >

√
(p− 1)/(p + 3). The very strong instability result for small

frequencies |ω| ≤
√

(p− 1)/(p + 3) and N ≥ 3 is given in [23]. The following theorem
is an important contribution of Kenji Nakanishi on the very strong instability in this
area for large p and large frequencies ω.

Theorem A (due to Kenji Nakanishi). Let N ≥ 2, 1+4/N ≤ p < 1+4/(N −2),
|ω| < 1, and φω be the ground state of (1.2). Then, the standing wave eiωtφω for
the nonlinear Klein–Gordon equation (1.1) is very strongly unstable in the sense of
Definition 1.

This way, we have the entire picture for the very strong instability of ground state
standing waves.

For the critical frequency ω = ωc in the case 1 < p < 1 + 4/N , we can prove
a much more general instability result for standing waves which are not necessarily
related to the ground state.
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Theorem 4. Let N ≥ 2, 1 < p < 1 + 4/N , and ϕ ∈ H1(RN ) be any nontrivial,
radially symmetric solution of (1.2) with ω = ωc. Then, the standing wave solution
eiωctϕ of (1.1) is very strongly unstable in the sense of Definition 1. The same
assertion is true for ω = −ωc.

For the existence of infinitely many radially symmetric solutions of (1.2), we refer
to [3]. As mentioned above, a similar result of Theorem 4 is known for the nonlinear
Schrödinger equation (1.8) in the critical case p = 1+4/N without assuming the radial
symmetry of the solution of (1.9) and the restriction on space dimensions N ≥ 2 (see
[32]).

The proofs of Theorems 1 and 4 are based on using local versions of the virial-type
identities. To prove strong instability of the ground state for the case when ω = 0
and N ≥ 3, Shatah in [28] considers a local version of the following identity:

d

dt
Re

∫
RN

x · ∇u∂tū dx = NK1(�u(t)),(1.10)

K1(u, v) := −1

2
‖v‖2

2 +

(
1

2
− 1

N

)
‖∇u‖2

2 +
1

2
‖u‖2

2 −
1

p + 1
‖u‖p+1

p+1.

Since the integral in the left-hand side of (1.10) is not well defined on the energy space
X, one needs to approximate the weight function x in (1.10) by suitable bounded
functions. To control error terms by the approximation, initial perturbations are
restricted to being radially symmetric, and the decay estimate for radially symmetric
functions in H1(RN ),

‖w‖L∞(|x|≥m) ≤ Cm−(N−1)/2‖w‖H1 ,(1.11)

(see [30]) is employed. The assumption N ≥ 2 is needed here. In the case N = 1,
we expect similar very strong instability results for the standing waves. This kind
of approach has been also used for blowup problems of the nonlinear Schrödinger
equation (1.8) (see, e.g., [21, 22, 15, 16, 17, 19, 20]).

In the proof of Theorem 1 for the case p ≥ 1 + 4/N , we use a local version of the
virial identity

− d

dt
Re

∫
RN

{2x · ∇u + Nu}∂tū dx = P (u(t)),(1.12)

where

P (u) := 2‖∇u‖2
2 −

N(p− 1)

p + 1
‖u‖p+1

p+1.(1.13)

Namely, instead of the left-hand side of (1.12), which is not well defined in the energy
space X, we use (2.6) with conveniently chosen weights (see the beginning of section
2).

Note that (1.12) follows from (1.10) and

1

2

d2

dt2
‖u(t)‖2

2 =
d

dt
Re

∫
RN

u∂tu dx = −K2(�u(t)),(1.14)

K2(u, v) = −‖v‖2
2 + ‖∇u‖2

2 + ‖u‖2
2 − ‖u‖p+1

p+1,

and that the functional P appears in the virial identity for the nonlinear Schrödinger
equation (1.8):

d2

dt2
‖xu(t)‖2

2 = 4P (u(t)).(1.15)
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The case p < 1+4/N is more delicate. Here we use a local version of the identity

− d

dt
Re

∫
RN

{2x · ∇u + (N + α)u}∂tū dx = K(�u(t)),(1.16)

where α := 4/(p− 1) −N and

K(u, v) := −α‖v‖2
2 + α‖u‖2

2 + (α + 2)

{
‖∇u‖2

2 −
2

p + 1
‖u‖p+1

p+1

}
(1.17)

(cf. [29, page 185]). Note that

K(u, v) = P (u) + αK2(u, v)(1.18)

= −2(α + 1)‖v − iωu‖2
2 + 2(α + 2)(E − ωQ)(u, v)

−2αωQ(u, v) − 2{1 − (α + 1)ω2}‖u‖2
2,

and that 1 − (α + 1)ω2 > 0 if |ω| > ωc, and correspondingly 1 − (α + 1)ω2 = 0 if
|ω| = ωc. Again instead of the left-hand side of (1.16), we use (2.7) with conveniently
chosen weights.

Next, we consider the KGZ system (1.3)–(1.4). The well-posedness of the Cauchy
problem for (1.3)–(1.4) in the energy space is studied by Ozawa, Tsutaya, and Tsut-
sumi [25]. Here, the energy space Y is defined by Y = H1(RN )×L2(RN )×L2(RN )×
Ḣ−1(RN ). When N = 3 and c0 �= 1, it is proved in [25] that for any (u0, u1, n0, n1) ∈
Y there exists a unique solution u := (u, ∂tu, n, ∂tn) ∈ C([0, Tmax);Y ) of (1.3)–(1.4)
with initial data u(0) = (u0, u1, n0, n1) satisfying the conservation laws of the energy
H(u(t)) = H(u(0)) and the charge Q(u(t)) = Q(u(0)) for all t ∈ [0, Tmax), where Q
is defined by (1.6) and

H(u, v, n, ν) =
1

2
‖v‖2

2 +
1

4c20
‖ν‖2

Ḣ−1(1.19)

+
1

2
‖∇u‖2

2 +
1

2
‖u‖2

2 +
1

4
‖n‖2

2 +
1

2

∫
RN

|u|2ndx.

The case when N = 3 and c0 = 1 is treated in [24, 31], where the global small data
solutions result is presented. For the case N = 2, by using the idea of the paper
of Ozawa, Tsutaya, and Tsutsumi [25] we can prove the local well-posedness of the
Klein–Gordon–Zakharov system (1.3)–(1.4) in the energy space Y for all c0 > 0.

We study instability of standing wave solutions

(uω(t, x), nω(t, x)) = (eiωtφω(x),−|φω(x)|2)

for (1.3)–(1.4), where −1 < ω < 1, N = 2, 3, and φω ∈ H1(RN ) is the ground state of

−Δϕ + (1 − ω2)ϕ− |ϕ|2ϕ = 0, x ∈ R
N .(1.20)

By a similar method as in the proof of Theorem 1 for the case p ≥ 1 + 4/N together
with an argument in Merle [17] for the Zakharov system, we have the following.

Theorem 5. Let N = 2, 3, ω ∈ (−1, 1), φω be the ground state of (1.20), and
c0 �= 1 if N = 3. Then, the standing wave (eiωtφω,−|φω|2) of KGZ system (1.3)–(1.4)
is strongly unstable in the following sense. For any λ > 1, the solution u(t) of (1.3)–
(1.4) with initial data u(0) = (λφω, λiωφω,−λ2|φω|2, 0) either blows up in finite time
or exists globally and satisfies lim supt→∞ ‖u(t)‖Y = ∞.
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Remark. It is known (see [4, Theorem 3]) that the negative initial energy H(u(0))
implies that the solution u(t) of (1.3)–(1.4) either blows up in finite time or blows
up in infinite time, namely the solution exists globally and satisfies the asymptotic
condition lim supt→∞ ‖u(t)‖Y = ∞. Since the energy

H(λφω, λiωφω,−λ2|φω|2, 0) > 0

for λ close to 1, the result in [4] is not applicable to Theorem 5.
Next, we consider the very strong instability of (eiωtφω,−|φω|2) for (1.3)–(1.4).

Since (1.4) of the KGZ system is massless, it seems difficult to obtain the uniform
boundedness of global solutions for (1.3)–(1.4) similar to Lemma 2. Therefore, for the
standing wave (eiωtφω,−|φω|2) we do not deduce a very strong instability similar to
the instability result in Corollary 3 of Theorem 1. However, using the method in our
previous paper [23], we obtain the following very strong instability result for small
frequencies.

Theorem 6. Let N = 3, c0 �= 1, |ω| < 1/
√

3, and φω be the ground state of
(1.20). Then, the standing wave (eiωtφω,−|φω|2) of the KGZ system (1.3)–(1.4) is
very strongly unstable in the following sense. For any λ > 1, the solution u(t) of
(1.3)–(1.4) with the initial data u(0) = (λφω, λiωφω,−λ2|φω|2, 0) blows up in finite
time.

Remark. In Theorem 6, the case ω = 0 is proved by Gan and Zhang [9].
The plan of this paper is as follows. In section 2, we prove Theorems 1 and 4 and

Lemma 2 for the nonlinear Klein–Gordon equation (1.1). The proof of Theorem A is
given at the end of section 2. Section 3 is devoted to applications to the KGZ system
(1.3)–(1.4), and we prove Theorems 5 and 6.

2. Proof of theorems for the nonlinear Klein–Gordon equation (1.1).
In this section, we first prove Theorems 1 and 4.

We start with a convenient choice of the weight functions, as follows. Let Φ ∈
C2([0,∞)) be a nonnegative function such that

Φ(r) =

{
N for 0 ≤ r ≤ 1,
0 for r ≥ 2,

Φ′(r) ≤ 0 for 1 ≤ r ≤ 2.

For m > 0, we put

Φm(r) = Φ
( r

m

)
, Ψm(r) =

1

rN−1

∫ r

0

sN−1Φm(s) ds.(2.1)

Then, Φm and Ψm satisfy the following properties.
Lemma 7. For m > 0, we have

Φm(r) = N, Ψm(r) = r, 0 ≤ r ≤ m,(2.2)

Ψ′
m(r) +

N − 1

r
Ψm(r) = Φm(r), r ≥ 0,(2.3)

|Φ(k)
m (r)| ≤ C

mk
, r ≥ 0, k = 0, 1, 2,(2.4)

Ψ′
m(r) ≤ 1, r ≥ 0.(2.5)

Proof. Properties (2.2)–(2.4) follow from definition (2.1). We show (2.5). Inte-
grating by parts implies

NrN−1Ψm(r) =

∫ r

0

NsN−1Φm(s) ds = rNΦm(r) −
∫ r

0

sNΦ′
m(s) ds.
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Thus, by (2.3), we have

Ψ′
m(r) = Φm(r) − N − 1

r
Ψm(r) =

1

N
Φm(r) +

N − 1

NrN

∫ r

0

sNΦ′
m(s) ds.

Since Φm(r) ≤ N and Φ′
m(r) ≤ 0 for r ≥ 0, we have (2.5).

Lemma 8. Let u(t) be a radially symmetric solution of (1.1), and put

I1
m(t) = 2 Re

∫
RN

Ψm∂ru∂tu dx + Re

∫
RN

Φmu∂tu dx,(2.6)

I2
m(t) = I1

m(t) + αRe

∫
RN

u∂tū dx,(2.7)

where α := 4/(p − 1) − N . Then, there exists a constant C0 > 0 independent of m
such that

− d

dt
I1
m(t) ≤ P (u(t)) +

N(p− 1)

p + 1

∫
|x|≥m

|u(t, x)|p+1 dx +
C0

m2
‖u(t)‖2

2,(2.8)

− d

dt
I2
m(t) ≤ K(�u(t)) +

N(p− 1)

p + 1

∫
|x|≥m

|u(t, x)|p+1 dx +
C0

m2
‖u(t)‖2

2(2.9)

for all t ∈ [0, Tmax).
Proof. We multiply (1.1) by Ψm∂ru and by Φmu, respectively, and have

− d

dt
2 Re

∫
RN

Ψm∂ru∂tu dx =

∫
RN

(
Ψ′

m +
N − 1

r
Ψm

)
|∂tu|2 dx

+

∫
RN

(
Ψ′

m − N − 1

r
Ψm

)
|∇u|2 dx−

∫
RN

(
Ψ′

m +
N − 1

r
Ψm

)
|u|2 dx

+
2

p + 1

∫
RN

(
Ψ′

m +
N − 1

r
Ψm

)
|u|p+1 dx

and

− d

dt
Re

∫
RN

Φmu∂tu dx = −
∫

RN

Φm|∂tu|2 dx− 1

2

∫
RN

ΔΦm|u|2 dx

+

∫
RN

Φm|∇u|2 dx +

∫
RN

Φm|u|2 dx−
∫

RN

Φm|u|p+1 dx.

By (2.3) in Lemma 7, we have the identity

− d

dt
I1
m(t) = 2

∫
RN

Ψ′
m|∇u|2 dx− p− 1

p + 1

∫
RN

Φm|u|p+1 dx− 1

2

∫
RN

ΔΦm|u|2 dx.

The inequality (2.8) follows from Lemma 7. Finally, (2.9) follows from (2.8), (1.14),
and (1.18).

First, we consider the case p ≥ 1 + 4/N . We define the functional

Jω(u) =
1

2
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2 −
1

p + 1
‖u‖p+1

p+1,(2.10)

and consider the constrained minimization problem

d1
ω = inf{Jω(u) : u ∈ H1(RN ) \ {0}, P (u) = 0}(2.11)
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and the set

R1
ω = {(u, v) ∈ X : (E − ωQ)(u, v) < d1

ω, P (u) < 0},(2.12)

where E and Q are the energy and the charge, respectively, and the functional P is
defined by (1.13).

Note that

(E − ωQ)(u, v) = Jω(u) +
1

2
‖v − iωu‖2

2,(2.13)

P (u) = 2∂λJω(λN/2u(λ·))|λ=1.(2.14)

Lemma 9. Let N ≥ 2, 1 + 4/N ≤ p < 1 + 4/(N − 2), and ω ∈ (−1, 1). Then, we
have the following:

(i) Jω(u) − 1
N(p−1)P (u) > d1

ω for all u ∈ H1(RN ) satisfying P (u) < 0.

(ii) The minimization problem (2.11) is attained at the ground state φω of (1.2).
(iii) λ(φω, iωφω) ∈ R1

ω for all λ > 1.
Proof. (i) We put

J1
ω(u) := Jω(u) − 1

N(p− 1)
P (u)(2.15)

=

{
1

2
− 2

N(p− 1)

}
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2.

Note that 1/2 − 2/N(p − 1) ≥ 0 by the assumption p ≥ 1 + 4/N . Let u ∈ H1(RN )
satisfy P (u) < 0. Then, we have u �= 0, and there exists λ1 ∈ (0, 1) such that
P (λ1u) = 0. By (2.11), we have d1

ω ≤ Jω(λ1u) = J1
ω(λ1u) < J1

ω(u).
(ii) For the case p > 1 + 4/N , see [6, Proposition 8.2.4], and for p = 1 + 4/N , see

[19, Proposition 2.5].
(iii) By (2.13), we have

(E − ωQ)(λ(φω, iωφω)) = Jω(λφω)

= λ2

(
1

2
‖∇φω‖2

2 +
1 − ω2

2
‖φω‖2

2

)
− λp+1

p + 1
‖φω‖p+1

p+1.

Since Jω(φω) = d1
ω, ∂λJω(λφω)|λ=1 = 0, and ∂2

λJω(λφω)|λ=1 < 0, we have (E −
ωQ)(λ(φω, iωφω)) < d1

ω for all λ > 1. Similarly, we have P (λφω) < 0 for all λ > 1.
Hence, we have λ(φω, iωφω) ∈ R1

ω for all λ > 1.
Lemma 10. Suppose that N ≥ 2, 1 + 4/N ≤ p < 1 + 4/(N − 2), and ω ∈ (−1, 1).

If (u0, u1) ∈ R1
ω, then the solution u(t) of (1.1) with �u(0) = (u0, u1) satisfies

− 1

N(p− 1)
P (u(t)) > d1

ω − (E − ωQ)(u0, u1), t ∈ [0, Tmax).(2.16)

Proof. First, we show that P (u(t)) < 0 for all t ∈ [0, Tmax). Suppose that there
exists t1 ∈ (0, Tmax) such that P (u(t1)) = 0 and P (u(t)) < 0 for t ∈ [0, t1). Then, by
Lemma 9(i) and (2.15), we have{

1

2
− 2

N(p− 1)

}
‖∇u‖2

2 +
1 − ω2

2
‖u(t)‖2

2 > d1
ω > 0, t ∈ [0, t1).

Thus, we have u(t1) �= 0. Therefore, by (2.11), we have d1
ω ≤ Jω(u(t1)). Meanwhile,

since (u0, u1) ∈ R1
ω, E and Q are conserved, and by (2.13), we have Jω(u(t1)) ≤
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(E − ωQ)(�u(t1)) < d1
ω. This is a contradiction. Hence, we have P (u(t)) < 0 for all

t ∈ [0, Tmax). From this fact, Lemma 9(i) and (2.13), we obtain (2.16).
Proof of Theorem 1 for the case p ≥ 1 + 4/N . Let λ > 1 be fixed and denote

δ :=
N(p− 1)

2
{d1

ω − (E − ωQ)(λ(φω, iωφω))}.

Then, by Lemma 9(iii), we have δ > 0. Suppose that the solution u(t) of (1.1) with
�u(0) = λ(φω, iωφω) exists for all t ∈ [0,∞) and is uniformly bounded in X, i.e.,

M1 := sup
t≥0

‖�u(t)‖X < ∞.(2.17)

Since u(t) is radially symmetric in x for all t ≥ 0, we define I1
m(t) for u(t) by (2.6).

By (1.11) and (2.17), we have∫
|x|≥m

|u(t, x)|p+1 dx ≤ ‖u(t)‖p−1
L∞(|x|≥m)‖u(t)‖2

2

≤ Cm−(N−1)(p−1)/2‖u(t)‖p+1
H1 ≤ CMp+1

1 m−(N−1)(p−1)/2

for all t ≥ 0 and m > 0. Note that we assume N ≥ 2. Thus, there exists m0 > 0 such
that

sup
t≥0

(
N(p− 1)

p + 1

∫
|x|≥m0

|u(t, x)|p+1 dx +
C0

m2
0

‖u(t)‖2
2

)
< δ.

Thus, by Lemmas 8 and 10, we have

d

dt
I1
m0

(t)

≥ −P (u(t)) −
(
N(p− 1)

p + 1

∫
|x|≥m0

|u(t, x)|p+1 dx +
C0

m2
0

‖u(t)‖2
2

)

≥ 2δ − δ = δ

for all t ≥ 0. Therefore, we have limt→∞ I1
m0

(t) = ∞. On the other hand, there
exists a constant C = C(m0) > 0 such that I1

m0
(t) ≤ C‖�u(t)‖2

X ≤ CM2
1 for all

t ≥ 0. This is a contradiction. Hence, for any λ > 1, the solution u(t) of (1.1)
with �u(0) = λ(φω, iωφω) either blows up in finite time or exists for all t ≥ 0 and
lim supt→∞ ‖�u(t)‖X = ∞. This completes the proof of Theorem 1 for the case p ≥
1 + 4/N .

Next, we consider the case p < 1 + 4/N . For this case, we need a different
variational characterization of the ground state φω of (1.2) from that for the case
p ≥ 1 + 4/N . We define the functional

K0
ω(u) = α(1 − ω2)‖u‖2

2 + (α + 2)

{
‖∇u‖2

2 −
2

p + 1
‖u‖p+1

p+1

}
,

and consider the constrained minimization problem

d0
ω = inf{Jω(u) : u ∈ H1(RN ) \ {0}, K0

ω(u) = 0}(2.18)



INSTABILITY OF STANDING WAVES 1921

and the set

R0
ω = {(u, v) ∈ X : (E − ωQ)(u, v) < d0

ω, K0
ω(u) < 0},(2.19)

where α = 4/(p− 1) −N > 0. Note that

K0
ω(u) = 2∂λJω(λβu(λ·))|λ=1, β =

α + N

2
=

2

p− 1
.(2.20)

Lemma 11. Let N ≥ 2, 1 < p < 1 + 4/N , and ω ∈ (−1, 1). Then, we have the
following:

(i) 1−ω2

α+2 ‖u‖2
2 > d0

ω for all u ∈ H1(RN ) satisfying K0
ω(u) < 0.

(ii) The minimization problem (2.18) is attained at the ground state φω of (1.2).
(iii) λ(φω, iωφω) ∈ R0

ω for all λ > 1.
Proof. First, we note that

Jω(u) − 1

2(α + 2)
K0

ω(u) =
1 − ω2

α + 2
‖u‖2

2,(2.21)

d0
ω = inf

{
1 − ω2

α + 2
‖u‖2

2 : u ∈ H1(RN ) \ {0}, K0
ω(u) = 0

}
.(2.22)

(i) Let u ∈ H1(RN ) satisfy K0
ω(u) < 0. Then, we have u �= 0, and there exists

λ1 ∈ (0, 1) such that K0
ω(λ1u) = 0. By (2.18), we have

d0
ω ≤ 1 − ω2

α + 2
‖λ1u‖2

2 <
1 − ω2

α + 2
‖u‖2

2.

(ii) Note that d0
ω ≥ 0 by (2.22). Let {uj} ⊂ H1(RN ) be a minimizing sequence for

(2.18). By considering the Schwarz symmetrization of uj , we can assume that {uj} ⊂
H1

rad(R
N ). We refer to [2, Appendix A.III] for the definition and basic properties

of the Schwarz symmetrization. By (2.22), we see that {uj} is bounded in L2(RN ).
Moreover, by K0

ω(uj) = 0 and the Gagliardo–Nirenberg inequality, we have

(α + 2)‖∇uj‖2
2 + α(1 − ω2)‖uj‖2

2

=
2(α + 2)

p + 1
‖uj‖p+1

p+1 ≤ C‖uj‖p+1−θ
2 ‖∇uj‖θ2,

where θ = (p−1)N/2. Since p < 1+4/N , we see that θ < 2 and that {uj} is bounded
in H1(RN ). Therefore, there exist a subsequence of {uj} (we still denote it by the same
letter) and w ∈ H1

rad(R
N ) such that uj ⇀ w weakly in H1(RN ) and uj → w strongly

in Lp+1(RN ). Here, we used the fact that the embedding H1
rad(R

N ) ↪→ Lq
rad(R

N ) is
compact for 2 < q < 2 + 4/(N − 2) (see [30]). Next, we show that w �= 0. Suppose
that w = 0. Then, by K0

ω(uj) = 0 and the strong convergence uj → 0 in Lp+1(RN ),
we see that uj → 0 in H1(RN ). On the other hand, by K0

ω(uj) = 0 and the Sobolev
inequality, we have

(α + 2)‖∇uj‖2
2 + α(1 − ω2)‖uj‖2

2 =
2(α + 2)

p + 1
‖uj‖p+1

p+1

≤ C{(α + 2)‖∇uj‖2
2 + α(1 − ω2)‖uj‖2

2}(p+1)/2.

Since uj �= 0, we have ‖uj‖H1 ≥ C for some C > 0. This is a contradiction. Thus, we
see that w ∈ H1(RN ) \ {0}. Therefore, by (2.21) and (2.22), we have

d0
ω ≤ 1 − ω2

α + 2
‖w‖2

2 ≤ lim inf
j→∞

1 − ω2

α + 2
‖uj‖2

2 = lim inf
j→∞

Jω(uj) = d0
ω,
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and K0
ω(w) ≤ lim infj→∞ K0

ω(uj) = 0. Moreover, by (i), we have K0
ω(w) = 0. There-

fore, w attains (2.22) and (2.18). Since w attains (2.18), there exists a Lagrange
multiplier η ∈ R such that

J ′
ω(w) =

η

2(α + 2)
(K0

ω)′(w).(2.23)

That is, w satisfies

−(1 − η)Δw + (1 − ω2)

(
1 − α

α + 2
η

)
w − (1 − η)|w|p−1w = 0(2.24)

in H−1(RN ). First, we show that η < 1. Suppose that η ≥ 1. Then, by (2.24) and
K0

ω(w) = 0, we have

0 = (1 − η)‖∇w‖2
2 + (1 − ω2)

(
1 − α

α + 2
η

)
‖w‖2

2 − (1 − η)‖w‖p+1
p+1

=
(η − 1)(p− 1)

2
‖∇w‖2

2 +
α(p− 1)(1 − ω2)

2(α + 2)

{
η − 1 +

4

α(p− 1)

}
‖w‖2

2

≥ 2(1 − ω2)

α + 2
‖w‖2

2 > 0.

This is a contradiction. Thus, we have η < 1. Since we have

1 − η > 0, (1 − ω2)

(
1 − α

α + 2
η

)
> 0

in (2.24), by [6, Theorem 8.1.1], we have x · ∇w ∈ H1(RN ). Therefore, by (2.23), we
have

0 = K0
ω(w) = 2∂λJω(λβw(λ·))|λ=1 = 2〈J ′

ω(w), x · ∇w + βw〉
=

η

α + 2
〈(K0

ω)′(w), x · ∇w + βw〉 =
η

α + 2
∂λK

0
ω(λβw(λ·))|λ=1,

where β = (α + N)/2. Moreover, by K0
ω(w) = 0, we have

∂λK
0
ω(λβw(λ·))|λ=1

= α2(1 − ω2)‖w‖2
2 + (α + 2)2

{
‖∇w‖2

2 −
2

p + 1
‖w‖p+1

p+1

}
= −2α(1 − ω2)‖w‖2

2 < 0.

Thus, we have η = 0. Therefore, w satisfies J ′(w) = 0 and K2
ω(w) = 0, where

K2
ω(u) := 〈J ′

ω(u), u〉 = ‖∇u‖2
2 + (1 − ω2)‖u‖2

2 − ‖u‖p+1
p+1.

Since φω attains

inf{Jω(u) : u ∈ H1(RN ) \ {0}, K2
ω(u) = 0}

(see, e.g., [23, Lemma 3]), we have Jω(φω) ≤ Jω(w). On the other hand, φω satisfies
K0

ω(φω) = 0, and we have d0
ω = Jω(w) ≤ Jω(φω). Hence, φω attains (2.18).

(iii) The proof is similar to that of Lemma 9(iii), and we omit it.
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Lemma 12. Suppose that N ≥ 2, 1 < p < 1 + 4/N , and ω ∈ (−1, 1). If
(u0, u1) ∈ R0

ω, then the solution u(t) of (1.1) with �u(0) = (u0, u1) satisfies

1 − ω2

α + 2
‖u(t)‖2

2 > d0
ω, t ∈ [0, Tmax).

Proof. The proof is similar to that for Lemma 10. We omit the details.
Proof of Theorem 1 for the case p < 1 + 4/N . Let λ > 1 be fixed and define

δ1 = (α + 2){d0
ω − (E − ωQ)(λ(φω, iωφω))},

δ2 = α

{
ωQ(λ(φω, iωφω)) − ω2(α + 2)

1 − ω2
d0
ω

}
,

and δ = δ1 +δ2. Then, by Lemma 11(iii), we have δ1 > 0. Moreover, by Lemma 11(ii)
and (2.22), we have

ω2(α + 2)

1 − ω2
d0
ω = ω2‖φω‖2

2 < λ2ω2‖φω‖2
2 = ωQ(λ(φω, iωφω)).

Thus, we have δ2 > 0 and δ > 0. Suppose that the solution u(t) of (1.1) with
�u(0) = λ(φω, iωφω) exists for all t ∈ [0,∞) and is uniformly bounded in X. Since u(t)
is radially symmetric in x for all t ≥ 0, we define I2

m(t) for u(t) by (2.7). As in the
proof of Theorem 1 for the case p ≥ 1 + 4/N , there exists m0 > 0 such that

sup
t≥0

(
N(p− 1)

p + 1

∫
|x|≥m0

|u(t, x)|p+1 dx +
C0

m2
0

‖u(t)‖2
2

)
< δ.

Thus, by Lemma 8, we have

d

dt
I2
m0

(t) ≥ −K(�u(t)) − δ, t ≥ 0.

Here, recall that we assume |ω| ≤ ωc, so we have 1 − (α + 1)ω2 ≥ 0. Thus, by (1.18)
and Lemma 12, we have

−K(�u(t))

≥ −2(α + 2)(E − ωQ)(�u(t)) + 2αωQ(�u(t)) + 2{1 − (α + 1)ω2}‖u(t)‖2
2

≥ −2(α + 2)(E − ωQ)(�u(0)) + 2αωQ(�u(0)) + 2{1 − ω2 − αω2} α + 2

1 − ω2
d0
ω

= 2δ

for all t ≥ 0. Therefore, we have (d/dt)I2
m0

(t) ≥ δ for all t ≥ 0, and limt→∞ I2
m0

(t) =
∞. The rest of the proof is the same as in the proof of Theorem 1 for the case
p ≥ 1 + 4/N , and we omit the details.

Proof of Theorem 4. Let us first note that identity (1.18) contains the reason
that in Theorem 4 we can allow any radially symmetric solutions of (1.2), unlike the
case of Theorem 1 where we can treat only the ground state of (1.2). Namely, when
ω = ωc we have 1− (α+ 1)ω2

c = 0, and therefore the identity (1.18) does not contain
the norm ‖u‖2

2. Let us recall that in Theorem 1 we control this norm by using the
variational characterization of the ground state.

Let ϕ ∈ H1(RN ) \ {0} be a radially symmetric solution of (1.2) with ω = ωc. Let
λ > 1 and put

δ = αωcQ(λ(ϕ, iωcϕ)) − (α + 2)(E − ωcQ)(λ(ϕ, iωcϕ)).



1924 MASAHITO OHTA AND GROZDENA TODOROVA

Since J ′
ωc

(ϕ) = 0, we have (E − ωcQ)(λ(ϕ, iωcϕ)) = Jωc
(λϕ) < Jωc

(ϕ) for λ > 1.
Moreover, we have ωcQ(λ(ϕ, iωcϕ)) = ω2

cλ
2‖ϕ‖2

2 > ω2
c‖ϕ‖2

2 for λ > 1. Thus, we have

δ > αω2
c‖ϕ‖2

2 − (α + 2)Jωc(ϕ) = −1

2
K0

ωc
(ϕ) − {1 − (α + 1)ω2

c}‖ϕ‖2
2.

By [6, Theorem 8.1.1], we have x · ∇ϕ ∈ H1(RN ). Therefore, by (2.20) and by
J ′
ωc

(ϕ) = 0, we have

K0
ωc

(ϕ) = 2〈J ′
ωc

(ϕ), x · ∇ϕ + βϕ〉 = 0.

Moreover, since (α+1)ω2
c = 1, we have δ > 0. Suppose that the solution u(t) of (1.1)

with �u(0) = λ(ϕ, iωcϕ) exists for all t ∈ [0,∞) and is uniformly bounded in X. Since
u(t) is radially symmetric in x for all t ≥ 0, we define I2

m(t) for u(t) by (2.7). As in
the proof of Theorem 1 for the case p ≥ 1 + 4/N , there exists m0 > 0 such that

sup
t≥0

(
N(p− 1)

p + 1

∫
|x|≥m0

|u(t, x)|p+1 dx +
C0

m2
0

‖u(t)‖2
2

)
< δ.

Thus, by Lemma 8, we have

d

dt
I2
m0

(t) ≥ −K(�u(t)) − δ, t ≥ 0.

Moreover, by (1.18) and (α + 1)ω2
c = 1, we have

−K(�u(t))

≥ −2(α + 2)(E − ωcQ)(�u(t)) + 2αωcQ(�u(t)) + 2{1 − (α + 1)ω2
c}‖u(t)‖2

2

≥ −2(α + 2)(E − ωcQ)(�u(0)) + 2αωcQ(�u(0)) = 2δ

for all t ≥ 0. Therefore, we have (d/dt)I2
m0

(t) ≥ δ for all t ≥ 0, and limt→∞ I2
m0

(t) =
∞. On the other hand, there exists a constant C = C(m0) > 0 such that I2

m0
(t) ≤

C‖�u(t)‖2
X ≤ C for all t ≥ 0. This is a contradiction. Therefore, for any λ > 1, the

solution u(t) of (1.1) with �u(0) = λ(ϕ, iωcϕ) either blows up in finite time or exists
for all t ≥ 0 and lim supt→∞ ‖�u(t)‖X = ∞. Finally, by Lemma 2, if u(t) exists for all
t ≥ 0, then supt≥0 ‖�u(t)‖X < ∞. Hence, u(t) blows up in finite time. This completes
the proof.

Proof of Lemma 2. By Proposition 3.1 and Lemma 3.5 in [5], we have

sup
t≥0

‖u(t)‖2 < ∞,(2.25)

sup
t≥0

∫ t+1

t

‖�u(s)‖2
X ds < ∞.(2.26)

By (2.26) and the conservation of energy E, we have

C1 := sup
t≥0

∫ t+1

t

‖u(s)‖p+1
p+1 ds < ∞.(2.27)

Note that the estimates (2.25), (2.26), and (2.27) hold true for 1 < p < 1+4/(N −2).
In what follows, we use an argument in Merle and Zaag [18]. First, for r = (p+ 3)/2,
we show

sup
t≥0

‖u(t)‖r < ∞.(2.28)
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Indeed, by (2.27) and the mean value theorem, for any t ≥ 0 there exists τ(t) ∈ [t, t+1]
such that

‖u(τ(t))‖p+1
p+1 =

∫ t+1

t

‖u(s)‖p+1
p+1 ds ≤ C1.(2.29)

Since 2 < r < p + 1, it follows from (2.25) and (2.29) that supt≥0 ‖u(τ(t))‖r < ∞.
Moreover, for any t ≥ 0, we have

‖u(t)‖rr − ‖u(τ(t))‖rr =

∫ t

τ(t)

d

ds
‖u(s)‖rr ds

≤ C

∫ t+1

t

∫
RN

|u(s, x)|r−1|∂su(s, x)| dx ds

≤ C

∫ t+1

t

(
‖u(s)‖2(r−1)

2(r−1) + ‖∂su(s)‖2
2

)
ds.

Since 2(r − 1) = p + 1, by (2.26), (2.27), and supt≥0 ‖u(τ(t))‖r < ∞, we have (2.28).
Next, by the Gagliardo–Nirenberg inequality, we have

‖u(t)‖p+1 ≤ C‖u(t)‖1−θ
r ‖∇u(t)‖θ2,

where

1

p + 1
= θ

(
1

2
− 1

N

)
+

1 − θ

r
.

Since we assume p < 1 + 4/(N − 1), we have (p + 1)θ < 2. Thus, by (2.28), there
exists a constant C2 > 0 such that

2

p + 1
‖u(t)‖p+1

p+1 ≤ C2 +
1

2
‖∇u(t)‖2

2, t ≥ 0.

Moreover, by the conservation of energy E, for any t ≥ 0 we have

‖�u(t)‖2
X = 2E(�u(0)) +

2

p + 1
‖u(t)‖p+1

p+1

≤ 2E(�u(0)) + C2 +
1

2
‖∇u(t)‖2

2,

which implies ‖�u(t)‖2
X ≤ 4E(�u(0)) + 2C2. This completes the proof.

We conclude this section with the proof of Theorem A.
Proof of Theorem A (due to Kenji Nakanishi). Following the proof of Theorem

1, take the radially symmetric solution u(t, r) (r = |x|) starting from (u(0), ∂tu(0)) =
λ(φω, iωφω) with λ > 1, and assume by contradiction that it exists for all t ≥ 0. Then
Cazenave’s estimate (2.26) implies that there exists M < ∞ such that for all T > 0

∫ T+1

T

∫
RN

|∂tu|2 + |∇u|2 + |u|2dxdt ≤ M.(2.30)

Hence for any positive integer j, there exists Tj ∈ [j − 1, j] such that∫
RN

|∂tu|2 + |∇u|2 + |u|2dx|t=Tj ≤ M.
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By Lemmas 8, 9, and 10, there exists δ > 0 such that for any m > 1 and t > 0 we
have

d

dt
I1
m(t) ≥ 2δ −Rm(t), Rm(t) :=

N(p− 1)

p + 1

∫
|x|≥m

|u|p+1dx +
C

m2
‖u(t)‖2

2,

where I1
m is defined by (2.6). Here and below, C is a positive constant, which may

depend only on p and N . Integrating in t, we get

I1
m(Tj+2) − I1

m(Tj) ≥ 2δ −
∫ Tj+2

Tj

Rm(t)dt,

since Tj+2 − Tj ≥ 1. Notice that (2.30) is enough to control the error term Rm

uniformly in j. To see this, let χ(t, r) ∈ C∞(R2) satisfy χ(t, r) = 1 when |t| ≤ 2
and |r| ≥ 1, and χ(t, r) = 0 if |t| ≥ 4 or |r| ≤ 1/2. For any m > 1 and T > 4, let
v(t, r) = χ(t− T, r/m)u(t, |r|). Then we have

∫
R2

|∂tv|2 + |∂rv|2 + |v|2drdt

≤ Cm1−N

∫ T+4

T−4

∫
RN

|∂tu|2 + |∇u|2 + |u|2dxdt ≤ 8Cm1−NM.

Hence the Sobolev embedding H1(R2) ⊂ Lp+1(R2) implies that

∫ T+2

T−2

∫
|x|≥m

|u|p+1dxdt ≤ C

∞∑
j=0

∫ T+2

T−2

(2jm)N−1

∫
r≥2jm

|u|p+1drdt

≤ Cm−(p−1)(N−1)/2M (p+1)/2.

Therefore choosing m sufficiently large, we obtain

I1
m(Tj+2) − I1

m(Tj) ≥ δ

for all j ≥ 4, which contradicts the global bound

I1
m(Tj) ≤ Cm

∫
RN

|∂tu|2 + |∂ru|2 + |u|2dx|t=Tj ≤ CmM.

This completes the proof.

3. Proof of theorems for the KGZ system. In this section, we prove Theo-
rems 5 and 6.

Proof of Theorem 5. Let λ > 1 and put

d̃ω = (H − ωQ)(φω, iωφω,−|φω|2, 0),

δ = N{d̃ω − (H − ωQ)(λφω, λiωφω,−λ2|φω|2, 0)},

where H and Q are defined by (1.19) and (1.6), respectively. In the same way as in
Lemma 9(iii), we see that δ > 0. Suppose that the solution u(t) of (1.3)–(1.4) with
u(0) = (λφω, λiωφω,−λ2|φω|2, 0) exists globally and satisfies M := supt≥0 ‖u(t)‖Y <
∞. Note that since the initial data is radially symmetric, the solution u(t) is also
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radially symmetric for all t ≥ 0. Following Merle [17], we introduce the function
w(t) := −(−Δ)−1∂tn(t), and for m > 0 we consider the function

Ĩm(t) = I1
m(t) +

1

c20

∫
RN

Ψmn(t)∂rw(t) dx,

where I1
m(t) is defined by (2.6) and Φm and Ψm are given by (2.1). Note that since

∂tn(t) ∈ Ḣ−1(RN ), we see that w(t) ∈ Ḣ1(RN ) and ‖∂tn‖Ḣ−1 = ‖∇w‖2. By the
same computations as in Lemma 8, we have

− d

dt
Ĩm(t) = 2

∫
RN

Ψ′
m|∇u|2 dx +

1

2

∫
RN

Φm(n2 + 2|u|2n) dx

−1

2

∫
RN

ΔΦm|u|2 dx +
1

2c20

∫
RN

(
Ψ′

m − N − 1

r
Ψm

)
|∇w|2 dx.

By Lemma 7, we have

∫
RN

Ψ′
m|∇u|2 dx ≤ ‖∇u(t)‖2

2,

−1

2

∫
RN

ΔΦm|u|2 dx ≤ C1

m2
‖u(t)‖2

2 ≤ C1M
2

m2
,∫

RN

(
Ψ′

m − N − 1

r
Ψm

)
|∇w|2 dx ≤ ‖∇w(t)‖2

2 = ‖∂tn(t)‖Ḣ−1 .

Moreover, we have

∫
RN

Φm(n2 + 2|u|2n) dx

=

∫
RN

Φm(n + |u|2)2 dx−
∫

Rn

N |u|4 dx +

∫
Rn

(N − Φm)|u|4 dx

≤ N‖n + |u|2‖2
2 −N‖u‖4

4 +

∫
|x|≥m

(N − Φm)|u|4 dx,

and by (1.11) we have

1

2

∫
|x|≥m

(N − Φm)|u|4 dx ≤ C‖u(t)‖2
L∞(|x|≥m)‖u(t)‖2

2

≤ C2

mN−1
‖u(t)‖4

H1 ≤ C2M
4

mN−1
.

Therefore, we have

− d

dt
Ĩm(t) ≤ P̃ (u(t)) +

C1M
2

m2
+

C2M
4

mN−1
(3.1)

for all t ≥ 0, where we put

P̃ (u, v, n, ν) = 2‖∇u‖2
2 −

N

2
‖u‖4

4 +
N

2
‖n + |u|2‖2

2 +
1

2c20
‖ν‖2

Ḣ−1 .



1928 MASAHITO OHTA AND GROZDENA TODOROVA

Note that

(H − ωQ)(u, v, n, ν) − 1

2N
P̃ (u, v, n, ν)

=
1

2
‖v − iωu‖2

2 +

(
1 − 1

N

)
1

4c20
‖ν‖2

Ḣ−1 +

(
1

2
− 1

N

)
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2

≥
(

1

2
− 1

N

)
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2.

Using this inequality, in the same way as in Lemmas 9 and 10, we see that

−P̃ (u(t)) ≥ 2N{d̃ω − (H − ωQ)(u(0))} = 2δ(3.2)

holds for all t ≥ 0. Therefore, taking m1 > 0 such that

C1M
2

m2
1

+
C2M

4

mN−1
1

< δ,

by (3.1) and (3.2), we have (d/dt)Ĩm1(t) ≥ δ for all t ≥ 0, and limt→∞ Ĩm1
(t) = ∞.

The rest of the proof is the same as in the proof of Theorem 1 for the case p ≥ 1+4/N ,
and we omit the details.

Proof of Theorem 6. Let λ > 1. Suppose that the solution u(t) of (1.3)–(1.4) with
u(0) = (λφω, λiωφω,−λ2|φω|2, 0) exists globally. By the assumption |ω| < 1/

√
3, we

can take α such that 2ω2/(1 − ω2) < α < 1. For such an α, we consider a function
defined by

Iα(t) =
1

2

{
‖u(t)‖2

2 +
α

c20
‖n(t)‖2

Ḣ−1

}
.

Note that since n(0) = −λ2|φω|2 ∈ L1(R3) ∩ L2(R3) ⊂ Ḣ−1(R3) and ∂tn ∈ C([0,∞);
Ḣ−1(R3)), we see that n ∈ C1([0,∞); Ḣ−1(R3) ∩ L2(R3)). Then, we have

d

dt
Iα(t) = Re〈u(t), ∂tu(t)〉L2 +

α

c20
〈n(t), ∂tn(t)〉Ḣ−1

= Re〈u(t), ∂tu(t) − iωu(t)〉L2 +
α

c20
〈n(t), ∂tn(t)〉Ḣ−1

and

d2

dt2
Iα(t) = ‖∂tu(t)‖2

2 +
α

c20
‖∂tn(t)‖2

Ḣ−1 − ‖∇u(t)‖2
2 − ‖u(t)‖2

2

−α‖n(t)‖2
2 − (1 + α)

∫
R3

|u(t, x)|2n(t, x) dx.

Thus, we have

d2

dt2
Iα(t) + 2(1 + α)(H − ωQ)(u(0)) − 2ωQ(u(0))

= (2 + α)‖∂tu(t) − iωu(t)‖2
2 +

(
2 +

1 − α

2α

)
α

c20
‖∂tn(t)‖2

Ḣ−1

+Kω,α(u(t), n(t)),
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where we put

Kω,α(u, n) = α

{
‖∇u‖2

2 +

(
1 − ω2 − 2

α
ω2

)
‖u‖2

2 +
1 − α

2α
‖n‖2

2

}
.

Here, we define

Jω(u, n) =
1

2
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2 +
1

4
‖n‖2

2 +
1

2

∫
R3

|u(x)|2n(x) dx,

K1
ω,α(u, n) = ∂λJω(λu, λ2αn)|λ=1

= ‖∇u‖2
2 + (1 − ω2)‖u‖2

2 + α‖n‖2
2 + (1 + α)

∫
R3

|u|2ndx,

K2
ω,α(u, n) = 2∂λJω(λ(1−α)/αu(·/λ), n(·/λ))|λ=1

=
2 − α

α
‖∇u‖2

2 +
2 + α

α
(1 − ω2)‖u‖2

2

+
3

2
‖n‖2

2 +
2 + α

α

∫
R3

|u|2ndx,

and put

J1
ω,α(u, n) = Jω(u, n) − 1

2(1 + α)
K1

ω,α(u, n)

=
α

1 + α

{
1

2
‖∇u‖2

2 +
1 − ω2

2
‖u‖2

2 +
1 − α

4α
‖n‖2

2

}
,

J2
ω,α(u, n) = Jω(u, n) − α

2(2 + α)
K2

ω,α(u, n)

=
α

2 + α

{
‖∇u‖2

2 +
1 − α

2α
‖n‖2

2

}
,

θ = 1 − 2ω2

(1 − ω2)α
.

Then, we have 0 < θ < 1 and

Kω,α(u, n) = 2(1 + α)θJ1
ω,α(u, n) + (2 + α)(1 − θ)J2

ω,α(u, n).

Moreover, in a similar way as in Lemmas 3 and 4 in [23], we can prove that Jj
ω,α

(u(t), n(t)) ≥ d̃ω for all t ≥ 0 and j = 1, 2. Therefore, we have

Kω,α(u(t), n(t)) ≥ {2(1 + α)θ + (2 + α)(1 − θ)} d̃ω

= 2

(
1 + α− ω2

1 − ω2

)
d̃ω

for all t ≥ 0. Moreover, since we have d̃ω = (1 − ω2)‖φω‖2
2, putting β = min{2 +

α, 2 + (1 − α)/2α}, we have

d2

dt2
Iα(t) ≥ β

{
‖∂tu(t) − iωu(t)‖2

2 +
α

c20
‖∂tn(t)‖2

Ḣ−1

}
+ 2(1 + α){d̃ω − (H − ωQ)(u(0))} + 2ωQ(u(0)) − 2ω2‖φω‖2

2
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for all t ≥ 0. Since β > 2, (H − ωQ)(u(0)) < d̃ω, and ωQ(u(0)) > ω2‖φω‖2
2 for all

λ > 1, by the standard concavity argument, we see that there exists T1 ∈ (0,∞)
such that limt→T1−0 Iα(t) = ∞. This is a contradiction. Hence, for all λ > 1, the
solution u(t) of (1.3)–(1.4) with u(0) = (λφω, λiωφω,−λ2|φω|2, 0) blows up in finite
time. This completes the proof.
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POISSON–NERNST–PLANCK SYSTEMS FOR ION CHANNELS
WITH PERMANENT CHARGES∗

BOB EISENBERG† AND WEISHI LIU‡

Abstract. Ionic channels and semiconductor devices use atomic scale structures to control
macroscopic flows from one reservoir to another. The one-dimensional steady-state Poisson-Nernst-
Planck (PNP) system is a useful representation of these devices, but experience shows that describing
the reservoirs as boundary conditions is difficult. We study the PNP system for two types of ions
with three regions of piecewise constant permanent charge, assuming the Debye number is large,
because the electric field is so strong compared to diffusion. Reservoirs are represented by the
outer regions with permanent charge zero. If the reciprocal of the Debye number is viewed as
a singular parameter, the PNP system can be treated as a singularly perturbed system that has
two limiting systems: inner and outer systems (termed fast and slow systems in geometric singular
perturbation theory). A complete set of integrals for the inner system is presented that provides
information for boundary and internal layers. Application of the exchange lemma from geometric
singular perturbation theory gives rise to the existence and (local) uniqueness of the solution of the
singular boundary value problem near each singular orbit. A set of simultaneous equations appears
in the construction of singular orbits. Multiple solutions of such equations in this or similar problems
might explain a variety of multiple valued phenomena seen in biological channels, for example, some
forms of gating, and might be involved in other more complex behaviors, for example, some kinds of
active transport.

Key words. singular perturbation, boundary layers, internal layers
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1. Introduction. Electrodiffusion, the diffusion and migration of electric charge,
plays a central role in a wide range of our technology and science [53, 11, 54, 14, 15, 67,
41]: semiconductor technology controls the migration and diffusion of quasi-particles
of charge in transistors and integrated circuits [75, 62, 71], chemical sciences deal
with charged molecules in water [11, 19, 8, 26, 9, 10], all of biology occurs in plasmas
of ions and charged organic molecules in water [3, 16, 33, 72]. It is no coincidence
that the physics of electrodiffusion is of such general importance: systems of moving
charge have a richness of behavior that can be sometimes easily controlled by bound-
ary conditions [67, 71], and the goal of technology (and much of physical science) is
to control systems to allow useful behavior.

Control is important to the medical and biological sciences as well. Medicine
seeks to control disease and help life. Evolution controls life by selecting those organ-
isms that successfully reproduce. Organisms control their internal environment and
external behavior to make reproduction possible, often using electrodiffusion for the
mechanism of control [72, 33]. Whatever the reason, it is a fact that nearly all biol-
ogy occurs in ultrafiltrates of blood called plasmas, in which ions move much as they
move in gaseous plasmas, or as quasi-particles move in semiconductors [21, 22, 23, 24].
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The pun between the medical and physical meanings of “plasma” is useful and
surprisingly precise.

In semiconductor and biological devices, macroscopic flows of charges are driven
through tiny (atomic scale) channels that link one macroscopic reservoir to another.
The reservoirs are macroscopic regions in which the concentration of charges is nearly
constant (because the dimensions of the reservoirs are macroscopic and so the total
number of charges is hardly changed by the flows) and electrical potentials are nearly
constant too. The electrical resistance of the macroscopic region is so small that
only a tiny electrical potential gradient is needed to drive significant flow of charge
in the reservoir. The electric field is strong throughout these systems and only a
few charges (ions) are needed to create significant electrical potentials, compared to
the enormous number of ions (1023, Avogadro’s number) needed to create chemical
potentials (and diffusion). That is why the Debye number is so large (see systems (1)
and (5)). Semiconductors and evolution take advantage of the strength of the electric
field. Engineers and biophysicists control flow by setting the electric potential at the
boundaries called terminals, contacts, or baths.

The flow through the atomic scale channel is affected by other variables besides the
applied boundary potentials, namely, by the shape of the pore in the channel (through
which permanently charged ions flow) and the distribution of permanent and induced
(i.e., polarization) charge on the wall of the channel as well as the mobility of ions
[49, 25, 17, 40, 32]. A precise description and understanding of flow on an atomic
scale is daunting. Enormous numbers of variables are needed to describe atomic scale
trajectories that have a fundamental time scale 10−16 sec and length scale 10−10 m
compared to biological function that is typically much slower than 10−5 sec. It is not
clear what to do with this number of variables and trajectories even if they could be
computed accurately or with known inaccuracies.

We are fortunate that description on the atomic time scale is unnecessary. What
is needed in fact is a reduced description that focuses attention on the properties that
control function in technology and biology. This reduced description needs to describe
channel structure on the atomic scale of distance, in all likelihood, but it needs to
describe flows and reservoirs only on the macroscopic scale.

Reduced descriptions of this type are familiar in engineering where they are called
device equations. Semiconductor manufacturers produce the device behaviors they
need by choosing particular structures of permanent charge, using as little atomic
structure as possible, so cost is minimized. Device behaviors are described by device
equations. It is device equations that we seek as we try to understand and control ion
channels (and molecular machines of biology in general).

Device equations are most useful when they predict complex behaviors realisti-
cally while using only a few parameters with fixed values (that do not need to be
changed to describe the complex behaviors). Fortunately, electrodiffusion allows rich
behavior with simple device equations and a fixed set of parameters. Remarkably, the
diverse (technologically important) behavior of transistors can be described by sim-
ple conservation laws and constitutive relations, the Poisson–Nernst–Planck (PNP)
equations using fixed values of parameters. A single transistor can behave as many
different devices, each with its own device equation, and this rich behavior can be
described quite well by the PNP equations with a fixed set of parameters. Different
values of the boundary potentials (i.e., power supply voltages) move the solution of
the equations into different domains, each with its own device equation.

The PNP system of equations has been analyzed mathematically to some extent,
but the equations have been simulated and computed to a much larger extent [18, 6,
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16, 38, 49, 4, 17, 66, 36, 37, 40, 2, 20, 31, 55, 56, 1, 13, 70, 65, 29, 30, 43, 7]. Computa-
tional and experimental experience with a variety of PNP-like systems shows that the
existing mathematical analysis is unsatisfactory. It is clear from these simulations that
macroscopic reservoirs must be included in the mathematical formulation to describe
the actual behavior of channels (or useful transistors) [60, 32, 31, 12, 59, 57, 58, 34, 29].
Macroscopic boundary conditions that describe such reservoirs introduce boundary
layers of concentration and charge. If those boundary layers reach into the part of the
device performing atomic control, they dramatically affect its behavior. Boundary
layers of charge are particularly likely to create artifacts over long distances because
the electric field spreads a long way. Indeed, transistors, channels, transporters, and
receptors are actually built so that the contacts, electrodes, and control systems that
maintain the reservoirs are quite distant and distinct from the channel.

In this paper, we construct and analyze the minimal model that includes reservoirs
and channels and start the study of its mathematical properties. We begin with
simple setups and conditions using geometric singular perturbation theory to extract
powerful results. In particular, we consider three regions, two of which are reservoirs,
and one of which is the narrow channel (with permanent charge, i.e., doping). And
we consider only two species of current carriers. Nonetheless, we find quite complex
behavior showing clearly that the reservoirs are inextricably linked to the channel
and cannot be replaced by simple boundary conditions. We find general properties of
the system and hints that somewhat more complicated systems (with several regions
of permanent charge of different density and/or sign) carrying multiple ionic species
(with different valence, i.e., with different permanent charge on each type of ion) may
have quite rich behavior. Such rich behavior is apparent in biology where channels
switch (“gate”) between different values of current (one value nearly zero) and where
transporters couple the flow of different types of ions in an extremely important, quite
robust, but nearly unknown way.

The rest of the paper is organized as follows. In section 2, we begin with a
description of a three-dimensional PNP system as the model for ion flow through an
ion channel and discuss a one-dimensional reduction as the maximal radius of cross-
sections of the channel approaching zero. We then identify the problem to be studied
in this paper: steady-states of boundary value problems of the one-dimensional PNP
system. In section 3, we cast our problem in the language of geometric singular
perturbation theory. By introducing new dependent variables, we write the PNP
system as a singularly perturbed system of first order equations. Making use of
the inner and outer limiting systems, we then construct singular orbits for the PNP
boundary value problem. In section 4, we apply geometric singular perturbation
theory to show that, for small ε > 0, there is a true solution shadowing each singular
orbit. We conclude the paper by a general remark in section 5.

2. Three-dimensional model PNP system and a one-dimensional re-
duction. We now briefly describe the model PNP system of equations. As discussed
above, the key features of an ion channel are the shape of its pore and the distribution
of the permanent charge along its interior wall. As a first approximation, we consider
a special ion channel modeled by

Ωμ = {(x, y, z) : 0 < x < 1, y2 + z2 < g2(x, μ)},

where g is a smooth function satisfying

g(x, 0) = 0 and g0(x) =
∂g

∂μ
(x, 0) > 0 for x ∈ [0, 1].
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The small parameter μ measures the maximal radius of cross-sections of the channel.
The boundary ∂Ωμ of Ωμ consists of three portions:

Lμ = {(x, y, z) ∈ ∂Ωμ : x = 0},
Rμ = {(x, y, z) ∈ ∂Ωμ : x = 1},
Mμ = {(x, y, z) ∈ ∂Ωμ : y2 + z2 = g2(x, μ)}.

Here, Lμ and Rμ are viewed as the two ends of the reservoirs and Mμ the wall of the
channel and the reservoirs.

Then the model employed for flow through the channel is the PNP system (see [5]
for a derivation from Boltzmann transport equation; see [66] for a derivation including
correlations from coupled Langevin–Poisson equations; see [11, p. 773, eq. 26.64] for
the classical description of the system at thermodynamic equilibrium, when all fluxes
are zero):

Δφ = −λ

(
n∑

i=1

αici + Q

)
,

(1)
∂ci
∂t

= Di∇ · (∇ci + αici∇φ),

where φ is the electric potential; ci’s are the concentrations of the n species, and αi’s
are the valences, i.e., charge on one ion; Di’s are the diffusion constants; λ is the
Debye number; and Q is the distribution of the permanent charge along the interior
wall of the channel.

As mentioned in the introduction, the concentrations of the ions and the electrical
potential in the reservoirs are nearly constants, and the wall of the channel is assumed
to be perfectly insulated. We thus assume the following boundary conditions:

φ|Lμ = ν0, φ|Rμ
= 0, ci|Lμ

= Li, ci|Rμ
= Ri,

(2)
∂φ

∂n

∣∣∣
Mμ

=
∂ck
∂n

∣∣∣
Mμ

= 0,

where ν0, Li, Ri are constants and n is the outward unit normal vector to Mμ.
We remark that, typically in the reservoirs, one imposes electroneutrality condi-

tions: αL1 − βL2 = 0 and αR1 − βR2 = 0. In this case, there will be no boundary
layers at the two ends although there will be internal layers where the permanent
charge Q jumps. For mathematical interest, we use the slightly more general bound-
ary conditions.

In [52], for n = 2 with Q = 0, we obtained the following limiting one-dimensional
PNP system as μ → 0:

1

g2
0

∂

∂x

(
g2
0

∂

∂x
φ

)
= −λ(α1c1 + α2c2),

∂c1
∂t

=
D1

g2
0

∂

∂x

(
g2
0

∂

∂x
c1 + α1c1g

2
0

∂

∂x
φ

)
,(3)

∂c2
∂t

=
D2

g2
0

∂

∂x

(
g2
0

∂

∂x
c2 + α2c2g

2
0

∂

∂x
φ

)

on x ∈ (0, 1) with the boundary conditions

φ(t, 0) = ν0, φ(t, 1) = 0, ci(t, 0) = Li, ci(t, 1) = Ri.(4)
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In particular, we showed that the attractors Aμ of (1) and (2) are upper semi-
continuous at μ = 0 to the attractor A0 of (3) and (4). One-dimensional PNP systems
of the form (3) also arise in treatments based on the density functional theory of sta-
tistical mechanics [31]. The motivation for such a mathematical treatment is that,
first of all, the one-dimensional system is much simpler; second, if the one-dimensional
limiting system is structurally stable (i.e., if the global dynamics is robust), then the
dynamics for the system on the three-dimensional domain with small μ is essentially
the same as that of the limiting one-dimensional system. There is a well-established
framework for verification of structural stability although it is by no means trivial.
A key step is to understand the behavior of the steady-state of the limiting one-
dimensional system.

In light of the above result and discussion, we will then study steady-states of the
one-dimensional PNP system for two species of current carriers with valences α > 0
and −β < 0, including now a permanent charge:

ε2h−1(x)
d

dx

(
h(x)

d

dx
φ

)
= −(αc1 − βc2 + Q(x)),

dJi
dx

= 0,

h(x)
dc1
dx

+ αc1h(x)
dφ

dx
= −J1,(5)

h(x)
dc2
dx

− βc2h(x)
dφ

dx
= −J2,

with the boundary conditions

φ(0) = ν0, ci(0) = Li; φ(1) = 0, ci(1) = Ri.(6)

Here Ji is the total flux of the ith ion, Q(x) is the permanent charge along the channel,
h(x) = g2

0(x), and ε is related to λ via λ = ε−2.
Many mathematical papers have been written about the existence and uniqueness

of solutions of the boundary value problems, and numerical algorithms have been
developed to approximate solutions even for high-dimensional systems (see, e.g., [39,
42, 61, 44]). Under the assumption that ε � 1, the problem can be viewed as a
singular perturbation one. In particular, for α = β = 1, h(x) = 1, and Q(x) = 0, the
boundary value problem for the one-dimensional PNP system (5) was studied in [7]
using the method of matched asymptotic expansions as well as numerical simulations,
which provide a good quantitative understanding of the problem with one region
without permanent charge. In [51], assuming ε � 1 but for general α, β, h(x) = 1
and Q(x) = 0, the boundary value problem was treated using geometric theory for
singularly perturbed problems (see, e.g., [27, 45, 47, 50]).

We use the geometric framework in paper [51] to investigate PNP systems with
multiple regions of permanent charge and with multiple ions. A major difference
of the model studied in this paper from those previously studied is the inclusion of
multiple regions of permanent charge. The focus will be on the simple case of two
ions and two reservoirs (i.e., two regions without permanent charge). The idea is to
construct singular orbits for the boundary value problem and apply geometric singular
perturbation theory to obtain, for ε > 0 small, solutions near singular orbits. Issues of
the existence and multiplicity of singular orbits are reduced to the properties of a set
of nonlinear algebraic equations (43). To our surprise, for the simple case we study,
multiple solutions for the boundary value problem are shown to exist. This contrasts
to what was suspected in some early works (see, for example, [63, 64]) which expressed
the (entirely reasonable) opinion that multiple solutions cannot occur for the simple
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structure of permanent charge considered here. The set of equations (43) governs the
multiplicity of solutions to the boundary value problem. We will thoroughly examine
the set of algebraic equations in the future.

3. A dynamical system framework and a construction of singular or-
bits. We will rewrite the PNP system into a standard form for singularly perturbed
systems and convert the boundary value problem to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and
τ = x. System (5) becomes

εφ̇ = u, εu̇ = βc2 − αc1 −Q(τ) − ε
h′(τ)

h(τ)
u,

εċ1 = −αc1u− εh−1(τ)J1,
(7)

εċ2 = βc2u− εh−1(τ)J2,

J̇1 = J̇2 = 0, τ̇ = 1.

We will treat system (7) as a dynamical system of phase space R7 with state variables
(φ, u, c1, c2, J1, J2, τ). The introduction of the extra state variable τ = x and the τ -
equation seems to add complications to the problem, but this has a great advantage
that we will explain shortly.

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to an
equivalent system

φ′ = u, u′ = βc2 − αc1 −Q(τ) − ε
h′(τ)

h(τ)
u,

c′1 = −αc1u− εh−1(τ)J1,
(8)

c′2 = βc2u− εh−1(τ)J2,

J ′
1 = J ′

2 = 0, τ ′ = ε,

where prime denotes the derivative with respect to the variable ξ.

For ε > 0, systems (7) and (8) have exactly the same phase portrait. But their
limits at ε = 0 are different and, very often, the two limiting systems provide com-
plementary information on state variables. Therefore, the main task of singularly
perturbed problems is to patch the limiting information together to form a solution
for the entire ε > 0 system. In terms of asymptotic expansions, system (7) and its
limit at ε = 0 will be used to study outer or regular layer solutions. We will call this
system the outer system and its limit at ε = 0 the outer limit system. System (8) and
its limit at ε = 0 will be used to study inner or singular layer solutions, and we call
the system the inner system and its limit system at ε = 0 the inner limit system. By
a singular orbit, we mean a continuous and piecewise smooth curve in R7 that is a
union of finitely many orbits of the outer limit system or inner limit system. In the
theory of geometric singular perturbations, viewing the independent variables x and
ξ as slow and fast time variables, the outer system is called the slow system, the inner
system is called the fast system, and a singular orbit is a union of slow and fast orbits.

Let BL and BR be the subsets of the phase space R7 defined by

BL = {(ν0, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},(9)

BR = {(0, u, R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}.(10)
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Then the boundary value problem is equivalent to a connecting problem, namely,
finding a solution of (7) or (8) from BL to BR. To see this, suppose that (φ, u, c1, c2,
J1, J2, τ) is an orbit starting at a point on BL and ending at a point on BR. Due to
the definitions of BL and BR, the starting point automatically has x = τ = 0 with the
assigned values for φ, c1, and c2 at x = 0, and the ending point has x = τ = 1 with the
assigned values for φ, c1, and c2 at x = 1. This solution (φ, u, c1, c2, J1, J2, τ) satisfies
the boundary condition automatically. Most importantly, when we arbitrarily rescale
the independent variable x, the phase portrait will remain the same. Therefore, in
searching for a solution from BL to BR, we can apply any rescaling of the independent
variable x, even a rescaling that depends on each individual solution. (We will use
a rescaling that is different for each solution when we derive the system (34) from
system (33).) This is the significant advantage of introducing τ = x and τ̇ = 1
promised earlier. The idea of converting a boundary value problem to a connecting
one is now rather standard in applied dynamical systems.

In this paper, we will consider the case where the outer regions are reservoirs and
the permanent charge is constant along the channel; that is,

Q(x) =

⎧⎨
⎩

0 for 0 < x < a,
Q for a < x < b,
0 for b < x < 1,

where Q is a constant. The intervals [0, a] and [b, 1] are the reservoirs, and the interval
[a, b] is the channel.

We will be interested in solutions of the connecting problem for system (7) or
(8) from BL to BR defined in (9) and (10). In view of the jump of Q at x = a
and x = b, the best one can hope is that the solution is continuous and piecewise
differentiable. We therefore require our solutions to be continuous and piecewise
differentiable. The continuity of u implies that φ, c1, and c2 are differentiable. Our
requirement is motivated by two considerations: (i) the dissipation present in the full
PNP system (that includes time evolution) improves the regularity of solutions; in
particular, the attractor contains regular solutions. Steady-state solutions, being in
the attractor, should have the regularity imposed; (ii) if the requirement is relaxed,
say, only requiring φ, c1, c2 to be piecewise differentiable, then one can preassign
any value for (φ, c1, c2) at any partition points 0 < x1 < x2 < · · · < xk < 1 and
construct solutions over each subinterval and piece them together to create a solution
over [0, 1] with the preassigned values for (φ, c1, c2) at the partition points. (This
assertion follows from the work in [7, 51].) It is clear that the only relevant solutions
are those in which φ, c1, c2 are differentiable.

Our construction of a solution involves two main steps: the first step is to con-
struct a singular orbit to the connecting problem, and the second step is to apply
geometric singular perturbation theory to show that there is a unique solution near
the singular orbit for ε > 0 and small. Here we will give a detailed explanation for
the first step and leave the explanation of the second step to section 4.

To construct a singular orbit, we first construct a singular orbit on each of the
subinterval [0, a], [a, b], and [b, 1]. The reason to split the interval [0, 1] into three
subintervals is simply because the permanent charge Q(x) has jumps at x = a and
x = b. To be able to construct a singular orbit on each subinterval, we need to
preassign the values of φ, c1, and c2 at x = a and x = b. Suppose, for the moment,
that φ = φa, c1 = ca1 , and c2 = ca2 at x = a, and that φ = φb, c1 = cb1, and c2 = cb2



PNP SYSTEMS WITH PERMANENT CHARGES 1939

at x = b. Those six unknown values

φa, ca1 , c
a
2 ; φb, cb1, c

b
2(11)

will be determined along our construction of a singular orbit on the whole interval
[0, 1].

1. On the left subinterval [0, a] where Q = 0 or there is no permanent charge, we
construct a singular orbit for the boundary value problem with (φ, c1, c2, τ)
being

(ν0, L1, L2, 0) at x = 0 and (φa, ca1 , c
a
2 , a) at x = a.

The orbit consists of two boundary layers Γ0
l and Γa

l and one regular layer Λl.
In particular, given (φa, ca1 , c

a
2), the flux densities J l

1, J
l
2 and the value ul(a)

are uniquely determined (see section 3.1).
2. On the middle subinterval [a, b], we construct a singular orbit for the boundary

value problem with (φ, c1, c2, τ) being

(φa, ca1 , c
a
2 , a) at x = a and (φb, cb1, c

b
2, b) at x = b.

The orbit consists of two boundary layers Γa
m and Γb

m and one regular layer
Λm. In particular, given (φa, ca1 , c

a
2) and (φb, cb1, c

b
2), the flux densities Jm

1 , Jm
2

and the values um(a) and um(b) are uniquely determined (see section 3.2).
3. On the right subinterval [b, 1], we construct a singular orbit for the boundary

value problem with (φ, c1, c2, τ) being

(φb, cb1, c
b
2, b) at x = b and (0, R1, R2, 1) at x = 1.

The orbit again consists of two boundary layers Γb
r and Γ1

r and one regular
layer Λr. In particular, given (φb, cb1, c

b
2), the flux densities Jr

1 , Jr
2 and the

value ur(b) are uniquely determined (see section 3.3).
4. Finally, for a singular orbit on the whole interval [0, 1], we require that

J l
1 = Jm

1 = Jr
1 , J l

2 = Jm
2 = Jr

2 , ul(a) = um(a), um(b) = ur(b).

This consists of six conditions. The number of conditions is exactly the same
as the number of unknown values in (11) (see section 3.4).
The qualitative properties of these six equations and conditions are of great
importance. It turns out that they can have multiple solutions. Different
solutions yield different amounts of current for otherwise identical conditions,
suggesting that each level might correspond to a different functional state of
a transporter, or a different gating state of a channel. Indeed, it seems likely
that more complex systems than those considered here would be described
by similar systems of equations with multiple solutions. Interesting and very
important properties of channels and transporters—each corresponding to a
quite distinct device with a quite distinct input-output relation and device
equation—might arise this way in systems including Ca2+ or in systems with
multiple regions of nonzero permanent charge, or in systems with branched,
Y-shaped, or adjacent interacting channels.

Remark 3.1. We call Γa
l , Γa

m, Γb
m, and Γb

r boundary layers because, relative to
each subinterval, they are boundary layers. But, relative to the whole interval [0, 1],
they should be termed internal layers.
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3.1. Singular orbit on [0, a] where Q(x) = 0. We consider the case with
zero permanent charge on the subinterval [0, a] because [0, a] is viewed as one of the
reservoirs. The nonzero Q over the subinterval [a, b] will affect the solution on [0, a]
and on [b, 1]. This effect will show up when we impose matching conditions on φa, ca1 ,
and ca2 to construct the singular orbit over the whole interval [0, 1].

Following the discussion above, we set φ(a) = φa, c1(a) = ca1 , and c2(a) = ca2 ,
where φa, cai are unknown values to be determined later on. Now let

Ba = {(φa, u, ca1 , c
a
2 , J1, J2, a) ∈ R7 : u, Ji arbitrary}.

In this part, we will construct a singular orbit that connects BL to Ba. Two boundary
layers will be constructed in section 2.1.1 followed by the construction of the regular
layer in section 2.1.2. The permanent charge Q is zero in both constructions.

If we set ε = 0 in system (7) with Q(x) = 0, we get the outer limit system and,
in particular, u = 0 and αc1 = βc2. The set

Zl = {u = 0, αc1 = βc2}

will be called the outer manifold. In the theory of geometric singular perturbations,
Zl is called the slow manifold because if x and ξ are viewed as time variables, the
evolution on Zl is characterized by the time variable ξ, which is slow.

Remark 3.2. In systems (7) and (8), there appear to be four fast equations and
three slow equations. Typically, one would expect a three-dimensional slow manifold.
But, in this specific problem, the slow manifold is five-dimensional. This fact indicates
some degeneracy of the slow flow, which is reflected in sections 3.1.2 and 3.2.2. The
exchange lemma applied in the proof of Theorem 4.1 in section 4 is still valid. In fact,
it applies to singular perturbation problems of more general forms than standard ones
(see, e.g., [46, p. 562, Remark 1]).

The geometric method for a construction of singular orbits on each of the subin-
tervals [0, a], [a, b], and [b, 1] is the same. Let us explain the approach for constructing
the singular orbit that connects BL to Ba on [0, a] (see Figure 1). Generally, the outer
manifold Zl will not intersect BL and Ba. Since every outer or regular layer orbit lies
entirely on the outer manifold Zl, it will not intersect BL and Ba; that is, it cannot
satisfy the boundary conditions. Two boundary or inner layers need to be introduced
to connect boundaries BL and Ba with the outer layer solution on Zl. These bound-
ary layers should satisfy the inner limit system. The boundary layer orbit Γ0

l at x = 0
will connect BL to Zl. It must lie on the stable manifold W s(Zl); that is, it belongs
to the intersection ML ∩W s(Zl), where ML is the collection of orbits starting from
points on BL. Similarly, the boundary layer Γa

l at x = a will connect Zl to Ba and
it must lie on the unstable manifold Wu(Zl); that is, it belongs to the intersection
Ma

l ∩Wu(Zl), where Ma
l is the collection of orbits starting from points on Ba

l .
The first step in the construction examines the stability of the outer manifold

Zl by linearizing along Zl. (Zl is the set of equilibria of the inner limit system.)
It turns out that the outer manifold Zl has a stable manifold W s(Zl) and an un-
stable manifold Wu(Zl). The next step is to check whether W s(Zl) intersects BL

and whether Wu(Zl) intersects Ba. This requires concrete knowledge of the global
behavior of W s(Zl) and Wu(Zl), and the information from the linearization is not
enough. Neither is abstract dynamical systems theory (since the inner limit system
is nonlinear). Luckily, we discovered a complete set of integrals for the inner limit
system (see Proposition 3.2). The set of integrals reflects the intrinsic mathematical
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Fig. 1. Schematic picture of the singular orbit (solid curves) on [0, a]: one left boundary layer
Γ0
l , one regular layer Λl, and one right boundary layer Γa

l .

structure of this particular electrodiffusion system, the channel problem. This math-
ematical special structure implies particular specific physical and chemical properties
of the ion channel. It is irresistible, albeit speculative, to suspect that the special
mathematical structure produces biologically important properties of the channel. In
that sense, the mathematical structure of the problem provides one possible “device
equation” for the channel system.

It is this set of integrals in Proposition 3.2 that allows us to give a complete,
global description of the inner limit dynamics; in particular, we are able to establish
the required intersections ML∩W s(Zl) and Ma

l ∩Wu(Zl) and are also able to identify
the so-called ω-limit set ω(ML ∩ W s(Zl)) and the α-limit set α(Ma

l ∩ Wu(Zl)) of
the intersections. The intersections give the set of candidates for the boundary layers
(consisting of two parameter families of inner orbits parameterized by J1 and J2). The
foot points ω(ML ∩W s(Zl)) and α(Ma

l ∩Wu(Zl)) (each parameterized by J1 and J2

also) on Zl provide the (reduced) boundary conditions for the outer solutions. It turns
out there is only one outer orbit Λl that connects ω(ML∩W s(Zl)) to α(Ma

l ∩Wu(Zl))
and also determines the pair (J1, J2) uniquely. The desired singular orbit connecting
BL to Ba on [0, a] is formed by this outer orbit Λl together with the two boundary
layers Γ0

l and Γa
l that are uniquely determined by the pair (J1, J2).

We remind the reader that the singular orbit to be constructed on this subinter-
val with zero permanent charge will not be complete until the unknowns in (11) are
determined through matching conditions implicitly posed by the permanent charge Q
on the whole interval [0, 1], including the channel region where the permanent charge
is not zero. The entire system is coupled and must be solved together, suggesting the
source of difficulties with earlier treatments, which tried to replace the reservoirs with
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boundary conditions. The importance of the coupling of different intervals suggests
that the shapes of antechambers commonly found in biological channels may be im-
portant to their function. It is interesting that synthetic nanochannels acquire some
properties of biological channels when they are built with antechambers of specific
shape [68, 69].

3.1.1. Inner dynamics on [0, a]: Boundary layers or inner solutions.
We start with the examination of boundary layers on the interval [0, a] where Q = 0.
These will be studied using the inner limit system obtained by setting ε = 0 in (8):

φ′ = u, u′ = βc2 − αc1,

c′1 = −αc1u,
(12)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.

This inner limit system describes what a chemist would call (thermodynamic) equilib-
rium. The reader should be warned that the word “equilibrium” is used widely, albeit
informally, in computational electronics to describe a system not at thermodynamic
equilibrium, namely, a system in which the distribution of velocities is a displaced
Maxwellian, with displacement given by the flux (in appropriate units). Only when
the flux of every species is zero is the “equilibrium” of computational electronics a
thermodynamic equilibrium.

The set of equilibria of (12), that is, the set of points at which the vector field
of (12) vanishes, is precisely Zl = {u = 0, αc1 = βc2}. The linearization at points
(φ, 0, c1, c2, J1, J2, τ) ∈ Zl is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 −α β 0 0 0
0 −αc1 0 0 0 0 0
0 βc2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This linearization is similar to the Green–Kubo expansion used by physical
chemists to describe a nonequilibrium system close to equilibrium [11, 48, 74, 76].
Of course, such a linearization is useful only around some specific (operating) point;
here the thermodynamic operating point with zero fluxes. To study nonlinear behav-
ior far from the thermodynamic operating point, one must do a linearization around
other points, at which fluxes are not zero. Such analyses have not been attempted,
as far as we know for the PNP system, or in physical chemistry in general, perhaps
because the locations and properties of operating points other than the thermody-
namic one are hard to specify simply. Linearization around general nonequilibrium
operating points is a crucial method in electrical engineering and has been used to
design nonlinear circuits since the invention of electron valves—i.e., vacuum tubes—in
the 1930s.

The linearized system has five zero eigenvalues whose generalized eigenspace is
the tangent space of the five-dimensional outer manifold Zl of equilibria. The two
other eigenvalues are ±

√
(α + β)αc1 �= 0 whose eigenvectors are not tangent to Zl.
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In this sense, Zl is called normally hyperbolic. The theory of normally hyperbolic
invariant manifolds (e.g., [27]) states that

(i) there is a six-dimensional stable manifold W s(Zl) of Zl that consists of points
approaching Zl in forward time;

(ii) there is a six-dimensional unstable manifold Wu(Zl) of Zl that consists of
points approaching Zl in backward time;

(iii) Zl as well as W s(Zl) and Wu(Zl) persists for ε > 0 small; that is, for ε > 0
small, there exist invariant manifolds Zε

l , W
s(Zε

l ), and Wu(Zε
l ), close to their

counterparts.
What this result suggests is that, for a singular orbit connecting BL to Ba, the
boundary layer at x = 0 must lie in ML ∩W s(Zl) and the boundary layer at x = a
must lie in Ma

l ∩ Wu(Zl), where ML is the collection of orbits from BL in forward
time under the flow of system (12) and Ma

l is the collection of orbits from Ba in
backward time under the flow of system (12). This is precisely what we will show.

Definition 3.1. A smooth function H : Rn → R is called an integral of system
d
dtz = f(z), z ∈ Rn, if d

dt [H(z(t))] = 0 whenever z(t) is a solution.
For a system on Rn, if there are (n− 1) (independent) integrals, then any orbits

can be theoretically determined by the intersections of (n−1) level sets of the integrals.
Proposition 3.2. System (12) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2,

H4 = J1, H5 = J2, H6 = τ.

Proof. The proof can be verified directly.
The reader seeking physical insight is reminded that α is the valence (i.e., charge)

of the ions with number density c1; (−β) is the charge of the ions with number density
c2, u = εφ̇, τ = x; and ε is the Debye length.

These integrals allow one to completely understand the boundary layers (at x =
0, a) and characterize landing points of boundary layers on the outer manifold Zl. The
information on landing points is crucial because it provides the boundary conditions
that allow the regular layer to connect boundary layers.

Corollary 3.3. (i) Let φ = φL be the unique solution of

αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0, that is, φL = ν0 −
1

α + β
ln

βL2

αL1
,

and let

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β .

The stable manifold W s(Zl) intersects BL transversally at points with

u0 = [sgn(φL − ν0)]
√

2(L1 + L2) − 2(L1eα(ν0−φL) + L2e−β(ν0−φL))

= [sgn(αL1 − βL2)]

√
2

(
L1 + L2 −

α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β

)
(13)

and arbitrary Ji’s, where sgn is the sign function (see Figure 1).
Let φ = φa,l be the unique solution of

αca1e
α(φa−φ) − βca2e

−β(φa−φ) = 0, that is, φa,l = φa − 1

α + β
ln

βca2
αca1

,
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and let

ca,l1 =
1

α
(αca1)

β
α+β (βca2)

α
α+β , ca,l2 =

1

β
(αca1)

β
α+β (βca2)

α
α+β .

The unstable manifold Wu(Zl) intersects Ba transversally at points with

ul(a) = [sgn(φa − φa,l)]
√

2(ca1 + ca2) − 2(ca1e
α(φa−φa,l) + ca2e

−β(φa−φa,l))

= [sgn(βca2 − αca1)]

√
2

(
ca1 + ca2 − α + β

αβ
(αca1)

β
α+β (βca2)

α
α+β

)
(14)

and arbitrary Ji’s (see Figure 1).
(ii) Potential boundary layers Γ0

l at x = 0 are determined up to (J1, J2) as follows:
the φ-component satisfies the Hamiltonian system

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0,

together with φ(0) = ν0 and φ(ξ) → φL as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = L1e
α(ν0−φ(ξ)), c2(ξ) = L2e

−β(ν0−φ(ξ)).

Similarly, potential boundary layers Γa
l at x = a are determined in the following

way: the φ-component satisfies the Hamiltonian system

φ′′ + αca1e
α(φa−φ) − βca2e

−β(φa−φ) = 0,

together with φ(0) = φa and φ(ξ) → φa,l as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = ca1e
α(φa−φ(ξ)), c2(ξ) = ca2e

−β(φa−φ(ξ)).

(iii) Let NL = ML ∩W s(Zl) and Na
l = Ma

l ∩Wu(Zl). Then,

ω(NL) =
{(

φL, 0, cL1 , c
L
2 , J1, J2, 0

)
: all J1, J2

}
,

α(Na
l ) =

{(
φa,l, 0, ca,l1 , ca,l2 , J1, J2, a

)
: all J1, J2

}
,

where φL, cL1 , cL2 , φa,l, ca,l1 , and ca,l2 are given explicitly as in part (i).
Proof. We provide a proof for the first part that is related to the boundary layer

on the left in each statement.
Let z(ξ) = (φ(ξ), u(ξ), c1(ξ), c2(ξ), J1(ξ), J2(ξ), τ(ξ)) be a solution of system (12)

with z(0) ∈ BL and z(ξ) ∈ W s(Zl). Then, Ji(ξ) = Ji, τ(ξ) = 0 for all ξ, z(ξ) →
z(∞) = (φL, 0, cL1 , c

L
2 , J1, J2, 0) ∈ Zl for some φL and cLi with αcL1 = βcL2 , and

φ(0) = ν0, c1(0) = L1, c2(0) = L2.

Using the integrals H1 and H2, we have

eαφc1 = eαν0L1, e−βφc2 = e−βν0L2.

Therefore,

c1 = L1e
α(ν0−φ), c2 = L2e

−β(ν0−φ).(15)
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φ
φ

φ = u

u

u

0

0

’

ν0 0ν

sgn(     )=sgn(          )u0 φ −ν0

L

L

W  (     )φLuW  (     )φLs

Fig. 2. The stable manifold W s(φL) of the equilibrium (φL, 0) is the solid curve, and the un-
stable manifold Wu(φL) is the dashed curve. The left branch of W s(φL) has positive u-coordinates,
and the right branch has negative u-coordinates; e.g., if (φ, u) ∈ W s(φL), then sign[u] = sign[φL−φ].

Taking the limit as ξ → ∞, we have

cL1 = L1e
α(ν0−φL), cL2 = L2e

−β(ν0−φL).

In view of the relation αcL1 = βcL2 , one has

αL1e
α(ν0−φL) = βL2e

−β(ν0−φL) or φL = ν0 −
1

α + β
ln

βL2

αL1
.

Hence,

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β .

Since φ′′ = βc2 − αc1, (15) implies that φ satisfies the Hamiltonian equation

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0

with φ(0) = ν0 and φ(ξ) → φL as ξ → ∞. The Hamiltonian is

H(φ, u) =
u2

2
− L1e

α(ν0−φ) + L2e
−β(ν0−φ).

In terms of φ and u = φ′, the equation becomes

φ′ = u, u′ = βL2e
−β(ν0−φ) − αL1e

α(ν0−φ).(16)

The Hamiltonian system has a unique equilibrium (φL, 0) with φL given above. If
W s(φL) is the stable manifold of (φL, 0), then it is the restriction of W s(Zl) to the
(φ, u)-plane. In order to have (ν0, u0) ∈ W s(φL) (see Figure 2), H(φL, 0) = H(ν0, u0)
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and one has the expression for u0 in (13). To determine the sign of u0, note that
the left branch of the stable manifold W s(φL) lies above the φ-axis and hence that
ν0 < φL implies u0 > 0; similarly, if ν0 > φL, then u0 < 0.

Remark 3.3. We claim that the quantities under the square root in the displays
(13) and (14) are nonnegative. In fact, quite interestingly, the nonnegativeness is
equivalent to Young’s inequality

ap

p
+

bq

q
≥ ab for a, b ≥ 0,

1

p
+

1

q
= 1; “ = ” holds if and only if ap = bq.

Take (13) for example. If we set

a = (αL1)
β

α+β , b = (βL2)
α

α+β , p =
α + β

β
, q =

α + β

α
,

then

L1 + L2 −
α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β =

α + β

αβ

(
ap

p
+

bq

q
− ab

)
.

Thus, the quantity is always nonnegative and it is zero if and only if αL1 = βL2.

3.1.2. Outer dynamics on [0, a]: Regular layers or outer solutions. We
now construct regular layers or outer solutions on Zl that connect ω(NL) to α(Na

l ).
We find that the outer flow on Zl is itself a singular perturbation problem. To see
this, we zoom in on an O(ε)-neighborhood of Zl by blowing up the u and αc1 − βc2
coordinates; that is, we make a scaling u = εp and βc2−αc1 = εq. System (7) becomes

φ̇ = p, εṗ = q − ε
h′(τ)

h(τ)
p,

(17)
εq̇ = (α(α + β)c1 + εβq)p− h−1(τ)(βJ2 − αJ1),

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1,

which is indeed a singular perturbation problem due to the factor ε in front of ṗ and
q̇. Its limit, as ε → 0, is

φ̇ = p, 0 = q,

0 = α(α + β)c1p− h−1(τ)(βJ2 − αJ1),
(18)

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1.

For this system, the outer manifold is

Sl =

{
p =

βJ2 − αJ1

α(α + β)h(τ)c1
, q = 0

}
.

The outer limit dynamics on Sl is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
,

ċ1 = − β(J1 + J2)

(α + β)h(τ)
,(19)

J̇i = 0, τ̇ = 1.
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Remark 3.4. Following the suggestion of one of the referees, we give a sketch of
an alternative and more standard way of deriving the outer limit dynamics (19).

Introduce q̂ = βc2 − αc1. In terms of the variables (φ, u, q̂, c1, Ji, τ), system (8)
(with Q = 0) becomes

φ′ = u, u′ = q̂ − ε
h′(τ)

h(τ)
u,

q̂′ = (α(α + β)c1 + βq̂)u− εh−1(τ)(βJ2 − αJ1),
(20)

c′1 = −αc1u− εh−1(τ)J1,

J ′
i = 0, τ ′ = ε.

For ε = 0, the set {u = q̂ = 0} is a normally hyperbolic invariant manifold consisting
of equilibria. By Fenichel’s theory, the manifold persists for ε > 0 small and is given
by

u = εA(φ, c1, Ji, τ) + O(ε2), q̂ = εB(φ, c1, Ji, τ) + O(ε2).

Using the invariance of the manifold and substituting the above expressions for u and
q̂ into system (20), one obtains

B = O(ε), A =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε).

System (20) on the perturbed invariant manifold can be obtained by substituting the
expression of u and q̂ with the approximations of A and B above. It reads as follows:

φ′ = ε
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε2),

c′1 = −ε
β(J1 + J2)

(α + β)h(τ)
+ O(ε2),(21)

J ′
i = 0, τ ′ = ε.

The corresponding outer dynamics is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε),

ċ1 = − β(J1 + J2)

(α + β)h(τ)
+ O(ε),(22)

J̇i = 0, τ̇ = 1.

Its limiting dynamics at ε = 0 is exactly system (19).
The outer limit dynamics (33) in section 3.2.2 can also be derived this way.
The solution of (19) with the initial condition (φL, cL1 , J1, J2, 0) that corresponds

to the point (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) is

τ(x) = x, c1(x) = cL1 − β(J1 + J2)

α + β

∫ x

0

h−1(s)ds,

φ(x) = φL +
βJ2 − αJ1

α(α + β)

∫ x

0

h−1(s)c−1
1 (s)ds

= φL − βJ2 − αJ1

αβ(J1 + J2)

∫ x

0

ċ1(s)

c1(s)
ds ((19) is used here)

= φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)

cL1
.
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Recall that we are looking for solutions that belong to α(Na
l ) when τ = a. Evaluating

the solution at τ = x = a, we have

ca,l1 = cL1 − β(J1 + J2)

α + β

∫ a

0

h−1(s)ds,

φa,l = φL − βJ2 − αJ1

αβ(J1 + J2)
ln

ca,l1

cL1
;

in particular,

J1 =
(cL1 − ca,l1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL1 − ln ca,l1

)
,

(23)

J2 =
(cL2 − ca,l2 )∫ a

0
h−1(s)ds

(
1 − β(φL − φa,l)

ln cL2 − ln ca,l2

)
.

We have used the relations αcL1 = βcL2 and αca,l1 = βca,l2 to get this more symmetric
form for J2.

The regular layer Λl is given by

φ(x) = φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)

cL1
,

u(x) = 0, αc1(x) = βc2(x),
(24)

c1(x) = cL1 − β(J1 + J2)

α + β

∫ x

0

h−1(s)ds,

τ(x) = x

with J1 and J2 determined by (23).

To summarize, for given values (φa, ca1 , c
a
2), we have constructed a unique sin-

gular orbit on the left subinterval [0, a] that connects BL to Ba. It consists of
two boundary layer orbits Γ0

l from the point (ν0, u0, L1, L2, J1, J2, 0) ∈ BL to the

point (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) ⊂ Zl and Γa

l from the point (φa,l, 0, ca,l1 , ca,l2 ,
J1, J2, a) ∈ α(Na

l ) ⊂ Zl to the point (φa, ul(a), c
a
1 , c

a
2 , J1, J2, a) ∈ Ba, and a regular

layer Λl on Zl that connects the two foot points (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) and

(φa,l, 0, ca,l1 , ca,l2 , J1, J2, a) ∈ α(Na
l ) of the two boundary layers.

3.2. Singular orbits on [a, b] with Q(x) = Q. We now construct a singular
orbit on the subinterval [a, b] viewed as the channel where the permanent charge
Q(x) = Q is a nonzero constant. The construction is nearly the same as that for
singular orbits on [0, a].

We set φ(b) = φb, c1(b) = cb1, and c2(b) = cb2, where φb, cbi are unknowns to be
determined later. Let

Bb = {(φb, u, cb1, c
b
2, J1, J2, b) ∈ R7 : arbitrary u, J1, J2}.

The singular orbit to be constructed will be a connecting orbit from Ba to Bb over
[a, b].
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3.2.1. Inner dynamics on [a, b]: Boundary layers or inner solutions. By
setting ε = 0 in system (7) with Q(x) = Q, we get u = 0 and αc1 + Q = βc2. The
outer manifold is

Zm = {u = 0, αc1 + Q = βc2}.

In terms of ξ, we obtain the inner system of (7):

φ′ = u, u′ = βc2 − αc1 −Q− ε
h′(τ)

h(τ)
u,

c′1 = −αc1u− εh−1(τ)J1,
(25)

c′2 = βc2u− εh−1(τ)J2,

J ′
1 = J ′

2 = 0, τ ′ = ε.

The limiting system at ε = 0 is

φ′ = u, u′ = βc2 − αc1 −Q,

c′1 = −αc1u,
(26)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.

The set of equilibria of (26) is precisely Zm, and Zm is normally hyperbolic with
a six-dimensional stable manifold W s(Zm) and a six-dimensional unstable manifold
Wu(Zm). The manifolds Zm, W s(Zm), and W s(Zm) persist for ε > 0 small.

Proposition 3.4. (i) System (26) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2 −Qφ,

H4 = J1, H5 = J2, H6 = τ.

(ii) Let φ = φa,m be the unique solution of

αca1e
α(φa−φ) − βca2e

−β(φa−φ) + Q = 0,(27)

and let

ca,m1 = eα(φa−φa,m)ca1 , ca,m2 = e−β(φa−φa,m)ca2 .

The stable manifold W s(Zm) intersects Ba transversally at points with

um(a)

(28)

= [sgn(φa,m − φa)]
√

2ca1(1 − eα(φa−φa,m)) + 2ca2(1 − e−β(φa−φa,m)) − 2Q(φa − φa,m).

and arbitrary Ji’s.
Let φ = φb,m be the unique solution of

αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) + Q = 0,(29)

and let

cb,m1 = eα(φb−φb,m)cb1, cb,m2 = e−β(φb−φb,m)cb2.
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The unstable manifold Wu(Zm) intersects Bb transversally at points with

um(b)

(30)

= [sgn(φb − φb,m)]
√

2cb1(1 − eα(φb−φb,m)) + 2cb2(1 − e−β(φb−φb,m)) − 2Q(φb − φb,m).

and arbitrary Ji’s.
(iii) Potential boundary layers Γa

m at x = a can be determined in the following
way: the φ-component satisfies the Hamiltonian system

φ′′ + αca1e
α(φa−φ) − βca2e

−β(φa−φ) + Q = 0,

together with φ(0) = φa and φ(ξ) → φa,m as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = ca1e
α(φa−φ(ξ)), c2(ξ) = ca2e

−β(φa−φ(ξ)).

Similarly, potential boundary layers Γb
m at x = b can be determined in the follow-

ing way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) + Q = 0,

together with φ(0) = φb and φ(ξ) → φb,m as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb1e
α(φb−φ(ξ)), c2(ξ) = cb2e

−β(φb−φ(ξ)).

(iv) Let Na
m = Ma

m∩W s(Zm) and N b
m = M b

m∩Wu(Zm), where Ma
m is the collec-

tion of orbits from Ba in forward time under the flow (26) and M b
m is the collection

of orbits from Bb in backward time under the flow (26). Then,

ω(Na
m) = {(φa,m, 0, ca,m1 , ca,m2 , J1, J2, a) : all Ji} ,

α(N b
m) = {(φb,m, 0, cb,m1 , cb,m2 , J1, J2, b) : all Ji}.

Remark 3.5. To show that the quantity under the square root in the display (28)
is nonnegative, we assume ca1 > 0 and ca2 > 0 for the moment and let

f(x) = ca1 + ca2 − ca1e
α(φa−x) − ca2e

−β(φa−x) −Q(φa − x).

Then,

f ′(x) = αca1e
α(φa−x) − βca2e

−β(φa−x) + Q

and

f ′′(x) = −α2ca1e
α(φa−x) − β2ca2e

−β(φa−x) < 0.

Therefore f(x) is concave downward. Note that f ′(x) → +∞ as x → −∞ and
f ′(x) → −∞ as x → +∞. Hence, f(x) has a unique critical point and it must have
a global maximum at this critical point. Since x = φa

m is the critical point, we have

f(φa
m) ≥ f(φa) = 0.

By continuity, we have f(φa
m) ≥ 0 even if ca1 = 0 and/or ca2 = 0. Similarly, the

quantity under the square root in the display (30) is nonnegative.
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3.2.2. Outer dynamics on [a, b]: Regular layers or outer solutions. We
now study the flow in the vicinity of the outer manifold Zm. Following the treatment
of the outer flow on Zl in section 3.1.2 (see also Remark 3.4), we make a scaling u = εp
and βc2 − αc1 −Q = εq. System (7) becomes

φ̇ = p, εṗ = q − ε
h′(τ)

h(τ)
p,

εq̇ = ((α + β)αc1 + βQ + εβq)p− h−1(τ)(βJ2 − αJ1),
(31)

ċ1 = −αc1p− h−1(τ)J1,

J̇1 = J̇2 = 0, τ̇ = 1.

Its limit, as ε → 0, is

φ̇ = p, 0 = q,

0 = ((α + β)αc1 + βQ)p− h−1(τ)(βJ2 − αJ1),
(32)

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1.

For this system, the outer manifold is

Sm =

{
p =

βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
, q = 0

}
.

The outer limit dynamics on Sm is governed by system (32), which reads as
follows:

φ̇ =
βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
,

ċ1 = − (βJ2 − αJ1)αc1
h(τ)((α + β)αc1 + βQ)

− h−1(τ)J1

(33)

= − αβ(J1 + J2)c1 + βQJ1

h(τ)((α + β)αc1 + βQ)
,

J̇i = 0, τ̇ = 1.

Since h(τ) > 0 and βc2 = αc1 + Q > 0, system (33) has the same phase portrait
as that of the following system obtained by multiplying h(τ)((α + β)αc1 + βQ) on
the right-hand side of system (33) (here we see the reason why τ = x and τ̇ = 1 were
introduced into the analysis; see (7)):

d

dy
φ = βJ2 − αJ1,

d

dy
c1 = −αβ(J1 + J2)c1 − βQJ1,(34)

d

dy
Ji = 0,

d

dy
τ = h(τ)((α + β)αc1 + βQ).
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The solution with the initial condition (φa,m, ca,m1 , J1, J2, a) that corresponds to
the point (φa,m, 0, ca,m1 , ca,m2 , J1, J2, a) ∈ ω(Na

m) is

φ(y) = φa,m + (βJ2 − αJ1)y,

c1(y) = e−αβ(J1+J2)yca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y

)
,∫ τ

a

h−1(s)ds = (α + β)α

∫ y

0

c1ds + βQy(35)

=
(α + β)ca,m1

β(J1 + J2)

(
1 − e−αβ(J1+J2)y

)

− (α + β)QJ1

J1 + J2

(
y − 1

αβ(J1 + J2)

(
1 − e−αβ(J1+J2)y

))
+ βQy.

We are looking for solutions to reach α(N b
m); that is, whenever τ(y) = b, we require

φ(y) = φb,m and c1(y) = cb,m1 . Assume τ(y0) = b for some y0 > 0. Then, φ(y0) = φb,m

and c1(y0) = cb,m1 , and hence,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,

(36) ∫ b

a

h−1(s)ds =
(α + β)ca,m1

β(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)

− (α + β)QJ1

J1 + J2

(
y0 −

1

αβ(J1 + J2)

(
1 − e−αβ(J1+J2)y0

))
+ βQy0.

System (36) is equivalent to

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,(37)

J1 + J2 =
α(α + β)(ca,m1 − cb,m1 ) − αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

.

Therefore, the outer or regular layer solution Λm on [a, b] is given by (35) with
J1 and J2 determined by (37). Together with the boundary layers Γa

m and Γb
m in

statement (iii) of Proposition 3.4, this gives the singular orbit on the interval [a, b].

3.3. Singular orbits on [b, 1] with Q(x) = 0. The construction of singular
orbits on [b, 1] is virtually identical to the construction of singular orbits on [0, a] in
section 3.1. We will state only the results for later use.

3.3.1. Inner dynamics on [b, 1]: Boundary layers or inner solutions.
The inner limit system is

φ′ = u, u′ = βc2 − αc1,

c′1 = −αc1u,
(38)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.
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The outer manifold is

Zr = {u = 0, αc1 = βc2}.

It consists of equilibria of system (38) and is normally hyperbolic with a six-dimensional
stable manifold W s(Zr) and a six-dimensional unstable manifold Wu(Zr). Concern-
ing the boundary layers, we have the following proposition.

Proposition 3.5. (i) System (38) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2,

H4 = J1, H5 = J2, H6 = τ.

(ii) Let φ = φb,r be the unique solution of

αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) = 0, that is, φb,r = φb − 1

α + β
ln

βcb2
αcb1

,

and let

cb,r1 =
1

α
(αcb1)

β
α+β (βcb2)

α
α+β , cb,r2 =

1

β
(αcb1)

β
α+β (βcb2)

α
α+β .

The stable manifold W s(Zr) intersects Bb transversally at points with

ur(b) = [sgn(αcb1 − βcb2)]

√
2

(
cb1 + cb2 −

α + β

αβ
(αcb1)

β
α+β (βcb2)

α
α+β

)
(39)

and arbitrary Ji’s.
Let φ = φR be the unique solution of

αR1e
−αφ − βR2e

βφ = 0, that is, φR = − 1

α + β
ln

βR2

αR1
,

and let

cR1 =
1

α
(αR1)

β
α+β (βR2)

α
α+β , cR2 =

1

β
(αR1)

β
α+β (βR2)

α
α+β .

The unstable manifold Wu(Zr) intersects BR transversally at points with

u1 = [sgn(βR2 − αR1)]

√
2

(
R1 + R2 −

α + β

αβ
(αR1)

β
α+β (βR2)

α
α+β

)
(40)

and arbitrary Ji’s.
(iii) Potential boundary layers Γb

r at x = b can be determined in the following
way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) = 0,

together with φ(0) = φb and φ(ξ) → φb,r as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb1e
α(φb−φ(ξ)), c2(ξ) = cb2e

−β(φb−φ(ξ)).
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Similarly, potential boundary layers Γ1
r at x = 1 can be determined in the following

way: the φ-component satisfies the Hamiltonian system

φ′′ + αR1e
−αφ − βR2e

βφ = 0,

together with φ(0) = 0 and φ(ξ) → φR as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = R1e
−αφ(ξ), c2(ξ) = R2e

βφ(ξ).

(iv) Let N b
r = M b

r ∩W s(Zr) and NR = MR∩Wu(Zr), where M b
r is the collection

of orbits from Bb in forward time under the flow (38) and MR is the collection of
orbits from BR in backward time under the flow (38). Then,

ω(N b
r ) = {(φb,r, 0, cb,r1 , cb,r2 , J1, J2, b) : all Ji},

α(NR) =
{(

φR, 0, cR1 , c
R
2 , J1, J2, 1

)
: all Ji

}
.

3.3.2. Outer dynamics on [b, 1]: Regular layers or outer solutions. We
now examine the existence of regular layers or outer solutions that connect ω(N b

r ) to
α(NR). Following exactly the same analysis as in section 3.1.2, we find that the outer
limit dynamics is

φ̇ =
βJ2 − αJ1

(α + β)αh(τ)c1
,

ċ1 = − β(J1 + J2)

(α + β)h(τ)
,(41)

J̇i = 0, τ̇ = 1,

and the outer solution Λr on [b, 1] with the initial condition (φb,r, cb,r1 , J1, J2, b) that

corresponds to the point (φb,r, 0cb,r1 , cb,r2 , J1, J2, b) ∈ ω(N b
r ) is given by

φ(ξ) = φb,r − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(ξ)

cb,r1

,

u(ξ) = 0, αc1(ξ) = βc2(ξ),

c1(ξ) = cb,r1 − β(J1 + J2)

α + β

∫ ξ

b

h−1(s)ds,

τ(ξ) = ξ.

The outer solution Λr hits the point (φR, 0, cR1 , c
R
2 , J1, J2, 1) ∈ α(NR) if and only if

J1 =
cb,r1 − cR1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r1 − ln cR1

)
,

(42)

J2 =
cb,r2 − cR2∫ 1

b
h−1(s)ds

(
1 − β(φb,r − φR)

ln cb,r2 − ln cR2

)
.

The outer solution Λr together with the inner solutions Γb
r and Γ1

r in statement
(iii) of Proposition 3.5 gives the singular orbit on [b, 1].
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Fig. 3. Schematic picture of the singular orbit (solid curves): left boundary layer Γ0
l ; right

boundary layer Γ1
r; four internal layers Γa

l , Γa
m, Γb

m; and Γb
r, and three regular layers Λl, Λm, and

Λr.

3.4. Matching and singular orbits on [0, 1]. A singular orbit on the whole
interval [0, 1] will be the union of the singular orbits constructed on each of the
subintervals (see Figure 3). The matching conditions are ul(a) = um(a), um(b) =
ur(b), and J1 and J2 have to be the same on all subintervals; that is, from formulas
(14), (23), (27), (28), (29), (30), (37), (39), and (42),

αca1e
α(φa−φa,m) − βca2e

−β(φa−φa,m) + Q = 0,

αcb1e
α(φb−φb,m) − βcb2e

−β(φb−φb,m) + Q = 0,

α + β

β
ca,l1 = ca1e

α(φa−φa,m) + ca2e
−β(φa−φa,m) + Q(φa − φa,m),

α + β

β
cb,r1 = cb1e

α(φb−φb,m) + cb2e
−β(φb−φb,m) + Q(φb − φb,m),

J1 =
(cL1 − ca,l1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL1 − ln ca,l1

)

=
cb,r1 − cR1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r1 − ln cR1

)
,(43)

J2 =
(cL2 − ca,l2 )∫ a

0
h−1(s)ds

(
1 − β(φL − φa,l)

ln cL2 − ln ca,l2

)

=
cb,r2 − cR2∫ 1

b
h−1(s)ds

(
1 − β(φb,r − φR)

ln cb,r2 − ln cR2

)
,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,

J1 + J2 =
α(α + β)(ca,m1 − cb,m1 ) − αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

,
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where

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β ,

ca,l1 =
1

α
(αca1)

β
α+β (βca2)

α
α+β , ca,l2 =

1

β
(αca1)

β
α+β (βca2)

α
α+β ,

cb,r1 =
1

α
(αcb1)

β
α+β (βcb2)

α
α+β , cb,r2 =

1

β
(αcb1)

β
α+β (βcb2)

α
α+β ,

ca,m1 = eα(φa−φa,m)ca1 , cb,m1 = eα(φb−φb,m)cb1.

Recall that h(x) = g2
0(x), where g0(x) is the radius of the cross-section of the

channel at x, Q is the concentration of the permanent charge over the interval [a, b],
(φa, ca1 , c

a
2) and (φb, cb1, c

b
2) are the unknown values preassigned at x = a and x = b,

and J1 and J2 are the unknown values for the flux densities of the two types of ions.

There are also three auxiliary unknowns φa,m, φb,m, and y0 in the set of equations
(43). The total number of unknowns in (43) is eleven, which matches the total number
of equations.

A qualitative important question is whether the set of nonlinear equations (43)
has a unique solution. Next, we will consider a special case and demonstrate that
(43) can have multiple solutions.

3.4.1. α = β = 1, and a = 1/3, b = 2/3, and h = 1. We now consider
a special case where α = β = 1. It turns out that the nonlinear system of algebraic
equations (43) in eleven unknowns can be reduced to a single algebraic equation with
only one unknown. Further restrictions that a = 1/3, b = 2/3, and h = 1 will be
posted later merely for simplicity.

Set ca1c
a
2 = A2, cb1c

b
2 = B2, L1L2 = L2, R1R2 = R2, and Q = 2Q0. From the first

two equations in (43), one has

φa − φa,m = ln

√
Q2

0 + A2 −Q0

ca1
,

φb − φb,m = ln

√
Q2

0 + B2 −Q0

cb1
.

System (43) becomes

A =
√
Q2

0 + A2 + Q0 ln

√
Q2

0 + A2 −Q0

ca1
,

B =
√
Q2

0 + B2 + Q0 ln

√
Q2

0 + B2 −Q0

cb1
,

J1 =
L−A∫ a

0
h−1(s)ds

· ν0 − φa + lnL1 − ln ca1
lnL− lnA

=
B −R∫ 1

b
h−1(s)ds

· φ
b + ln cb1 − lnR1

lnB − lnR
,
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J2 =
L−A∫ a

0
h−1(s)ds

(
2 − ν0 − φa + lnL1 − ln ca1

lnL− lnA

)
(44)

=
B −R∫ 1

b
h−1(s)ds

(
2 − φb + ln cb1 − lnR1

lnB − lnR

)
,

(J2 − J1)y0 = φb − φa + ln
cb1(
√
Q2

0 + A2 −Q0)

ca1(
√
Q2

0 + B2 −Q0)
,

J1 + J2 =
2(
√
Q2

0 + A2 −
√
Q2

0 + B2) − 2Q0(J1 − J2)y0∫ b

a
h−1(s)ds

,

√
Q2

0 + B2 −Q0 = e−(J1+J2)y0

(√
Q2

0 + A2 −Q0

)

− 2Q0J1

J1 + J2

(
1 − e−(J1+J2)y0

)
.

Add the J1 and J2 equations in (44) to get

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

; hence, B =

∫ 1

b
h−1∫ a

0
h−1

(L−A) + R.

The first two equations in (44) give

ca1 =

(√
Q2

0 + A2 −Q0

)
exp

{√
Q2

0 + A2 −A

Q0

}
,

(45)

cb1 =

(√
Q2

0 + B2 −Q0

)
exp

{√
Q2

0 + B2 −B

Q0

}
.

The first two equations together with (J2 − J1)y0 and the J1 + J2 equations give

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

= 2
A−B −Q0(φ

a − φb)∫ b

a
h−1

.

Hence,

J1 + J2 = 2
L−R−Q0(φ

a − φb)∫ 1

0
h−1

,

φb − φa =
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

,(46)

and

(J2 − J1)y0 = φb − φa − ln

√
Q2

0 + B2 −Q0

cb1
+ ln

√
Q2

0 + A2 −Q0

ca1

=
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

+ ln
(
√
Q2

0 + A2 −Q0)c
b
1

(
√
Q2

0 + B2 −Q0)ca1

=
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

+

√
Q2

0 + B2 −
√
Q2

0 + A2

Q0
.
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Using

L−A∫ a

0
h−1

=
B −R∫ 1

b
h−1

and the second equality in the J1 equation in (44), one has

ν0 − φa + lnL1 − ln ca1
lnL− lnA

=
φb + ln cb1 − lnR1

lnB − lnR
.

Hence,

φb + ln cb1 − lnR1

lnB − lnR
=

ν0 + φb − φa + ln(L1c
b
1) − ln(R1c

a
1)

ln(BL) − ln(AR)
.

The latter together with (46) and (45) gives

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1c
b
1

R1ca1
+

(L−A)
∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

)
+ ln

R1

cb1

=
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)
+

√
Q2

0 + B2 −
√
Q2

0 + A2

Q0

+
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

)
+ lnR1 − ln

(√
Q2

0 + B2 −Q0

)
−
√
Q2

0 + B2 −B

Q0
.

Note that all the variables in (44) can be expressed in terms of A. Substituting
into the last equation in (44) we will get an equation F (A) = 0 in the variable A only.
The expression of F (A) is complicated but can be explicitly given.

We now suppose further that a = 1/3, b = 2/3, and h = 1. Then,

B = L + R−A, J1 + J2 = 6(L−A),(47)

ca1 =

(√
Q2

0 + A2 −Q0

)
exp

{√
Q2

0 + A2 −A

Q0

}
,

cb1 =

(√
Q2

0 + B2 −Q0

)
exp

{√
Q2

0 + B2 −B

Q0

}
,

φb − φa =
2L + R− 3A

Q0
,

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)
+

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0

)

+ lnR1 − ln

(√
Q2

0 + B2 −Q0

)
−
√

Q2
0 + B2 −B

Q0
,
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J2 − J1 = 6(L−A) − 6(L−A)

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)

)

−6(L−A)(
√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A)

Q0 ln BL
AR

,

(J2 − J1)y0 =

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0
.

The final equation involving the only unknown A is F (A) = 0, where

F (A) = eK(A)

(√
Q2

0 + A2 − Q0(J2 − J1)

6(L−A)

)

+
Q0(J2 − J1)

6(L−A)
−
√
Q2

0 + B2,(48)

where

K(A) = −6(L−A)

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0(J2 − J1)
,

B = L + R−A, and J2 − J1 is given above.

To summarize, for the special case where

α = β = 1, a = 1/3, b = 2/3, h = 1,

the set of nonlinear algebraic equations is equivalent to F (A) = 0, where F (A) is given
in (48). The formula F (A), although terribly complicated, involves only one unknown
A =

√
ca1c

a
2 . Other parameters in F (A) are L1, L =

√
L1L2, R1, R =

√
R1R2, ν0,

and Q0.

For L = L1 = 2, R = R1 = 3, Q = 2Q0 = 2, and ν0 = −20, we find, numerically,
two solutions of F (A) = 0: A1 = 0.6858357 and A2 = 2 (the latter is a removable
singularity of the functions F (A), Ji’s, φ

b, and φa).

Once a feasible value for A is determined, all the unknowns will be determined.
We then get a singular orbit that consists of nine pieces Γ0

l ∪ Λl ∪ Γa
l ∪ Γa

m ∪ Λm ∪
Γb
m ∪ Γb

r ∪ Λr ∪ Γ1
r (see Figure 3).

4. Main results and numerical simulations. Any solution of the set of al-
gebraic equations determines a singular orbit for the connecting problem. Once a
singular orbit is constructed, we apply geometric singular perturbation theory to
show that, for ε > 0 small, there is a unique solution that is close to the singular
orbit. Before giving the precise statement of our result and its proof, let us explain
the ideas behind it.

Let Γ0
l ∪Λl∪Γa

l ∪Γa
m∪Λm∪Γb

m∪Γb
r∪Λr∪Γ1

r be a singular orbit to the connecting
problem (7) associated to BL and BR. For ε > 0 small, let ML(ε) be the forward
trace of BL under the flow of system (7) or, equivalently, system (8). To establish
the existence of a unique solution to the boundary value problem near the singular
orbit, we will show that ML(ε) intersects BR transversally in a neighborhood of the
singular orbit.
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Roughly speaking, the evolution of ML(ε) from x = 0 to x = 1 undergoes the
following nine stages with each stage guided by one of the nine pieces of the singular
orbit (see Figure 3):

(l1) Along Γ0
l : Since BL intersects W s(Zl) transversally, ML(ε) will first follow

the orbit Γ0
l towards the vicinity of Zl under the inner limit flow (12) near

x = 0.
(l2) Along Λl: Once ML(ε) gets close to Zl, the outer limit flow (19) takes over,

and ML(ε) will then follow the outer flow on Zl or Sl along the orbit Λl

towards the hypersurface {x = a}.
(l3) Along Γa

l : Near but before {x = a}, ML(ε) will leave the vicinity of Zl,
follow the orbit Γa

l under the inner limit flow (12) near x = a, and hit the
hypersurface {x = a}.

(m1) Along Γa
m: Upon hitting the hypersurface {x = a}, the flow switches to the

inner limit flow (26) with Q(x) = Q. ML(ε) then follows Γa
m towards the

vicinity of Zm.
(m2) Along Λm: Once ML(ε) gets close to Zm, the outer limit flow (33) takes over,

and ML(ε) will then follow the outer flow on Zm or Sm along the orbit Λm

towards the hypersurface {x = b}.
(m3) Along Γb

m: Near but before {x = b}, ML(ε) will leave the vicinity of Zm,
follow the orbit Γb

m under the inner limit flow (26) near x = b, and hit the
hypersurface {x = b}.

(r1) Along Γb
r: Upon hitting the hypersurface {x = b}, the flow switches to the

inner limit flow (38) with Q(x) = 0. ML(ε) then follows Γb
r towards the

vicinity of Zr.
(r2) Along Λr: Once ML(ε) gets close to Zr, the outer limit flow (41) takes over,

and ML(ε) will then follow the outer flow on Zr or Sr along the orbit Λr

towards the hypersurface {x = 1}.
(r3) Along Γ1

r: Near but before {x = 1}, ML(ε) will leave the vicinity of Zr and
follow the orbit Γ1

r under the inner limit flow (38) near x = 1. If it hits BR,
then we get our solution.

The main task is to justify the above description of the stages that ML(ε) under-
goes. The exchange lemma—see, for example, [47, 45, 46, 50, 51, 73]—of geometric
singular perturbation theory is a result that precisely characterizes the configuration
of ML(ε) during its evolution through the above stages. To apply this abstract theory,
one need only verify certain transversality conditions of some limiting objects.

We now state our results and provide a proof using the geometric singular per-
turbation theory described above.

Theorem 4.1. Let Γ0
l ∪ Λl ∪ Γa

l ∪ Γa
m ∪ Λm ∪ Γb

m ∪ Γb
r ∪ Λr ∪ Γ1

r be a singular
orbit to the connecting problem (7) associated to BL and BR. Then, for ε > 0 small,
the boundary value problem (5) and (6) has a unique continuous and piecewise smooth
solution near the singular orbit.

Proof. For ε > 0 small, choose δ > 0 small. Let

BL(δ) = {(ν0, u, L1, L2, J1, J2, 0) : |u− u0| < δ, |Ji − J0
i | < δ},

and let ML(ε) be the forward trace of BL(δ) under the flow of system (7) or, equiv-
alently, system (8). To prove the theorem, we need to show that ML(ε) intersects
BR transversally in a neighborhood of the singular orbit. Indeed, if we let MR(ε)
be the backward trace of BR near the singular orbit, then ML(ε) and MR(ε) in-
tersect transversally too. The transversality implies that dim(ML(ε) ∩ MR(ε)) =
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dimML(ε) + dimMR(ε) − 7 = 1. Therefore, the intersection ML(ε) ∩MR(ε) consists
of precisely one solution to the boundary value problem, and the solution is near the
singular orbit.

To establish the transversal intersection of ML(ε) with BR near the singular orbit,
we apply the exchange lemma successively along the stages described above. The first
application of the exchange lemma verifies the descriptions for stages (l1), (l2), and
(l3); the second one for stages (m1), (m2), and (m3); and the last application verifies
the descriptions for stages (r1), (r2), and (r3).

Note that dimBL(δ) = 3. Since the fast flow is not tangent to BL(δ), one has
dimML(ε) = 4. The transversality of the intersection BL ∩W s(Zl) along Γ0

l implies
the transversality of the intersection ML(0) ∩W s(Zl). The exchange lemma implies
that ML(ε) will first follow Γ0

l towards NL ⊂ Zl, then follow NL · x in the vicinity of
Λl towards x = a, and leave the vicinity of Zl. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(NL × (a− δ, a)) in the vicinity of Γa

l .
Denote the intersection of Wu(NL × (a− δ, a)) with {x = a} by I(a). Then I(a)

intersects W s(Zm) transversally for the flow (26). Let K(a) be the forward trace
of I(a) under (25). The exchange lemma implies that ML(ε) will first follow K(a)
in the vicinity of Γa

m towards Na
m ⊂ Zm, then follow Na

m · x in the vicinity of Λm

towards x = b, and leave the vicinity of Zm. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(Na

m × (b− δ, b)) in the vicinity of Γb
m.

Denote the intersection of Wu(Na
m × (b− δ, b)) with {x = b} by I(b). Then I(b)

intersects W s(Zr) transversally for the flow (38). Let K(b) be the forward trace of
I(b) under the full system. Then exchange lemma implies that ML(ε) will first follow
K(b) in the vicinity of Γb

r towards N b
r ⊂ Zr, then follow N b

r · x in the vicinity of Λr

towards x = 1, and leave the vicinity of Zr. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(NR × (1 − δ, 1)) in the vicinity of Γ1

r.
In summary, after three applications of the exchange lemma, we determine that

ML(ε) is C1 O(ε)-close to Wu(NR × (1− δ, 1)) in the vicinity of Γ1
r. Since Wu(NR ×

(1− δ, 1)) intersects BR transversally along Γ1
r, we have shown that ML(ε) intersects

BR transversally. The proof is complete.
Numerical simulations are performed for A1 = 0.6858357 and A2 = 2 (see Fig-

ures 4 and 5). The following properties of the two solutions are predicted from the
analytical results and can be observed from the numerical simulations:

(i) For both A1 and A2, approximately c2(x)−c1(x) = Q(x) for x ∈ (0, 1) except
around x = 1/3 and x = 2/3—the jumping points of Q.

(ii) For A2 = L, J1 + J2 = 0 from (47). As a consequence of (19) and (41),
c1(x) = c2(x) = L = 2 for x ∈ (0, 1/3) and c1(x) = c2(x) = R = 3 for x ∈
(2/3, 1). The decreasing behavior of c1(x) = c2(x) for x ∈ (0, 1/3) ∪ (2/3, 1)
can be also predicted from that of the singular orbit corresponding to A1.

(iii) There is a significant difference between the two solutions for A1 �= L and
A2 = L: the solution for A1 has two internal layers with limit orbits Γa

l

and Γa
m at x = a = 1/3 that match at a point on Ba (see Figure 3); the

solution for A2 has only one internal layer Γa
l = Γa

m at x = 1/3. This
analytical consequence is not clearly shown in the figures but is indicated by
the different behaviors of the φ-component: for A1, with the extra transition
through Ba, the layers near x = 1/3 are smoother than the one layer for A2.
The same remarks are true for the two solutions near x = b = 2/3.

5. Remarks. The defining equation F (A) = 0 in (48) that determines multi-
plicity of steady-states of the PNP system should be investigated thoroughly.
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Fig. 4. φ (stars), c1 (solid curve), and c2 (dashed curve) for A1 = 0.6858357 with L1 = L2 = 2,
R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

x

φ(
st

ar
s)

, c
1(s

ol
id

 c
ur

ve
),

 c
2(d

as
he

d 
cu

rv
e)

Numerical solution for A=2, L=2, R=3, Q=2, ν
0
=−20, ε=0.02

Fig. 5. φ (stars), c1 (solid curve), and c2 (dashed curve) for A2 = 2 with L1 = L2 = 2,
R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.

This could be studied using bifurcation theory of dynamical systems and numeri-
cal tools (e.g., AUTO) due to the presence of multiple parameters (Li, Ri, ν0, Q,
etc. should be viewed as perturbation parameters). Another important problem is
the stability of each solution in the full time evolution PNP system. Both multi-
plicity and stability have important biological consequences for ion channels. Single
channels are in fact often defined in the laboratory by their characteristic current
signal which switches from one nearly zero level (“the closed channel”) to another
nonzero level (“the open channel”) in a random telegraph signal, with brief incomplete
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spiky interruptions. Different types of channels perform their functions by controlling
the open probability and/or mean duration of the stochastic signal. These gating
phenomena are central to the biological function of channels and are almost always
explained by saying the channel changes shape (“conformation”) when it switches
current level. Another explanation could be that the steady-state solutions of the
PNP equations themselves have multiple solutions, and the different current levels
correspond to those different solutions. Because the actual current data is stochastic,
it is not clear whether the “open channel” state is stationary or not. Indeed, the open
probability and/or duration of the open state might be stochastic representations of
the instability of the PNP equations. Ion channels also act (in many cases) as if they
have two spatially distinct gates, one of which is normally open and the other nor-
mally closed. The opening and closing processes of these gates do not overlap in ion
channels so there is always a time when both gates are open and current flows through
the channel. The stability properties of the equations may determine many of these
gating properties. It is hard to see how the stability properties of the equations (and
underlying physics) could not be involved to some significant extent, even if that gat-
ing is modulated by other processes and involves additional physics or conformational
changes. Finally, there is a vitally important class of “channel” proteins in which
the two gates open and close in ping pong fashion, so current can never flow right
through the channel pore. These channels form mediated transporters of the greatest
biological importance. It is hard to imagine that the stability of multiple solutions
of the PNP equations (and the underlying physics) is not involved in the correlated
gating properties of transporters, even if that gating is modulated by other processes
and involves additional physics or even conformational changes.

Clearly our methods will be challenged when we try to extend them to other
geometries of channels, multiple regions with nonzero permanent charges, and the even
more important problems of three or more ions of different charge (e.g., Na+, Ca2+,
Cl−). The depletion layers that then occur allow the wide diversity of devices (from
amplifier, to limiter, to multiplier, etc.) that can be built from a single PNP transistor,
and that can be described by numerical solutions of the PNP equations [67, 35, 41,
28, 71, 34]. An alarming diversity of treatments must arise from any perturbation
analysis of PNP systems because such a diversity of real devices actually exist and are
built on that (physical and intellectual) substrate! Existing mathematical analysis of
the PNP equations will need to be extended to show how those different devices can be
built on one substrate. That is to say, analysis is needed to show how different devices
arise from different values of the boundary potential but just one set of differential
equations (and boundary equations), with one set of parameters (other than boundary
potentials). Many useful applications in the design of channels and semiconductors
depend on this analysis.
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for the numerical simulations.

REFERENCES

[1] S. Aboud, D. Marreiro, M. Saraniti, and R. S. Eisenberg, A Poisson P3M force field
scheme for particle-based simulations of ionic liquids, J. Comput. Electron., 3 (2004), pp.
117–133.

[2] S. Aboud, M. Saraniti, and R. Eisenberg, Computational issues in modeling ion transport
in biological channels: Self-consistent particle-based simulations, J. Comput. Electron.,
2 (2003), pp. 239–243.



1964 BOB EISENBERG AND WEISHI LIU

[3] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular
Biology of the Cell, 3rd ed., Garland, New York, 1994.

[4] R. Allen, J.-P. Hansen, and S. Melchionna, Electrostatic potential inside ionic solutions
confined by dielectrics: A variational approach, Phys. Chem. Chem. Physics, 3 (2001),
pp. 4177–4186.

[5] V. Barcilon, Ion flow through narrow membrane channels: Part I, SIAM J. Appl. Math.,
52 (1992), pp. 1391–1404.

[6] V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane chan-
nels: Part II, SIAM J. Appl. Math., 52 (1992), pp. 1405–1425.

[7] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of
steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study, SIAM
J. Appl. Math. 57 (1997), pp. 631–648.

[8] J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern
Aspects, Springer-Verlag, New York, 1998.

[9] M. Bazant, K. Thornton, and A. Ajdari, Diffuse-charge dynamics in electrochemical sys-
tems, Phys. Review E, 70 (2004), pp. 1–24.

[10] M. Z. Bazant, K. T. Chu, and B. J. Bayly, Current-voltage relations for electrochemical
thin films, SIAM J. Appl. Math., 65 (2005), pp. 1463–1484.

[11] S. R. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd ed., Oxford University Press,
New York, 2000.

[12] D. Boda, D. Busath, B. Eisenberg, D. Henderson, and W. Nonner, Monte Carlo sim-
ulations of ion selectivity in a biological Na+ channel: Charge-space competition, Phys.
Chem. Chem. Phys., 4 (2002), pp. 5154–5160.

[13] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Computing induced
charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of
complex ionic systems, Phys. Rev. E, 69 (2004), 046702.

[14] N. Brillantiv and T. Poschel, Kinetic Theory of Granular Gases, Oxford University Press,
New York, 2004.

[15] J.-N. Chazalviel, Coulomb Screening by Mobile Charges, Birkhaüser, New York, 1999.
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Abstract. We construct complex geometrical optics solutions for the isotropic elasticity system
concentrated near spheres. We then use these special solutions, called complex spherical waves, to
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1. Introduction. Let Ω ⊂ R
3 be an open bounded domain with smooth bound-

ary. The domain Ω is modeled as an inhomogeneous, isotropic, elastic medium char-
acterized by the Lamé parameters λ(x) and μ(x). Assume that λ(x) ∈ C2(Ω), μ(x) ∈
C4(Ω) and the following inequalities hold:

μ(x) > 0 and λ(x) + 2μ(x) > 0 ∀ x ∈ Ω (strong ellipticity).(1.1)

We consider the static isotropic elasticity system without sources:

Lu := ∇ · (λ(∇ · u)I + 2μ Sym(∇u)) = 0 in Ω,(1.2)

where Sym(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈ C
3×3.

Equivalently, if we denote σ(u) = λ(∇ · u)I + 2μ Sym(∇u) to be the stress tensor,
then (1.2) becomes

Lu = ∇ · σ = 0 and Ω.

On the other hand, since the Lamé parameters are differentiable, we can also write
(1.2) in the nondivergence form

Lu = μΔu + (λ + μ)∇(∇ · u) + ∇λ∇ · u + 2Sym(∇u)∇μ = 0 in Ω.(1.3)

Special types of solutions for elliptic equations or systems have played an im-
portant role in inverse problems since the pioneering work of Calderón [2]. In 1987,
Sylvester and Uhlmann [21] introduced complex geometrical optics solutions to solve
the inverse boundary value problem for the conductivity equation. For system (1.2),
complex geometrical optics solutions were constructed in [5], using [4], and in [16],
[17], and [18]. In [16], [17], and [18] the authors introduced an intertwining technique
using pseudodifferential operators. In both [5] and [16], [17], [18], the phase functions
of the complex geometrical optics solutions are linear. Other types of special solutions,
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called oscillating-decaying solutions, were constructed for general elliptic systems in
[19] and [20]. These oscillating-decaying solutions have been used in solving inverse
problems, particularly in detecting inclusions and cavities [19].

In developing the theory for inverse boundary value problems with partial or lo-
cal measurements, the authors of [7] and [14] gave, respectively, approximate complex
geometrical optics solutions concentrated near hyperplanes and near hemispheres for
the Schrödinger equation. In [14], the construction was based on hyperbolic geome-
try and was applied in [8] to construct complex geometrical optics solutions for the
Schrödinger equation where the real part of the phase function is a radial function, i.e.,
its level surfaces are spheres. They call these solutions complex spherical waves. The
hyperbolic geometry approach does not work for the Laplacian with first order per-
turbations such as the Schrödinger equation with magnetic potential and the isotropic
elasticity equation (1.2) (see below). Recently, complex geometrical optics solutions
with more general phase functions were constructed in [15] for the Schrödinger equa-
tion and in [3] for the Schrödinger equation with magnetic potential. The method
used in [15] and [3] relies on Carleman-type estimates, which is a more flexible tool in
treating lower order perturbations. Hence, we shall apply the method in [15] and [3]
to construct complex geometrical optics solutions for (1.2) with the real part of the
phase function being a radial function, i.e., complex spherical waves.

With these complex spherical waves at hand, we can study the inverse problem
of detecting unknown inclusions inside an elastic body with known isotropic back-
ground medium. The investigation of this inverse problem is motivated by [8], in
which the same problem was treated for the conductivity equation. There are several
results, both theoretical and numerical, concerning the object identification problem
by boundary measurements for the conductivity equation. We will not try to give
a full account of these developments here. For detailed references, we refer to [8].
For the elasticity system, we will compare our result to some existing ones. In [10],
Ikehata generalized his probe method to the isotropic elasticity system. Ikehata’s
probe method is based on singular solutions and Runge’s approximation property
(which is closely related to the unique continuation property). These ideas are due
to Isakov [13]. On the other hand, for the general (anisotropic) elasticity system, a
reconstruction method using oscillating-decaying solutions was given by the authors
in [19]. The method in [19] shares the same spirit as Ikehata’s enclosure method
(see Ikehata’s survey article [9]). Both methods enable us to reconstruct the support
function of the inclusion by the Dirichlet-to-Neumann map. It should be noted that
Runge’s property was used in [19]. Ikehata’s results on the enclosure method did
not rely on Runge’s property because he used the Laplacian as the background and
explicit complex geometrical optics solutions are available for this case. Our approach
here lies between the method in [19] and Ikehata’s enclosure method in the sense that
we treat the isotropic elasticity without using Runge’s property. Furthermore, since
we probe the region by complex spherical waves, it is possible to recover some con-
cave parts of inclusions. Also, as in [8], we can localize the measurements with these
complex spherical waves.

This paper is organized as follows. In section 2, (1.2) or (1.3) is transformed to
a system of dimension four, and a Carleman estimate is derived for the new system.
The construction of complex spherical waves for (1.2) is given in section 3. The study
of the inverse problem is carried out in section 4.

2. Carleman estimate and its consequence. It suffices to work with system
(1.3) here. Since the leading order of (1.3) is strongly coupled, we want to find
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a reduced system whose leading part is decoupled (precisely, the Laplacian), and
solutions of (1.3) can be constructed more easily. We will use the reduced system
derived by Ikehata [11]. This reduction had already been mentioned in [22]. Let
W = (w

g ) satisfy

PW := Δ

(
w
g

)
+ Ã1(x)

(
∇g
∇ · w

)
+ Ã0(x)

(
w
g

)
= 0,(2.1)

where

Ã1(x) =

(
2μ−1/2(−∇2 + Δ)μ−1 −∇ logμ

0 λ+μ
λ+2μμ

1/2

)

and

Ã0(x) =

(
−μ−1/2(2∇2 + Δ)μ1/2 2μ−5/2(∇2 − Δ)μ ∇μ

− λ−μ
λ+2μ (∇μ1/2)T −μΔμ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := μ−1/2w + μ−1∇g − g∇μ−1

satisfies (1.3). A similar form was also used in [5] for studying the inverse boundary
value problem for the isotropic elasticity system.

With (2.1) at hand, we now consider the matrix operator Ph = −h2P . More
precisely, we have

Ph = (hD)2 + ihA1(x)

(
hD
hD·

)
+ h2A0,

where D = −i∇, A1 = −Ã1, and A0 = −Ã0. Later on we shall denote the matrix
operator

iA1(x)

(
hD
hD·

)
= A1(x, hD).

To construct complex geometrical optics solutions, we will follow closely the papers
[3] and [15]. The construction here is simpler than the one given in [16], [17], where
the technique of intertwining operators was first introduced. Furthermore, we do not
need to work with C∞ coefficients here. As in [3] and [15], we will use semiclassical
Weyl calculus. Our goal here is to derive a Carleman estimate with semiclassical H−2

norm for Ph.
The conjugation of Ph with eϕ/h is given by

eϕ/h ◦ Ph ◦ e−ϕ/h = (hD + i∇ϕ)2 + hA1(x, hD + i∇ϕ) + h2A0(x).

We first consider the leading operator (hD + i∇ϕ)2 and denote

(hD + i∇ϕ)2 = A + iB,

where A = (hD)2 − (∇ϕ)2 and B = ∇ϕ ◦hD+hD ◦∇ϕ. The Weyl symbols of A and
B are given as

a(x, ξ) = ξ2 − (∇ϕ)2 and b(x, ξ) = 2∇ϕ · ξ,



1970 GUNTHER UHLMANN AND JENN-NAN WANG

respectively. Let Ω0 be an open bounded domain such that Ω̄ ⊂ Ω0. Accordingly, we
extend λ and μ to Ω0 by preserving their smoothness. We now let ϕ have nonvanishing
gradient in Ω0 and be a limit Carleman weight in Ω0:

{a, b} = 0 when a = b = 0,

i.e.,

〈ϕ′′|∇ϕ⊗∇ϕ + ξ ⊗ ξ〉 = 0 when ξ2 = (∇ϕ)2 and ∇ϕ · ξ = 0.

In order to get positivity in proving the Carleman estimate, we will modify the
weight ϕ as in [3] and [15]. Let us denote ϕε = ϕ + hϕ2/(2ε), where ε > 0 will
be chosen later. Also, we denote aε and bε to be the corresponding symbols as ϕ is
replaced by ϕε. Then one can easily check that

{aε, bε} =
4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 > 0 when aε = bε = 0.

Arguing as in [15], we get

{aε, bε} =
4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 + α(x)aε + β(x, ξ)bε,

where β(x, ξ) is linear in ξ. Therefore, at the operator level, we have

i[Aε, Bε] =
4h2

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 +
h

2
(α ◦Aε + Aε ◦ α)(2.2)

+
h

2
(βw ◦Bε + Bε ◦ βw) + h3c(x),

where βw denotes the Weyl quantization of β.
With the help (2.2), we now can estimate

‖(Aε + iBε)V ‖2 = ‖AεV ‖2 + ‖BεV ‖2 + i〈BεV |AεV 〉 − i〈AεV |BεV 〉
for V ∈ C∞

0 (Ω). Here and below, we define the norm ‖ ·‖ and the inner 〈· | ·〉 in terms
of L2(Ω). Integrating by parts, we conclude

〈BεV |AεV 〉 = 〈AεBεV |V 〉 and 〈AεV |BεV 〉 = 〈BεAεV |V 〉.(2.3)

On the other hand, we observe that

‖h∇V ‖2 = 〈AεV |V 〉 + ‖
√

(∇ϕ)V ‖2 � ‖AεV ‖2 + ‖V ‖2(2.4)

and the obvious estimate

‖(h∇)2V ‖2 � ‖AεV ‖2 + ‖V ‖2.(2.5)

Using (2.2), (2.3), (2.4), and (2.5) gives

‖(Aε + iBε)V ‖2

� ‖AεV ‖2 + ‖BεV ‖2 +
h2

ε
‖V ‖2 − h(‖AεV ‖‖V ‖ + ‖BεV ‖‖h∇V ‖)

� ‖AεV ‖2 + ‖BεV ‖2 +
h2

ε
‖V ‖2 − 1

2
‖AεV ‖2 − h2

2
‖V ‖2 − 1

2
‖BεV ‖2

−h2

2
(‖AεV ‖2 + ‖V ‖2)

�
(

1 −O

(
h2

ε

))
‖AεV ‖2 +

h2

ε
(‖AεV ‖2 + ‖V ‖2).
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Thus, taking h and ε (h � ε) sufficiently small, we arrive at

‖(Aε + iBε)V ‖2 � h2

ε
(‖V ‖2 + ‖h∇V ‖2 + ‖(h∇)2V ‖2),

namely,

‖(Aε + iBε)V ‖2 � h2

ε
‖V ‖2

H2
h(Ω).(2.6)

Here we define the semiclassical Sobolev norms

‖v‖2
Hm

h (Ω) =
∑

|α|≤m

‖(h∇)αv‖2 ∀ m ∈ N

and

‖v‖2
Hs

h(R3) =

∫
(1 + |hξ|2)s|v̂(ξ)|2dξ = ‖〈hD〉sv‖2 ∀ s ∈ R.

Now let Ω1 be open and Ω̄ ⊂ Ω1 ⊂ Ω0. The estimate (2.6) also holds for V ∈
C∞

0 (Ω1). Then, as done in [3], we can obtain that

h2

ε
‖V ‖2

H2
h(R3) � ‖(Aε + iBε)〈hD〉2V ‖2

H−2
h (R3)

.(2.7)

To add the first order perturbation hA1,εV +h2A0V = hA1(x, hD+ i∇ϕε)V +h2A0V
into (2.7), we note that

‖(hA1,ε + h2A0)〈hD〉2V ‖2
H−2

h (R3)
� h2‖V ‖2

H1
h(R3).(2.8)

In view of (2.8), we get from (2.7) that

‖(Aε + iBε + hA1,ε + h2A0)〈hD〉2V ‖2
H−2

h (R3)
� h2‖〈hD〉2V ‖2,(2.9)

provided ε � 1. Transforming back to the original operator, (2.9) is equivalent to

‖〈hD〉2V ‖ � h‖eφε/hPe−ϕε/h〈hD〉2V ‖H−2
h (R3)(2.10)

for V ∈ C∞
0 (Ω1).

Let χ ∈ C∞
0 (Ω1) with χ = 1 on Ω and W ∈ C∞

0 (Ω). Substituting V = χ〈hD〉−2W
into (2.10) and using the property that

‖(1 − χ)〈hD〉−2W‖Hs
h

= O(h∞)‖W‖

for any s ∈ R, we get that

‖W‖ � h‖eφε/hPe−ϕε/hW‖H−2
h (R3).(2.11)

Now since eϕε/h = eϕ
2/εeϕ/h and eϕ

2/ε = O(1), (2.11) becomes

‖W‖ � h‖eφ/hPe−ϕ/hW‖H−2
h (R3).(2.12)

Note that (2.12) also holds when ϕ is replaced by −ϕ. Therefore, by the Hahn–Banach
theorem, we have the following existence theorem.

Theorem 2.1. For h sufficiently small, for any F ∈ L2(Ω), there exists V ∈
H2

h(Ω) such that

eϕ/hPh(e−ϕ/hV ) = F

and h‖V ‖H2
h(Ω) � ‖F‖L2(Ω).
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3. Construction of complex spherical waves. In this section we will con-
struct complex spherical waves for the elasticity system (1.3). We apply the method
of [3] and [15] to our system here. We will work with the reduced system (2.1). Let
ψ be a solution of the eikonal equation

a(x,∇ψ) = b(x,∇ψ) = 0 ∀ x ∈ Ω,

i.e., {
(∇ψ)2 = (∇ϕ)2

∇ϕ · ∇ψ = 0
∀ x ∈ Ω.(3.1)

Since {a, b} = 0 on a = b = 0, there exists a solution to (3.1). To construct complex
spherical waves, we choose the limit Carleman weight

ϕ(x) = log |x− x0| for x0 /∈ ch(Ω);

then a solution of (3.1) is

ψ(x) =
π

2
− arctan

ω · (x− x0)√
(x− x0)2 − (ω · (x− x0))2

= dS2

(
x− x0

|x− x0|
, ω

)
,

where ch(Ω) := convex hull of Ω and ω ∈ S
2 such that ω �= (x − x0)/|x − x0| for all

x ∈ Ω [3]. We can be more explicit in the choices of ϕ and ψ. In fact, by suitable
translation and rotation, we can take x0 = 0, ω = (1, 0, 0) and set z = x1 + i|x′| with
x′ = (x2, x3); then ϕ + iψ = log z (see [3, Remark 3.1]). Having found ψ, we look for
U = e−(ϕ+iψ)/h(L + R) satisfying

(−h2Δ + h2A1(x,D) + h2A0(x))U = 0 in Ω.

Equivalently, we need to solve

e(ϕ+iψ)/hPh(e−(ϕ+iψ)/h(L + R)) = 0 in Ω.

We can compute that

e(ϕ+iψ)/hPhe
−(ϕ+iψ)/h

= ((hD −∇ψ)2 − (∇ϕ)2) + i(∇ϕ · (hD −∇ψ) + (hD −∇ψ) · ∇ϕ)

+ h2A1(x,D) + hA1(x, i∇ϕ−∇ψ) + h2A0

= h(−∇ψ ·D −D · ∇ψ + i∇ϕ ·D + iD · ∇ϕ + A1(x, i∇ϕ−∇ψ)) + Ph

= hQ + Ph,

where Q = −∇ψ · D − D · ∇ψ + i∇ϕ · D + iD · ∇ϕ + A1(x, i∇ϕ − ∇ψ). Hence we
want to find L, independent of h, so that

QL = 0 in Ω.(3.2)

Equation (3.2) is a system of Cauchy–Riemann type. In fact, in view of the choices
of ϕ and ψ above, (3.2) is equivalent to

∂z̄L + Ã(z, θ)L = 0 in Ω,(3.3)
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where Ã(z, θ) is a C2 matrix-valued function. Here we have used the cylindrical
coordinates for R

3, i.e., x = (x1, r, θ) ∈ R × R+ × S
1, and z = x1 + ir. Using the

results in [4], [6], or [18], one can find an invertible 4×4 matrix G(x) ∈ C2(Ω) satisfying
(3.2). For the sake of clarity, we outline the proof of the existence of G. We refer to,
for example, [6, pp. 59–60] for more detailed arguments. It suffices to consider (3.3).
Let M > 0 satisfy Ω̄ ⊂ {(x1, r, θ) : |x1| ≤ M, 0 ≤ r ≤ M, θ ∈ S

1} := U . Without

restriction, we can assume that (3.3) holds in U by suitably extending the matrix Ã.
By using cut-off functions with sufficiently small supports, one can show that G exists
near z0 = x0

1 + ir0, with |x0
1| < M, 0 < r0 < M , and depends C2 smoothly on θ for

all θ ∈ S
1. To construct a global invertible G in U , we simply patch local solutions

together with the help of Cartan’s lemma.
So L can be chosen from columns of G. Then R is required to satisfy

eϕ/hPh(e−(ϕ+iψ)/hR) = −e−iψ/hPhL.(3.4)

Note that ‖e−iψ/hPhL‖ � h2. Thus Theorem 2.1 implies that

‖e−iψ/hR‖H2
h(Ω) � h,(3.5)

which leads to

‖∂αR‖L2(Ω) � h1−|α| for |α| ≤ 2.(3.6)

So if we write L = ( �
d ) and R = ( r

s ) with �, r ∈ C
3, then

w = e−(ϕ+iψ)/h(� + r) and g = e−(ϕ+iψ)/h(d + s),

where r and s satisfy the estimate (3.6). Therefore, u = μ−1/2w + μ−1∇g − g∇μ−1

is the complex spherical wave for (1.3).
Remark 3.1. Even though the four-vector ( �

d ) is nonzero in Ω, we cannot conclude
that both � and d never vanish in Ω. However, for any point y ∈ Ω, it is easy to show
that there exists a small ball Bδ(y) of y with Bδ(y) ⊂ Ω such that one can find a
pair of � and d which does not vanish in Bδ(y). We will use this fact in studying our
inverse problem in the next section.

4. Probing for inclusions. In this section we shall apply the complex spherical
waves we constructed above to the problem of identifying the inclusion embedded
inside an elastic body with isotropic medium. We now begin to set up the problem.
Let D be an open subset of Ω with Lipschitz boundary satisfying the facts that
D ⊂⊂ Ω and Ω \ D is connected. Assume that λ0(x) ∈ C2(Ω) and μ0(x) ∈ C4(Ω)
satisfy the strong convexity condition, i.e.,

3λ0(x) + 2μ0(x) > 0 and μ0(x) > 0 ∀ x ∈ Ω.(4.1)

It is obvious that (4.1) implies (1.1). On the other hand, we assume that λ̃(x), μ̃(x)
are two essentially bounded functions such that either

μ̃ ≥ 0 and 3λ̃ + 2μ̃ ≥ 0 a.e. in D

or

μ̃ ≤ 0 and 3λ̃ + 2μ̃ ≤ 0 a.e. in D.
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For our inverse problem here, we shall also assume appropriate jump conditions across
∂D:

For y ∈ ∂D, there exists a ball Bε(y) such that one of the following
conditions holds:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(μ+) : μ̃ > ε, 3λ̃ + 2μ̃ ≥ 0

(λ+) : μ̃ = 0, λ̃ > ε

(μ−) : μ̃ < −ε, 3λ̃ + 2μ̃ ≤ 0

(λ−) : μ̃ = 0, λ̃ < −ε

∀ x ∈ Bε(y) ∩D.
(4.2)

To make sure that the forward problem is well-posed, we suppose that λ = λ0 +
χDλ̃ and μ = μ0 +χDμ̃ satisfy (4.1) a.e. in Ω, where χD is the characteristic function
of D. Therefore, for any f ∈ H1/2(∂Ω), there exists a unique (weak) solution u to{

LDu = 0 in Ω,

u = f on ∂Ω.

Here the elastic operator LD is defined in terms of λ and μ. The Dirichlet-to-Neumann
map related to LD is now defined as

ΛD : f → σ(u)ν|∂Ω,

where ν is the unit outer normal of ∂Ω and for x ∈ ∂Ω

σ(u) = λ(∇ · u)I + 2μ Sym(∇u) = λ0(∇ · u)I + 2μ0 Sym(∇u).

Now assume that all parameters are known except λ̃, μ̃, and D. The inverse problem
is to determine D by ΛD. This inverse problem was studied by Ikehata [10] with the
so-called probe method. However, as we mentioned in the introduction, this method
relies on Runge’s approximation property, which is difficult to realize in practice. In
this paper we approach this inverse problem from a different viewpoint. We would
like to get partial information of D by local measurements. Our main tool is the use
of complex spherical waves to probe for the inclusions. One of the advantages of our
method is that we do not need Runge’s property, and we can quickly determine roughly
where the inclusion is located by only a few measurements that can be advantageous
in practical applications.

We first derive some integral inequalities that we need. Let Λ0 be the Dirichlet-
to-Neumann map related to L0, where L0 is the elastic operator defined in terms of
λ0 and μ0. Assume that u0 is the solution of{

L0u0 = 0 in Ω,

u0 = f on ∂Ω.
(4.3)

Then we have the following inequalities:∫
D

{
3λ0 + 2μ0

3(3λ + 2μ)

(
3λ̃ + 2μ̃

)
|∇ · u0|2 + 2

μ0

μ
μ̃

∣∣∣∣Sym(∇u0) −
∇ · u0

3
I

∣∣∣∣
2
}
dx

≤ 〈(ΛD − Λ0)f, f〉

≤
∫
D

{
3λ̃ + 2μ̃

3
|∇ · u0|2 + 2μ̃

∣∣∣∣Sym(∇u0) −
∇ · u0

3
I

∣∣∣∣
2
}
dx(4.4)
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(see [10, Proposition 5.1]). The plan now is to plug complex spherical waves u0 given
in Ω with parameters h > 0 and t > 0, denoted by u0,h,t, into (4.4). For brevity, we
will suppress the subscript 0 and denote u0,h,t = uh,t. We set uh,t = elog t/hv and

vh = μ
−1/2
0 w+μ−1

0 ∇g−g∇μ−1
0 with w = e−(ϕ+iψ)/h(�+r) and g = e−(ϕ+iψ)/h(d+s),

where W = (w
g ) satisfies PW = 0 in Ω with λ, μ being replaced by λ0, μ0 (see (2.1)).

Recall that r and s satisfy (3.6). Furthermore, for any x ∈ Ω, we can choose a
neighborhood of x such that �(x) and d(x) never vanish in such a neighborhood. In
view of (4.4), we need to compute ∇ · uh,t and Sym(∇uh,t) in detail. We note that

Δg = −μ
1/2
0

λ0 + μ0

λ0 + 2μ0
∇ · w + b0 · w + c0g,(4.5)

where (b0, c0) is the bottom row of A0. From (4.5) we have

∇ · vh

= ∇μ
−1/2
0 · w + μ

−1/2
0 ∇ · w + ∇μ−1

0 · ∇g + μ−1
0 Δg −∇g · ∇μ−1

0 − gΔμ−1
0

= ∇μ
−1/2
0 · w + μ

−1/2
0 ∇ · w + μ−1

0 Δg − gΔμ−1
0

= (∇μ
−1/2
0 + μ−1

0 b0) · w + μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ · w + (μ−1

0 c0 − Δμ−1
0 )g

= e−(ϕ+iψ)/h

{
(∇μ

−1/2
0 + μ−1

0 b0) · (� + r) − μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ϕ + i∇ψ

h
· (� + r)

+ μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ · (� + r) + (μ−1

0 c0 − Δμ−1
0 )(d + s)

}
.

(4.6)

Next we observe that

Sym(∇vh) = Sym(∇μ
−1/2
0 ⊗ w) + μ

−1/2
0 Sym(∇w) + μ−1

0 ∇2g − g∇2μ−1
0

and hence

Sym(∇vh)

= e−(ϕ+iψ)/h

{
Sym(∇μ

−1/2
0 ⊗ (� + r)) − 1

h
μ
−1/2
0 Sym((∇ϕ + i∇ψ) ⊗ (� + r))

+ μ
−1/2
0 Sym(∇(� + r)) + μ−1

0 ∇2(d + s) − μ−1
0

1

h
(d + s)∇2(ϕ + iψ)

− μ−1
0

2

h
Sym(∇(ϕ + iψ) ⊗∇(d + s)) + μ−1

0

1

h2
∇(ϕ + iψ) ⊗∇(ϕ + iψ)(d + s)

− (d + s)∇2μ−1
0

}
,

(4.7)

where (a⊗ b)jk = (ajbk) for 1 ≤ j, k ≤ 3.
We are now in a position to discuss the inverse problem. Recall that ϕ = log |x−

x0| with x0 /∈ ch(Ω). Let fh,t be the boundary value of uh,t on ∂Ω and denote

E(h, t) = |〈(ΛD − Λ0)fh,t, fh,t〉|.
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Our main result for the inverse problem is the following.
Theorem 4.1. Assume that the jump condition (4.2) holds. For t > 0 and

sufficiently small h, we have the following:
(i) If dist(D,x0) =: d0 > t, then E(h, t) ≤ Ca1/h for some constants C > 0 and

a < 1.
(ii) If d0 < t, then E(h, t) ≥ Cb1/h for some constants C > 0 and b > 1 with

appropriate choices of fh,t.

(iii) If D ∩Bt(x0) = y, then{
C ′h−1 ≤ E(h, t) ≤ Ch−3 if (μ±) holds near y,

C ′h ≤ E(h, t) ≤ Ch−1 if (λ±) holds near y,
(4.8)

provided � and d of uh,t do not vanish near y.
Proof. To prove the theorem, we simply substitute uh,t into (4.4). The key

observation comes from (4.6) and (4.7). We consider only the cases (μ+) and (λ+) of
(4.2) here. The same arguments work for (μ−) and (λ−) of (4.2). The only change is
to use integral inequalities obtained by multiplying “−” on (4.4). If (μ+) holds, then
the leading terms of two integrals in (4.4) come from Sym(∇uh,t) and are determined
by

1

h4

(
t

|x− x0|

)2/h

((∇ϕ)2 + (∇ψ)2)2|d|2 =
4

h4

(
t

|x− x0|

)2/h

(∇ϕ)4|d|2.(4.9)

On the other hand, if (λ+) holds, then the leading terms in those integrals in (4.4)
come from ∇ · uh,t and are governed by

2

h2

(
t

|x− x0|

)2/h

(∇ϕ)2|�|2.(4.10)

Using (4.4), (4.9), and (4.10), the proof of (i) follows easily from

E(h, t) ≤ C
1

h4

(
t

d0

)2/h

when (μ+) holds

and

E(h, t) ≤ C
1

h2

(
t

d0

)2/h

when (λ+) holds.

For the proof of (ii), we pick a small ball Bδ ⊂⊂ Bt(x0) ∩D such that the jump
conditions (μ+) or (λ+) hold in Bδ and �(x), d(x) of uh,t never vanish in Bδ(x). The
latter property is guaranteed by Remark 3.1. For such choice of � and d, the Dirichlet
data is a priori given by

fh,t = uh,t|∂Ω = e(log t−ϕ−iψ)/h(� + d)|∂Ω.

Thus, argued as above, we have that either

E(h, t) ≥ C
1

h4

(
t

d0

)2/h

when (μ+) holds
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or

E(h, t) ≥ C
1

h2

(
t

d0

)2/h

when (λ+) holds,

which implies (ii).
Now let y ∈ D ∩ Bt(x0) and choose a ball Bε(y) such that (4.2) holds and �(x),

d(x) of uh,t never vanish in Bε(y) ∩D. Pick a small cone with vertex at y, say Γ, so
that there exists an η > 0 satisfying

Γη := Γ ∩ {0 < |x− y| < η} ⊂ Bε(y) ∩D.

We observe that if x ∈ Γη with |x− y| = ρ < η, then |x− x0| ≤ ρ + t, i.e.,

1

|x− x0|
≥ 1

ρ + t
.

Thus, for the case (μ+), we get that from (4.4) and (4.9)

E(h, t) ≥ C
1

h4

∫
D

μ̃2(∇ϕ)4|d|2
(

t

|x− x0|

)2/h

dx

≥ Cε
1

h4

∫ η

0

(
t

ρ + t

)2/h

ρ2dρ(4.11)

≥ Cεh−1.

On the other hand, we can choose a cone Γ̃ with vertex at x0 such that D ⊂ Γ̃∩{|x−
x0| > t}. Hence, we can estimate

E(h, t) ≤ C
1

h4

∫
Γ̃∩{t<|x−x0|<t+η}

(
t

|x− x0|

)2/h

dx

+ C
1

h4

∫
Γ̃∩{t+η≤|x−x0|}

(
t

|x− x0|

)2/h

dx

(4.12)

≤ C
1

h4

∫ t+η

t

(
t

r

)2/h

r2dr + O

((
t

t + η

)2/h
)

≤ Ch−3.

Combining (4.11) and (4.12) yields the first estimate of (4.8). Using similar argu-
ments, we can get the second estimate of (4.8) for the case (λ+).

Remark 4.1. (1) Using Theorem 4.1, we can clearly determine whether the prob-
ing front {|x − x0| = t} intersects the inclusion. In view of (iii) of the theorem, it is
also possible to determine whether we have material jumps in μ or λ when the front
touches the boundary of the inclusion.

(2) In the proofs of (ii) and (iii) we need to choose � and d, which are nonvanishing
in small subdomains of Ω. Since � and d depend only on the known background
medium, they can be chosen to be nonvanishing near any point in Ω at our disposal.
In fact, it suffices to take � and d, which are nonvanishing near the probe front
{|x − x0| = t}. Different choices of � and d will give rise to different Dirichlet data
fh,t and therefore different measurements.
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(3) In real applications, we believe that the concerns in (ii) and (iii) can be
ignored.

Taking advantage of the decay of the complex spherical waves in the region {|x−
x0| > t}, we can localize the measurements, which is of great practical value. Let
φδ,t(x) ∈ C∞

0 (R3) satisfy

φδ,t(x) =

{
1 on Bt+δ/2(x0),

0 on R
3 \Bt+δ(x0),

where δ > 0 is sufficiently small. Now we are going to use the measurements fδ,h,t =
φδ,tfh,t = φδ,tuh,t|∂Ω. Clearly, the measurements fδ,h,t are localized on Bt+δ(x0)∩∂Ω.
Let us define

Eδ(h, t) = |〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉|.

Theorem 4.2. The statements of Theorem 4.1 are valid for Eδ(h, t).
Proof. The main idea is to prove that the error caused by the remaining part

of the measurement (1 − φδ,t)fh,t =: gδ,h,t is exponentially small. Let wδ,h,t be the
solution of (4.3) with boundary value gδ,h,t. We now want to compare wδ,h,t with
(1 − φδ,t)uh,t. To this end, we first observe that{

L0((1 − φδ,t)uh,t − wδ,h,t) = L0((1 − φδ,t)uh,t),

(1 − φδ,t)uh,t − wδ,h,t = 0 on ∂Ω.

Since

‖L0((1 − φδ,t)uh,t)‖L2(Ω) ≤ Cβ1/h

for some 0 < β < 1, we have that

‖(1 − φδ,t)uh,t − wδ,h,t‖H1(Ω) ≤ Cβ1/h.(4.13)

Using (4.4) for 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 with u0 being replaced by wδ,h,t, we get from
(4.13) and the decaying property of uh,t that

|〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉| ≤ Cβ̃1/h

for some 0 < β̃ < 1.
Now we first consider (i) of Theorem 4.1 for Eδ(h, t). We begin with the case

(μ+) of (4.2). In view of the first inequality of (4.4), we see that

0 ≤ 〈(ΛD − Λ0)(ζfδ,h,t ± ζ−1gδ,h,t), ζfδ,h,t ± ζ−1gδ,h,t〉

for any ζ > 0, which leads to

|〈(ΛD − Λ0)fδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)gδ,h,t, fδ,h,t〉|

≤ ζ2〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉 + ζ−2〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉.
(4.14)

It now follows from fh,t = fδ,h,t + gδ,h,t and (4.14) with ζ = 1/
√

2 that

1

2
〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉

≤ 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)fh,t, fh,t〉

≤ Cβ̃1/h + 〈(ΛD − Λ0)fh,t, fh,t〉.

(4.15)
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So from (i) of Theorem 4.1, the same statement holds for Eδ(h, t). Other cases of
(4.2) are treated similarly.

Next we consider (ii) and (iii) of Theorem 4.1 for Eδ,h,t. As before, we treat only
(μ+) of (4.2). Choosing ζ = 1 in (4.14), we get that

1

2
〈(ΛD − Λ0)fh,t, fh,t〉

≤ 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉

≤ Cβ̃1/h + 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉.

(4.16)

Therefore, (ii) of Theorem 4.1 and (4.16) imply that the same fact is true for Eδ(h, t).
Finally, combining (4.15) and (4.16) yields statement (iii) for Eδ(h, t). The proof is
now complete.

Remark 4.2. With the help of Theorem 4.2, when parts of ∂D are near the
boundary ∂Ω, it is possible to detect some points of ∂D from only a few measurements
taken from a very small region of ∂Ω.

To end this section, we provide an algorithm of the method.
Step 1. Pick a point x0 near ch(Ω). Construct complex spherical waves uh,t.
Step 2. Draw two balls Bt(x0) and Bt+δ(x0). Set the Dirichlet data fδ,h,t =

φδ,tuh,t|∂Ω. Measure the Neumann data ΛDfδ,h,t over the region Bt+δ(x0) ∩ ∂Ω.
Step 3. Calculate Eδ(h, t) = 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉. If E(h, t) tends to zero as

h → 0, then the probing front {|x−x0| = t} does not intersect the inclusion. Increase
t and compute Eδ(h, t) again.

Step 4. If Eδ,h,t increases to ∞ as h → 0, then the front {|x− x0| = t} intersects
the inclusion. Decrease t to make a more accurate estimate of ∂D.

5. Conclusion. In this work we have constructed complex spherical waves or
complex geometrical optics solutions for the elasticity system with isotropic inhomo-
geneous medium. We used these special solutions to investigate the inverse problem
of identifying inclusions with localized measurements. Numerical realization of this
method would be an interesting project. The same method should work for identifying
cavities.
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magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., to appear.

[4] G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator
with external Yang-Mills potentials, Comm. Math. Phys., 222 (2001), pp. 503–531.

[5] G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elastic-
ity, Inverse Problems, 18 (2002), pp. 907–921.

[6] G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elasticity
and Cauchy-Riemann system, in Inverse Problems and Spectral Theory, Contemp. Math.
348, AMS, Providence, RI, 2004, pp. 53–69.



1980 GUNTHER UHLMANN AND JENN-NAN WANG

[7] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the
two-plane transform, Duke Math. J., 108 (2001), pp. 599–617.

[8] T. Ide, H. Isozaki, S. Nakata, S. Siltanen, and G. Uhlmann, Probing for electrical inclu-
sions with complex spherical waves, Comm. Pure Appl. Math., to appear.

[9] M. Ikehata, The enclosure method and its applications, in Analytic Extension Formulas and
Their Applications (Fukuoka, 1999/Kyoto, 2000), Int. Soc. Anal. Appl. Comput. 9, Kluwer
Academic, Dordrecht, The Netherlands, 2001, pp. 87–103.

[10] M. Ikehata, Reconstruction of inclusion from boundary measurements, J. Inverse Ill-Posed
Probl., 10 (2002), pp. 37–65.

[11] M. Ikehata, A Remark on an Inverse Boundary Value Problem Arising in Elasticity, preprint.
[12] M. Ikehata, G. Nakamura, and M. Yamamoto, Uniqueness in inverse problems for the

isotropic Lame system, J. Math. Sci. Univ. Tokyo, 5 (1998), pp. 627–692.
[13] V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure

Appl. Math., 41 (1988), pp. 865–877.
[14] H. Isozaki and G. Uhlmann, Hyperbolic geometry and the local Dirichlet-to-Neumann map,

Adv. Math., 188 (2004), pp. 294–314.
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A CLASS OF FREE BOUNDARY PROBLEMS WITH ONSET OF A
NEW PHASE∗

PATRICK GUIDOTTI†

Abstract. A class of diffusion-driven free boundary problems is considered which is character-
ized by the initial onset of a phase and by an explicit kinematic condition for the evolution of the free
boundary. By a domain fixing change of variables it naturally leads to coupled systems comprising a
singular parabolic initial boundary value problem and a Hamilton–Jacobi equation. Even though the
one-dimensional case has been thoroughly investigated, results as basic as well-posedness and regu-
larity have so far not been obtained for its higher-dimensional counterpart. In this paper a recently
developed regularity theory for abstract singular parabolic Cauchy problems is utilized to obtain the
first well-posedness results for the free boundary problems under consideration. The derivation of
elliptic regularity results for the underlying static singular problems will play an important role.

Key words. free boundary problem, kinematic condition, singular parabolic and elliptic equa-
tions, well-posedness, existence, regularity
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1. Introduction. In this paper we consider a class of one phase free boundary
problems (FBPs) characterized by the initial onset of a phase. Such FBPs arise in
the description of diffusion in polymers, for instance. Under physically natural condi-
tions, these problems lead to a formulation in which the phase is initially absent. This
feature manifests itself mathematically in that some of the equations in the nonlinear
system become singular (if they are written in a fixed reference domain). In spite of
the fact that these types of problems have been intensively studied in the literature
over an extended period of time, only one publication deals with the singular case
considered here in more than one space dimension. The simplifying assumption that
the phase be initially nonempty is typically added to avoid the mathematical com-
plications stemming from the singularity. The one-dimensional case has, however,
been thoroughly investigated [9, 10, 11, 8, 7, 14] in the specific context of diffusion in
polymers and, more generally, for diffusion-driven FBPs (see [18, 12], for instance).
The methods used for the one-dimensional case rely on the explicit use of the heat
kernel to reduce the problem to the boundary. This approach cannot be used in higher
dimensions because the singular behavior induced by the initial condition on the FBP
cannot be decoupled from the diffusion operator. This is due to the fact that the free
boundary has a nontrivial geometry in this case and to the fact that fundamental
solutions (evolution operators) have not been studied for singular parabolic problems
for which the singularity affects the underlying elliptic operator in an anisotropic way.
The higher-dimensional problem has recently been studied in [16] but only in its sim-
pler quasi-stationary form. [16] established well-posedness for the problem in a class
of functions which needs to be carefully crafted and leads to an asymptotic expansion
for the singularity which is valid in the corresponding topologies and has practical rel-
evance (cf. [7, 14]). Regularity results, maximal regularity in particular, for singular
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parabolic equations play a crucial role in this paper and have been recently obtained
by the author in [13], where a construction of the evolution operator is given for a
wide class of singular parabolic problems. Maximal regularity is needed because the
full problem will be solved by reduction to a model problem and perturbation about
it. Since the ensuing perturbation is of maximal order (both in the singularity and dif-
ferentiation) optimal regularity results are necessary. Previous abstract results were
obtained in [15, 21], but they do not apply to the situation considered here because
their validity does not cover the case of spaces of classical pointwise regularity, nor the
case in which the singularity affects the equations anisotropically. Classical pointwise
regularity is needed in the analysis proposed here since the singular parabolic equation
is coupled to a Hamilton–Jacobi-type equation modeling the front’s dynamics. It has
long been observed, as mentioned above, that one-dimensional techniques cannot be
extended to the higher-dimensional case. Summarizing, the presence of singular coef-
ficients and the coupling to a Hamilton–Jacobi equation are two of the characterizing
features of the problem under consideration. They make its analysis more difficult and
delicate than that of the related but different classical Stefan problem. This paper
therefore offers a successful approach that fully overcomes these difficulties.

The unknowns of the problem are a function u : Ωt → R defined on the open do-
main Ωt ⊂ R

n+1 � (x, y) and its unknown boundary Γt. The function u measures the
concentration of the penetrant in the case of diffusion in polymers. Many geometries
can be chosen for the domain Ωt. Here a strip-like setting is chosen where the domain
is bounded by a fixed lower and an upper moving hypersurface denoted by Γ0 and
Γt, respectively. Other configurations, like annulus-type domains, are possible and
interesting, and the results obtained here would apply to those since they all would
lead to the same local model problems. The system of equations satisfied by (u,Γt)
proposed in [17] and generalizing [1, 6] then reads

εut −�x,yu = 0 in
⋃
t>0

{t} × Ωt ,(1.1)

u = g on (0,∞) × Γ0 ,(1.2)

−∂νtu = (1 + εu)V on
⋃
t>0

{t} × Γt ,(1.3)

V = (1 + δHt)u on
⋃
t>0

{t} × Γt ,(1.4)

Γt

∣∣
t=0

= Γ0 at t = 0 .(1.5)

In the above equations V denotes the front speed in normal (outward) direction νt,
and Ht denotes its mean curvature. The function g > 0 describes the concentration
profile of a reservoir of the diffusing molecule, whereas the positive constants ε, δ arise
in the nondimensionalization process. They measure the deviation from a threshold
concentration of the penetrant and the strength of the curvature term, respectively.
Condition (1.3) models conservation of mass across the free boundary, whereas con-
dition (1.4) is a phenomenological law which is capable of capturing the behavior
observed in experiments known as case II or anomalous diffusion. The curvature term
naturally appears if one assumes the front speed to be proportional to the local aver-
age concentration in a reference ball of radius δ > 0 rather than to its pointwise value.
The system is clearly nonlinear, and even if the boundary conditions were linear, it
still would be. Indeed, two different solutions have different domains of definitions
and cannot be added. This typical feature of FBPs becomes apparent after the simple



A CLASS OF FREE BOUNDARY PROBLEMS 1983

change of variables

(τ, ξ, η) =

(
t, x,

y

s(t, x)

)
, û(τ, ξ, η) = u

(
τ, ξ, ηs(τ, ξ)

)
,

which transforms the problem to a corresponding one on a fixed domain. To do so, it
is assumed that the fixed boundary of the unknown domain is given by

Γ0 = R
n−1 × {0}

and that the unknown moving boundary can be described as the graph of a function
s(t, ·). The latter assumption is motivated by (initial) condition (1.5). In the new
variables, the domain becomes the strip

S = R
n−1 × [0, 1]

with the obvious boundaries denoted by Γj , j = 0, 1. Using the old notation for the
new variables, the system now reads

εut −�xu− 1 + y2|∇s|2
s2

∂2
yu = εy

ṡ

s
∂yu− 2y

1

s

(
∇s

∣∣∂y∇u
)
− y

s�s− 2|∇s|2
s2

∂yu,

(1.6)

u = g on Γ0,(1.7)

−1 + |∇s|2
s

∂yu = (1 + εu)ṡ−
(
∇s

∣∣∇u
)

on Γ1,(1.8)

ṡ =
√

1 + |∇s|2(1 + δHt)u on Γ1,(1.9)

s(0, ·) = 0.(1.10)

In [16] the quasi-stationary approximation (ε = 0) in two space dimensions was con-
sidered in the presence or absence of the mean curvature term in two space dimensions.
Here there is no restriction on the spatial dimension, and the full evolutionary problem
is analyzed but the curvature effects are neglected (δ = 0).

The main result of this paper is establishing the well-posedness of system (1.6)–
(1.10). To do so, appropriate function spaces have to be used which are able to
capture the regularity of the solution as well as its asymptotic behavior at the origin.
The choice of function spaces is limited by the simultaneous presence of a singular
parabolic problem and a Hamilton–Jacobi equation. Spaces of classical regularity are
better suited for the latter and thus reduce the freedom of choice for the parabolic
problem. A compromise can be reached by using spaces of classical Hölder regularity
in space and of singular Hölder behavior in time. A number of preparatory results are
needed; they are formulated in the next section. In section 3 elliptic and parabolic
results for singular equations will be derived which play a crucial role in the existence
proof given in the last section.

2. Preliminaries and setting. In order to obtain existence results for system
(1.6)–(1.10) a linearization procedure will be used in combination with maximal reg-
ularity results for the relevant linearized problems. The presence of the singularity
complicates the analysis significantly since the relevant regularity results are not avail-
able and need to be derived first. The linearization procedure is meant to capture
the leading order terms of the differential operators at the origin with respect to both
their differentiation order and their singularity degree.
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Of interest in this paper are classical solutions. If such a solution existed, one
would be able to guess from (1.7) and (1.9)–(1.10) that

s(t, x) ≈ t g(x) for t ≈ 0 .

This indicates that the relevant model problem which captures the leading order
behavior of (1.6)–(1.8) has the form

εut −�xu− 1

t2c2(x)
∂2
yu = f(t, x, y) in (0,∞) × S ,(2.1)

u = g(t, x) on (0,∞) × Γ0 ,(2.2)

1

t
∂yu = h(t, x) on (0,∞) × Γ1 ,(2.3)

where in the situation at hand g is independent of the time variable and c = g. The
more general case of c independent of g is, however, of interest and motivates the
different notation. For reasons which can be guessed and will become apparent later,
both parabolic (ε = 1) and elliptic (ε = 0) regularity results are needed in the analysis
of (2.1)–(2.3). The main ingredients needed to derive such regularity results are
vector-valued Fourier multiplier theorems and the use of spaces of singularly Hölder
continuous functions in the time variable and the construction of an evolution operator
for singular families of generators. The first are crucial in the analysis of the elliptic
problem with time frozen, and the latter allow for the quantitative characterization
of the singular behavior in the origin (t = 0) both in the elliptic and parabolic cases
(where maximal regularity results are needed).

For the sake of completeness the formulation of the relevant Fourier multiplier
theorem and the definition of the classes of singular Hölder continuous functions
needed in the analysis are given here. The basic observation illuminating the reason
for their combined use will also be presented in this section.

Assume that E is a given Banach space and that T > 0 and β ∈ (0, 1) [∪{1−}].
Then the standard Hölder (Lipschitz) space is given by

Cβ
(
[0, T ], E

)
:=

{
f ∈ C

(
[0, T ], E

) ∣∣∣∣ [u]β,[0T ] := sup
t�=s

|u(t) − u(s)|
|t− s|β < ∞

}

with norm

‖ · ‖β = ‖ · ‖∞,[0,T ] + [·]β,[0,T ] .

If β = 1 is chosen, one obtains the space of Lipschitz continuous functions. To
distinguish it from the space of continuously differentiable functions the notational
device β = 1− is used. This means that β = 1 for all practical purposes except in the
notation for the space which becomes C1−. Singular counterparts are given by

Cβ
β

(
(0, T ], E

)
:=

{
f ∈ B

(
(0, T ], E

) ∣∣ [t �→ tβu(t)] ∈ Cβ
(
(0, T ], E

)
}(2.4)

with weighted norm defined through

‖ · ‖β,β := ‖u‖∞,(0,T ] + [(·)βu]β,(0,T ] .

The symbol denoting the time interval in the notation for the norm will be dropped
in what follows with the understanding that the interval of definition does not contain
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the origin for singular spaces, whereas it does for regular ones. The following closed
subspace of regular Hölder functions will also be useful:

Cβ
0 ([0, T ], E) :=

{
f ∈ Cβ

(
[0, T ], E)

∣∣ f(0) = 0
}
.

The vector-valued Fourier multiplier theorem which is needed here can be found in
[2, Theorem 6.2]. We reproduce it here for the ease of the reader. The symbol class

(2.5) Sm(E0, E1) :=

{
a ∈ Cn+1

(
R

n \ {0},L(E0, E1)
) ∣∣∣∣

sup
ξ∈Rn

∣∣[1 + |ξ|2](m+|α|)/2∂αa(ξ)
∣∣
L(E0,E1)

< ∞ , |α| ≤ n + 1

}
,

where E0 and E1 are Banach spaces and m ∈ Z, is instrumental in the formulation of
the result. Given a symbol a ∈ Sm(E0, E1), an operator can be associated to it by

a(D) := F−1aF

through conjugation with the vector-valued Fourier transform

F ∈ Lis

(
S
(
R

n, Ej

))
∩ Lis

(
S ′(

R
n, Ej

))
, j = 0, 1 ,

where S and S ′ are the operator-valued Schwartz spaces of fast decaying test functions
and of tempered distributions, respectively. They are endowed with their natural
topology.

Theorem 2.1 (see [2, Theorem 6.2]). Suppose that B ∈ {B,
◦
B, b} and that m ∈ R.

Then [
a �→ a(D)

]
∈ L

(
Sm(E0, E1),L

(
Bs
p,q(R

n, E0),Bs+m
p,q (Rn, E1)

))
for s ∈ R and p, q ∈ [1,∞].

The symbol B denotes the regular Besov spaces, whereas
◦
Bs

p,q and bsp,q denote the
closures of S and Bs+1

p,q in Bs
p,q, respectively. Various equivalent definitions are given

in [2]. Here only regular Besov spaces with p = q = ∞ of positive fractional order
s ∈ R

+ \ N are used, in which case one has

Bs
∞,∞ = BUCs(Rn, E) ,

where the space on the right is the standard space of bounded and uniformly Hölder
continuous functions given by

BUCs(Rn, E) :=
{
f ∈ BUC[s](Rn, E)

∣∣ ∂αf ∈ BUCs−[s](Rn, E) ∀ |α| ≤ [s]
}
.

A crucial observation connecting the dilation of symbols of type (2.5) and singular
Hölder spaces was already obtained in [16]. It allows one to deal with singular elliptic
and, eventually, singular parabolic boundary value problems.

Proposition 2.2 (see [16, Lemma 2.5]). Assume that a ∈ Sm(E0, E1) for some
m ∈ Z. Then [

t �→ tmσta
]
∈ C1−

1

(
(0, T ],Sm(E0, E1)

)
for σt(a) := a(t·).
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Remark 2.1. A straightforward adaptation of the proof given in [16] of Proposition
2.2 also shows that

[
t �→ tmσta

]
∈ C1−([0, T ],Sm−1(E0, E1)

)
.

The importance of this proposition lies in the fact that multiplication of singularly
Hölder continuous functions is well defined and continuous as a map defined in various
combinations of spaces

Cα
α ×Cβ

β → Cβ
β ,(2.6)

Cα
α ×Cβ

0 → Cβ
0 ,(2.7)

Cα
0 ×Cβ

0 → Cβ
−α,(2.8)

Cα
0 ×Cβ

β → Cβ
β−α(2.9)

for α, β ∈ (0, 1) ∪ {1−} and β ≤ α. The proof is elementary and can be found in [16]
along with the (natural) definition of the spaces for negative lower indices.

Finally, optimal regularity results are yet another essential ingredient in dealing
with the full nonlinear problem. They provide maximal regularity results for the
relevant class of singular parabolic problems in classes of singularly Hölder continuous
functions which are, as they need to be, perfectly compatible with the corresponding
results for singular elliptic problems in the same class of functions. The result needed
here has been derived in [13] and is formulated in the next theorem. It gives conditions
for the well-posedness of the singular abstract Cauchy problem

u̇−A(t)u = f(t) , t > 0,(2.10)

for a Banach space–valued function u : (0, T ] → E0 and a singular family of “elliptic
operators” A (that is, of generators of analytic semigroups). The symbol H−(E0, ω)
denotes the class of generators of exponentially decaying semigroups which are not
necessarily strongly continuous (as introduced by [20]).

Theorem 2.3 (see [13, Corollary 3.3]). Assume that A satisfies the assumptions

(i) A(t) ∈ H−(E0, ω) , t > 0 ,(2.11)

(ii) ‖
[
A(t) −A(s)

]
A−1(τ)‖L(E0) ≤ c

t− s

t
and

‖
[
A(t) −A(s)

]
(−A)−ρ(τ)‖L(E0) ≤ c(t− s) ,(2.12)

(iii) lim
t→0

A−1(t) = 0 ,(2.13)

for some ρ ∈ (1, 2) and 0 < τ ≤ s ≤ t ≤ T . Let f ∈ Cβ
γ

(
(0, T ], E0

)
for some β ∈ (0, 1)

and γ = 0, β. Then (2.10) has a unique solution u ∈ Cβ
γ

(
(0, T ], E0

)
satisfying

u̇, Au ∈ Cβ
γ and ‖u̇‖β,γ + ‖Au‖β,γ ≤ c‖f‖β,γ ,

where ‖ · ‖β,0 = ‖ · ‖β.

Using a combination of elliptic and parabolic estimates, it will be possible to
obtain a satisfactory regularity theory for (2.1)–(2.3). The latter will be used in the
analysis of the full evolution system (1.6)–(1.10) for δ = 0.
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3. Elliptic and parabolic estimates. In order to use the results presented in
the previous section in the analysis of (1.6)–(1.10), appropriate function spaces have
to be chosen in which to work. The choice can typically be justified by balancing the
regularities in the nonlinear equations in such a way that a fixed point argument can
be applied to the set of equations. Whereas a variety of function spaces of Sobolev
type are available for dealing with elliptic and parabolic problems, the fact that the
system of interest contains a Hamilton–Jacobi equation for the evolution of s, which,
in turn, appears in differentiated form as a coefficient in the equations for the evolution
of u, restricts the choice to spaces of classical regularity for s. It is indeed impossible
to work in Sobolev–Slobodeckii spaces for u as the loss of regularity incurred in taking
traces on the boundary cannot be made up for by (1.9), which does not possess any
regularizing effect. It becomes clear that spaces of classical regularity for both u and
s need to be chosen. In order to use the Fourier multiplier Theorem 2.1 the choice
is therefore reduced to spaces of bounded uniformly continuous functions in the x-
variable. As far as the y-variable is concerned a good choice is given by the space
of continuous functions, as will become clear later. The “base” space E0 for u is
therefore chosen as

E0 := BUC1+α
(
R

n,C(0, 1)
)

(3.1)

for α ∈ (0, 1) and where C(0, 1) denotes the standard space of continuous functions on
[0, 1]. The space with one less regularity degree in x would seem like a more natural
choice, but the choice made here makes it much easier to deal with inhomogeneous
Neumann boundary conditions such as (1.8). This point will become clear later in the
analysis in section 3.3. In view of the singular nonautonomous nature of the problem,
the standard procedures [19] for dealing with inhomogeneous (nonlinear) boundary
conditions cannot be utilized.

It follows that a proper choice of “base” space for the full evolutionary problem
is given by

E0 := Cβ
β

(
(0, T ],BUC1+α

(
R

n,C(0, 1)
))

(3.2)

for u and by

S := C1+β
(
[0, T ],BUC2+α(Rn)

)
∩ Cβ

(
[0, T ],BUC3+α(Rn)

)
(3.3)

for s. A closer look at the underlying elliptic problem (ε = 0) is necessary in order
to better deal with the inhomogeneous boundary terms in (2.1)–(2.3). The operator
−�x − 1

t2g2(x)∂
2
y has clearly nonconstant coefficients, and multiplier Theorem 2.1 is

formulated only in the translation invariant case. It therefore needs to be shown that
localization arguments apply in the operator-valued setting considered here.

The first step, however, is to obtain regularity results in the constant coefficient
case.

3.1. The elliptic case: Constant coefficients. Consider problem (2.1)–(2.3)
and assume that ε = 0 and that c is a constant which can be assumed to be 1 without
loss of generality. Then taking a Fourier transform in the x-variables, one obtains a
parameter-dependent boundary value problem for û which can be solved explicitly.
The solution has the structure

û(t, ξ, ·) = t2σtc(ξ, ·)f̂ + tσtb(ξ, ·)ĥ + σta(ξ, ·)ĝ,(3.4)
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where σt denotes dilation by t > 0 and the operator-valued symbols a, b, c are given
by

(3.5) a(ξ, ·) =
cosh

(
|ξ|(1 − ·)

)
cosh(|ξ|) , b(ξ, ·) =

sinh(|ξ|·)
|ξ| cosh(|ξ|) , c(ξ, ·) =

(
|ξ|2 + C)−1 .

The first two symbols have to be considered as multiplication operator–valued with
respect to the variable y, whereas the last contains the sectorial operator C which is
the operator −∂2

y on C(0, 1) with domain

dom(C) = {u ∈ C2(0, 1) |u(0) = 0 , ∂yu(1) = 0} =: C2
0,0(0, 1) .(3.6)

The spaces

Ck
0 := {u ∈ Ck(0, 1) |u(0) = 0} , k = 0, 1,

will also be needed. Proposition 2.2 can be used in combination with the multiplica-
tions (2.6)–(2.9) to obtain regularity results in weighted Hölder spaces, provided (3.5)
are in the appropriate symbol class.

Theorem 3.1. The symbols (3.5) satisfy

a ∈ S0
(
C(0, 1),C(0, 1)

)
,

b ∈ Sk
(
C(0, 1),C1−k

0 (0, 1)
)
,

c ∈ Sj
(
C(0, 1),C2−j

0,0 (0, 1)
)

for k = 0, 1 and j = 0, 1, 2. The notation for the spaces has to be interpreted so that
boundary conditions are imposed only if enough regularity is available but otherwise
disregarded.

Proof. Take the last symbol first. It is known that the operator C is sectorial and
invertible (cf. [19]). It follows that

‖(|ξ|2 + C)−1‖L(C,C2−j) ≤ c
1

1 + |ξ|j , j = 0, 1, 2.(3.7)

As for the derivatives, it is seen by induction that, for ξ �= 0,

∂α(|ξ|2 + C)−1 = (|ξ|2 + C)−1
∑

|β|≤|α|
pα,β(ξ)(|ξ|2 + C)−|β|

for polynomials pα,β of degree at most |β|. The estimate therefore follows from (3.7).
Next consider the “boundary symbols” a and b. A simple series expansion reveals
that both symbols are actually analytic functions of ξ2 (and y of course). It follows
that they are smooth for all ξ ∈ R

n in spite of appearances. It is therefore legitimate
to concentrate on the decay properties of the symbols without necessarily using the
nowhere vanishing weight (1 + |ξ|2)1/2 needed in the definition of the symbol class.
Observe that both are smooth functions of y regardless of ξ. Consequently they define
multiplication operators for C2−k(0, 1) and k = 0, 1, 2. Also observe that, for b, the
smoothing effect in x is due to the decay in ξ. They clearly satisfy the required
boundary conditions. They further satisfy the relations

∂yb(ξ, y) = a(ξ, 1 − y) , ∂2
yb(ξ, y) = |ξ|2b(ξ, y) ,

∂ya(ξ, y) = −|ξ|2b(ξ, 1 − y) , ∂2
ya(ξ, y) = |ξ|2a(ξ, y) ,
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which make it easier to derive their mapping and symbol properties from one another.
For instance, if it were known that a, b ∈ S0(C,C), the first relation would imply
that ∂yb ∈ S0(C,C) and therefore that b ∈ S0(C,C1). The last one, on the same
assumptions, would show that a ∈ S−2(C,C2). More details are now given for the
analysis of symbol a. Corresponding claims for the symbol b can be obtained by
similar calculations. The claim is that a ∈ S0(C,C). It is plain that

sup
ξ∈Rn

sup
y∈[0,1]

|a(ξ, y)| < ∞ .

As for the first derivatives in ξ one has

∂ja(ξ, y) =
ξj
|ξ|

1

cosh(|ξ|)
[
(1 − y) sinh(|ξ|(1 − y)) − tanh(|ξ|) cosh(|ξ|(1 − y))

]
(3.8)

=
ξj
|ξ|a(ξ, y)

[
(1 − y) tanh(|ξ|(1 − y)) − tanh(|ξ|)

]
︸ ︷︷ ︸

=:d(ξ,y)

.

The maximum in y is taken either on the boundary y = 0, 1 or in the interior. On
the boundary it either vanishes or is exponentially decaying in |ξ|. It therefore only
needs to be controlled in the interior to conclude its estimation. Only the term in
brackets on the right-hand side in the first line of (3.8) depends on y. Setting its first
y-derivative equal to zero, one arrives at the equation

tanh(|ξ|(1 − y))

(1 − y)|ξ| =
1

|ξ| tanh(|ξ|) − 1
,

which, for |ξ| large, is asymptotic to

1

(1 − y)|ξ| ∼
1

|ξ| .

Thus the maximum is located at y ∼ 1
|ξ| for large |ξ|. As for the maximal value for

large |ξ| one has

∂ja

(
ξ,

1

|ξ|

)
∼ ξj

|ξ|a
(
ξ,

1

|ξ|

)
1

|ξ| ,(3.9)

which entails the desired estimate

sup
x∈Rn

sup
y∈[0,1]

(1 + |ξ|2)1/2|∂ja(ξ, y)| < ∞ .

Equation (3.9) follows from(
1 − 1

|ξ|

)
tanh(|ξ| − 1) − tanh(|ξ|),(3.10)

observing that tanh(s) = 1 up to exponentially small terms in s for s > 0 large, that
is,

| tanh(s) − 1| ≤ ce−3s s > 0 .

The second derivative satisfies

∂i∂ja(ξ, y) =
ξiξj
|ξ|3 a(ξ, y)d(ξ, y) +

ξjξj
|ξ|2 a(ξ, y)d

2(ξ, y) +
ξj
|ξ|a(ξ, y)∂jd(ξ, y).
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The first term on the right-hand side can be seen to decay like 1/|ξ|2 in view of the
explicit prefactor and the estimate obtained for the first derivative (3.8). The second
and third terms add up to

ξiξj
|ξ|2 a(ξ, y)

[
(1 − y)2 − 1 − 2(1 − y) tanh(|ξ|) tanh(|ξ|(1 − y)) + 2 tanh2(|ξ|)

]
.

Similar calculations to those performed for the first derivative show that the maximum
is now attained at

y ∼ 2

|ξ| ,

and it amounts to

∂i∂ja

(
ξ,

2

|ξ|

)
− ξiξj

|ξ|3 a
(
ξ,

2

|ξ|

)
d

(
ξ,

2

|ξ|

)
∼ 4

|ξ|2 .

The latter follows from(
1 − 2

|ξ|

)2

− 1 − 2

(
1 − 2

|ξ|

)
tanh(|ξ| − 2) tanh(|ξ|) + 2 tanh2(|ξ|) ∼ 4

|ξ|2 ,

which uses (3.10) again. In conclusion, it is obtained that

sup
ξ∈Rn

sup
y∈[0,1]

(1 + |ξ|2)|∂i∂ja(ξ, y)| < ∞ .

Comparing this with the proof of [16, Lemma 2.2], we see that the arguments are

almost identical. The only differences are the additional factors like
ξj
|ξ| for the first

derivative or
ξiξj
|ξ|3 and

ξiξj
|ξ|2 for the second. Terms containing these can always be han-

dled through their explicit dependence on ξ and the estimates from previous deriva-
tives. The inductive argument used in [16] can therefore be adapted to the current
situation and leads to the desired result.

Combining these results with Theorem 2.1, Proposition 2.2, and (2.6)–(2.9), we
obtain the next important theorem. To simplify its formulation we introduce the
abbreviated notation

C?
? BUC? C?

?,?

for the function spaces

C?
?

(
(0, T ],BUC?

(
R

n,C?
?,?(0, 1)

))
,

where the question marks can be substituted by any of the relevant regularity and
singularity parameters.

Theorem 3.2. Let α, β ∈ (0, 1) and γ = 0, β. Given

(f, g, h) ∈ Cβ
γ BUC1+α C×Cβ

γ BUC3+α ×Cβ
γ BUC2+α,

there exists a unique solution u of (2.1)–(2.3) for c ≡ const which belongs to the space

E1 :=

{
u ∈ E0

∣∣∣ ∂α
x

(
∂y
t

)j

u ∈ E0 for |α|, j = 0, 1, 2, s.t. |α| + j ≤ 2

}
,
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where

E0 := Cβ
γ BUC1+α C .

It is given by

u = F−1t2σtcF︸ ︷︷ ︸
=:A(t)−1

f + F−1tσtbF︸ ︷︷ ︸
=:RN (t)

h + F−1σtaF︸ ︷︷ ︸
=:RD(t)

g .

Modulo the singularity, the terms in the above representation clearly point to
their asymptotic behavior at the origin. This result needs to be extended to the
nonconstant coefficient case. This is done in the next section.

Remark 3.1. To make it easier to refer back to the above result in the case γ = 0,
the corresponding spaces will be denoted by Ek,0, k = 0, 1.

3.2. The elliptic nonconstant coefficient case. In this section we adapt an
abstract formulation of a localization argument proposed by Angenent in [5] (see also
[4, 3]) for R

n to cover the case of boundary value problems in an operator-valued
context. It is used in combination with the Fourier multiplier Theorem 2.1 to give
the basic regularity results needed for the singular elliptic boundary value problem
underlying (2.1)–(2.3) in the case of constant coefficients. It should be observed
that localization arguments rely on perturbation results for differential operators by
lower order terms. These are small compared to the leading order operator only in a
qualitative sense. Perturbation results can therefore only be applied for the resolvents
with large λ where the decay properties of the inverse to the leading order operator
yield smallness of the lower order terms. The structure of the singular operators
considered here can be exploited in order to avoid shifting the leading order operator
and in order to obtain direct invertibility results. The standard argument of course
shows that nonconstant coefficient operators are sectorial whenever their constant
coefficient counterpart is (see [5]). This remains valid here and can be used if the
time variable is kept fixed.

The goal of this section is to extend the validity of Theorem 3.2 to the nonconstant
coefficient singular boundary value problem(

A(t), γ0,
1

t
γ1∂y

)
: E1 → E0 × ∂E1,(3.11)

where A(t) is the elliptic operator driving the evolution in (2.1) and the “boundary
space” ∂E1 is defined by

∂E1 = Cβ
γ BUC3+α ×Cβ

γ BUC2+α =: ∂DE1 × ∂NE1 , γ = 0, β .(3.12)

Observe that Theorem 3.2 simply states that the above singular boundary value prob-
lem has a bounded inverse in the given topologies and for constant coefficients. The
localization procedure proposed in [5] is abstract and is based on the concept of res-
olution. A resolution of a Banach space E is simply a triple (F, ε, δ), where F is a
Banach space and the maps δ : E → F and ε : F → E satisfy ε ◦ δ = idE . The
operator δ plays the role of the localizing operator, whereas ε resynthesizes the local
contributions. If the space E has subspaces of interest, they should correspond to
“similar subspaces” of F and should be left invariant by the resolution maps. The
localization operator can be constructed as follows:

δ : Ej → ⊕k∈ZF
k
j , u �→ (uk)k∈Zn := (uϕk,r)k∈Zn , j = 0, 1,
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where F
k
j = Ej for k ∈ Z

n and the sequence space ⊕k∈ZF
k
j is endowed with the

supremum norm supk∈Z
‖uk‖Fj . The maps (ϕ2

k,r)k∈Zn are chosen as to form a smooth
resolution of the identity in R

n, ∑
k∈Zn

ϕ2
k,r ≡ 1,

subordinated to a cover by cubes Qk∈Zn,r of fixed side length r > 0 obtained by
translation and dilation of the standard cube of side size r = 1 centered at the origin.
The support of ϕk,r should contain Qk,r and be contained in the union of at most
finitely many adjacent cubes. The synthesis operator is then given by

ε : ⊕k∈ZF
k
j → Ej , (uk)k∈Zn �→

∑
k∈Zn

ukϕk,r,

in which case the relation defining a resolution is clearly satisfied. Observe that the
mappings δ and ε are continuous. The idea is to define an operator on ⊕k∈ZF1 which
parallels the boundary value problem (3.11) and to use its inverse to approximate the
desired inverse of (3.11) via the use of the maps ε and δ. Define the operator (A′,B′)
on ⊕k∈ZF1 through

(Ak,Bk)uk =

(
−�xuk − 1

t2ck(x)
∂2
yuk, γ0uk,

1

t
γ1∂yuk

)
,

where ck|supp(ϕk,r) = c|supp(ϕk,r) and ck is otherwise smoothly extended without in-
creasing its norm to the whole space (the details of the extension procedure can be
found in [4, 3]). The boundary value problem (Ak,Bk) can be made arbitrarily close
to a constant coefficient one, say, by substituting ck by ck(xk) and making r small. It
is therefore invertible and enjoys the properties claimed in Theorem 3.2. The diagonal
operator (A′,B′) is then invertible itself and maps ⊕k∈Z

[
F1 × ∂F1

]
to ⊕k∈ZF0, where

∂F1 is defined in the obvious way. Denote by
[
A′(t)−1 R′

D(t) R′
N (t)

]
its inverse.

Then

ε
[
A′(t)−1 R′

D(t) R′
N (t)

]
δ(3.13)

should represent an approximation to the solution operator for the singular boundary
value problem (2.1)–(2.3). In order to show this, it needs to be shown that (3.13) is
an approximate left and right inverse. Starting with the latter, compute

(3.14)

⎡
⎣ A(t)

γ0
1
t γ1∂y

⎤
⎦ ε

[
A′(t)−1 R′

D(t) R′
N (t)

]
δ

=

⎡
⎣idE0 +[A(t), ε]A′(t)−1δ [A(t) , ε]R′

D(t)δ [A(t) , ε]R′
N (t)δ

0 idγ0E1
0

0 0 idγ1∂yE1

⎤
⎦ ,

where [A(t), ε] = A(t)ε− εA(t)′. Invertibility would follow if

idE0 +[A(t), ε]A′(t)−1δ(3.15)

were invertible. Here the specific structure of the operator A(t) needs to be exploited
since standard perturbation arguments would only allow us to show that the resolvent
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R(λ,A) exists for large enough λ, in which case the lower order commutator term is
small. The commutator term (3.15) can be computed to give

∑
k∈Zn

[
2(∇ϕk,r|∇·) + �ϕk,r·

] [
−�x − 1

t2c2k(x)
∂2
y

]−1

ϕkf .(3.16)

To see that the inverse appearing in (3.16) does indeed exist on the desired spaces,
observe that r > 0 can be chosen such that

−�x − 1

t2c2k(x)
∂2
y + �x +

1

t2c2k(xk)
∂2
y =

[
1

c2k(x)
− 1

c2k(xk)

]
1

t2
∂2
y

is small in L(E1,E0). The realization Ak of Ak with homogeneous boundary conditions
is therefore invertible, and the constant coefficient estimates of Theorem 3.2 carry over
to it (with larger constants, of course). Now, the estimates∥∥∥∥∥2∇ϕk,r∇

[
−�x − 1

t2c2k(x)
∂2
y

]−1
∥∥∥∥∥
L(E0)

≤ cT and

∥∥∥∥∥�ϕk,r

[
−�x − 1

t2c2k(x)
∂2
y

]−1
∥∥∥∥∥
L(E0)

≤ cT 2

show that the commutator is indeed small, at least for T small enough. Here the
decay properties of the resolvent as t → 0 are used as a substitute for making λ large
in the standard argument. Heuristically this makes sense, since making t small, just
as making λ large, makes the operator “more and more elliptic.” This is due to the
specific nature of the singular operator. Since the difficulty of the problem stems from
the origin, making T small does not in any way weaken the result.

Next it needs to be shown that (3.13) is also a good approximation for a left
inverse. To that end, observe that

u− ε
(
A′(t),B′(t)

)−1
δ
(
A(t),B(t)

)
u

is the same as

u−
(
εA′(t)−1δA(t)u + εR′

D(t)δγ0u + εR′
N (t)δγ1

∂y
t
u

)
= εA′(t)−1[A(t), δ]u(3.17)

because

u = εA′(t)−1A′(t)δu + εR′
D(t)δγ0u + εR′

N (t)γ1
∂y
t
u

by definition. The notation

[A(t), δ] = A′(t)δ − δA(t)

was used in (3.17). It follows that

ε
(
A′(t),B′(t)

)−1
δ
(
A(t),B(t)

)
= idE1 −εA′(t)−1[A(t), δ].

The term containing the commutator is lower order and can be estimated just as
before, exploiting the structure of A(t) in order to yield the invertibility of

idE1
−εA′(t)−1[A(t), δ]



1994 PATRICK GUIDOTTI

and, thus, a left inverse for the singular boundary value problem. The result is
summarized in the next theorem.

Theorem 3.3. Let α, β ∈ (0, 1), γ = 0, β, and 0 < c0 ≤ c ∈ BUC1+α. Given

(f, g, h) ∈ Cβ
γ BUC1+α C×Cβ

γ BUC3+α ×Cβ
γ BUC2+α,

there exists a unique solution u of (2.1)–(2.3) which belongs to the space

E1 :=

{
u ∈ E0

∣∣∣ ∂α
x

(
∂y
t

)j

u ∈ E0 for |α|, j = 0, 1, 2 s.t. |α| + j ≤ 2

}
,

where

E0 := Cβ
γ BUC1+α C .

It naturally splits into three components,

u = Ã(t)−1f + R̃N (t)h + R̃D(t)g,

with the same asymptotic behavior at the origin as in the constant coefficient case and
where

Ã(t)−1f =
(
A(t),B(t)

)−1
(f, 0, 0) , R̃D(t)g =

(
A(t),B(t)

)−1
(0, g, 0),

and R̃N (t)h =
(
A(t),B(t)

)−1
(0, 0, h),

respectively.

Proof. The only part of the proof missing is for the claim about the asymptotic
behavior of the solution. It is obtained using the representation

⎡
⎣T −T [A(t), ε]R′

D(t)δ −T [A(t), ε]R′
N (t)δ

0 idγ0E1
0

0 0 idγ1∂yE1

⎤
⎦

for the inverse of⎡
⎣idE0

−[A(t), ε]A′(t)−1δ [A, ε]R′
D(t)δ [A(t), ε]R′

N (t)δ
0 idγ0E1

0
0 0 idγ1∂yE1

⎤
⎦ ,

where T =
[
idE0 −[A(t), ε]A′(t)−1δ

]−1
, the factorization of the resolvent implied by

(3.14) and the mapping properties for the operators involved which follow from the
symbol analysis combined with Theorem 2.1, Proposition 2.2, and (2.6)–(2.9). Take,
for instance, the entry TA(t) εR′

D(t)δ. The claim follows from

T ∈ L(E0), A ∈ L(E1,E0), and εR′
Dδ ∈ L(∂DE1,E1) .

From now on the tildes on the solution operators of the nonconstant coefficient
case will be omitted. Since the corresponding operators in the constant coefficient
case will no longer be used in the analysis, no confusion seems likely.
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3.3. The parabolic problem. It is now possible to return to the analysis of the
model problem (2.1)–(2.3) for ε = 1. If the boundary conditions are homogeneous,
then Theorem 2.3 gives existence and regularity of a solution u ∈ E1 whenever f ∈ E0.
The notation E1 (see Theorem 3.2) has been used so far to describe the regularity
space of the singular elliptic boundary value problem. In the parabolic case the same
notation indicates the space

E1 :=

{
u ∈ E0

∣∣∣ ∂tu ∈ E0 , ∂
α
x

(
∂y
t

)j

u ∈ E0 for |α|, j = 0, 1, 2, s.t. |α| + j ≤ 2

}

in accordance with Theorem 2.3. To obtain optimal regularity results for

A(t) = �x +
1

t2c2(x)
C

it is therefore sufficient to check that conditions (2.11)–(2.13) are satisfied. The op-
erator C was defined in (3.6). Freezing coefficient arguments such as those in [4, 3]
or [5] show that A(t) does indeed generate an analytic semigroup on E0 for each
fixed t > 0, which is exponentially decaying since C is invertible (see also the begin-
ning paragraph of subsection 3.2). Estimates (2.12)–(2.13) follow from the regularity
theory developed in the previous section and the fact that A(t) generates an expo-
nentially decaying analytic semigroup. The latter makes it possible, in particular, to
define the fractional power appearing in (2.12) (see [19] for more details). Condition
(2.13) follows from

‖A(t)−1‖L(E0) ≤ cT 2,

which, in turn, follows from the observation that ( 1
c2(x)C)−1 is bounded in E0 and

from

A(t)−1 = t2
(
t2�x +

1

c2(x)
C

)−1

.

The first condition in (2.12) follows from

[
A(t) −A(s)

]
A(τ)−1 =

(t2 − s2)τ2

t2s2

C

c2(x)

[
−τ2�x +

C

c2(x)

]−1

and the fact that ∥∥∥∥∥ C

c2(x)

[
−τ2�x +

C

c2(x)

]−1
∥∥∥∥∥
L(E0)

is uniformly bounded for τ ∈ (0, T ]. The second condition in (2.12) follows similarly
by using abstract mapping properties of fractional powers and, in particular, that∥∥∥∥∥

[
−τ2�x +

C

c2(x)

]−ρ+1
∥∥∥∥∥
L(E0)

≤ c .

It remains to be shown that problem (2.1)–(2.3) can be solved for inhomogeneous
boundary conditions as well. The result is formulated in the next theorem.
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Theorem 3.4. Let c ∈ BUC1+α and

f ∈ E0 , g ∈ Cβ
β BUC3+α ∩C1+β

β BUC1+α , h ∈ Cβ
β BUC2+α ∩C1+β

β BUCα .

(3.18)

Then there exists a unique solution u ∈ E1 of (2.1)–(2.3).
Proof. It can be assumed without loss of generality that f ≡ 0. Looking for a

solution u in the form

u = v + RD(t)g + RN (t)h,

one obtains that v satisfies

v̇ −A(t)v =
d

dt

[
RD(t)g + RN (t)h

]
.

Using (2.1)–(2.3), it can be checked that

d

dt

[
RD(t)g

]
=

2

t
A(t)−1�xRD(t)g + RD(t)ġ,

d

dt

[
RN (t)h

]
=

2

t
A(t)−1�xRN (t)h +

1

t
RN (t)h + RN (t)ḣ .

The regularity results obtained in the previous section combined with the assumptions
then imply that {

t �→ d

dt
[RD(t)g + RN (t)h]

}
∈ E0 .

Take, for instance,
[
t �→ 2

tA(t)−1�xRD(t)g
]

and observe that

RD ∈ L(∂DE1,E1) , �x ∈ L(E1,E0), and

[
t �→ 2

t
A(t)−1

]
∈ L(E0)

or RD(t)ġ, in which case the stated regularity follows from

ġ ∈ γ0E0 and RD ∈ L(γ0E0,E0).

The fact that RD ∈ L(γ0E0,E0) has not been explicitly proven but can be obtained
by symbol analysis and freezing coefficients along the lines of sections 3.1 and 3.2.
The claim then follows from Theorem 2.3.

4. The Hamilton–Jacobi equation. Consider the Hamilton–Jacobi equation

st −
√

1 + |∇s|2 v = 0 in (0,∞) × R
n ,(4.1)

s(0, ·) ≡ 0 on R
n(4.2)

for a given v ∈ Cβ BUC3+α satisfying v(0, ·) = g. The method of characteristics allows
one to recast this Hamilton–Jacobi equation as a system of ODEs in the following
manner:

ṫ = 1 , t(0) = 0 ,(4.3)

ẋ = − p√
1 + |p|2

v(t, x) , x(0) = ρ ∈ R
n ,(4.4)

ż = r − |p|2√
1 + |p|2

v(t, x) , z(0) = 0 ,(4.5)

ṙ =
√

1 + |p|2 ∂tv(t, x) , r(0) = g(ρ),(4.6)

ṗ =
√

1 + |p|2 ∇xv(t, x) , p(0) = 0 .(4.7)
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This system is easily seen to reduce to

ẋ = − p√
1 + |p|2

v(t, x) , x(0) = ρ ∈ R
n ,(4.8)

ṗ =
√

1 + |p|2 ∇xv(t, x) , p(0) = 0,(4.9)

as all other unknowns can be obtained after solving this reduced system. The as-
sumption on v makes it possible to solve this system on a possibly small time interval
[0, T ] which is independent of ρ ∈ R

n. Exploiting the regularity assumption on v, it
can easily be seen that the flow mapping

(Xt, Pt) : R
2n → R

2n , (ρ, η) �→
(
x(t, ρ, η), p(t, ρ, η)

)
satisfies

[t �→ (Xt, Pt)] ∈ Cβ BUC2+α(R2n,R2n),

where the map is obtained by solving system (4.8)–(4.9) with the second initial con-
dition substituted by p(0) = η. It is clearly a flow of diffeomorphisms. Furthermore,
since an equation satisfied by (Dρx,Dρp) is easily derived from (4.8)–(4.9) and since(

Dρx(0, ρ, η), Dρp(0, ρ, η)
)

= (idRn , 0) ,

it follows that DρXt(ρ, 0) satisfies

‖ idRn −DρXt(ρ, 0)‖ ≤ 1

2

uniformly in ρ ∈ R
n. This implies that Xt(·, 0) is a diffeomorphism and yields uniform

estimates for the inverse of Xt. It follows that

[t �→ (Xt)
∗] , [t �→ (Xt)∗] ∈ Cβ L(BUC2+α),(4.10)

where we denoted the pull-back and push-forward with Xt by (Xt)
∗ and (Xt)∗, re-

spectively. Moreover, these operators are uniformly bounded in the norm in a small
time interval.

Theorem 4.1. Assume that v ∈ Cβ BUC3+α is given with v(0) = g ∈ BUC3+α.
Then, for T > 0 small enough, there exists a unique solution s of (4.1)–(4.2) on [0, T ]
with

s ∈ C1+β BUC2+α ∩Cβ BUC3+α .

The existence interval is independent of v in a neighborhood of g. Furthermore, if
v1, v2 ∈ Cβ BUC3+α are such that v1(0) = v2(0) = g, then

(4.11) ‖s1 − s2‖C1+β BUC2+α ∩Cβ BUC3+α

≤ cT ‖v1 − v2‖Cβ BUC3+α + c ‖v1 − v2‖Cβ BUC2+α .

Proof. The solution can be computed by solving the reduced system of charac-
teristic equations (4.8)–(4.9), which produces in particular the diffeomorphisms Xt.
A minimal interval of existence can be chosen independently of the initial conditions
thanks to the assumptions on v. Next

∇xs(t, x) = p
(
t,X−1

t (x), 0
)
,
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together with the discussion preceding the formulation of the theorem, in particular
(4.10), shows that

s ∈ Cβ BUC3+α .

The desired time regularity has to be backed out from (4.5)–(4.6). The time derivative
appearing on the right-hand side of (4.6) is obviously not welcome in view of the
assumptions made on v. It is, however, possible to rewrite the term containing said
time derivative while integrating the equation to read

(4.12) r(t, x) =
√

1 + |p(t, x)|2v
(
t, x)

−
∫ t

0

[v∇xv · p]
(
τ,Xτ (X

−1
t (x))

)
dτ −

∫ t

0

[
|p|2√

1 + |p|2
v

](
τ,Xτ (X

−1
t (x))

)
dτ .

The solution s can then be obtained by one further integration from (4.5). By (4.10)
and the regularity assumption on v it then follows that

s ∈ C1+β BUC2+α .

The use of this argument needs to be justified. This can be done by substituting v
by a regularized version of it which is differentiable in time and for which the partial
integration used to obtain (4.12) can safely be performed. Letting it converge back
to the original function v produces a function satisfying the modified equation. Since
the solution of the original problem can be constructed by solving only the reduced
problem (4.8)–(4.9), no trouble is encountered in taking the limit.

The additional estimate follows from the characteristic system (4.3)–(4.7), the
regularity assumptions on v1, v2, and the fact that v1(0) − v2(0) = 0.

5. Existence result. The local existence result for regular solutions of (1.1)–
(1.5) is based on the analysis of (1.6)–(1.10). The regularity theory for linear singular
elliptic and parabolic problems described in the previous sections and the analysis for
the Hamilton–Jacobi equation performed in the last section will be the main tools. It
should be kept in mind that ε = 1 without loss of generality. To better highlight the
structure of the problem and the use of the linear regularity theory, it is convenient
to rewrite (1.6)–(1.8) using (1.9) in the form

u̇− Ã(t)u = A(s)u in S,(5.1)

u = g on Γ0,(5.2)

1

t
∂yu = H(s, u) on Γ1,(5.3)

where Ã(t) = �x + 1
t2g2(x)∂

2
y + y

t ∂y and the operator A(s) is defined by

A(s)u =

[
1 + y2|∇s|2

s2
− 1

t2g2(x)

]
∂2
yu + y

[
ṡ

s
− 1

t

]
∂yu− 2y

1

s

(
∇s

∣∣∂y∇u
)

− y
s�s− 2|∇s|2

s2
∂yu

and H(s, u) is given by

H(s, u) =
s

t

1

1 + |∇s|2
(
∇s

∣∣∇u
)
− s

t

1√
1 + |∇s|2

u(1 + u) ,
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respectively.
Remark 5.1. It should be observed that the operator family Ã(t) does not coincide

with the one considered in the sections devoted to elliptic and parabolic regularity
theory and denoted by A(t). It is, however, easy to check that it enjoys the same
“singular” elliptic regularity theory, as a perturbation argument shows:

Ã(t) = A(t)
[
idE1

+A−1(t)
y

t
∂y

]
=
[
idE0

+
y

t
∂yA

−1(t)
]
A(t).

Associated with the new family, there will be boundary solution operators R̃D(t) and

R̃N (t) with corresponding mapping properties. These new boundary operators are
actually given by

R̃D(t) = RD(t) + Ã(t)−1
[y
t
∂yRD(t)

]
and R̃N (t) = RN (t) + Ã(t)−1

[y
t
∂yRN (t)

]
,

where RD and RN are the original boundary operators. From now on the old notation
will apply to the new operators.

Assume now that s ∈ S, that is, that s ∈ C1+β BUC2+α ∩Cβ BUC3+α is chosen
in a small ball about the function [t �→ tg(x)] (in the natural norm of S) and satisfying

s(0) = 0 , ṡ(0) = g .(5.4)

It can be verified that the operator A(s) ∈ L(E1,E0) is small in the operator norm if
the time interval length T > 0 is chosen small (this is the reason the modified operator

Ã(t) is introduced; see Remark 5.1). This structure will be useful in the proof of the
following existence result.

Theorem 5.1. Let s ∈ S be given with the above properties (5.4), g ∈ BUC4+α,
and let T > 0 be small. Then there exists a unique solution u ∈ E1 of (5.1)–(5.3),
which is the fixed point of the operator

Φ1(u) = v + RD(t)g + RN (t)H(s, u),

where v solves

v̇ −A(t)v = A(s)u− 2

t
A−1(t)

[
�x +

y

t
∂y

]
[RD(t)g + RN (t)H(s, u)] .(5.5)

Moreover, for s1, s2 ∈ S, the estimates

‖γ1u1 − γ1u2‖Cβ BUC3+β ≤ c‖s1 − s2‖Sβ ,(5.6)

‖γ1u1 − γ1u2‖Cβ BUC2+β ≤ cT β‖s1 − s2‖Sβ

hold.
Proof. As already pointed out, the existence proof relies on maximal regularity

results obtained in the previous sections, which are at the heart of the matter and now
make it possible to use a simple Banach fixed point argument. The fixed point u will
be looked for in the set {u ∈ BE1(g, r) |u(0) = g} for positive r to be fixed later. This
set is endowed with the E1 topology and is therefore complete. It is easy but tedious to
show that v,RN (t)H(s, u) are in E1 ∩E0,0. The first regularity claim follows directly
from Theorems 3.3 and 3.4 both for v and RN (t)H(s, u). The vanishing property
for v follows from its regularity using the equations it satisfies. Its regularity readily
implies that ∂2

yv(t = 0) ≡ 0. Since v satisfies homogeneous boundary conditions

v(y = 0) = 0 = ∂yv(y = 1)
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it then is v(t = 0) ≡ 0. As for the boundary term RN (t)H(s, u) it follows from

1

t
RN (t) ∈ L

(
Cβ

0 BUC1+α,E0,0

)
combined with

tH(s, u) ∈ Cβ
0 BUC1+α

or, alternatively, also from the equations. Finally, the equations also imply that

∂2
yRD(0)g ≡ 0 , RD(0)g(y = 0) = g , ∂yRD(0)g(y = 1) = 0 .

It clearly follows that RD(0)g ≡ g. Summarizing, it is obtained that Φ1(u)(0) = g.
Next a norm estimate for Φ1(u)− g is needed. The term RD(t)g− g can be estimated
by some fixed constant r1. As for the other boundary term, one has that∥∥∥∥RN (t)

t
[tH(s, u)]

∥∥∥∥
E1

≤ cr(1 + r)T β‖s‖S,

and it can therefore be made arbitrarily small by reducing the interval length. The
above estimate is possible since the map [t �→ tH(s, u)] vanishes at the origin in view of
the properties of s. Next v has to be estimated. Most terms can simply be estimated
in a way that they produce a factor T β and can be made arbitrarily small by interval
length reduction. This is due to the fact that

‖v‖E1 ≤ ‖
(
∂t −A(t)

)−1‖L(E0,E1)‖F (s, u)‖E0 ,

where F (s, u) summarizes the terms on the right-hand side of (5.5), and the specifics
of F . Consider, for instance, the first term A(s)u. Since A(s) vanishes at the origin,
it can be seen that

‖A(s)‖L(E1,E0) ≤ cT β‖ṡ‖S ,

which implies the claimed estimate. The estimate for the second term follows from
the fact that ∥∥∥∥1

t
A(t)−1

∥∥∥∥
L(E0)

≤ cT

and the general mapping properties of the operators involved. All remaining terms
but one can be handled similarly. All terms in d

dt [tH(s, u)] containing either s or ∇s
are going to lead to more terms vanishing at the origin. The term

RN (t)

t

[
ṡ√

1 + |∇s|2
u(1 + u)

]

behaves slightly differently and needs separate consideration since ṡu(1+u)/
√

1 +|∇s|2
does not vanish at the origin. Rewriting this term as

RN (t)

t

[
ṡ√

1 + |∇s|2
u(1 + u) − g2(1 + g)

]
+

RN (t)

t
[g2(1 + g)]
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and using the fact that u(0) = g up to vanishing terms of type T β , it follows that∥∥∥∥∥RN (t)

t

[
ṡ√

1 + |∇s|2
u(1 + u)

]∥∥∥∥∥
E0

≤ r2 + cr2 T β‖s‖S,

where the constant r2 is given by

r2 =

∥∥∥∥(∂t −A(t)
)−1RN (t)

t
[g2(1 + g)]

∥∥∥∥
E1

.

It follows that Φ1 is a self-map if r is chosen to satisfy r > r1 + r2 and the time
interval length is sufficiently small. It is important to observe that all estimates have
constants which are independent of s in the chosen neighborhood.

Next it needs to be shown that Φ1 is a contraction. The calculations are very
similar to the above. The terms

Φ(u1) − Φ1(u2) = v1 − v2 + RN (t)
[
H(s, u1) −H(s, u2)

]
need to be estimated. The difference v1 − v2 satisfies

v1 − v2 =
(
∂t −A(t)

)−1[
F (s, u1) − F (s, u2)

]
.

Maximal regularity yields that

‖v1 − v2‖E1 = ‖
(
∂t −A(t)

)−1[
F (s, u1) − F (s, u2)

]
‖E1

≤ c ‖F (s, u1) − F (s, u2)‖E0

so that only the last term needs to be estimated. As for the other summand, an
estimate for

‖RN (t)
[
H(s, u1) −H(s, u2)

]
‖E1

needs to be established. Using similar estimates to those for the self-map property
and observing that all the terms not vanishing at the origin drop out since they do
not depend on the unknowns, one arrives at

‖Φ1(s, u1) − Φ1(s, u2)‖E1
≤ cT β ‖u1 − u2‖E1

with a constant which is independent of s in the chosen neighborhood. Existence of
a unique fixed point follows by making the interval length short enough.

Next observe that any solution actually satisfies

γ1u = γ1RD(t)g + γ1[v + RN (t)H(s, u)] ∈ Cβ BUC3+α(5.7)

by Remark 2.1 since g ∈ BUC4+α. This follows from

v =
(
∂t −A(t)

)−1
[
F (s, u) +

1

t
RN (t)g2(1 + g)

]
−
(
∂t −A(t)

)−1 1

t
RN (t)g2(1 + g)

and

RN (t)H(s, u) = RN (t)[H(s, u) − g2(1 + g)] + RN (t)g2(1 + g) ,

where the first terms on the right-hand sides above belong to E1,0 and the second
ones are not singular due to the regularity of g, and therefore of g2(1 + g), combined
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with Remark 2.1. The first continuous dependence result follows along the lines of the
above estimates from the fact that the solution to the initial boundary value problem
depends smoothly (linearly) on the interior and boundary data A(s)u and H(s, u).
The only difference stems from the fact that a stronger norm is now estimated which
leads to the absence of the factor T β in front of ‖s1 − s2‖S. This factor can be
regained if a weaker norm is estimated in view of the “desingularizing” properties
of [∂t − A(t)]−1, which leads to the stated continuous dependence estimate. The
estimates are based on

‖γ1u1 − γ1u2‖Cβ BUC3+β ≤ ‖γ1Φ1(s1, u1) − γ1Φ1(s2, u2)‖Cβ BUC3+β

≤ ‖γ1Φ1(s1, u1) − γ1Φ1(s1, u2)‖Cβ BUC3+β

+ ‖γ1Φ1(s1, u2) − γ1Φ1(s2, u2)‖Cβ BUC3+β .

The estimate for the first term of A(s1) −A(s2) is typical. It gives∥∥∥∥∥
[
t2

s2
1

(1 + y2|∇s1|2) −
t2

s2
2

(1 + y2|∇s2|2)
]
∂2
y

t2

∥∥∥∥∥
L(E1,E0,0)

≤
∥∥∥∥ t2s2

1

(1 + y2|∇s1|2) −
t2

s2
2

(1 + y2|∇s2|2)
∥∥∥∥

Cβ BUC1+α C

∥∥∥∂2
y

t2

∥∥∥
L(E1,E0)

,

which easily entails the claim since∥∥∥∥ t2s2
1

(1 + y2|∇s1|2) −
t2

s2
2

(1 + y2|∇s2|2
∥∥∥∥

Cβ BUC1+α C

≤ c
(
‖ṡ1 − ṡ2‖Cβ BUC1+α + ‖s1 − s2‖Cβ BUC2+α

)
≤ c‖s1 − s2‖S .

One is eventually led to

‖γ1u1 − γ1u2‖Cβ BUC3+α ≤ cT β‖u1 − u2‖E1
+ ‖s1 − s2‖Sβ ,

from which the claim follows since the first term on the right can be absorbed on the
left-hand side.

All pieces are now in place in order to show existence for the original system of
equations (1.6)–(1.10). By denoting with u = Φ1(s) the solution of (1.6)–(1.8) for a
given s ∈ S, it follows that

u ∈ E1 and γ1u ∈ Cβ BUC3+α .

Decomposition (5.7) shows that u is in a given neighborhood of g for any choice
of s ∈ S in a neighborhood of [t �→ tg(x)]. Similarly let Φ2(u) be the solution of
(1.9)–(1.10) constructed in section 4. In this case, if u ∈ E1 with γ1u ∈ Cβ BUC3+α,
Φ2(u) ∈ S will be in a neighborhood of tg(x) for u in a neighborhood of g. It follows
that a solution to the full problem can be found by producing a fixed point s for the
map Φ := Φ2 ◦ Φ1 and defining u := Φ1(s). We summarize in the following theorem.

Theorem 5.2. For any given g ∈ BUC4+α such that g(x) ≥ g0 > 0 , x ∈ R
n,

there exists a unique local solution (u, s) of the free boundary problem (1.6)–(1.10)
such that

u, u̇, ∂α
x

1

tk
∂k
yu ∈ Cβ

β BUC1+α C for 0 ≤ |α| + k ≤ 2,

γ1u ∈ Cβ BUC3+α, and

s ∈ C1+β BUC2+α ∩Cβ BUC3+α .
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Furthermore

u = RD(t)g + RN (t)H(s, u) + v,

where v is a solution of (5.5) and the different terms have different asymptotic behav-
ior in the origin. They behave, respectively, like tk for k = 0, 1, 2 modulo the singular
behavior built into the space chosen.

Proof. Making the time interval as small as needed and choosing r > 0 large
enough, it can be seen that (Φ1,Φ2) is a self-map on the complete set

{u ∈ BE1
(0, r) |u(0) = g} × {s ∈ BS(gt, g0/2) | s(0) = 0 , ṡ(0) = g} ,

where the additional requirements u(0) ≡ g , s(0) = 0 , ṡ(0) ≡ g are included in the
definition of the balls. Combining the estimates of Theorems 4.1 and 5.1, it follows
that

‖Φ(s1) − Φ(s2)‖Sβ ≤ c T β ‖s1 − s2‖Sβ

and the contraction principle can be applied to obtain existence.
Remark 5.2. It should be pointed out that this is the first well-posedness result for

this class of singular FBPs in more than one space dimension for the full evolutionary
problem. A companion result for the quasi-stationary approximation (ε = 0) has
previously been obtained in [16].

REFERENCES

[1] T. Alfrey, E. F. Gurnee, and W. G. Lloyd, Diffusion in glassy polymers, J. Polymer Sci.
Part C, 12 (1966), pp. 249–261.

[2] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov-spaces, and applications,
Math. Nachr., 186 (1997), pp. 5–56.

[3] H. Amann, Elliptic operators with infinite-dimensional state space, J. Evol. Equ., 1 (2001),
pp. 143–188.

[4] H. Amann, M. Hieber, and G. Simonett, Bounded H∞-calculus for elliptic operators, Dif-
ferential Integral Equations, 7 (1994), pp. 613–653.

[5] S. Angenent, Constructions with analytic semigroups and abstract exponential decay results
for eigenfunctions, in Topics in Nonlinear Analysis, Progr. Nonlinear Differential Equations
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ON MULTIPLE RADIAL SOLUTIONS OF A SINGULARLY
PERTURBED NONLINEAR ELLIPTIC SYSTEM∗

EDWARD NORMAN DANCER† , XIAOFENG REN‡ , AND SHUSEN YAN§

Abstract. We study radial solutions of a singularly perturbed nonlinear elliptic system of
the FitzHugh–Nagumo type. In a particular parameter range, we find a large number of layered
solutions. First we show the existence of solutions whose layers are well separated from each other
and also separated from the origin and the boundary of the domain. Some of these solutions are local
minimizers of a related functional while the others are critical points of saddle type. Although the
local minimizers may be studied by the Γ-convergence method, the reduction procedure presented in
this paper gives a more unified approach that shows the existence of both local minimizers and saddle
points. Critical points of both types are all found in the reduced finite dimensional problem. The
reduced finite dimensional problem is solved by a topological degree argument. Next we construct
solutions with odd numbers of layers that cluster near the boundary, again using the reduction
method. In this case the reduced finite dimensional problem is solved by a maximization argument.

Key words. radial solutions, singularly perturbed elliptic system, Lyapunov–Schmidt reduction,
Γ-convergence

AMS subject classifications. 35J50, 35J55
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1. Introduction. We consider the singularly perturbed elliptic system⎧⎪⎪⎨
⎪⎪⎩
−ε2Δu + f(u) + εγv = 0 in Ω,

−Δv + v − u = 0 in Ω,

∂νu = ∂νv = 0 on ∂Ω

(1.1)

on a smooth bounded domain Ω. The perturbation parameter ε is positive and small.
The outward normal derivatives of u and v on the boundary of Ω are denoted by ∂νu
and ∂νv, respectively.

The nonlinear function f in (1.1) is the cubic polynomial

f(u) = (u− a)

(
u− a + b

2

)
(u− b).(1.2)

It has three zeros a, a+b
2 , and b, in the increasing order. The function is balanced in

the sense that ∫ b

a

f(q) dq = 0.(1.3)

The nonlinearity in the system (1.1) is of the FitzHugh–Nagumo type. It was
originally proposed to study nerve impulses [10, 18]. The phenomenon that is modeled
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is the control of the electrical potential across a cell membrane. This control is done
by the change of flow of the ionic channels of the cell membrane. This results in
the change in potential which is used to send electrical signals between cells. This is
readily observed in muscle and other excitable cells. The two variables in the system
are the excitable variable u and the recovery variable v. The dynamics of the two
variables are described by the reaction-diffusion system⎧⎪⎪⎨

⎪⎪⎩
ut = ε2Δu− f(u) − εγv,

κvt = Δv − v + u,

∂νu = ∂νv = 0 on ∂Ω.

(1.4)

Steady state solutions of (1.1) often have layered structures. In most parts of the
domain Ω, a solution u is close to a or b. However, there exist small regions in Ω
where the value of u changes abruptly from a to b. These regions are called transition
layers or interfaces.

The parameter range in this paper differs from the more extensively studied one
where ε does not appear in the εγv term in the first equation of (1.1) (see, for example,
[4, 3, 5, 7, 6, 9, 14, 11, 12, 20, 19, 21, 24]). We will show that the parameter range
considered in this paper typically gives solutions with a finite number of interior layers.
In the parameter range without ε in the εγv term, the number of interior layers of
a solution typically approaches infinity as ε → 0 (see [4, 17, 23, 1] for this type of
phenomenon). The reason for this difference is that with ε in εγv there is less impact
from the coupling effect with v, and hence there are fewer layers in a solution.

If we solve the second equation in (1.1) for v in terms of u with the boundary
condition ∂νv = 0 on ∂Ω, i.e., v = (1 − Δ)−1u, and substitute the solution into the
first equation, we obtain the equation for u:

−ε2Δu + f(u) + εγ(1 − Δ)−1u = 0 in Ω, ∂νu = 0 on ∂Ω.(1.5)

This integro-differential equation can be viewed as the Euler–Lagrange equation
of the functional

Iε(u) =

∫
Ω

{
ε2

2
|∇u|2 + W (u) +

εγ

2
|(1 − Δ)−1/2u|2

}
dx.(1.6)

Here W is an antiderivative of f ; i.e.,

W (u) =

∫ u

a

f(q) dq.(1.7)

Note that W (u) ≥ 0 for all u ∈ (−∞,∞) and W (u) = 0 if and only if u = a or u = b.
Note that (1 − Δ)−1/2 is a nonlocal linear operator. One first defines (1 − Δ)−1 so
that v = (1 − Δ)−1 is the solution of

−Δv + v = u in Ω, ∂νv = 0 on ∂Ω.

Since (1 − Δ)−1 is a positive operator from L2(Ω) to itself, we define (1 − Δ)−1/2 to
be the positive square root of (1 − Δ)−1.

The fast inhibitor limit of (1.4) is the parabolic-elliptic system⎧⎪⎪⎨
⎪⎪⎩
ut = ε2Δu− f(u) − εγv,

0 = Δv − v + u,

∂νu = ∂νv = 0 on ∂Ω

(1.8)
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obtained by setting κ = 0 in (1.4). This is the gradient flow of Iε in the L2(Ω) space.
Finding and classifying the critical points of Iε (solutions of (1.1)) help us understand
the behavior of (1.8).

In this paper we look for radial solutions of (1.1) on a unit ball in Rn:

Ω = {x ∈ Rn : |x| < 1}.(1.9)

The functional Iε is therefore defined in the admissible set of radial W 1,2 functions:

{u ∈ W 1,2(Ω) : u = u(|x|)}.(1.10)

In the first part of the paper, we study layered solutions whose interfaces are well
separated and away from the origin and the boundary. We prove two theorems.

Theorem 1.1. Let a < 0 < b and K be a positive integer. There exists γ0 > 0
such that for each γ > γ0, there exists ε0 > 0 so that when ε ∈ (0, ε0) there are four
solutions, each of which has K interfaces. Two of the four solutions, if denoted by ua

ε ,
satisfy limε→0 u

a
ε (0) = a, and the other two, if denoted by ub

ε, satisfy limε→0 u
b
ε(0) = b.

Theorem 1.2.

1. If a < b < 0 and γ > (n−1)τ
(b−a)a , there exists ε0 > 0 such that for each ε < ε0,

there is a one-interface solution uε with the property limε→0 uε(0) = b.

2. If 0 < a < b and γ > (n−1)τ
(b−a)a , there exists ε0 > 0 such that for each ε < ε0,

there is a one-interface solution uε with the property limε→0 uε(0) = a.
The constant τ here is a positive number, often called the surface tension. It is

given in (2.5). The proof of Theorem 1.1 uses a type of Lyapunov–Schmidt reduction
procedure tailored for singular perturbation problems. It consists of two steps. First
we reduce Iε to a functional Qε that is defined on a finite dimensional set. This set is
really the coordinates of interfaces. In this step we construct a family of approximate
solutions with K interfaces whose coordinates serve as parameters. The family is a
finite dimensional submanifold of the admissible set of Iε. Near each approximate
solution we find a function that “solves” (1.5) in a direction that is more or less
perpendicular to the submanifold. These functions are again parameterized by their
interfaces and they form an improved finite dimensional submanifold. The restriction
of Iε on this new submanifold is Qε, which is viewed as a function of the interfaces.
As a consequence of this construction, we show that a critical point of Qε is a solution
of (1.5).

In the second step of the proof, we look for critical points of Qε. We show that
ε−1Qε converges in C1

loc to a function J as ε → 0. When γ is sufficiently large, J
has a minimum. Near this local minimum Qε also has a minimum for small ε. The
topological degree of J and hence that of Qε are shown to be 0. We then conclude
that when γ is large, there are at least two critical points of Qε.

The proof of Theorem 1.2 is similar. After the same reduction procedure, we show
that when γ is large, the reduced problem J has one maximum in Ab

1 if a < b < 0
and one maximum in Aa

1 if 0 < a < b.
Another purpose of this paper is to illustrate the power and limitation of the Γ-

convergence theory [8, 16, 15, 13] applied to this problem. Consider the case covered
in Theorem 1.1. The limit J of the reduced problem Qε can be easily identified in
the Γ-convergence theory. If one can show that the minimum of J is isolated, then a
local minimizer of Iε exists according to the theory. For small values of K (K = 1 or
K = 2), we are able to show that the minimum is indeed isolated. For general K this
also appears to be true, but we do not have a proof.
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Regarding the second critical point of J , which is found by the topological degree
argument on Qε, one in general cannot derive from the Γ-convergence theory that
there exists another critical point of Iε corresponding to the second critical point of
J . This is because the Γ-convergence theory addresses only isolated local minima of
J but not other types of critical points of J .

Similarly, in the case covered by Theorem 1.2 the maximum of J in Aa
1 and the

maximum in Ab
1 do not yield solutions of (1.1) by the Γ-convergence theory. This

paper shows that the nonminimum critical points all correspond to solutions of (1.5).
They are saddle points of (1.6).

In the second part of the paper we further demonstrate the effectiveness of the
Lyapunov–Schmidt reduction method. We construct solutions with a number of in-
terfaces that cluster near the boundary r = 1. Namely, we prove the following result.

Theorem 1.3. Suppose that γ ≥ 0 and a < b. For any nonnegative integer k,
there exists an ε0 > 0 such that for each ε ∈ (0, ε0], (1.1) has a solution uε, which has
2k + 1 interfaces near the boundary r = 1. Moreover, uε → b uniformly in B1−δ(0)
for any δ > 0 small if b > 0, and uε → a uniformly in B1−δ(0) for any δ > 0 small if
a < b ≤ 0.

Here the 2k + 1 layers are all close to the boundary r = 1. The distance between
two successive interfaces is of order ε log 1

ε , and the distances between these interfaces
and the boundary r = 1 are also of order ε log 1

ε . After reduction the problem becomes
a finite dimensional maximization problem with respect to the interfaces. The solution
constructed from this maximization procedure is again of saddle type.

In Theorem 1.3 the nonlocal term εγ(1−Δ)−1u does not play a central role. The
existence of solutions with layers clustering near the boundary is valid with (γ > 0)
or without (γ = 0) the nonlocal term. See also the result in [2] for the unbalanced
case. The existence of interior layer solutions (Theorems 1.1 and 1.2) is different. Our
results show that to have solutions of multiple interior layers we must have sufficient
nonlocality, i.e., γ must be large enough.

The organization of our paper serves these two purposes. In section 2 we recall
how J is derived from the Γ-convergence theory. We show that the topological degree
of J is always 0 in the case a < 0 < b. For large γ we show that J has a minimum and
consequently there is another critical point of J . The main work starts in section 3,
where we reduce the study of Iε to that of the finite dimensional problem Qε. Then in
section 4 we show that ε−1Qε converges to J in C1

loc and prove Theorems 1.1 and 1.2.
In section 5 another reduction is used to prove Theorem 1.3. We again derive a

reduced functional of the interfaces. This time the interfaces are close to each other
and to the boundary (all the distances are of order ε log 1

ε ). As the interfaces vary
in this range the functional varies by a quantity that is much smaller than ε. This
compares differently from the situation discussed in Theorems 1.1 and 1.2. We show
that the reduced problem is maximized at an interior point.

The conditions on a, b, and γ in the three theorems are used when we solve the
reduced problems. In the case of Theorem 1.1 J has many critical points, and in the
case of Theorem 1.2 J has only one critical point. In the case of Theorem 1.3 we will
solve the reduced problem by showing that it has an interior maximum point. To
achieve this goal, the assumption on the sign of b is essential.

We use C to denote constants independent of ε. Their values may vary from line
to line. The Lp(Ω) norm, p ∈ [1,∞], of a function is denoted by ‖ · ‖p.

2. The Γ-limit. The limiting problem J is easily identified in the Γ-convergence
theory. Other than the expression of J and its properties, given in Lemmas 2.3 and 2.4,
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the details of the Γ-convergence and its consequences are not needed in this paper.
Therefore, we omit the proofs of the statements in this section, with the exception of
Lemmas 2.3 and 2.4. The interested reader may reconstruct them with the help of
the references we provide.

The Γ-limit J of ε−1Iε is defined on the admissible set

{u ∈ BV (Ω, {a, b}) : u = u(|x|)},(2.1)

where BV (Ω, {a, b}) is the set of functions of bounded variation which take values
only in {a, b}. The set (2.1) consists of such functions that are radial.

A function in (2.1) has either a finite number of interfaces or infinitely many
interfaces. If it has finite, say, K, interfaces, there exist r1, r2, . . . , rK , with 0 < r1 <
r2 < · · · < rK < 1, that divide the interval (0, 1) into (0, r1), (r1, r2), . . . ,(rK−1, rK),
(rK , 1), and

u(r) = a on (0, r1), = b on (r1, r2), = a on (r2, r3), . . .(2.2)

or

u(r) = b on (0, r1), = a on (r1, r2), = b on (r2, r3), . . . .(2.3)

In the case of (2.2) we say that u ∈ Aa
K and in the case of (2.3) we say that u ∈ Ab

K .
On Aa

K and Ab
K the Γ-limit J is given by

J(u) = ωn−1τ

K∑
j=1

rn−1
j +

ωn−1γ

2

∫ 1

0

|(1 − Δ)−1/2u|2 rn−1dr.(2.4)

Here we denote the area of the n− 1 dimensional unit sphere by ωn−1. The constant
τ in (2.4) is given by

τ =

∫ b

a

√
2W (q) dq.(2.5)

A function in (2.1) may also have infinite interfaces. Then the interfaces must
accumulate at the origin. Otherwise, if there were a cluster point not at the origin, the
total length of the interfaces would be infinite and u could not be in (2.1). Hence there
exists a decreasing sequence r1, r2, . . . , such that 1 > r1 > r2 > . . . and limj→∞ rj = 0,
and either

u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a on (r1, 1),

b on (r2, r1),

a on (r3, r2)

. . .

(2.6)

or

u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b on (r1, 1),

a on (r2, r1),

b on (r3, r2)

. . . .

(2.7)
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In this case J is defined by (2.4) with
∑K

j=1 replaced by
∑∞

j=1. Because u is assumed
to have bounded variation, this infinite sum converges.

Now we have J which is defined in (2.1). But Iε is defined in a different set (1.10).
We trivially extend both to

{u ∈ L2(Ω) : u = u(|x|)},(2.8)

the radial L2-functions, by setting Iε(u) = ∞ if u is in (2.8) but not in (1.10) and
similarly J(u) = ∞ if u is in (2.8) but not in (2.1). In (2.8) distance is measured by
the L2 norm ‖ · ‖2.

The Γ-convergence of ε−1Iε to J is characterized by the two properties of the
following lemma.

Lemma 2.1. As ε → 0, ε−1Iε Γ-converges to J in the following sense:
1. For every family of functions φε in (2.8) with limε→0 ‖φε − φ‖2 = 0,

lim infε→0 ε
−1Iε(φε) ≥ J(φ).

2. For every φ in (2.8), there is a family of functions φε in (2.8) such that
limε→0 ‖φε − φ‖2 = 0 and lim supε→0 ε

−1Iε(φε) ≤ J(φ).
One important consequence of the Γ-convergence of ε−1Iε is the following exis-

tence result.
Lemma 2.2. If u0 ∈ Aa

K (or Ab
K , respectively) is an isolated local minimum of

J in Aa
K (or Ab

K , respectively), for sufficiently small ε, there exists a local minimizer
uε of Iε, and limε→0 ‖uε − u0‖2 = 0.

These two lemmas may be proved by mimicking the argument in Ren and Wei
[22]. Lemma 2.2 suggests that we look for minima of J in Aa

K and Ab
K . We do this

in the rest of this section. Moreover, we will also find critical points of J that are not
local minima.

Let G = G(r, s) be the Green’s function

−Grr −
n− 1

r
Gr + G = δ(r − s).(2.9)

Note that G(r, s) is not symmetric in r and s, but rn−1G(r, s) is. We define

v(r) =

∫ 1

0

G(r, s)u(s) ds(2.10)

to be the solution of

−vrr −
n− 1

r
vr + v = u.(2.11)

When it is in Aa
K or Ab

K , u is determined by its jump points r1, r2, . . . , rK , which we
term interfaces. Collectively we set r = (r1, r2, . . . , rK). Because u depends on r, we
often write u = u(r; r) and correspondingly v = v(r; r).

The nonlocal part of J may be rewritten as∫ 1

0

|(1 − Δ)−1/2u(·; r)|2 rn−1dr =

∫ 1

0

v(r; r)u(r; r) rn−1dr.(2.12)

We view J as a function of r: J = J(r). Now we compute the derivative of J . Note
that

∂

∂r1

∫ 1

0

v(r)u(r) rn−1dr =
∂

∂r1

[∫ r1

0

v(r)a rn−1dr +

∫ r2

r1

v(r)b rn−1dr + . . .

]

= (a− b)v(r1)r
n−1
1 +

∫ 1

0

∂v(r; r)

∂r1
u(r; r) rn−1dr.(2.13)
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Because

∂v(r; r)

∂r1
=

∂

∂r1

[∫ r1

0

G(r, s)a ds +

∫ r2

r1

G(r, s)b ds + . . .

]

= (a− b)G(r, r1),(2.14)

we find

∂

∂r1

∫ 1

0

v(r)u(r) rn−1dr

= (a− b)v(r1)r
n−1
1 + (a− b)

∫ 1

0

G(r, r1)u(r; r) rn−1dr

= (a− b)v(r1)r
n−1
1 + (a− b)

∫ 1

0

G(r1, r)u(r; r) rn−1
1 dr

= (a− b)v(r1)r
n−1
1 + (a− b)v(r1)r

n−1
1 = 2(a− b)v(r1)r

n−1
1 .(2.15)

We have used the symmetry of rn−1G(r, r1). For a general rj we have

∂

∂rj

∫ 1

0

v(r)u(r) rn−1dr = 2(−1)j(b− a)v(rj ; r)r
n−1
j .(2.16)

Therefore

∂J(r)

∂rj
= ωn−1[(n− 1)τrn−2

j + γ(b− a)(−1)jv(rj ; r)r
n−1
j ], r ∈ Aa

K .(2.17)

The gradient of J in Ab
K is a bit different:

∂J(r)

∂rj
= ωn−1[(n− 1)τrn−2

j + γ(a− b)(−1)jv(rj ; r)r
n−1
j ], r ∈ Ab

K .(2.18)

The existence of critical points of J depends on a, b, and γ. We consider the
following three cases:

• Case I. a < b < 0.
• Case II. 0 < a < b.
• Case III. a < 0 < b.

The first two cases are relatively simple. We have the following result.
Lemma 2.3.

1. If a < b < 0 and γ > γI where

γI =
(n− 1)τ

(a− b)b
,(2.19)

there is a local maximum in Ab
1. There are no critical points in other classes.

2. If 0 < a < b and γ > γII where

γII =
(n− 1)τ

(b− a)a
,(2.20)

there is a local maximum in Aa
1. There are no critical points in other classes.
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Proof. We consider only case I, for case II may be similarly handled. Note that
u ≤ 0 implies that v < 0. In each Aa

K , K ≥ 1, ∂J
∂r1

> 0. There is no critical point in

Aa
K . In Ab

K for K ≥ 2, ∂J
∂r2

> 0. So there is no critical point in Ab
K , K ≥ 2. The only

class left is Ab
1. In this class

∂J

∂r1
= ωn−1r

n−2
1 [(n− 1)τ − γ(a− b)v(r1; r1)r1].

The quantity inside the brackets is (n−1)τ when r1 = 0 and (n−1)τ−γ(a−b)v(1) =
(n − 1)τ − γ(a − b)b when r1 = 1. Hence when γ > γI there is a local maximum of
J in Ab

1, where γI is given in (2.19). Here since when b = 0, γI = ∞, the condition
γ > γI can be satisfied only when b < 0.

Case III is the most interesting. We have the following lemma.
Lemma 2.4. Suppose a < 0 < b.
1. When γ is sufficiently large, J attains a global minimum in Aa

K (or Ab
K)—not

on the boundary of Aa
K (or Ab

K).
2. Given γ′ > 0 and any compact subset K′ of Aa

K (or Ab
K) one can find a

compact subset K, such that K′ ⊂ K and for all γ ∈ [0, γ′] the topological
degree of grad J on K about 
0 is zero.

3. When γ is large, there exist at least two critical points of J in each Aa
K (or

Ab
K).

Proof. To prove part 1, we note that as far as the minimum is concerned the
condition that γ is large is equivalent to the condition that τ is small. Or J can be
considered as a perturbation of the function

J0(r) =
ωn−1γ

2

∫ 1

0

|((1 − Δ)−1/2u(·; r))2| rn−1dr, r ∈ Aa
K (or Ab

K).(2.21)

We recall that Aa
K (and, similarly, Ab

K) is identified with

{r = (r1, . . . , rK) : 0 < r1 < · · · < rK}

so that the boundary of Aa
K is not included in Aa

K . We study J0 on the boundary of
Aa

K (the case Ab
K is left to the reader), which consists of three pieces: (1) r1 = 0, (2)

rK = 1, and (3) rj = rj+1 for some j = 1, 2, . . . ,K − 1.
In Aa

K ,

∂J0

∂rj
= ωn−1γ(b− a)(−1)jv(rj ; r)r

n−1
j .(2.22)

If the minimum of J0 is achieved on r1 = 0, say, at r = (0, r2, r3, . . . ), then

v(r2; r) = v(r3; r) = · · · = v(rK ; r) = 0.

However, v(r2; r) = 0 and u(r; r) = b > 0 for r ∈ (0, r2) imply that v(r; r) > 0 for
r ∈ [0, r2) by the maximum principal. Then at this r

∂J0(r)

∂r1
= −ωn−1γ(b− a)v(0; r) < 0.(2.23)

This means that the gradient of J0 points outward at this r. Then r cannot be a
minimum point.
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If the minimum of J is achieved at r = (r1, r2, . . . , rK−1, 1) on the boundary piece
rN = 1, then

v(r1; r) = v(r2; r) = · · · = v(rK−1; r) = 0.

Since for r ∈ (rK−1, 1),

u(r; r) =

{
a < 0 if K is odd,

b > 0 if K is even,

v(rK−1; r) = 0 implies that v(r) is negative if K is odd and positive if K is even on
(rK−1, 1]. Then

∂J0

∂rK
= γ(b− a)(−1)Kv(1; r) > 0.(2.24)

Hence the gradient of J points outward at this r and it cannot be the minimum.
If the minimum of J is achieved at a boundary point r on rj = rj+1, we have

two possibilities. First we may have r = (r1, r2, . . . , rj−1, rj , rj+1, rj+2, . . . , rK) with
r1 < r2 < · · · < rj−1 < rj = rj+1 < rj+2 < · · · < rK . This means two interfaces
coincide but other interfaces stay separate. Then

v(r1; r) = · · · = v(rj−1; r) = v(rj+2; r) = · · · = v(rK ; r) = 0.

When r ∈ (rj−1, rj+2),

u(r; r) =

{
a < 0 if j is odd,

b > 0 if j is even.

Then, since v(rj−1; r) = v(rj+2; r) = 0 for r ∈ (rj−1, rj+2), v(r; r) is negative if j is
odd and positive if j is even by the maximal principal. Note that at the minimum
r the outward normal direction is ν = (0, 0, . . . 0, 1,−1, 0, . . . , 0), where 1 is the jth
entry and −1 the (j + 1)th entry. The directional derivative along ν is

∂J

∂ν
= γ(b− a)[(−1)jv(rj ; r)r

n−1
j − (−1)j+1v(rj+1; r)r

n−1
j+1 ]

= 2γ(b− a)(−1)jv(rj ; r)r
n−1
j > 0.

Hence r cannot be the minimum.
In this case there is also the possibility that more than two interfaces collapse at

one point, where the minimum is attained—for example, at r where r1 < r2 < · · · <
rj−2 < rj−1 = rj = rj+1 < rj+2 < · · · < rK . However, this point can be viewed as a
point on the boundary of Aa

K−1. We can make an induction assumption that in every

Aa
N or Ab

N with N ≤ K − 1, the minimum of J0 is not achieved on the boundary.
Therefore this possibility needs no consideration.

Therefore the minimum of J0 is achieved on a compact subset of Aa
K . Hence for

large γ, the minimum of J is also achieved inside Aa
K .

To prove part 2, we treat γ in J as a parameter for the homotopy argument. We
consider the topological degree of gradJ . We are given a compact subset K′ of Aa

K

and γ in [0, γ′].
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First we show that gradJ is not 
0 on the boundary of some compact K ⊃ K′.
When γ = 0,

∂J

∂rj
= (n− 1)ωn−1τr

n−2
j ,(2.25)

which is not 0 anywhere in Aa
K . When γ > 0, we consider the three pieces of the

boundary of Aa
K again.

Although on the piece r1 = 0 of the boundary ∂J/∂r1 = 0 if n > 2, we move
slightly away from r1 = 0 and consider small and positive r1. Then

∂J

∂r1
= (n− 1)ωn−1τr

n−2
1 + γO(rn−1

1 ) > 0.(2.26)

Hence grad J is not 
0 when r1 is positive and small.
On the second piece rK = 1,

∂J

∂rK−1
= (n− 1)ωn−1τr

n−2
K−1 + ωn−1γ(b− a)(−1)K−1v(rK−1; r)r

n−1
K−1,(2.27)

∂J

∂rK
= (n− 1)ωn−1τ + ωn−1γ(b− a)(−1)Kv(1; r).(2.28)

For r ∈ (rK−1, 1), u(r; r) = a < 0 if K is odd and u(r; r) = b > 0 if K is even. If
∂J

∂rK−1
= 0, then v(rK−1; r) is negative if K is odd and positive if K is even. Then for

r ∈ [rK−1, 1], v(r; r) is negative if K is odd and positive if K is even. In particular,
v(1; r) is negative if K is odd and positive if K is even. Then ∂J

∂rK
is always positive.

Hence grad J is not 
0 on the second piece of the boundary.
On the third piece of the boundary rj = rj+1,

∂J

∂rj
= (n− 1)ωn−1τr

n−2
j + ωn−1γ(b− a)(−1)jv(rj ; r)r

n−1
j ,(2.29)

∂J

∂rj+1
= (n− 1)ωn−1τr

n−2
j + ωn−1γ(b− a)(−1)j+1v(rj ; r)r

n−1
j .(2.30)

These two partial derivatives cannot simultaneously be 0. Hence gradJ is not 
0 on
the third piece of the boundary.

Now we can find a compact subset K ⊃ K′ of Aa
K so that for all γ ∈ [0, γ′], gradJ

is not 
0 on the boundary of K. Consequently we can define the topological degree of
gradJ in K about 
0:

Deg (gradJ,K,
0).(2.31)

Note that in part 2 of the lemma, γ is allowed to be 0. This is important, because
when γ = 0, gradJ �= 
0 in Aa

K . Hence Deg (grad J,K,
0) = 0 when γ = 0. By the

invariance of the degree under continuous deformation, Deg (gradJ,K,
0) = 0 for all
γ ∈ [0, γ′]. This proves part 2 of the lemma.

The third part of the lemma follows from parts 1 and 2. For large γ, there is a
minimum, say, r∗, in Aa

K . This gives one critical point of J . If this is the only critical
point of J in Aa

K , we can find an open ball Bη(r∗) of radius η centered at r∗ whose
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closure is a subset of Aa
K . Let K be a compact subset of Aa

K given in part 2 of the
lemma, and it is large enough to contain Bη(r∗) as a subset. Then

Deg (gradJ,K,
0) = Deg (gradJ,Bη(r∗),
0) + Deg (gradJ,K\Bη(r∗),
0).(2.32)

We know that Deg (gradJ,K,
0) = 0 from part 2. Also Deg (gradJ,Bη(r∗),
0) = 1
because the minimum r∗ is the only critical point in Bη(r∗). Therefore Deg (gradJ,

K\Bη(r∗),
0) = −1 �= 0. There is another critical point in K\Bη(r∗).

The reader is probably tempted to combine Lemmas 2.2 and 2.4. Since there is
a minimum of J in Aa

K when γ is large, one would like to show that this minimum
is isolated and then following Lemma 2.2 conclude that Iε has a local minimizer near
the minimum of J . When K = 1 or K = 2, it is indeed easy to show that the local
minimum of J is isolated. However, for general K, we do not have a proof.

Moreover, in part 3 of Lemma 2.4 we have also found another critical point of J
for large γ. This critical point is in general not a local minimum of J . Lemma 2.2 is
hence not applicable.

Similarly, the local maxima found in Lemma 2.3 are not of much use in the Γ-
convergence theory.

To make use of all the critical points of J found in Lemmas 2.3 and 2.4, we
now abandon the Γ-convergence theory and proceed differently. Our new reduction
approach may roughly be regarded as a convergence theory at the C2 level, while the
Γ-convergence theory is at the C0 level. Using this argument we will be able to prove
that in case III there are at least two critical points of Iε with K interfaces when γ
is sufficiently large (see Theorem 1.1). Similarly, in cases I and II there is a critical
point of Iε with one interface if γ is large (see Theorem 1.2).

3. Lyapunov–Schmidt reduction procedure. The Lyapunov–Schmidt re-
duction procedure involves the first and second derivatives of Iε. For this reason
we vaguely regard it as a reduction theory at the C2 level.

We construct a manifold M of approximate solutions parameterized by r =
(r1, r2, . . . , rK). First define

s(r; r) = a in (0, r1), b in (r1, r2), a in (r2, r3), . . . ,(3.1)

which gives a profile away from the interfaces. Clearly s(·; r) ∈ Aa
K . We also identify

the domain of r with Aa
K . From now to the end of the paper we construct the two

solutions in Theorem 1.1 that satisfy limε→0 u
a
ε (0) = a and the solution in part 2

of Theorem 1.2. Similar arguments can give the other solutions, starting with an
s(·; r) ∈ Ab

K . We leave the details to the reader.

The interface profile is the solution H(t) of the differential equation

−Htt + f(H) = 0, H(−∞) = a, H(∞) = b, H(0) =
a + b

2
.(3.2)

H(t) approaches a (or b, respectively) exponentially fast as t tends to −∞ (or ∞,
respectively) in the sense that there exist positive C1, C2 so that

0 < H(t) − a < C1e
C2t if t < 0, and 0 < b−H(t) < C1e

−C2t if t > 0.(3.3)

Near rj we use H((r − rj)/ε) if j is odd, or H(−(r − rj)/ε) if j is even.
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The outer approximation s(·; r) and the inner approximation H must be connected
by a smooth cut-off function χ to make

w(r; r) =

K∑
j=1

χ(r − rj)H

(
(−1)j+1 r − rj

ε

)
+

⎛
⎝1 −

K∑
j=1

χ(r − rj)

⎞
⎠ s(r; r),(3.4)

where χ is defined to be

χ(r) =

{
1 in (−εα, εα),

0 in R\(−2εα, 2εα).
(3.5)

The exponent α in (3.5) satisfies

0 < α < 1.(3.6)

χ satisfies

χ = O(1), χ′ = O(ε−α), χ′′ = O(ε−2α).(3.7)

The manifold M is

M = {w(·; r) : r ∈ Aa
K},(3.8)

which is parameterized by r in Aa
K .

We define two function spaces X and Y,

X = {u ∈ W 2,2(Ω) : u = u(|x|), ur(1) = 0}; Y = {q ∈ L2(Ω) : q = q(|x|)},(3.9)

and a nonlinear operator Sε : X → Y by

Sε(u) = −ε2Δu + f(u) + εγ(1 − Δ)−1u.(3.10)

Equation (1.5) is Sε(u) = 0.
Lemma 3.1. Sε(w) = O(ε) locally uniformly in r and γ. More precisely, for each

compact subset K of Aa
K and [γ1, γ2], 0 < γ1 < γ2, there exist C > 0 and ε0 > 0 such

that for all r ∈ K, γ ∈ [γ1, γ2] and ε < ε0, ‖Sε(w(·; r))‖∞ ≤ Cε.
Proof. Given K and [γ1, γ2], we let r ∈ K and γ ∈ [γ1, γ2]. Then

Sε(w) = −ε2
(
wrr +

n− 1

r
wr

)
+ f(w) + εγ(1 − Δ)−1w

= (−ε2wrr + f(w)) − ε2
n− 1

r
wr + εγ(1 − Δ)−1w

= O(e−C/ε) + O(ε) + O(ε) = O(ε).(3.11)

The lemma follows.
For each j = 1, 2, . . . ,K, let us define

hj(r) = H ′
(
r − rj

ε

)
κ

(
r − rj√

ε

)
= H ′

(
r − rj

ε

)
+ O(e−C/

√
ε),(3.12)
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where κ is a smooth, even, cut-off function

κ(s) =

{
1 if |s| ≤ 1,

0 if |s| ≥ 2.
(3.13)

Here O(e−C/
√
ε) is an exponentially small quantity with respect to ε because of the

exponentially fast decay rate of H ′: H ′(t) ≤ C1e
−C2|t|. Therefore h′

j(0) = h′
j(1) = 0,

‖h′
j − ε−1H ′′(

·−rj
ε )‖∞ = O(ε−C/

√
ε), and ‖h′′

j − ε−2H ′′′(
·−rj
ε )‖∞ = O(ε−C/

√
ε). Note

that hj depends on r so we sometimes write it as hj(r; r).
At each w(·; r) of the manifold we define the space

Fr = {φ ∈ X : φ ⊥ hj , j = 1, 2, . . . ,K},(3.14)

where ⊥ is defined from the inner product

〈A,B〉 =

∫ 1

0

A(r)B(r) rn−1dr.(3.15)

Then wr +Fr is a subset of X , which we call the r-fiber of M in X . Define Er to
be the subspace

Er = {q ∈ Y : q ⊥ hj , j = 1, 2, . . . ,K}(3.16)

of Y. Let the projection from Y to Er be πr : Y → Er, defined by

πr(q) = q −
K∑
j=1

〈q, hj〉
‖hj‖2

2

hj .(3.17)

At each w(·; r) we look for a φ(·; r) ∈ Fr so that

πr ◦ Sε(w(·; r) + φ(·; r)) = 0.(3.18)

This means that we solve Sε(u) = 0 in the fiber direction. For each φ ∈ Fr we expand

Sε(w + φ) = Sε(w) + Lr(φ) + Rr(φ),(3.19)

where the linearized operator of Sε at w(·; r) is denoted by Lr: X → Y, defined by

Lrφ := −ε2
(
φrr +

n− 1

r
φr

)
+ f ′(w(r; r))φ + εγ(1 − Δ)−1φ,(3.20)

and the remainder is

Rr(φ) = f(w + φ) − f(w) − f ′(w)φ.(3.21)

Then (3.18) is written as

πr ◦ Sε(w) + πr ◦ Lr(φ) + πr ◦Rr(φ) = 0.(3.22)

Regarding the linear operator πr ◦ Lr,

πr ◦ Lr : Fr → Er(3.23)

(note that it is defined on Fr—not on X ), we have the following lemma.
Lemma 3.2.
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1. There exists C1 > 0 independent of ε such that ‖φ‖∞ ≤ C1‖πr ◦Lr(φ)‖∞ for
all φ ∈ Fr. In particular, πr ◦ Lr is one-to-one from Fr to Er.

2. πr ◦ Lr is onto from Fr to Er.

Proof. To prove part 1 we argue by contradiction. Suppose the conclusion is false.
Then there exists ψε ∈ Fr for each ε such that ‖ψε‖∞ = 1 and along a subsequence
of ε → 0,

‖πr ◦ Lr(ψε)‖∞ → 0.(3.24)

To simplify notation, we write ψ instead of ψε. We rewrite (3.24) as

−ε2
(
ψrr +

n− 1

r
ψr

)
+ f ′(w)ψ + εγ(1 − Δ)−1ψ −

K∑
j=1

βjhj = o(1)(3.25)

for some βj ∈ R. More specifically, βj are given by

βj =
〈Lr(ψ), hj〉

‖hj‖2
2

.(3.26)

We must estimate the size of βj . To this end we multiply (3.25) by hk and
integrate. Then

∫ 1

0

[(
−ε2

(
ψrr +

n− 1

r
ψr

)
+ f ′(w)ψ + εγ(1 − Δ)−1ψ

)
hk

]
rn−1dr(3.27)

+

K∑
j=1

βj〈hj , hk〉 = o(ε),

Simple calculations simplify the second part on the left side, so

∫ 1

0

[(
−ε2

(
ψrr +

n− 1

r
ψr

)
+ f ′(w)ψ + εγ(1 − Δ)−1ψ

)
hk

]
rn−1dr(3.28)

+

K∑
j=1

βj(ετr
n−1
j δjk + O(ε2)) = o(ε),

where δjk = 1 if j �= k and 0 if j = k. Also we have used the fact that

τ =

∫
R

(H ′)2 dt.(3.29)

This τ is the same as the one given in (2.5). These two expressions give the same
value because of (3.2), which H satisfies, and its first integral

−1

2
(H ′(t))2 + W (H(t)) = 0.(3.30)
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The first part of the left side of (3.28) is estimated as follows:

(3.31)∫ 1

0

[(
−ε2

(
ψrr +

n− 1

r
ψr

)
+ f ′(w)ψ + εγ(1 − Δ)−1ψ

)
hk

]
rn−1dr

=

∫ 1

0

(
−ε2

(
h′′
k +

n− 1

r
h′
k

)
ψ + f ′(w)hkψ

)
rn−1dr + εγ

∫ 1

0

((1 − Δ)−1ψ)hk r
n−1dr

=

∫ 1

0

−ε2
n− 1

r
h′
kψ rn−1dr + O(ε2) = O(ε2).

This simplifies (3.28) to

2N∑
j=1

βj(ετδjk + O(ε2)) = o(ε).(3.32)

Hence

βj = o(1).(3.33)

Let y ∈ [0, 1] such that, without loss of generality, ψ(y) = ‖ψ‖∞ = 1. We claim
that y − rj = O(ε) for some j. Otherwise, at y,

Lr(ψ)(y) = −ε2Δψ(y) + f ′(w(y))ψ(y) + εγ((1 − Δ)−1ψ)(y)

≥ 0 + f ′(w(y)) + εγ((1 − Δ)−1ψ)(y)

= f ′(w(y)) + O(ε) = f ′(a) + o(1).(3.34)

Combining (3.33) and (3.34), we obtain

πr ◦ Lr(ψ)(y) ≥ f ′(a) −
K∑
j=1

βjhj(y) + o(1) ≥ f ′(0) + o(1),(3.35)

which contradicts (3.24).
We have thus proved that y−ξj = O(ε) for some j, along a subsequence of ε → 0.

Define Ψ(t) = ψ(rj + εt). Then (3.25) and (3.33) imply

−Ψ′′ + f ′(wr(rj + εt))Ψ = o(1)(3.36)

uniformly on any compact subset of R. From here we may pass to the limit and find
Ψ∞ so that Ψ → Ψ∞ in C2

loc(R). Moreover, Ψ∞ �= 0 since Ψ((y − ξj)/ε) = 1, and

−Ψ′′
∞ + f ′(H)Ψ∞ = 0.(3.37)

The bounded solutions of this equation are scalar multiples of H ′. Hence Ψ∞ = cH ′

for some c �= 0.
On the other hand, since ψ ∈ Fr means that ψ ⊥ hj , we deduce that

0 = 〈ψ, hj〉 = ε

∫ (1−rj)/ε

−rj/ε

Ψ(t)(H ′(t) −O(e−C/
√
ε))(rj + εt)n−1 dt(3.38)

= ε

(
crn−1

j

∫
R

(H ′(t))2 dt + o(1)

)
,
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which is impossible, for c �= 0. We have thus proved part 1 of the lemma.
To prove part 2 of the lemma we need to solve

πr ◦ Lr(φ) = p(3.39)

in Fr for any given p ∈ Er. By applying πr ◦ (1 − Δ)−1 to both sides of (3.39) we
consider the equation

πr ◦ (1 − Δ)−1 ◦ πr ◦ Lr(φ) = πr ◦ (1 − Δ)−1p.(3.40)

The linear operator πr ◦ (1 − Δ)−1 ◦ πr ◦ Lr on the left side maps from Fr to itself.
For this operator Fr is viewed as a Banach space whose norm is inherited from the
W 2,2(Ω) norm. The operator has the form

ε2(identity operator) + compact operator.(3.41)

According to the Fredholm alternative, (3.40) is solvable if

πr ◦ (1 − Δ)−1 ◦ πr ◦ Lr(φ) = 0(3.42)

has only the trivial solution. To see this we write (3.42) as

(1 − Δ)−1 ◦ πr ◦ Lr(φ) =

K∑
j=1

αjhj(3.43)

for some αj ∈ R. Apply 1 − Δ to the last equation to find

πr ◦ Lr(φ) =

K∑
j=1

αj(−Δhj + hj).(3.44)

We multiply it by hk and integrate to deduce

0 =
K∑
j=1

αj

∫
Ω

(∇hj · ∇hk + hjhk) dx(3.45)

= αk

∫
Ω

(|∇hk|2 + h2
k) dx, k = 1, 2, . . . ,K,

which implies that αj = 0, j = 1, 2, . . . ,K. Then (3.44) becomes

πr ◦ Lr(φ) = 0.(3.46)

The first part of the lemma implies that φ = 0.
Hence (3.40) is solvable; i.e., for any p ∈ Er there exist φ ∈ Fr and βj ∈ R such

that

(1 − Δ)−1 ◦ πr ◦ Lr(φ) = (1 − Δ)−1p +

K∑
j=1

βjhj .(3.47)

Apply 1 − Δ to the last equation to deduce

πr ◦ Lr(φ) = p +

K∑
j=1

βj(−Δhj + hj).(3.48)
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We again multiply by hk and integrate to obtain

0 =

K∑
j=1

βj

∫
Ω

∇hj · ∇hk dx = βkε

∫
Ω

(|∇hk|2 + h2
k) dx, k = 1, 2, . . . ,K,(3.49)

which implies that βj = 0 for all j = 1, 2, . . . ,K. Then (3.48) becomes (3.39).
We are now ready to solve (3.18).
Lemma 3.3. There exists φ(·; r) ∈ Fr with ‖φ(·; r)‖∞ = O(ε) so that πr ◦

Sε(w(·; r) + φ(·; r)) = 0.
Proof. We write (3.22) in a fixed point form:

φ = (πr ◦ Lr)
−1(−πr ◦ Sε(w) − πr ◦Rr(φ)).(3.50)

We define the operator Tr from D(Tr) to itself,

Tr(φ) = (πr ◦ Lr)
−1(−πr ◦ Sε(w) − πr ◦Rr(φ)),(3.51)

where the domain D(Tr) of Tr is

D(Tr) = {φ ∈ L∞(0, 1) : φ ⊥ hj , j = 1, 2, . . . ,K}.(3.52)

Let Br be a closed ball in D(Tr) defined by

Br = {φ ∈ D(Tr) : ‖φ‖∞ ≤ C2ε},(3.53)

where C2 is a constant independent of ε to be determined soon. For every φ ∈ Br, by
Lemma 3.1

‖Tr(φ)‖∞ ≤ C1‖πr ◦ Sε(w)‖∞ + C1‖πr ◦Rr(φ)‖∞

≤ C3ε + C5(1 + O(‖φ‖∞))‖φ‖2
∞

≤ C3ε + C6C
2
2 (1 + C2ε)ε

2,(3.54)

where we have estimated Rr(φ) as

‖Rr(φ)‖∞ ≤ 2‖f(wr + φ) − f(wr) − f ′(wr)φ‖∞ ≤ C4(1 + O(‖φ‖∞))‖φ‖2
∞

(3.55)

for some C4 depending only on f . In (3.54) the constants C3 and C6 are again
independent of ε. If we choose C2 to be sufficiently large, then when ε is small enough
(3.54) is bounded by C2ε. Therefore by choosing such C2 we see that D(Tr) maps Br

to itself.
Next we prove that Tr is a contraction mapping in D(Tr). Take φ1 and φ2 in

D(Tr). Then

‖Tr(φ1) − Tr(φ2)‖∞ ≤ C1‖πr ◦ (Rr(φ1) −Rr(φ2))‖∞ ≤ C7‖Rr(φ1) −Rr(φ2)‖∞

≤ C8‖f(wr + φ1) − f(wr + φ2) − f ′(wr)(φ1 − φ2)‖∞

≤ C8‖f ′(wr + φ2 + θ(φ1 − φ2))(φ1 − φ2) − f ′(wr)(φ1 − φ2)‖∞

≤ C8‖f ′(wr + φ2 + θ(φ1 − φ2)) − f ′(wr)‖∞‖φ1 − φ2‖∞

≤ O(‖φ1‖∞ + ‖φ2‖∞) ‖φ1 − φ2‖∞

≤ C9ε‖φ1 − φ2‖∞,(3.56)

which implies that Tr is a contraction mapping if ε is sufficiently small. In these
estimates θ = θ(x) ∈ (0, 1) comes from the mean value theorem.
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4. C1-convergence of the reduced problem. We now define

Qε(r) = Iε(w(·; r) + φ(·; r)),(4.1)

where w(·; r) is the approximate solution constructed in (3.4) and φ(·; r) is given in
Lemma 3.3. We may view Qε as a function defined on Aa

K .
Lemma 4.1. If r ∈ Aa

K is a critical point of Qε, then Sε(w(·; r) + φ(·; r)) = 0.
Proof. Let r∗ be a critical point of Qε. Set g(r; r) = (w(·; r) + φ(·; r)). At r = r∗

we have, for each l,

0 =
∂Qε(r∗)

∂rl
=

∫ 1

0

(−ε2Δg + f(g) + εγ(1 − Δ)−1g)
∂g

∂rl
rn−1dr

=

K∑
m=1

cm

∫ 1

0

hm
∂g

∂rl
rn−1dr.

Here we have assumed that at r∗, Sε(g) =
∑K

m=1 cmhm, because πr(Sε(g)) = 0. The
last equation asserts that the coefficients cm satisfy a linear homogeneous system

whose ml matrix entry is
∫ 1

0
hm

∂g
∂rl

dx at r = r∗.

Recall that g = w + φ and hm ⊥ φ for all r. We differentiate 0 =
∫ 1

0
hmφ rn−1dr

with respect to rl to obtain

∫ 1

0

hm
∂φ(r; r)

∂rl
rn−1dr = −

∫ 1

0

∂hm(r; r)

∂rl
φ(r; r) rn−1dr.

Therefore, since φ = O(ε),

∫ 1

0

hm
∂g

∂rl
rn−1dr =

∫ 1

0

(
hm

∂w

∂rl
− ∂hm

∂rl
φ

)
rn−1dr = δmlr

n−1
l

∫
R

(H ′(t))2 dt + O(ε).

Therefore the coefficient matrix is nonsingular. This implies cm = 0, i.e., Sε(g(·; r∗)) =
0.

The reduced problem Qε, scaled by ε−1, converges to J given in (2.4) in C1 locally
in r and locally in γ.

Lemma 4.2. Given a compact subset K of Aa
K and an interval [γ1, γ2], with

0 < γ1 < γ2 < ∞, we have that for every δ > 0 there exists ε0 > 0 such that when
ε < ε0, |ε−1Qε(r) − J(r)| < δ and |grad ε−1Qε(r) − grad J(r)| < δ for all r ∈ K and
γ ∈ [γ1, γ2].

Proof. Given K and [γ1, γ2], we let r ∈ K and γ ∈ [γ1, γ2]. We first show the
C0-convergence. Expand Iε(w(·; r) + φ(·; r)) to find

Qε(r) = Iε(w) +

∫ 1

0

Sε(w)φ rn−1dr +
1

2

∫ 1

0

φLrφdx + O(ε3).(4.2)

The equation πr ◦Sε(w+φ) = 0 implies that Sε(w+φ) =
∑K

j=1 βjhj for some βj ∈ R,
which can be written as

Sε(w) + Lrφ + O(ε2) =

K∑
j=1

βjhj .(4.3)
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Multiply (4.3) by φ and integrate to find∫ 1

0

Sε(w)φ rn−1dr +

∫ 1

0

φLrφ rn−1dr + O(ε3) = 0(4.4)

since φ ⊥ hj . Substituting (4.4) into (4.2), we deduce

Qε(r) = Iε(w) +
1

2

∫ 1

0

Sε(w)φ rn−1dr + O(ε3).(4.5)

By Lemma 3.1 we obtain ∫ 1

0

Sε(w)φ rn−1dr = O(ε2).(4.6)

Now (4.5) becomes

Qε(r) = Iε(w(·; r)) + O(ε2).(4.7)

So we turn our attention to Iε(w(·; r)). Note that

Iε(w(·; r)) = ωn−1

∫ 1

0

[
ε2

2
|wr|2 + W (w)

]
rn−1dr +

ωn−1εσ

2

∫ 1

0

|(1 − Δ)−1/2w|2 rn−1dr

= ωn−1ετ

K∑
j=1

rn−1
j +

ωn−1εγ

2

∫ 1

0

|(1 − Δ)−1/2w|2 rn−1dr + O(ε2)

= εJ(r) + O(ε2).(4.8)

Before arriving at (4.8) we have used the fact that∫
R

[
1

2
(H ′)2 + W (H)

]
dt = τ,

which follows from the first integral (3.30) of H and the definition of τ . Therefore,

Qε(r) = εJ(r) + O(ε2),(4.9)

proving the convergence at the C0 level.
Next we show the convergence of grad (ε−1Qε). We calculate

∂Qε(r)

∂rj
=

∂

∂rj
Iε(w(·; r) + φ(·; r))

=

∫
Ω

Sε(w + φ)
∂(w(·; r) + φ(·; r))

∂rj
dx

=

∫
Ω

Sε(w + φ)
∂w(·; r)
∂rj

dx +

∫
Ω

Sε(w + φ)
∂φ(·; r)
∂rj

dx.(4.10)

We estimate the second integral in (4.10) first. Note that since πr(Sε(w+φ)) = 0,

Sε(w + φ) =

K∑
l=1

βlhl
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for some βl ∈ R. Since when l �= m, hl, and hm are supported in disjoint sets, the
hl’s are perpendicular to each other. We find

βl =
〈Sε(w + φ), hl〉

‖hl‖2
2

.

To estimate the numerator on the right side we write

Sε(w + φ) = Sε(w) + Lrφ + Rr(φ).

From Lemma 3.1 we find

|〈Sε(w), hl〉| ≤ ‖Sε(w)‖∞‖hl‖1 = O(ε)O(ε) = O(ε2).

From Lemma 3.3 we have

|〈Lrφ, hl〉| = |〈Lrhl, φ〉| ≤ ‖Lrhl‖1‖φ‖∞ = O(ε2)O(ε) = O(ε3),

and

|〈Rr(φ), hl〉| ≤ ‖Rr(φ)‖∞‖hl‖1 = O(ε2)O(ε) = O(ε3).

Combing the last three estimates we obtain

〈Sε(w + φ), hl〉 = O(ε2).

Since ‖hl‖2
2 is of order ε, we deduce

βl = O(ε).(4.11)

The fact φ ⊥ hl implies, after differentiating 〈φ, hl〉 = 0 with respect to rj , that

∫ 1

0

∂φ(r; r)

∂rj
hj r

n−1dr +

∫ 1

0

∂hl(r; r)

∂rj
φ rn−1dr = 0.(4.12)

Hence the second integral in (4.10) becomes

∫
Ω

Sε(w + φ)
∂φ(·; r)
∂rj

dx =

K∑
l=1

ωn−1βl

∫ 1

0

hj
∂φ

∂rj
rn−1dr(4.13)

= −
K∑
l=1

ωn−1βl

∫ 1

0

φ
∂hl

∂rj
rn−1dr.

Our estimate of βl, (4.11), and Lemma 3.3 imply that the last quantity of (4.13) is of
order ε2: ∫

Ω

Sε(w + φ)
∂φ(·; r)
∂rj

dx = O(ε2).(4.14)

It remains to calculate the first integral in (4.10). We again write Sε(w + φ) =
Sε(w) + Lrφ + Rr(φ) so that∫

Ω

Sε(w + φ)
∂w(·; r)
∂rj

dx =

∫
Ω

[
Sε(w)

∂w(·; r)
∂rj

+ Lrφ
∂w(·; r)
∂rj

+ Rr(φ)
∂w(·; r)
∂rj

]
dx.
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We must separate two cases: j is odd and j is even. When j is odd, w(r) is H(
r−rj

ε )
for r near rj . Moreover,

∂w(r; r)

∂rj
= −ε−1H ′

(
r − rj

ε

)
+ O(e−C/ε).(4.15)

In this case we argue as in the estimations leading to (4.11) to conclude that∫
Ω

Lrφ
∂w(·; r)
∂rj

dx = O(ε2),

∫
Ω

Rr(φ)
∂w(·; r)
∂rj

dx = O(ε2).

Therefore,

(4.16)∫
Ω

Sε(w + φ)
∂w(·; r)
∂rj

dx =

∫
Ω

Sε(w)
∂w(·; r)
∂rj

dx + O(ε2)

= ωn−1

∫ 1

0

[
−ε2

(
wrr +

n− 1

r
wr

)
+ f(w) + εγ(1 − Δ)−1w

]
∂w(r; r)

∂rj
rn−1dr

+O(ε2)

= ωn−1

∫ 1

0

[
−ε2

n− 1

r
wr + εγ(1 − Δ)−1w

](
−ε−1H ′

(
r − rj

ε

))
rn−1dr + O(ε2)

= ωn−1

∫ 1

0

[
−ε

n− 1

r
H ′

(
r − rj

ε

)
+ εγ(1 − Δ)−1w

](
−ε−1H ′

(
r − rj

ε

))
rn−1dr

+O(ε2)

= ωn−1ε[(n− 1)τrn−2
j − (b− a)γrn−1

j ((1 − Δ)−1w(·; r))(rj)] + O(ε2).

Similarly when j is even, w(r) is H(− r−rj
ε ) for r near rj and

∂w(r; r)

∂rj
= ε−1H ′

(
−r − rj

ε

)
+ O(e−C/ε).(4.17)

Then ∫
Ω

Sε(w + φ)
∂w(·; r)
∂rj

dx

= ωn−1ε[(n− 1)τrn−2
j + (b− a)γrn−1

j ((1 − Δ)−1w(·; r))(rj)] + O(ε2)

= ωn−1ε[(n− 1)τrn−2
j + (b− a)γrn−1

j ((1 − Δ)−1s(·; r))(rj)] + O(ε2).(4.18)

Recall that s ∈ Aa
K is the outer part of w defined in (3.1). In conclusion, by (4.10),

(4.14), (4.16), (4.18), and the calculations of ∂J/∂rj in section 2, we have that

∂Qε(r)

∂rj
=

∫
Ω

Sε(w + φ)
∂w(·; r)
∂rj

dx + O(ε2) = ε
∂J(r)

∂rj
+ O(ε2).(4.19)

This proves the lemma.
We are now ready to prove our main results.
Proof of Theorem 1.1. Lemma 2.4, part 1, asserts that J is minimized at a point

in the interior of Aa
K if γ is large. By Lemma 4.2 we conclude that Qε has a local
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minimum rε in Aa
K . As ε → 0, rε converges, possibly along a subsequence, to r∗ ∈ Aa

K ,
which is a minimizer of J . Choose a small neighborhood K1 of r∗ so that rε ∈ K1. If
there are several critical points of Qε in K1, we are finished. If there is only one, it
is an isolated strict local minimum and hence has index 1. On the other hand, there
exists a neighborhood K of K1 on which the degree of gradJ is zero by Lemma 2.4,
part 2. Hence, by continuity, the same is true for gradQε for small ε. Hence there
must be another critical point of Qε in K, as required.

Proof of Theorem 1.2. We combine Lemmas 2.3 and 4.2.

5. Solutions with layers near the boundary. In this section, we construct
solutions with multiple layers near the boundary of Ω and prove Theorem 1.3. Let
m2 = f ′(a) = f ′(b) = (b− a)2/2 > 0. First, we construct an approximate solution.

Let ξ(t) be a smooth function, such that 0 ≤ ξ ≤ 1, ξ(t) = 0 for t ≤ 1
2 , and ξ = 1

for t ≥ 2
3 . Let r = (r0, r̄1, r1, . . . , r̄k, rk) ∈ Dε,k, where Dε,k is the set containing all r

satisfying

1 −Mε ln
1

ε
< r0 < r̄1 < r1 < · · · < r̄k < rk < 1 − αε ln

1

ε
,

and

r̄j − rj−1 ≥ αε ln
1

ε
, rj − r̄j ≥ αε ln

1

ε
, j = 1, . . . , k,

where α > 0 is a small constant and M > 0 is a large constant.
Define

vε,j(r) = (1 − ξ)b + ξ(r)H

(
rj − r

ε

)
, j = 0, 1, . . . , k,

and

v̄ε,j(r) = (1 − ξ)a + ξ(r)H

(
r − r̄j

ε

)
, j = 1, . . . , k.

It is easy to check that vε,j and v̄ε,j satisfy

−ε2Δv = −f(v) + O(ε2|v′| + ε2) = −f(v) + O(ε).(5.1)

Let

wε,k(r) = vε,0 +

k∑
j=1

(
vε,j + v̄ε,j − a− b

)
.

Then, using (5.1), we obtain

−ε2Δwε,k + m2wε,k

= −ε2Δvε,0 −
k∑

j=1

(
ε2Δvε,j + ε2Δv̄ε,j

)
+ m2wε,k

= −f(vε,0) −
k∑

j=1

(
f(vε,j) + f(v̄ε,j)

)
+ m2wε,k

+ εO

⎛
⎝ε|v′ε,0| + ε

k∑
j=1

(
|v′ε,j | + |v̄′ε,j |

)
+ ε

⎞
⎠ .(5.2)
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Since wε,k does not satisfy w′
ε,k(1) = 0, we need to make a projection as follows.

Let Pwε,k be the solution of{
−ε2ΔPwε,k + m2Pwε,k = −ε2Δwε,k + m2wε,k in Ω,

(Pwε,k)
′(1) = 0.

(5.3)

We denote ϕε = wε,k − Pwε,k. Then ϕε satisfies{
−ε2Δϕε + m2ϕε = 0 in Ω,

ϕ′
ε(1) = w′

ε,k(1).
(5.4)

By the maximum principle, we see ϕε < 0.
We have the following estimates for ϕε.
Lemma 5.1. For any small θ > 0, there is a constant C > 0, such that

|ϕε(r)| ≤ Ce−m(1−rk)/εe−m(1−θ)(1−r)/ε.

In particular,

|ϕε(r)| ≤ Ce−m(1−θ)|r−rk|/ε.

Proof. Let Gε(Y, y) and G(Y, y) be the Green function of −ε2Δ + m2I in Ω and
−Δ + m2I in Ωε,y =

{
Y : εY + y ∈ Ω

}
subject to the Neumann boundary condition,

respectively. Then

Gε(Y, y) =
1

εn
G

(
Y − y

ε
, 0

)
.

We have

ϕε(y) = ε2
∫
∂Ω

Gε(Y, y)w
′
ε,k(1) dY.

This, together with |w′
ε,k(1)| = ε−1

∣∣∑k
j=1 H

′( 1−r̄j
ε

)
−

∑k
j=0 H

′( 1−rj
ε

)∣∣ ≤ Cε−1

e−m(1−rk)/ε, gives

|ϕε(y)| ≤ Cεe−m(1−rk)/ε

∫
∂Ω

|Gε(Y, y)|dY

= Cεe−m(1−rk)/ε 1

εn

∫
∂Ω

∣∣∣∣G
(
Y − y

ε
, 0

)∣∣∣∣ dY
= Ce−m(1−rk)/ε

∫
∂Ωε,y

|G(Y, 0)| dY ≤ Ce−m(1−rk)/εe−m(1−θ)(1−r)/ε,(5.5)

since G(Y, 0) ∼ 1
|Y |N−2 as |Y | → 0, and |G(Y, 0)| ≤ Ce−m|Y | as |Y | → +∞.

Since for r ∈ [0, 1] we have

|r − rk| ≤ |1 − rk| + |r − 1| = 1 − rk + 1 − r,

as a result

|ϕε(y)| ≤ Ce−m(1−rk)/εe−m(1−θ)(1−r)/ε ≤ Ce−m(1−θ)|r−rk|/ε.
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So, we have proved the lemma.
Define

I∗(u) =
ε2

2

∫
Ω

|Du|2 +

∫
Ω

W (u),

where W (t) =
∫ t

a
f(s) ds.

Next, we estimate I∗
(
Pwε,k

)
. We have

Proposition 5.2.

I∗(Pwε,k) = εArn−1
0 + εA

k∑
j=1

(r̄n−1
j + rn−1

j )

−Bε

k∑
j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)
−Bεωn−1εe

−2m(1−rk)/ε

+ εO

⎛
⎝ k∑

j=1

(
e−(1+σ)m(r̄j−rj−1)/ε + e−(1+σ)m(rj−r̄j)/ε

)
+ e−2(1+σ)m(1−rk)/e + ε

⎞
⎠ ,

where A > 0 and B > 0 are some constants independent of ε, Bε > 0 is a constant
depending on ε, satisfying b2 ≥ Bε ≥ b1 > 0 for some constants b2 and b1, and σ > 0
is a constant.

From Proposition 5.2, we see that there are three factors that affect the energy
of Pwε,k:

(i) The contribution from the layers is

εArn−1
0 + εA

k∑
j=1

(r̄n−1
j + rn−1

j ).

(ii) The contribution from the interaction between the layers is

−Bε
k∑

j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)
.

(iii) The contribution from the Neumann boundary condition is

Bεωn−1εe
−2m(1−rk)/ε.

So, we conclude that the energy will decrease if the layer moves away from the bound-
ary, or the layers move toward each other, or the layer moves toward the boundary.
As a result, if I∗(Pwε,k) attains its maximum, the layers must be suitably separated
and stay suitably close to the boundary.

We will prove Proposition 5.2 by proving three lemmas.
Let

f̂(t) = f(t + a).

Then F̂ (t) =
∫ t

0
f̂(s) ds = W (t + a).
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Denote ψε,j = vε,j − a, j = 0, . . . , k, ψ̄ε,j = v̄ε,j − a, j = 1, . . . , k, and ṽε,j =
ψε,j + ψ̄ε,j − (b − a) = vε,j + v̄ε,j − b − a, j = 1, . . . , k, ṽε,0 = ψε,0. So, with this
notation, we see that

f(vε,j) = f̂(ψε,j), f(v̄ε,j) = f̂(ψ̄ε,j),

and

W (wε,k) = F̂ (w̄ε,k),

where w̄ε,k = wε,k − a =
∑k

j=0 ṽj .
It is easy to see that

Pw̄ε,k = Pwε,k − a.

Let

Î∗(u) =
ε2

2

∫
Ω

|Du|2 +

∫
Ω

F̂ (u).

By (5.2) and (5.3), we have

(5.6)

I∗
(
Pwε,k

)
= Î∗

(
Pw̄ε,k

)
=

1

2

∫
Ω

(
ε2|DPw̄ε,k|2 + m2(Pw̄ε,k)

2
)

+

∫
Ω

F̂ (Pw̄ε,k) −
1

2
m2

∫
Ω

(Pw̄ε,k)
2

=
1

2

∫
Ω

⎛
⎝−f̂(ψε,0) −

k∑
j=1

(
f̂(ψε,j) + f̄(ψ̂ε,j)

)
+ m2ŵε,k

⎞
⎠Pw̄ε,k

+ εO

⎛
⎝∫

Ω

⎛
⎝ε|ψ′

ε,0| + ε

k∑
j=1

(|ψ′
ε,j | + |ψ̄′

ε,j |)

⎞
⎠ |Pwε,k|

⎞
⎠

+

∫
Ω

(
F̂ (Pw̄ε,k) −

m2

2
(Pw̄ε,k)

2

)

=
1

2

∫
Ω

⎛
⎝−f̂(ψε,0) −

k∑
j=1

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)⎞⎠ w̄ε,k +

∫
Ω

F̂ (w̄ε,k)

+

∫
Ω

⎛
⎝−f̂(w̄ε,k) +

1

2

⎛
⎝f̂(ψε,0) +

k∑
j=1

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)⎞⎠ +
1

2
m2w̄ε,k

⎞
⎠ϕε

+

∫
Ω

(
F̂ (Pw̄ε,k) − F̂ (w̄ε,k) + f̂(w̄ε,k)ϕε −

1

2
m2ϕ2

ε

)
+ O(ε2)

=: Î1 + Î2 + Î3 + O(ε2).

Lemma 5.3. We have

|Î3| ≤ Cεe−(3−θ)m(1−rk)/ε,
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where θ > 0 is any small constant.
Proof. By definition, we have

Î3 =
1

2

∫
Ω

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
+ O

(∫
Ω

|ϕε|3
)
.(5.7)

Write∫
Ω

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
=

∫
rk<r≤1

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
+

∫
r≤rk

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)

=

∫
rk<r≤1

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
+ O

(∫
r≤rk

ϕ2
ε

)
.(5.8)

Using Lemma 5.1, we obtain for r ≤ rk

|ϕε(r)| ≤ Ce−m(1−rk)/εe−m(1−θ)(1−r)/ε ≤ Ce−(2−θ)m(1−rk)/ε.

Thus, ∫
r≤rk

|ϕε|2 ≤ Ce−(2−θ)2m(1−rk)/ε

∫
r≤rk

|ϕε|θ(5.9)

≤ Ce−(2−θ)2m(1−rk)/ε

∫
r≤rk

e−θ(1−θ)m|r−rk|/ε

≤ Cεe−(2−θ)2m(1−rk)/ε.

On the other hand, for r ≥ rk, we have

(5.10)

f̂ ′(w̄ε,k)ϕ
2
ε −m2ϕ2

ε = f̂ ′(w̄ε,k)ϕ
2
ε − f̂ ′(0)ϕ2

ε

= O
(
|w̄ε,k|ϕ2

ε

)
= O

(
e−m(r−rk)/εe−(2−θ)m(1−rk)/εe−m(2−θ)(1−θ)(1−r)/ε|ϕθ

ε |
)

= O
(
e−m(3−θ)(1−rk)/ε|ϕθ

ε |
)
.

Using (5.10), we obtain∫
rk<r≤1

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
(5.11)

≤ Ce−m(3−θ)(1−rk)/ε

∫
Ω

|ϕθ
ε | ≤ Cεe−m(3−θ)(1−rk)/ε.

Combining (5.9) and (5.10), we are led to∫
Ω

(
f̂ ′(w̄ε,k)ϕ

2
ε −m2ϕ2

ε

)
= O

(
εe−m(3−θ)(1−rk)/ε

)
.(5.12)

Finally,∫
Ω

|ϕε|3 =

∫
rk<r≤1

|ϕε|3 +

∫
r≤rk

|ϕε|3 ≤ Cεe−m(3−θ)(1−rk)/ε + Cεe−(2−θ)2m(1−rk)/ε

≤ Cεe−(3−θ)m(1−rk)/ε.(5.13)
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Combining (5.7), (5.12), and (5.13), we obtain the result.
Lemma 5.4. We have

Î1 = εArn−1
0 + εA

k∑
j=1

(r̄n−1
j + rn−1

j ) −Bε

k∑
j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)

+ εO

⎛
⎝ k∑

j=1

(
e−(1+σ)m(r̄j−rj−1)/ε + e−(1+σ)m(rj−r̄j)/ε

)
+ e−(2+σ)m(1−rk)/ε + ε

⎞
⎠ ,

where A = ωn−1

∫ +∞
−∞

(
W (H(t)) − 1

2f(H(t))H(t)
)
dt > 0, B > 0 is a constant, and

σ > 0 is a small constant.
Proof. It is easy to check that for any bounded t1 and t2,

F̂ (t1 + t2) − F̂ (t1) − F̂ (t2) = f̂(t1)t2 +
(
f̂(t2) − f̂ ′(0)t2

)
t1 + O

(
|t1t2|2

)
.

Thus,

F̂ (w̄ε,k) =

k∑
j=0

F̂ (ṽε,j) +
∑
i<j

f̂(ṽε,i)ṽε,j +

k−1∑
i=1

⎛
⎝f̂

⎛
⎝ k∑

j=i+1

ṽε,j

⎞
⎠− f̂ ′(0)

k∑
j=i+k

ṽε,j

⎞
⎠ ṽε,i

+ O

⎛
⎝∑

i 	=j

|ṽε,iṽε,j |2
⎞
⎠ .(5.14)

Using (5.14), we can write

Î1 =

k∑
j=0

∫
Ω

(
F̂ (ṽε,j) −

1

2
f̂(ṽε,j)ṽε,j

)
+

1

2

∫
Ω

k∑
j=1

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)
w̄ε,k

+

k−1∑
i=1

∫
Ω

⎛
⎝f̂

⎛
⎝ k∑

j=i+1

ṽε,j

⎞
⎠− f̂ ′(0)

k∑
j=i+1

ṽε,j

⎞
⎠ ṽε,i + O

⎛
⎝∑

i 	=j

∫
Ω

|ṽε,iṽε,j |2
⎞
⎠ .(5.15)

It is easy to prove that∫
Ω

|ṽε,iṽε,j |2 = εO
(
e−2m|r̄j−ri|/ε

)
, j > i.(5.16)

On the other hand, since for any t ∈ (0, b− a),

f̂(t) − f̂ ′(0)t < 0,

we see

∫
Ω

⎛
⎝f̂

⎛
⎝ k∑

j=i+1

ṽε,j

⎞
⎠− f̂ ′(0)

k∑
j=i+1

ṽε,j

⎞
⎠ ṽε,i = −(B + o(1))εe−m(r̄i+1−ri)/ε,(5.17)

where o(1) → 0 as ε → 0, and

B = −
∫ +∞

−∞

(
f̂(H(t) − a) − f̂ ′(0)(H(t) − a)

)
e−mt dt > 0.
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Since f̂(t) = −f̂(b− a− t), we obtain

f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

= −f̂(b− a− ψε,j + b− a− ψ̄ε,j) + f̂(b− a− ψε,j) + f̂(b− a− ψ̄ε,j)

= O
(
|(b− a− ψε,j ||(b− a− ψ̄ε,j |

)
.

Thus, for i �= j, we see

∫
Ω

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)
ṽi = εO

⎛
⎝ k∑

j=1

(
e−2m|r̄j−rj−1|/ε + e−2m|rj−r̄j |/ε)

⎞
⎠ .

So, we have

k∑
j=0

∫
Ω

(
F̂ (ṽε,j) −

1

2
f̂(ṽε,j)ṽε,j

)
+

1

2

∫
Ω

k∑
j=1

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)
w̄ε,k

=

k∑
j=0

∫
Ω

(
F̂ (ṽε,j) −

1

2
f̂(ṽε,j)ṽε,j

)
+

1

2

∫
Ω

k∑
j=1

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)
ṽj

+ εO

⎛
⎝ k∑

j=1

(
e−2m|r̄j−rj−1|/ε + e−2m|rj−r̄j |/ε)

⎞
⎠

=
k∑

j=0

∫
Ω

F̂ (ṽε,j) −
1

2

∫
Ω

k∑
j=1

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)
ṽj

+ εO

⎛
⎝ k∑

j=1

(
e−2m|r̄j−rj−1|/ε + e−2m|rj−r̄j |/ε)

⎞
⎠ .(5.18)

But from f̂(t) = −f̂(b− a− t), we see

f̂(ψε,j)(ψ̄ε,j − (b− a)) = f̂(b− a− ψε,j)(b− a− ψ̄ε,j),

and

f̂(ψ̄ε,j)(ψε,j − (b− a)) = f̂(b− a− ψ̄ε,j)(b− a− ψε,j).
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We also have

F̂ (ṽε,j) = F̂ (b− a− ṽε,j) = F̂ (b− a− ψε,j + b− a− ψ̄ε,j)

= F̂ (b− a− ψε,j) + F̂ (b− a− ψ̄ε,j)

+
1

2
f̂(b− a− ψε,j)(b− a− ψ̄ε,j)

+
1

2

(
f̂(b− a− ψ̄ε,j) − f̂ ′(0)(b− a− ψ̄ε,j)

)
(b− a− ψε,j)

+
1

2
f̂(b− a− ψ̄ε,j)(b− a− ψε,j)

+
1

2

(
f̂(b− a− ψε,j) − f̂ ′(0)(b− a− ψε,j)

)
(b− a− ψ̄ε,j)

+ O
(
|b− a− ψε,j |2|b− a− ψ̄ε,j |2

)
.(5.19)

Using (5.19), we obtain∫
Ω

F̂ (ṽε,j) −
1

2

∫
Ω

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)
ṽj

=

∫
Ω

(
F̂ (ψε,j) −

1

2
f̂(ψε,j)ψε,j

)
+

∫
Ω

(
F̂ (ψ̄ε,j) −

1

2
f̂(ψ̄ε,j)ψ̄ε,j

)

−(B + o(1))εe−m(rj−r̄j)/ε + εO

⎛
⎝ k∑

j=1

e−2m(rj−r̄j)/ε

⎞
⎠ .(5.20)

Combining (5.15), (5.16), (5.17), (5.18), and (5.20), we obtain

Î1 =

k∑
j=0

∫
Ω

(
F̂ (ψε,j) −

1

2
f̂(ψε,j)ψε,j

)
+

k∑
j=1

∫
Ω

(
F̂ (ψ̄ε,j) −

1

2
f̂(ψ̄ε,j)ψ̄ε,j

)

− (B + o(1))ε

k∑
j=1

(
e−m(rj−r̄j)/ε + e−m(r̄j−rj−1)/ε

)

+ εO

⎛
⎝ k∑

j=1

(
e−2m(rj−r̄j)/ε + e−2m(r̄j−rj−1)/ε

)⎞⎠ .(5.21)

Finally, let Ĥ(t) = H(t) − a. Then we have

(5.22)∫
Ω

F̂ (ψε,j) = ωn−1εr
n−1
j

∫ rj/ε

−(1−rj)/ε

F̂ (Ĥ(t)) dt + O(ε2)

= ωn−1εr
n−1
j

∫ +∞

−∞
F̂ (Ĥ(t)) dt− ωn−1εr

n−1
j

∫ −(1−rj)/ε

−∞
F̂ (Ĥ(t)) dt + O(ε2),
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and ∫
Ω

f̂(ψε,j)ψε,j = ωn−1εr
n−1
j

∫ +∞

−∞
f̂(Ĥ(t))Ĥ(t) dt− ωn−1εr

n−1
j(5.23)

×
∫ −(1−rj)/ε

−∞
f̂(Ĥ(t))Ĥ(t) dt + O(ε2).

But from F̂ (0) = f̂(0) = 0, we see∣∣∣∣∣
∫ −(1−rj)/ε

−∞
F̂ (Ĥ(t)) dt− 1

2

∫ −(1−rj)/ε

−∞
f̂(Ĥ(t))Ĥ(t) dt

∣∣∣∣∣
≤

∫ −(1−rj)/ε

−∞
Ĥ3(t) dt = O

(∫ −(1−rj)/ε

−∞
e3mt dt

)

≤ Ce−3m(1−rj)/ε.(5.24)

Combining (5.22), (5.23), and (5.24), we are led to∫
Ω

(
F̂ (ψε,j) −

1

2
f̂(ψε,j)ψε,j

)

= ωn−1εr
n−1
j

∫ +∞

−∞
F̂ (Ĥ(t)) dt− 1

2
ωn−1εr

n−1
j

∫ +∞

−∞
f̂(Ĥ(t))Ĥ(t) dt

+ εO
(
ε + e−3m(1−rj)/ε

)
= ωn−1εr

n−1
j A + εO

(
ε + e−3m(1−rk)/ε

)
.(5.25)

Similarly, we can obtain∫
Ω

(
F̂ (ψ̄ε,j) −

1

2
f̂(ψ̄ε,j)ψ̄ε,j

)
= ωn−1εr̄

n−1
j A + εO

(
ε + e−3m(1−rk)/ε

)
.(5.26)

Combining (5.21), (5.25), and (5.26), we prove this lemma.
Lemma 5.5. We have

Î2 = −εBεωn−1e
−2m(1−rk)/ε + εO

(
e−2m(1−rk)/ε + ε

)

+ εO

⎛
⎝ k∑

j=1

(
e−2(1+σ)(rj−r̄j)/ε + e−2(1+σ)(r̄j−rj−1)/ε

)⎞⎠ ,(5.27)

where Bε is a constant with b2 ≥ Bε ≥ b1 > 0, and σ > 0 is a small constant.
Proof. We have

Î2 =
1

2

∫
Ω

⎛
⎝−f̂(ψε,0) −

k∑
j=1

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)
+ m2w̄ε,k

⎞
⎠ϕε

−
∫

Ω

⎛
⎝f̂(w̄ε,k) − f̂(ψε,0) −

k∑
j=1

(
f̂(ψε,j) + f̂(ψ̄ε,j)

)⎞⎠ϕε

=: Î2,1 + Î2,2.(5.28)
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It is easy to see that

|Î2,2| ≤ Cε

⎛
⎝ k∑

j=1

(
e−m(rj−r̄j)/ε + e−m(r̄j−rj−1)/ε

)⎞⎠ ‖ϕε‖1−θ
∞

≤ Cε

⎛
⎝ k∑

j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)⎞⎠ e−m(1−θ)(1−rk)/ε

≤ Cε

⎛
⎝ k∑

j=1

(
e−(1+σ)m(r̄j−rj−1)/ε + e−(1+σ)m(rj−r̄j)/ε

)
+ e−(2+σ)m(1−rk)/ε

⎞
⎠ .(5.29)

On the other hand, using (5.2) and (5.4), we see

(5.30)

Î2,1 =
1

2

∫
Ω

⎛
⎝−ε2Δw̄ε,k + m2w̄ε,k + εO

⎛
⎝ε|ψ′

ε,0| + ε

k∑
j=1

(
|ψ′

ε,j | + |ψ̄′
ε,j |

)
+ ε

⎞
⎠
⎞
⎠ϕε

=
1

2
ωn−1ε

2
(
−w̄′

ε,k(1)ϕε(1) + w̄ε,k(1)w̄′
ε,k(1)

)

+ εO

⎛
⎝∫

Ω

⎛
⎝ε|ψ′

ε,0| + ε

k∑
j=1

(
|ψ′

ε,j | + |ψ̄′
ε,j |

)
+ ε

⎞
⎠ |ϕε|

⎞
⎠

= −Bεωn−1εe
−2m(1−rk)/ε + εO

⎛
⎝∫

Ω

⎛
⎝ε|ψ′

ε,0| + ε

k∑
j=1

(
|ψ′

ε,j | + |ψ̄′
ε,j |

)
+ ε

⎞
⎠ |ϕε|

⎞
⎠ ,

where Bε = 1
2e

2m(1−rj)/ε(εw̄′
ε,k(1)ϕε(1)−εw̄ε,k(1)w̄′

ε,k(1)). By Lemma 5.1, noting that

ϕε < 0, wε,k(1) ∼ e−m(1−rk)/ε, and εw′
ε,k(1) ∼ −e−m(1−rk)/ε, we see easily that there

are b2 > b1 > 0, independent of ε, such that b2 ≥ Bε ≥ b1.
We have

ε

∫
Ω

|ψ′
ε,j ||ϕε| = ε

∫
r≤rk

|ψ′
ε,j ||ϕε| + ε

∫
r≥rk

|ψ′
ε,j ||ϕε|

≤ Cεe−(2−θ)m(1−rk)/ε + Ce−m(1−rk)/ε

∫
r≥rk

e−m(r−rj)/εe−(1−θ)m(1−r)/ε

≤ Cεe−(2−θ)m(1−rk)/ε + Ce−(2−θ)m(1−rk)/εε ln
1

ε

≤ C
(
e−(2+σ)m(1−rk)/ε + ε

)
,(5.31)

ε

∫
Ω

|ψ̄′
ε,j ||ϕε| ≤ C

(
e−(2+σ)m(1−rk)/ε + ε

)
,(5.32)
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and

ε

∫
Ω

|ϕε| ≤ C
(
e−(2+σ)m(1−rk)/ε + ε

)
.(5.33)

Combining (5.30), (5.31), (5.32), and (5.33), we obtain

Î2,1 = −Bεωn−1εe
−2m(1−rk)/ε + εO

(
e−(2+σ)m(1−rk)/ε + ε

)
.(5.34)

So, the result follows from (5.28), (5.29), and (5.34).
Proof of Proposition 5.2. The proof follows from Lemmas 5.3, 5.4, and 5.5.
Now, we look at the reduction. We have

Sε(Pwε,k) = −ε2ΔPwε,k + f(Pwε,k) + εγ(1 − Δ)−1Pwε,k

= f(wε,k) − f(vε,0) −
k∑

j=1

(
f(vε,j) + f(v̄ε,j)

)
(5.35)

+ f(Pwε,k) − f(wε,k) + m2(wε,k − Pwε,k) + O(ε)(5.36)

= O

⎛
⎝e−m(1−rk)/ε +

k∑
j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)
+ ε

⎞
⎠ .(5.37)

Similar to the discussion in section 3, we can prove the following result.
Lemma 5.6. There is a φε ∈ Fr, such that πr ◦ Sε(wε,k + φε) = 0. Moreover,

‖φε‖∞ ≤ C

⎛
⎝e−m(1−rk)/ε +

k∑
j=1

(
e−m(r̄j−rj−1)/ε + e−m(rj−r̄j)/ε

)
+ ε

⎞
⎠ .

Lemma 5.7. We have

Iε(Pwε,k + φε) = Iε(Pwε,k)

+ εO

⎛
⎝e−(2+σ)m(1−rk)/ε +

k∑
j=1

(
e−(1+σ)m(r̄j−rj−1)/ε + e−(1+σ)m(rj−r̄j)/ε

)
+ ε

⎞
⎠ ,

where σ > 0 is a small constant.
Proof. First, we estimate ‖φε‖2.
We have

‖φε‖2 ≤ C‖Sε(Pwε,k)‖2 + C‖Rr(φε)‖2

≤ C‖Sε(Pwε,k)‖2 + C‖φ2
ε‖2

≤ C‖Sε(Pwε,k)‖2 + C‖φε‖∞‖φε‖2

≤ C‖Sε(Pwε,k)‖2 + o(1)‖φε‖2,

where o(1) = ‖φε‖∞ → 0 as ε → 0. Thus,

‖φε‖2 ≤ C‖Sε(Pwε,k)‖2.(5.38)
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We obtain, from (5.37),

‖Sε(Pwε,k)‖2 ≤ ‖f̂(w̄ε,k) −
k∑

j=0

f̂(ṽε,j)‖2

+

∥∥∥∥∥∥
k∑

j=1

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)∥∥∥∥∥∥
2

+ ‖f(Pwε,k) − f(wε,k) + m2(wε,k − Pwε,k)‖2 + Cε.(5.39)

It is easy to prove that∥∥∥∥∥∥f̂(w̄ε,k) −
k∑

j=0

f̂(ṽε,j)

∥∥∥∥∥∥
2

2

≤ Cε

k∑
j=1

(
e−(1+σ)m(rj−r̄j)/ε + e−(1+σ)m(r̄j−rj−1)/ε

)
,(5.40)

and ∥∥∥∥∥∥
k∑

j=1

(
f̂(ṽε,j) − f̂(ψε,j) − f̂(ψ̄ε,j)

)∥∥∥∥∥∥
2

2

≤ Cε

k∑
j=1

(
e−(1+σ)m(rj−r̄j)/ε + e−(1+σ)m(r̄j−rj−1)/ε

)
.(5.41)

Moreover, from

f(Pwε,k) − f(wε,k) + m2(wε,k − Pwε,k) =
(
m2 − f ′(wε,k)

)
ϕε + O(ϕ2

ε),

we obtain

‖f(Pwε,k) − f(wε,k) + m2(wε,k − Pwε,k)‖2
2

≤ C

∫
Ω

ϕ4
ε + C

∫
Ω

(
m2 − f ′(wε,k)

)2
ϕ2
ε

≤ Cεe−3m(1−rk)/ε + C

∫
Ω

(
m2 − f ′(wε,k)

)2
ϕ2
ε .(5.42)

But ∫
Ω

(
m2 − f ′(wε,k)

)2
ϕ2
ε

≤ C

∫
r≤rk

ϕ2
ε + C

∫
r≥rk

|wε,k − a|ϕ2
ε

≤ Cεe−(2+σ)m(1−rk)/ε.(5.43)
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Combining (5.39)–(5.43), we obtain

‖Sε(Pwε,k)‖2
2 ≤ Cεe−(2+σ)m(1−rk)/ε(5.44)

+ Cε
k∑

j=1

(
e−(1+σ)m(rj−r̄j)/ε + e−(1+σ)m(r̄j−rj−1)/ε

)
.

Using (5.38), we obtain

‖φε‖2
2 ≤ Cεe−(2+σ)m(1−rk)/ε(5.45)

+ Cε
k∑

j=1

(
e−(1+σ)m(rj−r̄j)/ε + e−(1+σ)m(r̄j−rj−1)/ε

)
.

Similar to section 4, using (5.44) and (5.45), we have

Iε(Pwε,k + φε)

= Iε(Pwε,k) + O
(
‖Sε(Pwε,k)‖2‖φε‖2 + ‖φε‖2

2

)
= Iε(Pwε,k)

+ εO

⎛
⎝ε + e−(2+σ)m(1−rk)/ε +

k∑
j=1

(
e−(1+σ)m(rj−r̄j)/ε + e−(1+σ)m(r̄j−rj−1)/ε

)⎞⎠ .

So we have proved this lemma.
Proof of Theorem 1.3. We just need to consider the case b > 0. For a < b ≤ 0,

we let u1 = −u and v1 = −v. Then u1 and v1 will satisfy a similar system with
f1(t) = (t + a)(t + a+b

2 )(t + b), and −a > −b ≥ 0. From now on, we always assume
that b > 0.

Consider

max
rε∈Dε,k

Qε(r),(5.46)

where Qε(r) = Iε(Pwε,k + φε).
Let rε ∈ Dε,k be a maximum point of (5.46). We will prove that rε is an interior

point of Dε,k. So it is a critical point of Iε(Pwε,k + φε).
Let L > 0 be a large number, such that mL > 4. Choose r∗ε ∈ Dε,k, such that

r∗k = 1 − Lε ln 1
ε , r̄∗j = r∗j − Lε ln 1

ε , and r∗j−1 = r̄∗j − Lε ln 1
ε . For this r∗ε , using

Proposition 5.2, we have

I∗(Pwε,k) = ε(2k + 1)A + εO

(
ε ln

1

ε

)
.(5.47)

On the other hand, we have∫
Ω

Pwε,k(1 − Δ)−1Pwε,k =

∫
Ω

b(1 − Δ)−1b + O

(
ε ln

1

ε

)
.(5.48)



MULTIPLE RADIAL SOLUTIONS 2039

Combining (5.47) and (5.48), we obtain

Qε(r
∗
ε ) = ε(2k + 1)A +

1

2
γε

∫
Ω

b(1 − Δ)−1b + εO

(
ε ln

1

ε

)
.(5.49)

We have, from Qε(rε) ≥ Qε(r
∗
ε ),

εArn−1
ε,0 + εA

k∑
j=1

(r̄n−1
ε,j + rn−1

ε,j ) +
1

2
γε

∫
Ω

Pwε,k(1 − Δ)−1Pwε,k

−(B + o(1))ε

k∑
j=1

(
e−m(r̄ε,j−rε,j−1)/ε + e−m(rε,j−r̄ε,j)/ε

)

− (Bε + o(1))ωn−1εe
−2m(1−rε,k)/ε + O(ε2)

≥ ε(2k + 1)A +
1

2
γε

∫
Ω

b(1 − Δ)−1b + εO

(
ε ln

1

ε

)
.(5.50)

Since |b− Pwε,k| ≤ Cε2 if r ≤ 1 − 2Mε ln 1
ε , it is easy to check that

∫
Ω

|(1 − Δ)−1(b− Pwε,k)|2 ≤ C

∫
Ω

|b− Pwε,k|2 ≤ Cε ln
1

ε
.

As a result,

∫
Ω

b(1 − Δ)−1b−
∫

Ω

Pwε,k(1 − Δ)−1Pwε,k

= −2

∫
Ω

(Pwε,k − b)(1 − Δ)−1b +

∫
Ω

(Pwε,k − b)(1 − Δ)−1(Pwε,k − b)

= 2

∫
Ω

(b− wε,k)(1 − Δ)−1b + 2

∫
Ω

ϕε(1 − Δ)−1b + O

(
ε2 ln2 1

ε

)
.(5.51)

But ∣∣∣∣
∫

Ω

ϕε(1 − Δ)−1b

∣∣∣∣ ≤ C

∫
Ω

|ϕε| ≤ Cε.(5.52)

Combining (5.51) and (5.52), we obtain

∫
Ω

b(1 − Δ)−1b−
∫

Ω

Pwε,k(1 − Δ)−1Pwε,k(5.53)

= 2

∫
Ω

(b− wε,k)(1 − Δ)−1b + O(ε).
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So, it follows from (5.50) and (5.53) that

εA(1 − rn−1
ε,0 ) + εA

k∑
j=1

(1 − r̄n−1
ε,j + 1 − rn−1

ε,j )

+
1

2
γε

∫
Ω

(b− wε,k)(1 − Δ)−1b

+(B + o(1))ε

k∑
j=1

(
e−m(r̄ε,j−rε,j−1)/ε + e−m(rε,j−r̄ε,j)/ε

)

+ (Bε + o(1))ωn−1εe
−2m(1−rε,k)/ε

≤ Cε2 ln
1

ε
.(5.54)

Since all the terms in the left-hand side of (5.54) are positive, we obtain

1 − rn−1
ε,0 ≤ Cε ln

1

ε
,

and

e−m(r̄ε,j−rε,j−1)/ε, e−m(rε,j−r̄ε,j)/ε, e−2m(1−rε,k)/ε ≤ Cε ln
1

ε
.

So |r̄ε,j − rε,j−1| ≥ c′ε ln 1
ε , |rε,j − r̄ε,j | ≥ c′ε ln 1

ε , 1 − rε,0 ≤ Cε ln 1
ε , and 1 − rε,k ≥

c′ε ln 1
ε . This shows that rε is an interior point of Dε,k if M > 0 is large and α > 0 is

small.
Remark 5.8. In the case b > 0, if γ = 0, or γ > 0 and a ≤ 0, then we can use the

above techniques to show that (1.1) has a solution, which is close to Pw∗
ε,k, where

w∗
ε,k =

k−1∑
j=1

(vε,j + v̄ε,j − a− b) + v̄ε,k.

In this case, similar to (5.54), we have

εA(1 − r̄n−1
ε,k ) + εA

k−1∑
j=1

(1 − r̄n−1
ε,j + 1 − rn−1

ε,j )

+
1

2
γε

∫
Ω

(a− w∗
ε,k)(1 − Δ)−1a

+(B + o(1))ε

k−1∑
j=1

(
e−m(r̄ε,j−rε,j−1)/ε + e−m(rε,j−r̄ε,j)/ε

)

+ (Bε + o(1))ωn−1εe
−2m(1−r̄ε,k)/ε

≤ Cε2 ln
1

ε
.(5.55)
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We know that a−w∗
ε,k is always nonpositive. So, if a ≤ 0, the term

∫
Ω
(a−w∗

ε,k)(1−
Δ)−1a is nonnegative. Thus, if γ = 0, or γ > 0 and a ≤ 0, the left-hand side of (5.55)
is always nonnegative. As a result, we can use (5.55) to deduce that rε is an interior
point of Dε,k.
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WHITE NOISE HYPOTHESIS FOR UNIFORM QUANTIZATION
ERRORS∗

DAVID JIMENEZ† , LONG WANG‡ , AND YANG WANG†

Abstract. The white noise hypothesis (WNH) assumes that in the uniform pulse code modula-
tion (PCM) quantization scheme the errors in individual channels behave like white noise; i.e., they
are independent and identically distributed random variables. The WNH is key to estimating the
mean square quantization error (MSE). But is the WNH valid? In this paper we take a close look
at the WNH. We show that in a redundant system the errors from individual channels can never be
independent. Thus to an extent the WNH is invalid. Our numerical experiments also indicate that
with coarse quantization the WNH is far from valid. However, as the main result of this paper we
show that with fine quantizations the WNH is essentially valid in that the errors from individual
channels become asymptotically pairwise independent, each uniformly distributed in [−Δ/2,Δ/2),
where Δ denotes the stepsize of the quantization.

Key words. frames, tight frame, pulse code modulation, quantization, white noise hypothesis

AMS subject classification. 42C15

DOI. 10.1137/050636929

1. Introduction. In processing, transmitting, and storing analogue signals it
is often necessary to make atomic decompositions of the signal using a given set of
atoms, or dictionary {vj}. In this approach, a signal x is represented as a linear
combination of {vj},

x =
∑
j

cjvj .

In practice {vj} is a finite set. Furthermore, for the purpose of error correction,
recovery from data erasures or robustness, redundancy is built into {vj}; i.e., more
elements than needed are in {vj}. Instead of a true basis, {vj} is chosen to be a
frame. Since {vj} is a finite set, we may without loss of generality assume {vj}Nj=1

are vectors in R
d with N ≥ d.

Let F = [v1,v2, . . . ,vN ] be the d×N matrix whose columns are v1, . . . ,vN . We
say {vj}Nj=1 is a frame if F has rank d. Let λmax ≥ λmin > 0 be the maximal and

minimal eigenvalues of FFT , respectively. It is easily checked that

λmin‖x‖2 ≤
N∑
j=1

|x · vj |2 ≤ λmax‖x‖2.(1.1)

λmax and λmin are called the upper and lower frame bounds for the frame, respectively.
If λmax = λmin = λ, in which case FFT = λId, we call {vj}Nj=1 a tight frame with

frame constant λ. Note that any signal x ∈ R
d can be easily reconstructed using the
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data {x · vj}Nj=1. Set y = [x · v1,x · v2, . . . ,x · vN ]T . Then y = FTx and

(FFT )−1Fy = (FFT )−1FFTx = x.

Let G = (FFT )−1F = [u1,u2, . . . ,uN ]. The set of columns {uj}Nj=1 of G is called

the canonical dual frame of the frame {vj}Nj=1. We have the reconstruction

x =

N∑
j=1

(x · vj)uj .(1.2)

If {vj}Nj=1 is a tight frame with frame constant λ, then G = λ−1F , and we have the
reconstruction

x =
1

λ

N∑
j=1

(x · vj)vj .(1.3)

In digital applications, quantizations will have to be performed. The simplest
scheme is the pulse code modulation (PCM) quantization scheme, in which the co-
efficients {x · vj}Nj=1 are quantized. In this paper we consider exclusively uniform
quantizations. Let A = ΔZ, where Δ > 0 is the quantization step. With uniform
quantization a real value t is replaced with the value in A that is the closest to t. So,
in our setting, t is replaced with QΔ(t) given by

QΔ(t) :=

⌊
t

Δ
+

1

2

⌋
Δ.

Thus, given a frame {vj}Nj=1 and its canonical dual frame {uj}Nj=1, instead of using

the data {x · vj}Nj=1 and (1.2) to obtain a perfect reconstruction, we use the data

{QΔ(x · vj)}Nj=1 and obtain an imperfect reconstruction

x̃ =

N∑
j=1

QΔ (x · vj)uj .(1.4)

This raises the following question: How good is the reconstruction? This question has
been studied in terms of both the worst case error and the mean square error (MSE);
see, e.g., [13]. Note that the error from the reconstruction is

x − x̃ =
N∑
j=1

τΔ (x · vj)uj ,(1.5)

where τΔ(t) := t − QΔ(t) =
({

t
Δ + 1

2

}
− 1

2

)
Δ, with {·} denoting the fractional

part. While an a priori error bound is relatively straightforward to obtain, the MSE,
MSE := E

(
‖x − x̃‖2

)
, assuming certain probability distribution for x, is much harder.

To simplify the problem, the so-called white noise hypothesis (WNH), is employed by
engineers and mathematicians in this area (see, e.g., [2, 3, 13]). The WNH asserts the
following:

• Each τΔ (x · vj) is uniformly distributed in [−Δ/2,Δ/2); hence it has mean
0 and variance Δ2/12.

• {τΔ (x · vj)}Nj=1 are independent random variables.
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With the WNH it is an easy derivation, which we furnish in the next section, that
the MSE is given by

E
(
‖x − x̃‖2

)
=

Δ2

12

d∑
j=1

λ−1
j =

Δ2

12

N∑
j=1

‖uj‖2,(1.6)

where {λj} are the eigenvalues of FFT .
Note that using (1.6) the MSE for quantization decreases by a factor of 4 if we

decrease Δ by a factor of 2. It amounts to an increase in signal to noise ratio of
approximately 6dB (10 log10 4 ≈ 6). This is often referred to as the 6dB-per-bit-rule.

The WNH is often called Bennett’s white noise assumption [2, 3]. Bennett stud-
ied quantization error (distortion) in his fundamental paper [4] in the scalar setting.
He demonstrated that under the assumption that the scalar random variable has a
smooth density, the quantization error behaves like uniformly distributed “random
noise” when Δ is small, resulting in the MSE of approximately Δ2/12. Bennett also
studied quantization errors in the nonuniform quantization setting, which can often
be reduced to the uniform setting by the use of companders. The current interest in
the WNH stems from the study of vector quantization, in which several correlated
signals are quantized simultaneously such as in our setting. A vast literature on vector
quantization and on vector quantization errors exists, and for an excellent and com-
prehensive survey on vector quantization see Gray and Neuhoff [14]. A weaker form
of the WNH, which states that the error components are approximately uncorrelated
in the high resolution setting, i.e., when Δ is small, is often found in engineering lit-
erature without rigorous proof (see [11] and the discussion in [22]). A rigorous proof
of this weaker form of the WNH was first given in Viswanathan and Zamir [22]. More
precisely, they proved that if two random variables X,Y have a joint density function,
then 1

Δ2 E (τΔ(X)τΔ(Y )) −→ 0 as Δ → 0. Viswanathan and Zamir also proved similar
results in the nonuniform quantization setting, under much stronger assumptions.

It should be pointed out that much of the advantage of vector quantization comes
from the fact that the quantizations are not necessarily performed independently on
each channel. As a result there are many interesting and challenging mathematical
problems in nonuniform vector quantization. While the focus of this paper is on
uniform quantization, we hope it will be a very first step in resolving the problem in
the more general setting.

The objective of this paper is a rather modest one. Given the vast literature on
quantization errors and some of the general confusion regarding the WNH, this paper
aims to provide a complete analysis and rigorous mathematical theorems on the be-
havior of quantization errors. These results are by no means difficult, and they are also
rather intuitive. Nevertheless we feel there is a need to have them written. If nothing
else we hope this paper will serve to clarify the WNH in the uniform quantization
setting. As a very simple result we show that, under the assumption that the distri-
bution of x has a density (absolutely continuous), the components of the quantization

errors
{
τΔ
(
x · vj

)}N
j=1

can never be independent if N > d. However, we show that

asymptotically the WNH is almost valid by proving stronger and more general results
than those in [22]. More precisely, we prove that if a set of vectors {u1,u2, . . . ,uk} is

linearly independent, then the normalized quantization errors
{

1
ΔτΔ (x · uj)

}k
j=1

con-

verge in distribution to independent and uniformly distributed random variables as
Δ → 0+. Applying this to the frame setting, we show that if the vectors {vj}Nj=1 are

pairwise linearly independent, then {τΔ (x · vj)}Nj=1 becomes asymptotically pairwise
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independent and thus pairwise uncorrelated, and each τΔ (x · vj) becomes asymptot-
ically uniformly distributed on [−Δ/2,Δ/2]. These slightly weaker assumptions are
sufficient to lead to the MSE given by (1.6) asymptotically. Furthermore, we also
characterize completely the asymptotic behavior of the MSE if some vj ’s are parallel.
These and other results are stated and proved in subsequent sections.

2. A priori error bound and MSE under the WNH. In this section we
derive an a priori error bound and a formula for the MSE under the WNH. These
results are not new. We include them for self-containment. We use the following
settings throughout this section: Let {vj}Nj=1 be a frame in R

d with corresponding

frame matrix F = [v1,v2, . . . ,vN ]. The eigenvalues of FFT are λmax = λ1 ≥ λ2 ≥
· · · ≥ λd = λmin > 0. Let {uj}Nj=1 be the canonical dual frame with correspond-

ing matrix G = (FFT )−1F . For any x =
∑N

j=1 (x · vj)uj , using the quantization
alphabet A = ΔZ, we have the PCM quantized reconstruction

x̃ =
N∑
j=1

QΔ (x · vj)uj .

Proposition 2.1. For any x ∈ R
d we have

‖x − x̃‖ ≤ 1

2

√
N

λmin
Δ.(2.1)

If in addition {vj}Nj=1 is a tight frame with frame constant λ, then

‖x − x̃‖ ≤ 1

2

√
N

λ
Δ.(2.2)

Proof. We have x − x̃ =
∑N

j=1 τΔ (x · vj)uj = Gy, where y = [τΔ (x · v1) , . . . ,

τΔ (x · vN )]T . Thus ‖x − x̃‖2 = yTGTGy ≤ ρ
(
GTG

)
‖y‖2, where ρ(·) denotes the

spectral radius. Now ρ(GTG) = ρ(GGT ) = ρ((FFT )−1) = λ−1
min. Observe that

|τΔ (x · vj)| ≤ Δ/2. Thus ‖y‖2 ≤ N(Δ/2)2. This yields an a priori error bound
(2.1). The bound (2.2) is an immediate corollary.

Proposition 2.2. Under the WNH, the MSE is

E
(
‖x − x̃‖2

)
=

Δ2

12

d∑
j=1

λ−1
j =

Δ2

12

N∑
j=1

‖uj‖2.(2.3)

In particular, if {vj}Nj=1 is a tight frame with frame constant λ, then

E
(
‖x − x̃‖2

)
=

d

12λ
Δ2.(2.4)

Proof. Denote GTG = [bij ]
N
i,j=1 and again let y = [τΔ (x · v1) , . . . , τΔ (x · vN )]T .

Note that with the WNH, E(yiyj) = E(τΔ(x · vi)τΔ(x · vj)) = (Δ2/12)δij . Now
x − x̃ = Gy, and hence

E
(
‖x − x̃‖2

)
= E

(
yTGTGy

)
=

N∑
i,j=1

bijE (yiyj) =

N∑
i=1

bii
Δ2

12
=

Δ2

12
tr(GTG).



2046 DAVID JIMENEZ, LONG WANG, AND YANG WANG

Finally, tr(GTG) =
∑N

j=1 ‖uj‖2, and tr(GTG) = tr(GGT ) = tr((FFT )−1) =
∑d

j=1

λ−1
j .

Remark. The MSE formulae (2.3)–(2.4) still hold if the independence of {τΔ (x·
vj)}Nj=1 in the WNH is replaced with the weaker condition that {τΔ (x · vj)}Nj=1 are
uncorrelated.

3. A closer look at the WNH. The WNH asserts that the error components
{τΔ (x · vj)}Nj=1 are independent and identically distributed random variables. Intu-
itively this cannot be true if N > d. This is indeed the case in general. The following
is a simple result.

Theorem 3.1. Let X ∈ R
d be an absolutely continuous random vector. Let

{vj}Nj=1 be nonzero vectors in R
d with N > d. Then the random variables {τΔ (X·

vj)}Nj=1 are not independent.

Proof. Let F be the frame matrix for the frame {vj}. Then dim(range(FT )) ≤ d,
and therefore L(range(FT )) = 0, where L is the Lebesgue measure on R

N . Let
Y = [Y1, . . . , YN ]T := FTX, and let Ỹ = [QΔ(Y1), . . . , QΔ(YN )]T be the quantized
Y. Denote Z = Y − Ỹ = [Z1, . . . , ZN ]T . Note that Yj = vj · X, so each Yj is
absolutely continuous, and therefore so is each Zj . If {Zj} are independent, then Z
must be absolutely continuous.

Now, set Ω := range(FT ) + ΔZ
N . Then L(Ω) = 0 because ΔZ

N is a countable
set. However, Z takes values in Ω, so P (Z ∈ Ω) = 1. This contradicts the absolute
continuity of Z.

Remark. Actually for Theorem 3.1 to hold we need only to assume that X has
an absolutely continuous component, i.e., X = Xc + Xs, where Xc �= 0 is absolutely
continuous and Xs is singular. However, the theorem can fail without the absolute
continuity condition, even if each component of X may be absolutely continuous.
The simplest example is to take X = [X,−X]T , where X is any random variable and
v1 = [1, 1]T and v2 = [1,−1]T .

Even when N = d the WNH holds only under rather strict conditions. The
following is another simple result.

Proposition 3.2. Let X = [X1, . . . , Xm]T be a random vector in R
m whose

distribution has density function g(x1, . . . , xm).
(1) The error components {τΔ (Xj)}mj=1 are independent if and only if there exist

complex numbers {βj(n) : 1 ≤ j ≤ m,n ∈ Z} such that

ĝ
(a1

Δ
, . . . ,

am
Δ

)
= β1(a1) · · ·βm(am)(3.1)

for all [a1, . . . , am]T ∈ Z
m.

(2) Let hj(t) be the marginal density of Xj. Then {τΔ (Xj)}mj=1 are identically
distributed if and only if∑

n∈Z

hj(t− nΔ) = H(t) a.e.

for some H(t) independent of j. They are uniformly distributed on [−Δ/2,
Δ/2] if and only if H(t) = 1/Δ a.e.

Proof. To prove (1) denote IΔ = [−Δ/2,Δ/2] and Y = [τΔ (X1) , . . . , τΔ (Xm)]T .
Observe that Y has a density

G(y) :=
∑

a∈Zm

g(y − Δa)(3.2)
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for y ∈ Im
Δ . The density G(y) is periodic with period Δ, and it is well known that its

Fourier series is given by G(y) =
∑

a∈Zm cae
2iπ a

Δ ·y, where ca = ĝ
(

a
Δ

)
. But {Yj}mj=1

are independent if and only if on Im
Δ we have g(y1, . . . , ym) = g1(y1) · · · gm(ym). This

happens if and only if

ĝ
(a1

Δ
,
a2

Δ
, . . . ,

am
Δ

)
= h1

(a1

Δ

)
h2

(a2

Δ

)
· · ·hm

(am
Δ

)

for all a = [a1, . . . , am]T ∈ Z
m, with hj(ξ) = ĝi(ξ). This part of the theorem is proved

by setting βj(n) = hj(n).
The proof of (2) follows directly from the fact that the density of τΔ(Xj) is∑

n∈Z
hj(t− Δn) for t ∈ IΔ.

Proposition 3.2 puts strong constraints on the distribution of x for the WNH
to hold. Let X ∈ R

d be a random vector with joint density f(x). Let {vj}dj=1 be

linearly independent, and let Y = [X ·v1,X ·v2, . . . ,X ·vd]
T . Then the joint density

of Y is g(y) = |det(F )|−1f
(
(FT )−1y

)
, where F = [v1,v2, . . . ,vd]. Thus, both the

independence and the identical distribution assumptions in the WNH, even for N = d,
will be false unless very exact conditions are met. For instance, if we take X to be
Gaussian and F to be unitary, then the independence property is satisfied only when
F diagonalizes the covariance matrix of X.

Corollary 3.3. Let X ∈ R
d be a random vector with joint density f(x) and

{vj}dj=1 be linearly independent vectors in R
d. Let Y = FTX = [X · v1, . . . ,X · vN ]T

and g(y) = |det(F )|−1f
(
(FT )−1y

)
, where F = [v1, . . . ,vd].

(1) {τΔ (Yj)}dj=1 are independent random variables if and only if there exist com-
plex numbers {βj(n) : 1 ≤ j ≤ d, n ∈ Z} such that

ĝ
(a1

Δ
, . . . ,

ad
Δ

)
= β1(a1) · · ·βd(ad)(3.3)

for all [a1, . . . , ad]
T ∈ Z

d.
(2) Let hj(t) =

∫
Rd−1 g(x1, . . . , xj−1, t, xj+1, . . . , xd) dx1 · · · dxj−1 dxj+1 . . . dxd.

Then {τΔ (Xj)}dj=1 are identically distributed if and only if
∑

n∈Z
hj(t −

nΔ) = H(t) a.e. for some H(t) independent of j. They are uniformly dis-
tributed on [−Δ

2 ,
Δ
2 ] if and only if H(t) = 1/Δ a.e.

Proof. We have only to observe that g(y) is the density of Y and that hj is the
marginal density of Yj . The corollary now follows directly from the theorem.

From a practical point of view, with coarse quantization the MSE cannot be
estimated simply by (1.6). Thus the “6-dB-per-bit” rule may not apply. We shall
demonstrate this with numerical results. However, with high resolution quantization
the formula (1.6) becomes increasingly accurate. We show this in the next section.

4. Asymptotic behavior of errors: Linear independence case. In many
practical applications such as a music CD, fine quantizations with 16 bits or more have
been adopted. Although the WNH is not valid in general, with fine quantizations we
prove here that a weaker version of the WNH is close to being valid, which yields
an asymptotic formula for the PCM quantized MSE. Our result here strengthens an
asympototic result in [22].

We again consider the same setup as before. Let {vj}Nj=1 be a frame in R
d

with corresponding frame matrix F = [v1,v2, . . . ,vN ]. The eigenvalues of FFT are
λmax = λ1 ≥ λ2 ≥ · · · ≥ λd = λmin > 0. Let {uj}Nj=1 be the canonical dual frame with

corresponding matrix G = (FFT )−1F . For any x ∈ R
d we have x =

∑N
j=1 (x · vj)uj .
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Using the quantization alphabet A = ΔZ we have the PCM reconstruction (1.4).
Note that x̃ = x̃(Δ) as it depends on Δ. With the WNH we obtain the MSE

MSE = E
(
‖x − x̃‖2

)
=

Δ2

12

N∑
j=1

λ−1
j .

To study the asymptotic behavior of the error components, we study as Δ → 0+ the
normalized quantization error

1

Δ
(x − x̃) =

N∑
j=1

1

Δ
τΔ (x · vj)uj .(4.1)

Theorem 4.1. Let X ∈ R
d be an absolutely continuous random vector. Let

w1, . . . ,wm be linearly independent vectors in R
d. Then[

1

Δ
τΔ (X · w1) , . . . ,

1

Δ
τΔ (X · wm)

]T

converges in distribution as Δ → 0+ to a random vector uniformly distributed in
[−1/2, 1/2]m.

Proof. Denote Yj = X·wj . Since {wj} are linearly independent, Y = [Y1, . . . , Ym]T

is absolutely continuous with some joint density f(x), x ∈ R
m. As a consequence of

(3.2) one has that the distribution of Z = [Z1, . . . , Zm]
T
, where Zj = 1

ΔτΔ(Yj) ={Yj

Δ + 1
2

}
− 1

2 , is

fΔ(x) := Δm
∑

a∈Zm

f(Δx − Δa)(4.2)

for x ∈ [−1/2, 1/2]m. Again denote I1 := [−1/2, 1/2]. It is easy to see that
‖fΔ‖L1(Im

1 ) ≤ ‖f‖L1(Rm) for

‖fΔ‖L1(Im
1 ) =

∫
Im
1

|fΔ(x)| dx

≤
∑

a∈Zm

∫
Im
1

Δm |f(Δx − Δa)| dx

=
∑

a∈Zm

∫
ΔI1

m+Δa

|f (y)| dy

=

∫
Rm

|f (y)| dy

= ‖f‖L1(Rm).

Now, if Ω = [a1, b1] × · · · × [am, bm] and f(x) = 1Ω(x), then for x ∈ Im
1 observe

that fΔ(x) = ΔmKΔ, where KΔ(x) = #{a ∈ Z
m : Δx + Δa ∈ Ω}. Obviously,

KΔ(x) = s/Δm + O(Δ−m+1), where s = L(Ω) is the Lebesgue measure of Ω. Then
fΔ → s1Im

1
in L1(Im

1 ) as Δ → 0+.
We return to the case when f(x) is the density of Y. For any ε > 0 it is

possible to choose a g(x) ∈ L1(Rm) such that ‖f − g‖L1 < ε
3 , and furthermore,

g(x) =
∑N

j=1 cj1Ej
(x) is a simple function where cj ∈ R and each Ej is a product
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of finite intervals. Observe that
∫

Rm g =
∑N

j=1 cjL(Ej). Since (1Ej
)Δ → L(Ej)1Im

1

in L1 we have gΔ →
(∫

Rm g
)
1Im

1
as Δ → 0. Hence there exists a δ > 0 such that

‖gΔ − (
∫

Rm g)1Im
1
‖L1 < ε/3 whenever Δ < δ. Now, for Δ < δ,

∥∥fΔ − 1Im
1

∥∥
L1(Im

1 )
= ‖fΔ − gΔ‖L1(Im

1 ) +
∥∥gΔ −

(∫
Rm g

)
1Im

1

∥∥
L1(Im

1 )

+
∣∣1 −

(∫
Rm g

)∣∣ ‖1Im
1
‖L1(Im

1 )

<
ε

3
+

ε

3
+
∣∣1 −

(∫
Rm g

)∣∣
=

2ε

3
+
∣∣(∫

Rm f
)
−
(∫

Rm g
)∣∣

< ε.

Remark. We in fact proved a stronger result, namely, that the densities converge
in L1. Applying the above theorem to the MSE, if {vj}Nj=1 are pairwise linearly inde-

pendent, then the error components {τΔ (X · vj)}Nj=1 become asymptotically pairwise

independent and each is uniformly distributed in [−Δ
2 ,

Δ
2 ].

Corollary 4.2. Let X ∈ R
d be an absolutely continuous random vector. If

{vj}Nj=1 are pairwise linearly independent, then as Δ → 0+ we have

E
(
‖X − X̃‖2

)
=

Δ2

12

d∑
j=1

λ−1
j + o(Δ2) =

Δ2

12

N∑
j=1

‖uj‖2 + o(Δ2).(4.3)

Proof. As usual, denote by F and G the frame matrices associated with the
frame {vj}Nj=1 and the dual frame {uj}Nj=1, respectively. Let H = GTG, Yj = X · vj ,

Zj =
{Yj

Δ + 1
2

}
− 1

2 , and Z = [Z1, . . . , ZN ]
T
. By Theorem 4.1, E (Zi) → 0 and

E (ZiZj) → 1
12δij as Δ → 0+. Now X − X̃ = GZ. It follows from the proof of

Proposition 2.2 that

1

Δ2
E(‖X − X̃‖2) = E(ZTHZ)

= E

⎛
⎝ N∑

i,j=1

ZiZjhij

⎞
⎠

=
N∑

i,j=1

hijE (ZiZj)

=
1

12

N∑
i=1

hii + o(1)

=
1

12

d∑
j=1

λ−1
j + o(1),

and hence

E
(
‖X − X̃‖2

)
=

Δ2

12

d∑
j=1

λ−1
j + o(Δ2) =

Δ2

12

N∑
j=1

‖uj‖2 + o(Δ2).
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5. Asymptotic behavior of errors: Linear dependence case. In this sec-
tion we consider the case in which some vectors in the frame may be parallel. This
can happen, for example, if the frame contains redundant elements. Mathematically
it would be interesting to understand how the MSE behaves as Δ → 0+. We return
to previous calculations and note that

E(‖X − X̃‖2) =

N∑
i,j=1

hijE (τΔ(X · vi)τΔ(X · vj)) .

Our main result in this section is the following theorem.
Theorem 5.1. Let X be an absolutely continuous real random variable. Let

α ∈ R \ {0}. Then

lim
Δ→0+

1

Δ2
E (τΔ(X)τΔ(αX)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, α �∈ Q,

1

12pq
, α =

p

q
and p + q is even,

− 1

24pq
, α =

p

q
and p + q is odd,

(5.1)

where p, q are coprime integers.
Proof. Denote g(x) := {x + 1

2} −
1
2 . Let φ(x) ≥ 0 be an even C∞ function such

that supp(φ) ⊆ [−1, 1] and
∫

R
φ = 1. Let gn(x) = g ∗ φn, where φn(x) = nφ(nx). It

is standard to check that
(a) |gn(x)| ≤ 1/2;
(b) supp(g(x) − gn(x)) ⊆ [ 12 − 1

n ,
1
2 + 1

n ] + Z;
(c) gn(x) ∈ C∞ and is Z-periodic; and
(d)

∫
R
gn(x) dx = 0.

gn(x) represents a small perturbation of g(x) that “smoothes out” the discontinuities
of g(x). Now, set

E(Δ) := E
(

1

Δ2
τΔ(X)τΔ(αX)

)

= E
(
g

(
X

Δ

)
g

(
αX

Δ

))

=

∫
R

g
( x

Δ

)
g
(αx

Δ

)
f(x) dx,

and

En(Δ) :=

∫
R

gn

( x

Δ

)
gn

(αx
Δ

)
f(x) dx.

Claim. En(Δ) → E(Δ) as n → ∞ uniformly for all Δ > 0.
Proof of the claim. Let f be the density of X. For any ε > 0,

|En(Δ) − E(Δ)| =

∣∣∣∣
∫

R

[
gn

( x

Δ

)
gn

(αx
Δ

)
− g

( x

Δ

)
g
(αx

Δ

)]
f(x) dx

∣∣∣∣
≤ 1

2

∫
R

∣∣∣gn ( x

Δ

)
− g

( x

Δ

)∣∣∣f(x) dx

+
1

2

∫
R

∣∣∣gn (αx
Δ

)
− g

(αx
Δ

)∣∣∣f(x) dx.
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Now there exists an M > 0 such that
∫
[−M,M ]c

f(x) dx < ε
2 . So

∫
R

∣∣∣gn ( x

Δ

)
− g

( x

Δ

)∣∣∣ f(x) dx ≤
∫ M

−M

∣∣∣gn ( x

Δ

)
− g

( x

Δ

)∣∣∣ f(x) dx +
ε

2
.

Furthermore, let An(Δ,M) := supp(gn(x/Δ) − g(x/Δ)) ∩ [−M,M ]. Then we have

An(Δ,M) ⊆ Δ

([
1

2
− 1

n
,
1

2
+

1

n

]
+ Z

)
∩ [−M,M ].

Hence L(An(Δ,M)) ≤ 2M
Δ · 2Δ

n = 4M
n , and thus

∫ M

−M

∣∣∣gn ( x

Δ

)
− g

( x

Δ

)∣∣∣ f(x) dx ≤
∫
An(Δ,M)

f(x) dx <
ε

2

for n > 4M/ε (which is independent of Δ). This yields∫
R

∣∣∣gn ( x

Δ

)
− g

( x

Δ

)∣∣∣ f(x) dx < ε.

Similarly we have ∫
R

∣∣∣gn (αx
Δ

)
− g

(αx
Δ

)∣∣∣ f(x) dx < ε

for sufficiently large n, proving the claim.
Now consider the Fourier series of gn(t),

gn(t) =
∑
k∈Z

c
(n)
k e2πikt.

It is well known that the Fourier series converges to gn(t) uniformly for all t; see, e.g.,

[24]. Furthermore, since gn(t) is C∞ we have |c(n)
k | = o

(
(|k| + 1)−L

)
for all L > 0,

giving absolute convergence of the Fourier series. Thus

En(Δ) = lim
K→∞

∫
R

( ∑
|k|≤K

c
(n)
k e2πiktΔ−1

)( ∑
|k|≤K

c
(n)
k e2πikαtΔ−1

)
f(t) dt

= lim
K→∞

∑
|k|,|�|≤K

c
(n)
k c

(n)
� f̂

(
−k + α�

Δ

)
.

Observe that |f̂(ξ)| ≤ ‖f‖L1 = 1, and |c(n)
k | = o

(
(|k| + 1)−L

)
for any L > 0. So the

series converges absolutely and uniformly in Δ. Thus

En(Δ) =
∑
k,�∈Z

c
(n)
k c

(n)
� f̂

(
−k + α�

Δ

)
.(5.2)

For any n > 0 we have

lim
Δ→0+

En(Δ) =
∑
k,�∈Z

c
(n)
k c

(n)
� lim

Δ→0+
f̂
(
−k + α�

Δ

)
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because the series converges absolutely and uniformly. Suppose α /∈ Q. Then k +
α� �= 0 if either k �= 0 or � �= 0. Thus

∣∣−k+α�
Δ

∣∣ → ∞ as Δ → ∞, and hence

limΔ→0+ f̂
(
−k+α�

Δ

)
= 0 as f ∈ L1(R). Note also that c

(n)
0 =

∫
R
gn = 0. It follows

that

lim
Δ→0+

En(Δ) = 0.

But En(Δ) → E(Δ) as n → ∞ uniformly in Δ, which yields E(Δ) → 0 as Δ → 0+.
Next, suppose α = p

q , where p, q ∈ Z, (p, q) = 1. We observe that k + α� = 0 if
and only if k = pm and � = −qm for some m ∈ Z. In such a case

f̂
(
−k + α�

Δ

)
= f̂(0) =

∫
R

f = 1.

It follows that

lim
Δ→0+

En(Δ) =
∑
m∈Z

c(n)
pmc

(n)
−qmf̂(0) =

∑
m∈Z

c(n)
pmc

(n)
−qm =

∑
m∈Z

c(n)
pmc

(n)
qm.

For r ∈ Z, r �= 0 set

G(n)
r (x) :=

∑
m∈Z

c(n)
rme2πimx.

By Parseval we have

lim
Δ→0

En(Δ) =
〈
G(n)

q , G(n)
p

〉
L2([0,1])

.

It is easy to check that

G(n)
r =

1

|r|

|r|−1∑
j=0

gn

(x + j

r

)
.

Hence G
(n)
r converges in L2([0, 1]) to Gr(x) := 1

|r|
∑|r|−1

j=0 g
(
x+j
r

)
, which has Fourier

series Gr(x) =
∑

m∈Z
crme2πimx with c0 = 0 and ck = (−1)k−1

2πik for k �= 0. This yields

lim
n→∞

lim
Δ→0+

En(Δ) = lim
n→∞

〈
G(n)

q , G(n)
p

〉
= 〈Gq, Gp〉 =

∑
m∈Z

cqmcpm.

Finally,

∑
m∈Z

cqmcpm =
∑

m∈Z\{0}

( (−1)qm−1

2πimq

)( (−1)pm−1

2πimp

)

=
1

2pqπ2

∞∑
m=1

(−1)(p+q)m

m2
.

Note that if p + q is even then
∑∞

m=1
(−1)(p+q)m

m2 =
∑∞

m=1
1

m2 = π2

6 . On the other

hand, if p + q is odd then
∑∞

m=1
(−1)(p+q)m

m2 =
∑∞

m=1
(−1)m

m2 = −π2

12 . The theorem
follows.
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Corollary 5.2. Let X be an absolutely continuous random vector in R
d, w �= 0,

w ∈ R
d, and α ∈ R \ {0}. Then

lim
Δ→0+

1

Δ2
E (τΔ(w · X)τΔ(αw · X)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, α �∈ Q,

1

12pq
, α =

p

q
and p + q is even,

− 1

24pq
, α =

p

q
and p + q is odd,

(5.3)

where p, q are coprime integers.
Proof. We need only to note that w · X is an absolutely continuous random

variable. The corollary follows immediately from Theorem 5.1.
We can now characterize completely the asymptotic behavior of the MSE in all

cases. For any two vectors w1,w2 ∈ R
d define r(w1,w2) by

r(w1,w2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

pq
w1 · w2, w1 =

p

q
w2, and p + q is even,

− 1

2pq
w1 · w2, w1 =

p

q
w2, and p + q is odd,

0, otherwise,

where p, q are coprime integers.
Corollary 5.3. Let X ∈ R

d be an absolutely continuous random vector. Then
as Δ −→ 0+ the MSE satisfies

E
(
‖X − X̃‖2

)
=

Δ2

12

d∑
j=1

λ−1
j +

Δ2

6

∑
1≤i<j≤N

r(ui,uj) + o(Δ2).(5.4)

Proof. In the proof of (4.2) we showed that

lim
Δ→0+

1

Δ2
E
(
‖X − X̃‖2

)
=
∑
i,j

hijE (ZiZj)

with the notation there. Observe that hij = ui · uj . The result is immediate from
Corollary 5.2.

For fixed quantization step Δ > 0 we shall denote

MSEideal =
Δ2

12

d∑
j=1

λ−1
j +

Δ2

6

∑
1≤i<j≤N

r(ui,uj)(5.5)

and call it the ideal MSE. If {vj}Nj=1 are pairwise linearly independent, then the

MSEideal is simply Δ2

12

∑d
j=1 λ

−1
j , the MSE under the WNH.

We should point out that even though the WNH is not true aysmpototically if
some vectors in a frame are parallel, the contribution from the second part of (5.5) is
often small enough that the MSE under the WNH is close enough to the ideal MSE.
In the next section we shall show some numerical data comparing the actual MSE
with the ideal MSE.

Appendix A. Numerical results. Here we present data from our computer
experiments comparing the ideal MSE to the actual MSE. We performed Monte Carlo
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Table 1

The harmonic frame in R
2.

N Actual MSE Ideal MSE Ratio
9 0.00934342 0.00925926 1.009090
17 0.00479521 0.00252525 0.976808
33 0.00246669 0.00490196 0.978223
65 0.00122499 0.00128205 0.955496

129 0.00065858 0.000645995 1.019480
257 0.00057971 0.00032425 1.787810
513 0.00056039 0.00016244 3.449740
1025 0.00052914 0.00008130 6.508450
2049 0.00053895 0.00004067 13.25180
4097 0.00058846 0.00002034 28.93090

Table 2

The randomly generated frame in R
4.

k/N N = 64 N = 128 N = 256 N = 512 N = 1024
k = 0 1.581960 2.232260 3.697160 6.497800 12.20670
k = 1 1.076590 1.130510 1.397840 1.649530 2.480920
k = 2 1.003680 0.995214 1.008370 1.033280 1.196680
k = 3 0.967138 0.990876 0.999648 0.981633 1.010090
k = 4 0.989295 1.009840 1.032110 1.002630 1.002260
k = 5 1.011720 1.035590 1.020870 1.002350 1.022250
k = 6 0.978712 1.006760 0.992207 1.001490 0.979342
k = 7 0.997524 1.017840 0.995852 0.972120 0.976273
k = 8 0.998725 1.011380 1.040270 0.978204 0.973284
k = 9 0.982450 1.038580 0.994463 1.021580 1.037800
k = 10 0.993099 1.002340 1.009930 1.009870 0.974017
k = 11 0.981428 0.998280 0.975881 1.049010 1.009570

simulations for several different sets of frames. We also experimented with various
distributions for X ∈ R

d. As it turned out, we got very similar results for the distri-
butions we used for most of the frames we tried. In the examples shown, the random
vectors X are all chosen to be uniformly distributed in [−5, 5]d.

Example A.1. Let {vj}Nj=1 be the harmonic frame in R
2, with vj =

[
cos 2πj

N ,

sin 2πj
N

]T
. This is a tight frame with frame constant λ = N

2 . The ideal MSE is Δ2

3N
for N odd. Taking Δ = 1

2 , Table 1 displays the actual MSE, the ideal MSE, and the
ratio between them. It shows that as N gets larger than 129, the actual MSE does
not improve, which shows that the WNH is invalid for large Δ.

Example A.2. Let {vj}Nj=1 be N independently and randomly generated vectors

uniformly distributed on the unit sphere in R
4. Table 2 shows the ratio between the

actual MSE and the ideal MSE, where MSEideal = Δ2

12 (
∑d

j=1 λ
−1
j ), with Δ = 2−k.

Example A.3. Let {vj}N−1
j=0 be the harmonic frame in R

4, with

vj =

√
1

2

[
cos

2πj

N
, sin

2πj

N
, cos

4πj

N
, sin

4πj

N

]T
.

This is a tight frame with frame constant λ = N
4 , and the ideal MSE is 4Δ2

3N . Table 3
shows the ratio between the actual MSE and the ideal MSE, where Δ = 2−k.
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Table 3

The harmonic frame in R
4.

k/N N = 64 N = 128 N = 256 N = 512 N = 1024
k = 0 0.997218 0.928318 1.287990 2.312710 4.497050
k = 1 1.005460 1.004720 0.950783 1.339810 2.395180
k = 2 0.990253 1.001070 0.977474 0.960994 1.354320
k = 3 0.995848 0.993963 0.981683 0.992655 0.955345
k = 4 0.987371 1.007310 1.028120 1.016760 1.002570
k = 5 0.993840 1.015230 1.026680 1.003770 1.023820
k = 6 1.012230 1.012280 0.996363 0.999742 1.004120
k = 7 1.020450 1.025820 1.031120 1.003770 1.004770
k = 8 1.004710 1.010820 0.999289 0.973596 0.970415
k = 9 0.993542 1.003380 0.981550 0.984594 0.981001
k = 10 1.015610 1.008740 0.997469 0.986705 1.004360
k = 11 1.010690 1.009080 0.994975 1.010510 0.998485

Table 4

The frame of Example A.4 in R
3.

k Actual MSE Ideal MSE MSE under WNH
2 0.012234100000 0.011880200000 0.011363600000
3 0.002935150000 0.002970040000 0.002840910000
4 0.000732567000 0.000742510000 0.000710227000
5 0.000188331000 0.000185628000 0.000177557000
6 0.000046664900 0.000046406900 0.000044389200
7 0.000011626300 0.000001160170 0.000011097300
8 0.000002953720 0.000002900430 0.000002774330
9 0.000000724800 0.000000725108 0.000000693581

10 0.000000180127 0.000000181277 0.000000173395
11 0.000000045856 0.000000045319 0.000000043349

Example A.4. Let {vj}5
j=1 be a frame in R

3, with the corresponding matrix

F =

⎛
⎝ 1 1 0 1 3

0 −1 0 0 0
0 0 1 0 0

⎞
⎠ .

Note that the set contains many parallel vectors. The dual frame matrix is

⎛
⎜⎝

1
11 0 0 1

11
3
11

1
11 −1 0 1

11
3
11

0 0 1 0 0

⎞
⎟⎠ .

The MSE under the WNH is 0.181818Δ2 and, by our result, the ideal MSE is
0.190083Δ2, which is closer to the actual MSE. The difference between the two esti-
mates comes from the second part in (5.5). Table 4 shows the actual MSE, the ideal
MSE, and the MSE under the WNH, where Δ = 2−k.
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